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Abstract—Thermal jitter (phase noise) from a free-running
ring oscillator is a common, easily implementable physical ran-
domness source in True Random Number Generators (TRNGs).
We show how to evaluate entropy, autocorrelation, and bit
pattern distributions of ring oscillator noise sources, even with
low jitter levels or some bias. Entropy justification is required in
NIST 800-90B and AIS-31 testing and for applications such as
the RISC-V entropy source extension. Our numerical evaluation
algorithms outperform Monte Carlo simulations in speed and
accuracy. We also propose a new lower bound estimation formula
for the entropy of ring oscillator sources which applies more
generally than previous ones.

I. INTRODUCTION: RING OSCILLATOR JITTER

Free-running (ring) oscillators are widely used as physical
noise sources in True Random Number Generators (TRNGs).
In many ways, these designs are direct descendants of the
oscillator-based “electronic roulette wheel” used to generate
the RAND tables of random digits in the late 1940s [1].

A typical design (Fig. 1) has two oscillators; an unsynchro-
nized ring oscillator and a reference oscillator that is used to
sample bits from the free-running oscillator. Spontaneous and
naturally occurring phase shifts between the oscillators will
cause unpredictability of output bits. These random oscillator
period variations are known as oscillator jitter [2].

A pioneering Ring Oscillator RNG chip was described and
patented in 1984 by Bell Labs researchers [3], [4]. This
type of noise source can be realized with “standard cells”
in HDL and requires no special manufacturing processes,
making it a popular choice. More modern versions are used
as noise sources for cryptographic key generation in common
microchips from AMD [5] and ARM [6].

Physical entropy sources are regulated in cryptographic
security standards such as NIST’s SP 800-90B [7] (for FIPS
140-3) and BSI’s AIS 31 [8] (for Common Criteria). These
mandate health monitoring (built-in statistical tests) and appro-
priate post-processing. Cryptographic post-processing methods
such as the SHA2 hash [9] completely mask statistical defects
while still allowing guessing attacks. Noise source entropy
evaluation is therefore crucial for determining the sampling
rate and “compression ratio” of the conditioner.

A. Physical Models and Their Limits

An important contributor to the randomness of jitter in
a ring-oscillator inverter loop (Fig. 1) is Johnson-Nyquist
thermal noise [10], [11], which occurs spontaneously in any
conductor (regardless of quality) as a result of thermal agita-
tion of free electrons. Jitter is a macroscopic manifestation of
this quantum-level [12] Brownian effect.

Timing jitter is a relatively well-understood phenomenon
for many reasons. It is an important limiting factor to the
synchronous operating frequency of any digital circuit.

An example of a detailed physical model for ring oscillator
phase noise and jitter is provided by Hajimiri et al. [13]–[15],
which we recap here. The randomness of the timing jitter has
a strongly Gaussian character. The jitter accumulates in the
phase difference against the reference clock, with variance σ2

t

growing almost linearly from one cycle to the next.
Under common conditions, the transition length standard

deviation (uncertainty) σt after time t can be estimated for
CMOS ring oscillators as (after [14, Eqns. 2.6,5.18]):

σ2
t = κ2t ≈ 8

3η
· kT
P
· VDD
Vchar

· t (1)

In this derivation of physical jitter κ2 we note especially
the Boltzmann constant k and absolute temperature T ; other
variables include power dissipation P , supply voltage VDD,
device characteristic voltage Vchar, and a proportionality con-
stant η ≈ 1. The number of stages (N ) and frequency f affect
power P via common dynamic (switching) power equations.

As noted in [14, Sect. 5.2.1], such derived models only
express “inevitable noise sources” – not “extra disturbance,
such as substrate and supply noise, or noise contributed
by extra circuitry or asymmetry in the waveform” – which
will increase jitter. Many of these factors are difficult to
model individually or are beyond digital designers’ control. In
practice κ2 is measured experimentally, and the existence of
jitter (and hence, fresh thermal noise entropy) is continuously
monitored by auxiliary circuits that are a part of the TRNG.

Q

D Q

Latch
(D-FF)

(external xtal or system) CLK

EN “raw”
entropy
bits zi

2 21 100σ2 =

time

Fig. 1. A ring oscillator consists of an odd (here N = 3) number of
inverters connected into a free-running loop. The output is sampled using
an independent reference clock, such as a crystal oscillator. Transition times
are affected by jitter (largely from Johnson-Nyquist thermal noise), whose
accumulation causes samples to become increasingly unpredictable.



B. From Statistical Random Tests to Entropy Evaluation
A 1948 report by RAND [16] describes the statistical tests

performed on the output of the “million digits” oscillator de-
vice [17]. The tests were based on work by Kendall and Smith
[18], [19] with their late 1930s electromechanical random
number device: Frequency test, Serial test, Poker test, and Gap
test. It is remarkable that versions of these tests remained in
use until the 2000s in the FIPS 140-2 standard [20].

While such “black box” statistical tests suites – including
Marsaglia’s DIEHARD and its successors [21], [22] and
NIST SP 800-22 [23] — may be useful when evaluating
pseudorandom generators for Monte Carlo simulations, they
are poorly suited for security applications. It is illustrative that
a test existed in NIST SP 800-22 even in 2010 to see if an
LFSR is “long enough” to be “considered random” [23, Sect.
2.10]. Elementary cryptanalysis with finite field linear algebra
shows that the internal state of an LFSR can be derived from a
small amount of output, allowing both future and past outputs
to be reproduced with little effort – a devastating scenario if
that output is to be used for cryptographic keying.

By 2001 at least the German AIS 20/31 [8], [24] Common
Criteria IT Security evaluations had diverged from the purely
black-box statistical approach and instead concentrated on
quantifying entropy produced by a noise source, evaluation
of its post-processing methods, and also considered imple-
mentation security, cryptanalytic attacks, and vulnerabilities.
Current NIST security evaluation methodology of physical
noise sources [7] also acknowledges that general statistical
properties of raw noise are less important than evaluation of
its entropy content, but at the time of writing, do not require
stochastic models or detailed analysis of physical sources.

For purposes of security engineering, pseudorandomness in
the output of the physical source is an unambiguously negative
feature as it makes the assessment of true entropy more
difficult. On the other hand, Redundancy from a well-behaved
stochastic model is easily manageable via cryptographic post-
processing. Once seeded, standard (Cryptographic) Determin-
istic Random Bit Generators (DRBGs [25]) guarantee indistin-
guishability from random, in addition to providing prediction
and backtracking resistance.

C. Ring Oscillators as Wiener Processes
Pioneering work on modern Physical RNG Entropy Esti-

mation was presented by Killmann and Schindler [26], whose
stochastic model uses independent and identically distributed
transition times (half-periods) to model jitter. Baudet et al. [27]
take a frequency domain (phase noise) approach. Our model
broadly follows these and also the one by Ma et al. [28].

Baudet et al. propose a Shannon entropy lower bound [27,
Eqn. 14], which has been used in engineering (e.g. [29]):

H1 ≥ 1− 4

π2 ln 2
e−4π

2Q +O
(
e−6π

2Q
)
. (2)

Here Q = σ2∆t (“quality factor”) corresponds to κ2 in the
physical model (Eqn. 1). We observe that the bound of Eqn. 2
is never lower than 0.415 even when Q approaches zero – this
estimate is safe to use only under some additional assumptions.

D. Our Goals: FIPS 140-3 and More Generic ROs

Prior works generally state that the frequency of the free-
running oscillator is much higher than sampling frequency and
that they do not have a harmonic relationship. The source
is also often taken to be unbiased and assumed to have a
relatively high amount of entropy per sample. In this work, we
show how to compute entropy, autocorrelation coefficients, and
bit pattern probabilities also for less ideal parameters. Our goal
is to have guarantees for entropy and min-entropy in TRNG
designs. This is required in current cryptography standards
AIS 31 [8] and FIPS 140-3 [30] / SP 800-90B [7] and for use
in applications such as RISC-V Microprocessors [31], [32].

II. A STOCHASTIC MODEL AND ITS DISTRIBUTIONS

We consider the jitter accumulation σ2 ∼ Q at sample
time rather than the variance of (half) periods [28, Sect.
2.2]. We also ease analysis by using the sampling period
as a unit of time – sample zi is at “time” i, and variance
is defined accordingly. Our time-phase accumulation matches
with the physical model (κ2 of Eqn. 1) and also accounts for
spontaneous, purely Brownian transitions and ripple when the
relative frequency F of oscillators is very small or harmonic.

For sampled digital oscillator sources, we may ignore the
signal amplitude and consider a pulse wave with period T and
relative pulse width (“duty cycle”) D. We assume a constant
sampling rate and use the sample bits as a measure of time.

We normalize the sinusoidal phase ω as x = ω−δ
2π to range

0 ≤ x < 1, where δ is the rising edge location. The average
frequency F ≈ 1/T mod 1 is a per-bit increment to the phase
and σ2 is its per-bit accumulated variance (Eqn. 1).

Definition 1 (Sampling Process): The behavior of a
(F,D, σ2) noise source and its bit sampler is modeled as:

xi =
(
xi−1 +N (F, σ2)

)
mod 1 (3)

zi =

{
1 if xi < D,

0 if xi ≥ D.
(4)

Here zi ∈ {0, 1} is an output bit, and xi ∈ [0, 1) is the
normalized phase at sampling time. F is the frequency in
relation to the sampling frequency, and σ2 represents jitter.

Due to normalization (x mod 1 ≡ x − bxc), and negative
−F symmetry, F can be reduced to range [0, 1/2]. One may
view this as a “harmonic” reduction but there is no restriction
for the sampler to run faster than the source oscillator.

The sampling process can be easily implemented to generate
simulated bits z1, z2, z3, .. for given parameters (F,D, σ2).
This Wiener process is clearly only an idealized stochastic
model, and its applicability for modeling specific physical
random number generators must be individually evaluated.

A. Distance to Uniform

The Gaussian probability density function in Eqn. 3 be-
comes modularly wrapped (Fig. 2.) The classical assumption
of ring oscillators is that if the accumulated variance σ2

is large enough in relation to sampling rate, the modular
step density function will become essentially “flat” in [0, 1);
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Fig. 2. Gaussian phase transition and equivalent modular density.

furthermore, if (xi − xi−1) mod 1 is uniformly random, then
the bit sequence zi is correlation-free. Some sources simply
state ad hoc criteria for decorrelation (e.g. that σ2 > 1).

We will calculate the step function’s statistical distance to
the uniform distribution. The density of the unbounded step
function (Eqn. 3) can be equivalentl y defined over domain
0 ≤ x < 1 or as a 1-periodic function in R/Z (See Fig. 2):

fs(x) =
1√

2πσ2

∑
i∈Z

e−
(x−F+i)2

2σ2 . (5)

We have fs(a) = fs(a + 1) and
∫ a+1

a
fs(x) dx = 1 for all

a ∈ R. By choosing a tailcut value τ one can limit the sum to
b−τσc ≤ i ≤ dτσe. This allows us to determine max at fs(F )
and min at fs(F + 1/2) for given σ. These are bounds for its
statistical (total variation) distance to the uniform distribution
(See Table I.) We see that this idealized “1-dimensional lattice
Gaussian” would be cryptographically uniform at σ2 > 9.

TABLE I
EXTREMA OF THE PROBABILITY DENSITY FUNCTION fs(x) FOR SOME σ.

σ fs min fs max σ fs range
0.10 0.000030 3.989423 1.00 1± 2−27.47766

0.20 0.175283 1.994726 1.50 1± 2−63.07473

0.30 0.663191 1.340089 2.00 1± 2−112.9106

0.50 0.985616 1.014384 2.50 1± 2−176.9854

0.75 0.999970 1.000030 3.00 1± 2−255.2989

B. Autocorrelation and Sampling Intervals

We define a scaled, binary delay-k autocorrelation measure
−1 ≤ Ck ≤ +1:

Ck = 2 Pr(zi = zi+k)− 1. (6)

We may estimate Ck, k ≥ 1 for a finite m-bit sequence as

C ′k =
1

m− k

m−k∑
i=1

(2zi − 1)(2zi+k − 1). (7)

For convenience, we set C ′0 = 1
m

∑m
i=1(2zi − 1) to represent

simple bias in the same vector; C ′0 approximates 2D − 1.
Theorem 1: With fixed D and σ2 > 0 or F 6∈ Q we have

Ck(F,D, σ2) = C1(kF mod 1, D, kσ2) for k ≥ 1. (8)

Proof 1: The variance of independent random variables is
additive by induction in k, as is the mean. The difference
xk − x0 will then have the distribution N (kF, kσ2) mod 1.
Only with either noisy or non-rational (non-harmonic) F we
may take x0 in Equation 3 to be uniformly distributed in [0, 1).

C. Computing Ck to High Precision Without Simulation
Let p00, p01, p10, p11 be frequencies of adjacent bit pairs

p(zi,zi+1) present in bit sequence zi (Eqn. 4) in the model.
We’ll pick one, p11 = Pr(zi = 1 and zi+1 = 1). The

condition zi = 1 limits the density of xi to “boxcar” g1:

g1(x) =

{
1 if x ∈ [0, D)

0 if x /∈ [0, D).
(9)

We also define g0(x) = 1 if x ∈ [D, 1) and zero elsewhere.
The addition of random variables corresponds to convolu-

tion of their density functions; convolution f1 = g1 ∗ fs with
the step function fs (Eqn. 5) yields the probability density
of xi+1 conditioned on xi = 1. The probability mass of the
second bit zi+1 = 1 is in range xi+1 ∈ [0, D) and we have

p11 =

∫ D

0

f1(x) dx. (10)

Convolution f1 = g1 ∗ fs density can be expressed as

f1(x) =
1

2

∑
i∈Z

[
erf(ai)− erf(bi)

]
(11)

Where ai = (x+i−F )/
√

2σ2 and bi = (x+i−F−D)/
√

2σ2.
An indefinite integral S1 =

∫
f1(x) dx with the same ai,bi is

S1(x) =

√
2σ2

2

∑
i∈Z

[
ai erf(ai)− bi erf(bi) +

e−a
2
i − e−b2i√
π

]
.

(12)
Again, one can choose a tailcut bound τ for desired precision
ε ≈ erfc(τ/

√
2) (via Gaussian CDF) and compute the sums

just over the integer range b−τσc ≤ i ≤ dτσe. A typical
choice for IEEE floating point is τ = 10 (“ten sigma”).

Choosing p11 =
∫D
0
f1(x) dx = S1(D) − S1(0) has some

computational advantages. From p11 we can derive other
parameters p01 = p10 = D − p11, p00 = 1 − 2D + p11,
and C1 = 4(p11−D)+1. To compute arbitrary Ck, substitute
parameters F ′ = kF mod 1 and σ′2 = kσ2 (Thm. 1). We then
have Ck as C ′1 = 4[S1(D)− S1(0)−D] + 1.

Figure 3 shows the density functions g for the four bit pair
frequencies when F = 0.1, D = 0.625, σ2 = 0.04 (σ = 0.2).
The dotted line on upper boxes corresponds to shape of f0
and lower row to f1; these have been chopped (shaded area)
to g00, g01, g10, g11. Note that even though g10 has a different
shape from g01, they have equivalent area and hence frequency
p01 = p10 = 1−C1

4 . This is natural since the frequency of
rising edges must match the frequency of falling edges.
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Fig. 3. Bit pair probabilities for F = 0.1, D = 0.625, σ2 = 0.04.

D. Use of Ck in Modeling of Physical Sources

The output from bit generation simulations agrees with these
explicit autocorrelation values as expected. Analytic Ck is of
course much faster to compute.

Since autocorrelation estimates C ′k (Eqn. 7) may also be
easily derived from the output of physical ring oscillators,
we can find a good approximate (F,D, σ2) model for a
physical source by matching their autocorrelation properties.
We use least-squares minimization of few initial entries of
autocorrelation vectors for this type of modeling.

We can also experimentally derive parametrized models
where frequency F and jitter σ2 are functions of environmental
aspects such as temperature or aging of circuitry; this, in
turn, allows us to extrapolate and assign safe bounds for
statistical health tests parameters and entropy output (yield
of conditioner) over the lifetime of the device.

E. Bit Pattern Probabilities via FFT Convolutions

To compute probabilities of bit triplets and beyond, we may
“chop” a density function to zero the part which we know to
be conditioned out; g10(x) = (f1 · g0)(x), is f1 chopped to
zero outside [D, 1) range so we have

∫∞
−∞ g10(x) dx = p10.

Let z be a sequence of bits for which conditional distribution
fz is known; “chopping” with g0 or g1 and convoluting with
step function fs we obtain distributions of one additional
bit: fz,0 = (fz · g0) ∗ fs and fz,1 = (fz · g1) ∗ fs. This
chop-and-convolute process can be continued to determine the
probability and phase distribution of an arbitrary bit pattern.

Direct probability distribution integration formulas such as
Eqn. 12 become cumbersome for more generic bit patterns.
We instead perform numeric computations on probability
density functions fz represented as real-valued polynomial
coefficients. This approach is attractive since the Fast Fourier
Transform offers an especially efficient way to compute cyclic
convolutions of polynomials, as is required by our 1-periodic
step function fs (Eqn. 5). Unlike unbounded Gaussians our
random variables xi ∈ [0, 1) have a strictly limited range.

Algorithm 1 Evaluate bit pattern probability pz
1: function PZFFT(F , D, σ2, z1z2 · · · zn)
2: for j ← 0, 1, · · · ,m− 1 do . Init: Approximation.
3: sj ← 1

mfs(
j
m ) . Eqn. 5 for F and σ2.

4: g1,j ← max(min(mD − j, 1), 0) . Eqn. 9 for D.
5: g0,j ← 1− g1,j . Select zero – inverse.
6: vj ← 1

m . Start with uniform distribution.
7: end for
8: for i← 1, 2, · · · , n do . For each bit.
9: for j ← 0, 1, · · · ,m− 1 do . Chop half.

10: tj ← vjgzi,j . Note bit select index zi.
11: end for
12: v ← t ∗ s mod (xm − 1) . Convolution (FFT).
13: end for
14: return pz =

∑m−1
i=0 vi . Probability mass.

15: end function

These probability density functions f(x) correspond to real-
valued m-degree polynomials v =

∑m
i=0 x

ivi in Algorithm 1.
The unit interval domain x ∈ [0, 1) is mapped to coefficients
via vi ≈

∫ (i+1)/m

i/m
f(x) dx. For the step function of we

approximate this as si = 1
mfs(i/m) and for chop functions so

that
∑
i g1,i = D and

∑
i g0,i = 1−D. We write the circular

convolution using polynomial product and reduction modulo
xm − 1, which can be very efficiently computed with FFT.

The chopping operation is a point-by-point multiplication
with g0 or g1 in the normal (time) domain, while step
convolution is a point-by-point multiplication with f̂s in the
transformed (complex, frequency) domain, and hence each
additional bit zi requires one forward and one inverse trans-
form as f̂s remains the same. Our open-source, FFTW3-based
[33] portable C implementation allows accurate computation
of probabilities of almost arbitrarily long patterns 1.

III. ENTROPY EVALUATION

Let Zn be a random variable representing n-bit sequences
z = (z1, z2, ..zn) which are sequentially generated by the
stochastic process of Sect. II characterized by stationary pa-
rameters (F,D, σ2). Each of 2n possible outcomes z can be
assigned a probability pz = Pr(Zn = z).

The NIST SP 800-90B [7] entropy source standard focuses
on min-entropy H∞, a member of the Rényi family of
entropies [34]. Min-entropy (or “worst-case entropy”) has a
simple definition in case of a discrete variable, based on the
likelihood of the most likely outcome of Zn:

H∞(Zn) = min
z

(− log2 pz) = − log2(max
z
pz) (13)

The AIS 31 [8] Common Criteria evaluation method addition-
ally uses the traditional Shannon entropy metric

H1(Zn) = −
∑
z

pz log2 pz. (14)

For Shannon entropy we consider its entropy rate H(Z).
This is a [0, 1]-valued limit H(Z) = limn→∞

1
nH1(Zn).

1Reference source code: https://github.com/mjosaarinen/bitpat

https://github.com/mjosaarinen/bitpat


A. Entropy Upper Bounds

Probabilities pz obtained via Algorithm 1 and related tech-
niques in Sect. II-E can be substituted to Eqns. 13 and 14 to
evaluate H∞(Zn) and H1(Zn), respectively.

Shannon entropy H1(Zn) provides increasingly accurate
upper bounds since we have H∞(Zn) ≤ H1(Zn) and

H(Z) ≤ . . . ≤ 1

3
H1(Z3) ≤ 1

2
H1(Z2) ≤ H1(Z1). (15)

This relationship follows from subadditivity of joint entropy
in case of Shannon entropy H1; the monotonic relationship of
Eqn. 15 does not hold for min-entropy H∞.

All Rényi entropies are upper bounded by max-entropy
(Hartley entropy) H0, i.e. the number (cardinality) of n-bit
z with nonzero probability; H0(Zn) = log2 |pz > 0|. If an
m-bit encoding exists for all elements with pz > 0 of Zn,
then its cardinality is at most 2m and H(Z) ≤ H0(Zn) ≤ m.

This leads to limit H(Z) → 0 for a noiseless (σ2 = 0)
source, regardless of F oscillation. A simple ε, δ argument
shows that each n-bit sequence zi with σ2 = 0 can be encoded
by expressing F,D, and x0 with asymptotic O(log n) bits of
precision. Claim follows from limn→∞

1
n log n→ 0.

B. Entropy Lower Bounds as a function of σ2

For an entropy lower bound we consider the entropy con-
tribution of jitter to an individual bit zi when all of the
parameters (F,D, σ2) and the previous phase xi−1 are known
(in addition to previous bit zi−1). Let pe = Pr(zi = z′i) where
the expected bit value z′i is deterministic (from xi−1 + F ).

We observe that F cancels out in this case and we have
pe = p00 + p11 with F = 0 for equations of Section II-C. In
case of an unbiased source D = 1

2 , a further simplification
yields frequency-independent bounds as a function of σ2:

pe = 2 · [S1(1/2)− S1(0)] = 4 · S1(1/2) (16)
H1(Z) ≥ −pe log2 pe − (1− pe) log2(1− pe) (17)
H∞(Z) ∼ − log2 pe. (18)

where S1 is Eqn. 12 with F = 0, D = 1
2 . From Eqn. 16 we

can show a looser approximate bound pe ≤ 1− 1
2 tanh(πσ).

These estimates are lower than some previously proposed
lower bounds (See Eqn. 2) as they are based on fewer
assumptions. Crucially they cover the entire range of σ2 –
and are therefore safer to use in cryptographic engineering.

C. Min-Entropy Estimates

One part of min-entropy estimation of H∞(Zn) is to find
a maximum-likelihood bit sequence z, and the second is to
determine its probability pz . The second part can be accom-
plished with Algorithm 1 – we have H∞(Zn) = − 1

n log2 pz .
A reasonable z string “guess” is to select x0 at random

and use the peak probability path xi = xi−1 + F (mod 1)
to determine z1, z2, · · · , zn. This approach is asymptotically
sound, but overestimates entropy for small n.

A practical depth-first approach is to proceed as in Alg. 1 but
evaluate weights q0 =

∑m−1
j=0 vjg0,j and q1 =

∑m−1
j=0 vjg1,j

at each step i, and select zi with the higher probability mass.
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Fig. 4. Min-entropy from distribution of Z100 with depth-first z selection,
NIST SP 800-90B estimates, and our pe bit-prediction lower bound. Experi-
mental data is represented as a scatter plot, with a line at the average.

While max pz can usually be found with subexponential z
guesses, worst-case complexity of this problem remains open.
Certainly, a simple depth-first search will not always work.
Consider max pz for source (D = 1

2 , F = 0.15, σ2 = 0.04):
1
3H∞(Z3) = 0.844807, p000 = p111 = 0.172609.
1
4H∞(Z4) = 0.849297, p0000 = p1111 = 0.0949171.
1
5H∞(Z5) = 0.846341, p00011 = p00111 =

p11000 = p11100 = 0.0532267.

We first note that the entropy increase from Z3 violates
subadditivity (and would not be possible for H1; Eqn. 15).
Furthermore, the maximum-probability bit strings of Z4 are
not substrings of those for Z5; not reachable via iteration.

D. Comparison to SP 800-90B Estimation

Current SP 800-90B min-entropy estimation methodology
[7, Section 3.1.3] used by FIPS 140-3 [30] proceeds by taking
the minimum of ten conservative, standardized entropy tests.
The results of this methodology plateau below H∞ ≈ 0.9 even
for completely random (cryptographically generated) test data.
Use of stochastic models is also suggested (for Hsubmitter).

We generated 16,000 simulated sequences of 8 ∗ 106 bits
with random σ and F ∈ [0, 1/2], and subjected them to the
official NIST SP 800-90 Entropy Assessment2. Fig. 4 contrasts
these results with min-entropy estimate for Z100 where z is
chosen to follow maximum probability mass (Section III-C).

As expected, the black-box heuristic which has been de-
signed to “lean toward a conservative underestimate of min-
entropy” [7, Sect G.2] reports less entropy than our estimates.

Fig. 4 also shows H∞(Z) ∼ − log2 pe min-entropy derived
from the bit-prediction bound of Eqns. 16 and 18. This
curve mostly traces the lower reaches of the stochastic model
estimates (which are scattered here due to randomness of F ).
We suggest that this is a safe min-entropy engineering estimate
from variance σ2, assuming an unbiased source (D = 1/2).

2NIST: https://github.com/usnistgov/SP800-90B_EntropyAssessment

https://github.com/usnistgov/SP800-90B_EntropyAssessment
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