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In this paper we present an approach for designing fast public key encryption cryptosystems
using random primitives and error permutation. An encryption speed of such systems allows to use
them for “on-the-fly” public key encryption and makes them useful for real-time communications. A
small error size allows to use this approach for designing digital signature schemes
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1. Introduction
There are lot of approaches for designing asymmetric encryption schemes. Any of them is based

on some NP-hard problem. The most  popular  and well-studied  NP-hard  problems are:  discrete

logarithm problems [1], hardness of decoding a general linear code [2], [3], lattice problems [4], [5].

The  current  standards  of  asymmetric  cryptography  are  based  on  discrete  logarithm  problems.

Unfortunately,  these  standards  are  vulnerable  against  Shor’s  algorithm [6]  and a  cryptographic

community works on post-quantum cryptography. Promising post-quantum cryptographic schemes

are lattice-based, isogeny-based or code-based.

We focus on a code-based approach and on the underlying problem of decoding a general linear

code. The most known algorithm which is based on this problem is McElice cryptosystem [2]. It

was the first such scheme to use randomization in the encryption process. McElice cryptosystem is

a candidate for post-quantum cryptography, as it is immune to attacks using Shor's algorithm. This

cryptosystem has an extremely high encryption speed and a large public key size. Unfortunately, it

is not well intended for designing digital signature schemes that is the major disadvantage of such a

cryptosystem.  Most  of  other  code-based  schemes,  like  Niederreiter  one,  are  appeared  to  be

vulnerable to various algebraic attacks and structural decoding [7].

In this paper we present an approach for designing fast public key encryption systems which can

be  used  both  for  fast  encryption  and  digital  signature  check.  The  approach  is  based  on  the

complicity of computing decryption matrices from the obfuscated using white-box cryptography

techniques [8]-[10]  T-boxes. The obfuscation of a  T-box consists  of two secret transformations



(which are the part of a secret key): concatenation with a random error vector and multiplication

with a random nonsingular binary matrix. Additionally, as we can see later, source T-boxes (before

obfuscation  transformations) are  created  using  random S-boxes  and  other  random nonsingular

binary matrix. These random S-boxes and binary matrix are another part of a secret key. To decrypt

an encrypted message an adversary must restore binary matrices (actually, their equivalents up to

linear transformations). It is equal to extracting error vectors from the T-boxes. In other words, an

adversary must decode an unknown linear code.

2. Terminology and Notation
Let GF (2)  be a Galois Field of order 2, a⋅b be a product of two elements over GF (2)

and a+b be a sum of two elements over  GF (2) . We denote an n-bit vector as  α(n) and a

square n×n  matrix as M n×n . We also denote as  α(n)+β(n) a bitwise modulo-2 addition of

two n-bit vectors α(n) and β(n) . 

Let  M×α  be  a  product  of  square  binary  matrix  M n×n  and  n-bit  vector  α(n)  over

GF (2) :

M×α=[m0
0 m0

1 ... m0
n−1

m1
0 m1

1 ... m1
n−1

... ... ... ...
mn−1

0 mn−1
1 ... mn−1

n−1]×[α0

α1

...
αn−1

]=[m0
0⋅α0+...+m0

n−1⋅αn−1

m1
0⋅α0+...+m1

n−1⋅αn−1

...
mn−1

0 ⋅α0+...+mn−1
n−1⋅αn−1

] (1),

where mi
j - element of binary matrix M n×n at the row i and column j ; αi  - i-th element (bit)

of vector α(n) .

Let  t∣n and  
n
t
=u .  Then we can split a matrix  M n×n  to the u2  square submatrices

W t×t , a vector α(n)  to the u t-bit subvectors β0
(t) ,β1

(t) , ... ,βu−1
(t) and write (1) as follows:

M×α=[W 0
0 W 0

1 ... W 0
u−1

W 1
0 W 1

1 ... W 1
u−1

... ... ... ...
W u−1

0 W u−1
1 ... W u−1

u−1]×[β0
(t)

β1
(t)

...
βu−1

(t) ]=[W 0
0×β0

(t)+...+W 0
u−1×βu−1

(t)

W 1
0×β0

(t)+...+W 1
u−1×βu−1

(t)

...
W u−1

0 ×β0
(t)+...+Wu−1

u−1×βu−1
(t) ] (2)

Let s(x): x(t )→ z(t)  be a bijective nonlinear transformation (S-box) where t is a bit size of the

vectors  x and  z. By replacing  β0
(t) ,β1

(t) , ... ,βu−1
(t) with  s0(x0) , s1(x1) , ... , su−1(xu−1) in (2) we get

the following:



F (x0 , ... , xu−1)=[W 0
0 ... W 0

u−1

W 1
0 ... W 1

u−1

... ... ...
W u−1

0 ... W u−1
u−1]×[s0(x0)

s1(x1)
...
su−1(xu−1)

]=[W 0
0×s0(x0)+...+W 0

u−1×su−1(xu−1)
W 1

0×s0(x0)+...+W 1
u−1×su−1(xu−1)

...
W u−1

0 ×s0(x0)+...+W u−1
u−1×su−1(xu−1)

] (3),

where x i  is a t-bit vector.

From the right side of (3) follows:

F (x0 , ... , xu−1)=[W 0
0×s0(x0)

W 1
0×s0(x0)

...
W u−1

0 ×s0(x0)
]+ ...+[W 0

u−1×su−1(xu−1)
W 1

u−1×su−1(xu−1)
...
W u−1

u−1×su−1(xu−1)
]=T 0(x0)+...+T u−1(xu−1) (4)

The  functions T i(x i): x i
(t)→γ i

(n)  in  (4)  are  called  T-boxes.  Every  T-box  is  a  lookup  table

function. We can combine the T-boxes as follows:

F (x0 , ... , xu−1)=T 0
c (x0 , x1)+ ...+T u

2
−1

c (xu−2 , xu−1) (5),

where 

T i
c(xk , x l)=[W 0

k×sk (xk)+W 0
l ×sl(x l)

W 1
k×sk (xk)+W 1

l×sl(x l)
...
W u−1

k ×sk (xk)+W u−1
l ×sl(xl)

] (6)

3. Private and public keys
At the first step we generate a set S={s0 , s1 , ... , su−1}, si(x): x(t)→ z(t)  of u t-bit s-boxes in the

random way using, for example, Chaos theory [11] - [13]. After that we (randomly) generate a

nonsingular  binary  matrix  M n×n ,  n=u⋅t .  Then  we  select  error  size  es and  randomly

generate a nonsingular binary matrix H h×h , where h=n+es . A tuple {S , M , H } is a private

key.

Having a private key we generate a set of combined  T-boxes (5). After that we construct a

lookup function T i
ex(α(t) ,β( t)):{α(t) ,β(t )}→ z(h=n+es) from T i

c(α(t ) ,β(t )) by expanding the result of

every  T i
c(α(t ) ,β(t )) by es bits. Then we fill h  high bits of the result of every  T i

ex(α( t) ,β(t))

with  randomly  generated  es-bit  values err i ,α ,β=erri(α
(t ) ,β(t))  (Figure  1).  These  values  must

satisfy the following conditions:

∀ i ∑
α (t) ,β (t )

err
i ,α (t ), β ( t)=0 (7)

err i1 ,α 1 , β 1
=erri2 ,α 2 , β 2

⇒ i1=i2 ,α 1=α 2 ,β 1=β 2 (8)

After that mix the bits of the result of every T i
ex(α(t) ,β(t)) in the following way (Figure 2):



T i
mix(α(t) ,β(t))=H h×h×T i

ex(α(t) ,β(t)) (9)

The set of mixed T-box-es  {T i
mix , i∈[0 ,

u
2
−1]} (which are determined as lookup tables) is a

public key.

Figure 1. Expanding of the result of a T-box by error vector

Figure 2. Mixing bits of the result a T-box

4. Encryption with a public key
Let x(n)={x0

(t) , x1
(t) , ... , xu−1

(t ) } be an n-bit source message. We encrypt it in the following way:

c=Encr (x)=T 0
mix(x0

(t ) , x1
(t))+...+T u

2
−1

mix (xu−2
(t) , xu−1

(t) ) (10),
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where c is a h-bit encrypted message.

5. Decryption with a private key
As we mentioned above, a tuple  {S , M , H } is a private key. At the first step we calculate

inverse matrices H 'h×h , M 'n×n : H h×h×H 'h×h=I h×h , M n×n×M 'n×n=I n×n ( Ih×h , In×n are identity

matrices)  and inverse  S-box-es  S '={s '0 , s '1 , ... , s 'u−1}: si(s ' i(x))=s ' i(si(x))=x .  After  that  we

multiply an input h-bit ciphertext c with H 'h×h :

dmx(h)=Demix (c(h))=H 'h×h×c(h) (11)

High es bits of dmx (Figure 3) contain a summary error:

err=err0(x0 , x1)+ ...+err u
2
−1

(xu−2 , xu−1) (12)

Figure 3. "Demix" function

So, we can reduce a size of dmx from h to n by cutting the high es bits. Now we have an error-

free n-bit vector ef (n)  (Figure 4):

ef (n)=Reduce (dmx(h)) (13)

After that we multiply M 'n×n with ef (n) and get a n-bit vector z(n) :

z(n)=M 'n×n×ef (n) (14)

We  can  represent  a  n-bit  vector  z(n) as  a  vector  with  u t-bit  coordinates

z(n)={z0
(t) , z1

(t ) , ... , zu−1
(t ) } .  So,  to  get  a  source  message  x(n) we apply  inverse  S-box-es  in  the

following way:

x(n)={x0
(t) , x1

(t) , ... , xu−1
(t ) }={s '0( z0

(t )), s '1( z1
( t)) , ... , s 'u−1( zu−1

(t ) )} (15)

n
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n
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Figure 4. "Reduce" function

6. Digital signature scheme
Let us briefly remind ourselves a typical digital signature algorithm. Let Hash(m):m→ y(h)

be a hash function, Encr ( y , private_key ): y→x(n) be a function that encrypts some input vector

with private key, Decr (x , public_key): x→ y(h) be a function that decrypts some input vector with

public key. To sign a message m Alice calculates its hash function and then encrypts the result with

her private key. When sending a message to Bob she attaches to it an encrypted with her private key

hash:  m∥sgn , sgn=Encr (Hash(m) , private_key ) .  After receiving a signed message  m∥sgn

from Alice Bob calculates a hash of  m and compares the result with  Decr (sgn , public_key) ,

where  public_key is  a  public  key  of  Alice.  The  signature  is  valid  if

Hash(m)=Decr (sgn , public_key) .

In our approach a size of an error vector is  es bits and es=h−n . As we can see, there are

2n solutions of (8) in the space of h-bit vectors. In other words, every h-bit vector is a solution of

(8) with a probability of 
1

2es
.

So, we can use the following digital signature algorithm:

1. Create a es-bit vector cnt and initialize it with 0.

2. Concatenate a source message src with a counter cnt: m=src∥cnt .

3. Calculate a h-bit hash of m: hsh=Hash(m):m→hsh(h) .

4. Decrypt hsh with a private key: sgn(n)=Decr(hsh , private_key ):hsh(h)→sgn(n) .

n
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n

h=n+es
es

Reduce

err

dmx

n

0

n

ef



5. Encrypt  calculated  at  the  previous  step  sgn with  a  public  key:

dh(n)=Encr (sgn , public_key): sgn(n)→dh(h) .

6. Compare dh and hsh. If they are not equal, increment cnt and repeat the steps from 2 to 6.

7. Concatenate m with sgn: ms=m∥sgn . 

So, n-bit vector sgn is a signature of a source message src.

7. Parameters
To get a private key from a public one an adversary must firstly eliminate errors from the results

of  T-boxes  T i
mix . Every this result is obfuscated by the matrix  H  (which is a part of a private

key). We can write (9) as follows:

T i
mix (α(t) ,β(t))=H h×h×T i

ex 0(α(t) ,β(t))+Hh×h×exterri(α
(t) ,β(t)) (16),

where  T i
ex 0(α(t) ,β(t)) is  the  same as  T i

ex(α( t) ,β(t)) ,  but  high  es bits  of  the  result  are  zero,

exterr i(α
(t ) ,β(t )) returns a h-bit vector, where low n bits are zero and high h−n bits are equal

to the result of err i(α
(t) ,β(t )) . A space of h-bit vectors rev i ,α ,β=Hh×h×exterri(α

(t) ,β(t)) makes it

hard to restore linear relationship between sub-vectors of the results of  T-box-es. In other words,

having a set of all of the results of  T i
mix (α(t) ,β(t)) , it is hard to build an inverse binary h×h

matrix which is necessary to decrypt encrypted messages and to restore a private key from a public

one.

For practical implementation we recommend the following parameters: n=256 bits, h=144 bits,

es=16 bits, t = 4 bits.

8. An underlying hard problem

Let the result of the every of T i
mix (α(t) ,β(t))  be a h-bit binary vector ζ j

(h) , j∈[0 ,
22⋅t⋅u

2
−1] .

A generic attack to the our approach is the same as one to the generic rucksack cryptosystem. Let

we have two set of integers I⊂{i :0≤i≤22⋅t⋅u
4

−1} and J⊂{i : 22⋅t⋅u
4

≤ j≤22⋅t⋅u
2

−1} . Then we

can compute and make a list of the values A I=∑
i∈I

ζi and BJ=c−∑
j∈J

ζ j . These lists include a

pair of sets  I0  and J0 satisfying A I0
=BJ 0

, and the sets  I 0  and J0 give a solution to

the problem:

c=∑
i∈I0

ζi+∑
j∈J 0

ζ j (16)



The complexity of this algorithm is about O( 22⋅t⋅u
4

) . For the recommended parameters this

complexity is about O(2128) .

 From (10) we can construct the following binary matrix:

L
(22⋅t⋅u
2

+h×22⋅t⋅u
2

+1)
=[

1
0
0
...
...
ζ 0

0
1
0
...
...
ζ 1

...

0
...
...
1
...
ζ ν

...

0
...
...
...
1
ζ

22⋅t⋅u
2

−1

0
...
...
...
0
c ] (17)

The submatrix E
(22⋅t⋅u

2
×22⋅t⋅u

2
)

of (17) (first  
22⋅t⋅u

2
 rows and 

22⋅t⋅u
2

columns) is an identity

one. So, the columns of the binary matrix (17) form a basis of the lattice of binary vectors or a basis

of the linear code over  GF(2). From (10) it follows that some linear combination over  GF(2) of

binary vectors ζ j
(h) gives the binary vector c :

∑
j=0

22⋅t⋅u
2

−1

μ j⋅ζ j
(h)+c=0 ,μ j∈GF (2) (18),

where μ j is an element of a binary vector μ
(22⋅t⋅u

2
)

on the position j. From (17) and (18) we get: 

∑
j=0

22⋅t⋅u
2

−1

μ j⋅L j+L
22⋅t⋅u

2 =ψ
(22⋅t⋅u

2
+h)

,μ j∈GF (2) (19),

where L j is a  j-th column of the binary matrix L, ψ
(22⋅t⋅u

2
+h)

is a binary vector (codeword). As

we can see,  the  coordinates  of  nonzero  bits  of  ψ are  equal  to  the  coordinates  j of  nonzero

elements  μ j of  μ and vice versa. If we know a binary vector  ψ we can easy decrypt an

encrypted message c by matching its coordinates with appropriate T-box-es. Note that ψ is a low

weight  vector  (codeword)  with  a  Hamming  weight  wt (ψ)=wt(μ)=u
2

.  So,  the  problem  of

finding the binary vector ψ from the code (17) is the problem of finding low weight codewords

which is known to be NP-hard [14].
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