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Abstract. At CANS’20, El Housni and Guillevic introduced a new
2-chain of pairing-friendly elliptic curves for recursive zero-knowledge
Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) made
of the former BLS12-377 curve (a Barreto–Lynn–Scott curve over a 377-
bit prime field) and the new BW6-761 curve (a Brezing–Weng curve of
embedding degree 6 over a 761-bit prime field). First we generalise the
curve construction, the pairing formulas (e : G1 × G2 → GT ) and the
group operations to any BW6 curve defined on top of any BLS12 curve,
forming a family of 2-chain pairing-friendly curves.
Second, we investigate other possible 2-chain families made on top of the
BLS12 and BLS24 curves. We compare BW6 to Cocks–Pinch curves of
higher embedding degrees 8 and 12 (CP8, CP12) at the 128-bit security
level. We explicit an optimal ate and optimal Tate pairing on our new
CP curves. We show that both for BLS12 and BLS24, the BW6 construc-
tion always gives the fastest pairing and curve arithmetic compared to
Cocks-Pinch curves. Finally, we suggest a short list of curves suitable for
Groth16 and KZG-based universal SNARKs and present an optimized
implementation of these curves. Based on Groth16 and PlonK (a KZG-
based SNARK) implementations, we obtain that the BLS12-377/BW6-761
pair is optimized for the former while the BLS24-315/BW6-672 pair is
optimized for the latter.

1 Introduction

A SNARK [39,44,25,10] is a cryptographic primitive that enables a prover to
prove to a verifier the knowledge of a satisfying witness to a non-deterministic
(NP) statement by producing a proof π such that the size of π and the cost to
verify it are both sub-linear in the size of the witness. If π does not reveal anything
about the witness we refer to the cryptographic primitive as a zero-knowledge
(zk) SNARK. Today, the most efficient SNARKs require pairing-friendly elliptic
curves and trusted setup assumptions as in Groth’16 [28] but in return admit



small, constant-size proofs with a constant-time verification. However, the trusted
setup is specific to the NP statement to prove. Hence, Groth’16 is not suitable in
applications that need to prove many different statements. Fortunately, SNARKs
with a universal or transparent setup are an active area of research and recent
polynomial-commitment-based constructions allow very efficient constructions.
The most efficient universal constructions such as PlonK [22] and Marlin [14] are
based on the KZG polynomial commitment [38], which also requires a pairing-
friendly elliptic curve.

A pairing-friendly curve E has a bilinear map e : G1×G2 → GT , where G1,G2

are distinct prime-order r subgroups of E, and GT ⊂ Fqk of the same order r.
On the one hand, one requires two different kind of curves: a curve tailored for
Groth’16 should be optimized for operations in G1, G2 and for pairings while a
curve tailored for KZG-based SNARKs should only focus on G1 and pairings. On
the other hand, both constructions make SNARKs appealing for an incrementally
verifiable computation (IVC) [50] in which proofs not only attest to the correct
execution of a computation but also, by exploiting succinctness, to the validity of
a previous proof. The canonical construction of IVC, or proof-carrying data [11]
(PCD) as a generalization, is achieved via recursive proof composition which was
demonstrated to be practical for pairing-based SNARKs in [8]. In such a setting,
a prover encodes the statement in the curve’s scalar field Fr (the Gi are of order
r) and a verifier checks the proof π in an extension Fqk of the curve base field. To
allow recursive proof composition, one needs to encode the verification algorithm
(which lies in Fqk) as a statement in Fr. However, this is highly impractical
as r 6= q and simulating one field’s operations in the other incurs a significant
overhead. The authors of [8] sidestep this issue by constructing a 2-cycle of
pairing-friendly elliptic curves such that the base field of either curve is the scalar
field of the other. Unfortunately, only the MNT4/MNT6 [20, Sec. 5] family of
pairing-friendly curves is known to satisfy this property and due to their low
embedding degrees, secure curves in this family must be constructed over very
large (1024-bit) fields, downgrading the performances. To relax this constraint,
authors of [12] constructed a 2-chain of pairing-friendly elliptic curves such that
only the base field of one curve is equal to the scalar field of the other, allowing
one-layer recursive proof composition. Namely, the inner curve is a BLS12-377
and the outer curve is a CP6-782.

Previous work. In [35], El Housni and Guillevic introduced a 2-chain of curves
made of the previous BLS12-377 and a new BW6-761 curve, a Brezing-Weng
curve of embedding degree 6 defined over a 761-bit prime field, which they
demonstrated to be orders of magnitude faster than CP6-782.

Contributions. First we are interested in families of 2-chains in which the BW6-
761 curve would fall. We present a family of BW6 curves from any BLS12 curve
and derive generic formulas, in terms of the BLS12 curve seed u, and integer
parameters ht, hy. We extend this work to a 2-chain family of BW6 curves from
BLS24 curves. To achieve higher levels of security in the target finite field of the
outer curves, we compare a larger field characteristic thanks to larger parameters
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ht, hy, to the larger embedding degrees 8 and 12 obtained with Cocks-Pinch curves.
Finally, we argue that the BLS12 and BLS24 based families are respectively
tailored for Groth’16 and KZG-based SNARKs recursive proof composition, and
we present a short list of curves with an optimized implementation along with
benchmarks.

Organization of the paper. Section 2 provides the preliminaries and definitions
of SNARK-friendly elliptic curves. In section 3, we argue on the choice of BLS
family as the inner curve and present faster group operations. The core of the
paper are sections 4 and 5. Section 4 exposes the constructions of the outer
curves, with optimized pairings and group operations. Finally, section 5 reports
on the implementation of the most promising constructions identified in Section 4
and compares the performances in relevant practical settings.

2 Preliminaries

We present a short background on pairing-friendly elliptic curves and propose
definitions of a SNARK-friendly chain of curves.

2.1 Background on bilinear pairings

We briefly recall elementary definitions on pairings and present the computation
of two pairings used in practice, the modified Tate and ate pairings. All elliptic
curves discussed below are ordinary (i.e. non-supersingular).

Let E be an elliptic curve defined over a field Fq, where q is a prime power.
Let πq be the Frobenius endomorphism: (x, y) 7→ (xq, yq). Its minimal polynomial
is X2 − tX + q where t is called the trace. Let r be a prime divisor of the curve
order #E(Fq) = q + 1 − t. The r-torsion subgroup of E is denoted E[r] =
{P ∈ E(Fq), [r]P = O} and has two subgroups of order r (eigenspaces of πq in
E[r]) that are useful for pairing applications. We define the two groups G1 =
E[r]∩ker(πq− [1]) with a generator denoted by G1, and G2 = E[r]∩ker(πq− [q])
with a generator G2. The group G2 is defined over Fqk , where the embedding
degree k is the smallest integer k ∈ N∗ such that r | qk − 1.

We recall the Tate and ate pairing definitions, based on the same two steps:
evaluating a function fs,Q at a point P , the Miller loop step, and then raising
it to the power (qk − 1)/r, the final exponentiation step. The function fs,Q has
divisor div(fs,Q) = s(Q)− ([s]Q)− (s− 1)(O) and satisfies, for integers i and j,

fi+j,Q = fi,Qfj,Q
`[i]Q,[j]Q

v[i+j]Q
,

where `[i]Q,[j]Q and v[i+j]Q are the two lines needed to compute [i+ j]Q from [i]Q
and [j]Q (` intersecting the two points and v the vertical). We compute fs,Q(P )
with the Miller loop presented in Algorithm 1.
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Algorithm 1: MillerLoop(s, P,Q)
Output: m = fs,Q(P )

1 m← 1; S ← Q
2 for b from the second most significant bit of s to the least do
3 `← `S,S(P ); S ← [2]S; v ← v[2]S(P ) // Doubling Step

4 m← m2 · `/v
5 if b = 1 then
6 `← `S,Q(P ); S ← S +Q; v ← vS+Q(P ) // Addition Step

7 m← m · `/v
8 return m

The Tate and ate pairings are defined by

Tate(P,Q) = fr,P (Q)(q
k−1)/r

ate(Q,P ) = ft−1,Q(P )(q
k−1)/r

where P ∈ G1 ⊂ E[r](Fq) and Q ∈ G2 ⊂ E[r](Fqk). The final powering z 7→
z(q

k−1)/r ensures that the values Tate(P,Q) and ate(Q,P ) are in the target
group GT of r-th roots of unity in Fqk . It is decomposed into two steps: the easy

part z(q
k−1)/Φk(q) with one inversion and some Frobenius powers, and the hard

part zΦk(q)/r, where Φk is the k-th cyclotomic polynomial. In this paper, when
abstraction is needed, we denote a pairing as follows: e : G1 ×G2 → GT .

It is also important to recall some results with respect to the complex mul-
tiplication (CM) discriminant −D. When D = 3 (resp. D = 4), the curve has
CM by Q(

√
−3) (resp. Q(

√
−1)) so that twists of degrees 3 and 6 exist (resp. 4).

If moreover the twist degree d divides k, then G2 is isomorphic to E′[r](Fqk/d)
for a d-twist E′. Otherwise, in the general case, E admits a single twist (up to
isomorphism) and it is of degree 2.

2.2 zk-SNARKs

In this paper, we focus on preprocessing zkSNARKs for NP languages for which
we give a basic explanation. Given a public NP program F , public inputs a and b
and private input w, such that the program F satisfies the relation F (a,w) := b,
a zk-SNARK consists in proving this relation succinctly without revealing the
private input w. Given a security parameter λ, it consists of the Setup, Prove
and Verify algorithms:

(σp, σv)← Setup(F, τ, 1λ)

π ← Prove(a, b, w, σp)

0/1← Verify(a, b, π, σv)

where τ is the setup trapdoor, σp the proving key which encodes the program F
for the prover, σv the verification key that encodes F for the verifier and π the
proof.
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2.3 SNARK-friendly chains

Definition 1. An m-chain of elliptic curves is a list of distinct curves

E1/Fq1 , . . . , Em/Fqm

where q1, . . . , qm are large primes and

q1 = r2 | #E2(Fq2), . . . , qi−1 = ri | #Ei(Fqi), . . . , qm−1 = rm | #Em(Fqm) .
(1)

Definition 2. An m-chain of SNARK-friendly elliptic curves is an m-chain
where each of the {Ei/Fqi}1≤i≤m curves

– is pairing-friendly;
– has a highly 2-adic subgroup, i.e. ri − 1 ≡ 0 mod 2L for a large L ≥ 1.

In particular, a SNARK-friendly 2-chain is a pair of two pairing-friendly elliptic
curves E1/Fq1 and E2/Fq2 where q1 = r2 | #E2(Fq2) and r2 − 1 ≡ r1 − 1 ≡ 0
mod 2L. We call E1 the inner curve and E2 the outer curve.

In this paper, we aim at constructing families of SNARK-friendly 2-chains
that are suitable respectively for Groth’16 and KZG-based universal SNARKs.

3 Inner curves: Barreto–Lynn–Scott (BLS) curves

We investigate the BLS family as an option for a SNARK-friendly inner curve.
We first present our results for a better arithmetic on all BLS curves and then
argue on the choice of BLS12 and BLS24 curves for our applications.

3.1 Parameters with a polynomial form

BLS curves were introduced in [7]. This is a family of pairing-friendly elliptic
curves of embedding degree k multiple of 3 but not multiple of 18. Well-known
families are given with k = 2i3j for i, j ≥ 0: k = 9, 12, 24, 27, 48 (Table 1). The
curves have j-invariant 0, discriminant −D = −3. Each family has polynomial
parameters q(x), r(x), t(x) for characteristic, subgroup order of embedding degree
k, and trace. The subgroup order is r(x) = Φk(x) the k-th cyclotomic polynomial.
The trace has a simple expression t(x) = x+1, so that the ate pairing whose Miller
loop computes the function fx,Q(P ) is optimal in terms of Vercauteren’s paper [51].
The curve order is q(x)+1− t(x) and the CM equation is 4q(x) = t(x)2 +Dy(x)2.
We state useful lemmas whose proofs are given in Appendix A.1. The explicit
polynomials for BLS curves with k ≤ 99 are given in Tables 16 and 17.

Lemma 1. The cofactor c(x) of BLS curves such that q(x) + 1− t(x) = c(x)r(x)
has the form
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Table 1. Parameters of BLS curves for k = 2i3j , i ≥ 0, j ≥ 1, 18 - k.

k 2i3j , i, j ≥ 1 (6, 12, 24, 48, 96, . . .) 3j , j ≥ 1 (3, 9, 27, 81, . . .)

t(x) x+ 1

y(x) (x− 1)(2xk/6 − 1)/3 (x− 1)(2xk/3 + 1)/3

r(x) xk/3 − xk/6 + 1 x2k/3 + xk/3 + 1

q(x) r(x)(x− 1)2/3 + x r(x)/3(x− 1)2 + x

c2(x) 1 1

ρ 1 + 6/k 1 + 3/k

1. (x− 1)2/3 · c2(x) for odd k, where c2(x) = (x2k/3 + xk/3 + 1)/Φk(x) ∈ Q[x];
2. (x− 1)2/3 · c2(x) for even k, where c2(x) = (xk/3 − xk/6 + 1)/Φk(x) ∈ Q[x].

Lemma 2. For all BLS curves, the polynomial form of the characteristic q(x)
is such that (x− 1)/3 divides q(x)− 1.

Lemma 3. The parameter y(x) of BLS curves has the form

1. (x− 1)(2xk/3 + 1)/3 for odd k;
2. (x− 1)(2xk/6 − 1)/3 for even k.

Lemma 4. Any BLS curve has endomorphism ring Z[ω] where ω = (1+
√
−3)/2.

3.2 Faster co-factor multiplication

Because G1 is a proper subgroup of E(Fq), one multiplies a point P ∈ E(Fq) by
the cofactor c(x) = (x− 1)2/3 to map it to G1, a.k.a. cofactor clearing. Wahby
and Boneh noted in [52], that it is sufficient to multiply by x − 1 to clear the
cofactor of G1 for the BLS12-381 curve (also in [46, §2]). Here we generalize
and prove that it is true for all BLS curves. Let EndFq(E) denotes the ring of
Fq-endomorphisms of E, let O denotes a complex quadratic order of the ring of
integers of a complex quadratic number field, and O(∆) denotes the complex
quadratic order of discriminant ∆.

Theorem 1 ([45, Proposition 3.7]). Let E be an elliptic curve over Fq and
n ∈ Z≥1 with q - n. Let πq denotes the Frobenius endomorphism of E. Then,

E[n] ⊂ E(Fq) ⇐⇒


n2 | #E(Fq),
n | q − 1 and

πq ∈ Z or O
(
t2−4q
n2

)
⊂ EndFq (E).

Proof. Proposition 3.7. in [45].

Corollary 1. Let E(Fq(x)) be a BLS curve of order c(x)r(x) where r(x) is the
subgroup prime order and c(x) = (x− 1)2/3 · c2(x) the cofactor. It is sufficient to
multiply by (x− 1)c2(x) to clear the cofactor.
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Proof. Let n(x) = (x− 1)/3, we show that the full n(x)-torsion is in E(Fq), that
is there is no point of order n2(x) in E(Fq) but there are n2(x) points of order
n(x). Thus it is sufficient to multiply by 3n(x) to clear the (x− 1)2/3 cofactor.
According to Lemmas 1, 2, 3, and 4, we have n(x)2 | #E(Fq), n(x) | q(x) − 1.
Now (t2(x)− 4q(x))/n2(x) = −3y2(x)/n2(x) = −3(2xk/6 − 1)2 for even k, and

−3(2xk/3 + 1)2 for odd k. Hence O
( t(x)2−4q(x)

n2(x)

)
⊂ EndFq(E). Thus, Theorem 1

applies and E[n(x)] ⊂ E(Fq).

Theorem 1 applied to BLS curves tells us that the curve endomorphism
φ : E → E, (x, y) 7→ (ωx, y) with ω ∈ Fq a primitive third root of unity (ω2 +
ω + 1 = 0 mod q) acts has a distortion map on E[n] ' Z/nZ ⊕ Z/nZ. With a
Weil pairing eW , one can embed a discrete logarithm on E(Fq)[n] into F∗q , where
subexponential DL computation takes place, although the much larger size of q
compared to n seems prohibitive. For G,P ∈ E[n] in the same subgroup of order
n, logG(P ) = logeW (G,φ(G)) eW (P, φ(G)). See A.2 for more details.

3.3 Subgroup membership testing: GT

Testing membership in GT for candidate elements z of Fqk is done in two steps.
First, one checks that z belongs to the cyclotomic subgroup of Fqk (subgroup of

order Φk(q)), that is zΦk(q) = 1. To avoid inversions, one multiplies the positive
terms in qi on one hand, and the negative terms one the other hand, and check
for equality: it costs only Frobenius powers. With k = 6 and Φ6(q) = q2− q+ 1, it

means checking that zq
2+1 = zq. Second, it is possible to use a generalisation of

Scott’s technique first developed for BN curves, where r = q + 1− t [48, §8.3]. In
the BN case, the computation of zr is replaced by a Frobenius power zq and an
exponentiation zt−1, and the test zq = zt−1. BLS curves are not of prime order,
and we use Proposition 1. This trick already appears in [4, §5], but without a
proof.

Proposition 1. Let E be a pairing-friendly curve defined over Fq, of embedding
degree k w.r.t. the subgroup order r, and order #E(Fq) = r · c = q + 1− t. For
z ∈ F∗qk , we have this alternative GT membership testing:

zΦk(q) = 1 and zq = zt−1 and gcd(q + 1− t, Φk(q)) = r =⇒ zr = 1 .

Proof. If zΦk(q) = 1 and zq+1−t = 1, then the order of z divides the gcd of the
exponents gcd(Φk(q), q+ 1− t). If this gcd is exactly r, then z is in the subgroup
of order r, that is zr = 1.

BLS curves have c · r = q + 1− t = q − u hence

q ≡ u mod r . (2)

As soon as gcd(q + 1− t, Φk(q)) = r, then the following two tests are enough:

1. test if zΦk(q) = 1 with Frobenius maps;
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2. test if zq = zu, using cyclotomic squarings [26] for a faster exponentiation.

Proposition 1 came out of email discussions between cryptographers, and
appears in Scott’s preprint [46, §5].

Remark 1. For BLS-curves of embedding degree k a power of 3 (k = 3j), the
cyclotomic polynomial Φk(x) does not generate primes, actually one has r(x) =
Φk(x)/3. Moreover a BLS curve has points of order 3, hence gcd(q+1−t, Φk(q)) =
3r for all k = 3j .

Remark 2. For SNARK-friendly 2-chains, zu ∈ GT can be implemented efficiently
using a mix of Granger-Scott’s [26] and Karabina’s [37] cyclotomic squares. Since
2L | u− 1, there are L− 1 consecutive squarings in the exponentiation. One can
use Karabina’s method for this series and then switch to Granger-Scott’s method
for the remaining part. Hence, trading off one inversion in Fqk/d for 2(L − 1)
multiplications in Fqk/d . Particularly, for BLS12 and BLS24, this trick yields
significant speedups as long as an Fq-inverse costs, respectively, less than (6L− 4)
and (18L− 16) Fq-multiplications, which is the case of curves we are interested
in.

3.4 Choosing a curve coefficient b = 1

Proposition 2. Half of BLS curves are of the form Y 2 = X3 + 1, these are the
curves with odd seed x.

Proof. Let E : Y 2 = X3 + b be a BLS curve over Fq and g neither a square
nor a cube in Fq. One choice of b ∈ {1, g, g2, g3, g4, g5} gives a curve with the
correct order (i.e. r | #E(Fq)) [49, §X.5]. For all BLS curves, x− 1 | #E(Fq) (cf
Lemma 1, Tables 16, 17) and 3 | x− 1 (which leads to all involved parameters
being integers). If, additionally, 2 | x− 1 then 2, 3 | #E(Fq) and the curve has
points of order 2 and 3. A 2-torsion point is (x0, 0) with x0 a root of x3 + b, hence
b = (−x0)3 is a cube. The two 3-torsion points are (0,±

√
b) hence b is a square.

This implies that b is a square and a cube in Fq and therefore b = 1 is the only
solution in the set {gi}0≤i≤5 for half of all BLS curves: those with odd x.

3.5 SNARK-friendly inner BLS curves

This paper focuses on inner SNARK-friendly BLS curves as in Def. 1 at the
128-bit security level and suitable for the Groth’16 and KZG-based universal
SNARKs. On the one hand, a Groth’16-tailored curve should optimize G1 and
G2 operations, and the pairing computation: the proving algorithm involves
multi-scalar multiplications (MSM) in G1 and G2, and the verification algorithm
involves multi-pairings. On the other hand, KZG polynomial commitments only
need multi-scalar multiplications in G1 and multi-pairings.

According to [30], an efficient non-conservative choice of a Groth’16-tailored
curve at the 128-bit security level is a BLS12 curve of roughly 384 bits. A
conservative but efficient alternative is a BLS12 curve of 440 to 448 bits. Then to
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fulfill SNARK-friendliness, it is sufficient to choose a seed x s.t. x ≡ 1 mod 3 ·2L
with the desired 2-adicity L ≥ 1. Consequently, Prop. 1 and 2, and Cor. 1 apply:
such an inner BLS12 is always of the form Y 2 = X3 + 1; multiplying by x− 1 is
sufficient to clear the cofactor on G1, and the efficient GT membership testing
applies. In fact, for all BLS12 curves, gcd(q(x) + 1− t(x), Φ12(q(x))) is always
equal to r(x) and the membership testing boils down to zq = (zq)q ·z and zq = zu

for z ∈ GT .

KZG-based SNARKs require a 128-bit secure curve with efficient G1 operations
and fast pairing. For a faster G1 arithmetic, we consider a BLS24 curve of roughly
320 bits, that meets the 128-bit level security [32] and gives the best tradeoff
between small ρ = log2 q/ log2 r value (ρ = 1.25) and fast pairing. For SNARK-
friendliness, cofactor clearing and curve equation (Y 2 = X3 + 1), the same
observations as for BLS12 apply. For GT membership testing, gcd(q(x) + 1 −
t(x), Φ24(q(x))) is always equal to r(x) for the BLS24 curves and the test boils

down to zq
2

= (zq
2

)q
2 · z and zq = zu for z ∈ GT .

4 Outer curves: Brezing–Weng, Cocks–Pinch

This section presents the families of 2-chains with a BW6 curve on top of a BLS12
curve (Sec. 4.2), and on top of a BLS24 curve (Sec. 4.3). Cocks-Pinch curves (CP)
are addressed in Sec. 4.4. For BW6, all parameters and formulas are given as
polynomials in the variable x, with integer parameters ht, hy that are the lifting
cofactors of the Brezing-Weng construction. We use subscripts qbls, qbw, qcp to
identify parameters of BLS, BW and CP curves. BW and CP constructions follow
the same recipe, but CP deals with integers, while BW deals with polynomials [20,
§4.1,§6]. They start from the subgroup order rbw(x) = qbls(x), rcp(u) = qbls(u),
and look for k-th roots of unity ζk mod qbls to set the trace value t = ζk + 1.
For CP, the existence of ζk requires qbls(u) ≡ 1 mod k: for k = 6, 12, 8 resp., this
means u ≡ 1 mod 3, 1, 10 mod 12, and 1, 10 mod 24 resp. For BW, the number
field defined by qbls(x) only contains ζk(x) for k | 6, limiting the BW construction
to k = 6 at most.

4.1 Generic BW6 curve parameters

To satisfy Def. 1, a BW curve chained to a BLS curve has a subgroup of prime
order rbw(x) = qbls(x). To get an embedding degree k = 6, a primitive 6-th
root of unity ζ6 modulo rbw(x) is required, the trace of the curve modulo rbw
is then tbw,3 = ζ6 + 1 mod rbw. Alternatively tbw,0 = ζ6 + 1 mod rbw with
ζ6 = −ζ6 + 1. With D = −3 and 1/

√
−3 = (2ζ6 − 1)/3 mod rbw, then ybw,0 =

(tbw,0−2)/
√
−3 = (ζ6+1)/3 = −tbw,0/3. Or with 1/

√
−3 = −(2ζ6−1)/3 mod rbw,

one has ybw,3 = (tbw,3 − 2)/
√
−3 = (ζ6 + 1)/3 = tbw,3/3. Any BW6 curve will

have parameters of the form ti = tbw,i ± htr, yi = ybw,i ± hyr, where ht, hy
are integer lifting cofactors. We label the two cases according to the constant
coefficient of the polynomial defining the trace modulo rbw: this is either 0 or 3.
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One denotes qbw,0(x, ht, hy) = ((tbw,0 + htr)
2 + 3(ybw,0 + hyr)

2)/4. We have

qbw,0 = t2bw,0/3 + tbw,0 · rbw(ht − hy)/2 + r2bw(h2t + 3h2y)/4 , (3)

qbw,3 = t2bw,3/3 + tbw,3 · rbw(ht + hy)/2 + r2bw(h2t + 3h2y)/4 . (4)

The curve cofactor cbw,i(x, ht, hy) such that cbw,irbw = qbw,i + 1− tbw,i is

cbw,0 = (h2t + 3h2y)/4rbw + (ht − hy)/2tbw,0 + (t2bw,0/3− tbw,0 + 1)/rbw − ht (5)

cbw,3 = (h2t + 3h2y)/4rbw + (ht + hy)/2tbw,3 + (t2bw,3/3− tbw,3 + 1)/rbw − ht (6)

where (t2bw,i/3 − tbw,i + 1)/rbw = Φ6(tbw,i − 1)/(3rbw) is a polynomial in Q[x]
since by construction rbw divides Φ6(tbw,i − 1). Tables 3 and 4 give the explicit
values of the polynomials for BLS12 and BLS24 inner curves.

Cofactor of G2. The group G2 of order rbw is a subgroup of one of the two
sextic twists of E, defined over Fq. Generically, the orders of the two sextic twists
are q + 1− (t+ 3y)/2 and q + 1− (t− 3y)/2, where y satisfies t2 − 4q = −3y2.
One of the orders is a multiple of rbw, and has cofactor c′bw,i. Observe that
(tbw,0 − 3ybw,0)/2 = tbw,0 since ybw,0 = −tbw,0/3. The correct sextic twist has
order

qbw,0 + 1− (tbw,0 + htrbw − 3(ybw,0 + hyrbw))/2

= qbw,0 + 1− (tbw,0 − 3ybw,0)/2︸ ︷︷ ︸
=tbw,0

−htrbw/2 + 3hyrbw/2

= qbw,0 + 1− tbw,0 − htrbw︸ ︷︷ ︸
=#E(Fq)=rbw·cbw,0

+(htrbw + 3hyrbw)/2

= rbw · (cbw,0 + (ht + 3hy)/2)︸ ︷︷ ︸
c′bw,0

hence
c′bw,0 = cbw,0 + (ht + 3hy)/2 . (7)

For the other trace, (tbw,3 + 3ybw,3)/2 = tbw,3 and the correct sextic twist has
order qbw,3 + 1 − (tbw,3 + htrbw + 3(ybw,3 + hyrbw))/2 a multiple of rbw, and
cofactor

c′bw,3 = cbw,3 + (ht − 3hy)/2 . (8)

Congruences of cofactors ht, hy. One requires qbw,i (Eqs. (3), (4)) to be an
integer and a prime. Because tbw,i is always multiple of 3, t2bw,i/3 is an integer.

We need (ht ± hy)/2tbw,i + (h2t + 3h2y)/4rbw to be an integer. We now look at
(ht ± hy), (h2t + 3h2y). We have tbw,0 always even, then (ht − hy)tbw,0/2 is an
integer and we require 4 | (h2t + 3h2y). For that we need ht − hy ≡ 0 mod 2 (see
Table 2). We have tbw,3 always odd. If (ht + hy) is odd, then (ht + hy)tbw,3 is
odd but at the same time (see Table 2), (h2t + 3h2y) is odd, and the condition
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is not satisfied. Hence we need (ht − hy) to be even, and consequently we have
(h2t + 3h2y)/4 an integer. Finally, for both tbw,0 and tbw,3, we need 2 | (ht − hy)
and consequently we have 4 | h2t + 3h2y, to ensure qbw to be an integer. Note
also that because x ≡ 1 mod 3, one has tbw = 0 mod 3, and Eqs. (3), (4) give
4qbw = h2t mod 3. Because qbw needs to be prime, ht is not multiple of 3, and
3 - (h2t + 3h2y).

Table 2. Are 2(ht ± hy), h2
t + 3h2

y multiple of 4?

ht hy ht ± hy h2
t + 3h2

y 2(ht ± hy)tbw,i + (h2
t + 3h2

y)rbw mod 4
mod2 mod2 mod2 mod4 tbw,0 = 0 mod 2 tbw,3 = 1 mod 2

0 0 0 0 0 0
0 1 1 3 3rbw 6= 0 2 + 3rbw 6= 0
1 0 1 1 rbw 6= 0 2 + rbw 6= 0
1 1 0 0 0 0

Subgroup membership testing: GT . We apply the technique of Sec. 3.3.
BW6 curves over their base field have order cbw,i · rbw = qbw,i + 1− tbw,i−htrbw,
hence

qbw,i ≡ tbw,i − 1 mod rbw . (9)

As soon as gcd(qbw,i + 1− tbw,i, Φk(qbw,i)) = rbw, then the following two tests
are enough:

1. test if zΦk(qbw,i) = 1 with Frobenius maps;
2. test if zqbw,i = ztbw,i−1 with cyclotomic squarings.

Easy part of the final exponentiation. the final exponentiation raises the
Miller loop output f to the power

(q6 − 1)/r = (q6 − 1)/Φ6(q) · Φ6(q)/r = (q3 − 1)(q + 1)(q2 − q + 1)/r .

The easy part (q3 − 1)(q + 1) costs one conjugation (q3-Frobenius power), one
inversion in Fq6 , one q-Frobenius power and two multiplications. We optimise
the hard part (q2 − q + 1)/r in Sec. 4.2, 4.3.

Optimal Pairing Computation. In [35], the authors presented an optimal
ate pairing formula that can be generalized as follows: write

a0 + a1(tbw,i − 1) = 0 mod rbw (10)

with shortest possible scalars a0, a1. On G2, the Frobenius πq has eigenvalue
tbw,i − 1. The optimal ate Miller loop is computed with the formula

fa0,Q(P )fa1,πq(Q)(P ) = fa0,Q(P )fqa1,Q(P ) . (11)

11



Moreover, it turned out that (a1 − 1) | a2, and some of the computations
were shared. We now introduce another optimisation. We consider Eq. (10)
with a new point of view. BW6 curves have an endomorphism φ : (x, y) 7→
(ωx,−y) on G1 of eigenvalue λ = tbw,i − 1 = qbw,i mod rbw, and characteristic
polynomial χ2 − χ + 1 = 0. The (bilinear) twisted ate pairing [34, §6] has
precisely Miller loop fλ,P (Q). However, λ is too large so instead, we consider a
multiple of the Tate pairing fhr,P (Q) = fa0+a1λ,P (Q) for some h (e.g. Eqs.(20),
(29)). Instead of decomposing the Miller function fa0+a1λ,P (Q) into sub-functions
fa0,P (Q)fa1λ,P (Q), we use Lemma 5 to get shared squares in Fqk and shared
doubling steps in G1 (Tate), resp. G2 (ate), in the same idea as a multi-scalar
multiplication. This gives us Alg. 2. We are in the very particular case of k/d = 1,
φ on G1 and πq on G2 both have eigenvalue qbw,i mod rbw, and our variant of
the twisted ate pairing is competitive with the ate pairing.

Lemma 5. Let E be a pairing-friendly curve with the usual order-r subgroups
G1,G2, two points P ∈ Gi, Q ∈ G1−i of order r, and an endomorphism φ of
eigenvalue λ over Gi: φ(P ) = [λ]P , λ = qe mod r for some 1 ≤ e ≤ k − 1. The
Miller function can be decomposed as follows.

f2(u+vλ),P (Q) = f2u+vλ,P (Q)`(u+vλ)P,(u+vλ)P (Q) (12)

fu+1+vλ,P (Q) = fu+vλ,P (Q)`(u+vλ)P,P (Q) (13)

fu+(v+1)λ,P (Q) = fu+vλ,P (Q)`(u+vλ)P,λP (Q) (14)

fu+1+(v+1)λ,P (Q) = fu+vλ,P (Q)`P,λP (Q)`(u+vλ)P,(1+λ)P (Q) (15)

where λP = φ(P ), (1 + λ)P = P + φ(P ), and `P,λP (Q) can be precomputed.

Proof (of Lemma 5). The usual Miller formulas give (see e.g. [51])

f2(u+vλ),P (Q) = f2u+vλ,P (Q) f2,[u+vλ]P (Q)︸ ︷︷ ︸
= tangent at (u+vλ)P

fu+1+vλ,P (Q) = fu+vλ,P (Q) f1,P (Q)︸ ︷︷ ︸
=1

`(u+vλ)P,P (Q)

fu+(v+1)λ,P (Q) = fu+vλ,P (Q) fλ,P (Q)︸ ︷︷ ︸
bilinear pairing

`(u+vλ)P,λP (Q)

fu+1+(v+1)λ,P (Q) = fu+vλ,P (Q) f1+λ,P (Q)︸ ︷︷ ︸
f1,P (Q)fλ,P (Q)`P,λP (Q)

`(u+vλ)P,(1+λ)P (Q)

The term f1,P (Q) = 1 can disapear. The term fλ,P (Q) is a bilinear pairing as
λ ≡ qe mod r, and then can be removed. Finally f1+λ,P (Q) simplifies to `P,λP (Q)
which can be precomputed.

Remark 3. Alg. 2 shares the squarings in Fqk and the doubling steps in G1

(Tate), resp. G2 (ate). With all parameterized pairing-friendly families, the scalar
decomposition gives all but one trivial Miller function, and the ate, or twisted-ate
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Algorithm 2: Miller loop for optimal pairing with endomorphism φ on
G1 (Tate), resp. G2 (ate) of eigenvalue λ and degree 2.
Input: P ∈ Gi, Q ∈ G1−i, end. φ on Gi of eigenvalue λ, scalars a0, a1

s. t. a0 + a1λ = 0 mod r
Output: fa0+a1λ,P (Q)

1 P0 ← P ; P1 ← φ(P )
2 if a0 < 0 then a0 ← −a0; P0 ← −P0

3 if a1 < 0 then a1 ← −a1; P1 ← −P1

4 P1+λ ← P0 + P1; `1,λ ← `P0,P1(Q)
5 l0 ← bits(a0); l1 ← bits(a1)
6 if #l0 = #l1 then S ← P1+λ; f ← `1,λ; n← #l0
7 else if #l0 < #l1 then S ← P1; f ← 1; n← #l1; pad l0 with 0 s.t. #l0 = n
8 else S ← P0; f ← 1; n← #l0; pad l1 with 0 s.t. #l1 = n
9 for i = n− 2 downto 0 do

10 f ← f2 ; `t ← `S,S(Q); S ← [2]S
11 if l0[i] = 0 and l1[i] = 0 then f ← f · `t // Eq. (12), mfull-sparse

12 else if l0[i] = 1 and l1[i] = 1 then // Eq. (15)
13 S ← S + P1+λ; `← `S,P1+λ(Q)
14 f ← (f · `t) · (` · `1,λ) // mk +mfull-sparse +msparse-sparse

15 else if l0[i] = 1 then // Eq. (13)
16 S ← S + P0; `← `S,P0(Q)
17 f ← f · (`t · `) // mk +msparse-sparse

18 else (l1[i] = 1) // Eq. (14)
19 S ← S + P1; `← `S,P1(Q)
20 f ← f · (`t · `) // mk +msparse-sparse

21 return f

pairing boils down to one Miller loop computation of optimal length, and a few
line additions [51]. In our case, while being short, none of the scalars a0, a1 is
trivial. It is possible to derive a 2-NAF variant of Alg. 2. It requires the additional
precomputations of P − φ(P ) and `P,−λP (Q). From the estimate in Table 8, our
Miller loop variant in Alg. 2 would give up to a 7% speed-up compared to [35,
Alg. 5], for BLS24-BW6 curves. Our Alg. 2 works for Tate and ate pairing. If there
is an endomorphism of higher degree on G2 (or two independent endomorphisms),
use Alg. 4 instead.

4.2 BW6 with BLS-12

Table 3 gives the parameters of the BW6-BLS12 curves in terms of the seed x,
and the two lifting cofactors ht, hy.

Optimal Ate Pairing Computation. We investigate two pairings on our
BW6 curves: optimal ate and optimal Tate. In [35], the authors presented an
optimal ate Miller loop formula, for any BW6 curve with tbw,3:

mopt. ate = fu+1,Q(P )fqu3−u2−u,Q(P ) and eopt. ate = m
(q6bw−1)/rbw
opt. ate (16)
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Table 3. Parameters of a BW6 outer curve with a BLS12 inner curve, with x ≡ 1 mod 3.

parameter value property

rbw qbls = (x− 1)2/3(x4 − x2 + 1) + x generates prime

ζ6 −x5 + 3x4 − 3x3 + x− 1
ζ6 x5 − 3x4 + 3x3 − x+ 2
1/
√
−3 −(2x5 − 6x4 + 6x3 − 2x+ 3)/3

tbw,0 −x5 + 3x4 − 3x3 + x 6 | tbw,0
tbw,3 x5 − 3x4 + 3x3 − x+ 3 3 | tbw,3, 2 - tbw,3
ybw,0 (x5 − 3x4 + 3x3 − x)/3 = −tbw,0/3 2 | ybw,0
ybw,3 (x5 − 3x4 + 3x3 − x+ 3)/3 = tbw,3/3 2 - ybw,3
qbw,0 ((tbw,0 + htrbw)2 + 3(ybw,0 + hyrbw)2)/4 generates prime
qbw,3 ((tbw,3 + htrbw)2 + 3(ybw,3 + hyrbw)2)/4 generates prime

Φ6(tbw,i − 1) 3rbw(x4 − 4x3 + 7x2 − 6x+ 3)
cbw,0 (h2

t + 3h2
y)/4rbw + (ht − hy)/2tbw,0 + x4 − 4x3 + 7x2 − 6x+ 3− ht

cbw,3 (h2
t + 3h2

y)/4rbw + (ht + hy)/2tbw,3 + x4 − 4x3 + 7x2 − 6x+ 3− ht
c′bw,0 (G2) cbw,0 + (ht + 3hy)/2
c′bw,3 (G2) cbw,3 + (ht − 3hy)/2

with optimized computation in [35, Alg. 5]:

fu = fu,Q(P ); mopt. ate = fu · (fu)qu2−u−1,[u]Q(P )`[u]Q,Q(P ) , (17)

where [u]Q is precomputed together with fu,Q(P ). The equivalent formula for a
trace tbw,0 is

fu(u2−u−1),Q(P )fqu+1,Q(P ) (18)

whose optimized version is

fu = fu,Q(P ); mopt. ate = (fu · `[u]Q,Q(P ))q(fu)u2−u−1,[u]Q(P ) . (19)

In the two cases tbw,0 and tbw,3, the cost in terms of multiplications in the base
field are the same.

Optimal Pairing Computation with Alg. 2. G1 and G2 have an endomor-
phism φ1, φ2 of eigenvalue λbw,i = tbw,i − 1 mod rbw. Low degree polynomials
(short scalars once evaluated at a seed u) a0, a1 s.t. a0 + a1λbw,i = 0 mod rbw are

(x3 − x2 − x) + (x+ 1)(tbw,0 − 1) = −3rbw (20)

−x− 1 + (x3 − x2 + 1)(tbw,0 − 1) = −3(x2 − 2x+ 2)rbw (21)

(x+ 1) + (x3 − x2 − x)(tbw,3 − 1) = 3(x− 1)2rbw (22)

(x3 − x2 + 1)− (x+ 1)(tbw,3 − 1) = −3rbw (23)

The optimal Tate or ate Miller loop with e.g. (21), (23) are:

mTate = f−(u+1)+(u3−u2+1)λbw,0,P (Q) , mate = f−(u+1)+(u3−u2+1)qbw,0,Q(P )(24)

mTate = fu3−u2+1−(u+1)λbw,3,P (Q) , mate = fu3−u2+1−(u+1)qbw,3,Q(P ) . (25)
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G1 and G2 membership testing. For G1 membership testing, one uses one of
Eqs. (20), (21), resp. (22), (23), with x = u. However, these formulas (e.g. [u3 −
u2 − u]P + [u + 1]φ(P )) will output O for any point in the subgroup of order
3rbw. For G2 membership testing, the same equations can be re-used: we showed
in Sec. 4.1 that the twisted curve E′ of G2 has the same trace as E modulo rbw,
either (tbw,0 − 3ybw,0)/2 = tbw,0, or (tbw,3 + 3ybw,3)/2 = tbw,3.

Final Exponentiation. Writing the hard part of the final exponentiation
zΦ6(qbw,i)/rbw in terms of x, ht, hy, Magma runs LLL on multivariate polynomials
and provides the result. With tbw,i, LLL gives short vectors for the exponent:

ebw,i = 3(x+ 1)Φk(qbw,i)/rbw(x) (26)

and the formulas for ebw,i are

ebw,0 = 3(cbw,0 + ht)(x
3 − x2 + 1− (x+ 1)qbw,0)− 9(x2 − 2x+ 2− qbw,0)(27)

ebw,3 = 3(cbw,3 + ht)(x
3 − x2 − x+ (x+ 1)qbw,3) + 9(x2 − 2x+ 1 + qbw,3)(28)

We explicit in Sec. A.3 the link with Hayashida, Hayasaka and Teruya’s formu-
las [33] and show that our formulas are the most efficient.

Cofactor clearing on G1 with one endomorphism. The cofactors are cbw,0
given in Eq. (5), cbw,3 in Eq. (6). The curve has an endomorphism defined over Fq,
of characteristic polynomial x2 + x+ 1 and eigenvalue λ such that λ2 + λ+ 1 = 0
modulo the curve order. There are two formulas, one for each choice of eigenvalue
modulo the curve order, and l0 + l1λ = 0 mod cbw,i. With cbw,0 we have

l0 = (h2t + 3h2y)/4 · (x3 − x2 + 1)− ht(x2 − 2x+ 1)− (ht − 3hy)/2

l1 = (h2t + 3h2y)/4 · (x+ 1)− (ht + 3hy)/2 · (x2 − 2x+ 1)− ht

The alternative formulas for the other choice of eigenvalue λ are

l0 = (h2t + 3h2y)/4 · (x+ 1)− (ht + 3hy)/2 · (x2 − 2x+ 1)− ht
l1 = (h2t + 3h2y)/4 · (x3 − x2 + 1)− ht(x2 − 2x+ 1)− (ht − 3hy)/2

With cbw,3 we have

l0 = (h2t + 3h2y)/4 · (x3 − x2 + 1) + ht + (ht + 3hy)/2 · (x− 1)2

l1 = (h2t + 3h2y)/4 · (x+ 1)− (ht − 3hy)/2 · (x2 − 2x+ 2) + ht

The alternative formulas for the other choice of eigenvalue λ are

l0 = (h2t + 3h2y)/4 · (x+ 1)− (ht − 3hy)/2 · (x2 − 2x+ 2) + ht

l1 = (h2t + 3h2y)/4 · (x3 − x2 + 1) + (ht + 3hy)/2 · (x2 − 2x+ 1) + ht
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Cofactor clearing on G2 with one endomorphism. The cofactors c′bw,i are
given by Eqs. (7), (8), and in Table 3. We decompose c′bw,i with the eigenvalue of

the endomorphism. There are two possible eigenvalues, λ and λ = −λ− 1. The
formulas of l0, l1 satisfy l0 + l1λ = 0 mod c′bw,i. With c′bw,0 we have

l0 = (h2t + 3h2y)/4(x+ 1) + (ht + 3hy)/2(x2 − 2x+ 2)− ht
l1 = (h2t + 3h2y)/4(x3 − x2 + 1)− (ht − 3hy)/2(x2 − 2x+ 1)− ht

The alternative formulas for the other choice of eigenvalue λ are

l0 = −(h2t + 3h2y)/4(x+ 1)− (ht + 3hy)/2(x2 − 2x+ 2) + ht

l1 = (h2t + 3h2y)/4(x3 − x2 − x)− ht(x2 − 2x+ 1)− (ht + 3hy)/2

With c′bw,3 we have

l0 = −(h2t + 3h2y)/4(x+ 1)− (ht − 3hy)/2(x2 − 2x+ 1)− ht
l1 = (h2t + 3h2y)/4(x3 − x2 − x) + (ht + 3hy)/2(x2 − 2x+ 2)− ht

The alternative formulas for the other choice of eigenvalue λ are

l0 = (h2t + 3h2y)/4(x+ 1) + (ht − 3hy)/2(x2 − 2x+ 1) + ht

l1 = (h2t + 3h2y)/4(x3 − x2 + 1) + ht(x
2 − 2x+ 1) + (ht + 3hy)/2

4.3 BW6 with BLS-24

We follow the same process as for BW6-BLS12 and report the parameters in
Table 4.

Pairing computation: Miller Loop. Assuming an endomorphism of eigen-
value λbw,i = tbw,i − 1, the formulas are

−x− 1 + (x5 − x4 + 1)(tbw,0 − 1) = −3rbw((x− 1)2(x2 + 1) + 1) (29)

x5 − x4 − x+ (x+ 1)(tbw,0 − 1) = −3rbw (30)

x+ 1 + (x5 − x4 − x)(tbw,3 − 1) = 3rbw(x− 1)2(x2 + 1) (31)

x5 − x4 + 1− (x+ 1)(tbw,3 − 1) = −3rbw (32)

and one obtains optimal ate and Tate (a.k.a. twisted ate) pairings from (29), (32)

mTate=f−(u+1)+(u5−u4+1)λbw,0,P (Q),
mate=f−(u+1)+(u5−u4+1)qbw,0,Q(P ),

mTate=fu5−u4+1−(u+1)λbw,3,P (Q),
mate=fu5−u4+1−(u+1)qbw,3,Q(P ).

(33)

16



Table 4. Parameters of a BW6 outer curve with a BLS24 inner curve, with x ≡ 1 mod 3.

rbw qbls = (x− 1)2/3(x8 − x4 + 1) + x prime
(x10 − 2x9 + x8 − x6 + 2x5 − x4 + x2 + x+ 1)/3

ζ6 −x9 + 3x8 − 4x7 + 4x6 − 3x5 + 2x3 − 2x2 + x− 1
ζ6 x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x+ 2
1/
√
−3 (2x9 − 6x8 + 8x7 − 8x6 + 6x5 − 4x3 + 4x2 − 2x+ 3)/3

tbw,0 −x9 + 3x8 − 4x7 + 4x6 − 3x5 + 2x3 − 2x2 + x 6 | tbw,0
tbw,3 x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x+ 3 3 | tbw,3, 2 - tbw,3
ybw,0 (x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x)/3
ybw,0 −tbw,0/3 2 | ybw,0
ybw,3 (x9 − 3x8 + 4x7 − 4x6 + 3x5 − 2x3 + 2x2 − x+ 3)/3
ybw,3 tbw,3/3 2 - ybw,3
qbw,0 ((tbw,0 + htrbw)2 + 3(ybw,0 + hyrbw)2)/4 prime
qbw,3 ((tbw,3 + htrbw)2 + 3(ybw,3 + hyrbw)2)/4 prime

Φ6(tbw,i − 1) (x8 − 4x7 + 8x6 − 12x5 + 15x4 − 14x3 + 10x2 − 6x+ 3) · 3 · rbw
cbw,0 (h2

t + 3h2
y)/4rbw + (ht − hy)/2tbw,0 + Φ6(tbw,0 − 1)/(3rbw)− ht

cbw,3 (h2
t + 3h2

y)/4rbw + (ht + hy)/2tbw,3 + Φ6(tbw,i − 1)/(3rbw)− ht
c′bw,0 (G2) cbw,0 + (ht + 3hy)/2
c′bw,3 (G2) cbw,3 + (ht − 3hy)/2

Pairing computation: Final Exponentiation. Like for BLS12-BW6, the
hard part can be expressed in terms of qbw,i, ht, hy. One obtains two cases. Note
that according to Table 2, (h2t + 32

y)/4 and (ht − hy)/2 are integers. With the
parameters of Table 4, the exponent (q2bw,i− qbw,i + 1)/rbw multiplied by 3(x+ 1)
has coefficients of low degree in x in basis qbw,i. The highest power to compute
is u15 due to cbw,i of degree 10 in u. The two cases have very similar formulas.

(−x5 + x4 − 1 + (x+ 1)qbw,0)3(cbw,0 + ht) + 9(x4 + 2(−x3 + x2 − x+ 1)− qbw,0),
(x(x4 − x3 − 1) + (x+ 1)qbw,3)3(cbw,3 + ht) + 9(x4 + 2(−x3 + x2 − x) + 1 + qbw,3) .

4.4 Two-chains with inner BLS and outer Cocks-Pinch

Section 4.2 showed that a Brezing-Weng outer curve of embedding degree k = 6
is optimal with a BLS-12 curve whose prime-order subgroup is about 256 bits
long. However BW6 is no longer optimal with BLS24 over a prime field of about
320 bits: we measure the security in the finite field Fq6 whose q is roughly 640 bits
long to be about 124 bits in Sec. 5.3. To increase the security in the finite field Fqk ,
we can increase the size of the prime q thanks to the choice of lifting co-factors
ht, hy, and obtain a q of 672 bits, or we can increase the embedding degree k, but
then the BW construction is no longer available: we move to the Cocks-Pinch
construction. To allow twist optimisation, we focus on k = 8 with D = 1 (quartic
twist) and k = 12 with D = 3 (sextic twist). Our Cocks-Pinch curves are similar
to the curves of Guillevic, Masson and Thomé [31] (see also [43, Chapter 5]). The
lifting cofactor idea appeared before in Fotiadis and Konstantinou paper [19].

With the Cocks-Pinch construction of embedding degree not 6, the optimal
ate pairing like for BW6 curves is no longer available because the eigenvalue
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of the Frobenius endomorphism πq on a CP curve E(Fqk) does not have a
simple polynomial form modulo the subgroup order rcp = qbls. In other words,
there is no k-th root of unity modulo qbls(x) (as polynomials). However, πq has
an eigenvalue (as a scalar integer) modulo rcp(u) ∈ Z, and one can use the

LLL algorithm to obtain a decomposition with short scalars ai, of size r
1/4
cp :

a0 + a1qcp + a2q
2
cp + a3q

3
cp = 0 mod rcp. This 4-fold holds for CP8 and CP12

curves as ϕ(8) = ϕ(12) = 4. The optimal ate Miller loop would be

fa0,Q(P )fqa1,Q(P )fq
2

a2,Q
(P )fq

3

a3,Q
(P )`a0Q,a1πq(Q)(P )`a2πq2 (Q),a3πq3 (Q)

But the scalars ai are not sparse and none of them is trivial, contrary to [51].
Instead, we generalize our Alg. 2 and obtain Alg. 4. Algorithm 3 precomputes
the data and Alg. 4 computes the pairing, with the formulas (12)–(15) adapted
to the ate pairing with swapped P and Q and λ = q, and

f2(
∑
i ciq

i),Q(P ) = f2∑
i ciq

i,Q(P )`[
∑
i ciq

i]Q,[
∑
i ciq

i]Q(P ) (34)

f(
∑
i ciq

i)+qj+ql+qm,Q(P ) = f∑
i ciq

i,Q(P )fqj+ql+qm,Q(P )`[
∑
i ciq

i]Q,[qj+ql+qm]Q(P )

= f∑
i ciq

i,Q(P )`[
∑
i ciq

i]Q,[qj+ql+qm]Q(P )`[qj+ql]Q,[qm]Q(P )`[qj ]Q,[ql]Q(P ) (35)

f(
∑
i ciq

i)+1+q+q2+q3,Q(P ) = f∑
i ciq

i,Q(P )f1+q+q2+q3,Q(P )`[
∑
i ciq

i]Q,[1+q+q2+q3]Q(P )

= f∑
i ciq

i,Q(P )`[
∑
i ciq

i]Q,[1+q+q2+q3]Q(P )

·`[1+q]Q,[q2+q3]Q(P )`Q,[q]Q(P )`[q2]Q,[q3]Q(P ) (36)

The fqj ,Q(P ) terms can be removed [34] and the point [qj ]Q, [qj + ql]Q, [qj + ql +
qm]Q, [1+q+q2+q3]Q, and lines `[qm]Q,[qn]Q(P ), `[qj+ql]Q,[qm]Q(P ), `[1+q]Q,[q2+q3]Q(P ),
and their products, are precomputed.

On CP8 curves, G1 has an endomorphism φ : (x, y) 7→ (−x,
√
−1y) of eigen-

value λ ≡ q2 mod r, λ2 ≡ −1 mod r. On CP12 curves, G1 has the same endo-
morphism as BW6 curves, of eigenvalue λ ≡ q2 mod r. The twisted ate pairing
on our CP curves has Miller loop fλ,P (Q) = fq2,P (Q), and we derive our optimal
Tate pairing like for BW6 curves, with short scalars a0 + a1λ ≡ 0 mod r.

4.5 Comparison of BW6, CP8 and CP12 outer curve performances

We reproduce the field arithmetic estimates from [31,35] in Table 5 and the
pairing cost estimates in Table 6. Parameters of CP8 and CP12 curves are given
in Table 7. Parameters of BW6 curves can be found in Table 11. We justify our
choice of seeds and curve parameters in Sec. 5. We obtain Table 8 for ate and
Tate pairing estimates for our BW6 and CP curves. We obtain a speed-up of the
optimal ate pairing on BW6 curves compared to [35] with the formula (37) with
v = u2− 2u+ 1 for BLS12-BW6 and v = u4− 2(u3−u2 +u) + 1 for BLS24-BW6
because the 2-NAF Hamming weight of the scalar v is lower:

fu+1 = fu+1,Q(P ); mopt. ate = (fu+1)qv,[u+1]Q(P )`q[(u+1)v]Q,−Q(P ) . (37)

BW6 curves as outer curves of BLS24 have a faster pairing than CP8 and CP12
curves: a larger characteristic gives better performances than a larger embedding
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Algorithm 3: Precomputations of sums of points and lines
Input: P ∈ E(Fq)[r], Q0, Q1, Q2, Q3 ∈ E′(Fqk/d)[r]
Output: array T of length 15, of precomputed points and lines

1 T ← array of length 15
2 for i = 0 to 3 do
3 T [2i − 1][0]← Qi ; T [2i − 1][1]← 1
4 for 0 ≤ m < n ≤ 3 do
5 i← 2m + 2n

6 T [i− 1][0]← T [2m − 1] + T [2n − 1]
7 T [i− 1][1]← `Qm,Qn(P )

8 for 0 ≤ m < n < s ≤ 3 do
9 i← 2m + 2n + 2s

10 T [i− 1][0]← T [2m + 2n − 1][0] + T [2s − 1][0]
11 T [i− 1][1]← T [2m + 2n − 1][1] · `Qm+Qn,Qs(P )

12 T [15− 1][0]← T [7− 1][0] + T [8− 1]
13 T [15− 1][1]← T [7− 1][1] · `Q0+Q1+Q2,Q3(P )
14 return T

Algorithm 4: Miller loop for optimal ate pairing, Cocks-Pinch
Input: P ∈ G1 = E(Fq)[r], Q ∈ G2 = ker(πq − [q]) ∩ E(Fqk )[r], scalars

a0, a1, a2, a3 such that a0 + a1q + a2q
2 + a3q

3 = 0 mod r
Output: fa0+a1q+a2q2+a3q3,Q(P )

1 Q0 ← Q; Q1 ← πq(Q); Q2 ← πq2(Q); Q3 ← πq3(Q)
2 for i = 0 to 3 do
3 if ai < 0 then ai ← −ai ; Qi ← −Qi
4 T ← precomputations(Q0, Q1, Q2, Q3)
5 li ← bits(ai) for 0 ≤ i ≤ 3
6 i← max0≤j≤3(len lj)
7 j ← l0,i + 2l1,i + 4l2,i + 8l3,i
8 f ← T [j − 1][1]
9 S ← T [j − 1][0]

10 for i = i− 1 downto 0 do
11 f ← f2

12 `t ← `S,S(P ); S ← [2]S
13 j ← l0,i + 2l1,i + 4l2,i + 8l3,i
14 if j > 0 then
15 Qj ← T [j − 1][0]; `← `S,Qj (P ); S ← S +Qj
16 f ← f · (`t · `)
17 if T [j − 1][1] 6= 1 then f ← f · T [j − 1][1]

18 else f ← f · `t
19 return f
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degree. Assuming a ratio m704/m640 = 1.25, an ate Miller loop on CP8-632 is
25% slower compared to BW6-672, but the final exp. is 15% faster. A full pairing
on CP8 is about 7% slower, and 59% slower on CP12. BLS24-BW6 has a faster
pairing than BLS12-BW6, but the 2-adicity of BLS24 curves is much smaller.

Table 5. Cost from [31, Table 6] of mk, sk and ik for finite field extensions Fpk . Inversions
in Fpik come from i2k = 2mk+2sk+ ik and i3k = 9mk+3sk+ ik. Fp12 , resp. Fp24 always
have a first quadratic, resp. quartic extension, i24 = 2m12 + 2s12 + i12 = 293m + i with
i12 = 9m4+3s4+i4, and for Fp12 , i12 = 2m6+2s6+i6 = 97m+i with i6 = 9m2+3s2+i2.

k 1 2 3 4 6 8 12 24

mk m 3m 6m 9m 18m 27m 54m 162m
sk m 2m 5m 6m 12m 18m 36m 108m
fk 0 0 2m 2m 4m 6m 10m 22m

scyclok − 2s − 4m 6m 12m 18m 54m
ik − i1 0 2m + 2s 9m + 3s 14m 34m 44m 97m 293m

ik, with i1 = 25m 25m 29m 37m 39m 59m 69m 119m 318m

Table 6. Miller loop cost in non-affine, Weierstrass model [16,3]. For 6 | k, two sparse-
dense multiplications cost 26mk/6 whereas one sparse-sparse and one multiplication cost
6mk/6 + mk = 24mk/6. For 4 | k, this is 16mk/4 compared to 6mk/4 + mk = 15mk/4.

k D curve
DoubleLine
and AddLine

ref
SparseM and

SparseSparseM

6 | k −3
Y 2 = X3 + b
sextic twist

3mk/6 + 6sk/6 + (k/3)m
11mk/6 + 2sk/6 + (k/3)m

[3, §4]
13mk/6

6mk/6

4 | k −1
Y 2 = X3 + ax
quartic twist

2mk/4 + 8sk/4 + (k/2)m
9mk/4 + 5sk/4 + (k/2)m

[16, §4]
8mk/4

6mk/4

Table 7. CP8 and CP12 outer curve parameters on top of BLS24-315

outer curve u (ht, hy)
(t− 1)2 + 1

modr, u
equation

Fqk
(bits)

est. DL
in Fqk

BLS24-315-CP8-632 -0xbfcfffff (6,2) – y2 = x3 − x 5056 140
BLS24-315-CP12-630 -0xbfcfffff (1,2) 0 y2 = x3 − 1 7560 166

5 Implementation and benchmarking

In previous sections, we presented families of SNARK-friendly 2-chains that
are suitable for Groth’16 and KZG-based universal SNARKs. These families
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Table 8. Pairing cost estimates on BLS12-BW6, BLS24-BW6, BLS24-CP8, BLS24-
CP12 curves. BLS12-BW6 curves use Eq. (22) with [35, Alg. 5], and v = u2 − 2u+ 1.
BLS24-BW6 curves use Eq (30), (31) with v = u4 − 2(u3 − u2 + u) + 1.

BLS12-377-BW6-761 BLS12-379-BW6-764

ate fu+1,Q(fu)q
u2−u−1,[u]Q

7863m768 7653m768

ate fu+1,Q(fu+1)qv,[u+1]Q`
q
(u+1)vQ,−Q 7555m768 7389m768

Tate fu+1+(u3−u2−u)λ,P Alg. 2 7729m768 7540m768

Final exp. [35, § 3.3, Tab. 7] 5081m768 –

Final exp. Eq. (28) 5195m768 5033m768

BLS24-315-BW6-633 BLS24-315-BW6-672

ate fu+1,Q(fu+1)qv,[u+1]Q`
q
(u+1)vQ,−Q 7285m640 7285m704

Tate fu+1+(u5−u4−u)λ,P Alg. 2 6813m640 6813m704

Final exp. 5027m640 5501m704

BLS24-315-CP8-632 BLS24-315-CP12-630

ate fa0+a1q+a2q2+a3q3,Q Alg. 4 10679m640 13805m640

Tate fa0+a1λ,P Alg. 2 12489m640 15780m640

Final exp. 5835m640 10312m640

are composed of BLS12 and BLS24 inner curves and BW6, CP8 and CP12
outer curves. We demonstrated that the pair family BLS12/BW6 is suitable for
recursive Groth’16 applications and meets the best security/performance tradeoff.
Similarly, we showed that BLS24/BW6 is suitable for KZG-based universal
SNARKs. We also investigated the family pairs BLS24/CP8 and BLS24/CP12
as more conservative choices and showed that CP8-632 is competitive with
BLS24/BW6-672. BW6-633, CP8 and CP12 are defined over a base field of roughly
the same bit length, and all have a GLV endomorphism, hence performances on
G1 are expected to be the same. On G2, BW6 are always faster because they are
defined over the same base field as G1, contrary to CP curves. For the pairing
computation, as discussed in 4.5, CP8 and CP12 are slower than both choices of
BW6. Therefore, we have chosen to focus our benchmarks on BLS12/BW6 and
BLS24/BW6 families of curves.

In this section, we first present an open-sourced SageMath library to derive
these curves and test our generic formulas. Then, based on additional practical
criteria, we recommend a short list of SNARK-friendly 2-chains. Finally, we
implement in the open-sourced gnark ecosystem [15] this short-list. We benchmark
the relevant curve operations in G1 and G2, and the pairings, and compare
efficiency of all choices in practical Groth’16 setting and PlonK setting, which
is a popular KZG-based universal SNARK. Both schemes are implemented in
gnark and maintained by ConsenSys zkTeam.

5.1 SageMath library: Derive the curves

In this Git repository [18], we present SageMath scripts to derive all the SNARK-
friendly 2-chain families and verify the formulae presented in sections 3 and 4,
and the pairing cost estimates of Table 8.
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5.2 Our short-list of curves

For all curves, in addition to SNARK-friendliness and security level λ, we shall
consider the following properties:

– A seed u with low Hamming weight HW(u), allowing fast Miller loops in
pairings.

– Isogenies of low degree d from a curve with j-invariant different from 0
and 1728, allowing use of the “simplified SWU“ method for hashing to the
curve [52].

– Small integer α relatively prime to r − 1, allowing the use of xα as an S-box
in the algebraic SNARK-hashes (e.g. Poseidon [27]).

– Small non-residues in Fq, for an efficient tower arithmetic.
– “Spare“ bits in Fq, for carries, infinity point or compressed point flag.

For outer curves, an additional property is

– Smallest h2t + 3h2y with low Hamming weight, allowing fast final exponentia-
tion.

BLS12/BW6. The security of BLS12-384 and BLS12-448 is explained in [32,30],
BLS12-448 being presented as a more conservative choice: it offers about 132
bits of security in Fq12 instead of 126 bits. Because a BLS12-448 would imply
a much larger BW6-896, we concentrate on the BLS12 curves of 377 to 383
bits of Table 9. Given the above requirements, we short-list BLS12-377 with
u = 0x8508c00000000001 and BLS12-379 with u = 0x9b04000000000001. The
former was proposed in [12] and used in [35] and the latter is new, of higher 2-
adicity. Both have a HW(u) = 7, d = 2, α ≤ 7 and tower fields can be constructed

as Fq
i2+5−−−→ Fq2

v3−i−−−→ Fq6
w2−v−−−−→ Fq12 .

Now, we construct outer BW6 curves to these inner BLS12 curves. For BLS12-
377, we find BW6-761 to be optimal and refer the reader to [35] for a more
detailed study. For BLS12-379, we restrict the search to curves up to 768 bits
and suggest the corresponding BW6-764 with ht = −23, hy = 3 and equation
Y 2 = X3 + 1 (and M-twist Y 2 = X3 + 2). Both BW6-761 and BW6-764 fall in
the tbw,3 case (Table 3).

Table 9. Seeds of SNARK-friendly inner BLS12 curves around 128 bits of security.

u q (bits) r (bits) λ E(Fq) λ Fq12 2-adicity L d α

0x8508c00000000001 377 253 126 126 47 2 11
-0x7fb80fffffffffff 377 252 126 126 45 2 5
0x9b04000000000001 379 254 127 126 51 2 7
-0xfffbc3ffffffffff 383 256 128 126 43 2 7
-0xfff7c1ffffffffff 383 256 128 126 42 2 7
-0xffc3bfffffffffff 383 256 128 126 47 2 7
0x105a8000000000001 383 257 128 126 52 2 7
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BLS24/BW6. A BLS24 curve defined over a 320-bit prime field offers 128 bits
of security on the curve thanks to a subgroup of prime order r of 256 bits, and
offers around 160 bits in Fq24 . Accordingly, we find the following SNARK-friendly
inner BLS24 curves (Table 10). Given all the requirements, we choose BLS24-

Table 10. Seeds of SNARK-friendly inner BLS24 curves around 128 bits of security.

u q (bits) r (bits) λ E(Fq) λ Fq24 2-adicity L d α

0x60300001 305 245 122 158 22 2 7
-0x950fffff 311 250 125 159 22 2 7
0x9f9c0001 312 251 125 159 20 2 7
-0xbfcfffff 315 253 126 160 22 2 7
-0xc90bffff 315 254 126 160 20 2 13
0xe19c0001 317 255 127 160 20 2 17
-0x10487ffff 319 257 128 161 21 2 11

315 (u = -0xbfcfffff) over Fq of 315 bits and with Fr of 253 bits. It has
2-adicity 22 and security level almost 128. The tower fields can be constructed as

Fq
i2−13−−−−→ Fq2

v2−i−−−→ Fq4
w2−v−−−−→ Fq8

c3−w−−−→ Fq24 .
Now, we construct outer BW6 curves to BLS24-315. First, we search for less

conservative curves over a field of up to 640 bits. We recommend the BW6-633
curve with hy = −7, hy = −1 and the equation Y 2 = X3 + 4 (and M-twist
Y 2 = X3 + 8). For more conservative curves offering 128 bits of security, we
search for qbw of exactly 672 bits. We recommend the BW6-672 curve with
ht = 5111800, hy = 0 (HW2-NAF(h2t + 2h2y) = 8) and equation Y 2 = X3 − 4
(D-twist Y 2 = X3 − 4/3). The former falls in the tbw,0 and the latter in the tbw,3
case.

Table 11. BW6 outer curve parameters, where y2 = x3 + b.

outer curve u (ht, hy)
tmod
r, u

b
Fqk

(bits)
est. DL
in Fqk

BLS12-377-BW6-761 0x8508c00000000001 ( 13, 9) 0 −1 4566 126
BLS12-379-BW6-764 0x9b04000000000001 (-25, 3) 0 1 4584 126
BLS24-315-BW6-633 -0xbfcfffff (- 7,-1) 0 4 3798 124
BLS24-315-BW6-672 -0xbfcfffff (0x4dfff8,0) 0 −4 4032 128

5.3 Estimated complexity of a DL computation in GF(qk)

This section recalls the results from [5,32,29]. A BLS12 curve with r of about
256 bits has q of about 384 bits. In [32, Table 10] the estimated security in Fq12
for the BLS12-381 curve is 126 bits. Running the tool from [32], the paper [35]
shows that BLS12-377 in Fq12 has 125 bits of security, and BW6-761 has 126 bits
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of security in Fq6 . With the same approach and the SageMath tool6 from [32],
our BLS12-379 curve has 125 bits in Fq12 and our BLS24-315 curve has 160 bits
of security in Fq24 .

We observe a notable difference between the BW6 outer curves of BLS12 and
BLS24 because of the degree of the polynomial qbw(x). This polynomial is the
key-ingredient of the Special (Tower) NFS [36,40]. However when its degree is
too high, the general (Tower) NFS performs better, unless a tweak of qbw(x) is
possible [29]. This tweak divides by n the degree of qbw(x) while increasing its
coefficients by at most un−1. It works only if either qbw has an automorphism of
degree n, hence the new polynomial has coefficients as small as the initial one,
or the seed u is small enough. Here qbw has no automorphism, and u is 32 bits
long. We obtain a new q̃bw(x) of degree 10 and coefficients of 40 bits. The lowest
estimate of DL cost with STNFS is 2132 with h of degree 6 for the 633-bit curve.
The general TNFS works slightly better: with h of degree 2, and the Conjugation
method (Conj), we obtain a DL cost estimate of 2124. This is coherent with
MNT-6 curve security estimates, where the same choice of parameters for TNFS
apply [31, Fig. 1]. To reach the 2128 cost, we increase qbw up to 672 bits. We
stress that the tool we use only gives an estimate, and recent progress are being
made about TNFS [17]. In case of underestimate of the tool, one can consider a
704-bit BLS24-BW6 curve.

For the Cocks-Pinch construction, the parameters do not have a polynomial
form. For the embedding degree 8 we consider the TNFS-Conj algorithm with h
of degree 2 according to [31, Fig. 2]. We obtain 140 bits of security in Fq8 for the
BLS24-315-CP8-632 curve. For the BLS24-315-CP12-630 curve we measure a DL
cost of 166 bits in Fq12 with TNFS-Conj and h of degree 3 for the tower.

5.4 Golang library: our implementation of our short-list

In this Git repository [1], we present an optimized implementation, with x86

assembly code for the finite fields, of the short-listed curves: BLS12-377, BW6-761,
BLS12-379, BW6-764, BLS24-315, BW6-633 and BW6-672 (Table 12). All curve
implementations are written in Golang (tested with 1.16 and 1.17 versions) and
benefit from Fq and Fr x86 assembly accelerated arithmetic. Also, they benefit
from D = −3 endomorphism-based optimizations (GLV and 2-dimensional GLS
scalar multiplication, fast subgroup checks and cofactor clearing). For the pairing,
we follow optimizations from [2,47,26,33] and section 4.

5.5 Benchmarking

In this section, we benchmark our Golang implementation for all short-listed
curves on two levels. First, independently from the context, we benchmark G1,
G2 scalar multiplications (with GLV/GLS acceleration [24,23] and multi-scalar-
multiplication (Bucket-list method [9, section 4]). Also, we benchmark the pairing
computation (Miller loop, Final exponentiation and total pairing). Then, we

6 SageMath code available at https://gitlab.inria.fr/tnfs-alpha/alpha
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Table 12. Short-listed curves.

curve equation twist equation tower fields

BLS12-377 Y 2 = X3 + 1 Y 2 = X3 + 1/i Fq
i2+5−−−→ Fq2

v3−i−−−→ Fq6
w2−v−−−−→ Fq12

BLS12-379 Y 2 = X3 + 1 Y 2 = X3 + 1/(5 + i) Fq
i2+5−−−→ Fq2

v3−i−−−→ Fq6
w2−v−−−−→ Fq12

BLS24-315 Y 2 = X3 + 1 Y 2 = X3 + 1/i Fq
i2−13−−−−→ Fq2

v2−i−−−→ Fq4
w2−v−−−−→ Fq8

c3−w−−−→ Fq24

BLS12-377-BW6-761 Y 2 = X3 − 1 Y 2 = X3 + 4 Fq
i3+4−−−→ Fq3

v2−i−−−→ Fq6

BLS12-379-BW6-764 Y 2 = X3 + 1 Y 2 = X3 + 2 Fq
i3−2−−−→ Fq3

v2−i−−−→ Fq6

BLS24-315-BW6-633 Y 2 = X3 + 4 Y 2 = X3 + 8 Fq
i3−2−−−→ Fq3

v2−i−−−→ Fq6

BLS24-315-BW6-672 Y 2 = X3 − 4 Y 2 = X3 − 4/3 Fq
i3−3−−−→ Fq3

v2−i−−−→ Fq6

benchmark the time to setup, prove and verify Groth’16 and PlonK proofs of
circuits with different number of constraints.

The first level benchmarks are run on a AWS z1d.large (3.4 GHz Intel Xeon)
and the second level on a an AWS c5a.24xlarge (AMD EPYC 7R32). This allows
to handle large proofs and to test different architectures. All with hyperthreading,
turbo and frequency scaling disabled.

G1, G2 and GT operations. G1 coordinates for all short-listed curves are
over Fq and use D = −3 endomorphism to implement GLV [24]. For G2, BW6
coordinates are over Fq as well and implements GLV. For BLS12 and BLS24, the
implementation uses 2-dim. GLS [23] over Fq2 and Fq4 respectively. Timings are
reported in Tables 13 and 14. For multi-scalar-multiplication, we report timings
in figures 1 and 2 for different sizes (25 to 224 points).

Table 13. G1 and G2 scalar multiplication benchmarks.

curve G1 scalar mul. (ns) G2 scalar mul. (ns)

BLS12-377 77606 261607
BLS12-379 81090 272107

BLS24-315 65825 622044

BLS12-377-BW6-761 377360 377360
BLS12-379-BW6-764 390647 390647

BLS24-315-BW6-633 255600 255600
BLS24-315-BW6-672 300929 300929

On the one hand, we note that for inner curves BLS24-315 is the fastest
on G1, the slowest on G2 while still competitive on GT (especially for multi-
pairings when the final exponentiation is factored out). Thus, it is suitable for
KZG-based SNARKs where only G1 operations and pairings accounts for the
Setup, Prove and Verify algorithms. On the other hand, BLS12-377 presents
the best tradeoff on all operations making it suitable for Groth’16 SNARK. For
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Fig. 1. MSM on G1 1(a) and G2 1(b) for short-listed inner curves.
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Fig. 2. G1/G2-MSM on short-listed outer curves.

Table 14. Pairing computation benchmarks.

curve Miller Loop (ns) Final Exp. (ns) Pairing (ns)

BLS12-377 opt. ate 377191 422157 799348
BLS12-379 opt. ate 383753 453687 837440

BLS24-315 opt. ate 435958 993500 1429458

BLS12-377-BW6-761 opt. ate (Eq. 16) 1613306 1099533 2712839
BLS12-377-BW6-761 opt. ate (Eq. 37) 1249860 1099533 2349393
BLS12-377-BW6-761 opt. Tate 1249860 1099533 2349393
BLS12-379-BW6-764 opt. ate (Eq. 16) 1548546 1057174 2605720

BLS24-315-BW6-633 opt. ate 918724 727918 1646642
BLS24-315-BW6-633 opt. Tate 809503 727918 1537421
BLS24-315-BW6-672 opt. ate 1073268 977436 2050704
BLS24-315-BW6-672 opt. Tate 973630 977436 1951066
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the less conservative choice of outer curve to BLS24-315, namely BW6-633, a
pairing computation is almost as fast as on BLS24-315 and MSMs are the fastest
on all outer curves given the small field size. For the conservative choice, namely
BW6-672, operations on all three groups are reasonably fast and notably faster
than on outer curves to BLS12 (BW6-761 and BW6-764).

Groth’ 16 and PlonK schemes Based on previous paragraph analysis, here,
we discard BLS12-379/BW6-764 pair and choose to bench BLS12-377/BW6-761
and BLS24-315/BW6-633/BW6-762 pair of curves in the context of Groth’16 and
PlonK SNARKs. We choose a simple circuit (proof of exponentiation: aw := b 2.2)
to be able to control precisely the number of constraints. We bench the Setup,
Prove and Verify algorithms for both Groth16 and PlonK schemes and report
timings in figures 3, 4, 5, 6 and 7. The benchmark is run, this time, on an AWS
c5a.24xlarge (AMD EPYC 7R32) to be able to test large circuits. In table 15 we
recall the cost of SNARK algorithms in terms of preponderant groups operations.

Remark 4. The maximum number of constraints nmax a circuit can have is
different per SNARK scheme and per curve. A PlonK prover runs operations
on polynomials of degree 4n− 1, thus handles Fast Fourier Transforms (FFTs)
of size 4n over a coset. The biggest root of unity we can have is a 8n-th root.
Hence, for PlonK, nmax = 2L/8 = 2L−3 where L is the curve subgroup 2-adicity.
Similarly, a Groth16 prover runs operations over polynomials of degree 2n− 1.
Hence, nmax = 2L−2 for Groth16.

Table 15. Cost of Setup, Prove and Verify algorithms for Groth16 and PlonK.
m =number of wires, n =number of multiplications gates, a =number of additions gates
and ` =number of public inputs. MG =multiplication in G and P=pairing.

Setup Prove Verify

Groth16 3n MG1 , m MG2 (3n+m− `) MG1 , n MG2 3 P, ` MG1

PlonK (KZG) d≥n+a MG1 , 1 MG2 9(n+ a) MG1 2 P, 18 MG1

It is clear from figures 3, 4 and 7 that BLS12-377 is optimized to setup and
prove Groth16 proofs while BLS24-315 is suitable to setup and prove PlonK
proofs at the cost of acceptably slower verification time. For proof composition, we
see from figures 5, 6 and 7 that the outer curves to BLS24-315, namely BW6-633
and BW6-672, are faster for all the SNARK algorithms for both Groth16 and
PlonK. This confirms the recommendation of BLS24/BW6 pair of curves for
KZG-based SNARK. We should also note that for applications where one would
like to optimize the cost of generating and proving a proof of several proofs
{πi}0≤i≤M at the cost of slow generation of πi (e.g. proof aggregation by light
clients of off-chain generated proofs), one could use the BLS24/BW6 pair for
Groth16.
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Fig. 3. Groth16 Setup (a) and Prove (b) times per number of constraints for inner
curves.
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Fig. 7. Groth16 (a) and PlonK (b) Verify times on short-listed curves.

6 Conclusion

We generalized the curve construction of [35] and proposed a family in which
this curve falls. Precisely, a family of SNARK-friendly 2-chains built on top of
BLS12 inner curves. We investigated another family composed of inner BLS24
curves and outer BW6, CP8 and CP12 curves. We first presented our results
for a better arithmetic on all BLS curves and then derived generic formulas for
group operations and pairings over our outer curves. Then, we analysed and
compared the security and performance tradeoffs of all the constructions. In the
context of SNARK applications, we short-listed several curves based on practical
criteria. Finally, we presented a SageMath library to derive the curves and verify
the formulas and an optimized Golang implementation of the short-listed curves
along with benchmarks. We concluded that BLS12-377/BW6-761 is optimized in
the Groth16 setting while BLS24-315/BW6-672 (or less conservative BW6-633)
is optimized in the KZG-based SNARK setting.

As a future work, we would like to investigate optimized pairing algorithms
for SNARK circuits (e.g. R1CS). In fact, while pairings are well studied in the
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classical setting, there isn’t much work in the SNARK setting. This would enable
faster proof composition with SNARK-friendly 2-chains. Another avenue that
is worth noting is combining our work with other techniques that allow proof
composition, such as Plookup [21]. On a platform where only a target curve
is available (e.g. Ethereum blockchain implements natively BN254), one can
imagine composing efficiently multiple PlonK proofs with BLS24/BW6 pair of
curves and then using the less efficient Plookup technique only once to prove the
composed BW6-proof over the target curve.
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A Complement on BLS Curves

A.1 BLS Curve Parameters, and Proofs of Lemmas

Table 16. Parameters of BLS curves, 6 | k, 18 - k.

k 6, 12, 24, 48, 96 30, 42, 66, 78 60, 84

t(x) x+ 1

y(x) (x− 1)(2xk/6 − 1)/3

r(x) xk/3 − xk/6 + 1 Φk(x)

q(x) r(x)(x− 1)2/3 + x r(x)(x− 1)2/3c2(x) + x

c2(x) 1 x2 − x+ 1 x4 − x2 + 1

ρ 1 + 6/k (k/3 + 2)/ϕ(k)

Table 17. Parameters of BLS curves, k = 3 mod 6.

k 3, 9, 27, 81
15, 21, 33, 39,

51, 57, 69, 87, 93
45, 63, 99 75

t(x) x+ 1

y(x) (x− 1)(2xk/3 + 1)/3

r(x) x2k/3 + xk/3 + 1 Φk(x)

q(x) r(x)/3(x− 1)2 + x r(x)(x− 1)2/3c2(x) + x

c2(x) 1 x2 + x+ 1 x6 + x3 + 1 x10 + x5 + 1

ρ 1 + 3/k (2k/3 + 2)/ϕ(k)
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Proof (of Lemmas 1 and 3). Let us consider odd k. Observe that xk/3 is a primitive
third root of unity (−1 +

√
−3)/2 modulo r(x) = Φk(x), and 1/

√
−3 = (2xk/3 +

1)/3. A solution for y(x) = (t(x)−2)/
√
−3 mod r(x) is y(x) = (x−1)(2xk/3+1)/3,

an then q(x) = (t2(x) + 3y2(x))/4 is an irreducible polynomial which represents
primes in the terms of [20, Definition 2.5]. The curve order is q(x) + 1− t(x) =
((t(x)−2)2+3y2(x))/4 = ((x−1)2+(x−1)2(2xk/3+1)2/3)/4 = (x−1)2/3(x2k/3+
xk/3 + 1) = c(x)r(x). Note that xk − 1 = (x2k/3 + xk/3 + 1)(xk/3 − 1), hence
Φk(x) divides x2k/3 + xk/3 + 1 (as it does not divide xk/3 − 1), and the cofactor
c(x) has the form

c(x) = (x− 1)2/3 · (x2k/3 + xk/3 + 1)/Φk(x) .

In particular for k = 3j , the k-th cyclotomic polynomial is Φ3j (x) = Φ3(x3
j−1

) =
x2k/3 + xk/3 + 1, in this case the cofactor c(x) is exactly (x− 1)2/3.

With even k, xk/6 is a primitive 6-th root of unity (1 +
√
−3)/2 modulo

r(x) = Φk(x), and 1/
√
−3 = (2xk/6 − 1)/3. Then y(x) = (x − 1)(2xk/6 − 1)/3,

and q(x) = (t2(x) + 3y2(x))/4 is an irreducible polynomial which represents
primes in the terms of [20, Definition 2.5]. The curve order is q(x) + 1− t(x) =
((t(x)−2)2+3y2(x))/4 = ((x−1)2+(x−1)2(2xk/6−1)2/3)/4 = (x−1)2/3(xk/3−
xk/6 + 1) = c(x)r(x). In the same way as for odd k, one observes that xk − 1 =
(xk/3 − xk/6 + 1)(xk/3 + xk/6 + 1)(xk/3 − 1), hence Φk(x) divides xk/3 − xk/6 + 1,
and the cofactor c(x) has the form

c(x) = (x− 1)2/3 · (xk/3 − xk/6 + 1)/Φk(x) .

Proof (of Lemma 2). Observe that q(x)− 1 = c(x)r(x) + t(x)− 2, and t(x)− 2 =
x− 1. For odd k, from Lemma 1 one has q(x)− 1 = (x− 1)2/3 · (x2k/3 + xk/3 +
1) + x− 1 = (x− 1)/3 · ((x− 1)(x2k/3 + xk/3 + 1) + 1).

For even k, from Lemma 1 one has q(x)− 1 = (x− 1)2/3 · (xk/3 − xk/6 + 1) +
x− 1 = (x− 1)/3 · ((x− 1)(xk/3− xk/6 + 1) + 1). In both cases, (x− 1)/3 divides
q(x)− 1.

Proof (of Lemma 4). Any BLS curve is an ordinary curve of j-invariant 0 and
discriminant −3, of the form y2 = x3 + b, defined over a prime field Fq where
q = 1 mod 3. In this case, it is well known that the (GLV) endomorphism is of
the form ψ : (x, y) 7→ (ωx, y), where ω ∈ Fq is a primitive third root of unity.
It has characteristic polynomial ψ2 + ψ + 1 = 0 and is defined over Fq. The
endomorphism ring of the curve is Z[(1 +

√
−3)/2].

A.2 Subgroup Security, Distortion Map

The definition of subgroup security in [6] is the following.

Definition 3 (Subgroup Security, [6, Definition 1]). Let q(u), t(u), r(u) ∈
Q[u] parameterize a family of ordinary pairing-friendly elliptic curves, and for
any particular u0 ∈ Z such that q = q(u0) and r = r(u0) are prime, let E
be the resulting pairing-friendly elliptic curve over Fq of order divisible by r.
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Let h1 = #E(Fq)/r, h2 = #E′(Fqk/d)/r and hT = Φk(q)/r. We say that E is
subgroup-secure if all Q[u]-irreducible factors of h1(u), h2(u) and hT (u) that can
represent primes and that have degree at least that of r(u), contain no prime
factors smaller than r(u0) ∈ Z when evaluated at u = u0.

If c0 = (x − 1)/3 is prime, since the structure of the subgroup of order
c20 is Z/c0Z ⊕ Z/c0Z, and the subgroup is fully defined over the prime field
Fq (Corollary 1), one can find a basis 〈P1, P2〉 so that P1, P2 are of order c0
and linearly independent. Moreover there exists a distortion map ψ from the
subgroup 〈P1〉 to 〈P2〉. The distortion map ψ is given by (x, y) 7→ (ωx, y) where
ω ∈ Fq is such that ω2 + ω + 1 = 0. (See [13] on distortion maps on embedding
degree 1 curves). Because of this distortion map, one can transfer as in the MOV
attack a discrete logarithm computation in the subgroup of order (x− 1)/3 of
E(Fq) to a discrete logarithm computation in the subgroup of order (x− 1)/3
of Fq (note that this is the base field Fq, not the extension field Fqk), where
sub-exponential DL computation takes place. The DL computation in Fq has
complexity exp((1 + o(1))

√
ln q ln ln q) with the quadratic sieve, and exp((1.923 +

o(1)) 3
√

ln q(ln ln q)2) with the number field sieve. Because the complexity is in q
not c0, the computation will be slower, nevertheless it exists. In practice, if an
implementation of a generic DL computation algorithm like Pollard-ρ is faster in
Fq than on E(Fq) for the subgroup of order (x− 1)/3, it is possible to transfer
the computation from the curve to the finite field thanks to the distortion map
and a Weil pairing.

A.3 Hard part of the final exponentiation for BW6 curves

In [33], Hayashida, Hayasaka and Teruya develop formulas for the hard part of
the final exponentiation. Applying [33, Theorem 4], we obtain

Φ6(q)/r = c((t− 1) + q − 1) + Φ6(t− 1)/r

= c(q + t− 2) + (t2 − 3t+ 3)/r . (38)

Replacing c = cbw,i, q = qbw,i and t = tbw,i + htrbw, and simplifying, we obtain

Φ6(qbw,i)/rbw = (cbw,i + ht)(qbw,i + tbw,i − 2) + Φ6(tbw,i − 1)/rbw . (39)

In (39), the factor of (cbw,i + ht) as degree 5 in x (degree of tbw,i − 2). Actually
(27), (28) of degree 3 in x are related to (39). Observe that multiplying (39) by
(x+ 1) allows to substitute for (20): −(x+ 1)(tbw,0 − 2) = 3rbw + x3 − x2 + 1;
and (23): (x+ 1)(tbw,3 − 2) = 3rbw + x3 − x2 − 2x− 1. Then again cbw,irbw =
qbw,i + 1− (tbw,i + htrbw). From (39) and (20) one gets

−(x+ 1)Φ6(qbw,0)/rbw = (cbw,0 + ht)(−(x+ 1)qbw,0 + x3 − x2 + 1)
+3(qbw,0 + 1− tbw,0)− (x+ 1)Φ6(tbw,0 − 1)/rbw

= (cbw,0 + ht)(−(x+ 1)qbw,0 + x3 − x2 + 1) + 3(qbw,0 − x2 + 2x− 2)

and (27) is three times this formula. In the same way, we can obtain (28) from (39)
and (23).
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B STNFS-security of MNT6 curves

In [31], Guillevic, Massson and Thomé estimated the cost of the Special-Tower
Number Field Sieve algorithm (STNFS) and its variants for MNT6 curves (MNT
curves of embedding degree 6) for curve parameters obtained from PBC library
developed by Ben Lynn [41,42]. In [32], Guillevic and Singh refined the cost model.
We reproduce in Fig. 8 the estimated cost of computing a discrete logarithm
in GF(p6) with the Tower NFS algorithm. There is a cross-over point at p
of about 1536 bits from the Conjugation method of polynomial selection, to
the generalisation made by Sarkar–Singh, both with the TNFS algorithm. The
crossover point from TNFS to NFS is at much larger p. In conclusion, to ensure
a 128-bit security level in a field GF(p6), the prime p should be at least 672-bit
long. If moreover a Special variant of NFS or TNFS is available because the
prime p has a special form, the size requirement will be larger, but this is not
the case for MNT parameters.
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Fig. 8. Estimated cost of DL computation with TNFS in GF(p6).
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