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Abstract

Private set intersection (PSI) allows two mutually distrusting parties each with a set as
input, to learn the intersection of both their sets without revealing anything more about their
respective input sets. Traditionally, PSI studies the static setting where the computation is
performed only once on both parties’ input sets.

We initiate the study of updatable private set intersection (UPSI), which allows parties to
compute the intersection of their private sets on a regular basis with sets that also constantly
get updated. We consider two specific settings. In the first setting called UPSI with addition,
parties can add new elements to their old sets. We construct two protocols in this setting, one
allowing both parties to learn the output and the other only allowing one party to learn the
output. In the second setting called UPSI with weak deletion, parties can additionally delete
their old elements every t days. We present a protocol for this setting allowing both parties
to learn the output. All our protocols are secure against semi-honest adversaries and have the
guarantee that both the computational and communication complexity only grow with the set
updates instead of the entire sets.

Finally, we implement our UPSI with addition protocols and compare with the state-of-the-
art PSI protocols. Our protocols compare favorably when the total set size is sufficiently large,
the new updates are sufficiently small, or in networks with low bandwidth.
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1 Introduction

Private set intersection (PSI) enables two parties, each holding a private set of elements, to compute
the intersection of the two sets while revealing nothing more than the intersection itself. Over the
years, PSI and its related functionalities have found many real-world privacy-preserving applications
including DNA testing and pattern matching [TPKC07], remote diagnostics [BPSW07], online ad-
vertising [IKN+20], password breach alerting [TPY+19], mobile private contact discovery [KRS+19],
privacy-preserving contact tracing [TSS+20,CCF+20], and many more. There has been tremendous
progress made towards realizing PSI efficiently [KKRT16,RR17,CLR17,PRTY19,CM20,PRTY20]
with both semi-honest and malicious security.

Despite tremendous advancements and improvements in the efficiency of PSI protocols, one
drawback of all the existing protocols is that when parties update their sets to include some new
elements or remove certain existing elements, in order to compute the intersection between the two
updated sets, parties have to perform a fresh PSI computation every time. This incurs a lot of
wasteful computational and communication overhead, especially in scenarios where the updates are
done very frequently and/or the updates to the existing sets are small. Indeed, in a lot of real-world
scenarios such as aggregated ads measurement [IKN+20], password breach monitoring [APP,MIC],
digital contact tracing [TSS+20, CCF+20], PSI is performed on a regular (e.g., daily) basis with
updated sets, where the daily update to the sets could be very small compared to the entire sets.
In this work, we ask the following question:

Can we design protocols that allow parties to regularly update their sets and perform PSI where
every time both the computation and communication costs are only proportional to their updates

instead of the entire sets?

1.1 Our Results

We first formalize the notion of updatable private set intersection (UPSI) as a special case of secure
two-party computation with a reactive functionality that interacts with both parties over many days
and keeps its own private internal state between days. There are two types of updates to consider:
adding new elements and deleting existing elements. In particular, we consider the following two
settings and present three constructions summarized in Table 1.

UPSI with Addition. In the first setting, on every day, we allow both parties to add a new set
of elements to their existing old sets. The output on each day is the intersection of the two updated
entire sets. We construct two protocols:

• Two-Sided UPSI with Addition: A Diffie-Hellman based protocol that allows both parties to
receive the output on each day. Both the computational and communication complexity of
this protocol only grow linearly with the size of the added new sets and are independent of
the size of the old sets.

• One-Sided UPSI with Addition: An additively homomorphic encryption based protocol that
allows only one party to receive the output. The overall complexity may vary on different days,
hence we consider the amortized cost per day over a long period of days. Both the amortized
computational and communication complexity of this protocol only grow linearly with the
size of the added new sets and logarithmically with the size of the old sets. Technically, we
develop an ORAM-like tree structure that allows one party to obliviously update an encrypted
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database and another party to obliviously search on the encrypted database (where the secret
key is held by the first party), which may be of independent interest.

Note that one-sided UPSI with addition is a stronger functionality in the semi-honest setting
because the output-receiving party can send the output to the other party so as to achieve two-
sided output. We present a protocol for one-sided UPSI with addition because the functionality
may be desirable in many server-client applications where only the client is allowed to learn the
output (e.g., password breach monitoring [APP,MIC]).

UPSI with Weak Deletion. In the second setting, we additionally allow both parties to refresh
their sets every t days. Namely, they will add a set of elements to their sets every day, and delete
elements that were added to their sets t days ago. This setting is motivated by applications such as
privacy-preserving contact tracing [TSS+20,CCF+20] where data about people’s interactions from
more than e.g. 14 days ago is no longer useful. In this example, one party’s (server’s) input is the
set of people who tested positive on that day, the other party’s (client’s) input is the set of people
they interacted with on that day. The output on each day is the list of people the client interacted
with in the last t days, who also tested positive in the last t days.

We construct an oblivious transfer (OT) based protocol that allows both parties to receive the
output. Both the computational and communication complexity grow linearly with the size of the
added new sets and t.

Functionality Output Protocol Comp. Complexity Comm. Complexity

Addition-Only Two-Sided Figure 4 O(N ′) O(N ′)

Addition-Only One-Sided Figure 6 O∗(N ′ logN) O∗(N ′ logN)

Weak Deletion Two-Sided Figure 9 O(N ′ · t) O(N ′ · t)

Table 1: Summary of our protocols. N denotes the size of the old sets and N ′ denotes the size of the
updates. t denotes the number of days when parties refresh their sets in UPSI with weak deletion. O∗(·)
denotes amortized complexity.

Experiments. We implement the two UPSI with addition protocols and compare with the state-
of-the-art PSI protocols. To demonstrate the updatable property, we consider the following setting:
each party initially holds an empty set. Then, on every new day, both parties add a new set of size
N ′ to their existing sets and wish to learn the updated set intersection. We repeat this process over
a period of several days ( N

N ′ ) till the total set size of each party is N . We compare the amortized
(over the total number of days) communication cost and running time of our protocol with the
prior PSI protocols [KKRT16,PRTY19,CM20], where, on any day, the two parties run a fresh PSI
on their updated sets to learn the updated intersection.

Generally speaking, the (concrete/amortized) communication cost of both our protocols only
grows with N ′ and at most logarithmically with N , hence we have more advantages in efficiency
when the total set size N is larger, the update size N ′ is smaller, and the network bandwidth
is lower. In particular, our two-sided UPSI with addition protocol beats all the PSI protocols in
communication by 7.5 − 13250× in the settings we consider (where N ≫ N ′). As an example for
running time, when N = 220 and N ′ = 210, our protocol beats the best PSI protocol by 1.1− 7.6×
for network bandwidth between 5−50 Mbps. Our one-sided UPSI with addition protocol beats the
PSI protocols in communication by 2− 149× in almost all settings we consider. As an example for
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running time, when N = 220 and N ′ = 26, our protocol beats the best PSI protocol by 1.8− 30.5×
for network bandwidth between 5− 50 Mbps.

1.2 Related Work

There are various approaches in achieving efficient semi-honest PSI in different settings, includ-
ing Diffie-Hellman-based [Mea86, HFH99], fully homomorphic encryption (FHE)-based [CLR17],
circuit-based [HEK12,PSSZ15,PSWW18,PSTY19], and oblivious transfer (OT)-based [KKRT16,
PRTY19, CM20] protocols. We refer the reader to [PSZ14, PSZ18] for an overview of the dif-
ferent paradigms for PSI. Protocols based on OT [KKRT16, PRTY19, CM20] are currently the
fastest in practice because they can take advantage of the efficient implementation of OT exten-
sion [IKNP03,ALSZ13].

In the updatable setting, the work of Kiss et al. [KLS+17] studies PSI with pre-computation
between a server with a large set of size N and a client with a small set of size N ′. In a setup phase,
the communication and computation cost is linear in N while in the online phase the cost is only
linear in N ′. It allows the server to update its set without recomputing the setup phase and the
client to run the online phase for new sets. Nevertheless, they do not provide an ideal functionality
for the updatable setting that captures the exact leakage from their protocols. In particular, if the
client’s sets in the online phase are X1, . . . , Xd and the server’s updates are Y1, . . . , Yd, then all
of their protocols reveal to the client Xi ∩ Yj for all i, j. Such leakage also arises in our attempt
to extend the Diffie-Hellman-based PSI to the updatable setting, which we discuss in Section 1.3.
In this work, we formalize security by a reactive ideal functionality that prevents such leakage in
the updatable setting. Buddhavarapu et al. [BKM+20] consider the updatable setting where only
one party’s dataset is updated and arrives in a streaming fashion, and the output intersection is
additively secret shared amongst both parties. Furthermore, they require an upper bound on this
streaming input size to be known apriori. In our case, both parties’ sets can be updated with no
apriori upper bound needed.

A recent work of Abadi et al. [ATD20] studies delegated PSI protocols that support data
updates and multi-party PSI. In particular, clients can upload their (encrypted) private data to a
server and outsource the PSI computation. Clients can update their sets with communication and
computation only growing with their updates. However, both the computation and communication
of the PSI protocol grow with the entire sets, and they require the existence of a server.

1.3 Challenges and Ideas

We briefly explain the technical challenges in the design of our protocols. We start with the
addition-only setting. Let X,Y denote the old sets of the two parties P0, P1 respectively, and let
X ′, Y ′ denote their new added sets. For simplicity, assume |X| = |Y | = N and |X ′| = |Y ′| = N ′.
Recall that we are mostly interested in the scenario when N ≫ N ′ and our goal is to make the
computation and communication cost to learn the new intersection only grow with N ′ and not N
(except with logarithmic factors).

First, note that naturally extending existing FHE-based [CLR17], circuit-based [HEK12,PSSZ15,
PSWW18,PSTY19], or OT-based [KKRT16,PRTY19,CM20] PSI protocols does not work. In the
FHE-based protocols, while P0 (the output-receiving party) can send Enc(X ′) which only grows
with N ′, the computation cost of P1 would involve homomorphically evaluating to compare with
his entire input set Y ∪ Y ′ (and also homomorphically compare Y ′ with P0’s old set X), which
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grows with N . A similar issue arises in circuit-based protocols where in fact, communication also
grows with N . The OT-based protocols require one party to fix its input set and the number of
OTs (to set up the oblivious pseudorandom function) depends on N , so both communication and
computation would grow.

Two-sided UPSI. On first thought, the Diffie-Hellman-based protocol [Mea86, HFH99] seems
more promising because it has special algebraic structures that may be suitable for the updatable
setting. To briefly recall the protocol, let X,Y be P0 and P1’s input sets, respectively. Both parties
first hash their elements into a group where DDH holds, namely H(X) and H(Y ). Each party
picks a secret exponentiation key, that is k0 and k1 respectively. P1 then sends H(Y )k1 and P0

responds back with H(Y )k0k1 . Symmetrically, they can obtain H(X)k0k1 . By comparing H(Y )k0k1

and H(X)k0k1 , both parties can compute the intersection X∩Y . In the updatable setting, they can
repeat this process on their new elements X ′, Y ′ ensuring that computation and communication
only grow with the size of the new sets. Unfortunately, this näıve adaption to the updatable setting
does not trivially solve the problem as it leaks extra information than what the parties can learn
from the ideal functionality. In particular, it leaks X ′ ∩Y and X ′ ∩Y ′ to P0, which is not available
in the ideal world.

Our solution is to get rid of such leakage by investigating what can be inferred from the ideal
functionality and leveraging the nice algebraic structures. In particular, we split the updated output
into two parts, one of which (that is, X ∩Y ′) can be computed by extending the above DDH-based
protocol and for the other (in particular, X ′ ∩ (Y ∪ Y ′)), we run a fresh PSI instance on small
input sizes. We carefully choose this split and design the appropriate sub-protocols to ensure no
information is leaked. We refer to Section 4 for a detailed overview and the formal construction.

One-sided UPSI. In our protocol above, we crucially rely on the fact that both parties learn
the output on each day. In particular, even if we want only P0 to learn output, to ensure that P1

uses a small input for the fresh PSI, we require P1 to learn the output of the first part that extends
the DDH-based approach. We now focus on the challenges and ideas in designing a protocol for
one-sided UPSI where only P0 learns the output.

At a high level, our key idea is for P1 to store an encrypted version of his set on P0’s storage and
on each day, he updates this encrypted database based only on his new input Y ′. Then, we require
a mechanism that allows P0 to obliviously query this database and compute on the encrypted data
(by interacting with P1) to learn the intersection without leaking any information to P1.

We discuss one natural idea to implement this mechanism using FHE. Suppose P1 uses FHE
to encrypt Y and stores Enc(Y ) on P0. Then P0 can use her inputs to homomorphically compute
Enc(X ∩Y ). Both parties can then run a secure two-party computation (2PC) protocol where P0’s
input is Enc(X ∩ Y ) and P1’s input is secret key sk, from which P0 learns the output (X ∩ Y ).
When there is update, P1 can update the encrypted database by sending Enc(Y ′) and P0 can
learn (X ′ ∩ (Y ∪ Y ′)) with communication only growing with N ′. However, P0’s homomorphic
computation still grows with N . Moreover, it requires expensive FHE evaluation and 2PC for FHE
decryption.

To implement this approach efficiently, we take inspiration from oblivious RAM [SvDS+18].
The crucial idea is that the encrypted database is maintained in a tree structure where, on any day,
P1 only updates one level of the tree and P0 only queries on one path of the tree, so the (amortized)
cost only grows with the depth of the tree (logarithmic in N and not linear). We also build an
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efficient 2PC protocol for decryption using additively homomorphic encryption instead of FHE. We
further optimize our protocol by using Cuckoo hashing [PR04] to store elements in each node of
the tree and leveraging the structure of El Gamal encryption [Gam84] in our context. We refer to
Section 5 for more details.

Weak Deletion. We make an interesting observation about OT-based PSI protocols [KKRT16,
PRTY19, CM20]. They work in a streaming setting where, in a setup phase, only the output-
receiving party’s input set is known. Then, the sender’s inputs can be fed in a streaming manner
and the protocol allows the receiver to learn the intersection for each stream. We directly take
advantage of this streaming structure and build on these protocols to design our weak deletion
protocol. We refer to Section 6 for an overview and the construction.

2 Preliminaries

Notation. We use λ,σ to denote the computational and statistical security parameters, respec-
tively. By negl(λ) we denote a negligible function, i.e., a function f such that f(λ) < 1/p(λ) holds

for any polynomial p(·) and sufficiently large λ. By
c≈ we mean two distributions are computation-

ally indistinguishable. Let N+ denote the list of positive integers and N denote N+ ∪ {0}.

2.1 Private Set Intersection (PSI)

Private Set Intersection (PSI) is a special case of secure two-party computation. We follow the
standard security definition for semi-honest secure two-party computation. Consider two parties
P0, P1 with input sets X,Y of size N0, N1, respectively. Their goal is to run a two party secure
computation protocol Π at the end of which party P0 learns the set intersection I = X ∩ Y .1 The
formal definition of the ideal functionality is shown in Figure 1.

Parameters: The set size of X is N0 and the set of Y is N1.

Inputs:
Party P0 has an input set X of size N0 where each element is from {0, 1}∗.
Party P1 has an input set Y of size N1 where each element is from {0, 1}∗.
Output: P0 receives the set intersection I = X ∩ Y .

Figure 1: Ideal functionality FPSI for two-party PSI.

Let ViewΠ
0 (X,Y ) and ViewΠ

1 (X,Y ) be the view of P0 and P1 in the protocol Π, respectively.
Let OutΠ(X,Y ) be the output of P0 in the protocol. Let f(X,Y ) be the output of P0 in the ideal
functionality. The protocol Π is semi-honest secure if there exists PPT simulators Sim0 and Sim1

such that for all inputs X,Y ,

ViewΠ
0 (X,Y )

c≈ Sim0

!
1λ, X,N1, f(X,Y )

"
,

#
ViewΠ

1 (X,Y ),OutΠ(X,Y )
$ c≈

!
Sim1(1

λ, Y,N0), f(X,Y )
"
.

1Another formulation is allowing both parties to learn the output, which can be easily achieved in the semi-honest
model by P0 sending the output I to P1 at the end.
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2.2 Tools and Assumptions

Additively Homomorphic Encryption. An additively homomorphic encryption scheme is a
public-key encryption scheme AHE = (KeyGen,Enc,Dec) over message space M with correctness,
CPA security, and linear homomorphism.

• (pk, sk) ← KeyGen(1λ)

• ct ← Encpk(m; r)

• m/⊥ ← Decsk(ct)

• Homomorphic addition: Encpk(m1)⊕ Encpk(m2) = Encpk(m1 +m2) for ∀m1,m2 ∈ M.

• Homomorphic multiplication with constant: c⊙ Encpk(m) = Encpk(c ·m) for ∀c,m ∈ M.

We implicitly assume that each homomorphic evaluation is followed by a refresh operation, where
the resulting ciphertext is added with an independently generated encryption of zero. This is
required in our protocols to ensure that the randomness of the final ciphertext is independent of
the randomness used in the original set of ciphertexts. For the popular additively homomorphic
encryption schemes such as ElGamal encryption [Gam84] (based on DDH) and Paillier encryption
[Pai99] (based on the Decisional Composite Residuosity assumption), a homomorphically evaluated
ciphertext is statistically identical to a fresh ciphertext. We refer to [Gam84, Pai99] for formal
definitions of correctness and CPA security.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a cyclic multiplicative group of
prime order q with generator g. Let a, b, c be sampled uniformly at random from Zq. The DDH
assumption states that

(ga, gb, gab)
c≈ (ga, gb, gc).

Cuckoo Hashing. We define Cuckoo Hashing [PR04] verbatim from [KKRT16]. To assign n
items into b bins, first choose random functions H1, H2, H3 : {0, 1}∗ → [b] and initialize empty bins
B[1, . . . , b]. To hash an item x, first check to see whether any of the binsB[H1(x)], B[H2(x)], B[H3(x)]
are empty. If so, place x in one of the empty bins and terminate. Otherwise, choose a random
i ∈ {1, 2, 3}, evict the item currently in B[Hi(x)], replacing it with x, and then recursively try to
insert the evicted item. If this process does not terminate after a certain number of iterations, then
the final evicted element is placed in a special bin called stash.

3 Updatable Private Set Intersection

In this section, we formalize the definition of Updatable Private Set Intersection (UPSI). Consider
two parties P0 and P1 who wish to run PSI on a daily basis with updated sets each day. We consider
two settings on how they can update their sets. The first setting, which we call UPSI with addition,
allows both parties to add a set of elements to their respective sets each day. In the second setting,
which we call UPSI with weak deletion, both parties can add a set of elements to their sets every
day and delete elements that were added to their set t days before. In other words, each party only
holds the elements added in the most recent t days. Moreover, on each day, the output learnt is
only the intersection of each party’s new elements with the last t days’ elements of the other party.
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3.1 UPSI with Addition

In the setting of UPSI with addition, two parties P0 and P1 each hold a private set and add new
elements to their respective sets each day. They want to jointly compute their set intersection
every day on their updated sets without revealing anything beyond that. We formalize UPSI with
addition as a special case of secure two-party computation with a reactive functionality defined in
Figure 2. For simplicity, we assume that each party adds the same number of elements as the other
party on each day.

We consider two output scenarios: in two-sided UPSI with addition FUPSI-add-two, both parties
obtain output at the end of each day; in one-sided UPSI with addition FUPSI-add-one, only P0 gets
the output. Note that in the semi-honest model, a secure protocol achieving FUPSI-add-one can be
easily transformed into one achieving FUPSI-add-two by P0 sending the output to P1 at the end, hence
FUPSI-add-one is a stronger notion in the semi-honest model.

Initialization: X := ∅, Y := ∅.
Day d:

• Public parameter: The set size on Day d is Nd.

• Inputs:
P0 inputs a set Xd of size Nd where each element is from {0, 1}∗, and Xd ∩X = ∅.
P1 inputs a set Yd of size Nd where each element is from {0, 1}∗, and Yd ∩ Y = ∅.

• Update: On receiving the inputs from the two parties, the ideal functionality updates X :=
X ∪Xd, Y := Y ∪ Yd and computes Id = X ∩ Y .

• Output:
In FUPSI-add-two, the ideal functionality sends Id to both parties.
In FUPSI-add-one, the ideal functionality sends Id to only P0.

Figure 2: Ideal functionalities FUPSI-add-two and FUPSI-add-one for UPSI with addition.

Consider the first D days: let X[D] = {X1, . . . , XD} be the inputs of P0 and Y[D] = {Y1, . . . , YD}
be the inputs of P1. Let View

Π,D
b (X[D], Y[D]) and OutΠ,D

b (X[D], Y[D]) be the view and outputs of Pb

(b ∈ {0, 1}) in the protocol Π at the end of D days, respectively. Let f(X[D], Y[D]) := {I1, . . . , ID}
be the outputs of the ideal functionality in the D days.

Definition 3.1. (Two-Sided UPSI with Addition.) A protocol Π is semi-honest secure with
respect to ideal functionality FUPSI-add-two if there exists PPT simulators Sim0 and Sim1 such that
for any D ∈ N+, any inputs (X[D], Y[D]),

!
ViewΠ,D

0 (X[D], Y[D]),Out
Π,D
1 (X[D], Y[D])

"
c≈
!
Sim0

!
1λ, X[D], f(X[D], Y[D])

"
, f(X[D], Y[D])

"
,

!
ViewΠ,D

1 (X[D], Y[D]),Out
Π,D
0 (X[D], Y[D])

"
c≈
!
Sim1

!
1λ, Y[D], f(X[D], Y[D])

"
, f(X[D], Y[D])

"
.

Definition 3.2. (One-Sided UPSI with Addition.) A protocol Π is semi-honest secure with
respect to ideal functionality FUPSI-add-one if there exists PPT simulators Sim0 and Sim1 such that
for any D ∈ N+, any inputs (X[D], Y[D]),

ViewΠ,D
0 (X[D], Y[D])

c≈ Sim0

!
1λ, X[D], f(X[D], Y[D])

"
,

9



!
ViewΠ,D

1 (X[D], Y[D]),Out
Π,D
0 (X[D], Y[D])

"
c≈
!
Sim1

!
1λ, Y[D]

"
, f(X[D], Y[D])

"
.

3.2 UPSI with Weak Deletion

In the setting of UPSI with weak deletion, two parties P0 and P1 each hold a private set. Then,
on each day, they add new elements to their respective sets and delete elements that were added
t days before. On each day, they want to jointly compute the union of the intersection between
their new elements and the other party’s updated set comprising elements from the last t days,
without revealing anything beyond that. We formalize UPSI with weak deletion as a special case
of secure two-party computation with a reactive functionality defined in Figure 3. For simplicity,
we assume that each party adds the same number of elements as the other party on each day. We
only consider two-sided output where both parties receives the output every day.

Initialization: X := ∅, Y := ∅.
Day d:

• Public parameter: The set size on Day d is Nd.

• Inputs:
P0 inputs a set Xd of size Nd where each element is from {0, 1}∗, and Xd ∩X = ∅.
P1 inputs a set Yd of size Nd where each element is from {0, 1}∗, and Yd ∩ Y = ∅.

• Update: On receiving inputs from both parties, the ideal functionality updates X := (X ∪

Xd) \Xd−t, Y := (Y ∪ Yd) \ Yd−t and computes Id =

%
(Xd ∩ Y ) ∪ (X ∩ Yd)

&
. (If d − t ≤ 0,

let Xd−t = Yd−t = ∅.)
• Output: The ideal functionality sends Id to both parties.

Figure 3: Ideal functionality FUPSI-del for UPSI with weak deletion.

Consider the first D days: let X[d] = {X1, . . . , XD} be the inputs of P0, Y[D] = {Y1, . . . , YD}
be the inputs of P1 and N[D] = {N1, . . . , ND} be the set sizes. Let ViewΠ,D

b (X[D], Y[D]) and

OutΠ,D
b (X[D], Y[D]) be the view and outputs of Pb (b ∈ {0, 1}) in the protocol Π at the end of

D days, respectively. Let f(X[D], Y[D]) := {I1, . . . , ID} be the outputs of the ideal functionality in
D days.

Definition 3.3. (UPSI with Weak Deletion.) A protocol Π is semi-honest secure with respect
to ideal functionality FUPSI-del if there exists PPT simulators Sim0 and Sim1 such that for any
d ∈ N+, any inputs (X[D], Y[D]),

!
ViewΠ,D

0 (X[D], Y[D]),Out
Π,D
1 (X[D], Y[D])

"
c≈
!
Sim0

!
1λ, X[D], N[D]

"
, f(X[D], Y[D])

"
.

!
ViewΠ,D

1 (X[D], Y[D]),Out
Π,D
0 (X[D], Y[D])

"
c≈
!
Sim1

!
1λ, Y[D], N[D]

"
, f(X[D], Y[D])

"
.

4 Two-Sided UPSI with Addition

In this section, we present a two-sided UPSI with addition protocol satisfying Definition 3.1 based
on the DDH assumption in the random oracle model.
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4.1 Construction

Notation. Let G be a group of prime order q with generator g. Let H : {0, 1}∗ → G be a hash
function. For a set X ⊆ {0, 1}∗, we denote H(X) := {H(x)|x ∈ X} and H(X)k := {H(x)k|x ∈ X}.

Construction Overview. Our starting point is the semi-honest PSI protocol based on the DDH
assumption [Mea86,HFH99]. The protocol roughly works as follows. Both parties first hash their
elements into a group where DDH holds, namely P0 and P1 compute H(X) and H(Y ) respectively.
Each party holds a secret exponentiation key, that is, P0 holds k0 and P1 holds k1. The parties
then use their keys to exponentiate their hashed elements and exchange the results. They further
exponentiate the elements in the received set and send back the results. At the end, both parties
obtain H(X)k0k1 and H(Y )k0k1 , from which they can derive the intersection X ∩ Y .

In the updatable setting, to learn the updated intersection Id on each Day d, parties only need
to learn the update set Iupdate = Id \ Id−1. Observe that Iupdate can be split into two disjoint sets,
IX,old = Xold∩Yd (where Xold := X[d−1]\Id−1) and IX,new = Xd∩Y[d], both of which can be inferred
by P0 from the output of the ideal functionality and its own input. Therefore, it suffices to let P0

learn both IX,old and IX,new. Symmetrically, if we let Yold := Y[d−1] \ Id−1, then Iupdate can also be
split into IY,old = Yold ∩Xd and IY,new = Yd ∩X[d] to allow P1 to compute the output.

Using the ideas from the above DDH-based protocol, we first ensure that P0 holds a set
H(Xold)

k0k1 at the end of Day (d − 1), where Xold = X[d−1] \ Id−1. Then on Day d, P1 sends

H(Yd)
k1 and P0 computes H(Yd)

k0k1 . From this, P0 can derive IX,old = Xold ∩ Yd. Symmetrically
P1 can learn IY,old = Yold ∩Xd.

The next objective is to let P0 learn IX,new = Xd ∩ Y[d]. Näıvely, the two parties can run a
PSI protocol between the two sets Xd and Y[d], but the computational cost of P1 would grow at
least linearly with the size of Y[d], which is unsatisfactory. Observe that IX,new can also be split
into two disjoint sets, Xd ∩ Yd and Xd ∩ Y[d−1], the latter being exactly IY,old. A natural idea is to
first run a PSI between Xd and Yd so that P0 can learn Xd ∩ Yd and then let P1 send IY,old to P0.
Unfortunately, this idea does not work because it leaks extra information to P0 (observe that P0

does not learn Xd∩Yd in the ideal world). Nevertheless, we notice that the intersecting elements in
IX,new could only come from either Yd or IY,old, both of which are relatively small sets and known
to P1. Therefore, we can let P0 learn IX,new by running a PSI with P1 on the two sets Xd and
Yd∪ IY,old. In this PSI protocol, P1 needs to add dummy elements to hide the size of Yd∪ IY,old, but
the set size is at most 2 · Nd, hence the PSI is efficient in both computation and communication.
The full protocol is described in Figure 4.

4.2 Correctness and Efficiency

Correctness. If both parties follow the protocol honestly, at the end of Day d, we will have the
following guarantees with all but negligible probability:

• Id = X[d] ∩ Y[d];

• Xold = X[d] \ Id and HX = H(Xold)
k0k1 ;

• Yold = Y[d] \ Id and HY = H(Yold)
k0k1 .

We prove this by induction. Base case: These guarantees hold on Day 0 since all the sets are
initialized as empty sets.
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Initialization:
P0 samples k0

$←− Zq and sets Xold := ∅, HX = ∅, I0 := ∅.
P1 samples k1

$←− Zq and sets Yold := ∅, HY := ∅, I0 := ∅.

Day d: Party P0 inputs a set Xd of size Nd; party P1 inputs a set Yd of size Nd.

1. P0 learns IX,old = Xold ∩ Yd:

(a) P1 computes H(Yd)
k1 and sends to P0.

(b) On receiving H(Yd)
k1 , P0 raises each element to the power k0 to obtain H(Yd)

k0k1 and
compares with HX (which equals to H(Xold)

k0k1) to learn IX,old = Xold ∩ Yd.

2. Symmetrically, P1 learns IY,old = Yold ∩Xd.

3. Both parties learn the updated intersection:

(a) P1 lets 'Yd := Yd ∪ IY,old ∪ (DY where (DY consists of dummy random elements so that

|'Yd| = 2Nd.

(b) P0 and P1 run a PSI protocol for FPSI where P0’s input set is Xd and P1’s input set is
'Yd, from which only P0 learns the output IX,new.

(c) P0 computes Iupdate := IX,new ∪ IX,old and sends it to P1.

(d) Both parties compute Id := Id−1 ∪ Iupdate and output Id for Day d.

4. P0 updates Xold and HX :

(a) P0 does the following:

• Let X ′
d := Xd \ Iupdate and )X ′

d := X ′
d ∪ *DX where *DX consists of dummy random

elements so that |)X ′
d| = Nd.

• Sample a uniform random α from Zq.

• Compute H()X ′
d)

αk0 and send to P1.

(b) On receiving H()X ′
d)

αk0 , P1 raises each element to the power k1 to obtain H()X ′
d)

αk0k1

and sends back to P0.

(c) P0 does the following:

• On receiving H()X ′
d)

αk0k1 , raise each element to the power α−1 to obtain H()X ′
d)

k0k1 ,
from which derive H(X ′

d)
k0k1 .

• Update Xold := (Xold \ IX,old) ∪X ′
d and HX :=

#
HX \H(IX,old)

k0k1
$
∪H(X ′

d)
k0k1 .

5. Symmetrically, P1 updates Yold := (Yold \ IY,old) ∪ (Yd \ Iupdate) and HY .

Figure 4: Two-sided UPSI with addition protocol ΠUPSI-add-two.

Induction step: Suppose the guarantees hold on Day (d−1). Let Id−1, X
(d−1)
old , H

(d−1)
X , Y

(d−1)
old , H

(d−1)
Y

be the sets at the end of Day (d − 1). Now we consider Day d with new sets Xd and Yd. Let

Id, X
(d)
old , H

(d)
X , Y

(d)
old , H

(d)
Y be the sets at the end of Day d. In Step 1, party P0 learns H(Yd)

k0k1 and

takes the intersection with H
(d−1)
X (which equals to H

!
X

(d−1)
old

"k0k1
). By the collision resistance of

the hash function H, the intersection would result in X
(d−1)
old ∩Yd with all but negligible probability,

namely IX,old = X
(d−1)
old ∩ Yd. Symmetrically, IY,old = Y

(d−1)
old ∩Xd.
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In Step 3b, by the correctness of the PSI protocol, the intersection learned by P0 is

IX,new = Xd ∩'Yd = Xd ∩
!
Yd ∪ IY,old ∪ 'Dy

"

= Xd ∩ (Yd ∪ IY,old) (overwhelming probability because 'Dy are random)

= (Xd ∩ Yd) ∪ (Xd ∩ IY,old) = (Xd ∩ Yd) ∪
!
Xd ∩

!
Y

(d−1)
old ∩Xd

""

= (Xd ∩ Yd) ∪
!
Xd ∩ Y

(d−1)
old

"

= (Xd ∩ Yd) ∪
!
Xd ∩ Y

(d−1)
old

"
∪ (Xd ∩ Id−1) (Xd ∩ Id−1 = ∅ because Xd ∩X[d−1] = ∅)

= Xd ∩
!
Yd ∪ Y

(d−1)
old ∪ Id−1

"
= Xd ∩ Y[d] (Y

(d−1)
old ∪ Id−1 = Y[d−1] by inductive hypothesis)

The set computed in Step 3c is

Iupdate = IX,new ∪ IX,old =
#
Xd ∩ Y[d]

$
∪
!
X

(d−1)
old ∩ Yd

"

=
#
Xd ∩ Y[d]

$
∪
!
X

(d−1)
old ∩ Yd

"
∪ (Id−1 ∩ Yd) (Id−1 ∩ Yd = ∅ because Yd ∩ Y[d−1] = ∅)

=
#
Xd ∩ Y[d]

$
∪
!!

X
(d−1)
old ∪ Id−1

"
∩ Yd

"

=
#
Xd ∩ Y[d]

$
∪ (X[d−1] ∩ Yd) (X

(d−1)
old ∪ Id−1 = X[d−1] by inductive hypothesis)

Therefore, the new intersection computed in Step 3d is

Id = Id−1 ∪ Iupdate =
#
X[d−1] ∩ Y[d−1]

$
∪
#
Xd ∩ Y[d]

$
∪ (X[d−1] ∩ Yd)

=
#
X[d−1] ∩ Y[d]

$
∪
#
Xd ∩ Y[d]

$
= X[d] ∩ Y[d].

In Step 4c, P0 updates Xold as

X
(d)
old :=

!
X

(d−1)
old \ IX,old

"
∪ (Xd \ Iupdate)

=
!
X

(d−1)
old \

!
X

(d−1)
old ∩ Yd

""
∪
#
Xd \

##
Xd ∩ Y[d]

$
∪ (X[d−1] ∩ Yd)

$$

=
!
X

(d−1)
old \ Yd

"
∪
#
Xd \ Y[d]

$
=

##
X[d−1] \ Y[d−1]

$
\ Yd

$
∪
#
Xd \ Y[d]

$

=
#
X[d−1] \ Y[d]

$
∪
#
Xd \ Y[d]

$
= X[d] \ Y[d] = X[d] \ Id.

To update HX , notice that IX,old = X
(d−1)
old ∩ Yd ⊆ X

(d−1)
old , thus P0 can identify H(IX,old)

k0k1

from H
(d−1)
X . For X ′

d = Xd \ Iupdate, P0 can compute H(X ′
d)

k0k1 in Step 4. Therefore, in Step 4c

P0 obtains H
(d)
X = H

!
X

(d)
old

"k0k1
.

Similarly we can prove these guarantees also hold for Y
(d)
old and H

(d)
Y , which concludes the proof.

Computational and Communication Complexity. On Day d, both parties perform O(Nd)
exponentiations and a PSI protocol with set sizes O(Nd). The PSI protocol has both computa-
tional and communication complexity O(Nd). Hence the total computational and communication
complexity are both O(Nd) and independent of the total set size of each party.
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4.3 Security

Theorem 4.1. Assuming the Decisional Diffie-Hellman (DDH) assumption holds for the group G
and H(·) is modeled as a random oracle, the protocol ΠUPSI-add-two presented in Figure 4 securely
realizes the ideal functionality FUPSI-add-two (defined in Figure 2) in the FPSI-hybrid model against
semi-honest adversaries.

Security against corrupted P0. We construct a PPT Sim0 that simulates P0’s view as follows.
On input

#
1λ, X[D], f(X[D], Y[D])

$
, where f(X[D], Y[D]) := {I1, . . . , ID} are the outputs of the ideal

functionality in the D days, Sim0 runs the honest P0 to generate its view and behaves on behalf of
an honest P1 with the following exceptions on each Day d ∈ [D]:

• In Step 1a, let I ′X,old := X[d−1] ∩ (Id \ Id−1) and compute H(I ′X,old)
k1 . Let R be a set of

Nd − |I ′X,old| uniformly randomly sampled group elements in G. Send H(I ′X,old)
k1 ∪ R to P0

on behalf of P1.

• In Step 3b, let I ′X,new := Xd ∩ (Id \ Id−1). Receive P0’s input set as the ideal functionality of
FPSI and respond to P0 with I ′X,new.

• In Step 5 when P1 sends H()Y ′
d)

αk1 to P0 (for a random α ∈ Zq), replace it with a set of |Nd|
uniformly randomly sampled group elements in G.

Finally Sim0 outputs P0’s view.
Next we can show that for any D ∈ N+, any inputs (X[D], Y[D]),

!
ViewΠ,D

0 (X[D], Y[D]),Out
Π,D
1 (X[D], Y[D])

"
c≈
!
Sim0

!
1λ, X[D], f(X[D], Y[D])

"
, f(X[D], Y[D])

"
,

via a hybrid argument.

Hyb0 P0’s view and P1’s output in the real protocol.

Hyb1 Same as Hyb0 but P1’s output is replaced with f(X[D], Y[D]). This is computationally indis-
tinguishable from Hyb0 because of the correctness of the protocol shown in Section 4.2.

Hyb2 Same as Hyb1 but in Step 3b of each Day d ∈ [D], let I ′X,new := Xd ∩ (Id \ Id−1) and let the
response from the ideal functionality of FPSI to P0 be I ′X,new. We claim that IX,new = I ′X,new.

We show in Section 4.2 that IX,new = Xd∩Y[d]. Since Xd∩X[d−1] = ∅, we have Xd∩ Id−1 = ∅
and hence (Xd ∩ Y[d]) ∩ Id−1 = ∅. Given that Xd ∩ Y[d] ⊆ Id, we have Xd ∩ Y[d] ⊆ Id \ Id−1,
thus Xd∩Y[d] ⊆ Xd∩ (Id \ Id−1), namely IX,new ⊆ I ′X,new. On the other hand, Id ⊆ Y[d], hence
Xd ∩ (Id \ Id−1) ⊆ Xd ∩ Id ⊆ Xd ∩ Y[d], namely I ′X,new ⊆ IX,new. Therefore IX,new = I ′X,new.

By the correctness of the ideal functionality FPSI, the two hybrids Hyb1 and Hyb2 are com-
putationally indistinguishable.

Hyb3 Same as Hyb2 but H is replaced with a random function. This is computationally indistin-
guishable to Hyb2 because H is modeled a random oracle.

Hyb4 Same as Hyb3 but in Step 1a on each Day d ∈ [D], for each y ∈ Yd\X[d−1], replaceH(y)k1 with
a uniformly randomly sampled group elements in G. From Hyb3 to Hyb4, we actually replace
the elements one by one via a sequence of hybrids Hyb3,0,Hyb3,1, . . . ,Hyb3,n where Hyb3,0 =
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Hyb3 and Hyb3,n = Hyb4. We argue every pair of adjacent hybrids are computationally
indistinguishable based on the DDH assumption.

Assume for the purpose of contradiction that there exits a PPT distinguisher A that can
distinguish two adjacent hybrids Hyb3,i and Hyb3,i+1 where H(+y)k1 is replaced by a random
group element on some Day d for some +y ∈ Yd \X[d−1]. We construct a PPT distinguisher B
to break the DDH assumption.

B is given a tuple of group elements (g1, g2, g3) where g1 = gx, g2 = gy for random x, y ∈ Zq

and g3 is either gxy or gz for a random z ∈ Zq. B generates P0’s view as in Hyb3,i but sets
k1 := x (although x is unknown) and H(+y) := g2.

In particular, whenever H(·) is computed, B samples a random r ∈ Zq and sets the output
to be gr. In Step 1a when P1 needs to compute H(y)k1 , since B knows s ∈ Zq such that
H(y) = gs, it can compute H(y)k1 as gs1; when P1 samples a random group element for
H(y)k1 , B can do the same; for +y, B replaces H(+y)k1 with g3. Since +y /∈ X[d−1], we have
+y /∈ Xold and hence +y /∈ Xold ∩ Yd = IX,old in Step 1b on Day d, thus it doesn’t affect P0’s
computation.

In Step 4b, to compute H(x)αk0k1 , since B knows α, k0, and t ∈ Zq such that H(x) = gt, it can

compute H(x)αk0k1 as gtαk01 . Note that for each x in Step 4b before Day d (not considering
the dummy elements), x ∕= +y because +y /∈ X[d−1]; for each x in Step 4b on or after Day d (not
considering the dummy elements), x ∕= +y because x is not in the intersection. If we take the
dummy elements into consideration, then x ∕= +y with all but negligible probability, hence B
doesn’t have to compute H(+y)αk0k1 .
If g3 = gxy, then B generates P0’s view as in Hyb3,i; otherwise B generates P0’s view as
in Hyb3,i+1. Since A can distinguish these two hybrids, B can break the DDH assumption.
Contradiction.

Hyb5 Same as Hyb4 but in Step 5 on each Day d ∈ [D], when P1 sends H()Y ′
d)

αk1 to P0 (for a
random α ∈ Zq), replace it with a set of |Nd| uniformly randomly sampled group elements in
G. From Hyb4 to Hyb5, we in fact replace the elements one by one via a sequence of hybrids
Hyb4,0,Hyb4,1, . . . ,Hyb4,m where Hyb4,0 = Hyb4 and Hyb4,m = Hyb5. We argue that every pair
of adjacent hybrids are computationally indistinguishable based on the DDH assumption.

Assume for the purpose of contradiction that there exits a PPT distinguisher A that can
distinguish two adjacent hybrids Hyb4,i and Hyb4,i+1 where H(,y)αk1 is replaced with a random
group element on some Day d for some ,y. We construct a PPT distinguisher B to break the
DDH assumption.

B is given a tuple of group elements (g1, g2, g3) where g1 = gx, g2 = gy for random x, y ∈ Zq

and g3 is either gxy or gz for a random z ∈ Zq. B generates P0’s view as in Hyb4,i but in
Step 5 sets α := x on behalf of P1 (although x is unknown) and H(,y) := g2.

In particular, whenever H(·) is computed, B samples a random r ∈ Zq and sets the output
as gr. In Step 5 when P1 needs to compute H(y)αk1 (where y ∕= ,y), since B knows k1 as well
as s ∈ Zq such that H(y) = gs, it can compute H(y)αk1 as gsk11 ; when P1 samples a random
group element for H(y)αk1 (where y ∕= ,y), B can do the same; for ,y, B replaces H(,y)αk1 with
gk13 .
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If g3 = gxy, then B generates P0’s view as in Hyb3,i; otherwise g
k1
3 is a random group element,

hence B generates P0’s view as in Hyb3,i+1. Since A can distinguish these two hybrids, B can
break the DDH assumption. Contradiction.

Hyb6 Same as Hyb5 except thatH is computed as normal. This is computationally indistinguishable
to Hyb5 because H is modeled as a random oracle.

We claim that P0’s view in this hybrid is exactly Sim0’s output. The only difference between
Hyb6 and Sim0 is that in Step 1a on each Day d ∈ [D], H(y)k1 is computed honestly for all
y ∈ Yd ∩ X[d−1] in Hyb6 while Sim0 computes H(y)k1 honestly for all y ∈ I ′X,old. We claim
that Yd ∩X[d−1] = I ′X,old.

Since X[d−1] ∩ Id = X[d−1] ∩ Y[d] and X[d−1] ∩ Id−1 = X[d−1] ∩ Y[d−1], we have I ′X,old =
X[d−1] ∩ (Id \ Id−1) = (X[d−1] ∩ Id) \ (X[d−1] ∩ Id−1) = (X[d−1] ∩ Y[d]) \ (X[d−1] ∩ Y[d−1]) =
X[d−1] ∩ (Y[d] \ Y[d−1]) = X[d−1] ∩ Yd. This concludes the proof.

Security against corrupted P1. We construct a PPT Sim1 that simulates P1’s view as follows.
On input

#
1λ, Y[D], f(X[D], Y[D])

$
, where f(X[D], Y[D]) := {I1, . . . , ID} are the outputs of the ideal

functionality in the D days, Sim1 runs the honest P1 to generate its view and behaves on behalf of
an honest P0 with the following exceptions on each Day d ∈ [D]:

• In Step 2 when P0 sends H(Xd)
k0 to P1, let I ′Y,old := Y[d−1] ∩ (Id \ Id−1) and compute

H(I ′Y,old)
k0 . Let R be a set of Nd − |I ′Y,old| uniformly randomly sampled group elements in G.

Send H(I ′Y,old)
k0 ∪R to P1 on behalf of P0.

• In Step 3c, let I ′update := Id \ Id−1 and send I ′update to P1 on behalf of P0.

• In Step 4a, send a set of |Nd| uniformly randomly sampled group elements in G to P1 on
behalf of P0.

Finally Sim1 outputs P1’s view.
Next we can show that for any D ∈ N+, any inputs (X[D], Y[D]),

!
ViewΠ,D

1 (X[D], Y[D]),Out
Π,D
0 (X[D], Y[D])

"
c≈
!
Sim1

!
1λ, Y[D], f(X[D], Y[D])

"
, f(X[D], Y[D])

"
,

via a hybrid argument.

Hyb0 P1’s view and P0’s output in the real protocol.

Hyb1 Same as Hyb0 but P0’s output is replaced with f(X[D], Y[D]). This is computationally indis-
tinguishable from Hyb0 because of the correctness of the protocol shown in Section 4.2.

Hyb2 Same as Hyb1 but in Step 3c on each Day d ∈ [D], let I ′update := Id \ Id−1 and send I ′update
to P1 on behalf of P0. This is computationally indistinguishable from Hyb1 because of the
correctness of the protocol shown in Section 4.2.

Hyb3 Same as Hyb2 but H is replaced with a random function. This is computationally indistin-
guishable to Hyb2 because H is modeled a random oracle.
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Hyb4 Same as Hyb3 but in Step 2 on each Day d ∈ [D], for each x ∈ Xd \ Y[d−1], replace H(x)k0

with a uniformly randomly sampled group elements in G. This hybrid is computationally
indistinguishable from Hyb3 based on the DDH assumption. The argument is similar to the

proof of Hyb3
c≈ Hyb4 in the security proof against corrupted P0.

Hyb5 Same as Hyb4 but in Step 4a on each Day d ∈ [D], send a set of |Nd| uniformly randomly
sampled group elements in G to P1 on behalf of P0. This hybrid is computationally indistin-
guishable from Hyb4 based on the DDH assumption. The argument is similar to the proof of

Hyb4
c≈ Hyb5 in the security proof against corrupted P0.

Hyb6 Same as Hyb5 except thatH is computed as normal. This is computationally indistinguishable
to Hyb5 because H is modeled as a random oracle. Finally, we claim that P1’s view in this
hybrid is exactly Sim1’s output. The argument is similar to the proof in Hyb6 of the security
proof against corrupted P0. This concludes the proof.

5 One-Sided UPSI with Addition

In this section, we present a one-sided UPSI with addition protocol satisfying Definition 3.2, where
only one party P0 receives the output on each day.

5.1 Construction

Notation. Let λ be the computational security parameter and σ be the statistical security pa-
rameter. Let G be a group of prime order q with generator g. Let H1 : {0, 1}∗ → G be a hash
function and H2 : {0, 1}∗ → {0, 1}λ be another hash function. Let AHE = (KeyGen,Enc,Dec) be
an additively homomorphic encryption scheme where the message space is a field Fp. For a set
X ⊆ {0, 1}∗, we denote H1(X) := {H1(x)|x ∈ X} and H1(X)k := {H1(x)

k|x ∈ X}. We denote
Encpk(X) as {Encpk(x)|x ∈ X}.

Let LS1(n) denote the position of the least significant one in the binary representation of n. In
other words, if n =

-k
i=0 bi · 2i, then LS1(n) := min{i : bi = 1}. For example, LS1(7) = 0 and

LS1(12) = 2. For a string s ∈ {0, 1}ℓ, let s[1..k] (where 1 ≤ k ≤ ℓ) be the number whose binary
representation is the leading k bits of s. For example, for s = 010110, s[1..4] = (0101)2 = 5. In
addition, we let s[1..k] = 0 for k = 0.

Let a node denote a collection of at most 4σ elements (or encrypted elements). For each i ∈ N,
let Di denote an array of 2i nodes on the P1 side and let Di[j] (where j ∈ {0, 1, . . . , 2i − 1}) be the
j-th node in Di. Similarly, let +Di denote an array of 2i nodes (containing encrypted elements) on
the P0 side and let +Di[j] be the j-th node in +Di.

Construction Overview. For simplicity, we assume Nd = σ on each Day d. We discuss how to
extend our protocol for Nd ∕= σ in Section 5.4. Without loss of generality, we assume all the set
elements are in the field Fp, namely in the message space of AHE. In case they are not, we can first
apply a hash function H : {0, 1}∗ → Fp on all the elements.

To learn the updated intersection Id on each Day d, party P0 only needs to learn the update
set Iupdate = Id \ Id−1. Similar to the previous protocol ΠUPSI-add-two (see Figure 4), Iupdate can be
split into two disjoint sets, IX,old = Xold ∩ Yd and IX,new = Xd ∩ Y[d] (both can be inferred from the
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(a) Tree structure by the end of Day 19.

!! 0

!" 0 !" 1

!# 0

!! 1

!" 2 !" 3

!! 2

!" 4 !" 5

!# 1

!! 3

!" 6 !" 7

!$ 0

!! 4

!" 8 !" 9

!# 2

!! 5

!" 10 !" 11

!! 6

!" 12 !" 13

!# 3

!! 7

!" 14 !" 15

!$ 1

!% 0

(b) Tree structure by the end of Day 20.

Figure 5: Example of update on Day 20. A white node indicates it is empty and a gray node indicates it
is non-empty. P1 pushes all the elements in D0 and D1, along with the new elements, to D2.

output in the ideal world). We first use the same approach as in the protocol ΠUPSI-add-two to let
P0 learn IX,old. Next we describe how to let P0 learn IX,new without leaking any information to P1.

At a high level, P1 stores all his elements in an encrypted form on P0’s storage in such a way
that: (a) P1 can efficiently and data-obliviously insert new elements to the storage, and (b) P0 can
efficiently query if her element x is in the storage. We construct a binary tree structure to achieve
the data obliviousness, efficient data insertion, and efficient data query reminiscent of constructions
for oblivous ram (ORAM) [SvDS+18]. In particular, P1 stores all his elements in a binary tree,
which can be updated efficiently when new elements are added to his set. On each day, P1 updates
his tree structure and then sends the corresponding updated encryptions to P0, which allows her to
update the encrypted tree. To query if P0’s element x is in the encrypted tree, P0 will locate a small
set of elements that could possibly contain x. By utilizing additively homomorphic encryption, P0

is able to learn whether x is among these elements (with P1’s help) without leaking any information
about x to P1.

The binary tree structure works as follows. Initially, the tree is empty. Each node of the tree
has a maximum capacity O(σ). On each day when there are new elements added to P1’s set, P1 will
insert the new elements into the tree. Intuitively speaking, P1 starts by adding the new elements
to the root of the tree. If the root is full (i.e., reaches the maximum capacity), then P1 pushes the
elements in the root along with the new elements to the second level of the tree. If the second level
has any full node, then P1 pushes all the elements down to the third level. This process continues
– if the first L levels of the tree contains any full node, then P1 pushes all the elements in the first
L levels, along with the new elements, to the (L + 1)-st level of the tree, and then empties the
first L levels. For a particular level, an element y is put into a (pseudo-)random node of that level,
determined by the output of a hash function H2(y).

To make the above process data oblivious to P0, P1 should not wait until exactly when a node
is full because that may leak information about P1’s elements. Instead, “pushing” happens in
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a predetermined way that only depends on P1’s set sizes (which is public to P0 as well) with the
guarantee that no node will reach full capacity except with negligible probability. As an illustration,
Figure 5 shows the pushing process on Day d = 20, where P1 pushes all the element in the first two
levels of the tree along with the new elements to the third level.

After P1 updates his local tree structure, he pads every updated node to the maximum capacity
using dummy elements and then sends them in an encrypted form to P0, which allows her to update
the encrypted tree structure. Next, when P0 wishes to query if an element x is in the tree, for
each x ∈ Xd, she can first locate a root-to-leaf path of the tree that could possibly contain x (by
computing H2(x)). Then, by utilizing additively homomorphic encryption and with the help of P1,
P0 can learn whether x is contained in any node of the path without learning any more information
and without leaking x to P1. The full protocol is described in Figure 6.

5.2 Correctness

Induction for Xold. Observe that, by induction, we can show that at the end of any Day d,
Xold = X[d]\Id and HX = H1(Xold)

k0k1 . This argument is identical to the one shown in Section 4.2.

Day 1. In Step 1, P0 learns ∅ since Xold = ∅. In Step 2, both parties set L = maxL = 0. Then,
in Step 3, P1 inserts the σ elements of Y1 into D0[0]. D0[0] is then padded to size 4σ before the
encrypted node +D′

0[0] is sent to P0. In Step 4, P0 sets +D0[0] = +D′
0[0]. In Step 5, for each x ∈ X1, P0

computes a pair (ctα, ctβ) for each element ct in +D0[0]. In each pair, ctβ = Encpk1(x+α−y), where
ct = Encpk1(y). P1 decrypts ctβ in each pair and sends back ctr = Encpk0(γ · (x− y)). Now, P0 can
decrypt this and Decsk0(ctr) = 0 if and only if x ∈ Y1 except with negligible probability (since P1

also adds random dummy elements). So, P0 learns X1 ∩ Y1. Finally, in Step 7, P0 updates Xold

and HX similarly as in the previous protocol ΠUPSI-add-two (Figure 4).

Day d. Now, let’s analyze the protocol on any Day d. In Step 1, as a result of the induction-based
observation above, P0 learns IX,old = Xold ∩ Yd where Xold = X[d−1] \ Id−1. The data structure D
is a binary tree of depth maxL, where each node is of size 4σ. At any i, we denote the 2i nodes as
Di[0], . . . ,Di[2

i−1]. In Step 3, all levels i > L remain untouched while levels 0, . . . , L are completely
revamped. In particular, all the elements (of Y[d−1]) at levels up to (L− 1) along with the new set
Yd are filled into the nodes at level L. Each element y is inserted into node DL[j] where j is the
leading L bits of H2(y). All nodes in levels up to (L − 1) are emptied. Finally, as before, these
nodes are padded to size 4σ, encrypted and sent to P0.

Lemma 5.1. The protocol aborts in Step 3 with negligible probability.

Proof. The protocol aborts if the size of any node DL[j] exceeds 4σ. We show that this happens
only with negligible probability. First, assuming hash function H2(·) is modeled as a random oracle,
any element y ∈ S is equally likely to be placed into any node +DL[j] for j ∈ {0, 1, . . . , 2L − 1}. We
now use a couple of sub-lemmas to complete the proof.

Sub-Lemma 5.2. The number of items inserted into nodes at level L is |S| = 2L · σ.

Proof. Since L = LS1(d), d is of the form d = 0 mod 2L and d = 2L mod 2L+1. Consider d∗ = d−2L,
if d∗ > 0, then LS1(d∗) > L, hence all nodes up to level L are emptied and contain ∅ on Day d∗.
Observe that an element y in P1’s input that is placed on a node in level i is later never placed on
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Initialization:
1. P0 samples k0

$←− Zq and setsXold := ∅, HX = ∅, I0 := ∅, and !Di[j] := ∅ for all i ∈ N and all j ∈ {0, 1, . . . , 2i−1}.
P1 samples k1

$←− Zq and sets Di[j] := ∅ for all i ∈ N and all j ∈ {0, 1, . . . , 2i − 1}.
Both parties set maxL := 0.

2. P0 generates (pk0, sk0) ← KeyGen(1λ) and sends pk0 to P1.
P1 generates (pk1, sk1) ← KeyGen(1λ) and sends pk1 to P0.

Day d: P0 inputs a set Xd of size σ; P1 inputs a set Yd of size σ.

1. P0 learns IX,old = Xold ∩ Yd:

(a) P1 computes H1(Yd)
k1 and sends to P0.

(b) On receiving H1(Yd)
k1 , P0 raises each element to the power k0 to obtain H1(Yd)

k0k1 and compares with
HX (which equals to H1(Xold)

k0k1) to learn IX,old = Xold ∩ Yd.

2. Both parties let L := LS1(d) and maxL := max{L,maxL}.
3. P1 updates D by doing the following:

(a) Let S :=
"#L−1

i=0

#2i−1
j=0 Di[j]

$
∪ Yd.

(b) For each i ∈ {0, 1, . . . , L} and for each j ∈ {0, 1, . . . , 2i − 1}, set Di[j] := ∅.
(c) For each element y ∈ S, let j := H2(y)[1..L] and add y into the node DL[j]. If the size of DL[j] exceeds

4σ, then abort.

(d) For each j ∈ {0, 1, . . . , 2L − 1}, construct a node D′
L[j] of size 4σ by padding DL[j] with dummy random

elements. Compute !D′
L[j] ← Encpk1(D

′
L[j]).

(e) Send
%
!D′
L[j]

&

j∈{0,1,...,2L−1}
to P0.

4. P0 updates !D by doing the following:

(a) For each i ∈ {0, 1, . . . , L− 1} and for each j ∈ {0, 1, . . . , 2i − 1}, set !Di[j] := ∅.
(b) For each j ∈ {0, 1, . . . , 2L − 1}, set !DL[j] := !D′

L[j].

5. P0 learns IX,new = Xd ∩ Y[d]:
P0 first sets IX,new := ∅. Then for each x ∈ Xd:

(a) P0 does the following:

i. Set C0 := ∅.
ii. For each i ∈ {0, . . . ,maxL}, let j := H2(x)[1..i]; if !Di[j] ∕= ∅, then for each ct ∈ !Di[j]:

Sample α
$←− Fp, compute ctα ← Encpk0(α) and ctβ ← Encpk1(x+ α)⊖ ct, and add a pair (ctα, ctβ)

to C0.
iii. Send C0 to P1.

(b) P1 does the following:

i. Set C1 := ∅.
ii. For each pair (ctα, ctβ) ∈ C0, sample γ

$←− Fp, compute β ← Decsk1(ctβ), ctr ← γ⊙ (Encpk0(β)⊖ctα)
and add ctr to C1.

iii. Send C1 in a randomly permuted order to P0.

(c) P0 does the following:
For each ctr ∈ C1, compute r ← Decsk0(ctr). Add x to the set IX,new if r = 0.

6. P0 computes Id := Id−1 ∪ IX,old ∪ IX,new and output Id for Day d.

7. P0 updates Xold and HX :

(a) P0 does the following:

Let X ′
d := Xd \ Id and construct 'X ′

d of size σ by padding Xd with dummy random elements.

Sample α
$←− Zq, compute H1('X ′

d)
αk0 and send to P1.

(b) P1 raises each element in H1('X ′
d)

αk0 to the power k1 to obtain H1('X ′
d)

αk0k1 and sends back to P0.

(c) P0 raises each element in H1('X ′
d)

αk0k1 to the power α−1 to obtain H1('X ′
d)

k0k1 , from which it derives
H1(X

′
d)

k0k1 . Then P0 updatesXold := (Xold \ IX,old)∪X ′
d andHX :=

(
HX \H1(IX,old)

k0k1
)
∪H1(X

′
d)

k0k1 .

Figure 6: One-sided UPSI with addition protocol ΠUPSI-add-one.
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level i1 where i1 < i. In particular, elements either remain at the same level or are pushed further
down the tree on each day. From Day (d∗ + 1, . . . , d − 1), the number of elements added to the
tree is σ · (d − 1 − d∗) = σ · (2L − 1). The number of elements added on Day d is σ and hence
|S| = 2L · σ.

Sub-Lemma 5.3. Given N = Poly(σ) balls distributed into N
σ bins, where every ball is equally

likely to be placed in any bin, Pr[size of every bin ≤ 4σ] ≥ 1− negl(σ).

Proof. Let Xi,≥k be an indicator variable that the i-th node has at least k balls. Then

Pr[Xi,≥k = 1] ≤
.
N

k

/
1

(N/σ)k
≤

.
N

N/σ

/k 1

k!
= σk 1

k!

≤ σk 1
√
2πk

#
k
e

$k (using Stirling’s approximation)

Let k = 4σ, then we have Pr[Xi,≥k = 1] ≤ σk

( 4σ
e )

k = 1
(4/e)4σ

≤ 1
22σ

. By taking a union bound we have

Pr [∃i ∈ N,Xi,≥4σ = 1] ≤ N

22σ
= negl(σ).

Combining the above two sub-lemmas, it is easy to see that no node DL[j] has size more than
4σ except with negligible probability.

In Step 4, P0 updates the encrypted database +D. In Step 5, for each x ∈ Xd, for each i ∈
{0, 1, . . . ,maxL}, P0 computesH2(x)[1,...,i] to identify which nodes of +D (at each level) could possibly
contain x. Then, for each such non-empty node, for each ciphertext ct in it, (ct = Encpk1(y) where
y ∈ Y[d] or y is a random dummy element), P0 computes and sends (Encpk0(α),Encpk1(x− y − α)).
P1 responds back with Encpk0(γ(x− y)) which P0 can decrypt. Observe that this is 0 if and only if
x = y where y ∈ Y[d] except with negligible probability (if y equals a random dummy element). In
this manner, P0 learns whether each element x ∈ Xd belongs to Y[d] and computes IX,new = Xd∩Y[d].
Finally, in Step 7, P0 updates Xold and HX as done in the previous protocol ΠUPSI-add-two (Figure 4).

5.3 Security

Theorem 5.4. Given an additively homomorphic encryption scheme AHE, assuming that the De-
cisional Diffie-Hellman (DDH) assumption holds for the group G, and that H1, H2 are modeled as
random oracles, the protocol ΠUPSI-add-one presented in Figure 6 securely realizes the ideal function-
ality FUPSI-add-one (defined in Figure 2) against semi-honest adversaries.

Security against corrupted P0. First, let Num1(n) denote the number of 1’s in the binary
representation of n. In other words, if n =

-k
i=0 bi · 2i, then Num1(n) := |{i : bi = 1}|. For

example, Num1(7) = 3 and Num1(12) = 2. We construct a PPT Sim0 that simulates P0’s view as
follows. On input

#
1λ, X[D], f(X[D], Y[D])

$
, where f(X[D], Y[D]) := {I1, . . . , ID} are the outputs of

the ideal functionality in the D days, Sim0 runs the honest P0 to generate its view and behaves on
behalf of an honest P1 with the following exceptions on each Day d ∈ [D]:

21



• In Step 1a, let I ′X,old := X[d−1] ∩ (Id \ Id−1) and compute H1(I
′
X,old)

k1 . Let R be a set of

(σ − |I ′X,old|) randomly sampled group elements in G. Send H1(I
′
X,old)

k1 ∪ R to P0 on behalf
of P1.

• In Step 3c, never abort on behalf of P1.

• In Step 3e, let +D′
L[j] be a set of 4σ encryptions of 0 under pk1, namely Encpk1(0). Send0

+D′
L[j]

1

j∈{0,1,...,2L−1}
to P0 on behalf of P1.

• In Step 5(b)iii, if x /∈ Id, let C1 be a set of 4σ · Num1(d) encryptions of random elements

under pk0, namely Encpk0(r) for r
$←− Fp; otherwise, let C1 be a set containing Encpk0(0) and

(4σ·Num1(d)−1) encryptions of random elements under pk0. Send C1 in a randomly permuted
order to P0 on behalf of P1.

Finally, Sim0 outputs P0’s view.
We show that for any D ∈ N+, any inputs (X[D], Y[D]),

ViewΠ,D
0 (X[D], Y[D])

c≈ Sim0

!
1λ, X[D], f(X[D], Y[D])

"

via a hybrid argument.

Hyb0 P0’s view in the real protocol.

Hyb1 Same as Hyb1 but H1 is replaced with a random function. This is computationally indistin-
guishable to Hyb0 because H1 is modeled a random oracle.

Hyb2 Same as Hyb1 but in Step 1a on each Day d ∈ [D], for each y ∈ Yd\X[d−1], replaceH1(y)
k1 with

a uniformly randomly sampled group elements in G. From Hyb1 to Hyb2, we actually replace
the elements one by one via a sequence of hybrids Hyb1,0,Hyb1,1, . . . ,Hyb1,n where Hyb1,0 =
Hyb1 and Hyb1,n = Hyb2. We argue every pair of adjacent hybrids are computationally
indistinguishable based on the DDH assumption.

Assume for the purpose of contradiction that there exits a PPT distinguisher A that can
distinguish two adjacent hybrids Hyb1,i and Hyb1,i+1 where H1(+y)k1 is replaced by a random
group element on some Day d for some +y ∈ Yd \X[d−1]. We construct a PPT distinguisher B
to break the DDH assumption.

B is given a tuple of group elements (g1, g2, g3) where g1 = gx, g2 = gy for random x, y ∈ Zq

and g3 is either gxy or gz for a random z ∈ Zq. B generates P0’s view as in Hyb1,i but sets
k1 := x (although x is unknown) and H1(+y) := g2.

In particular, whenever H1(·) is computed, B samples a random r ∈ Zq and sets the output
to be gr. In Step 1a when P1 needs to compute H1(y)

k1 , since B knows s ∈ Zq such that
H1(y) = gs, it can compute H1(y)

k1 as gs1; when P1 samples a random group element for
H1(y)

k1 , B can do the same; for +y, B replaces H1(+y)k1 with g3. Since +y /∈ X[d−1], we have
+y /∈ Xold and hence +y /∈ Xold ∩ Yd = IX,old in Step 1b on Day d, thus it doesn’t affect P0’s
computation.

In Step 7b, to compute H1(x)
αk0k1 , since B knows α, k0, and t ∈ Zq such that H1(x) = gt,

it can compute H1(x)
αk0k1 as gtαk01 . Note that for each x in Step 7b before Day d (not

considering the dummy elements), x ∕= +y because +y /∈ X[d−1]; for each x in Step 7b on or after
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Day d (not considering the dummy elements), x ∕= +y because x is not in the intersection. If we
take the dummy elements into consideration, then x ∕= +y with all but negligible probability,
hence B doesn’t have to compute H1(+y)αk0k1 .
If g3 = gxy, then B generates P0’s view as in Hyb1,i; otherwise B generates P0’s view as
in Hyb1,i+1. Since A can distinguish these two hybrids, B can break the DDH assumption.
Contradiction.

Hyb3 Same as Hyb2 but in Step 3c, P1 never aborts. By Lemma 5.1, the probability that P1 aborts
is negligible, hence this hybrid is computationally indistinguishable from Hyb2.

Hyb4 Same as Hyb3 except that in Step 5(b)iii on each day d ∈ [D], replace each ctr by a fresh
encryption of γ · (β−α) under pk0. This hybrid is statistically indistinguishable from Hyb3 by
the re-randomization property of the additively homomorphic encryption scheme. In partic-
ular, the encryption ctr computed from (ctα,β, γ) by homomorphic operations is statistically
indistinguishable from a fresh encryption of r even given the secret key sk0.

Hyb5 Same as Hyb4 except that in Step 5(b)iii on each day d ∈ [D], if x /∈ Id, let C1 be a set of

4σ · Num1(d) encryptions of random elements under pk0, namely Encpk0(r) for r
$←− Fp. Send

C1 in a randomly permuted order to P0 on behalf of P1.

First, our construction guarantees that on each day d ∈ [D], there are exactly Num1(d) levels
of the tree that are non-empty, hence the size of C0 is 4σ · Num1(d). If x /∈ Id, then for each
pair (ctα, ctβ) ∈ C0, we know that β − α = x − y = 0 with negligible probability (note that
some y values are randomly sampled by P1, so the probability is not 0 but negligible). In

case β−α ∕= 0, then γ · (β−α) for a random γ
$←− Fp is identically distributed from a random

value r
$←− Fp.

Therefore, this hybrid is statistically indistinguishable from Hyb4.

Hyb6 Same as Hyb5 except that in Step 5(b)iii on each day d ∈ [D], if x ∈ Id, let C1 be a set
containing Encpk0(0) and (4σ ·Num1(d)−1) encryptions of random elements under pk0. Send
C1 in a randomly permuted order to P0 on behalf of P1.

If x ∈ Id, then there exists one pair (ctα, ctβ) ∈ C0 such that β − α = 0; for all other pairs,
β−α = 0 with negligible probability. For the pair such that β−α = 0, γ · (β−α) = 0 for any

γ. For all other pairs, in case β − α ∕= 0, then γ · (β − α) for a random γ
$←− Fp is identically

distributed from a random value r
$←− Fp.

Therefore, this hybrid is statistically indistinguishable from Hyb5.

Hyb7 Same as Hyb6 but in Step 3e on each day d ∈ [D], let +D′
L[j] be a set of 4σ encryptions

of 0 under pk1, namely Encpk1(0). Send
0
+D′
L[j]

1

j∈{0,1,...,2L−1}
to P0 on behalf of P1. This

hybrid is computationally indistinguishable from Hyb6 by the CPA security of the additively
homomorphic encryption scheme.

Hyb8 Same as Hyb7 except that H1 is computed as normal. This is computationally indistinguish-
able to Hyb7 because H1 is modeled as random oracles.
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We claim that P0’s view in this hybrid is exactly Sim0’s output. The only difference between
Hyb8 and Sim0 is that in Step 1a on each Day d ∈ [D], H1(y)

k1 is computed honestly for all
y ∈ Yd ∩ X[d−1] in Hyb8 while Sim0 computes H1(y)

k1 honestly for all y ∈ I ′X,old. We claim
that Yd ∩X[d−1] = I ′X,old.

Since X[d−1] ∩ Id = X[d−1] ∩ Y[d] and X[d−1] ∩ Id−1 = X[d−1] ∩ Y[d−1], we have I ′X,old =
X[d−1] ∩ (Id \ Id−1) = (X[d−1] ∩ Id) \ (X[d−1] ∩ Id−1) = (X[d−1] ∩ Y[d]) \ (X[d−1] ∩ Y[d−1]) =
X[d−1] ∩ (Y[d] \ Y[d−1]) = X[d−1] ∩ Yd. This concludes the proof.

Security against corrupted P1. We construct a PPT Sim1 that simulates P1’s view as follows.
On input

#
1λ, Y[D]

$
, Sim1 runs the honest P1 to generate its view and behaves on behalf of an

honest P0 with the following exceptions on each Day d ∈ [D]:

• In Step 5(a)iii, let C0 be a set of 4σ · Num1(d) pairs of encryptions (ctα, ctβ), where ctα ←
Encpk0(0) and ctβ ← Encpk1(r) for r

$←− Fp. Send C0 to P1 on behalf of P0.

• In Step 7a, send a set of σ randomly sampled group elements in G to P1 on behalf of P0.

Finally Sim1 outputs P1’s view.
Next we show that for any D ∈ N+, any inputs (X[D], Y[D]),

!
ViewΠ,D

1 (X[D], Y[D]),Out
Π,D
0 (X[D], Y[D])

"
c≈
!
Sim1

!
1λ, Y[D]

"
, f(X[D], Y[D])

"
.

via a hybrid argument.

Hyb0 P1’s view and P0’s output in the real protocol.

Hyb1 Same as Hyb0 but P0’s output is replaced with f(X[D], Y[D]). This is computationally indis-
tinguishable from Hyb0 because of the correctness of the protocol shown in Section 5.2.

Hyb2 Same as Hyb1 but H1 is replaced with a random function. This is computationally indistin-
guishable to Hyb1 because H1 is modeled a random oracle.

Hyb3 Same as Hyb2 but in Step 7a on each Day d ∈ [D], send a set of σ randomly sampled group
elements in G to P1 on behalf of P0. This hybrid is computationally indistinguishable from

Hyb2 based on the DDH assumption. The argument is similar to the proof of Hyb1
c≈ Hyb2

in the security proof against corrupted P0.

Hyb4 Same as Hyb3 except that in Step 5(a)iii on each day d ∈ [D], replace each ctβ by a fresh
encryption of (x+ α− y) under pk1. This hybrid is statistically indistinguishable from Hyb3
by the re-randomization property of the additively homomorphic encryption scheme.

Hyb5 Same as Hyb4 except that in Step 5(a)iii on each day d ∈ [D], replace each ctα by a fresh
encryption of 0 under pk0. This hybrid is computationally indistinguishable from Hyb4 by
the CPA security of the additively homomorphic encryption scheme.

Hyb6 Same as Hyb5 except that in Step 5(a)iii on each day d ∈ [D], replace each ctβ by a fresh

encryption of r for a random r
$←− Fp under pk1. We know that (x + α − y) is identically

distributed from a random value r
$←− Fp. Hence this hybrid is identically indistinguishable

from Hyb5.
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Our construction guarantees that on each day d ∈ [D], there are exactly Num1(d) levels of the
tree that are non-empty, hence the size of C0 is 4σ ·Num1(d). Thus, in this hybrid, C0 contains
4σ · Num1(d) pairs of encryptions (ctα, ctβ), where ctα ← Encpk0(0) and ctβ ← Encpk1(r) for

r
$←− Fp.

Hyb7 Same as Hyb6 except that H1 is computed as normal. This is computationally indistinguish-
able to Hyb6 because H1 is modeled as a random oracle. P1’s view in this hybrid is exactly
Sim1’s output. This concludes the proof.

5.4 Extension

In this section, we extend our protocol to the general setting when the number of elements added
by both parties on any day Nd ∕= σ. For simplicity, let’s assume Nd is a multiple of σ (we can
always pad with dummy elements to make it a multiple of σ).2 The high level idea is to split the
input into Nd/σ batches of length σ and essentially run the basic protocol over multiple days, with
σ elements as input on each day. We use a separate counter d∗ to track the “day number” of the
basic protocol. We provide more details below.

Let Xd = {X ′
d∗ , X

′
d∗+1, . . . , X

′
d∗+Nd/σ−1}, Yd = {Y ′

d∗ , Y
′
d∗+1, . . . , Y

′
d∗+Nd/σ−1} be the two input

sets split into Nd/σ batches of length σ each. First, run the basic protocol on a fresh day (day
d∗ for the basic protocol) with inputs X ′

d∗ and Y ′
d∗ respectively. Let’s call this sub-day d∗ to

indicate that this is the counter for the underlying basic protocol. Then, run the basic protocol
on sub-day (d∗ + 1) with inputs X ′

d∗+1 and Y ′
d∗+1. Repeat this till the basic protocol is run on

sub-day (d∗ +Nd/σ − 1) using inputs X ′
d∗+Nd/σ−1 and Y ′

d∗+Nd/σ−1. Finally, before moving to day

(d + 1) where both parties have fresh inputs, we update d∗ = (d∗ +Nd/σ). (If Nd = σ, we would
have d∗ = d∗ + 1 as in the basic protocol). While this is the high level approach, unfortunately,
the protocol does not quite work. Briefly, running the basic protocol on Nd/σ sub-days leaks the
intermediate output each time and this is undesirable (and not leaked in the ideal world). Instead,
the idea is to run the steps where the “actual intersection” is computed only once across these
many batches.

In more detail, Step 1 is not run on each sub-day from d∗ to (d∗ +Nd/σ− 1) – instead, we run
the step only on day d∗ with P1’s input as Yd (and not only Y ′

d∗) to allow P0 to learn Xold ∩ Yd.
Observe that Step 1 does not require either party’s set to be of size σ. Next, Step 5 is also not
run on each sub-day – we run steps Step 3 and Step 4 on each sub-day to update the database
and finally, only on day (d∗ + Nd/σ − 1), execute Step 5 (with P0 using entire input set Xd) to
allow P0 to compute Xd ∩ Y[d]. Further, as an optimization, even in Step 3, P1 need not send

the encrypted database
0
+D′
L[j]

1

j∈{0,1,...,2L−1}
on each sub-day. Consider two sub-days da, db with

da < db and L = LS1(da) = LS1(db). Now, on sub-day db, all the updates to
0
+D′
L[j]

1
overwrite

the updates
0
+D′
L[j]

1
made to the database on sub-day da. In particular, the elements written to

the database on sub-day da are pushed a level down the tree before the updates on sub-day db are
recorded on level L. Building on this idea, let maxLd be the maximum value of L over the sub-days

d∗, d∗+1, . . . , (d∗+Nd/σ−1). At the end of sub-day (d∗+Nd/σ−1), P0 sends
0
+D′
L[j]

1

j∈{0,1,...,2L−1}

2We note that P0’s input size actually need not be padded to a multiple of σ because she can make queries for
each element x ∈ Xd independently.
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Initialization: Same as Figure 6. Also, both parties set d∗ := 1.

Day d: P0 inputs a set Xd of size Nd; P1 inputs a set Yd of size Nd.
Let Xd = {X ′

d∗ , X
′
d∗+1, . . . , X

′
d∗+Nd/σ−1} and Yd = {Y ′

d∗ , Y
′
d∗+1, . . . , Y

′
d∗+Nd/σ−1} where each X ′

i, Y
′
i is of size σ.

1. P0 learns IX,old = Xold ∩ Yd:

(a) P1 computes H1(Yd)
k1 and sends to P0.

(b) On receiving H1(Yd)
k1 , P0 raises each element to the power k0 to obtain H1(Yd)

k0k1 and compares with
HX (which equals to H1(Xold)

k0k1) to learn IX,old = Xold ∩ Yd.

2. Both parties set maxLd = 0.

3. For each t ∈ {d∗, d∗ + 1, . . . , (d∗ +Nd/σ − 1)}, do the following:

(a) Both parties set L := LS1(t), maxL := max{L,maxL}, maxLd = max(L,maxLd).

(b) P1 updates D by doing the following:

i. Let S :=
"#L−1

i=0

#2i−1
j=0 Di[j]

$
∪ Y ′

t .

ii. For each i ∈ {0, 1, . . . , L} and for each j ∈ {0, 1, . . . , 2i − 1}, set Di[j] := ∅.
iii. For each element y ∈ S, let j := H2(y)[1..L] and add y into the node DL[j]. If the size of DL[j]

exceeds 4σ, then abort.
iv. For each j ∈ {0, 1, . . . , 2L − 1}, construct a node D′

L[j] of size 4σ by padding DL[j] with dummy

random elements. Compute !D′
L[j] ← Encpk1(D

′
L[j]).

Finally, for each L ∈ {0, . . . ,maxLd}, P1 sends
%
!D′
L[j]

&

j∈{0,1,...,2L−1}
to P0 if { !D′

L[j]} ∕= ∅.

4. P0 updates !D by doing the following:
For each L ∈ {0, . . . ,maxLd}, j ∈ {0, 1, . . . , 2L − 1}: if P0 received !D′

L[j] from P1 in the above step, set
!DL[j] := !D′

L[j]; else, set !DL[j] := ∅.
5. P0 learns IX,new = Xd ∩ Y[d]:

P0 first sets IX,new := ∅. Then for each x ∈ Xd:

(a) P0 does the following:

i. Set C0 := ∅.
ii. For each i ∈ {0, . . . ,maxL}, let j := H2(x)[1..i]; if !Di[j] ∕= ∅, then for each ct ∈ !Di[j]:

Sample α
$←− Fp, compute ctα ← Encpk0(α), ctβ ← Encpk1(x+ α)⊖ ct, and add (ctα, ctβ) to C0.

iii. Send C0 to P1.

(b) P1 does the following:

i. Set C1 := ∅.
ii. For each pair (ctα, ctβ) ∈ C0, sample γ

$←− Fp, compute β ← Decsk1(ctβ) and ctr ← γ⊙(Encpk0(β)⊖α)
and add ctr to C1.

iii. Send C1 in a randomly permuted order to P0.

(c) P0 does the following:
For each ctr ∈ C1, compute r ← Decsk0(ctr) and add x to the set IX,new if r = 0.

6. P0 computes and outputs Id := Id−1 ∪ IX,old ∪ IX,new.

7. P0 updates Xold and HX as in Figure 6.

8. Finally, both parties update d∗ := d∗ +Nd/σ.

Figure 7: One-sided UPSI with addition protocol ΠUPSI-add-one when Nd ∕= σ.
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∀L ∈ {0, . . . ,maxLd} where { +D′
L[j]} ∕= ∅. Naturally, this reflects only the “latest state” of any level

in the tree. Finally, execute Step 7 only on sub-day (d∗+Nd/σ−1). For completeness, we describe
the whole protocol in Figure 7. Correctness and security naturally extend from the basic protocol
where Nd = σ.

5.5 Optimizations

In this section, we discuss some optimizations to improve the concrete communication and compu-
tational efficiency of the protocol.

Cuckoo hashing. In Step 3(b)iii, for each element y ∈ S, instead of adding y to the (end of) node
DL[j], we store elements in each node using Cuckoo hashing [PR04]. In more detail, to implement
Cuckoo hashing, as discussed in Section 2, we pick three hash functions CuH1,CuH2,CuH3. Each
node of the tree DL[j] is represented as a collection of b bins. We also have a small stash associated
with each node. Now, each y is inserted into one of these b bins (or the stash) at any given
node depending on the contents of bins CuH1(y),CuH2(y),CuH3(y). Similarly, we also include the
elements from the stash when defining S and setting Di[j] = ∅ in Step 3b.

The advantage is that, in Step 5, for each x ∈ Xd, i ∈ {0, . . . ,maxL}, non-empty node +Di[j]
(where j = H2(x)[1,...,i]), instead of comparing x with each of the 4σ elements in the node, P0

needs to compare with only the three elements at bins CuH1(x),CuH2(x),CuH3(x) and those in the
associated stash. This significantly reduces the communication and computation cost.

In our implementation, we set the Cuckoo hashing parameters according to the work of Pinkas
et al. [PSSZ15]. In particular, we can set the number of bins b = 5σ and stash size to be a small
constant. See Section 7.3 for more details.

El Gamal encryption. We instantiate the additively homomorphic encryption scheme using
the exponential variant of the El Gamal scheme [Gam84] to take advantage of the efficient elliptic
curve cryptographic operations. Recall that in this scheme, Enc(m) = (gr, hr ·gm) where the public
key consists of a generator g and group element h = gx. The secret key is x. In our protocol,
let pk0 = (g, h0), pk1 = (g, h1), sk0 = x0, sk1 = x1 – that is, both parties use the same group and
generator g. First, in Step 5c, instead of decrypting ctr entirely,

3 P0 can just check if the decryption
is 0 more efficiently. In particular, given ctr = (a, b), P0 can check if r = 0 by checking if b = ax0 .
Similarly, in Step 5(b)ii, given ctβ = (a, b), instead of decrypting to get β and then re-encrypting
using pk0, P1 can compute Encpk0(β) directly as (gs, hs0 · b

ax1 ) where s is randomly sampled.

Reducing number of ciphertexts in C0. We can reduce communication by modifying Step 5(a)ii
to allow P0 to use the same ctα across all the ciphertext tuples generated for a given x ∈ Xd. In
more detail, we rewrite the step as:

• Sample α
$←− Fp. Compute ctα ← Encpk0(α) and add ctα to C0.

• For each i ∈ {0, . . . ,maxL}, let j := H2(x)[1..i]; if +Di[j] ∕= ∅, then for each ct ∈ +Di[j]: compute

ctβ as
#
Encpk1(α) ⊕ βr ⊙ (Encpk1(x) ⊖ ct)

$
where βr

$←− Fp and (⊕,⊖,⊙) are homomorphic
operations. That is, ctβ = Encpk1

#
α+ βr · (x− y)

$
where ct = Encpk1(y).

3Decryption of exponential variant of El Gamal requires computing the discrete logarithm of a group element
which would only work for a small message space and be expensive.
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• Add ctβ to C0.
This change does not leak any additional information to P1 because, by assumption, since elements
added by P1 on any day are distinct, with all but negligible probability, x = y for at most only one y
amongst the plaintexts encrypted to form ciphertexts {ct} (the negligible probability error happens
if x equals any of the random dummy elements too). For any x ∕= y, βr · (x−y) is statistically close
to a uniform distribution since βr is picked uniformly at random and hence reveals no information
about any x to P1. It is easy to observe that this optimization does not affect security against a
corrupt P0 as well. This optimization reduces the size of C0 by half.

5.6 Efficiency

In this section, we evaluate the communication and computational complexity of the protocol (after
applying the optimizations). For simplicity, we analyze the case where Nd = σ. Recall the notation
Num1(n) that denotes the number of 1’s in the binary representation of n. For any Day d, Num1(d)
is the number of levels of the tree that are non-empty. Let the stash size (a small constant) for any
node in the tree be denoted by s (which is a small constant). Over a period of d days, the total
number of elements in the input set of each party is N = σ · d.

Communication Complexity. In Step 1, P1 sends σ group elements. In Step 3, P1 sends
(2L · 5σ) ciphertexts, where L = LS1(d). In Step 5, P0 first sends σ · (1 + Num1(d) · (s + 3))
ciphertexts and P1 responds back with σ · (Num1(d) · (s+ 3)) ciphertexts. In Step 7, both parties
send σ group elements. Thus, the overall communication complexity is O(σ · (2LS1(d) + Num1(d)))
group elements.

Now, the values of LS1(d) and Num1(d) differ on every day and so the communication cost is
not the same on each day. We consider amortized cost over 2k days of updates for d ∈ {2k, 2k + 1,
. . . , 2k+1 − 1}. The amortized 2LS1(d) is

-2k+1−1
d=2k 2LS1(d)

2k
=

2k +
-k−1

i=0 2i · 2k−1−i

2k
= 1 +

k

2
.

The amortized Num1(d) is

-2k+1−1
d=2k Num1(d)

2k
=

2k + k · 2k−1

2k
= 1 +

k

2
.

Hence, the amortized communication cost over 2k days is O(σ · k). Since the total number of
elements N = σ · d, we know that k = O(logN) and so the amortized communication cost is
O(σ · logN). In particular, it grows only logarithmically with the total number of elements.

Computational Complexity. First, we analyze the computation cost for P0. In Step 1, P0

performs σ exponentiations. In Step 4, P0 stores the 2L nodes – this is inexpensive compared to
exponentiations. In Step 5, P0 generates σ · (1 + Num1(d) · (s + 3)) ciphertexts (and decrypting
later to check for 0). In Step 7, P0 does 2σ exponentiations. Hence P0’s computation cost is
O(σ · Num1(d)).

Next, we analyze P1’s cost. In Step 1, P1 does σ exponentiations. In Step 3, P1 generates
(2L · 5σ) encryptions, where L = LS1(d). In Step 5, P1 performs σ · (1 + Num1(d) · (s + 3))
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encryptions/homomorphic evaluations. In Step 7, P1 does σ exponentiations. So P1’s computation
cost is O(σ · (2LS1(d) + Num1(d))).

As analyzed above, the amortized computation cost is O(σ · k) over 2k days of updates for
d ∈ {2k, 2k +1, . . . , 2k+1 − 1}. Since the total number of elements N = σ · d, we have k = O(logN)
and the amortized computation cost is O(σ · logN), which grows only logarithmically with the total
number of elements.

Discussion for Nd ∕= σ. In our protocol, intuitively, since we run ⌈Nd/σ⌉ instances of the basic
case (where inputs are of size σ), an upper bound on the communication and computation cost on
any day is ⌈Nd/σ⌉ times that of the basic case’s cost. We can in fact do better than just repeating
the protocol so many times but we ignore that for the sake of simplifying the analysis and provide
a relatively loose upper bound. In conclusion, the amortized communication and computation cost
(for each party) is O(⌈Nd/σ⌉ ·σ · logN). Once again, this grows only logarithmically with the total
number of elements so far.

6 Updatable PSI with Weak Deletion

In this section, we describe an updatable PSI protocol satisfying Definition 3.3. That is, besides
inserting new elements to their sets each day, the protocol allows both parties to delete data that was
added t days ago and compute the intersection privately on these new updated sets. In particular,
the output is the union of the intersection of each party’s new elements with the other party’s
updated set comprising elements over the last t days. Our protocol allows both parties to learn the
output at the end of each day and is based on oblivious transfer (OT) and correlation robust hash
functions.

Next, we first introduce the notion of sender-streaming PSI and then use that to build our
updatable PSI protocol with weak deletion.

6.1 Sender-streaming PSI

Consider two parties - a sender S and a receiver R who wish to engage in a one-sided PSI protocol
to allow R to learn the intersection without revealing anything else. However, unlike the typical
PSI setting, only R knows its entire input set Y at the beginning while the sender only knows
a subset X0. An upper bound Max on the maximum number of elements in the sender’s set is
part of the public parameters as are the sizes |Y |, |X0|. At this point, the receiver learns (X0 ∩ Y ).
Subsequently, the sender learns more of its input in a streaming manner and the two parties interact
to allow the receiver to learn the intersection of its input set with the new streamed sender input.
That is, on receiving an streaming input Xi, the two parties engage in a protocol that allows the
receiver to learn (Xi∩Y ). We formalize this notion as a special case of secure two-party computation
with a reactive functionality defined in Figure 8.

Let X[i] = {X0, . . . , Xi} be the inputs of S over i streams and Y be the input of R. Let

ViewΠ,i
S (X[i], Y,Max), ViewΠ,i

R (X[i], Y,Max) be the views of S and R, respectively, in the protocol Π

at the end of i streams and let OutΠ,i(X[i], Y,Max) be the outputs of R at the end of i streams. Let
f(X[i], Y,Max) := {I0, . . . , Ii} be the outputs of the ideal functionality in the i streams.

Definition 6.1. (Sender-streaming PSI.) A protocol Π is semi-honest secure with respect to
ideal functionality FSSPSI if there exists PPT simulators SimS and SimR such that for any i ∈ N,
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Initialization:

• Inputs:
S inputs a set X0 where each element is from {0, 1}∗.
R inputs a set Y where each element is from {0, 1}∗.
The set sizes |X0|, |Y | and upper bound Max are public and known to both parties.

• Output:
The ideal functionality sets X = X0. Then, it computes and sends X0 ∩ Y to R.

Stream i:

• Inputs:
S inputs a set Xi where each element is from {0, 1}∗ and Xi ∩X = ∅. The stream size |Xi|
is public and known to R.

• Output:
The ideal functionality sets X = X ∪ Xi. Then, if |X| ≤ Max, it computes and sends
Ii = Xi ∩ Y to R. Else, sends ⊥.

Figure 8: Ideal functionalities FSSPSI for sender-streaming PSI.

any inputs (X[i], Y ) and any upper bound Max,

ViewΠ,i
R (X[i], Y,Max)

c≈ SimR

!
1λ, Y, {|Xj |}j∈[i],Max, f(X[i], Y,Max)

"
,

!
ViewΠ,i

S (X[i], Y,Max),OutΠ,i(X[i], Y,Max)
"

c≈
!
SimS

!
1λ, X[i], |Y |,Max

"
, f(X[i], Y,Max)

"
.

6.1.1 Instantiations

We now informally describe how the PSI protocols of Kolesnikov et al. [KKRT16], Pinkas et
al. [PRTY19], Chase and Miao [CM20] immediately satisfy Definition 6.1. Each of these pro-
tocols is based on semi-honest OT and correlation robust hash functions. At a high level, in each
of these protocols, the sender’s input is used only in the last step to compute the oblivious pseudo-
random function (OPRF) values before they are sent to the receiver. As a result, this can be done
in a streaming manner so long as the maximum number of values to be computed upon are known
apriori to set up the OPRF key. We now provide more details.

Protocol Structure. All the three protocols have the following high level structure. Consider
a sender S with input set X and receiver R with input set Y . In the first phase, both parties run
an interactive protocol to jointly generate a key K for an OPRF and evaluate R’s input on this
OPRF obliviously. In a bit more detail, at the end of this interactive protocol, S learns the key K
(and nothing about R’s input) and R learns the evaluations {OPRF(K, y)}y∈Y (and nothing about
the key K). For each z = OPRF(K, y), the receiver also learns that this is the evaluation of its
corresponding input element y (that is, the outputs aren’t permuted). In the protocol of Kolesnikov
et al. [KKRT16], R’s inputs are first separated into various buckets via Cuckoo hashing [PR04] and
a separate instance of this OPRF protocol is run for each bucket - the sender learns one OPRF
key Ki for each bucket and R learns OPRF(Ki, y) for the element y that falls into this bucket. In
the protocols of [PRTY19] and [CM20], a multi-point OPRF is set up where S learns a single key

30



K and R learns the evaluation of all its points - {OPRF(K, y)}y∈Y . Our key observation is that,
crucially, so far, the sender does not need to know its input. Instead, S only needs to know the
size (or an upper bound) of its input set to allow the key K to be chosen.

In the next phase, S sends evaluations of the OPRF on its input elements to R. That is, S, now
in possession of key K locally computes and sends {OPRF(K,x)}x∈X (in the case of [KKRT16],
S evaluates OPRF(Ki, x) for every possible x ∈ X that can fall into bucket i, for each i). The
receiver can then compare {OPRF(K,x)}x∈X with {OPRF(K, y)}y∈Y to compute the intersection.
The security guarantee of the OPRF is that for any x ∈ X \ I, OPRF(K,x) appears pseudorandom
to R and hence leaks no information about the element x.

Now, observe that in our setting of sender-streaming PSI, the two parties can run the first phase
with the sender only providing an upper bound of the number of elements it will eventually stream.
Then, for any stream Xi (including the initial one X0), S can compute and send {OPRF(K,x)}x∈Xi

and R can then immediately learn (Xi∩Y ). The security of this protocol immediately follows from
that of the underlying PSI protocol so long as the number of elements streamed by the sender is
less than the upper bound that was set. As a result, we get the following lemma:

Lemma 6.2. Assuming semi-honest OT and correlation robust hash functions, the PSI protocols
of [KKRT16,PRTY19,CM20] all securely realize the ideal functionality FSSPSI against semi-honest
adversaries.

Efficiency. We now briefly analyze the communication and computation cost of realizing FSSPSI

using each of these three instantiations [KKRT16, PRTY19, CM20]. In the initialization phase,
to set up the OPRF key (and evaluate R’s input), the computational complexity (per party) is
O(|Y | ·λ) and the communication complexity (from R to S) is O(|Y | ·λ) bits, where λ is the security
parameter. Note that the communication also grows with Max, but the growth is dominated by
O(|Y | · λ) for any polynomially large Max, so we omit it here. Then for each stream Xi (including
X0), S evaluates and sends the OPRF values on Xi, where the computational complexity (of S) is
O(|Xi| ·λ) and the communication complexity (from S to R) is O(|Xi| ·σ), where σ is the statistical
security parameter.

6.2 Construction

Notation. On each Day d, let Xd be the elements added to P0’s set and Yd be added to P1’s set
where |Xd| = |Yd| = Nd. For any j, we will initialize Xj = Yj = ∅ if they have not yet been defined

(or j ≤ 0). Further, for any d, let Maxd ≥ (2 ·Nd +
-j=d+t−1

j=d+1 Nj). We assume that Maxd is known
at the start of Day d - that is, on any day, both parties know an upper bound on the number of
elements they can add over the next (t− 1) days.

Since we invoke several instances of FSSPSI in our protocol, we introduce additional notation
to identify the sender of FSSPSI and on which day of the UPSI protocol the functionality was first

invoked. Let F (P0,d)
SSPSI indicate that P0 is the sender of the SS-PSI protocol, P1 is the receiver and

the functionality was first invoked on Day d.

Construction Overview. We focus on how P0 computes the output - the final protocol is
symmetric to allow P1 to compute the output as well. On any Day d, observer that the output Id
can be split into two disjoint sets: (i) I0,α = (X[d−1] \X[d−t])∩Yd and (ii) I0,β = Xd ∩ (Y[d] \Y[d−t]).
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Then, Id = I0,α∪̇I0,β (each of which can be inferred from the output in the ideal world). Note that
Xd ∩ Yd is included in I0,β and not I0,α.

To compute I0,α, note that I0,α = (Xd−t+1 ∩ Yd)∪̇ . . . ∪̇(Xd−1 ∩ Yd), where (Xj ∩ Yd) (for all
j ∈ {d− t+1, . . . , d− 1}) can be inferred from the output in the ideal word. Our idea is to use the
sender-streaming PSI (FSSPSI) initiated on earlier days to let P0 learn (Xj ∩ Yd). In more detail,

on each of the (t− 1) previous days, invoke F (P1,j)
SSPSI with P0 as receiver using input Xj (on Day j)

and P1 as sender. The upper bound for the sender’s set size is discussed later. Then, on Day d,
P1’s streamed input for each of these instances is Yd which allows P0 to learn (Xj ∩ Yd). The same
mechanism can be employed symmetrically for P1 to learn I1,α = Xd ∩ (Y[d−1] \ Y[d−t]).

Next, to compute I0,β , the idea is to use a new instance F (P1,d)
SSPSI on Day d with P0 as the receiver

using input Xd and P1 as the sender. From the above paragraph, observe that this instance of
FSSPSI is also used to compute terms of I0,α over the following (t − 1) days. Now, since the
goal is to compute I0,β = Xd ∩ (Y[d] \ Y[d−t]), sender P1’s input in its initial stream should be

(Y[d] \ Y[d−t]) whose size is
-j=d

j=d−t+1Nj . Nonetheless, this can be improved. Observe that I0,β =

(Xd ∩ Yd) ∪
.
Xd ∩ (Y[d−1] \ Y[d−t])

/
= Xd ∩ (Yd ∪ I1,α). Thus, sender P1’s input to F (P1,d)

SSPSI can be

just (Yd ∪ I1,α). Since |I1,α| ≤ |Nd|, size of P1’s input is at most (2 ·Nd). P1 uses dummy elements
to pad the size to be exactly 2 ·Nd to not leak more information about I1,α to P0. Once again, P1

can similarly learn I1,β = Yd ∩ (X[d] \X[d−t]).

Finally, the missing component is an upper bound on sender P1’s entire input in FP1,d
SSPSI initiated

on Day d. Recall that to compute I0,α, for each of the next (t− 1) days, P1 uses streamed input Yj
on Day j. Hence the upper bound is (2 ·Nd+

-j=d+t−1
j=d+1 Nj). The protocol is described in Figure 9.

6.3 Correctness and Efficiency

Correctness. If both parties follow the protocol honestly, at the end of Day d, we will have the
guarantee that with all but negligible probability, Id =

#
(X[d] \X[d−t])∩ Yd

$
∪
#
(Y[d] \ Y[d−t])∩Xd

$
.

We prove this by induction. It is easy to observe that this guarantee holds on Day 1 since, by
the correctness of the initialization phase of FP1,1

SSPSI and FP0,1
SSPSI, both parties learn the intersection

(X1 ∩ Y1).
Now consider Day d with new input sets Xd an Yd respectively. In Step 1, for each j > 0, by

the correctness of the jth stream of FP1,j
SSPSI, P0 indeed learns Xj ∩ Yd. Thus,

I0,α =

d−12

i=(d−t+1)

(Xi ∩ Yd)

= (X[d−1] \X[d−t]) ∩ Yd.

Similarly, in Step 2, for each j > 0, P1 indeed learns Yj ∩Xd. Thus, I1,α = (Y[d−1] \ Y[d−t]) ∩Xd.

In Step 3, by the correctness of the initialization phase of FP1,d
SSPSI, P0 learns

I0,β = (Xd ∩B)

= (Xd ∩ Yd) ∪
# d−12

i=d−t+1

Yi ∩Xd ∩Xd

$
∪ (Xd ∩*DY )
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Day 1: P0 has input set X1 and P1 has input set Y1. The protocol works as follows:

1. Invoke FP1,1
SSPSI with P0 as the receiver with input X1, P1 as the sender with initial input Y1

and upper bound Max1. P0 learns output I1 = (X1 ∩ Y1).

2. Invoke FP0,1
SSPSI with P1 as the receiver with input Y1, P0 as the sender with initial input X1

and upper bound Max1. P1 learns output I1 = (X1 ∩ Y1).

Day d: P0 has new input set Xd and P1 has new input set Yd. P0’s and P1’s input sets over the
last t days are

#
Xd−t+1, . . . , Xd−1, Xd

$
and

#
Yd−t+1, . . . , Yd−1, Yd

$
respectively. The protocol works

as follows:

1. I0,α =
3d−1

j=(d−t+1)(Xj ∩ Yd): For each j > 0, invoke FP1,j
SSPSI with P1’s new streamed input as

Yd. Receiver P0 learns (Xj ∩ Yd).

2. I1,α =
3d−1

j=(d−t+1)(Yj ∩Xd): For each j > 0, invoke FP0,j
SSPSI with P0’s new streamed input as

Xd. Receiver P1 learns (Yj ∩Xd).

3. I0,β =

.
Xd ∩

#3d
j=d−t+1 Yj

$/
: P0 computes this as follows:

(a) Invoke FP1,d
SSPSI with P0 as the receiver with input Xd, P1 as the sender with initial input

B and upper bound Maxd where the set B = Yd ∪
#3d−1

j=d−t+1 Yj ∩Xd

$
∪*DY where *DY

consists of dummy random elements so that |B| = 2 ·Nd.

(b) P0’s output is

.
Xd ∩

#3d
j=d−t+1 Yj

$/
since

.
Xd ∩

#3d
j=d−t+1 Yj

$/
=

#
Xd ∩B

$
.

4. I1,β =

.
Yd ∩

#3d
j=d−t+1Xj

$/
: P1 computes this similar to the above as follows:

(a) Invoke FP0,d
SSPSI with P1 as the receiver with input Yd, P0 as the sender with initial input

A and upper bound Maxd where the set A = Xd ∪
#3d−1

j=d−t+1Xj ∩ Yd
$
∪*DX where *DX

consists of dummy random elements so that |A| = 2 ·Nd.

(b) P1’s output is

.
Yd ∩

#3d
j=d−t+1Xj

$/
since

.
Yd ∩

#3d
j=d−t+1Xj

$/
=

#
Yd ∩A

$
.

5. Output computation:
P0 outputs Id = (I0,α ∪ I0,β) and P1 outputs Id = (I1,α ∪ I1,β).

Figure 9: Updatable PSI protocol with weak deletion ΠUPSI-del .

= (Xd ∩ Yd) ∪ (Xd ∩ (Y[d−1] \ Y[d−t])) ∪ ∅ (with overwhelming prob. as *DY is random)

= Xd ∩ (Y[d] \ Y[d−t])

Similarly, in Step 4, I1,β = Yd ∩ (X[d] \X[d−t]).
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Finally, P0 outputs:

Id = I0,α ∪ I0,β

=

.
(X[d−1] \X[d−t]) ∩ Yd

/
∪
.
Xd ∩ (Y[d] \ Y[d−t])

/

=

.
(X[d−1] \X[d−t]) ∩ Yd

/
∪
.
Xd ∩ Yd

/
∪
.
Xd ∩ (Y[d−1] \ Y[d−t])

/

=

.
(X[d] \X[d−t]) ∩ Yd

/
∪
.
Xd ∩ (Y[d] \ Y[d−t])

/

Similarly, we can prove that P1 also outputs the same.

Computational and Communication Complexity. On Day d, FSSPSI is invoked with a new
stream 2 · (t − 1) times with size of new streamed set as Nd. The total computational complexity
in this step is O(Nd · λ · t) and the communication complexity is O(Nd · σ · t) bits. Besides, two
new invocations of FSSPSI (the initialization phase) occur where the receiver’s set size is Nd and the
sender’s set size is 2·Nd. The computational complexity in this step is O(Nd ·λ) and communication
complexity is O(Nd ·λ) bits. Thus, the total computational complexity is O(Nd ·λ · t) and the total
communication complexity is O(Nd · (σ · t+ λ)) bits.

6.4 Security

Theorem 6.3. The protocol ΠUPSI-del presented in Figure 9 securely realizes the ideal functionality
FUPSI-del (defined in Figure 3) in the FSSPSI-hybrid model against semi-honest adversaries.

Instantiating FSSPSI with the protocol of Kolesnikov et al. [KKRT16] or Pinkas et al. [PRTY19]
or Chase and Miao [CM20], all of which are based on semi-honest OT and correlation robust hash
functions (Lemma 6.2), we get the following corollary:

Corollary 6.4. Assuming semi-honest OT and correlation robust hash functions, the protocol
ΠUPSI-del presented in Figure 9 securely realizes the ideal functionality FUPSI-del (defined in Figure 3)
against semi-honest adversaries.

Security against corrupted P0. Consider an adversary A that corrupts party P0. We construct
a PPT Sim0 that, on input

#
1λ, X[D], N[D], f(X[D], Y[D])

$
, where f(X[D], Y[D]) := {I1, . . . , ID} are

the outputs of the ideal functionality in the D days, interacts with adversary A as follows and
outputs A’s view.

Day 1: On behalf of functionality FP1,1
SSPSI, send output I1 = f(X[1], Y[1]) to A.

Day d:

1. I0,α =
3d−1

j=(d−t+1)(Xj ∩ Yd): For each j > 0, on behalf of functionality FP1,j
SSPSI, send

#
Xj ∩

(Id \ Id−1)
$
to A. Observe that this is equal to Xj ∩ Yd since Xi’s are mutually disjoint sets.

2. I0,β =

.
Xd ∩

#3d
j=d−t+1 Yj

$/
: Observe that (Xd∩Id) =

#
Xd∩(Y[d]\Y[d−t])

$
. Thus, on behalf

of functionality FP1,d
SSPSI, send (Xd ∩ Id) to A.
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We now show that the above simulation strategy against a corrupt P0 is successful via a series
of hybrid arguments where Hyb0 corresponds to the real world and Hyb3 corresponds to the ideal
world execution.

1. Hyb0: This corresponds to the real world execution where A interacts with a simulator SimHyb
that plays the role of honest P1.

2. Hyb1: In this hybrid, on Day 1, SimHyb sends output I1 to A on behalf of the ideal function-
ality FP1,1

SSPSI. This is part of Sim0’s input on Day 1 of the protocol.

3. Hyb2: In this hybrid, on any Day d, to compute the term I0,α, for each j ∈ {d−t+1, . . . , d−1},
j > 0, on behalf of functionality FP1,j

SSPSI, SimHyb sends
#
Xj∩(Id\Id−1)

$
toA, whereXj , Id, Id−1

are part of Sim0’s input.

4. Hyb3: In this hybrid, on any Day d, to compute the term I0,β , on behalf of functionality

FP1,d
SSPSI, SimHyb sends (Xd ∩ Id) to A.

We now show that every pair of successive hybrids is computationally indistinguishable.

Lemma 6.5. Hyb0 is identically distributed to Hyb1.

Proof. In both hybrids, A sends input X1 to FP1,1
SSPSI. In Hyb0, honest P1 sends input (Y1,Max1)

to FP1,1
SSPSI. By the correctness of FSSPSI, A receives output (X1 ∩ Y1). In Hyb1, by the definition

of functionality FUPSI-del, the value I1 = f(X1, Y1) sent by SimHyb on behalf of FP1,1
SSPSI is equal to

(X1 ∩ Y1). Since there is no other difference between the two hybrids, they are identical.

Lemma 6.6. Hyb1 is identically distributed to Hyb2.

Proof. In Hyb1, to compute the term I0,α, for each j ∈ {d− t+1, . . . , d−1}, j > 0, honest P1 sends

streamed input Yd to FP1,j
SSPSI and A gets output (Xj ∩Yd) by the correctness of functionality FSSPSI.

In Hyb2, for each j, SimHyb sends
#
Xj ∩ (Id \ Id−1)

$
to A on behalf of FP1,j

SSPSI. By the definition
of functionality FUPSI-del and the fact that each party’s input set is mutually disjoint on each day,#
Xj ∩ (Id \ Id−1)

$
is indeed equal to (Xj ∩ Yd).

Lemma 6.7. Hyb2 is statistically indistinguishable from Hyb3.

Proof. In both hybrids, to compute the term I0,β , A sends input Xd to FP1,d
SSPSI. In Hyb2, honest

P1 sends initial input (B,Maxd) where B = Yd ∪
#3d−1

j=d−t+1 Yj ∩ Xd

$
∪ *DY where *DY consists

of dummy random elements. By the correctness of functionality FSSPSI, except with negligible
probability, A gets output Xd ∩ (Y[d] \ Y[d−t]) - note that the only scenario when this is not the

output is if *DY ∩ Xd ∕= ∅. In this case, the output has more elements but since *DY consists of
dummy random elements, this occurs only with negligible probability.

In Hyb3, SimHyb sends (Xd ∩ Id) to A on behalf of FSSPSI. By the definition of functionality
FUPSI-del, observe that (Xd ∩ Id) is indeed equal to Xd ∩ (Y[d] \ Y[d−t]). Since there is no other
difference between the two hybrids, they are statistically indistinguishable.

Security against corrupted P1. Since the protocol is symmetric, the proof is identical to the
above case where P0 was corrupt.
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6.5 Discussion

In this section, we discuss the choice of our definition for the weak deletion functionality. We
consider an alternate, arguably more natural functionality for deletion where both parties compute
the intersection of their datasets over the last t days - that is, delete data that was added more
than t days ago and compute the intersection on their updated sets. We define this functionality
FUPSI-del-alt in Figure 10. We make two observations about FUPSI-del-alt to explain why we instead
choose to focus on FUPSI-del in this work.

Initialization: X := ∅, Y := ∅.
Day d:

• Public parameter: The set size on Day d is Nd.

• Inputs:
P0 inputs a set Xd of size Nd where each element is from {0, 1}∗, and Xd ∩X = ∅.
P1 inputs a set Yd of size Nd where each element is from {0, 1}∗, and Yd ∩ Y = ∅.

• Update: On receiving the inputs from the two parties, the ideal functionality updates X :=
(X ∪ Xd) \ Xd−t, Y := (Y ∪ Yd) \ Yd−t and computes Id = X ∩ Y . (If d − t ≤ 0, let
Xd−t = Yd−t = ∅.)

• Output: The ideal functionality sends Id to both parties.

Figure 10: Ideal functionality FUPSI-del-alt for UPSI with weak deletion.

Leakage from ideal functionality. It turns out that FUPSI-del-alt in fact leaks a lot more infor-
mation over the course of several days than what immediately meets the eye from the functionality
description. In particular, both parties actually learn (Xi ∩ Yj) for all |i − j| < t. To see why,
consider the sequence of t days starting on Day d and see what P0 learns from the output on each
day about Xd. On Day d, P0 can learn (Xd ∩ (Y[d] \ Y[d−t])) from Id. On Day (d+ 1), P0 can infer
(Xd ∩ (Y[d+1] \ Y[d−t+1])) from Id+1. From both the above, P0 can immediately deduce (Xd ∩ Yd+1)
and (Xd ∩ Yd−t+1). Similarly, for each i ∈ {d + 2, . . . , d + t − 1}, P0 can learn (Xd ∩ Yi) and
(Xd ∩ Yi−t). Finally, notice that on Day (d + t − 1), P0 learns Xd ∩ (Y[d+t−1] \ Y[d−1]). From this
and the intermediate results on each day, P0 can also learn Xd∩Yd. Observe that this leakage does
not occur in FUPSI-del.

Stronger functionality (FUPSI-del ⇒ FUPSI-del-alt). We show that FUPSI-del-alt can be realized
given FUPSI-del. That is, any protocol achieving FUPSI-del can be easily transformed to achieve
FUPSI-del-alt. Intuitively, the idea is that given the output Id−1 of FUPSI-del-alt on Day (d − 1), to
obtain the output on Day d, we essentially need to do two things: (i) Add to Id−1 the contribution
of the new inputs Xd and Yd, (ii) Remove from Id−1 the contribution of the deleted data Xd−t and
Yd−t. Observe that (i) is exactly the output of FUPSI-del on Day d. For (ii), from the output Id−1

and its own inputs, P0 can compute A = Xd−t ∩ (Y[d−1] \ Y[d−t−1]) which is the contribution of
Xd−t to Id−1. Similarly, P1 can compute Yd−t’s contribution B = Yd−t ∩ (X[d−1] \X[d−t−1]). Then,
they can simply exchange this information with each other in plaintext and this completes (ii).
This exchange doesn’t leak extra any information because, from the output of the functionality,
Id−1 \ Id is in fact (A∪̇B). From this, and the knowledge of A that P0 can compute locally, P0
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can automatically learn B in the ideal world. Similarly for P1. For completeness, we describe the
protocol formally in Figure 11.

Notation. For any i ≤ 0, define Xi = Yi = ∅. Let I0 = ∅.
Day d: P0 has new input Xd and P1 has new input Yd. P0’s and P1’s inputs over the last t days
are

#
Xd−t+1, . . . , Xd−1, Xd

$
and

#
Yd−t+1, . . . , Yd−1, Yd

$
respectively. The protocol works as follows:

1. Invoke FUPSI-del-alt with P0’s input on Day d as Xd and P1’s input as Yd. Both parties learn

Iz =

.
Xd ∩ (Y[d] \ Y[d−t])

/
∪
.
Yd ∩ (X[d] \X[d−t])

/
.

2. Let Id−1 be the output on Day (d−1). From Id−1, P0 deduces and sends A = Xd−t∩ (Y[d−1] \
Y[d−t−1]). Similarly, P1 deduces and sends B = Yd−t ∩ (X[d−1] \X[d−t−1]).

3. Both parties output Id = Iz ∪
#
Id−1 \ (A ∪B)

$
.

Figure 11: Protocol satisfying FUPSI-del-alt in the FUPSI-del-hybrid model.

Motivating example for FUPSI-del. Finally, our motivating example for studying updatable PSI
with weak deletion also holds for FUPSI-del. In privacy-preserving contact tracing, consider the
scenario where one party’s (server’s) input is the set of people who tested positive on that day, the
other party’s (client’s) input is the set of people they interacted with on that day. The output on
each day is the union of two parts: (a) people who tested positive in the last t days intersecting
with those clients met on that day, and (b) people who tested positive on that day intersecting with
those clients met in the last t days. Essentially, this captures whether client is at risk of having
been infected.

7 Experimental Results

We implement our two-sided and one-sided UPSI with addition protocols (ΠUPSI-add-two andΠUPSI-add-one)
in C++ and report their performance in this section.

7.1 Implementation Details

We set the computational security parameter to λ = 128 and statistical security parameter to σ =
40. We use the CryptoTools library [Rin] for our underlying cryptographic primitives. In particular,
we use the Boost library [Boo] for networking, the Relic library [AGM+] for the instantiation of
elliptic curves, and SHA256 from OpenSSL [Ope] for the hash functions.

We compare our UPSI with addition protocols with the state-of-the-art OT extension based
semi-honest PSI protocols which are optimized for different network settings:

• KKRT16 [KKRT16]: computation-optimized and works best in the setting of LAN networks.

• SpOT-Light [PRTY19]: communication-optimized and works best in networks with low band-
width. They have two variants of the protocol, a speed-optimized variant (spot-fast) and a
communication-optimized variant (spot-low). We compare our protocols with both variants.
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• CM20 [CM20]: balanced between computation and communication, and works best in net-
works with moderate bandwidth (e.g., 30− 100 Mbps).

We run all the experiments between two virtual machines with Intel(R) Xeon(R) 3.0 GHz CPU
and 32 GB RAM, which communicate over a LAN network. We simulate the WAN connection
using the Linux tc command, where the RTT latency is set to be 80 ms and we test on various
network bandwidths. All of our experiments use a single thread for each party.

Setting. To demonstrate the updatable property, we consider the following setting: each party
initially holds an empty set. Then, on every new Day d, both parties add a new set of size Nd to
their existing sets and wish to learn the updated set intersection. We repeat this process over a
period of several days ( N

Nd
) till the total set size of each party is N . We compare the amortized

(over the total number of days) communication cost and running time of our protocol with the
prior PSI protocols [KKRT16,PRTY19,CM20], where, on any Day d, the two parties run a fresh
PSI on their updated sets to learn the updated intersection.

7.2 Two-Sided UPSI with Addition

We implement the two-sided UPSI with addition protocol ΠUPSI-add-two presented in Section 4, where
the PSI protocol in Step 3b is instantiated with a DDH-based PSI [Mea86, HFH99]. A detailed
comparison for N = 216 − 222 and Nd = 28 − 212 is presented in Table 2. Note that for the PSI
protocols [KKRT16,PRTY19,CM20], we only report for Nd = 28 because both their communication
and running time are dominated by N (which is much larger than Nd) and do not differ much for
other Nd values.

Communication Improvement. The communication cost of our protocol on any day is pro-
portional only to the update size Nd and independent of the size of the entire set (that grows
gradually to N), whereas all the PSI protocols require communication to grow with the entire set.
Therefore, our protocol beats all the PSI protocols in amortized communication by 7.5 − 13250×
in the settings we consider (where N ≫ Nd).

Computation Improvement. Similar to communication, our computational cost also grows
only with Nd while all the PSI protocols require computation to grow with the size of the entire
set (that gradually grows to N). However, our protocol does not beat their computation in all the
settings because all these PSI protocols only use OT extension [IKNP03,ALSZ13] along with sym-
metric cryptographic primitives (AES/hash functions), which are computationally very efficient,
while our protocol requires public-key operations. As a result, our protocol is computationally more
expensive for smaller values of N but eventually beats all these protocols when N is sufficiently
large. In particular, for N = 222 and Nd = 28, our protocol beats [KKRT16] (the computationally
most efficient protocol) by 2.6× in computation.

Overall Running Time. Generally speaking, our protocol has more advantages in the total
running time when the network bandwidth is lower, the total set size N is larger, and the update
size Nd is smaller. For example, if we focus on the setting N = 220, when Nd = 28, our protocol
beats the best PSI protocol by 1.1 − 24.5× for network bandwidth between 5 − 200 Mbps; when
Nd = 210, our protocol beats the best PSI protocol by 1.1− 7.6× for network bandwidth between
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N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

216

28

KKRT16 3.90 0.05 1.01 1.32 7.11
spot-fast 2.32 0.91 1.38 1.38 7.06
spot-low 1.96 4.99 5.23 5.39 6.93
CM20 2.65 0.29 1.23 1.30 4.94

28

Ours
0.02 1.65 2.55 2.64 2.66

210 0.06 6.06 6.81 7.22 8.13

212 0.26 23.5 24.2 25.7 29.5

218

28

KKRT16 15.9 0.25 1.92 3.43 27.5
spot-fast 9.45 3.49 4.08 4.20 12.8
spot-low 7.80 21.2 22.8 23.3 30.4
CM20 10.7 0.90 1.73 2.81 18.6

28

Ours
0.02 1.65 2.55 2.63 2.66

210 0.06 6.07 6.84 7.26 8.15

212 0.26 23.6 24.2 25.8 29.6

220

28

KKRT16 64.2 1.03 2.89 12.7 109
spot-fast 38.2 12.2 13.1 13.7 65.1
spot-low 31.6 110 107 113 146
CM20 43.8 3.50 4.41 8.43 74.6

28

Ours
0.02 1.65 2.55 2.63 2.66

210 0.06 6.08 6.85 7.29 8.57

212 0.26 23.6 24.3 25.7 30.0

222

28

KKRT16 265 4.30 8.71 49.1 441
spot-fast 157 49.7 51.3 54.8 196
spot-low — — — — —
CM20 178 15.0 16.2 31.6 303

28

Ours
0.02 1.65 2.55 2.63 2.66

210 0.06 6.08 6.85 7.29 8.84

212 0.26 23.6 24.3 25.8 30.2

Table 2: Amortized communication cost (in MB) and running time (in seconds) comparing our protocol
ΠUPSI-add-two to [KKRT16], spot-fast and spot-low [PRTY19], and [CM20]. The LAN network has 20 Gbps
bandwidth and 0.1 ms RTT latency. All the other network settings have 80 ms RTT. Cells with “—” denote
settings where the programs run out of memory and those in blue indicate the fastest running time for that
setting.

5 − 50 Mbps; when Nd = 212, our protocol beats the best PSI protocol by 2.1× for network
bandwidth 5 Mbps. On the other hand, for the setting where N = 222, when Nd = 28, our protocol
beats the best PSI protocol by 2.6− 73.7× for all networks.

7.3 One-Sided UPSI with Addition

We implement the one-sided UPSI with addition protocol ΠUPSI-add-one presented in Section 5 with
the optimizations mentioned in Section 5.5. We pick the Cuckoo hashing parameters according to
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Pinkas et al. [PSSZ15]. In Figure 6, we set the batch size for both parties (the number of elements
added each day) to be 26 = 64 instead of σ (which is 40).4 To insert n = 4 · 26 = 28 elements
into the Cuckoo hash table, we set the number of bins as 1.2n = 308 and stash size as 12. A
detailed comparison for N = 216 − 220 and Nd = 26 − 210 is presented in Table 3.5 For the PSI
protocols [KKRT16,PRTY19,CM20], we only report for Nd = 28 as their amortized communication
and running time are dominated by N and do not differ much for other Nd values.

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

216

28

KKRT16 3.90 0.05 1.01 1.32 7.11
spot-fast 2.32 0.91 1.38 1.38 7.06
spot-low 1.96 4.99 5.23 5.39 6.93
CM20 2.65 0.29 1.23 1.30 4.94

26

Ours
0.30 2.96 3.46 3.55 3.62

28 0.97 10.6 11.9 12.0 12.1

210 2.95 35.5 37.6 37.7 37.8

218

28

KKRT16 15.9 0.25 1.92 3.43 27.5
spot-fast 9.45 3.49 4.08 4.20 12.8
spot-low 7.80 21.2 22.8 23.3 30.4
CM20 10.7 0.90 1.73 2.81 18.6

26

Ours
0.37 3.38 3.98 4.07 4.16

28 1.21 12.5 14.1 14.2 14.3

210 3.88 42.2 44.7 44.8 44.9

220

28

KKRT16 64.2 1.03 2.89 12.7 109
spot-fast 38.2 12.2 13.1 13.7 65.1
spot-low 31.6 110 107 113 146
CM20 43.8 3.50 4.41 8.43 74.6

26

Ours
0.43 3.88 4.58 4.68 4.78

28 1.45 14.8 16.6 16.8 16.9

210 4.84 50.6 53.6 53.7 53.8

Table 3: Amortized communication cost (in MB) and running time (in seconds) comparing our protocol
ΠUPSI-add-one to [KKRT16], spot-fast and spot-low [PRTY19], and [CM20]. The LAN network has 20 Gbps
bandwidth and 0.1 ms RTT latency. All the other network settings have 80 ms RTT. Cells with “—” denote
settings where the programs run out of memory and those in blue indicate the fastest running time for that
setting.

Communication Improvement. The amortized communication cost of our protocol grows lin-
early only with the update size Nd and logarithmically with the size of the entire set (that grows
gradually to N), whereas all the PSI protocols require communication to grow linearly with the en-
tire set. Therefore, our protocol beats these PSI protocols in amortized communication by 2−149×

4We use 26 instead of 40 for two reasons: In the parameters from [PSSZ15], the stash size is available only for
n = 28 and not lower numbers. Also, since we consider daily updates that are powers of 2, running batches of 26 is
more convenient than 40.

5Unlike Table 2, we don’t include N = 222 as we ran out of memory for that case.
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in almost all the settings we consider, the only exception being when N = 216 and Nd = 210.

Computation Improvement. Our amortized computational cost also grows only linearly with
Nd and logarithmically with the size of the entire set (that grows gradually to N) while all the
PSI protocols require computation to grow linearly with the entire set. However, our protocol
does not beat [KKRT16] (the computationally most efficient protocol) or [CM20] in the settings
we consider because N is not sufficiently large. In particular, we expect our protocol to beat
both [KKRT16, CM20] in computation when N = 222 and Nd = 26 (we currently run out of
memory for N = 222). We also note that for N = 220 and Nd = 26, our protocol beats [PRTY19]
by 3.1− 28.3× in computation.

Overall Running Time. Generally, our protocol has more advantages in the total running time
when the network bandwidth is lower, the total set size N is larger, and the update size Nd is
smaller. For example, if we focus on the setting N = 220, when Nd = 26, our protocol beats the
best PSI protocol by 1.8− 30.5× for network bandwidth between 5− 50 Mbps; when Nd = 28, our
protocol beats the best PSI protocol by 3.9× for network bandwidth 5 Mbps; when Nd = 210, our
protocol beats the best PSI protocol by 1.2× for network bandwidth 5 Mbps.
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