
An approach for designing fast public key
encryption systems using white-box

cryptography techniques

Schelkunov D., Ph.D.

ReCrypt LLC

d.schelkunov@gmail.com, schelkunov@re-crypt.com

In this paper we present an approach for designing fast public key encryption cryptosystems
using random primitives and error permutation. An encryption speed of such systems allows to use
them for “on-the-fly” public key encryption and makes them useful for real-time communications. A
small error size allows to use this approach for designing digital signature schemes

Keywords: public-key cryptography, white-box cryptography, digital signature

1. Introduction
There are lot of approaches for designing asymmetric encryption schemes. Any of them is based

on some NP-hard problem. The most popular and well-studied NP-hard problems are: discrete

logarithm problems [1], hardness of decoding a general linear code [2], [3], lattice problems [4], [5].

The current standards of asymmetric cryptography are based on discrete logarithm problems.

Unfortunately, these standards are vulnerable against Shor’s algorithm [6] and a cryptographic

community works on post-quantum cryptography. Promising post-quantum cryptographic schemes

are lattice-based, isogeny-based or code-based.

We focus on a code-based approach and on the underlying problem of decoding a general linear

code. The most known algorithm which is based on this problem is McElice cryptosystem [2]. It

was the first such scheme to use randomization in the encryption process. McElice cryptosystem is

a candidate for post-quantum cryptography, as it is immune to attacks using Shor's algorithm. This

cryptosystem has an extremely high encryption speed and a large public key size. Unfortunately, it

is not well intended for designing digital signature schemes that is the major disadvantage of such a

cryptosystem. Most of other code-based schemes, like Niederreiter one, are appeared to be

vulnerable to various algebraic attacks and structural decoding [7].

In this paper we present an approach for designing fast public key encryption systems which can

be used both for fast encryption and digital signature check. The approach is based on the

complicity of computing decryption matrices from the obfuscated using white-box cryptography

techniques [8]-[10] T-boxes. The obfuscation of a T-box consists of two secret transformations

(which are the part of a secret key): concatenation with a random error vector and multiplication

with a random nonsingular binary matrix. Additionally, as we can see later, source T-boxes (before

obfuscation transformations) are created using random S-boxes and other random nonsingular

binary matrix. These random S-boxes and binary matrix are another part of a secret key. To decrypt

an encrypted message an adversary must restore binary matrices (actually, their equivalents up to

linear transformations). It is equal to extracting error vectors from the T-boxes. In other words, an

adversary must decode an unknown linear code.

2. Terminology and Notation
Let GF (2) be a Galois Field of order 2, a⋅b be a product of two elements over GF (2)

and a+b be a sum of two elements over GF (2) . We denote an n-bit vector as α(n) and a

square n×n matrix as M n×n . We also denote as α(n)+β(n) a bitwise modulo-2 addition of

two n-bit vectors α(n) and β(n) .

Let M×α be a product of square binary matrix M n×n and n-bit vector α(n) over

GF (2) :

M×α=[m0
0 m0

1 ... m0
n−1

m1
0 m1

1 ... m1
n−1

...
mn−1

0 mn−1
1 ... mn−1

n−1]×[α0

α1

...
αn−1

]=[m0
0⋅α0+...+m0

n−1⋅αn−1

m1
0⋅α0+...+m1

n−1⋅αn−1

...
mn−1

0 ⋅α0+...+mn−1
n−1⋅αn−1

] (1),

where mi
j - element of binary matrix M n×n at the row i and column j ; αi - i-th element (bit)

of vector α(n) .

Let t∣n and
n
t
=u . Then we can split a matrix M n×n to the u2 square submatrices

W t×t , a vector α(n) to the u t-bit subvectors β0
(t) ,β1

(t) , ... ,βu−1
(t) and write (1) as follows:

M×α=[W 0
0 W 0

1 ... W 0
u−1

W 1
0 W 1

1 ... W 1
u−1

...
W u−1

0 W u−1
1 ... W u−1

u−1]×[β0
(t)

β1
(t)

...
βu−1

(t)]=[W 0
0×β0

(t)+...+W 0
u−1×βu−1

(t)

W 1
0×β0

(t)+...+W 1
u−1×βu−1

(t)

...
W u−1

0 ×β0
(t)+...+Wu−1

u−1×βu−1
(t)] (2)

Let s(x): x(t)→ z(t) be a bijective nonlinear transformation (S-box) where t is a bit size of the

vectors x and z. By replacing β0
(t) ,β1

(t) , ... ,βu−1
(t) with s0(x0) , s1(x1) , ... , su−1(xu−1) in (2) we get

the following:

F (x0 , ... , xu−1)=[W 0
0 ... W 0

u−1

W 1
0 ... W 1

u−1

...
W u−1

0 ... W u−1
u−1]×[s0(x0)

s1(x1)
...
su−1(xu−1)

]=[W 0
0×s0(x0)+...+W 0

u−1×su−1(xu−1)
W 1

0×s0(x0)+...+W 1
u−1×su−1(xu−1)

...
W u−1

0 ×s0(x0)+...+W u−1
u−1×su−1(xu−1)

] (3),

where x i is a t-bit vector.

From the right side of (3) follows:

F (x0 , ... , xu−1)=[W 0
0×s0(x0)

W 1
0×s0(x0)

...
W u−1

0 ×s0(x0)
]+ ...+[W 0

u−1×su−1(xu−1)
W 1

u−1×su−1(xu−1)
...
W u−1

u−1×su−1(xu−1)
]=T 0(x0)+...+T u−1(xu−1) (4)

The functions T i(x i): x i
(t)→γ i

(n) in (4) are called T-boxes. Every T-box is a lookup table

function. We can combine the T-boxes as follows:

F (x0 , ... , xu−1)=T 0
c (x0 , x1)+ ...+T u

2
−1

c (xu−2 , xu−1) (5),

where

T i
c(xk , x l)=[W 0

k×sk (xk)+W 0
l ×sl(x l)

W 1
k×sk (xk)+W 1

l×sl(x l)
...
W u−1

k ×sk (xk)+W u−1
l ×sl(xl)

] (6)

3. Private and public keys
At the first step we generate a set S={s0 , s1 , ... , su−1}, si(x): x(t)→ z(t) of u t-bit s-boxes in the

random way using, for example, Chaos theory [11] - [13]. After that we (randomly) generate a

nonsingular binary matrix M n×n , n=u⋅t . Then we select error size es and randomly

generate a nonsingular binary matrix H h×h , where h=n+es . A tuple {S , M , H } is a private

key.

Having a private key we generate a set of combined T-boxes (5). After that we construct a

lookup function T i
ex(α(t) ,β(t)):{α(t) ,β(t)}→ z(h=n+es) from T i

c(α(t) ,β(t)) by expanding the result of

every T i
c(α(t) ,β(t)) by es bits. Then we fill h high bits of the result of every T i

ex(α(t) ,β(t))

with randomly generated es-bit values err i ,α ,β=erri(α
(t) ,β(t)) (Figure 1). These values must

satisfy the following conditions:

∀ i ∑
α (t) ,β (t)

err
i ,α (t), β (t)=0 (7)

err i1 ,α 1 , β 1
=erri2 ,α 2 , β 2

⇒ i1=i2 ,α 1=α 2 ,β 1=β 2 (8)

After that mix the bits of the result of every T i
ex(α(t) ,β(t)) in the following way (Figure 2):

T i
mix(α(t) ,β(t))=H h×h×T i

ex(α(t) ,β(t)) (9)

The set of mixed T-box-es {T i
mix , i∈[0 ,

u
2
−1]} (which are determined as lookup tables) is a

public key.

Figure 1. Expanding of the result of a T-box by error vector

Figure 2. Mixing bits of the result a T-box

4. Encryption with a public key
Let x(n)={x0

(t) , x1
(t) , ... , xu−1

(t) } be an n-bit source message. We encrypt it in the following way:

c=Encr (x)=T 0
mix(x0

(t) , x1
(t))+...+T u

2
−1

mix (xu−2
(t) , xu−1

(t)) (10),

n

0

n

n

0

n

h=n+es
es

Expand by es

err i(α
(t), β (t))

T i
ex (α (t) , β (t))T i

c (α (t), β (t))

n

0

n

h=n+es
es

0

h

h

Mix bits

T i
ex (α (t) , β (t)) T i

mix (α (t) ,β (t))

where c is a h-bit encrypted message.

5. Decryption with a private key
As we mentioned above, a tuple {S , M , H } is a private key. At the first step we calculate

inverse matrices H 'h×h , M 'n×n : H h×h×H 'h×h=I h×h , M n×n×M 'n×n=I n×n (Ih×h , In×n are identity

matrices) and inverse S-box-es S '={s '0 , s '1 , ... , s 'u−1}: si(s ' i(x))=s ' i(si(x))=x . After that we

multiply an input h-bit ciphertext c with H 'h×h :

dmx(h)=Demix (c(h))=H 'h×h×c(h) (11)

High es bits of dmx (Figure 3) contain a summary error:

err=err0(x0 , x1)+ ...+err u
2
−1

(xu−2 , xu−1) (12)

Figure 3. "Demix" function

So, we can reduce a size of dmx from h to n by cutting the high es bits. Now we have an error-

free n-bit vector ef (n) (Figure 4):

ef (n)=Reduce (dmx(h)) (13)

After that we multiply M 'n×n with ef (n) and get a n-bit vector z(n) :

z(n)=M 'n×n×ef (n) (14)

We can represent a n-bit vector z(n) as a vector with u t-bit coordinates

z(n)={z0
(t) , z1

(t) , ... , zu−1
(t) } . So, to get a source message x(n) we apply inverse S-box-es in the

following way:

x(n)={x0
(t) , x1

(t) , ... , xu−1
(t) }={s '0(z0

(t)), s '1(z1
(t)) , ... , s 'u−1(zu−1

(t))} (15)

n

0

n

err
es

dmx
0

h

h

c

Demix

Figure 4. "Reduce" function

6. Digital signature scheme
Let us briefly remind ourselves a typical digital signature algorithm. Let Hash(m):m→ y(h)

be a hash function, Encr (y , private_key): y→x(n) be a function that encrypts some input vector

with private key, Decr (x , public_key): x→ y(h) be a function that decrypts some input vector with

public key. To sign a message m Alice calculates its hash function and then encrypts the result with

her private key. When sending a message to Bob she attaches to it an encrypted with her private key

hash: m∥sgn , sgn=Encr (Hash(m) , private_key) . After receiving a signed message m∥sgn

from Alice Bob calculates a hash of m and compares the result with Decr (sgn , public_key) ,

where public_key is a public key of Alice. The signature is valid if

Hash(m)=Decr (sgn , public_key) .

In our approach a size of an error vector is es bits and es=h−n . As we can see, there are

2n solutions of (8) in the space of h-bit vectors. In other words, every h-bit vector is a solution of

(8) with a probability of
1

2es
.

So, we can use the following digital signature algorithm:

1. Create a es-bit vector cnt and initialize it with 0.

2. Concatenate a source message src with a counter cnt: m=src∥cnt .

3. Calculate a h-bit hash of m: hsh=Hash(m):m→hsh(h) .

4. Decrypt hsh with a private key: sgn(n)=Decr(hsh , private_key):hsh(h)→sgn(n) .

n

0

n

h=n+es
es

Reduce

err

dmx

n

0

n

ef

5. Encrypt calculated at the previous step sgn with a public key:

dh(n)=Encr (sgn , public_key): sgn(n)→dh(h) .

6. Compare dh and hsh. If they are not equal, increment cnt and repeat the steps from 2 to 6.

7. Concatenate m with sgn: ms=m∥sgn .

So, n-bit vector sgn is a signature of a source message src.

7. Parameters
To get a private key from a public one an adversary must firstly eliminate errors from the results

of T-boxes T i
mix . Every this result is obfuscated by the matrix H (which is a part of a private

key). We can write (9) as follows:

T i
mix (α(t) ,β(t))=H h×h×T i

ex 0(α(t) ,β(t))+Hh×h×exterri(α
(t) ,β(t)) (16),

where T i
ex 0(α(t) ,β(t)) is the same as T i

ex(α(t) ,β(t)) , but high es bits of the result are zero,

exterr i(α
(t) ,β(t)) returns a h-bit vector, where low n bits are zero and high h−n bits are equal

to the result of err i(α
(t) ,β(t)) . A space of h-bit vectors rev i ,α ,β=Hh×h×exterri(α

(t) ,β(t)) makes it

hard to restore linear relationship between sub-vectors of the results of T-box-es. In other words,

having a set of all of the results of T i
mix (α(t) ,β(t)) , it is hard to build an inverse binary h×h

matrix which is necessary to decrypt encrypted messages and to restore a private key from a public

one.

For practical implementation we recommend the following parameters: n=256 bits, h=144 bits,

es=16 bits, t = 4 bits.

8. An underlying hard problem

Let the result of the every of T i
mix (α(t) ,β(t)) be a h-bit binary vector ζ j

(h) , j∈[0 ,
22⋅t⋅u

2
−1] .

A generic attack to the our approach is the same as one to the generic rucksack cryptosystem. Let

we have two set of integers I⊂{i :0≤i≤22⋅t⋅u
4

−1} and J⊂{i : 22⋅t⋅u
4

≤ j≤22⋅t⋅u
2

−1} . Then we

can compute and make a list of the values A I=∑
i∈I

ζi and BJ=c−∑
j∈J

ζ j . These lists include a

pair of sets I0 and J0 satisfying A I0
=BJ 0

, and the sets I 0 and J0 give a solution to

the problem:

c=∑
i∈I0

ζi+∑
j∈J 0

ζ j (16)

The complexity of this algorithm is about O(22⋅t⋅u
4

) . For the recommended parameters this

complexity is about O(2128) .

 From (10) we can construct the following binary matrix:

L
(22⋅t⋅u
2

+h×22⋅t⋅u
2

+1)
=[

1
0
0
...
...
ζ 0

0
1
0
...
...
ζ 1

...

0
...
...
1
...
ζ ν

...

0
...
...
...
1
ζ

22⋅t⋅u
2

−1

0
...
...
...
0
c] (17)

The submatrix E
(22⋅t⋅u

2
×22⋅t⋅u

2
)

of (17) (first
22⋅t⋅u

2
 rows and

22⋅t⋅u
2

columns) is an identity

one. So, the columns of the binary matrix (17) form a basis of the lattice of binary vectors or a basis

of the linear code over GF(2). From (10) it follows that some linear combination over GF(2) of

binary vectors ζ j
(h) gives the binary vector c :

∑
j=0

22⋅t⋅u
2

−1

μ j⋅ζ j
(h)+c=0 ,μ j∈GF (2) (18),

where μ j is an element of a binary vector μ
(22⋅t⋅u

2
)

on the position j. From (17) and (18) we get:

∑
j=0

22⋅t⋅u
2

−1

μ j⋅L j+L
22⋅t⋅u

2 =ψ
(22⋅t⋅u

2
+h)

,μ j∈GF (2) (19),

where L j is a j-th column of the binary matrix L, ψ
(22⋅t⋅u

2
+h)

is a binary vector (codeword). As

we can see, the coordinates of nonzero bits of ψ are equal to the coordinates j of nonzero

elements μ j of μ and vice versa. If we know a binary vector ψ we can easy decrypt an

encrypted message c by matching its coordinates with appropriate T-box-es. Note that ψ is a low

weight vector (codeword) with a Hamming weight wt (ψ)=wt(μ)=u
2

. So, the problem of

finding the binary vector ψ from the code (17) is the problem of finding low weight codewords

which is known to be NP-hard [14].

9. References
1. Weisstein, Eric W. Discrete Logarithm. MathWorld. Wolfram Web. Retrieved 1 January 2019.

2. McEliece, Robert J. "A Public-Key Cryptosystem Based on Algebraic Coding Theory", DSN

Progress Report. 44: 114–116. Bibcode:1978DSNPR..44..114M.

3. Dinh, Hang; Moore, Cristopher; Russell, Alexander. Rogaway, Philip (ed.). McEliece and

Niederreiter cryptosystems that resist quantum Fourier sampling attacks. Advances in cryptology—

CRYPTO 2011. Lecture Notes in Computer Science. 6841. Heidelberg: Springer. pp. 761–779.

4. Ajtai, M. Generating hard instances of lattice problems. Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing. Philadelphia, Pennsylvania, United States: ACM. pp.

99–108.

5. Ajtai, Miklós. The shortest vector problem in L2 is NP-hard for randomized reductions.

Proceedings of the thirtieth annual ACM symposium on Theory of computing. Dallas, Texas,

United States: ACM. pp. 10–19.

6. Shor, Peter. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer. SIAM Journal on Computing. 26 (5): 1484–1509.

7. V. M. Sidel'nikov & S. O. Shestakov. On the insecurity of cryptosystems based on generalized

Reed-Solomon codes. Discrete Mathematics and Applications. 2 (4): 439–444.

8. S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot. White-Box Cryptography and an AES

Implementation. In 9th Annual Workshop on Selected Areas in Cryptography (SAC 2002), Aug.15-

16 2002.

9. B. Wyseur, White-Box Cryptography, PhD thesis, Katholieke Universiteit Leuven, B. Preneel

(promotor), 169+32 pages, 2009.

10. Dmitry Schelkunov. White-Box Cryptography and SPN ciphers. LRC method, Cryptology

ePrint Archive: Report 2010/419.

11. Goce Jakimoski and Ljupˇco Kocarev , Chaos and Cryptography: Block Encryption Ciphers

Based on Chaotic Maps. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I:

FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 2, FEBRUARY 2001.

12. M. Asim, V. Jeoti, Efficient and simple method for designing chaotic s-boxes, ETRI Journal 30

(1), 170 - 172, 2008.

13. G. Jakimoski, L. Kocarev, Chaos and cryptography: block encryption ciphers based on chaotic

maps, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications

(Volume: 48, Issue: 2, Feb 2001).

14. Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg, On the Inherent

Intractability of Certain Coding Problems, IEEE Transactions on Information Theory 24 (1978),

384–386.

	1. Introduction
	2. Terminology and Notation
	3. Private and public keys
	4. Encryption with a public key
	5. Decryption with a private key
	6. Digital signature scheme
	7. Parameters
	8. An underlying hard problem
	9. References

