
Plumo: An Ultralight Blockchain Client

Psi Vesely1,2, Kobi Gurkan2,3, Michael Straka2, Ariel Gabizon4, Philipp Jovanovic2,5,
Georgios Konstantopoulos6, Asa Oines2, Marek Olszewski2, and Eran Tromer2,7,8

October 13, 2021

Abstract

Syncing the latest state of a blockchain can be a resource-intensive task, driving (especially
mobile) end users towards centralized services offering instant access. To expand full decentralized
access to anyone with a mobile phone, we introduce a consensus-agnostic compiler for constructing
ultralight clients, providing secure and highly efficient blockchain syncing via a sequence of
SNARK-based state transition proofs, and prove its security formally. Instantiating this, we
present Plumo, an ultralight client for the Celo blockchain capable of syncing the latest network
state summary in just a few seconds even on a low-end mobile phone. In Plumo, each transition
proof covers four months of blockchain history and can be produced for just $25 USD of compute.
Plumo achieves this level of efficiency thanks to two new SNARK-friendly constructions, which
may also be of independent interest: a new BLS-based offline aggregate multisignature scheme
in which signers do not have to know the members of their multisignature group in advance, and
a new composite algebraic-symmetric cryptographic hash function.

Keywords: Ultralight clients; SNARKs; aggregate multisignatures

1UCSD psi@ucsd.edu 2cLabs {kobi,a,m,mstraka}@clabs.co 3Ethereum Foundation 4AZTEC
Protocol ariel@aztecprotocol.com 5University College London p.jovanovic@ucl.ac.uk 6Independent
Researcher me@gakonst.com 7Columbia University 8Tel Aviv University tromer@cs.tau.ac.il

Contents

1 Introduction 2

2 Overview 6

3 Threat model 8

4 Ultralight clients 8
4.1 Ultralight clients . 9
4.2 An ultralight client compiler . 10
4.3 The Plumo ultralight client . 11

5 SNARK-friendly signatures and hashing 12
5.1 BBSGLRY: non-interactive aggregate multisignatures . 12
5.2 Composite algebraic-symmetric hash functions . 12

6 Implementation 13
6.1 Optimizations . 13
6.2 Evaluation . 14

A Additional related work 16

B Preliminaries 17
B.1 Notation . 17
B.2 Blockchain model . 18
B.3 Proof-of-stake consensus . 19
B.4 Cryptographic assumptions . 20

C Trusted setup 24

D Deferred proofs 25

E The Plumo specification 27

References 28

1 Introduction

Among numerous obstacles to widespread adoption of blockchain technologies, scalability has been
identified as a major hurdle [Mei18]. Recent years have seen major improvements to throughput
and latency via new proof-of-stake (PoS) protocols [Amo+18; Yin+19], sharding [KK+18; Al-+18],
and payment channels [Mal+17; Gud+19]. This work tackles another scalability challenge: high
participation costs for end users.

In order to securely interact with a blockchain without trusting a centralized party, a node must
first download and verify the blockchain. The requisite data, storage, and computation resources
are unavailable to many potential participants. For example, as of August 2021, the Ethereum
blockchain is over 900GB (in non-archival mode). Even in light sync mode, 6.5GB of header
metadata must be downloaded and verified, exceeding the bandwidth and storage available to many
mobile users. Participation cost concerns for end users also apply in the context of cross-blockchain
interoperability protocols, where smart contract code running on one chain (with high storage and
computation costs) needs to verify the state of another chain.

High participation costs motivate the need for ultralight clients (UCs), which verify succinct
proofs of valid blockchain data leading up to the current state. Prior attempts [Nik+17; Bon+20;
Bün+20b; Che+20] have various restrictions and drawbacks, including specificity to Proof-of-Work

2

UC
proof
type

consensus SA
programma-

bility
trusted
setup

app/prover
curve bits

proof sizes (days) verifier
time347 694 1,736

Plumo transition BFT X X X 377→ 761 1.2KB 2.5KB 6.4KB o(n)
Flyclient NIPoPoW PoW X X χ 256 135KB 163KB 204KB O(log2 n)
[Che+20] transition PoW χ χ X 753 � 753 7.4KB 10KB 18KB o(n)
[Che+20] PCD PoW χ χ X 753 � 753 0.4KB O(1)

Mina PCD Ouroboros χ χ X 753 � 753 7.1KB O(1)
Halo 2/Pickles PCD PoW/Ouroboros χ χ 255 � 255 O(1) O(1)

Table 1: Comparison of UCs. App curve bits denotes the size of the curve used for most network activity including
making transactions; prover curve bits refers to the curve used to produce and verify UC proofs. Estimates for
both [Che+20] and Flyclient proof sizes are taken from [Che+20] and are for a “barebones” (scriptless) Bitcoin. The
Flyclient paper reports slightly larger proof sizes for Ethereum due to the difference in header size. Since block times
for Celo are about 120× shorter than for Bitcoin, we compare UC proof sizes by time since the genesis block. Halo 2
and Pickles are both proposed network upgrades to ZCash and Mina, resp., exact proof sizes are not yet available.
NIPoWPoWs are resticted to PoW networks and in particular SPV; recursive composition based PCD as used by Mina
and [Che+20] requires a trusted setup; otherwise consensus, SA, programmabaility, and trusted setup should be seen
as implementation choices rather than limitations of a proof type. Some proof types also impose curve requirements
(see below).

(PoW), implementation complexity, unsuitability for smart contract blockchains, and significant
blockchain performance hits outside the UC context.

We introduce the Plumo system, an efficient UC protocol, which overcomes these drawbacks
and achieves nearly-instant ultralight client synchronization. It is based on succinct transition
proofs, using two new SNARK-friendly constructions.

A brief history of ultralight clients. To contextualize, we first describe previous works in more
detail, and then describe how our techniques overcome prior drawbacks.
Kiayias et al. introduced NIPoWPoWs in [KMZ20], a PoW-specific proof of SPV that relies on
statistical properties of hashes to make probabilistic guarantees about the amount of work a chain
contains. Bünz et al. extended this result in Flyclient [Bün+20b], the first NIPoPoW-based UC,
guaranteeing unconditional succinctness with O(log2 n) sized proofs1 and supporting variable mining
difficulty. It is integrated into chains by adding Merkle Mountain Range (MMR) commitment to the
transaction roots of the entire blockchain to each header. Given the latest block header containing
a MMR commitment, the verifier hashes it to obtain challenge block heights pseudorandomly; they
accept if also provided MMR-inclusion and subtree equality-proofs that verify with respect to those
challenges and the MMR commitment.2 Smart contracts are supported, since miners are trusted to
have verified all consensus rules. However, this approach does not extend to PoS blockchains, or to
full verification of a PoW blockchain, since these require checking every pertinent state transition.

Chiesa and Tromer proposed PCD, a primitive permitting distributed computations between
mutually distrustful parties that run indefinitely [CT10]. Its first practical construction by Ben-
Sasson et al. used recursive composition of fully succinct SNARKs over cycles of elliptic curves
in [Ben+14]. Building on this PCD construction, Bonneau et al. proposed Mina (formerly known
as Coda) [Bon+20], the first fully succinct (i.e., constant-sized) blockchain whose state at any
time can be verified in constant time. While this results in an ideal situation for the UC verifier,
these techniques impose a large performance overhead on the part of the protocol being proved (all
of consensus in the case of Mina) and the heavy cryptographic machinery required imposes high

1The NIPowPow protocol of Kiayias et al. is forced to revert to the SPV light client protocol in the presence of
bribing and selfish mining attacks.

2MMRs also provide an efficient mechanism to verify past transactions (see Appendix A.)

3

development costs.
Foremost, both the UC prover and verifier, and all of the consensus verified by the UC protocol

must be set over a cycle of quite inefficient pairing-friendly curves at 753 bits3 where, e.g., it was
found Groth16 verification takes roughly 15× longer than on BLS12-381 [Che+20]. Additionally, a
trusted setup is required for each curve and these setups must be computed sequentially4.

Recent developments in PCD constructions allow compatibility with transparent SNARKs and
cycles of non-pairing friendly curves, which can provide 100-bits security at just 255 bits 5 . Bowe
et al. introduced Halo [BGH19], later formalized as an atomic accumulation scheme by Bünz et al.
in [Bün+20a]. Halo amortizes the cost of IOP and AHP-based proof system verification via lazy
batch verification of polynomial commitment openings, recursively verifying just the comparatively
cheap arithmetic checks on the evaluations. ZCash is currently working on a refinement of these
techniques with “Halo 2,” and Mina is introducing a “Pickles” network upgrade that will also use
atomic accumulation based PCD. These advantages come at the loss of pairing-based cryptography,
which powers efficiency and non-interactivity otherwise not afforded6.

Simplifying assumptions. Using SAs provides weaker security guarantees for light clients than
proving consensus in full. Adversarial control of the majority of mining power or a dishonest
supermajority on a BFT committee can result in a light client being convinced of an invalid state.
Under these conditions full nodes can still be convinced of an alternate history, though transactions
in the malicious fork have to follow consensus rules, which can still enable a great deal of fraud and
theft. The violation of such assumptions, however, would still render the blockchain insecure for full
nodes, despite enabling even worse attacks for light clients. This justifies their use in practice.

Proving a light client protocol has several advantages over proving all of consensus. First,
there’s simply much less to prove, especially so for networks offering programmability; indeed, only
Flyclient and Plumo support programmable blockchains. Even without programmability, a single
prover cannot keep up with the 1tx/s Mina blockchain, and to deal with this they incentivize
“SNARK workers” to compete to provide proofs for different parts of a PCD recursion tree (allowing
parallelization of prover work). Second, to efficiently prove all of consensus, all of consensus must
be optimized to this end. However, optimizing for SNARK arithmetization can negatively impact
performance outside the context of the SNARK prover, e.g., while the BHP-BLAKE2s cryptographic
hash we introduce in Section 5 is SNARK-efficient, it is much less efficient than symmetric-flavor
hashes like SHA3 on conventional von Neumann computer architecture.

Transition proofs. Plumo is the first UC to use transition proofs, allowing a client hardcoded
with the gensis state s0 to sync to some later state sn via a chain of sequential intermediate SNARKs.

3MNT4-753/MNT6-753 is the most efficient known pairing-friendly cycle at 128-bits security. Evidence suggests
the nonexistence of significantly better options [CCW19].

4Subsequent work introducing fully succinct SNARKs with universal SRSs [Mal+19] allow parallel setups, but
perforance lags behind circuit-specific SNARKs [Chi+20].

5See, e.g., the “pasta” cycle: https://github.com/zcash/pasta.
6E.g., non-interactive multisignatures, used often in BFT consensus and multisignature wallets, are only possible

with pairings; for consensus naive O(n2) communication can be avoided with CoSi [KK+16], but higher latency
persists, and multisignature wallet spends would require participants to all be online concurrently. Pairing-based
cryptography will also power Celo’s forthcoming ARKE private contact discovery system (see https://celo.org/

papers/future-of-digital-currencies).

4

https://github.com/zcash/pasta
https://celo.org/papers/future-of-digital-currencies
https://celo.org/papers/future-of-digital-currencies

We believe the use of a SA is not just justified, but essential to our approach 7 ; together with heavy
optimization of just the small part of consensus our light client protocol encapsulates, our SA allows
each SNARK to attest to four months of blockchain history.

Our design also allows us to keep the full Celo consensus on the efficient pairing-friendly
BLS12-377 curve. To get around the problem that proving signatures over the same curve they were
created on is not possible without highly expensive non-native arithmetic, we borrow the approach
of using a two-chain of elliptic curves introduced by Bowe et al. in Zexe [Bow+20], thus avoiding
the need to run consensus over a costly pairing-friendly cycle.

Contributions. This paper presents the following contributions:
• A formal model of UCs general enough to capture all aforementioned UCs, while at the same

time remaining quite simple.
• A compiler theorem capturing our simple and efficient approach to building secure UCs with

transition proofs.
• BBSGLRY, a new BLS-based aggregate multisignature scheme that improves on state-of-the-art

AMSP-PoP [BDN18] by removing the need to know and append the aggregate public key of one’s
multisignature group before signing.

• A framework for building composite algebraic-symmetric cryptographic hashes, which improve on
the SNARK-efficiency of symmetric hash functions while maintaining their more well-established
security guarantees, and our proposed instantiation BHP-BLAKE2s.

• A Rust implementation of Plumo showing that for $25/day USD of compute on modern cloud
infrastructure an untrusted prover can provide proofs for the whole Celo network, and that a
Plumo client can sync and verify a summary of the latest blockchain state in seconds even on a
low-end mobile phone.

Organization. The rest of the paper is organized as follows. Section 2 gives an overview of the
Plumo architecture. Section 3 describes our threat model. Section 4 presents a formalization
of ultralight clients, our compiler, and then Plumo as an instantiation. Section 5 presents our
aggregate multisignature scheme and framework for composite algebraic-symmetric SNARK-friendly
hashes, which we instantiate with Bowe-Hopwood-Pedersen and BLAKE2s. Section 6 presents
benchmarks for our Plumo Rust implementation and details numerous optimizations.

We refer the reader to the appendices for additional supplemental material. Appendix A covers
additional related work. Appendix B covers notation, a formal blockchain model, background
on PoS and IBFT as used by Celo, and cryptographic assumptions and definitions. Appendix C
describes our trusted setup ceremony and several optimizations that have enabled faster execution
and verification than previous ceremonies. Appendix D includes several proofs deferred from earlier
sections. Appendix E presents a Plumo specification with details and optimizations that we omitted
earlier for clarity and abstraction.

7We believe the estimates of subsequent work [Che+20] for a transition-based UC proving full consensus of a
barebones Bitcoin network to be off by an order of magnitude even assuming a circuit an order of magnitude greater
than Plumo’s (which required coordinating a historically large 228 powers-of-τ trusted setup ceremony), and hashing
with SNARK-optimized Poseidon [Gra+19]. Such circumstances would allow proofs to cover about a week, but
Flyclient would offer much faster verifier time with only slightly larger proofs given the relative costs of SNARK
verification and hashing.

5

2 Overview

The Celo blockchain uses the Istanbul BFT consensus [Mon20] (see Appendix B.3). We observe
that in order to verify the latest block header in BFT networks a client only needs the public keys
of the current committee. As long as no committee has had a dishonest supermajority, a client
who verifies a chain of committee hand-off messages certifying the PoS election results, known as
epoch messages, does not need to check each block or even the headers of each block. Instead, to
make (or verify a recent) transaction, the client simply asks for the latest (or otherwise relevant)
block header, and verifies that it has been signed by a supermajority of the current committee. This
constitutes the simplifying assumption (SA) and light client protocol proved by Plumo (formally,
Assumption 1).

Figure 2.1: Plumo architecture overview. In practice, our proofs cover 120 epochs.

Since Celo has 5s block times, this means transition proofs skip 17,280 blocks for every epoch
message they verify. Further, it reduces the task of optimizing the transition proof SNARK circuit
to just optimizing the epoch messages and their associated signatures.

In our circuit, we verify 120 sequential epoch messages, each signed by a potentially different
group of roughly 67–100 validators. A multisignature is already computed over each epoch message
as part of our light client protocol; compounding this efficiency, the Plumo prover aggregates these
multisignatures into a single aggregate multisignature, which costs half the constraints to verify for
our BBSGLRY signature scheme. To further reduce the circuit size, instead of passing in the list
of public keys that signed each epoch message, we pass in a bitmap indicating who signed, where
the canonical ordering is given by the preceeding epoch message listing the committee public keys.
The Hamming weight is first verified to be sufficient, and then the bitmap is used to compute the
aggregate public key corresponding to each epoch message.

As cryptographic hashes that perform many bitwise operations are particularly expensive inside
SNARKs, for epoch messages we instantiate BBSGLRY with a new composite cryptographic hash
built from the collision-resistant Bowe-Hopwood-Pedersen hash [Hop+21] and the symmetric-flavor
BLAKE2s cryptographic hash [Aum+13]. While lookup tables make it possible to at least avoid
scalar multiplications, Bowe-Hopwood-Pedersen still requires many group additions, and while
efficient in SNARKs is slow on conventional von Neumann computer architecture. By instantiating
BBSGLRY with BLAKE2s for signing block headers, the vast majority of consensus is unaffected by

6

this inefficiency, simultaneously ensuring ultralight clients (UCs) can efficiently verify block headers
after syncing the current committee’s public keys.

Aggregate multisignatures. For a longer history of BLS-based signatures, see Appendix A. The
BBSGLRY aggregate multisignature scheme takes the Boneh-Lynn-Shacham (BLS) signature [BLS01]
as its starting point and combines various extensions from [Bon+03; Bol03; RY07]. Its most similar
to the AMSP-PoP aggregate multisignature scheme presented by Boneh et al. in [BDN18]. AMSP-
PoP requires signers who create a multisignature know the group of signers in advance. In particular,
signers must compute the aggregate public key apk of the signer group and then prepend it to the
message before hashing and signing in the normal way: Sign(sk, apk,m) = Hs(apk‖m)sk. For one,
this expands the size of our circuit by adding more data to hash. Further, this forces BFT consensus
to restart if a node who participates honestly in earlier rounds goes Byzantine and fails to produce
their contribution to the multisignature.

BBSGLRY overcomes these limitations as follows. We observe that in the definitions used
by [BDN18] that proofs-of-possession are checked by the key aggregation algorithm KeyAgg. The
adversary is permitted to output both a set of aggregate public keys and a set of pairs of public
keys and PoPs. Since KeyAgg is not run on the aggregate public keys, an aggregate public key must
be prepended when signing to prevent rogue key attacks. We believe their definitions do not reflect
the usage of PoPs in production systems, including Celo, and have thus provided new definitions
in Appendix B.4.4, where every public key the adversary outputs must be accompanied by a valid
PoP. Working from these definitions, we are able to prove security of BBSGLRY, where signing is
identical to BLS: Sign(sk,m) = Hs(m)sk.

SNARK-friendly hashing. When representing an arithmetic circuit in R1CS, addition gates are
essentially free, while multiplication gates are not. Only recently have we seen the introduction of
low-multiplication cryptographic hash functions, such as MiMC [Alb+16] and Poseidon [Gra+19].
While such hash functions are a promising development, we believe there has so far been insufficient
time for cryptanalysis of these designs. As an alternative, we formalize a folklore technique of
first “shrinking” a long message with an algebraic collision-resistant hash (CRH) requiring far
fewer constraints per message bit, and then call the compression function of a “symmetric-flavor”
cryptographic hash function on its output. Our compiler in Section 5.2 formalizes this approach
and provides a security reduction appropriate for use when instantiating a random oracle (as in
necessary for BBSGLRY). We instantiate our compiler with the Bowe-Hopwood-Pedersen hash and
with the BLAKE2s compression function to produce the BHP-BLAKE2s cryptographic hash we use
for epoch messages.

A two-chain of elliptic curves. For background on cycles and two-chains see Appendix B.4.2.
A SNARK arithmetic circuit is defined in the scalar field Fp of an elliptic curve. This presents a
problem when verifying authenticated data computed over that same field, where verification (such
as of BBSGLRY signatures) generally involves Fq operations. To avoid performing costly non-native
arithmetic, which blows up circuit size, or moving to an expensive pairing-friendly cycle, we use a
two-chain of elliptic curves, where the scalar field of the second curve is the same size as the base
field of the first. In particular, we use the BLS12-377/BW6-761 two-chain, where the first (inner)
curve is the same as in the original two-chain by Bowe et al [Bow+20], and the second (outer) was
introduced by Housni and Guillevic [EHG20] as more efficient replacement for the outer curve of
Bowe et al.. This allows all of consensus to be carried out over an efficient pairing-friendly curve,
while only the UC prover and UC verifier when syncing use the slower second curve.

7

3 Threat model

In addition to a number of cryptographic hardness assumptions, Plumo makes the following security
assumptions with respect to network participants:

Assumption 1. For each epoch it holds n > d3f/2e, where n and f are the number of total and
dishonest validators.

Assumption 2. There is at least a single honest participant in the multi-party computation (MPC)
for the SNARK trusted setup.

We refer the reader to Appendix B.3 for background on proof-of-stake and the Istanbul byzantine
fault tolerant consensus Celo uses. There we discuss the impacts of long-range attacks and future
committee attacks, a new related attack on PoS consensus that we identify and propose a simple
defense for, on the Celo light client protocol our work builds on. For more information on the
multiparty computation used for our SNARK trusted setup ceremony, including optimizations that
have made it faster to carry out and verify than past public ceremonies Appendix C.

4 Ultralight clients

In Appendix B.2 we present a formal model of blockchain systems. To recap, we distinguish
between full nodes, which use a state transition function S to incrementally compute the full state s
corresponding to a blockchain b = [bi]

n
i=1 as new blocks bn+1, bn+2, . . . arrive, and light clients, which

use the summary update function Ŝ to incrementally compute a summary ŝ of the blockchain as they
receive new trimmings b̂n+1, b̂n+2, A trimming is a chunk of blockchain data (e.g., block headers
for PoW blockchains or epoch messages for BFT consensus) belonging to a trimming language LĈ
representing local checks such as syntax and signature verifications. A blockchain summary belongs
to the summary language Lŝ and is a commitment to the full state of the blockchain, enabling
verification of specific transactions and full state values via succinct inclusion proofs.

Ultralight clients. Informally, we define an ultralight client (UC) to be one that receives succinct
arguments of knowledge (AoKs) of trimmings. For n ∈ Z+ and b̂ of length n, an UC receives proofs
of the summary relation:

R(n)
ŝ =

{
(ŝ ∈ Lŝ; b̂ ∈ LĈ) : ŝ = Ŝ(ŝg, b̂)

}
.

An UC starts with a hardcoded genesis summary ŝg. It can verify ŝ is the valid summary of the

blockchain n trimmings later by verifying a succinct proof of R(n)
ŝ . The argument of knowledge

property guarantees that a valid trimmed blockchain b̂ ∈ LĈ corresponding to ŝ can always be
extracted from the proofs a client accepts.

Incremental provers. Since prover resources are finite, for sufficiently high n it becomes

impractical to prove R(n)
ŝ . An UC prover thus needs to be able to create such proofs incrementally

and re-use work in some way. We model this by incrementally giving the prover one or more new
trimmings each time it is invoked to create a new proof for the latest summary. The prover locally
stores an auxiliary state ω to help it create the new proof. The growth of ω necessarily must be
significantly sublinear in the size of the trimmed blockchain for this approach to remain concretely
efficient long-term.

8

PCD based UCs address this by recursively verifying the previous state transition proof together
with the new blocks or trimmings. Avoiding various drawbacks of this approach elaborated on

in Section 1, we opt for the simpler approach of transition proofs, i.e., prove R(n)
ŝ for any n by

producing dn/me SNARK proofs of

R(m)
ŝ =

{
(ŝi−1, ŝi ∈ Lŝ; b̂ ∈ Lmb̂) : ŝi = Ŝ(ŝi−1, b̂)

}
, (1)

for i ∈ dn/me. For sufficiently large n (e.g., 4 months in the case of Plumo), the concrete proof
length and verification time of this sublinear approach can be on par with asymptotically better
(but more complex) approaches for years out, as illustrated by our results Table 1.

Extraction in the presence of oracles. A summary relation often must some authenticated data
(e.g., validator signatures). Unfortunately, standard AoK definitions fail to guarantee extraction
when the adversary is granted access to additional oracles such as signature oracles. This problem has
been first and foremost studied by Fiore and Nitulescu, who developed the notion of an O-SNARK
and produced the first results regarding their existence [FN16]. We adapt their knowledge soundness
definition to our UC interface.

4.1 Ultralight clients

An ultralight client (UC) ΠUC is defined by a triple of efficient non-interactive algorithms (Setup,
ProveUpdate,VerifyUpdate) working as follows

• Setup(1λ)→ pp: a randomized setup algorithm run by one or more parties that, input a security
parameter λ (in unary), outputs a set of public parameters pp.

• ProveUpdate(pp, ŝ, ω, ŝ′, b̂) → (π′, ω′): an untrusted light client acts as the prover that, input
public parameters pp, previous summary ŝ ∈ Lŝ with auxiliary state ω, and current summary ŝ′

with corresponding new trimmings b̂ ∈ Ln
b̂
, outputs a new proof π and auxiliary state ω′.

• VerifyUpdate(pp, ŝ, π)→ {0, 1}: an UC verifier that, given a summary ŝ and proof π, outputs 0
(reject) or 1 (accept).

and satisfying succinctness, perfect completeness, and adaptive security, as defined below. Assuming
a strict total order ≤ on summaries, if presented with more than one valid (ŝ, π) pair, an UC can
efficiently determine and accept the greater as the current summary.

Succinctness. Let ‖b̂‖ be the length of the description of b̂ (as opposed to the number of trimmings
|b̂|). Succinctness is captured by the following set of properties:

• |π| grows sublinearly in ||b̂||.
• VerifyUpdate runs in time sublinear in ||b̂||.
• |ω| grows sublinearly in ||b̂||.

Completeness. An UC ΠUC = (Setup,ProveUpdate,VerifyUpdate) is perfectly complete if for every
adversary A it holds that

Pr

b̂1‖ · · · ‖b̂m ∈ LĈ

∧
∃i ∈ [m] :

VerifyUpdate(pp, ŝi, πi) 6= 1

∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ)

[b̂i]
m
i=1 ← A(pp)

For i ∈ [m] :

ŝi ← Ŝ(ŝi−1, b̂i)

(πi, ωi)← ProveUpdate(pp, ŝi−1, ωi−1, ŝi, b̂)

 = 0,

9

where ŝ0 ← ŝg, π0 ←⊥, and ω0 ←⊥, and the probability is taken over choice of pp and any random
coins used by A.

Adaptive security. An UC is adaptively secure if it satisfies Definition B.5 for R = R(∗)
ŝ

and the appropriate auxiliary input generator and oracle families, and where (x,w) = (ŝ, b̂) and
Verify = VerifyUpdate.

Flexibility of our definition. We illustrate the flexibility of our definitions by showing how
they can capture PCD and NIPoWPoW based UCs as well. A trimmed blockchain can be modeled
as a DAG where the current summary is the sink. Starting with the edge leaving the sole source,
labeled ŝg, each edge e = (ŝ, ŝ′) is labeled with a consecutive trimming b̂ taking the state from ŝ

to ŝ′ = Ŝ(ŝ, b̂). Then depending on the construction of PCD used, we have ω = (π, x) where x is
additional auxiliary information such as state tree roots and π is the proof generated by a S/NARK
and/or succinct accumulator.

Next consider Flyclient [Bün+20b], where the summary is a Merkle Mountain Range commitment
to the block headers, which themselves form the trimmed blockchain. Here the UC prover must
store the entire trimmed blockchain on disk, but only needs to open the commitment by reading
from disk block headers at a logarithmic number of heights; thus we define |ω| to be logarithmic.
Here proofs, composed of leaf inclusion and subtree equality proofs, are distinct from auxiliary state,
but also logarithmic in |b̂|.

4.2 An ultralight client compiler

We introduce a compiler that outputs a secure UC given a summary relation R(m)
ŝ for a fixed

m ∈ Z+ and O-SNARK ΠOS for the oracles corresponding to the authenticated data in verified in
Rŝ8.

Construction 1. Given a Z-auxiliary input O-SNARK ΠOS = (Gen,Prove,Verify) for R(m)
ŝ and

for the oracle families corresponding to all data computed using a secret state verified in R(m)
ŝ , we

construct an ultralight client ΠUC = (Setup,ProveUpdate,VerifyUpdate) as follows:

Setup(1λ)→ pp :

1. Output pp← Gen(1λ)

VerifyUpdate(pp, ŝ, π) :

1. Parse ([ŝ]k−1i=1 , [πi]
k
i=1)← π

2. Set ŝ0 ← ŝg and ŝk ← ŝ.
3. Output b← ∧ki=1Verify(crs, ŝi−1, ŝi, πi)

ProveUpdate(pp, ŝ, ω, ŝ′, b̂)
1. If ŝ corresponds to a trimmed blockchain of n trimmings, then ω will contain r ≡ n mod n

“remainder” trimmings b̂r, k = dn/me SNARK proofs π = [π]ki=1, and k − 1 intermediate
summaries ŝ = [ŝi]

k−1
i=1 .

2. If r = 0 reset ŝ← ŝ‖ŝ, else reset π ← [πi]
k−1
i=1 as the last proof covers only r < m trimmings.

3. Set b̂′1‖ · · · ‖b̂′t ← b̂r‖b̂ where partitions [b̂′i]
t−1
i=1 each contain m trimmings and

|b̂′t| = r′ = n+ |b̂| (mod m) ∨ m .

8We note that proofs of R(m′)
ŝ for 1 ≤ m′ ≤ m are called for by our construction as well. With transparent and

universal setup SNARKs this can be achieved just by making m circuits, but for SNARKs with circuit-specific setups
adding support for padding in R(m)

ŝ can avoid the need for m distinct trusted setups.

10

4. If r′ < m then set b̂r′ ← b̂′t, else set b̂r′ ←⊥.
5. Generate new intermediate states and proofs for i ∈ [t]:

ŝ′i ← Ŝ(ŝ′i−1, b̂
′
i) π̂i ← Prove(crs, ŝ′i−1, ŝ

′
i; b̂

′
i)

where ŝ′0 is the last intermediate summary in ŝ.
6. Let π′ ← π‖π′, ŝ′ ← ŝ‖[ŝ′i]

t−1
i=1, and ω′ ← (b̂r′ , π

′, ŝ′). Output (π′, ω′).

In Appendix D we prove the following adaptive security theorem.

Theorem 4.1. If ΠOS = (Gen,Prove,Verify) is an adaptively secure SNARK for relation Rŝ,
auxiliary input generator Z, and oracle family O, then the UC ΠUC output by Construction 1 is
adaptively secure (Section 4.1) for Rŝ, Z, and O.

4.3 The Plumo ultralight client

We make a few simplifications for clarity of exposition in this section; a full specification of our
circuit is present in Appendix E. Celo uses the Istanbul BFT consensus algorithm [Mon20]. We
observe that by taking Assumption 1 as our simplifying assumption (SA), a light client only needs
verify a valid chain of epoch messages delegating authority from committee to the next in order to
learn the current committee public key set. From there, they can download the most recent block
header, verify its multisignature, and learn the latest state roots (and also easily check their balance,
make a transaction, etc.).

The most recent Celo epoch message is the current summary. In addition to the current
committee public key set, the summary contains the epoch index, the current and parent entropy
(see future committee attacks Appendix B.3), and the signer threshold9. The standard operator ≤
over the epoch index of each summary defines the required total order ≤ over summaries (a strict
total order under our simplifying assumption).

The summary update relation checks there exists a sequence of epoch messages where each
successive message (1) is signed by at least the signer threshold number of validators, (2) increases
the epoch index by 1, and (3) has parent entropy matching the previous current entropy. Then it
verifies an aggregate multisignature over the result.

Plumo instantiates the compiler from the previous section using the Groth16 proof system,
which was proven to be knowledge sound in the AGM under the q-DLOG assumption in [FKL18]. For
Plumo, we must additionally require Groth16 is an O-SNARK with respect to BBSGLRY signing
oracles . We also assume that the auxiliary input our adversary receives is “benign”10. We note
here that there have been few prior results on extraction in the presence of auxiliary inputs and/or
oracles [Bit+16; FN16], none of which apply to our construction11.

Theorem 4.2. Let H : {0, 1}∗ → G1 be a hash family modeled as a random oracle and let
BBSGLRYH be the BBSGLRY signature scheme (Section 5.1) instantiated with H, 12 and let Z be a
benign auxiliary input generator. Assume the Groth16 SNARK is an adaptive argument of knowledge

9Our PoS election occasionally elects n<100 committee members. Rather than compute d2n/3e+1 in the circuit,
we piggyback on our SA, including it in the epoch message.

10A benign distribution supplies negligible advantage to any adversary against any construction (e.g., the uniform
distribution is conjectured benign [Bit+13]).

11Results for hash-then-sign signatures in [FN16] require modifying the signer to sample and prepend a random
nonce to each message they sign—currently no UCs which prove verification of signatures are doing this.

12A single hash family H : {0, 1}∗ → G1 can instantiate both Hs : {0, 1}∗ → G1 and Hp : G2 → G1 required by
BBSGLRY given an injective coding Encode : G2 → {0, 1}∗.

11

(Definition B.5) for (OH,OBBSGLRYH) and Z. Then Plumo is an adaptively secure UC for Rŝ, Z,
OH, and OBBSGLRYH.

Proof. This follows directly from the compiler Theorem 4.1.

5 SNARK-friendly signatures and hashing

5.1 BBSGLRY: non-interactive aggregate multisignatures

BBSGLRY 13 is an offline aggregate multisignature scheme providing non-interactive key and
signature aggregation, and not requiring signers know the multisignature group in advance.

Construction 2 (BBSGLRY aggregate multisignature scheme). Given a type 3 bilinear group
sampler SampleGrp3 and two hash families Hs : {0, 1}∗ → G1 and Hp : G2 → G1, our aggregate
multisignature scheme BBSGLRY is defined by an 8-tuple of efficient algorithms (Setup,KeyGen,
VPoP,Sign,KeyAgg,MultiSign,AggSign,Verify), working as follows:

• Setup(1λ)→ pp: sample a type 3 bilinear group 〈group〉 ← SampleGrp3(1λ) and two hash functions

(Hp,Hs)
$←− Hλ. Return pp← (〈group〉,Hp,Hs).

• KeyGen(pp) → (pk, sk, π): choose a secret key sk
$←− F and set the public key pk ← Gsk

2 ∈ G2.
Create the PoP π ← Hp(pk)sk ∈ G1. Return (pk, sk, π).

• VPoP(pp, pk, π): given public key pk ∈ G2 and PoP π ∈ G1, return 1 if e(π, G2) = e(Hp(pk), pk),
else 0.

• Sign(pp, sk,m) → σ: given a secret key sk ∈ F and message m ∈ {0, 1}∗, return a signature
σ ← Hs(m)sk ∈ G1.

• KeyAgg(pp, {pki}
n
i=1)→ apk: given n distinct public keys {pki}

n
i=1 ∈ Gn

2 , return aggregrate public
key apk←

∏n
i=1 pki ∈ G2.

• MultiSign(pp, {σi}ni=1) → σ: given n signatures {σi}ni=1 ∈ Gn
1 under distinct public keys for the

same message, return multisignature σ ←
∏n
i=1 σi ∈ G1.

• AggSign(pp, [σi]
n
i=1) → Σ : given a list of n multisignatures [σi]

n
i=1 ∈ Gn

1 , return aggregate
multisignature Σ←

∏
i∈[n] σi ∈ G1.

• Verify(pp, [(apki,mi)]
n
i=1,Σ) → {0, 1} : given a list of n aggregate public key and message pairs

[(apki,mi)]
n
i=1 and an aggregate multisignature Σ, return 1 if e(Σ, G2) =

∏n
i=1 e(Hs(mi), apki);

else return 0.

In Appendix D we prove the following unforgeability theorem.

Theorem 5.1. BBSGLRY is a computationally unforgeable aggregate multisignature (Definition B.4)
under ψ-co-CDH (Definition B.3) when instantiated with random oracles Hs,Hp.

5.2 Composite algebraic-symmetric hash functions

BHP-BLAKE2s is a cryptographic hash function that first “shrinks” its input using the SNARK-
optimized Bowe-Hopwood-Pedersen (BHP) collision-resistant hash [Hop+21], then runs the BLAKE2s
compression function [Aum+13] on the result. We prove security via instantiating the following
construction.

13Pronounced “BBS glory” and named after the authors whose work it incorporates and extends. See “A history of
BBSGLRY” in Appendix A for more details.

12

Construction 3. Given collision-resistant hash CRH : {0, 1}∗ → B 14 , injective encoding Encode :
B → {0, 1}b−t, and random oracle O : {0, 1}b → {0, 1}c for positive integers ` and t ≥ dlog2(d`/ce+
1)e, we construct a composite hash function H : {0, 1}∗ → {0, 1}` as follows. Let k ← d`/ce, and
for integers 0 ≤ x ≤ 2t − 1 denote by xut the t-bit unsigned binary representation of x. On input
m ∈M:
1. Shrink the message to obtain the intermediate hash h′ ← CRH(m).
2. Compute the binary encoding of the intermediate hash h′enc ← Encode(h′).
3. Output the first ` bits of O(0ut‖h′enc)‖O(1ut‖h′enc)‖ . . . ‖O(kut‖h′enc).

In Appendix D we prove the following indistinguishability theorem.

Theorem 5.2. If CRH is computationally collision-resistant (Definition B.6), Encode is injective,
and O is a random oracle, then the hash function H is computationally indistinguishable from a
random oracle.

In BHP, presented below, input messages are split into segments mi, then further divided into 3-bit
chunks mi,j . The maximum number of chunks in a segment, denoted Cmax, depends on the curve.
A formula to derive it is given in [Hop+21].

BHP.Setup(1λ, s)→ pp

(G, q)← SampleGroup(1λ)
[gi]

s
i=1 ← Gs

pp← (G, q, [gi]si=1)

BHP.Eval(pp,m ∈ {0, 1}n)→ h

Divide m into segments mi of size Cmax

Divide each mi into 3-bit chunks mi,j

h←
∑

i,j g
24i(1+mi,j [0]+2·mi,j [1])(1−2·mi,j [2])
i

We refer the reader to [Aum+13] for a description of the BLAKE2s.

6 Implementation

Plumo was implemented in Rust15 using the arkworks 16 libraries. In Section 6.1 we discuss additional
optimizations we implemented, and in Section 6.2 we present some benchmarks illustrating its
concrete efficiency.

6.1 Optimizations

Try-and-increment hashing. Since constant-time hashing is not important to the security of
Plumo, we opt for a more efficient hash-to-group by using a variant of “try-and-increment” [BLS01].
For a Weierstrass form curve, let q be the order of the base field and ` = dlog2(q)e. Given a hash
function H : {0, 1} → {0, 1}`+1 and input m, we can hash to G1 using rejection sampling as follows.
Try each sequential nonce η in 0, . . . , 2c − 1 encoded as c-bit string (for some completeness parameter
c) until the first ` bits of h← H(η‖m) is less than q. To obtain a prime-order group point from h,
clear the cofactors from the first ` bits of h to obtain an x-coordinate. If the last bit of h is 0 (1)
choose the smaller (larger) corresponding y-coordinate.

14The codomain B may be, e.g., a group G.
15See https://github.com/celo-org/celo-bls-snark-rs and https://github.com/celo-org/snark-setup.
16https://github.com/arkworks-rs

13

https://github.com/celo-org/celo-bls-snark-rs
https://github.com/celo-org/snark-setup
https://github.com/arkworks-rs

We crucially observe that it is not necessary to increment inside the SNARK, and that the
nonce can be included as a private input. Indeed, if we write the message of any signature scheme
as M = {0, 1}c ×M′, where M′ is considered the meaningful part, then the unforgeability of a
signature on any message in M implies the unforgeability of a signature on any message in M′.

In the ROM, the probability of succeeding on each try is q/2`, and thus an expected 2`/q tries
will be required to hash each message. The chance a given message cannot be hashed is given by
(1 − q/2`)c. For our concrete parameters, BLS12-377 and c = 8, this gives an exceedingly small
2−677 probability a message cannot be hashed.

Computing BHP over a birationally equivalent curve. Following [Hop+21], we compute
the Bowe-Hopwood-Pedersen hash over the birationally equivalent Montgomery form of the twisted
Edwards curve EEd/BW6 curve (of equal order to BW6-761) in a way that guarantees the incomplete
addition formulas (which cost 3 constraints instead of 6) are sufficient.

Batched Miller loops. Verifying a BBSGLRY aggregate multisignature over m messages requires
computing m+ 1 pairings. A pairing consists of computing a Miller loop ML followed by a final
exponentiation FE. We use the well-known optimization of computing the Miller loops in parallel,
taking the product of the Miller loops, and finally computing a single final exponentiation on the
product, checking the equivalent verification equation:

FE(ML(Σ, G−12) ·ML(Hs(m1), apk1) · · ·ML(Hs(mm), apkm))
?
= 1GT

. (2)

Reducing verifier time and proof sizes. Verification of Groth16 requires computing a G1

multi-exponentiation of size ` = |x|. If the initial and m-epochs-later epoch messages were directly
encoded as the instance, ` would be approaching 1,000. Instead, the verifier hashes the input and
output epoch messages using a hash-to-field built with BLAKE2s, producing an input and output
hash, which is the instance of size ` = 2 for the Groth16 verification circuit. The circuit has to be
modified to prove knowledge of openings of these two hashes, and then the usual checks are made on
these openings. This unfortunately increases the size of the circuit, but at least this cost is constant
in the number of epochs being proved.

This optimization gives us another for free. The ultralight client (UC) only needs to learn the
most recent epoch message. When verifying multiple SNARK proofs the UC can simply download
the intermediate summaries as hashes, thereby significantly reducing proof sizes.

Finally, the UC uses batch verification when verifying multiple Groth16 proofs. Let n be the
number of proofs being verified. We use a variant of the small exponent test [BGR98; CL06] to
reduce a naive 3n pairings to n+ 2 and then compute only a single final exponentiation as in Eq. (2).

6.2 Evaluation

We benchmarked our prover on a Google Cloud machine with 4 Intel Xeon E7-8880 v4 processors
and 3, 844GB of DDR4 RAM, which rents for $25/h USD. Fig. 6.1 shows the time and space
efficiency of our prover, and Table 3 gives our circuit size as a function of the committee size and
number of epochs spanned. Since proofs for 120 epochs are computable in less than an hour and
epochs are approximately one day, maintaining up-to-date UC proofs for Plumo is possible for $25
worth of compute a day.

In contrast to our powerful prover, we evaluated the performance of our verifier on a Motorola
Moto X (2nd Gen), a 2014 mobile phone with 1GB RAM and a 32-bit Quad-core 2.45 GHz Krait

14

Figure 6.1: Proving time and peak memory consumption over BW6-761.

Epochs 10 validators 100 validators

32 2,787,485 20,465,083
64 4,753,568 34,097,470
128 8,685,734 61,362,244
256 16,550,063 115,891,789
512 32,278,721 224,950,879
1024 63,736,037 443,069,059

Table 3: Constraints for our summary update transition proof circuit.

400 processor. We used a directly cross-compiled, unoptimized implementation. The results show it
is possible to verify such a proof in about 0.5 seconds.

15

A Additional related work

Transaction inclusion. Flyclient [Bün+18] introduces a new mechanism for efficient proofs of
transaction inclusion. A new datastructure called a Merkle Mountain Range (MMR) is added to
the block header, whose leaves are sequentially updated with the transaction root of each new
block. Then with just the latest block header and a Merkle inclusion proof, an ultralight client can
efficiently confirm any transaction.

Recall that finality is not immediate on PoW blockchains, and it takes approximately an hour
to get a new transaction mined with an adequate number of child blocks (confirmations) to be
trustworthy. In the interim, a Flyclient client would not have a trustworthy inclusion proofs, and
would thus have to download and verify every transaction starting from the oldest input to the
present, which is impractical. TICK [Zha+20] solves this problem by additionally adding a UTXO
tree to the block header as well. They observe using an AVL hash tree [AVL62] the commitment can
be efficiently updated in O(M · log(NU)) time, where M is the total number of inputs and outputs
in a block and NU is the total number of UTXOs.

TxChain [Zam+20] introduces a protocol enabling greater efficiency for verifying large numbers
of transactions by introducing contingent transactions. Given a list of transactions [ti]

n
i=1, a prover

makes a new transaction ta that references [ti]
n
i=1. By verifying ta an ultralight client is convinced

of the validity of [ti]
n
i=1. This approach may be particularly useful for cross-chain interoperability,

as verifying transactions in a smart contract can be especially costly.
While TICK is generally not applicable to PoS blockchains, which offer immediate finality, all

these techniques potentially offer complementary functionality to an ultralight client built with our
consensus-agnostic compiler.

Layer Two Scaling. Layer 1 (L1) solutions are baked into the blockchain’s consensus rules, while
layer 2 (L2) are built on top of the underlying protocol (e.g., using its scripting/programmatic
features) and so are easier to iterate on. Several L2 solutions have been proposed which work across
both PoW and PoS protocols. Plasma and TrueBit both rely on fraud proofs, by which actors are
normally assumed to be honest but with a mechanism to affect their punishment through economic
disincentives should they show malicious behavior [PB17]. The approach most similar to ours is
ZK Rollup, where every change to the state is accompanied by a SNARK proof attesting to its
validity, created by the block proposer. Optimistic rollups17 are similar, but each new state is
initially assumed to be true with the caveat that fraud proofs can be submitted to slash the node
submitting the new state if it is false.

Other Light Client Approaches. Other approaches for blockchain scalability have been
proposed which do not fit into the above categories. The Tendermint Light Client [Bra+20], built
on Tendermint Core [Amo+18], is a BFT consensus algorithm where at least 1/3rd of validators
are assumed to be correct in “trusting periods”—a limited time window after they sign. A light
client observing that a guaranteed correct validator by this assumption in a sufficiently recent block
n−m where m < n signed block n containing a commit for block n− 1, may then assume block
n− 1 is correct and skip downloading it when verifying the chain. This approach, however, is not
necessarily compatible with verifying multiple blocks in a single cryptographic proof as we describe
in this work.

CoVeR [CKK20] describes a different protocol which enables light clients to collaboratively
validate blocks without assuming those blocks are validated by full nodes. When a block is broadcast

17https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075

16

to the network, light clients query for random portions of the block. Honest light clients then
produce fraud proofs for invalid block portions. A light client determines the validity of a block
by the presence or absence of such fraud proofs. Assuming a small minority of honest light clients,
this guarantees no required trust assumptions with respect to full nodes, at the cost of increased
light client computation and communication costs, in addition to larger block sizes. By comparison,
Plumo requires assuming the existence of an honest minority of full nodes, but works to minimize
light client computation costs.

A history of BBSGLRY. The development of BBSGLRY starts with Boneh-Lynn-Shacham (BLS)
signatures [BLS01]. BLS was extended to support signature aggregation by Boneh et al. in [Bon+03].
Their scheme only supports aggregate signatures on distinct messages because otherwise a rogue key
attack is possible. The authors note that by prepending their own public key to each message signers
can ensure their messages are distinct, but extending this technique to aggregate multisignatures
(e.g., AMSP [BDN18]) requires signers know the multisignature group in advance. This increases
consensus complexity and requires hashing all public key in the multisignature group, making
computation inside a SNARK impractical for large committees.

Multisignature support was added to BLS by Boldyreva in [Bol03]. Her scheme was set in the
knowledge-of-secret-key (KOSK) model, where the adversary must output a corresponding secret
key for each public key. This precludes rogue-key attacks, allowing aggregate public keys and
multisignatures to be computed as simple products, and signers to sign simply the message alone
without prepending the multisignature group key set.

The KOSK abstracts the PoP as something proved sound independently, but as shown by
Ristenpart and Yilek it is necessary to prove joint security [RY07]. Our scheme incorporates the
B-PoP protocol from [RY07].

Finally, the aggregate multisignature AMSP-PoP, introduced in [BDN18], combines the above-
mentioned works as well. Signatures for their scheme require prepending the aggregate public key
to the message. We show that this restriction is unnecessary and signers can sign as in BLS. This is
accomplished by changes to the interface and definitions we believe better reflect real-world use,
most pertinently that the adversary in our definition must output a valid PoP for every public key.
This in particular prevents rogue-key attacks (see Appendix B.4.4 for more details).

B Preliminaries

B.1 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for the vector

(a1, . . . , an), and [ai]
n
i=1 = [[ai,j]

m
j=1]ni=1 as a short-hand for the vector (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m);

|a| denotes the number of entries in a. We analogously define {ai}ni=1 with respect to sets instead

of vectors. If x is a binary string then |x| denotes its bit length. For a finite set S, let x
$←− S denote

that x is an element sampled uniformly at random from S. We sometimes use Python-like slicing
where a[i : j] is the subvector containing (i+ 1)-th through j-th entries of a, and a[i] denotes the
(i+ 1)-th entry of a.

NP Relations. We write {(x;w) : p(x,w)} to describe a NP relation R ⊆ {0, 1}∗ × {0, 1}∗
between instances x and witnesses w decided by the polynomial-time predicate p(·, ·).
Security notions. We denote by λ ∈ N a security parameter. When we state that n ∈ N for some
variable n, we implicitly assume that n = poly(λ). We denote by negl(λ) an unspecified function

17

that is negligible in λ (namely, a function that vanishes faster than the inverse of any polynomial in
λ). When a function can be expressed in the form 1− negl(λ), we say that it is overwhelming in λ.
When we say that algorithm A is an efficient we mean that A is a family {Aλ}λ∈N of non-uniform
polynomial-size circuits. If the algorithm consists of multiple circuit families A1, . . . ,An, then we
write A = (A1, . . . ,An).

B.2 Blockchain model

We present a formal model of blockchain systems, with a focus on the aspects necessary to define
ultralight clients in Section 4.1.

Consensus language. The consensus algorithms of a blockchain system define a polynomial-time
consensus language LC . If b ∈ LC , then we say b is a valid blockchain, where a blockchain is a finite
vector of one or more blocks b = (b1, b2, . . .). Consensus algorithms also imply a block language
Lb, representing local checks such as syntax and signature verifications. A block b is a valid block
if b ∈ Lb. A valid blockchain must contain only valid blocks, but the converse may not hold, i.e.,
blocks in a blockchain may be individually valid but mutually inconsistent.

Consensus algorithms also define an efficiently computable binary relation ≤ that is a strict
total order be defined on the set LC , i.e., for every b, b′ ∈ LC either b < b′, b > b′, or b = b. For
example, for Bitcoin the chain with more work is greater and for Celo the chain that is longer.

State transition function. As each new block that extends a blockchain is incrementally proposed,
it would be impractical to have to run a LC membership predicate on the full blockchain. All
practical blockchain systems thus implicitly define a notion of a chain state s, that is sublinear in
the length of the chain, but contains all the necessary information to efficiently decide if each new
block is valid and then produce the next state of the chain.

We thus define the consensus language of a blockchain in terms of a state transition function
S : Lŝ × Lb → Lŝ ∪ {⊥} that, given a state corresponding to a blockchain it has already verified
and a new block, outputs an updated state if the new block is a valid extension to the blockchain,
or ⊥ otherwise. Denote the set of valid blockchains by LC = {b ∈ Lb | S(sg, b) 6=⊥}, where sg is
the genesis state and we use the syntactic sugar S(s, b) = S(· · ·S(S(s, b1), b2) · · · , bn). The state
language Lŝ is simply defined as all states reachable by valid blockchains.

Simplifying assumptions and summaries. Often by making certain reasonable assumptions it
is possible to compute the state of a blockchain (or just a commitment to it) more efficiently. For
example, the simplified payment verification (SPV) assumption used by many PoW blockchain light
clients assumes “the chain with the most PoW solutions follows the rules of the network and will
eventually be accepted by the majority of miners” [Bün+20b].

We refer to the information a light client learns as a summary ŝ of the state s. A summary may
not always be enough to fully verify or interact with the blockchain in every way, but it should
be enough to facilitate access to most functionality not immediately available through efficient
interactions with helper full nodes that may, e.g., provide succinct transaction inclusion proofs or
act as a server for PIR.

We formalize simplifying assumptions and summaries analogously to consensus and state. We
begin by introducing a trim function T that maps a blockchain b in the consensus language to its
trimmed blockchain counterpart b̂ in the simplified consensus language LĈ . We first define a trim

function T : Lb → Lb̂ that takes as input a valid block and outputs a smaller trimming b̂ in the
trimming language Lb̂. The trimming language, like the block language represents local checks such

18

as syntax and signature verifications. Under a reasonable simplifying assumption, a light client
that verifies b̂ ∈ LĈ can have confidence there exists a b ∈ LC such that b̂ = T (b). We write
T (b) = (T (b1), T (b2), . . .). We require that when T is applied to any valid blockchain, the resulting
trimmed blockchain is accepted by Ŝ, described below.

Analogous to the state transition function, the summary update function Ŝ : Lŝ×Lb̂ → Lŝ∪{⊥}
takes a summary ŝ corresponding to a trimmed blockchain it has already verified and a new trimming
b̂, and outputs an updated summary ŝ′ if (under the simplifying assumption) b̂ corresponds to a
block that presents a valid extension to a blockchain that produced summary ŝ, or else outputs

⊥. Hence, LĈ =
{
b̂ ∈ Lb̂ | Ŝ(ŝg, b̂) 6=⊥

}
. The state language Lŝ is simply defined as all states

reachable by valid blockchains.
Lastly, we require a strict total order ≤ on summaries such that ŝ ≤ ŝ′ implies the existence of

corresponding blockchains b ≤ b′.

B.3 Proof-of-stake consensus

Celo validators are elected by a proof-of-stake voting mechanism. Once elected, they serve on
a committee for one epoch, which is currently set to 24 hours worth of blocks. Celo validators
trade off proposing and confirming blocks using the Istanbul Byzantine Fault Tolerant (IBFT)
consensus algorithm [Mon20]. IBFT is deterministic, assumes a partially synchronous communication
model, and guarantees safety independent of timing assumptions when n > d3f/2e, where n and
f are the number of total and byzantine nodes. BFT consensus protocols provide the following
guarantees [CGR11]:
• Termination: Every correct replica eventually decides some value v.
• Validity: If all replicas propose the same value v, then no replica decides a value different from v;

a correct replica may only decide a value that was proposed by some correct replica or the special
value ⊥ indicating that no valid decision was found.

• Integrity: No correct replica decides twice.
• Agreement: No two correct replicas decide differently.
Compared to Nakamoto consensus, which is based on proof-of-work and the heaviest-chain rule,
proof-of-stake and BFT-based consensus is fork-free given n > d3f/2e. In Nakamoto consensus,
even with a honest majority, forks may occur regularly as miners find blocks at the same time, or
because of attacks like selfish mining. With Bitcoin, this means it is common practice to require 6
confirmation blocks, waiting roughly an hour, to ensure the finality—that a transaction has really
once and for all been included in the blockchain.

Long range attacks. BFT blockchains must incentivize honesty and prevent double-signing, the
signing of two different blocks at the same height, in order to have a single chain. Positive behavior
is financially rewarded, while double signing is punished with slashing, where a validator’s stake is
taken. Since stake is not locked forever, past validators who don’t have locked stake anymore, can
choose to collude and extend a chain built on top of an older block without fear of losing their stake.
We refer to such forks as long-range attacks, which can cause light clients who only verify part of a
blockchain to accept a fork that does not follow consensus rules (whereas full nodes may accept a
fork, but only one that followed consensus rules). Celo employs a combination of incentives (e.g.,
maintaining a reputation as an honest validator and continuing to earn block rewards) and security
protocols (e.g., key rotation, checkpointing) as a defense against such attacks.

Future committee attacks. Consider a scenario where at some point an adversary A obtains

19

signing oracle access to a number of validators (during possibly disjoint periods), who later form
the supermajority of some committee. When blocks are predictable, the adversary can use each
validator key it gains access to sign blocks for an adversarial public key set and for every index out
to decades in the future. So even if the adversary no longer has oracle access to any of the validators
for that epoch, they will be able to create a fork. We call this a future committee attack (although
it applies to non-commitee based PoS networks as well), which to the best of our knowledge has not
been described in the prior literature.

Two possible defenses against such an attack include a high water mark for block number
implemented in trusted hardware (which could alert the validator to their compromise) and regularly
enforced key rotations. Plumo has opted for another solution that doesn’t rely on trusted hardware
or place additional burden on validators: we have included the verifiable randomness value from
the last block of the current (“current entropy”) and previous epoch (“parent entropy”) in each
epoch message. This makes the epoch messages unpredictable and thus not signable in advance,
as an adversary would have to guess the randomness from the epoch before the epoch they would
otherwise be able to fork from.

B.4 Cryptographic assumptions

B.4.1 Bilinear groups

The cryptographic primitives that we construct in this paper rely on cryptographic assumptions
about bilinear groups. We formalize these via a bilinear group sampler, which is an efficient
algorithm SampleGrp that given a security parameter λ (represented in unary), outputs a tuple
〈group〉 = (G1,G2,GT , q, G1, G2, e) where G1,G2,GT are groups with order divisible by the prime
q ∈ N, G1 generates G1, G2 generates G2, and e : G1×G2 → GT is a (non-degenerate) bilinear map.

Following [GPS08], we distinguish between three types of bilinear group samplers. Type I groups
have G1 = G2 and are known as symmetric bilinear groups. Types II and III are asymmetric
bilinear groups, where G1 6= G2. Type II groups have an efficiently computable homomorphism
ψ : G2 → G1, while Type III groups do not have an efficiently computable homomorphism in either
direction. Certain assumptions are provably false w.r.t. certain group types (e.g., ψ-co-CDH only
holds for Type III groups), and in general in this work we assume we are working with Type III
groups.

B.4.2 Chains of elliptic curves

Let E be an elliptic curve over a finite field Fq, where q is a prime. We denote this by E/Fq, and we
denote by E(Fq) the group of points of E over Fq, with order n = #E(Fq). We say that an elliptic
curve E/Fq is pairing-friendly if E(Fq) has a large prime-order subgroup, and if the embedding
degree (i.e., the smallest integer k such that n divides qk−1) is small.

Definition B.1 (Two-chain of elliptic curves). A two-chain of elliptic curves is a pair of distinct
elliptic curves E1/Fq1 , E2/Fq2, where q1, q2 are prime, such that #E1(Fq1) = q2.

We say an elliptic curve is ordinary if E[q] ≡ Z/qZ, where [q] is the multiplication-by-p map.

Definition B.2 (Pairing-friendly two-chain). A (k1, k2)-chain is a two-chain of distinct ordinary
elliptic curves E1/Fq1 , E2/Fq2 with respective embedding degrees k1, k2. A (k1, k2)-chain is pairing-
friendly if k1 and k2 are small.

20

A 2-chain of elliptic curves E1/Fq1 , E2/Fq2 where #E1(Fq1) = q2 is useful as it allows for the
computation of elliptic curve operations and pairings for E2 inside of an arithmetic circuit defined
over the scalar field Fq2 of E1.

B.4.3 Cryptographic assumptions

The computational ψ-co-Diffie-Hellman assumption was introduced in [BDN18]. For type 1 and 2
pairings it is equivalent to co-CDH, and it is assumed to hold whenever co-CDH does.

Definition B.3 (Computational ψ-co-Diffie-Hellman (ψ-co-CDH) [BDN18]). For a bilinear group
sampler SampleGrp, let ψ(·) be an oracle that on input Gγ2 ∈ G2 outputs Gγ1 ∈ G1. We say ψ-co-CDH
holds with respect to SampleGrp if for all efficient adversaries A it holds that

Pr
[
y = Gαβ1

∣∣∣ 〈group〉 ← SampleGrp(1λ); α, β
$←− F; y ← Aψ(〈group〉, Gα1 , G

β
1 , G

β
2)
]
≤ negl(λ) .

B.4.4 Aggregate multisignatures

Our definition of an aggregate multisignature scheme is based on [BDN18], but we make several
changes. First, since the BLS-based scheme we use in Plumo has a non-interactive signing process,
we have simplified the interface of the Sign algorithm accordingly. Further, we define only a single
verification algorithm, noting that (multi)signatures are just aggregate (multi)signatures with a
single message, and that signatures are just multisignatures with signer group size one. Lastly, since
we want to prove joint security in the plain public key model, we include a proof-of-possession (PoP)
scheme as part of the interface, where PoP generation is folded into KeyGen and PoP verification is
handled by a new algorithm VPoP. An aggregate multisignature scheme then consists of a 8-tuple of
efficient algorithms (Setup,KeyGen,VPoP, Sign,KeyAgg,MultiSign,AggSign,Verify) that behave as
follows:

• Setup(1λ)→ pp : a setup algorithm that, given a security parameter λ (represented in unary),
outputs a set of public parameters pp.

• KeyGen(pp) → (pk, sk, π) : a key generation algorithm that outputs a public-secret key pair
(pk, sk) and a PoP π.

• VPoP(pp, pk, π)→ {0, 1}: a PoP verification algorithm that, given a public key pk and a corre-
sponding PoP π, returns 1 or 0 to accept or reject the proof, respectively.

• Sign(pp, sk,m) → σ : a signing algorithm that, given a secret key sk and message m ∈ {0, 1}∗,
returns a signature σ.

• KeyAgg(pp, {pki}
n
i=1) → apk : a key aggregation algorithm that, given a set of n public keys

{pki}
n
i=1, returns an aggregate public key apk.

• MultiSign(pp, {σi}ni=1)→ σ : a non-interactive multisignature algorithm that, given n signatures
{σi}ni=1) (on the same message under distinct keys), returns a multisignature σ.

• AggSign(pp, [σi]
n
i=1)→ Σ : a non-interactive aggregate multisignature algorithm that, given a list

of n (multi)signatures, outputs an aggregate signature Σ.
• Verify(pp, [(apki,mi)]

n
i=1,Σ) → {0, 1} : an aggregate multisignature verification algorithm that,

given a list of public key and message pairs [(pki,mi)]
n
i=1 and an aggregate multisignature Σ,

returns 1 or 0 to accept or reject the signature, respectively.

We require that an aggregate multisignature scheme satisfies unforgeability. Our unforgeability
definition is based on [BDN18], but deviates in an important way: namely, for every public key

21

the adversary outputs, they must also output a corresponding valid PoP. We believe this to be a
practical and widely standard-in-practice assumption for a system using PoPs. Further, it allows us
to prove unforgeability of our aggregate multisignature scheme BBSGLRY in Section 5.1 under the
same assumptions as AMSP-PoP from [BDN18].

BBSGLRY is nearly identical to AMSP-PoP (including in their mutual use of the PoP B-PoP
from [RY07]), but unlike AMSP-PoP does not require signers prepend the aggregate public key
of thes multisignature to their messages and thus know the multisignature group before signing.
Appending the aggregate public key is unnecessary in practice for their scheme, but forced by their
definitions and interface. PoPs are not checked by the unforgeability challenger, but instead by the
KeyAgg algorithm of AMSP-PoP. Their adversary also outputs the aggregate public keys which do
not need to contain the challenge public key directly, instead of outputting them as public key sets
as in our definition. This means KeyAgg is never run on them and hence if the aggregate public key
was not prepended to the message when signing rogue-key attacks would be possible.

Changing their definition to just check PoPs on the aggregate public keys output by the adversary
would not capture the same guarantee, since this would preclude the possibility of an adversary who
can only produce a forgery that is checked against one or more aggregate public keys (in addition
to the one that must contain the challenge public key) that they cannot produce PoPs for directly,
but for which they can produce PoPs for corresponding sets of public keys which when passed to
KeyAgg result in those aggregate public keys.

We can see their unforgeability definition as a subcase of our own, where the adversary outputs
public key sets [PKi]ni=1 of size one, and where VPoP is set to the constant 1 function. Further,
since signatures and multisignatures can be seen as subcases of aggregate multisignatures as noted
above, our unforgeability definition covers all three.

Definition B.4 (Unforgeable aggregate multisignature). For an aggregate multisignature scheme
(Setup,KeyGen,VPoP, Sign,KeyAgg,MultiSign,AggSign,Verify) we define the advantage of an adver-

sary against unforgeability to be defined by AdvforgeA (1λ) = Pr
[
GameforgeA (1λ) = 1

]
where the game

GameforgeA is defined as follows for n ∈ N.

GameforgeA (1λ)

pp← Setup(1λ)
(pk∗, sk∗, π∗)← KeyGen(pp)
Q← ∅
({(PKi,mi)}ni=1, {Πi}ni=1, PK, Π∗, m∗, Σ)← ASign(pp, pk∗, π∗)
If pk∗ /∈ PK∗ ∨ m∗ ∈ Q then return 0
For i ∈ [n] :

For (pk, π) ∈ PKi ×Πi :
If VPoP(pp, pk, π) = 0 then return 0

apki ← KeyAgg(pp,PKi)
For (pk, π) ∈ PK∗ ×Π∗ :

If VPoP(pp, pk, π) = 0 then return 0
apk∗ ← KeyAgg(pp,PK∗)
Return Verify(pp, [(apki,mi)]

n
i=1‖(apk

∗,m∗)],Σ)

Sign(m)

σ ← Sign(pp, sk∗,m)
Q← Q ∪ {m}
Return σ

We say an aggregate multisignature scheme is unforgeable if for all efficient adversaries A it holds
that AdvforgeA (1λ) ≤ negl(λ).

22

B.4.5 O-SNARKs: SNARKs in the presence of oracles

In this section we introduce the notion of an O-SNARK [FN16], which is a SNARK that allows for
knowledge extraction in the presence of oracles.

Definition B.5 (Z-auxiliary input O-SNARK for O). A Z-auxiliary input succinct non-interactive
argument of knowledge for the oracle family O and the relation R is a triple of efficient algorithms
Π = (Setup,Prove,Verify) working as follows

• Setup(1λ) → crs: on input of a security parameter λ (expressed in unary), outputs a common
reference string crs.

• Prove(crs,x,w)→ π: given a common reference string crs, an instance x, and a witness w such
that (x,w) ∈ R, this algorithm produces a proof π.

• Verify(crs,x, π)→ {0, 1}: on input of a common reference string crs, an instance x, and a proof
π, the verifier algorithm outputs 0 (reject) or 1 (accept).

and satisfying perfect completeness, succinctness, and adaptive argument of knowledge specified as
follows:

• Completeness: For every (x,w) ∈ R it holds that:

Pr

[
Verify(crs,x, π) = 1

∣∣∣∣ crs← Setup(1λ)
(x, π)← Prove(crs,x,w)

]
= 1 .

• Succinctness: For every crs← Setup(1λ) and (x,w) ∈ R it holds that:

– |π| = poly(λ), where π ← Prove(crs,x,w) (i.e., proof size is defined by a universal polynomial
in the security parameter λ), and

– Verify runs in time poly(λ+ |x|).
• Adaptive argument of knowledge: Π satisfies adaptive argument of knowledge for O and Z if

for every efficient oracle prover AO who makes at most Q(λ) = poly(λ) queries there exists an
efficient extractor EA with black box access to A including any random coins such that:

Pr

 Verify(crs,x, π) = 1
∧

(x,w) /∈ R

∣∣∣∣∣∣
aux← Z; O ← O; crs← Setup(1λ)

(x, π)← AO(crs, aux)
w← EA(crs, aux, qt)

 ≤ negl(λ) ,

where qt = {qi,O(qi)} is the query transcript of all queries and answers made and received by AO.

B.4.6 Hash functions

Below we give a definition of a collision-resistant hash family with a key space K, message space M,
and codomain Y . We note that elsewhere in this work we often omit discussion of key sampling for
simplicity, and since for functions like BLAKE2s that has already been done and fixed in advanced.

Definition B.6 (Collision-resistance). Let Hλ : Kλ ×M→ Yλ be a hash function family. We say
H is computationally collision-resistant if for all efficient adversaries A

Pr [k ← Kλ; (m0,m1)← A(k) | m0 6= m1 ∧ Hk(m0) = Hk(m1)] ≤ negl(λ) .

23

C Trusted setup

Fully succinct SNARKs, including the Groth16 SNARK used by Plumo require a trusted party to
compute a structured reference string (SRS) used for both proof generation and verification. To
avoid centralizing trust, we use secure multi-party computation (MPC) to perform a distributed
online trusted setup where participants from around the world are encouraged to contribute. During
such a ceremony multiple participants individually generate pieces of randomness—sometimes called
toxic waste—which they use to perform their part of the MPC and then delete afterwards. This
process has the strong security guarantee that only one honest participant needs to delete their
toxic waste after finishing their contribution 18 . Each participant generates proofs to show they
performed their part of the MPC correctly, which can also be used to verify their contribution is
part of the final SRS. Our trusted setup ceremony builds on the “MMORPG” protocol introduced
by Bowe et al. and used by Zcash [BGM17] and “Snarky Ceremonies” protocol by Kohlweiss et
al. [Koh+21]. We augment these ceremonies with an “optimistic setup,” allowing more efficient
contribution by a set of participants who can be added on a rolling basis to an ongoing ceremony, and
a combination of batch verification techniques reducing MPC verification time to a small fraction of
the time it takes naively.

Optimistic setup. Consider generating two pieces of randomness α = α0 · α1 · α2 · ... · αn and
β = β0 · ... · βn, where each αi and βi is generated by some participant i in a trusted setup ceremony.
The most direct way to achieve this is to have participant i − 1 pass its resulting contributions
α′i−1 = α0 · ...αi−1 and β′i−1 computed analogously on to participant i, who will then compute
α′i = α′i−1 · αi and similarly β′i, before then giving both to participant i+ 1 who will then iteratively
repeat the same process.

This approach, while valid, carries with it two distinct problems. First, it requires for maximum
efficiency that participant i is available immediately after participant i− 1. Secondly, it is inefficient,
even when run with a minimum of downtime.

A solution to both of these problems, which we have implemented 19, is known as optimistic
out-of-order execution20. Consider the above example where each α and β represent vectors of some
large size n of random elements, so that computing one vector takes several hours. Observe that
when participant i is computing vector αi, no progress is being made on the β vector. We could
instead have two different participants work on each vector simultaneously. In fact, if we have n
participants, we could split each vector into m ≥ n chunks, so that each participant can each work
on a chunk simultaneously, before giving it back to some untrusted server which will then give
it to another participant after it has finished contributing to its chunk. In addition to the gains
from parallelism, this has the benefit that the setup can be split into rounds in which a subset of
participants only need to be online together for a relatively short period of time, after which a new
round of a distinct subset of participants can contribute to the previous round’s output pending
an arbitrary duration between them. This has the added benefit of making it easy to add new
participants to the setup in a rolling basis.

To show security of such a scheme over the base MMORPG scheme, it suffices to show that
the proof of knowledge of exponent used in the protocol is secure in the face of certain auxiliary
inputs, in particular the CRS elements computed by and received from other participants. This

18Join over 100 participants so far in our ongoing ceremony at https://celo.org/plumo .
19See our open-source implementation: https://github.com/celo-org/snark-setup-operator.
20https://ethresear.ch/t/accelerating-powers-of-tau-ceremonies-with-optimistic-pipelining/6870

24

https://celo.org/plumo
https://github.com/celo-org/snark-setup-operator
https://ethresear.ch/t/accelerating-powers-of-tau-ceremonies-with-optimistic-pipelining/6870

is in fact shown by [Koh+21], in which they prove security of the proof of exponent protocol
against an adversary able to make oracle queries to obtain random evaluations on arbitrary Laurent
polynomials, effectively simulating being able to see partially computed elements of the CRS.

Batch verification. We use a combination of the bucket and small exponent test as described by
Bellare et al. in [BGR98] to significantly reduce the number of pairings needed to verify our trusted
setup ceremony. Benchmarks confirm these techniques provide almost a 50× speedup in verification
over a naive approach.

Security. Cheon showed that when given G1, G
α
1 , Gα

i

1 for any power
i | q−1, where q is the prime order of G1, it is possible to find the DL α in time O(

√
q/i+

√
i) [Che10].

Using the Pollard-Rho variant21 of Cheon’s attack (which is even faster than the original baby-step
giant-step based variant) we can lower bound the number of G1 exponentiations an adversary would
have to perform to 1.25(

√
q/i−

√
i). Therefore, despite the very large 228 size of our trusted setup,

we estimate the security over BW6-761 to be at least 175 bits.

D Deferred proofs

Proof of Theorem 4.1.

Proof. For every efficient oracle adversary AO that on input (pp, aux), with non-negligible probability
outputs (ŝ, π = ([ŝ]c−1i=1 , [πi]

c
i=1)) such that the VerifyUpdate algorithm of ΠUC accepts. We define

an efficient extractor EA with negligible knowledge soundness error κ(λ) that, on input (pp, aux, qt)
and the random coins of A, outputs b such that Ŝ(ŝg, b) = ŝ.

Assume A produces an accepting summary-proof pair. Then

∧ci=1Verify(crs, ŝi−1, ŝi, πi) ,

where ŝ0 ← ŝg and ŝc ← ŝ. Let BOi be the O-SNARK oracle adversary that on input (crs, aux)
runs A on (crs, aux) and its own local random tape, relaying the oracle queries of A to its own
oracle(s), and outputs ((ŝi−1, ŝi), πi) taken from the output of A. By assumption of the adaptive
security of ΠOS, there exists an efficient extractor EBi with negligible knowledge error κ′(λ) that, on
input (crs, aux, qt) and the random coins of Bi, with non-neglible probability outputs b̂i such that
Ŝ(ŝi−1, b̂i) = ŝi.

By running extractors EB1 , . . . , EBc on its own inputs (pp, aux, qt), the extractor EA obtains
b̂ ← b̂1‖ · · · ‖b̂c. It follows from the union bound that the knowledge soundness of the ultralight
client is κ(λ) = c · κ′(λ), where the negligible function κ′(λ) gives the knowledge soundness of ΠOS.
Since A is efficient, c = poly(λ), implying both that κ(λ) is negligible and that EA, which runs in c
calls to EBi , is efficient, as required.

Proof of Theorem 5.1.

Proof. Given a (τ, qS, qHs , ε) forger F against BBSGLRY, we build a co-CDH algorithm A as follows.

On input (〈group〉, A = Gα1 , B1 = Gβ1 , B2 = Gβ2), algorithm A samples r
$←− F and pk∗ ← B2, π

∗ ←
Br

1, and Hp(B2) ← Gr1. Next, A samples k ∈ {1, . . . , qS + qHs} and runs F on input (pp, pk∗, π∗)
simulating its oracles as follows:

21https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692

25

https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692

• Hs(m): if this is the k-th query to this oracle, add (m,⊥) to Ls and return A. Else, sample ρ
$←− F,

add (m, ρ) to Ls, and return Gρ1.

• Hp(pk): sample ξ
$←− F, add (m, ξ) to Lp, and return Aξ.

• Sign(m): simulate an internal query Hs(m) and lookup m in Ls. If the corresponding ρ =⊥ abort,
else return Bρ

1 .

If A doesn’t abort and F succeeds, then with probability 1
qS+qHs

we have Hs(m
∗) = A. If this is not

the case, A aborts. Otherwise, it holds that

Σ = A

∑
j∈PK∗ (logPK

∗
j)+

∑
i∈I∗,
j∈PKi

logPKi,j

·
∏

i∈[n]\I∗
h

∑
j∈PKi

logPKi,j

i ,

where I∗ ⊆ [n] is the list of indices for which mi = m∗. Then hi = Gρi1 for some ρi ∈ Ls.
Observe that for each (pk, π) pair that π = Aξ log pk for some ξ ∈ Lp, so A can compute

πξ
−1

= Alog pk. For every pk, A can also query ψ(pk) = Glog pk
1 . Hence, A can compute the

ψ-co-CDH solution

Σ ·
∏

j∈PK∗,
j 6=pk∗

π
−ξ−1

j

j ·
∏
i∈I∗,
j∈PKi

π
−ξ−1

i,j

j ·
∏

i∈[n]\I∗,
j∈PKi

ψ(pki,j)
−ρi .

Proof of Theorem 5.2.

Proof. As noted in Appendix B.4.6 we simplified our exposition in Section 5.2 by considering CRH
a collision-resistant hash—treating it as if were already picked from a CRH family by sampling
and fixing a key. We now consider a CRH family CRH : K × {0, 1}∗ → B, as well as an injective
encoding Encode : B → {0, 1}b−t. We show that given an efficient distinguisher D that makes at
most Q(λ) queries such that∣∣∣Pr

[
DO(·)(1λ) = 1

]
− Pr

[
k ← K

∣∣∣ DH(k,·)(1λ) = 1
]∣∣∣ = µ(λ) > negl(λ) ,

where H(k, ·) is built with CRH(k, ·), Encode, and a RO O′ : {0, 1}b → {0, 1}c as in Construction 3,
and where O : {0, 1}∗ → {0, 1}` is a RO, we can build an adversary A that breaks the collision-
resistance of CRH.

On input k ← K, A runs D, simulating its oracle by running H(k, ·) on its queries. Let
qt = {qi,H(k, qi)}i∈[Q] be the query transcript between D and A (where wlog we assume queries

unique). Let {h′i}i∈[Q] = {CRH(k, qi)}i∈[Q] be the intermediate hash values computed by A while

simulating D’s oracle. Let coll be the event that for i 6= j there exists h′i = h′j . If coll happens, then
A outputs the first colliding query pair (qi, qj); else A outputs two random messages.

Since O and O′ are ROs and Encode is injective, it follows when ¬coll that the distributions qt
and {qi,O(qi)}i∈[Q] are identical. Therefore, event coll (coinciding with A’s success) must happen
with probability at least µ(λ) > negl(λ). Since D runs in time poly(λ), it is easy to see A does as
well.

26

E The Plumo specification

We present a procedural description of our main circuit that implements our summary relation
over BW6-761 described in Section 4.3. Here we take n to be the number of validators and N the
number of epochs to be proved, where N > 1. For simplicity we will not cover epoch padding if
the number of epochs to be proven is less than N , although we note that it is simple in practice to
hard-code trivially satisfying the relevant circuit logic for dummy epochs.

We assume here the existence of a bilinear group, presented according to the notation in Ap-
pendix B.4.1. We also assume the circuit is implemented over a field F.

When not dealing with subroutines, we use the notation Circuit(x : w) to indicate that Circuit
implements an NP-relation with public inputs x and private inputs w. We will also denote by b a
bitmap of length n.

Main circuit

We first define the following helper methods:

• EncodeEpochToBits(i, r, δ, δ′, t, apk, {pki}ni=1) :

1. Encode i, the epoch index, as a 16-bit integer.

2. Encode r, the consensus round number, as an 8-bit integer.

3. Encode t, the maximum number of non-signers, as a 32-bit integer.

4. Encode δ, the current epoch entropy, in 128 bits.

5. Encode δ′, the parent epoch entropy, in 128 bits.

6. Encode each public key in {pki}ni=1 as a G2 compressed point. If there are fewer public
keys than the maximum defined in the system parameters, pad with G2 until the maximum
number of public keys is reached.

• EncodeEpochToBitsEdges(i, δ, δ′, t, apk, {pki}ni=1) :

1. Encode i, the epoch index, as a 16-bit integer.

2. If this is the first epoch, encode δ′, the parent epoch entropy in 128 bits. If this is the last
epoch, encode δ, the current epoch entropy in 128 bits.

3. Encode t, the required signer threshold, as a 32-bit integer.

4. If this is the last epoch, encode apk, the aggregated public key of this validator set, as a
compressed G2 point.

5. Encode each public key in {pki}ni=1 as a G2 compressed point. If there are fewer public
keys than the maximum defined in the system parameters, pad with G2 until the maximum
number of public keys is reached.

Next we describe the main circuit. In the following let

Ej = {ij , rj , δj , δ′j , tj , apkj , {pkj,k}nk=1}

27

A subroutine taking as input some Ej is assumed to discard those elements included in it which
are not a part of the subroutine’s input.

• MainCircuit(H ′(e1), H
′(eN) : σagg, {H(ej)}Nj=2, {bj}

N−1
j=1 , {Ej}Nj=1):

1. For each j = 2...N perform:

(a) Check that apkj−1 =?
∑n

i=1 bi · pkj−1,i where bi is the i-th bit of bj−1.

(b) Check that δj−1 =? δ′j
(c) Check that ij−1 =? ij + 1

(d) Encode Ej as ej using EncodeEpochToBits and hash it using BHPedersenHash. Then,
run Blake2Xs on the intermediate result to obtain the final result of the composite
hash. Finally, complete the hash following the hash-to-group method described
in Sections 5 and 6.1. Check that the result is equal to H(ej).

2. Check that apkN =?
∑n

i=1 pkN,i.

3. Check that e(σagg, G
−1
2) · e(H(e2), apk1) · ... · e(H(en), apkn−1) =? 1GT

4. Encode E1 as e1 and EN as eN each using EncodeEpochToBitsEdges. Hash individually
both e1 and eN directly with Blake2s. Tightly pack, individually, the first and last epoch
resulting hash bits into elements of F. Check that the results of this packing are equal to
H ′(e1), H

′(eN) respectively.

References

[Al-+18] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis. “Chainspace: A Sharded Smart
Contracts Platform”. In: Procedings of the 25th Network and Distributed System Security Symposium.
NDSS ’18. 2018 (2).

[Alb+16] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. “MiMC: Efficient encryption and
cryptographic hashing with minimal multiplicative complexity”. In: 22nd International Conference on
the Theory and Application of Cryptology and Information Security. 2016, pp. 191–219 (7).

[Amo+18] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci Piergiovanni. “Correctness of
Tendermint-Core Blockchains”. In: 22nd International Conference on Principles of Distributed Systems.
Vol. 125. OPODIS ’18. 2018, 16:1–16:16 (2, 16).

[Aum+13] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. “BLAKE2: simpler, smaller, fast as
MD5”. In: 11th International Conference of Applied Cryptography and Security. ACNS ’13. 2013 (6, 12,
13).

[AVL62] G. Adelson-Velsky and E. Landis. “An algorithm for the organization of information”. In: USSR Academy
of Sciences. 1962 (16).

[BDN18] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures for Smaller Blockchains”. In: 24th
International Conference on the Theory and Application of Cryptology and Information Security. ASI-
ACRYPT ’18. 2018, pp. 435–464 (5, 7, 17, 21, 22).

[Ben+14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: 34th Annual International Cryptology Conference. CRYPTO ’14. 2014, pp. 276–294 (3).

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. Recursive Proof Composition without a Trusted Setup. Cryptology
ePrint Archive, Report 2019/1021. 2019 (4).

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable Multi-party Computation for zk-SNARK Parameters in the
Random Beacon Model. Cryptology ePrint Archive, Report 2017/1050. 2017 (24).

28

https://arxiv.org/pdf/1708.03778.pdf
https://arxiv.org/pdf/1708.03778.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2018/574.pdf
https://eprint.iacr.org/2018/574.pdf
https://www.blake2.net/blake2_20130129.pdf
https://www.blake2.net/blake2_20130129.pdf
https://zhjwpku.com/assets/pdf/AED2-10-avl-paper.pdf
https://eprint.iacr.org/2018/483.pdf
https://eprint.iacr.org/2014/595.pdf
https://eprint.iacr.org/2014/595.pdf
https://eprint.iacr.org/2019/1021.pdf
https://eprint.iacr.org/2017/1050.pdf
https://eprint.iacr.org/2017/1050.pdf

[BGR98] M. Bellare, J. A. Garay, and T. Rabin. “Fast Batch Verification for Modular Exponentiation and Digital
Signatures”. In: 17th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’98. 1998, pp. 236–250 (14, 25).

[Bit+13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Composition and Bootstrapping for
SNARKs and Proof-Carrying Data”. In: 45th ACM Symposium on the Theory of Computing. STOC ’13.
2013, pp. 111–120 (11).

[Bit+16] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. “On the Existence of Extractable One-Way Functions”.
In: SIAM Journal on Computing 45.5 (2016). Preliminary version appeared in STOC ’14., pp. 1910–1952
(11).

[BLS01] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures from the Weil Pairing”. In: 7th International
Conference on the Theory and Application of Cryptology and Information Security. ASIACRYPT ’01.
2001, pp. 514–532 (7, 13, 17).

[Bol03] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-
Hellman-Group Signature Scheme”. In: 6th International Conference on Practice and Theory in Public
Key Cryptography. PKC ’03. 2003, pp. 31–46 (7, 17).

[Bon+03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and Verifiably Encrypted Signatures
from Bilinear Maps”. In: 22nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’03. 2003, pp. 416–432 (7, 17).

[Bon+20] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. Coda: Decentralized Cryptocurrency at Scale. Cryptology
ePrint Archive, Report 2020/352. 2020 (2, 3).

[Bow+20] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. “Zexe: Enabling Decentralized Private
Computation”. In: 41st IEEE Symposium on Security and Privacy. S&P ’20, 2020, pp. 947–964 (5, 7).

[Bra+20] S. Braithwaite et al. “A Tendermint Light Client”. In: (2020) (16).

[Bün+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs for
Confidential Transactions and More”. In: 39th IEEE Symposium on Security and Privacy. S&P ’18. 2018,
pp. 315–334 (16).

[Bün+20a] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Recursive Proof Composition from Accumulation
Schemes”. In: 18th Theory of Cryptography Conference. Vol. 2. TCC ’20. 2020, pp. 1–18 (4).

[Bün+20b] B. Bünz, L. Kiffer, L. Luu, and M. Zamani. “FlyClient: Super-Light Clients for Cryptocurrencies”. In:
41st IEEE Symposium on Security and Privacy. S&P ’20. 2020, pp. 928–946 (2, 3, 10, 18).

[CCW19] A. Chiesa, L. Chua, and M. Weidner. “On Cycles of Pairing-Friendly Elliptic Curves”. In: SIAM Journal
on Applied Algebra and Geometry 3.2 (2019), pp. 175–192 (4).

[CGR11] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed Programming.
2nd ed. Springer, 2011 (19).

[Che10] J. H. Cheon. “Discrete Logarithm Problems with Auxiliary Inputs”. In: Journal of Cryptology 23.3
(2010), pp. 457–476 (25).

[Che+20] W. Chen, A. Chiesa, E. Dauterman, and N. P. Ward. Reducing Participation Costs via Incremental
Verification for Ledger Systems. Cryptology ePrint Archive, Report 2020/1522. 2020 (2–5).

[Chi+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. Ward. “Marlin: Preprocessing zkSNARKS
with Universal and Updatable SRS”. In: EUROCRYPT ’20 (2020), pp. 738–768 (4).

[CKK20] S. Cao, S. Kadhe, and R. Kannan. CoVer: Collaborative Light-Node-Only Verification and Data Avail-
ability for Blockchains. ArXiv abs/2010.07031. 2020 (16).

[CL06] J. H. Cheon and D. H. Lee. “Use of Sparse and/or Complex Exponents in Batch Verification of
Exponentiations”. In: IEEE Transactions on Computers 55.12 (2006), pp. 1536–1542 (14).

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments from Signature Cards”. In: 1st
Conference on Innovations in Computer Science. ICS ’10. 2010, pp. 310–331 (3).

[EHG20] Y. El Housni and A. Guillevic. Optimized and secure pairing-friendly elliptic curves suitable for one
layer proof composition. Cryptology ePrint Archive, Report 2020/351. 2020 (7).

29

https://eprint.iacr.org/2012/095.pdf
https://eprint.iacr.org/2012/095.pdf
https://eprint.iacr.org/2014/402.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bold.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bold.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/aggreg.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/aggreg.pdf
https://eprint.iacr.org/2020/352.pdf
https://eprint.iacr.org/2018/962.pdf
https://eprint.iacr.org/2018/962.pdf
https://arxiv.org/pdf/2010.07031.pdf
https://eprint.iacr.org/2020/499.pdf
https://eprint.iacr.org/2020/499.pdf
https://eprint.iacr.org/2019/226.pdf
https://arxiv.org/pdf/1803.02067.pdf
https://www.distributedprogramming.net/
https://www.math.snu.ac.kr/~jhcheon/publications/2010/StrongDH_JoC_Final2.pdf
https://eprint.iacr.org/2020/1522.pdf
https://eprint.iacr.org/2020/1522.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1047.pdf
https://arxiv.org/pdf/2010.00217.pdf
https://arxiv.org/pdf/2010.00217.pdf
http://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic Group Model and its Applications”. In: 38th
Annual International Cryptology Conference. CRYPTO ’18. 2018, pp. 33–62 (11).

[FN16] D. Fiore and A. Nitulescu. “On the (In)Security of SNARKs in the Presence of Oracles”. In: 14th
International Conference on the Theory of Cryptography. TCC ’16. 2016, pp. 108–138 (9, 11, 23).

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. “Pairings for cryptographers”. In: Discrete Applied
Mathematics 156.16 (2008), pp. 3113–3121 (20).

[Gra+19] L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and M. Schofnegger. “Starkad and Poseidon:
New Hash Functions for Zero Knowledge Proof Systems”. In: (2019) (5, 7).

[Gud+19] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais. SoK: Off The Chain Transactions.
Cryptology ePrint Archive, Report 2019/360. 2019 (2).

[Hop+21] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash Protocol Specification [Overwinter+Sapling].
2021 (6, 12–14).

[KK+16] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. “Enhancing Bitcoin Security
and Performance with Strong Consistency via Collective Signing”. In: 25th USENIX Conference on
Security Symposium. USENIX Security ’16. 2016, pp. 279–296 (4).

[KK+18] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. “OmniLedger: A Secure,
Scale-Out, Decentralized Ledger via Sharding”. In: 39th IEEE Symposium on Security and Privacy.
S&P ’18. 2018, pp. 583–598 (2).

[KMZ20] A. Kiayias, A. Miller, and D. Zindros. “Non-interactive Proofs of Proof-of-Work”. In: 24th International
Conference on Financial Cryptography and Data Security. FC ’20. 2020, pp. 505–522 (3).

[Koh+21] M. Kohlweiss, M. Maller, J. Siim, and M. Volkhov. Snarky Ceremonies. Cryptology ePrint Archive,
Report 2021/219. 2021 (24, 25).

[Mal+17] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. “Concurrency and Privacy with
Payment-Channel Networks”. In: 2017 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’17. Association for Computing Machinery, 2017, pp. 455–471 (2).

[Mal+19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-Knowledge SNARKs from Linear-Size
Universal and Updateable Structured Reference Strings”. In: 26th ACM Conference on Computer and
Communications Security. CCS ’19. 2019, pp. 2111–2128 (4).

[Mei18] S. Meiklejohn. “Top Ten Obstacles along Distributed Ledgers Path to Adoption”. In: IEEE Security and
Privacy 16.4 (2018), pp. 13–19 (2).

[Mon20] H. Moniz. The Istanbul BFT Consensus Algorithm. ArXiv abs/2002.03613. 2020 (6, 11, 19).

[Nik+17] K. Nikitin et al. “CHAINIAC: Proactive Software-Update Transparency via Collectively Signed Skipchains
and Verified Builds”. In: 26th USENIX Security Symposium. USENIX Security ’14. 2017, pp. 1271–1287
(2).

[PB17] J. Poon and V. Buterin. Plasma: Scalable Autonomous Smart Contracts. 2017 (16).

[RY07] T. Ristenpart and S. Yilek. “The Power of Proofs-of-Possession: Securing Multiparty Signatures against
Rogue-Key Attacks”. In: 26th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’07. 2007, pp. 228–245 (7, 17, 22).

[Yin+19] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. “HotStuff: BFT Consensus with
Linearity and Responsiveness”. In: ACM Symposium on Principles of Distributed Computing 2019.
PODC ’19. 2019, pp. 347–356 (2).

[Zam+20] A. Zamyatin, Z. Avarikioti, D. Perez, and W. J. Knottenbelt. “TxChain: Efficient Cryptocurrency Light
Clients via Contingent Transaction Aggregation”. In: 4th International Workshop on Cryptocurrencies
and Blockchain Technology. CBT ’20. 2020, pp. 269–286 (16).

[Zha+20] W. Zhang, J. Yu, Q. He, N. Zhang, and N. Guan. “TICK: Tiny Client for Blockchains”. In: IEEE
Internet of Things Journal. IOT-J ’20 (2020) (16).

30

https://eprint.iacr.org/2017/620.pdf
https://eprint.iacr.org/2016/112.pdf
https://eprint.iacr.org/2006/165.pdf
https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2019/458.pdf
https://eprint.iacr.org/2019/360.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/sapling.pdf
https://arxiv.org/pdf/1602.06997.pdf
https://arxiv.org/pdf/1602.06997.pdf
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2021/219.pdf
https://eprint.iacr.org/2017/820.pdf
https://eprint.iacr.org/2017/820.pdf
https://eprint.iacr.org/2019/099.pdf
https://eprint.iacr.org/2019/099.pdf
https://discovery.ucl.ac.uk/id/eprint/10057035/1/accepted-topten.pdf
https://arxiv.org/pdf/2002.03613.pdf
https://eprint.iacr.org/2017/648.pdf
https://eprint.iacr.org/2017/648.pdf
https://www.plasma.io/plasma.pdf
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf
https://arxiv.org/pdf/1803.05069.pdf
https://arxiv.org/pdf/1803.05069.pdf
https://eprint.iacr.org/2020/580.pdf
https://eprint.iacr.org/2020/580.pdf
https://eprint.iacr.org/2019/792.pdf

	Abstract
	Contents
	1 Introduction
	2 Overview
	3 Threat model
	4 Ultralight clients
	4.1 Ultralight clients
	4.2 An ultralight client compiler
	4.3 The Plumo ultralight client

	5 SNARK-friendly signatures and hashing
	5.1 BBSGLRY: non-interactive aggregate multisignatures
	5.2 Composite algebraic-symmetric hash functions

	6 Implementation
	6.1 Optimizations
	6.2 Evaluation

	A Additional related work
	B Preliminaries
	B.1 Notation
	B.2 Blockchain model
	B.3 Proof-of-stake consensus
	B.4 Cryptographic assumptions

	C Trusted setup
	D Deferred proofs
	E The Plumo specification
	References

