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Abstract. In this paper, we study the round complexity of concurrently secure computation protocols
in the plain model, without random oracles or assuming the presence of a trusted setup. In the plain
model, it is well known that concurrently secure two-party computation with polynomial simulation is
impossible to achieve in two rounds. For this reason, we focus on the well-studied notion of security
with super-polynomial simulation (SPS). Our main result is the first construction of two-round SPS
two-party computation for general functionalities in the plain model. Prior to our work, we only knew
three-round constructions [Badrinarayanan et al., TCC 2017] and two-round protocols were not known
from any computational assumption.
As immediate applications, we establish the feasibility result for a series of cryptographic primitives
of interest, such as: Two-round password authentication key exchange (PAKE) in the plain model,
two-round concurrent blind signature in the plain model, and two round concurrent computation for
quantum circuits (2PQC).

1 Introduction

Secure computation protocols enable mutually distrustful parties to compute a functionality without com-
promising the privacy of their inputs. Secure computation protocols [GMW87,Yao86] are a conrnerstone of
modern cryptography and have been studied in a variety of settings. In the specific setting of two-party
computation (2PC), two parties with inputs x0 and x1, wish to jointly compute a functionality f(x0, x1).
Loosely speaking, the security requirements are that nothing can be learned from the protocol other than the
output (privacy), and that the output is distributed according to the prescribed functionality (correctness).
These security requirements must hold in the face of an adversary who controls one of the parties and can
arbitrarily deviate from the protocol instructions (i.e., in this work we consider malicious adversaries). The
classical notion of security only considers the stand-alone setting, where security holds only if a single proto-
col session is executed in isolation. As it has become increasingly evident over the last decades, stand-alone
security does not suffice in real-world scenarios where several protocol sessions may be executed concurrently
(a typical example being protocols executed over modern networked environments, such as the Internet).

The Concurrent Setting. A more general (and realistic) setting considers the case where many protocol
executions are run concurrently within a network. Unfortunately, the security of a protocol in the stand-alone
setting does not necessarily imply its security under concurrent composition [FS90]. Secure computation in
the concurrent setting is more challenging to define than the stand-alone setting. In the literature, the holy
grail of concurrent security is the notion of Universal Composability (UC) Canetti [Can01] which, among
other many benefits, allows for a modular design and analysis of protocols. For each cryptographic task, an
ideal functionality can be defined, which incorporates the required properties of a protocol for the task and
the allowed actions of an adversary. A protocol is said to securely realize the ideal functionality if, loosely
speaking, any effect caused by an adversary attacking the protocol can be obtained by an adversary attacking
the ideal functionality.

UC security, however, turns out to be too strong to achieve in the plain model (i.e., without any trusted
setup or random oracle). In particular, it has been shown that UC-secure 2PC is impossible to achieve in
the plain model [Can01,CKL03]. This result has been extended by Lindell [Lin08], who show that even
concurrently secure 2PC is impossible if simulation-based definitions of security are used. He proved that
even in the particular case where only instantiations of the same protocol are allowed, the standard notion
of polynomial time simulation is impossible to achieve.



In an effort to overcome the above mentioned impossibility results, many recent works have focused on
proving concurrent security for 2PC in alternative models, e.g., in the bounded concurrent model [Pas04a],
in the multiple ideal-query model [GJ13], and for input-indistinguishable computation [MPR06]. A com-
mon relaxation of polynomial-time simulation is the notion of security with super-polynomial simulators
(SPS) [Pas03b,PS04,BS05]. In this scenario the simulator in the ideal world is allowed to run in (fixed)
super-polynomial time. Informally, the SPS security guarantees that any polynomial-time attack in the real
execution can also be mounted in the ideal world execution, albeit in super-polynomial time. This is directly
applicable in settings where ideal world security is guaranteed statistically or information-theoretically and
it is known to imply input-indistinguishable computation [MPR06]. There has been a fruitful line of re-
search devoted to understanding the power of SPS security for secure computations in the concurrent setting
[MMY06,CLP10,GGJS12,LP12,PLV12,KMO14,Kiy14,GLP+15,GKP17,BGJ+17].

The Round Complexity of 2PC. One of the most meaningful performance measures for a 2PC is its round
complexity. A series of breakthrough results has established that two rounds are both necessary and sufficient
for stand-alone 2PC [GS17,GS18,BL18]. In the concurrent setting, a series of works [GGJS12,KMO14] con-
structed constant-round protocols (approximately 20 rounds) in the simultaneous message exchange model.
Later, Garg et al. [GKP17] decreased the round complexity to 5 rounds with SPS security from standard sub-
exponential assumptions. Recently, Badrinarayanan et al. [BGJ+17] constructed a concurrent MPC with SPS
security with 3 rounds against Byzantine adversaries, assuming sub-exponentially secure DDH and LWE.1

This raises the following natural question:

Can we achieve a two-round concurrently secure two-party computation in the plain model?

In this work we give a positive answer to the above question. It is well known that for any notion of simulation-
based security two rounds are necessary. Thus our work establishes the feasibility of round-optimal concurrent
2PC with SPS security.

1.1 Our Results

We present a new secure computation protocol whose round complexity matches that of the stand alone
setting. More specifically, we present a two-round SPS-secure (simultaneous-round) concurrent 2PC pro-
tocol. Our concurrent 2PC construction is based on the existence (all with subexponential security) of
non-interactive CCA-commitments and the hardness of the learning with errors (LWE) problem. While the
latter is a standard assumption, non-interactive CCA-commitment schemes have been recently shown to exist
assuming indistinguishability obfuscation [Khu21], which in turn can be realized from well-founded assump-
tions [JLS20].

Application: Concurrently Secure PAKE. In a password-authenticated key exchange (PAKE) protocol,
two users hold passwords (x1, x2) and want to exchange a high-entropy secret if x1 = x2, otherwise they learn
nothing about the other user’s inputs. We show that our concurrently secure 2PC protocol directly provides
us a two-round (concurrently secure) PAKE scheme in the plain model. Prior to our work, even two-round
PAKE scheme (not concurrent) in the plain model was left as an open problem.

Application: Concurrently Secure Blind Signatures. Blind signatures [Cha82] enable users to obtain
a signature without revealing a message to be signed to a signer. More precisely, a blind signature scheme is
a 2PC between a signer and a user: The signer holds a key pair, and the user holds a message. At the end
of the interaction, the user receives a signature on the message without revealing the message to the signer.
Blind signatures are used as a building block for various other privacy-preserving cryptosystems such as
e-voting [FOO92,Cha88], anonymous credential [CL01], and direct anonymous attestation [BCC04]. Before
our work, constructing a blind signature that satisfies both round-optimal and concurrent security in the
plain model was left an open problem. Using our concurrently secure 2PC, we present the first round-optimal

1 [BGJ+17] also constructed a two-round concurrent MPC with SPS security against Byzantine adversaries but for
input-less randomized functionalities, assuming sub-exponentially secure indistinguishability obfuscation and DDH.
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concurrently-secure blind signature scheme that does not rely on random oracles or any setup assumptions
such as a common reference string.

Application: Quantum Computation. As a bonus, we note that our simulator is straight-line and black-
box and therefore our 2PC can be plugged into the recent work of Bartuseket al. [BCKM20], providing the
first quantum 2PC in the plain model.

1.2 Concurrent Work

In a concurrent and independent work, Fernando, Jain, and Komargodski [FJK21] also present new results on
two-round concurrent secure computation. They also consider the notion of security with super-polynomial
simulation and obtain results assuming the quantum hardness of LWE, the classical hardness of SXDH, the
existence of indistinguishability obfuscation and time-lock puzzles. We highlight two main differences of our
approaches:

– Our approach is limited to the case of 2 parties, whereas their protocol supports polynomially-many (in
fact an unbounded polynomial) parties.

– In terms of assumption, our work uses a strict subset of their set of assumptions, namely, LWE and the
existence of indistinguishability obfuscation.2

– We also obtain results on concurrent 2PC for quantum functionalities. Due to the reliance of the SXDH
assumption, and more broadly on the classical-quantum simulation technique [KK19], their security
analysis breaks down in the quantum settings.

1.3 Technical Overview

We now give an overview of the techniques used in our work. We start by describing the difficulty of
constructing round-optimal concurrently secure 2PC with SPS security of general functionalities with super-
polynomial simulation (which both parties receive the output of the computation). After that, we give a brief
intuition on the main ideas for overcoming such barriers. For a more derailed exposition of the protocols, we
refer the reader to the technical sections.

Challenges in the Concurrent Setting. As the fist step of constructing our round-optimal concurrent
2PC, we use a maliciously circuit-private fully homomorphic encryption (FHE) scheme and let each party
encrypts her input x in the first round of our concurrent 2PC construction. In circuit-private FHE schemes,
one party (the receiver) holding an input x wishes to learn the evaluation of a circuit C held by another party
(the sender). That is, even if both maliciously formed public key and ciphertext are used, encrypted outputs
only reveal the evaluation of the circuit on some well-formed input x. One immediate issue with this approach
is that parties may compute their encryption by mauling the ciphertext of the other party and introduce
correlations between the two inputs, thus violating security. To avoid such attacks, we additionally let each
party to commit to her input x via a non-interactive CCA-secure commitment scheme3. In the second round,
we let parties (symmetrically) evaluate the function f(xi, ·) homomorphically and send over the resulting
ciphertext ĉi, which is an encryption of f(x0, x1). Each party can then recover the function output by simply
decrypting the incoming ciphertext.

Ensuring Input Consistency. The main challenge of this approach is then to ensure that the same value
x is used in the both in the FHE and in the CCA-secure commitment, for both the first and the second round
of interaction. For the second round we can use 2-round SPS zero-knowledge to guarantee this [Pas03a],
however for the first round this is not a viable option, since non-interactive zero-knowledge requires a setup.
To resolve this, we resort to using conditional disclosure of secrets (CDS). Roughly speaking, this primitive
guarantees that, if the non-interactive CCA-secure commitments in the first round are not consistence with

2 Obfuscation is only needed to instantiate non-interactive CCA secure commitments. Future improvements in the
area of CCA-commitments can be used off-the-shelf to improve the set of assumptions needed for our protocol.

3 In the security proof, the simulator will use the CCA-secure commitment to extract the input of the adversary.
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the FHE ciphertext, then the user will not be able to recover the second message of the protocol. In a sense,
we check the well-formedness condition implicitly, by conditioning the delivering of the second round to the
receiver having a valid witness that certifies this relation.

A more subtle point is that we need to simulate the zero-knowledge protocol (that guarantees consistency
of the second round) while at the same time arguing that the attacker cannot prove false statements. Specif-
ically, when we switch a real ZK proof to being simulated (in super-polynomial time TSim), we must argue
that the values within CCA commitments provided by the adversary did not suddenly change. To achieve this,
it must be true that the quality of the SPS.ZK simulation is sufficiently high to guarantee that the messages
inside the CCA commitments did not change. Specifically, we must be able to break the CCA commitments
and extract from them in time that is less than the time for which soundness hold Tzk. Putting together
all these constraints, we have that CCA commitments should be breakable in time that is less than the time
against which they remain non-malleable: this is a direct contradiction. Therefore, we need a ZK argument
systems that TSim ≪ Tzk. To resolve this, we use zero-knowledge with strong simulation. Such a primitive was
recently realized by [KS17], by constructing a new form of two-round extractable commitments. Carefully
setting the parameters of our scheme, we obtain the desired security. We refer to Section 3 for more details
of the construction and the proof’s techniques.

2 Preliminaries

We typically use λ to denote the security parameter. A function negl(λ) : N 7→ [0, 1] is called negligible
negl(λ)(λ) = O(λ−c) for every constant c ∈ N. We denote this by p ≈ 0. We define by negl(λ) a negligible
function of λ. We say that T1(λ) ≫ T2(λ) if T1(λ) > T2(λ) · λc for all constants c. We define a T-time
machine as a non-uniform Turing Machine that runs in time at most T. All honest parties in definitions
below are by default uniform interactive Turing Machines, unless otherwise specified.

2.1 CCA-Secure Commitment

Commitment Schemes. A commitment scheme is a two-party protocol (with two phases) in which one
party, the sender, commits himself in the first phase (the commit phase) to a value while keeping it secret
from the other party, the receiver. In the second phase (the open phase) the sender reveals the value he
committed to. At the end of this phase the receiver outputs this value. In addition to the requirement that
both sender and receiver run in polynomial time, we require that a commitment scheme satisfies the following
two properties: (i) the commit phase yields no knowledge of the value to the receiver (Hiding). (ii) Given the
transcript of the interaction in the first phase, there exists at most one value that the receiver can accept
as the correct opening in the reveal phase. This also applies to cheating senders (Binding). For a formal
definition see [Ode01].

In a tag-based commitment scheme both parties get a bit string called tag as additional input. We denote
by Com(m) a (possibly interactive) commitment to the value m ∈ {0, 1}λ under the tag tag ∈ {0, 1}λ using
the commitment scheme com.

CCA-secure commitment. Briefly, a tag-based commitment scheme Com is said to be CCA-secure [LP12],
if the value committed to using a tag tag remains hidden even if the receiver has access to an oracle that
breaks polynomially many commitments using a different tag tag′ 6= tag for her.

Definition 1 (CCA-secure commitment scheme.). Let Com be a tag-based commitment scheme and OCCA

be the CCA-oracle for Com. We say that Com is CCA-secure, if for any λ ∈ N and for every PPT adversary
A,

Pr

[

(tag,m0,m1)← AOCCA(λ); b←$ {0, 1}; cb ← Com(mb) :

b′ ← AOCCA(cb) ∧ b = b′

]

≈ 0 .

Where CCA-oracle OCCA for Com acts as follows in an interaction with an adversary A: It participates with A
in polynomially many sessions of the commit phase of Com as an honest receiver (the adversary determines
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the tag he wants to use at the start of each session). At the end of each session, if the session is valid, the
oracle returns the unique value m committed to in the interaction; otherwise, it returns ⊥. Note that if a
session has multiple valid committed values, the experiment also returns ⊥. Note that if during the execution
A’s queries the oracle on a commitment that uses the challenge tag tag, it returns ⊥.

Instantiations. Non-interactive non-malleable commitments have been extensively studied in the literature
and schemes are known from various cryptographic assumptions, such as adaptive one-way functions [PPV08],
or (sub-exponentially hard) indistinguishability obfuscation [Khu21]4. In some cases we will allow for a two-
round commitments, with a reusable first round. For such instances, we can also use constructions from
sub-exponentially secure time-lock puzzles [LPS17].

2.2 Circuit-Private (Leveled) Fully-Homomorphic Encryption

We recall a leveled fully-homomorphic encryption scheme with circuit privacy, that is, for an encryption
c = FHE.Enc(x) and a circuit C, a C-homomorphically-evaluated ciphertext c = FHE.Eval(C, c) reveals nothing
on C but C(x) [OPP14].

Definition 2 (Circuit-private fully-homomorphic encryption.). A (maliciously) circuit-private,leveled
fully-homomoprhic encryption (FHE) scheme
(FHE.Gen, FHE.Enc, FHE.Eval, FHE.Dec) has the following syntax:

– (sk, pk) ← FHE.Gen(1λ, 1s(λ)): a probabilistic algorithm that takes a security parameter λ and a circuit
size bound s(λ) and outputs a secret key sk and its corresponding public key pk.

– c← FHE.Enc(pk, x): a probabilistic algorithm that given pk and a string x ∈ {0, 1}∗, outputs a ciphertext
c.

– ĉ ← FHE.Eval(pk, C, c): a probabilistic algorithm that takes a pk, a circuit C and a ciphertext c, and
outputs an evaluated ciphertext ĉ.

– x̂ ← FHE.Dec(sk, ĉ): a deterministic algorithm that takes a sk and a ciphertext ĉ and outputs a string
x̂ := C(x).
The scheme satisfies the following,

– Perfect correctness. For any polynomial s(·), for any λ ∈ N, size-s(λ) classical circuit C and input x
for C,

Pr

[

(sk, pk)← FHE.Gen(1λ, 1s(λ)); c← FHE.Enc(pk, x);

ĉ← FHE.Eval(pk, C, c) : FHE.Dec(sk, ĉ) = x̂

]

= 0 .

– Input privacy. For every polynomial l(·) (and any polynomial s(λ)),

{ c :
(sk, pk)← FHE.Gen(1λ, 1s(λ));

c← FHE.Enc(pk, x0)
} ≈ { c :

(sk, pk)← FHE.Gen(1λ, 1s(λ));

c← FHE.Enc(pk, x1)
}

where λ ∈ N and x0, x1 ∈ {0, 1}l(λ).
– Statistical circuit privacy. There exist unbounded algorithms, probabilistic FHE.Sim and deterministic

FHE.Ext such that:
• For every x ∈ {0, 1}∗, c ∈ FHE.Enc(x), the extractor outputs FHE.Ext(c) = x.
• For any polynomial s(·),

{ FHE.Eval(pk, C, c∗) } ≈ { FHE.Sim(1λ, C(FHE.Ext(1λ, c∗)) } ,
where λ ∈ N, C is a s(λ)-size circuit, and c∗ ∈ {0, 1}∗.

Instantiations. Circuit-private leveled FHE schemes are known based on LWE [OPCPC14,BD18].

4 One non-standard aspect of such a scheme is that the commitment transcript is determined also by the receiver’s
randomness. Looking ahead to our scheme, we will want to prove to the receiver that the commitment is well-
formed, which may not be a well-defined statement. However, this can be easily resolved by observing that the
well-formedness of the commitment only depends on the committer randomness and thus it suffices to show that
the sender’s message is computed honestly.
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2.3 ZK With Super-polynomial Simulation

We recall the definitions of two-message ZK arguments with super-polynomial simulation (SPS) [Pas04b]
and with super-polynomial strong simulation (SPSS)[KS17].

Definition 3 (Two message (TSim,Tzk, δzk)-ZK arguments with super-polynomial simulation).
An interactive proof (or argument) < P,V > for the language L ∈ NP, with the witness relation RL, is

(TSim,Tzk, δzk)-simulatable if for every Tzk-time machine V∗ exists a probabilistic simulator Sim with running
time bounded by TSim such that the following two ensembles are (Tzk, δzk)-computationally indistinguishable
(when the distinguishing gap is a function in λ = |x|):

– {< P(y),V∗(z) > (x)}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x).
– {Sim(x, z)}z∈{0,1}∗,x∈L.

That is, for every probabilistic algorithm D running in time polynomial in the length of its first input,
every polynomial p, all sufficiently long x ∈ L, all y ∈ RL(x) and all auxiliary inputs z ∈ {0, 1}∗ it holds
that

Pr[D(x, z, < P(y),V∗(z) > (x)) = 1]− Pr[D(x, z, Sim(x, z)(x)) = 1] ≤ δzk(λ).

2.4 ZK with Super-polynomial Strong Simulation

We recall the definition of zero-knowledge with strong simulation from [KS17].

Definition 4 ((TΠ ,TSim,Tzk,TL, δzk)-ZK arguments with super-polynomial strong simulation). An
interactive protocol between a PPT prover P with input (x, w) ∈ RL for some language L, and PPT verifier
V with input x, denoted by < P,V > (x, w), a super-polynomial strong simulation (SPSS) zero-knowledge
argument if it satisfies the following properties and TΠ ≪ TSim ≪ Tzk ≪ TL:

– Completeness. For every (x, w) ∈ RL, Pr[V outputs 1 | < P,V > (x, w)] ≥ 1− negl(λ), where the prob-
ability is over the random coins of P and V.

– TΠ-Adaptive-soundness. For any language L that can be decided in time at most TL, every x, every
z ∈ {0, 1}∗, and every poly-non-uniform prover P∗ running in time at most TΠ that chooses x adaptively
after observing verifier message, Pr[< P∗(z),V > (x) = 1 ∧ x /∈ L] ≤ negl(λ), where the probability is
over the random coins of V.

– (TSim,Tzk, δzk)-Zero knowledge. There exists a (uniform) simulator Sim that runs in time TSim, such
that for every x, every non-uniform Tzk-verifier V∗ with advice z, and every Tzk- distinguisher D:

|Pr[D(x, z, viewV∗ [< P,V∗(z) > (x, w)]) = 1]− Pr[D(x, z, SimV
∗

(x, z)(x)) = 1]| ≤ δzk(λ).

Notice that, [KS17] presented a construction of an SPSS.ZK scheme satisfying SPSS.ZK these properties
that can be based on one of the following sub-exponential assumptions: 1) DDH, 2) Quadratic Residuosity,
3) Nth Residuosity, and 4) LWE [BD18,DGI+19].

2.5 Conditional Disclosure of Secrets

Conditional disclosure of secrets for an NP language L [AIR01,BP12,AJ17] can be viewed as a two message
analog of witness encryption. That is, the sender holds an instance x and message m and the receiver holds
x and a corresponding witness w. If the witness is valid, then the receiver obtains m, whereas if x /∈ L, m
remains hidden. We further require that the protocol hides the witness w from the sender.

Definition 5 (Conditional disclosure of secrets.). A conditional disclosure of secrets scheme CDS =
(CDS.R, CDS.S, CDS.D) for a language L ∈ NP satisfies:
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– Correctness. For any (x, w) ∈ RL, and message m ∈ {0, 1}∗,

Pr[CDS.Dk(ctS) = m|(ctR, k)← CDS.R(x, w); ctS ← CDS.S(x,m, ctR)] = 1.

– Message indistinguishability. For any polynomial-size distinguisher D, there exists a negligible ǫ such
that for any security parameter λ ∈ N, any x ∈ {0, 1}λ /∈ L, ct∗R and two equal-length messages m0 and
m1,

CDS.S(x,m0, ct
∗
R) ≈ CDS.S(x,m1, ct

∗
R)

– Receiver simulation. There exists a simulator CDS.Sim, such that for any polynomial-size distinguisher
D, there exists a negligible ǫ such that for any security parameter λ ∈ N, any x ∈ L, and w ∈ RL(x),

ctR ≈ CDS.Sim(x)

where ctR ← CDS.R(x, w).

Notice that, CDS schemes can be instantiated assuming any two-message oblivious transfer protocol where
the receiver message is computationally hidden from any semi-honest sender, and with (unbounded) simula-
tion security against malicious receivers. Such oblivious transfer schemes are known based on DDH [NP01],
Quadratic (or Nth) Residuosity [HK12], and LWE [BD18].

2.6 Universal Composability and Super-polynomial Simulation

We briefly review Universally composable (UC) security. For full details we refer to [Can01]. For the sake of
completeness we include a short introduction of the notation of UC security in Appendix A.1.

Universal composability. UC security is a framework proposed by Canetti [Can01] as a way to define secu-
rity for protocols such that security-preserving composition is possible. This allows for a modular design and
analysis of protocols. For each cryptographic task, an ideal functionality can be defined, which incorporates
the required properties of a protocol for the task and the allowed actions of an adversary. A protocol is said
to securely realize the ideal functionality if, loosely speaking, any effect caused by an adversary attacking
the protocol can be obtained by an adversary attacking the ideal functionality. When designing complex
protocols, one can allow the involved parties to have secure access to ideal functionalities. Then, at the
implementation phase, each ideal functionality is replaced by a protocol securely realizing the functionality.
The composition theorem then guarantees security. For a complete overview, we refer to [Can01].

UC Security with super-polynomial simulation We next recall the relaxed notion of UC security by
giving the simulator access to super-poly computational resources [GGJS12].

Definition 6. A protocol Π UC-realizes an ideal functionality F in the hybrid model if, for every adver-
sary A, there exists a super-polynomial time simulator Sim such that for all environments Z, IDEALFSim ≈
HYBRIDF

Π,A. The protocol Π is statistically secure if the above definition holds for all unbounded Z

The universal composition theorem generalizes naturally to the case of UC-SPS, the details of which we
refer [GGJS12].

Ideal functionality of two-party computation. As we mentioned before, the security of a protocol is
analyzed by comparing what an adversary can do in the protocol to what it can do in an ideal scenario that
is secure by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. For the sake of completeness, we recall the ideal
functionality of two-party protocols in Appendix A.1 and for more details refer to [LP07,GGJS12].
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3 Concurrent Two-Party Computation in the Plain Model

3.1 High-Level Overview

In this section, we propose a generic construction of concurrent 2PC with two rounds in the plain model. Let
f be any functionality. Consider two parties P0 P1 with inputs x0 ad x1 respectively who wish to compute
f on their joint inputs by running a secure concurrent two-party computation protocol. Formally, we prove
the following theorem:

Theorem 1. Assuming the sub-exponential hardness of the LWE problem and the quantum sub-exponentially
hard CCA-secure commitments, then our two-rounds concurrently secure 2PC protocol with super-polynomial
simulation for any functionality f that is secure against malicious adversaries in the plain model.

Before describing our protocol formally, to help the exposition, we first give a brief overview of the
construction and its security proofs in this subsection.

3.2 Construction

In this section we describe our concurrent two party construction. we first recall some notation and the
primitives used in the construction.
Ingredients and notation:

– A (leveled) fully-homomorphic encryptions scheme FHE that contains the four algorithms (FHE.Gen,
FHE.Enc, FHE.Eval, FHE.Dec) with maliciously circuit privacy. That is, even if both maliciously formed
public key and ciphertext are used, encrypted outputs only reveal the evaluation of the circuit on some
well-formed input x∗.

– A CCA-secure commitment scheme CCA = (CCA.Gen, CCA.Com, CCA.Open) that is a non-interactive CCA

commitment scheme. It is secure against all adversaries running in time TSec
CCA.Com, but can be broken by

adversaries running in time TBrk
CCA.Com. Let CCA.Ext denote a brute force algorithm running in time TBrk

CCA.Com

that can break the commitment scheme. The C.CCA.Com we use is tag-based. In the authenticated channels
setting, the tag of each user performing a CCA commitment can just be its identity. In the general setting,
each party can choose a strong digital signature verification key vk and signing key, and then sign all
its messages using this signature scheme for every message sent in the protocol. This vk is then used as
the tag for all CCA commitments. This ensures that every adversarial party must choose a tag that is
different than any tags chosen by honest parties, otherwise the adversary will not be able to sign any
of its messages by the existential unforgeability property of the signature scheme. This is precisely the
property that is assumed when applying CCA.Com. For ease of notation, we suppress writing the tags
explicitly in our protocols below.

– A conditional disclosure of secrets scheme CDS = (CDS.R, CDS.S, CDS.D). That is, the sender holds an
instance xCDS and message m and the receiver holds xCDS and a corresponding witness wCDS. If the witness
is valid, then the receiver obtains m, whereas if xCDS /∈ LCDS, m remains hidden.

– SPSS.ZK = (ZK.Gen, ZK.P, ZK.V) is a two message zero knowledge argument with super polynomial strong
simulation (SPSS-ZK). The zero knowledge property holds against all adversaries running in time TZK.
Let SimZK denote the simulator that produces simulated ZK proofs and let TSim denote its running time.

Construction. In order to realize our protocol, we require that poly(λ) ≪ TSim ≪ TSec
CCA.Com ≪ TBrk

CCA.Com ≪
TZK,TFHE. The construction of the protocol is described in Figure 1. In our construction, we use proofs for a
some NP languages that we describe below.

NP language L1 is characterized by the following relation R1. And for statement st = (c, cm, ct) and
witness: w = (x, r), we say R1(st, w) = 1 if and only if:

c = FHE.Enc(pk; x; r) ∧ cm = CCA.Com(x; r)

where c and cm form a FHE encryption of xi and a non-malleable commitment of (x; r) where x is
a message and r is randomness. NP language L2, is characterized by the following relation R2. And for
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statement st = (c′, cm, ct) and witness: w = (x; r), where c′ = FHE.Enc(pk′, x′; r′) and ctR = CDS.S(c′, w′) we
say R2(st, w) = 1 if and only if:

c = FHE.Eval(pk′, c′, f(x, .); r) ∧ cm = CCA.Com(x; r) ∧ ct = CDS.S(c′, c, ctR)

where c and cm form a FHE encryption of x and a non-malleable commitment of (x; r) where x is a message
and r is randomness and f is a function that takes two inputs of size |x| and the input x is fixed into the
function and c′ is a FHE encryption of some message x′ under the public-key pk′ and we want c to be the
FHE encryption of f(x, x′) under pk′.

We also define another NP language L3 with the corresponding relation R3, which we later use a zero
knowledge proof on this language to show that same message has been used an FHE encryptions and also
hard-coded in the functions in its FHE evaluation . namely assume c is the encryption of x, and c′ is some
other FHE encryption under public key pk′. And f(·, ·) is a function that takes two inputs if we fix input x
into it, it becomes a single input function f(x, ·). We define statements of L3 as st = (c1, c2) and for witness
w = (x, r, r′), where c1 = FHE.Enc(pk, x1, r) and c2 = FHE.Eval(pk′, c′, f(x2, ·); r′) We say R3(c1, c2) = 1 if
and only if x1 = x2.

Finally we define NP language L as the the AND of L1,L2,L3.
The correctness of the protocol follows from the correctness of the CCA-secure commitment scheme CCA,

the conditional disclosure of secrets CDS, and the zero knowledge proof system SPSS.ZK
High level construction. Now we describe the our construction at a high level. Parties P0 and P1 with

corresponding inputs x0 and x1 want to compute the output of the function f(x0, x1) in a secure way. Our
protocol has two rounds, were in each round, each party sends a message to the other party in a simultaneous
manner. For the first round of the protocol, each party, first generates their randomness and runs the setup
algorithm for an FHE scheme which they will be using throughout the protocol. Then they compute the FHE
encryption of their inputs, let us call it ci, they also commit to their inputs using a CCA-secure commitment
scheme, and compute committed values cmi for i ∈ {0, 1}. Then each party, runs the receiver’s algorithm
of the conditional disclosure of secrets scheme (CDS.R) on the encrypted ciphertext and some corresponding
witness w with respect to the NP language L that we defined above. Then each party plays the role of the
verifier in a SPSS zero knowledge schemes and gets the verifier’s parameter ver and a state zkst. At the end
of the first round, each party sends their encryption ciphertext, commitment, verifier’s parameter and the
CDS ciphertext as their message to the other party.

In the second round, parties run virtually same algorithms according to their inputs simultaneously. first,
they run the FHE evaluation of the other other partiy’s ciphertext and public key, on the function f(xi, ·)
which is the ultimate function they want to compute in the protocol, in a way that the party’s input is fixed
in the function. Finally they get the ciphertext ĉi with is the encryption of f(x0, x1) under the public key
of the other party. Then they commit to their input, using the randomness generated in the second round,
and run the sender’s algorithm CDS.S(c1−i, ĉi, ct1−i) and gets the corresponding CDS sender output ĉti.

Then each party provides a zero-knowledge proof, where it proves the consistency of the commitment
and the CDS cipher text and the evaluated FHE ciphertext; they also prove that they used same input on
both FHE encryptions. That is, a zero-knowledge proof for AND of L2,L3. Then they send the commitment
and CDS ciphertext as well as the zero-knowledge proof to the other party.

Finally, each party after receiving the messages from the second round, each party locally checks the
zero-knowledge proof and if it was correct, they use the CDS ciphertext that they received in the second
round ĉt1−i and their own CDS key ki and run the CDS decryption algorithm CDS.D(ki, ĉt1−i) to get an FHE

ciphertext which they can later decrypt it using their own FHE secret-key to get the output of f(x0, x1)

High level security proof. Here we describe a high-level overview of the security proof. Let’s consider an
adversary A who corrupts the parties. Recall that the goal is to move from the real world to the ideal world
such that the outputs of the honest parties along with the view of the adversary is indistinguishable. We
reach this with a sequence of computationally indistinguishable games. The first game Game1, refers to the
real world. In Game2, the simulator extracts the adversary’s input and randomness (used in the protocol)
by a brute force break of the non-malleable commitment. The simulator aborts if the extracted values don’t
reconstruct the protocol messages for the underlying malicious protocol correctly. These two games are
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Inputs party P0 and P1 have x0 and x1 as their inputs

– Round 1:

• i ∈ {0, 1}
Each party Pi does the following:

• ri ←$Zp

• ci ← FHE.Enc(pki, xi; ri)
• cmi ← CCA.Com(xi, ri)
• (cti, ki)← CDS.R(ci, wi)
• (veri, zksti)← ZK(1λ)

Pi sends (ci, cmi, cti, veri, pki)
– Round 2:

Each party Pi does the following:
• r̂i ←$Zp

• ĉi ← FHE.Eval(pk1−i, c1−i, f(xi, ·); r̂i)
• ĉmi ← CCA.Com(xi, r̂i)
• ĉti ← CDS.S(c1−i, ĉi, ct1−i)
• πzk,i ← ZK.P(veri, ci, ĉi, ĉmi, ĉti, wi)
• Pi sends ĉmi, ĉti, πzk,i

– Computation part

Each party does the following:
– if ZK.V(zksti, πzk,1−i) = 1 returns FHE.Dec(ski, CDS.D(ki, ĉt1−i)).

Fig. 1. Generic construction of concurrent two-party computation.

indistinguishable because from the soundness of the proof system, except with negligible probability, the
values extracted by the simulator correctly reconstruct to protocol messages.

Then, in Game3, we switch the SPSS.ZK arguments used by an honest party in rounds 2 to simulated
ones. This game is computationally indistinguishable from the previous game by the security of the SPSS.ZK
system. Notice that when we switch from real to simulated arguments, we can no longer rely on the adversary’s
zero knowledge arguments to argue the correctness of the values extracted by breaking the CCA.Com scheme.
That is, the adversary’s arguments may not be simulation sound. However, recall that to check the validity
of the extracted values, we only rely on the correct reconstruction of the semi-malicious protocol messages,
and hence this is not a problem. Also, the running time of the simulator in these two hybrids is the time
taken to break the non-malleable commitment TBrk

CCA.Com (which must be lesser than the time against which
the zero knowledge property holds, TZK.).

In Game4, we switch the non-malleable commitments sent by honest party to be commitments of 0 instead
of the actual input and randomness. Recall that since the arguments of the honest parties are simulated, this
doesn’t violate correctness. Also, this game is computationally indistinguishable from the previous game by
the security of the non-malleable commitment scheme. One issue that arises here is whether the simulator
continues to extract the adversary’s inputs correctly. Recall that to extract, the simulator has to break the
non-malleable commitment for which it has to run in time TBrk

CCA.Com. However, then the reduction to the
security of the non-malleable commitment only makes sense if the simulator runs in time lesser than that
needed to break the non-malleable commitment. We overcome this issue by a sequence of sub-games where we
first switch the simulator to not extract the adversary’s inputs, then switch the non-malleable commitments
and then finally go back to the simulator extracting the adversary’s inputs. We elaborate on this in the
formal proof.

Then, in Game5 we run the simulator of the protocol using the extracted values to generate the protocol
messages. This game is indistinguishable from the previous one by the security of the concurrent 2PC. Once
again, in order to ensure correctness of the extracted values, we require the running time of the simulator -
which is TBrk

CCA.Com to be lesser than the time against which the malicious protocol concurrent 2PC is secure.
This is because, then, the simulator can continue to extract the adversary’s message and randomness used
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for the protocol by breaking the malicious protocol. Now, Game5 corresponds to the ideal world. Notice that
our simulation is in fact straight-line. There are other minor technicalities that arise and we elaborate on
this in the formal proof.

3.3 Security Proof

In this section, we formally prove Theorem 1. Consider an adversary A who corrupts a party in the protocol.
For each party Pi, let’s say that the size of input and randomness used in the protocol is p(λ) for some
polynomial p. That is, |(xi, ri)| = p(λ). The strategy of the simulator Sim against a malicious adversary A
is described in Figure 2.

– Round 1: for each party Pi for i ∈ {0, 1}, Sim does as follows:
• Compute ci ← FHE.Enc(pki,~0, ri) for ri ←$ {0, 1}λ and (ski, pki)← FHE.Gen(1λ, 1s(λ)).
• Compute cmi ← CCA.Com(~0||ri) and (cti, k) ← CDS.R(ci, wi) where as before wR is such that ci and cmi are

well-formed.
• Initiates the execution of the SPSS.ZK argument system as: (veri, zksti)← ZK(λ).
• For each honest party Pi do:

– Input Extraction: Sim does the following:
For each honest party Pi do:

• Break CCA.Com1−i and obtains (x1−i, r1−i)← CCA.Ext(cm1−i). That is the input and the randomness of party
P1−i seen by party Pi.

• This step takes time TBrk
CCA.Com

• Initialize a variable correct = 1. Then, for each malicious party P1−i , do
• Set correct = 0 if the set of values (x1−i, r1−i), for the i corresponding to honest parties Pi is not equal. Let

R denote the set of (x1−i, r1−i)
• Set correct = 0 if c1−i 6= FHE.Enc(pk1−i, x1−i, r1−i).

– Round 2: Let τ1 denote the protocol transcript after round 1. Sim does the following:
• For each honest party Pi:
• If correct = 1, compute ĉi ← FHE.Sim(pk1−i, c1−i, ~y, r̂i, τ

1) where r̂i ←$ {0, 1}∗ and ~y is given by the ideal
functionallity.

• such that ~y ← F (xi, x1−i) for some function F .
• Else, compute ĉi as before but by setting ~y = ~0.
• And compute ĉmi ← CCA.Com(~0||r̂i) and ĉti ← CDS.S(ci, ŝti).
• Compute π̂zk,i ← Simzk(ver1−i, sti) and π̂′

zk,i ← Simzk(ver1−i, st
′

i) respectively for ŝti = (ĉi, ĉmi, ĉti) ∈ L̂i and

ŝt
′

i = (ci, ĉi) ∈ L̂
′

i.
• Observe that this takes time TSimzk

.
• Send (ĉi, ĉmi, π̂zk,i) to P1−i.

– Abort Phase:

• For each malicious party P1−i

• Output ”Abort” if correct = 0.
• Also, output ”Abort” if ĉ1−i 6= FHE.Eval(pki, ci, f, r̂1−i).

– Output Computation:

• Sim does the following:
• For each honest party Pi abort if ZK.V(zksti, π̂zk,1−i) 6= 1.
• Else, instruct the ideal functionality to deliver output to the honest parties.

Fig. 2. Simulation strategy in the concurrent 2PC

We now show that the simulation strategy described in Figure 2 is successful against all malicious PPT
adversaries. That is, the view of the adversary along with the output of the honest parties is computationally
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indistinguishable in the real and ideal worlds. We will show this via a series of computationally indistinguish-
able games where the first game Game1 corresponds to the real world and the last game corresponds to the
ideal world.

1. Game1: In this game, consider a simulator SimGame that plays the role of the honest parties. SimGame runs
in polynomial time.

2. Game2: In this game, the simulator SimGame also runs the ”Input Extraction” phase and the ”Abort”
phase as in Figure 2. SimGame runs in time TBrk

CCA.Com.

3. Game3: This game is identical to the previous game except that in Round 2, SimGame now computes
simulated SPSS.ZK proofs as done in Figure 2. SimGame runs in time TBrk

CCA.Com.

4. Game4: This is identical to the previous game except that SimGame now computes all cmi and ĉmi as CCA
commitment of 0. SimGame runs in time TBrk

CCA.Com.

5. Game5: This game is identical to the previous game except that in Round 2, SimGame now computes the
messages of the protocol using the simulator algorithms FHE.Sim as done by Sim in the ideal world. Sim
also instructs the ideal functionality to deliver outputs to the honest parties as done by Sim. This game
is now same as the ideal world.

We now show that every pair of successive games is computationally indistinguishable.

Lemma 1. Assuming soundness of the SPSS.ZK argument system, binding of the non-interactive CCA-
commitment scheme and correctness of the FHE scheme, Game1 is computationally indistinguishable from
Game2.

Proof. The only difference between the two games is that in Game2, SimGame may output ”Abort” which
doesn’t happen in Game1. More specifically, in Game2, ”Abort” occurs if event E described below is true.

Event E: Is true if : For any malicious party P1−i, (i) the SPSS.ZK proof sent by P1−i in round 2 verify
correctly, and (ii) either of the following occur:

(ii-1) The set of values (x1−i, r1−i) that are committed to using the non-malleable commitment CCA.Com
are not same for honest party Pi.

(ii-2) OR c1−i 6= FHE.Enc(pk1−i, x1−i; r1−i);
(ii-3) OR ĉt1−i 6= CDS.S(ĉ1−i, ŝt).
That is, in simpler terms, the event E occurs if for any malicious party, it gives valid ZK proofs in round

2 but its protocol statement is not consistent with the values it committed to. Therefore, in order to prove
the indistinguishability of the two games, it is enough to prove the lemma below.

Sub-Lemma1. Pr[Event E occurs in Game2] = negl(λ).

Proof. Suppose the event E does occur. From the binding property of the commitment scheme and the
correctness of the FHE scheme in Figure 1, observe that if any of the above conditions are true, it means
there exists some statements st2,1−i 6∈ L2,1−i or st3,1−i 6∈ L3,1−i where Pi is honest and P1−i is malicious.
However, the proof for the statement verified correctly which means that the adversary has produced a valid
proof for a false statement. This violates the soundness property of the SPSS.ZK argument system which is
a contradiction.

Lemma 2. Assuming the zero knowledge property of the SPSS.ZK argument system, Game2 is computation-
ally indistinguishable from Game3.

Proof. The only difference between the two games is that in Game2, SimGame computes the proofs in Round
2 honestly, by running the algorithm ZK of the SPSS.ZK argument system, whereas in Game3, a simulated
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proof is used. If the adversary A can distinguish between the two games, we can use A to design an algorithm
Azk that breaks the zero knowledge property of the argument system.

Suppose the adversary can distinguish between the two games with non-negligible probability pA. Then,
by a simple hybrid argument, there exists games Game2,k and Game2,k+1 that the adversary can distinguish
with non-negligible probability p′A < pA such that: the only difference between the two games is in the proof
sent by an honest party Pi to a (malicious) party P1−i in one of the round 2.
Azk performs the role of SimGame in its interaction with A and performs all the steps exactly as in Game2,k

except the proof in Round 2 sent by Pi to P1−i . It interacts with a challenger C of the SPSS.ZK argument
system and sends the first round message ver it received from the adversary. Azk receives from C a proof that
is either honestly computed or simulated. Azk sets this received proof as its message πzk,i in Round 2 of its
interaction with A. In the first case, this exactly corresponds to Game2,k while the latter exactly corresponds
to Game2,k+1. Therefore, if A can distinguish between the two games, Azk can use the same distinguishing
guess to distinguish the proofs: i.e, decide whether the proofs received from C were honest or simulated. Now,
notice that Azk runs only in time TBrk

CCA.Com (during the input extraction phase), while the SPSS.ZK system is
secure against adversaries running in time TZK. Since T

Brk
CCA.Com < TZK, this is a contradiction and hence proves

the lemma. In particular, this also means the following: Pr[Event E occurs in Game3] = negl(λ).

Lemma 3. Let CCA.Com is a CCA-secure commitment scheme, then Game3 is computationally indistinguish-
able from Game4.

Proof. We prove this using a series of computationally indistinguishable intermediate games as follows.
Game3,1: This is same as Game3 except that the simulator SimGame does not run the input extraction

phase apart from verifying the SPSS.ZK proofs. Also, SimGame does not run the ”Abort” phase (in particular,
no breaking or extraction algorithm is run and there is no ”Abort”). In this game, SimGame runs in time
TSimzk

which is lesser than TBrk
CCA.Com.

Game3,2: This is identical to the previous game except that, SimGame now computes all the messages cmR
(and cmS) as non-malleable commitments of 0 as it is done in the ideal world. In this game also SimGame runs
in time TSimzk

.
Game3,3: This is same as Game3 except that the simulator does run the input extraction phase and Abort

phase. It is easy to see that Game3,3 is the same as Game4. Here, SimGame runs in time TBrk
CCA.Com which is

greater than TSimzk
.

Now, We prove the indistinguishability of these intermediate games and this completes the proof of the
lemma 3.

1-Sub-Lemma 3. The game Game3 is statistically indistinguishable from Game3,1.

Proof. The only difference between the two games is that in Game3, the simulator might output Abort
which doesn’t happen in Game3,1. As shown in the proof of Lemma 2, the probability that Event E occurs
in Game3 is negligible. This means that the probability that the simulator outputs ”Abort” in Game3 is
negligible and this completes the proof.

2-Sub-Lemma 3. Assuming the CCA property of the CCA commitment scheme CCA.Com, Game3,1 is com-
putationally indistinguishable from Game3,2.

Proof. The only difference between the two games is that in Game3,1, for every honest party Pi, SimGame

computes the commitment messages cmi as a commitment of xi and ri, whereas in Game3,2, they are computed
as a commitment of 0. If the adversary A can distinguish between the two games, we can use A to design
an algorithm ACCA.Com that breaks the security of the CCA property of the CCA commitment scheme CCA.Com.

In a way that ACCA.Com acts as the man-in-the-middle adversary interacting with a challenger C. ACCA.Com

also plays the role of SimGame in its interaction with the adversary A (also due to the CCA security definition,
ACCA.Com also has access to the opening oracle of the commitment). It generates all the messages except the
messages cmi exactly as done by SimGame in Game3,1. Corresponding to the CCA definition, ACCA.Com has to
send the messages (m0,m1) to the oracle C, which here she sets m0 = 0. Then after receiving the challenge
from C, ACCA.Com uses this challenge to feed the adversary A. Then she returns the output of A.
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Now, we can see that in the first case, when C generates commitments to xi and ri,A’s view corresponds to
Game3,1 while in the latter case, it exactly corresponds to Game3,2. However, from the security of the CCA.Com
scheme, the joint distribution of the value committed to by the adversary ACCA.Com (which is the same as A’s
commitments) and its view must be indistinguishable in both cases. Therefore, if A can distinguish between
the two games, then ACCA.Com can break the CCA property of the CCA commitment scheme CCA.Com. However,
ACCA.Com only runs in time TSimzk

< Tsec
CCA.Com and hence this is a contradiction, thus proving the sub-lemma.

In addition, notice that since the joint distribution of the adversary A’s committed values and his view is
indistinguishable in both games, this implies that Event E still occurs only with negligible probability in
Game3,2 as well.

3-Sub-Lemma 3. Game3,2 is statistically indistinguishable from Game3,3.

Proof.. The only difference between the two games is that in Game3,3, the simulator might output Special
Abort which doesn’t happen in Game3,2. As shown in the proof of 2-Sub-Lemma 3, the probability that
Event E occurs in Game3,2 is negligible. This means that the probability that the simulator outputs Special
Abort in Game3,3 is negligible and this completes the proof.

Lemma 4. Assuming the security of FHE scheme in Figure 1, Game4 is computationally indistinguishable
from Game5.

Proof. The only difference between the two games is that in Game4, SimGame computes the messages of
protocol in Figure 1 correctly using the honest parties inputs, whereas in Game5, in each session, if correct = 1,
they are computed by running the simulator FHE.Sim for FHE and if correct = 0, they are computed using
the honest parties’ strategy. Therefore, the only difference in any session is if correct = 1. If the adversary
A can distinguish between the two hybrids, we will use A to design an algorithm AFHE that can break the
security of FHE. Suppose A can distinguish between these two hybrids with some non-negligible probability
p. Then by a simple hybrid argument, there exists games Game4,s and Game4,s+1 that can be distinguished
by A with some non-negligible probability p′ < p where the difference between these two games is that only
in session s, the protocol messages are computed differently. AFHE interacts with a challenger C to break the
security of FHE. Also, AFHE performs the role of SimGame in its interaction with the adversary A exactly as
in Game4,s except for session s. Whatever parties A wishes to corrupt in session s, AFHE corrupts the same
parties in its interaction with FHE. Similarly, whatever messages A sends to AFHE as part of FHE in session s
that correspond to FHE messages, AFHE sends the same messages to the challenger C. Now, whatever messages
C sends, AFHE forwards the same to the adversary A as its messages for the FHE in session s.

Observe that AFHE runs in time TBrk
CCA.Com. If C sends messages that are computed correctly, this exactly

corresponds to Game4,s in AFHE’s interaction with A. On the other hand, if C sends simulated messages, this
exactly corresponds to Game4,s+1. Therefore, if A can distinguish between these two games, AFHE can use
the same distinguishing guess to break the security FHE in Figure 1. However, this protocol is secure against
all adversaries running in time TFHE, where TFHE > TBrk

CCA.Com and hence this is a contradiction. This completes
the proof of the lemma.

4 Applications of Concurrent Two-Party Computation

In this section we discuss applications of our concurrent two-party computation (2PC) scheme to Password-
Authenticated Key-Exchange (PAKE) in the plain model as well as concurrent blind signature.

4.1 Concurrent PAKE in the Pain Model

We show how the concurrent two-party computation (2PC) in Figure 1 enables us to construct Password-
Authenticated Key-Exchange (PAKE) in the plain model. Briefly in a PAKE protocol, each user U owns a
word x1 in a certain language L1 and expects the other user to own a word x2 in a language L2. If everything

14



is compatible (i.e., the languages are the expected languages and the words are indeed in the respective
languages), the users compute a common high-entropy secret key, otherwise they learn nothing about the
other user’s values.

We first observe that our concurrent 2PC in Figure 1 directly gives us a concurrently secure PAKE
construction in the plain model. More precisely, let each party Pi in the concurrent 2PC in Figure 1 plays
the role as the user U (described above) in the PAKE construction in way that by having an input xi, each
party can compute f ← f(x0, x1) as the a common high-entropy secret key. We note that before this work,
even two-round PAKE schemes (not concurrent) in the plain model were left an open problem.

Security of PAKEs: In the cryptography literature there are two leading paradigms for rigorously defining
the above intuition. The first is the so-called ”game-based” definition introduced by Bellare et al. [BPR00].
In this definition, a password is chosen from a distribution with min-entropy k, and the security experiment
considers an interaction of an adversary with multiple instances of the PAKE protocol using that password.
A PAKE protocol is considered secure if no probabilistic polynomial time adversary can distinguish a real
session key from a random session key with advantage better than Q · 2λ plus a negligible quantity where Q
the number of online attacks by the adversary i.e., actively interferes in Q sessions of the protocol and can
make at most Q password guesses.

A second approach uses a ”simulation-based” definition [BMP00,CHK+05]. The most popular choice here
is to work in the framework of universal composability (UC) [Can01], and this is what we mean from now on
when we refer to a simulation-based definition. This approach works by first defining an appropriate ideal
functionality for PAKE; a PAKE protocol is then considered secure if it realizes that functionality. Canetti et
al. [CHK+05] pursued this approach, and defined a PAKE functionality that explicitly allows an adversary
to make password guesses; a random session key is generated unless the adversary’s password guess is correct.
As argued by Canetti et al. [CHK+05], this approach has a number of advantages. A UC definition ensures
security under arbitrary protocol composition, which is useful for arguing security of protocols that use PAKE
as a subroutine, e.g., for converting symmetric PAKE to asymmetric PAKE [GMR06,HJK+18] or strong
asymmetric PAKE [JKX18]. This is especially important in the context of PAKE standardization, because
strong asymmetric PAKE protocols can strengthen the current practice of password-over-TLS authentication
while achieving optimal security in the face of server compromise.

In context of UC security, following the security definitions of PAKE [BMP00], in general PAKE protocols
must satisfy: (i) completeness meaning that for any real world adversary that faithfully passes messages
between two user instances with complimentary roles and identities, both user instances accept, and (ii)
simulatability meaning that for every efficient real world adversary A, there exists an simulator Sim such that
real-word and ideal-world are computationally indistinguishable, where real-world and ideal-world denote the
transcript of A’s and Sim’s operations respectively. We note that the ideal functionality of PAKEs is similar
to the ideal functionality of concurrent two-party computation (see Section 2.6).

Security of our concurrent PAKE. Now, in Theorem 2 we analyze security of our concurrent PAKE in
the UC-secure model with super-polynomial simulation as explained in 2.6. Recalling that this is UC security
by giving the simulator access to super-poly computational resources [GGJS12].

Theorem 2. Let the concurrent 2PC in Figure 1 be secure against malicious adversaries in the plain model.
Then the PAKE protocol PAKE based on the concurrent 2PC is complete and simulatable in the plain model.

For the proof we refer to Appendix B.

4.2 Concurrent Blind Signature in the Plain Model

Chaum [Cha82] introduced the notion of blind signatures (see Appendix A.2) and provided a concrete in-
stantiation, while also showing an application to e-cash systems. Blind signatures have been in use as a
building block for various other privacy-preserving crypto-systems such as e-voting [FOO92,Cha88], anony-
mous credential [CL01], and direct anonymous attestation [BCC04].

Blind signatures enable users to obtain a signature without revealing a message to be signed to a signer.
More precisely, a blind signature scheme is a two-party computation between a signer and a user. The
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signer has a pair of keys called verification-key and signing-key, and the user takes as input a message and
the verification-key. They interact with each other, and the user obtains a signature for the message after
the interaction. Definitions of security for blind signature schemes were first proposed by Pointcheval and
Stern [PS00] and later there has been some refinements to the original definition [Fis06,Lin08,HKKL07].
At a high level, all existing definitions impose two basic security requirements on blind signatures: (i) users
cannot forge a signature for a new message (unforgeability), and (ii) the signer cannot obtain information
about the signed messages (blindness). For formal definitions see Appendix A.2.

When defining blindness and unforgeability it is crucial to distinguish whether security requires different
executions of the protocol to be carried out sequentially (i.e., waiting for one execution to finish before
beginning the next), or whether security holds even when multiple executions are performed concurrently
(i.e., in an arbitrarily-interleaved manner). Concurrency in the context of blindness has received little at-
tention, both because the ‘standard’ definition of blindness considers only two executions of the protocol
and, because many known constructions of blind signature schemes achieve perfect blindness. In contrast,
handling concurrency in the context of unforgeability has received much attention, and it is not hard to
see that assuming there exist blind signature schemes at all there exist schemes that are unforgeable in the
sequential setting but not in a concurrent setting.

Round-complexity and concurrent setting. One of the main performance measures for blind signatures
is round-complexity. Let us call a round-optimal blind signature is a blind signature with only 2-moves,
where the user and signer sends one message to each other. Another advantage is that round-optimal blind
signatures are automatically secure in the concurrent setting [Lin08,HKKL07]

Before our work, constructing a blind signature that satisfies both round-optimal and concurrent security
in the plain model was left an open problem. Using our concurrently secure 2PC, we present the first
round-optimal concurrently-secure blind signature scheme that does not rely on random oracles or any setup
assumptions such as a common reference string.

UC functionality of blind signatures. UC security is a framework proposed by Canetti [Can01] as a
way to define security for protocols such that security-preserving composition is possible. Since UC security
is a powerful and useful notion, an interesting question is how it relates to conventional security notions. In
this line of the research, Fischlin [Fis06] investigated the context UC security of blind signatures in the CRS
model and defined a ideal functionality in such setting. Later, Buan et al. [BGK06] proposed a new blind
signature functionality in the plain model. But Buan et al.’s ideal functionality and its security definition
only guarantees a version of blindness as weak blindness, reflecting the fact that the adversary is not allowed
to choose his target keys. Also, their functionality requires the signer to be honest during key generation.
But still defining a UC functionality of blind signature which guarantees standard blindness in the plain
model, left as an open problem.

In this section, we define a new UC functionality of blind signature in Figure 3 that guarantees standard
blindness. We will use it in the security proof of our concurrent blind signature scheme in Theorem 3. We
note that, our blind signature construction enables one to achieve standard blindness, where the blindness
holds for any adversarial choice of the keys as we let our 2PC scheme checking whether the key was indeed
well-formed. We note that it is obvious that as our functionality for ”concurrent” blind signature in Figure 3
guarantees blind signature properties (see the definition in Appendix A.2).

Concurrent blind signature construction. Our concurrent blind signature scheme builds on the con-
current two-party computation (2PC) in Figure 1. At a high level, we run only a part of the concurrent 2PC
in Figure 1 in a way that one party only plays as receiver (PR) and the other party plays as sender (PS).
And since for the application in a concurrent blind signature, we aim only PR to compute the output of
2PC, f(xR, xS), we need the SPSS.ZK proof πzk only for L2 (instead of AND of L2,L3, see Section 3.2) in
original 2PC in Figure 1. For the sake of completeness, we describe our concurrent blind signature scheme
in Figure 4.

Building blocks. We construct a round-optimal concurrent blind signature scheme based on the following
building blocks.
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FBS: It is parameterized by a message spaceM, interacts with adversary Sim and a signer S, and parties U1, . . . ,Un

as follows.

– Upon receiving (Gen, sid, S) from a signer S, proceed as follows:
• if the signer S is honest, then inform Sim through (Gen, sid, S) that a signature key generating request takes

place. Then generate the signature key ~k := (BS.pk, BS.sk) and output (Key, sid, S,~k) to S.

• If the signer S is corrupt, send (Gen, sid, S) to Sim to obtain (Key, sidS,~k). Send (Key, sid, S,~k) to S.

• In either case record (sid, S,~k).
– Upon receiving (Sign, sid, S,Ui,M) from Ui, where M ∈M, if a tuple (sid, . . . ) with the same sid was previously

recorded, do nothing. Otherwise record (sid, S,Ui,M) and proceed as follows:
• If the user Ui is honest, then inform S and Sim through (Signature, sid, S,Ui) that a signature request takes

place and then generate the signature σ and output (Signature, sid, S,Ui, σ) to Ui (blindness condition).
• If the user Ui is corrupt, then send (Sign, sid, S,Ui,M) to Sim to obtain (Signature, sid, S,Ui, σ). Send

(Signature, sid, S,Ui, σ) to Ui.
• In either case record (sid, S,Ui,M, σ).

– Upon receiving (Verify, sid,M, σ, BS.pk′) from some party P hand it to Sim and proceed a follows:
• if (sid, BS.pk) and the tuple (sid,M, σ) were previously recorded then set b = 1 (completeness condition).
• if (sid, BS.pk) was recorded but the tuple (sid,M, σ) was not previously recorded then set b = 0 (unforgeability

condition).
• send (Verify, sid,M, σ, b) to the party P .

Fig. 3. Ideal functionality FBS.

-Digital signature. Let Sig = (Sig.Gen, Sig.S, Sig.ver) is a digital signature scheme that is EUF-CMA
against PPT adversaries. We assume that Sig is deterministic. This can be assumed without loss of
generality by derandomizing the signing algorithm by using a secure PRF.

-Concurrent two-party computation. Let c2PC = (c2PC.PR, c2PC.PS, c2PC.ver) is the concurrent the
concurrent two-party computation in Figure 1.

We also assume that the function f(·, ·) used the concurrent 2PC in Figure 1 be a digital signature with
the signing key Sig.sk := xS and outputs the signature σ ← f(m, Sig.sk) on some message m.

Remark 1. We note that, in the blind signature application, one can use a two-round CCA-secure commitment
with reusable first message in the c2PC, by simply setting the first message of the CCA commitment as part
of the verification key.

We now give a more complete description of the protocol, along with the proof sketch of blindness and
unforgeability.

Construction.Our round-optimal concurrent blind signature scheme BS = (BS.Gen, BS.U, BS.S, BS.Uder, BS.ver)
is described in Figure 4.

Security Proof We provide the proofs of blindness and unforgeability of Theorem 3 as its proof mainly
relies on the security proof of the concurrent 2PC scheme in Theorem 1. For the sake of completeness, we
write out the proof in their entirety. The correctness of the scheme immediately follows from the correctness
of the digital signature Sig and the concurrent two-party computation c2PC.

Theorem 3. Assume two rounds concurrent 2PC protocol c2PC that is secure against malicious adversaries
in the plain model. Assume a digital signature scheme Sig that is EUF-CMA against PPT adversaries. Then
the concurrent blind signature BS is securely realizes FBS in the plain model.

For the proof we refer to Appendix C.
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Inputs: The party PS has BS.S’s input and the party PR has the input of BS.U

– Round 1:

PR Runs BS.U(BS.pk,m := xR) as follows:

• rR ←$Zp and (FHE.pk, FHE.sk)← FHE.Gen(1λ)
• cR ← FHE.Enc(FHE.pkR, xR; rR)
• cmR ← CCA.Com(xR, rR)
• (ctR, k)← CDS.R(cR, wR)
• (verR, zkstR)← ZK(1λ)

PR sends (cR, cmR, ctR, verR, FHE.pk)

– Round 2:

PS runs BS.S(BS.sk, BS.pk, T1) as follows:
• rS ←$Zp

• cS ← FHE.Eval(FHE.pk, cR, Sig.S(Sig.sk, ·); rS)
• cmS ← CCA.Com(xS, rS)
• ctS ← CDS.S(cR, cS, ctR)
• πzk ← ZK.P(ver, cmS, ctS, wi)
• PS sends cmS, ctS, πzk

– Signature derivation

PR runs BS.Uder(FHE.sk, zkstR, T2) as follows: if ZK.V(zkst, πzk) = 1 returns FHE.Dec(sk, CDS.D(k, ctS)).
– Signature verification

A party P runs BS.ver(BS.pk,m, f) and outputs Sig.ver(BS.pk,m, f).

Fig. 4. Generic construction of concurrent blind signature.

5 Quantum Computation

We conclude by observing that the simulator for our two-party computation protocol is straight-line, i.e., it
does not resort to rewinding the adversary to generate a simulated transcript, and black-box. It was shown
in [BCKM20] that any classical two-round 2PC with a straight-line black-box simulator can be generically
compiled into a secure 2PC for quantum circuits without adding any round. In [BCKM20] they proposed
an instantiation of the classical 2PC in the common reference string model. Plugging our protocol (with
a suitable instantiation of the underlying building blocks) into their result we obtain the following new
implication.

Theorem 4. Assuming the quantum sub-exponential hardness of the LWE problem and the quantum sub-
exponentially hard CCA-secure commitments, there exists a two-round concurrent 2PC for all quantum circuits
in the plain model.

While the (sub-exponential) quantum hardness of the LWE problem is standard, we remark that (sub-
exponential) quantum hardness of CCA-secure commitment requires us to make strong assumptions, such as
quantum secure adaptive one-way functions [PPV08], or post-quantum indistinguishability obfuscation, for
which a handful of candidates are known [GP20,WW20,BDGM20].

5.1 Quantum Concurrent 2PC

For completeness, we describe our construction of concurrently secure two-round 2PC with respect to quan-
tum functionalities. Our protocol is essentially identical to the three-message two-party protocol described
in [BCKM20], except that we substitute our (classical) 2PC protocol from Figure 1 and we only require one
party to know the output. Hence we drop the third round from the protocol described in [BCKM20].

The following section assumes familiarity with basic notions of quantum computation and quantum
garbled circuits [BY20]. For a comprehensive introduction, we refer the reader to [BCKM20]. We are going
to use the following schemes in our protocol:
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i Quantum-secure concurrent two-round two-party protocol for classical computation c2PC (let Tc2PC de-
note the runtime of the simulator).

ii Quantum garbling scheme for C+M gates (QGarble, QGEval, QGSim), secure against adversaries running
in time TQGC.

We require that poly(λ) ≪ Tc2PC ≪ TQGC. In our protocol, parties P0 and P1 each having inputs x0

and x1 want to compute a quantum circuit Q on their inputs and get outputs (out1, out2) in a way that
they do not reveal anything about their inputs and only one party gets the output of the computation. We
assume that Q is a Clifford+Measurment circuit and takes input (x0,x1,T

k,0k), where T denotes a magic
state T = 1/

√
2 · (|0〉 + eiπ/4 |1〉). At a high level the parties jointly encode their quantum inputs in two

rounds and in parallel, they run a c2PC that outputs classical description of a quantum garbled circuit to
the party who later will receive the output of the computation (lets assume P2), then P2 can get the output
by evaluating the garbled circuit. More precisely, the classical functionality that our c2PC computes is called
f[Q] and takes the classical description of Clifford unitaries C1,in, C1,out ∈ C from P1 and Clifford unitary
C2,in ∈ C from P2. Now imagine Q1 is a quantum circuit that outputs (C1,out(out1,0

λ), out2), it is clear to
see that P2 will be able to evaluate a garbling of Q1 on a garbling of their joint inputs and get the output
without learning P1’s output. The functionality f[Q] computes a garbling (E, Q̂1) of Q1 where E is an input
garbling Clifford. It computes

W = E · (I⊗ C−1
2,in ⊗ I) · C−1

1,in

and finally, it outputs (W, Q̂1) to P2 which later enables P2 to compute their own output in the following
way:

W (m1) = E · (I⊗ C−1
2,in ⊗ I) · C−1

1,in · C−1
1,in(C1,in(x1,m2,T

(k+1)λ,0k+λ) = E(x1,x2,T
(k+1)λ,0k+λ)

Where E(x1,x2,T
k,0k+λ) corresponds to the labels of the garbled circuit Q̂1, so P2 can evaluate this circuit

with the labels he and gets their output out2. There are some caveats with this protocol as it is described
above, and we will briefly mention them here and for more details we refer the reader to check [BCKM20].

This protocol is secure against a malicious P2 but not against a malicious P1 as they can put arbitrary
T and 0s in the second round. To make the protocol secure against a malicious P1 we use the ”cut and
choose” technique from [DGJ+20] and we refer to [BCKM20, §2,5] where they explained how this technique
would be applied on their two-party protocol to make it secure against malicious Alice. The cut-and-choose
technique is done by the Clifford unitary Udec-check-enc in the functionality of our c2PC that is used in the
computation phase of our protocol below.

Now we describe our protocol in more detail:

– Round 1 P2 does the following:
• Samples a random Clifford C2,in and uses it to encrypt and authenticate his input x2 as m2 ←

C2,in(x2,0
λ).

• Computes the first round message m2 of the c2PC using C2,in as their input.
• Sends (m2,m2) to P1.

– Round 2 P1 does the following:
• Samples random Cliffords C1,in, C1,out uses C1,in to encrypt and authenticate their own input x1

alongside with P2’s encoding m2.
• Samples k copies of T state and (k + 1)λ copies of 0 sate.

• Computes m1 ← C1,in(x1,m2,T
(k+1)λ,0k+λ).

• Computes the second round messagem1 for the classical c2PC computation using out := (C1,in, C1,out)
as their input.

• Sends (m1,m1) to P2.
– Computation Phase P2 does the following computation:
• Using m1 they can compute the output of the classical c2PC that is (Udec-check-enc, E0, Q̂1).

5

5 The full description of the Udec-check-enc unitary is specified in [BCKM20, §5].
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• Compute (minp, zcheck, trap2,Tinp, tcheck)← Udec-check-enc(m1)

• Measure each qubit of (zcheck, trap) in the standard basis and abort if any measurement is not zero.

• Measure each qubit of tcheck and the T-basis and abort if any measurment is not zero.

• Compute out2 ← QGEval(E0, Q̂1,minp).

5.2 Security Proof of Quantum Concurrent 2PC

In this section, we prove Lemma 5 that is similar to the proof of Theorem 5.1 in [BCKM20]. For the sake of
completeness, we write out the proof in its entirety.

Lemma 5. Assuming two-round concurrently secure 2PC protocol with black-box super-polynomial simula-
tion and sub-exponentially secure quantum garbled circuits, there exists a concurrent two-round 2PC for all
quantum circuits in the plain model.

Proof. For the sake of simplicity, we prove it in two cases when (i) a quantum PT adversary A corrupting
party P1 (ii) and A corrupting party P2. For the ideal functionality, we use the Classical functionality in
Figure 1 of [BCKM20].

Case 1: Consider any quantum PT adversary A corrupting party P1. The simulator Sim is defined as
follows. Whenever we say that the simulator aborts, we mean that it sends ⊥ to the ideal functionality and
the adversary. The simulator Sim(x1, auxA) works as follows:

– Compute m2 ← c2PC.Sim(1λ), samples a random Clifford C2,in, and compute m2 := C2,in(~0,0
λ). Send

(m2,m2) to A(x1, auxA).

– Receive (m1,m1) from A and compute out← c2PC.Sim(1λ,m1). Abort if out = ⊥, otherwise, parse out

as (C1,in, C1,out)

– Sample Udec-check-enc by using (C1,in, C2,in) and compute (x′
1,x

′
2,minp, trap2zcheck, trap1,Tinp,tcheck) ←

Udec-check-enc(m1). Measure each qubit of zcheck and trap2 in the standard basis and each qubit of tcheck
in the T-basis. If any measurement is non-zero, then abort.

We observe that the simulation strategy is successful against all malicious QPT adversaries. That is, the
view of the adversary along with the output of the honest parties is computationally indistinguishable in the
real and ideal worlds.

Case 2: Consider any quantum PT adversary A corrupting party P2. The simulator Sim(x2, auxA) is
defined as follows:

– Receive (m2,m2) from A and compute inp ← c2PC.Sim(1λ,m2). If inp = ⊥ the abort, else parse inp as

C2,in and compute (x′
2, trap2) := C†

2,in(m2).

– Query ideal functionality and compute simulated round 2 message as follows:

• Compute m̂inp by running QGSim where where m̂inp is the simulated quantum garbled.

• Sample a random Udec-check-enc and compute m1 :=← U†
dec-check-enc(m̂inp,~0, trap2,T).

• Compute m1 ← c2PC.Sim(1λ,Udec-check-enc).

• Send (m1,m1) to A.

Intuitively, we now show that the simulation strategy is successful against all malicious QPT adversaries.
That is, the view of the adversary A(x2, auxA) along with the output of the honest parties is computationally
indistinguishable in the real and ideal worlds. We show this via a series of computationally indistinguishable
games where the first game Game0 corresponds to the real world and the last game corresponds to the ideal
world.
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1. Game1: In this game, Sim runs c2PC.Sim and simulates the c2PC scheme, using c2PC.Sim to extract A’s
input C2,in, and c2PC.Sim to sample party P1 message m1. Use C2,in and freshly sampled (C1,in to
sample the output of the classical functionality that is given to c2PC.Sim.
The (computational) indistinguishability of Game0 and Game1 comes directly from the security against
corrupted c2PC scheme.

2. Game2: Now, we make a (perfectly indistinguishable) switch in howm1 is computed and how Udec-check-enc

(part of the classical 2c2PC output) is sampled. Define (x′
2, trap2) := C†

2,in(m2), where C2,in was extracted

from m2. As here exists a Clifford unitary U such that Udec-check-enc = UC†
1,in , where C1,in was randomly

sampled. Thus, since the Clifford matrices form a group, an equivalent sampling procedure would be to
sample Udec-check-enc and define m1 := U†

dec-check-enc(E0,~0, trap2,T). This is how Game2 is defined. Notice

that, in Game1, we have that, Udec-check-enc(m1) := (E0,~0, trap2,T).
We observe that Game1 and Game2 are equivalent.

3. Game3: In this game, we simulate the quantum garbled circuit. In particular, compute (ŷ1,y2) ←
Qdist[Cout](x1,x

′
2,~0,T) and the compute m̂inp by running QGSim and the substitute m̂inp for E0 in

the computation of m1, so that m1 := U†
dec-check-enc(E0,~0, trap2,T).

The (computational) indistinguishability of Game2 and Game3 comes directly from the sub-exponential
security of the QGC.

4. Game4: We notice that Qdist may be computed in two stages, where the first outputs (y1,y2, ~0,Cout) and
the second outputs (Cout(y1,~0),y2). In this game, we compute only the first stage and set y1 aside and
re-define the final output to be (ŷ1,y2) := (Cout(~0),y2).
The (statistical) indistinguishability of Game3 and Game4 follows directly from the (perfect) hiding and
(statistical) authentication of the Clifford code.

5. Game5: Finally, instead of directly computing y2 from the first stage of Qdist, query the ideal functionality
with x′

2 and receive back y2. Now, during party P1’s output reconstruction step, if the check passes, send
”accept” to the ideal functionality, and otherwise send ”abort” to the ideal functionality. This game is
now same as the ideal world.
We observe that Game1 and Game2 are equivalent .
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A More Preliminaries

A.1 Universal Composability

The Universal Composability (UC) framework was introduced by Canetti [Can01]. In the UC framework,
one analyzes the security of the protocol under the real-world and ideal-world paradigm. More precisely,
in this setting, the real-world execution of a protocol is compared with an ideal-world interaction with the
primitive that it implements. Then a composition theorem in this model states that the security of the
UC-secure protocols remains if it is arbitrarily composed with other UC-secure protocols or the protocol
itself. Additionally, the UC-secure property guarantees security in practical applications where individual
instances of protocols are run in parallel, such as the internet. The entities in the UC framework in both
ideal-word and real-word executions are modeled as PPT interactive Turing machines that send and receive
messages through respectively their output and input tapes.

In the ideal world execution, dummy parties (possibly controlled by an ideal-world adversary Sim, also
called simulator) communicate directly with the ideal functionality F . The ideal functionality can be viewed
as a trusted party that creates the primitives to implement the protocol. Correspondingly, in the real-world
execution, parties (possibly corrupted by a real-world adversary A ) communicate with each other as a
protocol Π that realizes the ideal functionality. Both the ideal and real executions are controlled by the
environment Z , an entity that sends inputs and receives the outputs of A , the individual parties, and Sim.
Finally, after seeing the ideal or real protocol execution, Z returns a bit, which is considered as the output
of the execution. Then the rationale behind this framework lies in showing that the environment Z can not
efficiently distinguish between the ideal and real executions, therefore meaning that the real-world protocol
is as secure as the ideal-world (the ideal functionality).

Besides, the two aforementioned models (real-world and ideal-world) of computation, the UC framework
considers the hybrid-world, where the executions are similar to the real-world but with the additional as-
sumption that the parties are allowed to access to an auxiliary ideal functionality F . More precisely, in
this case, instead of honest parties interacting directly with the ideal functionality, the adversary passes
all the messages from and to the ideal functionality. Also, the transmission channels are considered to be
ideally authenticated, meaning that the adversary is not able to modify the messages but only able to read
them. Unlike information transferred between parties, which can be read by the adversary, the information
transferred between parties and the ideal functionality is split into a public and private header. The private
header carries some information like as the private inputs of parties and it cannot be read by the adversary.
The public header carries only some information that can be viewed publicly such as receiver, sender, type
of a message, and session identifiers. Let denote the output of the environment Z that shows the execution
of a protocol Π in a real-world model and a hybrid model, respectively as IDEALFSim and HYBRIDF

Π,A. Then
the UC security is formally defined as:

Definition 7. A protocol Π UC-realizes an ideal functionality F in the hybrid model if, for every PPT
adversary A , there exists a simulator Sim such that for all environments Z, IDEALFSim ≈ HYBRIDF

Π,A. The
protocol Π is statistically secure if the above definition holds for all unbounded Z.

UC Security with super-polynomial simulation We next recall the relaxed notion of UC security by
giving the simulator access to super-poly computational resources [GGJS12].

Definition 8. A protocol Π UC-realizes an ideal functionality F in the hybrid model if, for every a super-
polynomial time adversary A, there exists a simulator Sim such that for all environments Z, IDEALFSim ≈
HYBRIDF

Π,A. The protocol Π is statistically secure if the above definition holds for all unbounded Z

The universal composition theorem generalizes naturally to the case of UC-SPS, the details of which we
refer [GGJS12].

Ideal functionality of two-party computation. As we mentioned before, the security of a protocol is
analyzed by comparing what an adversary can do in the protocol to what it can do in an ideal scenario that
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is secure by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Here, we briefly review the ideal functionality of
two-party computation and for more details refer to [LP07,GGJS12]. An ideal execution proceeds as follows:
Inputs : each party obtains an input x (x = x1 for P1, and x = x1 for P2).
Send inputs to trusted party : an honest party always sends x to the trusted party. A malicious party may,
depending on x, either abort or send some x′ ∈ {0, 1}|x|.
Trusted party answers first party : in case it has obtained an input pair (x1, x2), the trusted party first replies
to the first party with f(x1, x2). Otherwise (i.e., in case it receives only one valid input), the trusted party
replies to both parties with a special symbol ⊥ to the trusted party.
Trusted party answers second party : in case the first party is malicious it may, depending on its input and
the trusted party’s answer, decide to stop the trusted party by sending it ⊥ after receiving its output. In
this case the trusted party sends ⊥ to the second party. Otherwise (i.e., if not stopped), the trusted party
sends f(x1, x2) to the second party.
Outputs : an honest party always outputs the message it has obtained from the trusted party. A malicious
party may output an arbitrary function of its initial input and the message obtained from the trusted party.

Informally, we say that a protocol is secure if any adversary interacting in the real protocol (where
no trusted third party exists) can do no more attack than if it was involved in the above-described ideal
computation.

A.2 Blind Signatures

Here, we give a definition of blind signatures. For simplicity, we give a definition focusing on round-optimal
blind signatures.

Definition 9. A round-optimal blind signature scheme with a message spaceM consists of PPT algorithms
Π.BS = (BS.Gen, BS.U, BS.S, BS.Uder, BS.ver).

– BS.Gen(1λ): The key generation algorithm takes the security parameter 1λ as input, and outputs a public
key BS.pk and a secret key BS.pk).

– BS.U(BS.pk,m): The user’s first message generation algorithm takes as input a public key BS.pk, a secret
key FHE.sk and a message m, and outputs a first message T1 and a state stU.

– BS.S(BS.sk, τ): The signer’s second message generation algorithm takes as input a signing key BS.sk, the
first message τ , and outputs a signature ρ.

– BS.Uder(ρ, stU): The user’s signature derivation algorithm takes as input the state stU, a signature ρ and
outputs a signature σ.

– BS.ver(BS.pk,m, σ): The verification algorithm takes as input a public key BS.pk, a message m, a signature
σ, and outputs 1 to indicate acceptance or 0 to indicate rejection.

A blind signature must satisfy the following properties:

– Correctness. For any λ ∈ N and m ∈M,

Pr







(BS.sk, BS.pk)← BS.Gen(1λ); τ ← BS.U(BS.pk,m);

ρ← BS.S(BS.sk, τ)σ ← BS.Uder(ρ, stU) :

1← BS.ver(BS.pk,m, σ)






= 0 .

– Unforgeability. For any q = poly(λ) and PPT adversary A that makes at most q queries, we have

Pr

[

(BS.sk, BS.pk)← BS.Gen(1λ); {(m,σ)}i∈[q+1] ← A(BS.pk) :
1← BS.ver(BS.pk,m, σ) ∧ {mi}i∈[q+1] is pairwise distinct.

]

≈ 0 ,

where we say that {mi}i∈[q+1] is pairwise distinct if we have mi 6= mj for all i 6= j.
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– Blindness. For defining blindness, we consider the following game between an adversary A and a chal-
lenger C.
• Setup. The adversary A is given as input the security parameter λ, and sends a public key BS.pk and
a pair of messages (m0,m1) to C.

• First message. The challenger C generates (τb, st0Ub
)

getsBS.U(BS.pk,mb) for each b ∈ {0, 1}, picks coin←$ {0, 1}, and gives (τcoin, τ1−coin) to A.
• Second message. The adversary A sends (ρcoin, ρ1−coin) to C.
• Signature derivation. The challenger generates σb ← BS.Uder(ρb, stUb

) for each b ∈ {0, 1}. C gives
(σ0, σ1) to A.

• Guess. A outputs its guess coin′. We say that A wins if coin = coin′. We say that a blind signature
scheme satisfies blindness if for any PPT adversary A, we have Pr[A wins] ≈ 0.

B Security Proof of Concurrently Secure PAKE

(i: Completeness). This is straightforward from the construction and follows the directly from the correct-
ness of the concurrent 2PC in Figure 1.

(ii: Simulatability). It follows directly from Theorem 1 (two rounds concurrent 2PC protocol for any
functionality f that is secure against malicious adversaries in the plain model).

C Security Proof of Concurrently Secure Blind Signature

We build the ideal-model adversary S by black-box simulation of A, relaying all communication between the
environment Z and the (simulated) adversary A, and acting on behalf of the honest parties in this simulation.
Algorithm S also corrupts a dummy party in the ideal model whenever A asks to corrupt the corresponding
party in the simulation. By assumption this is only done before the execution starts. Intuitively, we construct
an ideal-world adversary Sim that runs a black- box simulation of the real-world adversary A by simulating
the protocol execution and relaying messages between A and the environment Z. We have to show that for
each adversary A attacking the real-world protocol there exist an ideal-model adversary Sim in the ideal
world with dummy parties and functionality FBS such that no environment Z can distinguish whether it is
facing an execution in the real world with A or one in the ideal world with Sim. Sim proceeds as follows in
experiment IDEAL:

– Suppose that the adversary lets a corrupt signer in the black-box simulation initiate a protocol run with
the honest user by sending values T2 := (cS, cmS, ctS, πzk) (the message in the second round of concurrent
blind signature BS scheme). Then the simulator Sim recover (Sig.sk, rS) from T2 (and aborts if it fails) and
submits (Gen, sid, S) on behalf of the signer to the ideal functionality. It immediately receives a request

(Gen, sid, S) from FBS. To answer, Sim computes the signature keys ~k := (Sig.pk, Sig.sk) ← Sig.Gen(1λ)

of the unforgeable signature scheme Sign and sends (Key, sid, S,~k) for back to the functionality.

– If an honest signer requests signature keys (Gen, sid, S) in the ideal model and waits to receive (Key, sid, S,~k),
generated by the functionality, then the ideal-model adversary Sim generates T2 = (cS, cmS, ctS, πzk)
where cR and cmR are FHE.Eval and CCA.Com of 0 respectively, πzk is generated by running the Simzk, and
lets the signer in the black-box simulation send these values T2.

– Suppose that the adversary lets a corrupt user in the black-box simulation initiate a protocol run with the
honest signer by sending values T1 = (cR, cmR, ctR, ver, pk) (the message in the first round of concurrent
blind signature BS scheme). Then the simulator Sim recover (m, rR) from T1 (and aborts if it fails) and
submits (Sign, sid, S,U,m) on behalf of the user to the ideal functionality. It immediately receives a request
(signature, sid, S,U,m) from FBS. To answer, Sim computes the signature σ := f← Sig.S(Sig.sk,m) under
the unforgeable signature scheme Sign and sends (signature, sid, S,U, σ) for back to the functionality.
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– If an honest user requests a signature (Sign, sid, S,U,m) in the ideal model and waits to receive (signature, sid, S,U, σ),
generated by the functionality, then the ideal-model adversary Sim generates T1 = (cR, cmR, ctR, ver, pk)
where cR and cmR are FHE.Enc and CCA.Com of 0 respectively and lets the user in the black-box simulation
send these values T1.

This gives a full description of the ideal-model simulator. We claim that the differences are undetectable
for the environment Z. This is proven through a sequence of games transforming an execution in the ideal-
model scenario into one which is equal to the one of the actual protocol.

Game1: In this game, consider a simulator SimGame that plays the role of the honest parties. SimGame runs in
polynomial time.

Game2: In this game, the simulator SimGame also runs the ”Input Extraction” phase and the ”Abort” phase
as in Figure 2. SimGame runs in time TBrk

CCA.Com.

Lemma 6. Let c2PC is a concurrent 2PC (assuming soundness of the SPSS.ZK argument system, bind-
ing of the non-interactive CCA-commitment scheme and correctness of the FHE scheme), then Game1 is
computationally indistinguishable from Game2.

Proof. The only difference between the two games is that in Game2, SimGame may output ”Abort” which
doesn’t happen in Game1. More specifically, in Game2, ”Abort” occurs if the event E (see Game2 in the proof
of Theorem 1) is true. The event E occurs if for any malicious party, it gives valid ZK proofs in round 2
but its protocol statement is not consistent with the values it committed to. Therefore, in order to prove
the indistinguishability of the two games, we note that based on the binding property of the commitment
scheme, the correctness of the FHE scheme and the soundness property of the SP.SSZK argument system,
Pr[Event E is true in Game2] = negl(λ) (see Sub-Lemma 1 of Theorem 1).

Game3: This game is identical to the previous game except that in Round 2, SimGame now computes simulated
SPSS.ZK proofs as done in Figure 2. SimGame runs in time TBrk

CCA.Com.

Lemma 7. Assuming the zero knowledge property of the SPSS.ZK argument system of c2PC scheme, then
Game2 is computationally indistinguishable from Game3.

Proof. The only difference between the two games is that in Game2, SimGame computes the proofs in Round
2 honestly, by running the algorithm ZK of the SPSS.ZK argument system, whereas in Game3, a simulated
proof is used. If the adversary A can distinguish between the two games, we can use A to design an algorithm
Azk that breaks the zero knowledge property of the argument system. The proof is similar to the proof of
Lemma 2 in Theorem 1.

Game4: This is identical to the previous game except that SimGame now computes both cmR and ĉmS as CCA
commitment of 0. SimGame runs in time TBrk

CCA.Com.

Lemma 8. Let CCA.Com of c2PC scheme is a CCA-secure commitment scheme, then Game3 is computationally
indistinguishable from Game4.

The proof is a straightforward reduction to computational hiding of the CCA commitment (see proof of
Lemma 3 in Theorem 1).

Game5: This game is identical to the previous game except that in Round 2, SimGame now computes the
messages of the protocol using the simulator algorithms FHE.Sim as done by Sim in the ideal world. Sim also
instructs the ideal functionality to deliver outputs to the honest parties as done by Sim. This game is now
same as the ideal world.

Lemma 9. Assuming the security of FHE scheme of c2PC scheme, Game4 is computationally indistinguishable
from Game5.
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Proof. The only difference between the two games is that in Game4, SimGame computes the messages of
protocol in Figure 4 correctly using the honest parties inputs, whereas in Game5 the corresponding messages
are computed by running the simulator FHE.Sim for FHE. The proof is similar to the proof of Lemma 4 in
Theorem 1).

All the steps in the final game now are exactly as in an attack on the real protocol with adversary
A. Therefore, the environment’s output in the ideal-model simulation and the real-world execution are
indistinguishable.
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