
Collusion Resistant Revocable Ring Signatures and Group Signatures
from Hard Homogeneous Spaces

Yi-Fu Lai and Samuel Dobson

The University of Auckland, New Zealand
ylai276@aucklanduni.ac.nz, samuel.dobson.nz@gmail.com

Abstract

Both ring signatures and group signatures are useful privacy tools, allowing signers to hide their identi-
ties within a set of other public keys, while allowing their signatures to be validated with respect to the entire
set. Group signature schemes and revocable ring signature schemes both provide the additional ability for
certain authorized members to revoke the anonymity on a signature and reveal the true signer—allowing
management of abuse in the scheme. This work consists of two parts. Firstly, we introduce a stronger secu-
rity notion—collusion resistance—for revocable ring signatures and show how to derive a group signature
scheme from it, which provides a new approach to obtaining group signatures. This improves on the existing
weak security model (e.g. with selfless anonymity) which fails to guarantee anonymity of members whose
keys are exposed. Our stronger notion requires that the scheme remains secure against full key exposure
in the anonymity game, and allows collusion among arbitrary members in the revocability game. Secondly
(and more concretely), we construct a practical collusion-resistant revocable ring signature scheme based on
hard homogenous spaces (HHS), and thus obtain a group signature scheme based on isogenies. To the best
of our knowledge, the schemes given in this work are the first efficient post-quantum (collusion-resistant)
revocable ring signature scheme, and the first efficient isogeny-based group signature scheme in the litera-
ture.

1 Introduction

Group signature (GS) schemes were first introduced by the seminal work of Chaum and van Heyst [CvH91].
The scheme allows authorized participants to sign on behalf of a “group” of users or keys, while the specific
identity of the signer remains anonymous. A highly related notion is that of ring signatures, introduced by
Rivest, Shamir, and Tauman [RST01]. Ring signatures also allow a signer to hide their identity within a set of
users or keys—a set which is chosen ad-hoc at the time of signing. An important differentiating factor, though,
is that a group signature gives a group manager the ability to revoke this anonymity and reveal who created a
specific signature. Thus, the scheme gives many of the anonymity benefits of ring signatures while providing a
mechanism to deal with abuse.

Between the notions of ring and group signatures, there is room for a hybrid scheme. Known in the literature
as a revocable ring signature [LLM+07, ZLS+20], this construction takes both the ad-hoc sign-time formation
of a ring from the ring signature setting, but also combines it with the power to grant authority to revoke
anonymity, as in a group signature schemes.

As we know, due to Shor’s algorithm [Sho99], all “classical” cryptographic assumptions such as the hard-
ness of factoring and the discrete logarithm problem fall prey to the possibility of quantum adversaries—hence
the surged interest in post-quantum cryptography research over the last ten years. One of the major contenders
for post-quantum standardization is isogeny-based cryptography, first presented by Couveignes, Rostovtsev and
Stolbunov in 2006 [Cou06, RS06]. The Supersingular Isogeny Key Encapsulation (SIKE) proposal [JAC+17],
based on the Supersingular Isogeny Diffie Hellman (SIDH) scheme by De Feo, Jao, and Plût [JD11, DFJP14],
is now one of the third-round alternate candidates in the post-quantum cryptography standardization compe-
tition led by NIST [NIS20]. Isogeny-based cryptography is important due to it making use of the thorough
study of elliptic curves from classical elliptic curve cryptography, and also benefits from relatively short key
sizes (although can suffer from slow computation times). Another distinctive and efficient isogeny-based key
exchange scheme was devised by Castryck et al. called Commutative SIDH (CSIDH) [CLM+18]. The CSIDH
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Figure 1: The figure shows the relationships between several cryptographic constructions. A ← B means a
construction for A can be derived from a construction for B. The notion CR-RRS we introduce provides a new
approach to constructing static group signature schemes.

scheme is conjectured to provide post-quantum security with smaller public keys than the candidates in the
NIST competition [NIS20] (although this claim of security is under debate [CLM+18, Pei20]).

Recently, a variety of isogeny-based cryptographic primitives have been proposed, including signature
schemes [Sto09, BKV19, DKL+20], a ring signature scheme [BKP20], a threshold scheme [DM20], a UC-
secure oblivious transfer scheme [LGdSG20], and miscellaneous theoretical constructions [ADMP20]. Yet, de-
spite these constructions, and though many lattice-based group signature schemes have been proposed [CLRS10,
LLLS13, LLNW14, dPLS18], there has been no efficient group signature scheme presented in the literature
based upon supersingular isogeny assumptions1. There is also currently no post-quantum construction of a
revocable ring signature scheme in the literature.

The only isogeny-based “group signature” is briefly mentioned in [BKP20, Remark 5.5] by using the link-
able ring signature scheme proposed in that work. The standard security model for static group signature
schemes [BMW03] requires two key properties—anonymity and full-traceability. Unfortunately, the idea for
a group signature scheme in [BKP20] fails to satisfy both requirements. Specifically, in their scheme, the
manager’s secret key can be used to forge a signature which opens to an honest party—a breach of the full-
traceability property. Their linkable anonymity is selfless (in Section 2.3) and, in fact, cannot be secure against
full-key exposure.

In this work, we resolve the open problem of constructing an efficient, isogeny-based group signature
scheme. We also provide the first construction of an efficient isogeny-based revocable-ring signature scheme—
in fact, the first such scheme providing post-quantum security. Furthermore, our revocable ring signature
scheme gives a stronger anonymity guarantee (CPA-anonymity) than the existing literature, which ensures only
selfless anonymity. The efficiency of our scheme is discussed further in Section 3.3.

1.1 Contributions

This work aims to fill the gap in the literature with a new connection between a ring signature and a group
signature as shown in Fig 1. We introduce firstly the idea of a collusion-resistant (CR-RRS) revocable ring
signature, which strengthens the existing definition of revocable ring signatures (RRS) with stronger privacy
guarantees in two ways. In particular, this new security notion takes non-selfless anonymity into account and
allows arbitrary collusion in the revocability game. This notion establishes a connection from ring signatures
to group signatures and provides a straightforward approach to constructing group signatures with provable
security. Furthermore, the idea can be practically instantiated from hard homogeneous spaces (HHS) such as
CSIDH or CSIDH-512 [BKV19], and therefore provides a new group signature scheme from HHS. To the best
of our knowledge, this scheme (when instantiated with the CSIDH group action) is the first efficient, secure
isogeny-based group signature scheme and the first efficient post-quantum revocable ring signature scheme2.

1.2 Technical Review

We briefly summarize the key technical details of this work for the reader familiar with many of the concepts
involved. These details will, of course, be explained in more detail in the rest of the paper.

1We remark that [BMW03] had shown a theoretical construction for group signature schemes by using a PKE, a signature scheme,
and an NIZK for NP statements, but the efficiency of this generic construction is not guaranteed.

2Though ARS implies CR-RRS as shown in Figure 1, the existing ARS constructions are only based on pre-quantum assumptions
to the best of our knowledge.
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To construct our revocable ring signature from an HHS, we start with a sigma protocol for the OR-relation
as in [BKP20]. Specifically, the ring public key is of the form (E, E′, E1, E2, ..., En), where the E j = s j ⋆ E
are the individual public keys in the ring (corresponding to secret keys s j), and E′ = t ⋆ E is the public key of
the opening authority. The binary challenge sigma protocol works as follows: The prover Pk commits to S =
(rψ(i) ∗ Eψ(i))i∈[n] where ψ is a permutation in Sn used to randomize the order of the curves and r′i are random
ephemeral secrets. The prover also commits to the encrypted permutation, using probabilistic CPA-secure
encryption EncE′(ψ; rnd) under the revocation authority’s public key E′ using random coins rnd.

When the challenge is 1, the prover reveals the ephemeral values (ri)i∈[n], the permutation ψ and the random-
ness rnd. The verifier can then check the equality of the curves and the permutation by S = (rψ(i) ∗ Eψ(i))i∈[n],
and deterministically recompute the ciphertext EncE′(ψ; rnd) using the random coins. When the challenge is
0, the prover Pk only responds with sk ∗ rk. Then, the verifier simply checks whether (sk ∗ rk) ∗ E is in S . The
sigma protocol has 2-special soundness and computational honest-verifier-zero-knowledge (see Section 3). The
opening authority can extract the index of the signer, k (but not the secret key sk) when the challenge is 0 due to
the knowledge of the decryption secret for EncE′(ψ; rnd). In particular, the opening authority has sk ∗ rk such
that (sk ∗ rk) ∗ E ∈ S and the index can be recovered by inverting ψ. Importantly though, under exposure of the
secret key sk, the adversary is still not able to identify the signer because the permutation ψ is unknown, which
illustrates some of the intuition of the scheme’s anonymity. These proofs are given in detail in Section 3.

To prove security, we use a simple CPA-secure ElGamal-type public key encryption for EncE′(ψ; rnd), de-
fined to be (rnd ∗ E ∥ H(rnd ∗ E′) ⊕ ψ), where rnd is interpreted as an element in the HHS group (for example,
a CSIDH secret key).

Roadmap. The rest of the paper is organized as follows. Section 2 contains some brief preliminaries on the
definition of hard homogeneous spaces, (restricted) effective group actions, CSIDH, and introduces collusion-
resistant revocable ring signatures. A summarized survey of ring and group signature literature can be found
in Appendix A. Section 3 gives an instantiation of a collusion-resistant revocable ring signature scheme based
on HHS ((restricted) effective group actions) with an efficiency analysis of the scheme and some possible
optimizations of the scheme. A method of obtaining a secure GS scheme from a CR-RRS is provided in
Appendix C. Finally, we conclude with a brief summary and identify potential future work in Section 4.

2 Preliminaries

Notation. We denote the set {1, 2, ..., n} by [n]. Let Sn represent the symmetric group of degree n, where the
elements can be represented as a string. Let λ represent the security parameter. Finally, we use ∥ to denote
concatenation.

2.1 Hard Homogeneous Spaces

The idea of hard homogeneous spaces was proposed by Couveignes [Cou06]. The concept generalizes the
discrete-logarithm (DLP) and Diffie-Hellman (DH) problems, which are both prolific in cryptographic con-
structions. Given a finite commutative group G and a set X where G acts freely and transitively on X, we say G
and X constitute a hard homogeneous space if the following tasks are computationally feasible in polynomial-
time:

• Group Operations: Given g1, g2 ∈ G, to compute g−1
1 g2.

• Uniform Sampling: To sample an element from G uniformly (or close to uniformly) at random.

• Set Membership: To decide the validity and equality of elements of X.

• Group Action: Given g ∈ G and x ∈ X, to compute g ∗ x (the action of g on x).

While the following two problems are required to be computationally infeasible:

• Vectorization: Given x and x′ ∈ X, to find g ∈ G such that g ∗ x = x′.

• Parallelization: Given x, x′, and y ∈ X, where x′ = g ∗ x for some g ∈ G, to find y′ ∈ X such that
y′ = g ∗ y.
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2.2 CSIDH

Let p be an odd prime. It is well known that the number of Fp rational points on a supersingular elliptic curve
defined over Fp is p + 1. Also, E(Fp) has a subgroup of order ℓ if ℓ | p + 1. We denote Endp(E) to be the ring
of endomorphisms of E defined over Fp. Again, for a supersingular E, it is known that Endp(E) is an order in
the imaginary quadratic field Q(

√
−p).

Let O be an order in an imaginary quadratic field. Denote by E the set of all isomorphism classes of elliptic
curves E over Fp with Endp(E) isomorphic to O. The ideal class group Cl(O) is the quotient of the group of
invertible fractional ideals of O modulo the principal fractional ideals of O. It is known that Cl(O) acts freely
and transitively on the set E by ([a], E) 7→ E/a.

However, the task of computing an action [a] ∗ E for [a] ∈ Cl(O), E ∈ E is subexponential time in gen-
eral [BFJ16]. So instead, for ℓ dividing p + 1, the ideals l = ⟨ℓ, π⟩ are used, where π is the Fp-Frobenius
endomorphism. The actions of these ideals (with repeated application) are feasible to compute via Vélu-type
formulae [Vél71], and can be used to generate a large (if not the entire) keyspace. This action of Cl(O) on E
(for a chosen p) is referred to as the CSIDH [CLM+18] action, and is conjectured to be a hard homogenous
space (HHS).

More concretely, in CSIDH, the prime p is defined as p = 4 · ℓ1 · · · ℓn − 1 where each of the ℓi are distinct,
small, odd primes. The n-tuple string (ei)i∈[n] is used to represent the ideal g =

∏
i l

ei
i , where the ei ∈ [−m,m]

are small-ish (in CSIDH-512, m = 5). It is a heuristic assumption made in [CLM+18] that the ideals generated
in this way are “uniform-enough” over all class group elements in Cl(O). To date, this assumption has not
been invalidated and no flaws in the cryptosystem have resulted from it. Beullens et al. [BKV19] presented
CSI-FiShas an efficient signature scheme, and in doing so compute the class group and relation lattice for the
CSIDH-512 parameter set. This allows uniform sampling from the class group Cl. For convenience, we will
henceforth simplify the class group notation [a] ∈ Cl into a ∈ Cl.

In this setting these isomorphism classes can be represented uniquely by a coefficient A ∈ Fp representing
the curve EA : y2 = x3 + Ax2 + x. The base curve is chosen to be E0 : y2 = x3 + x, which is supersingular.
Moreover, the endomorphism Endp(E) � Z[

√
−p] and the class number of Q(

√
−p) is heuristically assumed

to be approximately
√

p in [CLM+18]. Theoretically, Kuperberg’s paper gives an algorithm to solve a dihedral

hidden-subgroup problem with query complexity O(23
√

log(N)) [Kup05] where N is the order of the underlying
dihedral group. Hence, practically, we may also assume

√
p > 2λ when λ ≥ 9.

Modeling. Alamati et al. [ADMP20] defined more detailed frameworks for cryptographic group actions, in-
cluding an effective group action (EGA) and a restricted effective group action (REGA). Briefly, an EGA
models the standard cryptographic group action, and allows efficient membership testing, sampling, and equal-
ity testing within the group; efficient computation of the group operation, inversions, and the group action;
and unique representation of elements in the set being acted upon. Alamati define computational hardness as-
sumptions for EGA in a hierarchy of three levels: one-wayness (OW), weak unpredictability (wU), and weak
pseudo-randomness (wPR)—corresponding to the vectorization problem, generalized parallelization problem,
and the decisional variant, respectively. The REGA framework is a weakening of EGA, and only requires effi-
cient computation of the action of a small (polylogarithmic in |G|) generating set of the group. It also no longer
requires efficient equality testing of group elements in G among other things. We refer to [ADMP20] for more
thorough descriptions of these models.

The group action used in CSIDH is an example of REGA (instantiated with isogenies), as only the actions
of the li (repeated a few times) are efficiently computable. This can be turned into an EGA or HHS (HHS, in
this terminology, is the same as wU-EGA) via the improvement given by CSI-FiSh [BKV19] by exploiting the
known structure class group and lattice reductions.

Because REGA does not require unique group element representation or equality testing, protocols based
on REGA tend to be less efficient to ensure information about the secret is not leaked. For instance, in
SeaSign [DG19], the larger interval [−2m, 2m] is used rather than [−m,m]. Specifically, if a + b = 2m, where
a, b ∈ [−m,m], then we learn that a = b = m. This issue is addressed by using rejection sampling techniques
to force the output distribution to be independent of the secret and prevent leaking secret information while the
approach also makes the scheme extremely slow [DG19].

In short, the construction in Section 3 can be constructed in the framework of either wU-REGA by using
SeaSign(resulting in an extremely inefficient scheme), or with HHS (or wU-EGA) by using CSI-FiSh [BKV19]
as a more efficient and practical option.
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2.3 Revocable Ring Signature Schemes

In this work we introduce a new definition of security for what we call collusion-resistant revocable ring
signature schemes. Such a scheme has a strengthened security definition over that previously used in the
revocable ring signature literature. Recall that a revocable ring signature is a ring signature with the added
functionality of granting revocation authority to a given public key (or keys) at sign-time, which allows the
owner of said key to later reveal the true signer of any signature under their authority. The important difference
between this idea and the idea of a group signature is that revocable ring signatures are still ad-hoc and created
at sign-time—the revocation authority has no say in defining who can and cannot be part of a ring. Any given
RRS can be considered a ring signature too, if the signer generates or provides an arbitrary revocation public
key to the signing function and ignores the rest of the revocation functionality. If public keys can be sampled
for which the secret is not known, this gives a standard ring signature construction.

Formally, a revocable ring signature scheme consists of six polynomial-time algorithmsRRS = (RRS.Setup,
RRS.KeyGen,RRS.RevKeyGen,RRS.Sign,RRS.Verify,RRS.Revoke):

• pp← RRS.Setup(1λ) is a PPT algorithm returning a set of public parameters for the scheme (which may
be used implicitly in the other functions).

• (ski, pki) ← RRS.KeyGen(pp) is a PPT algorithm returning a private key and public key pair for a user
of the scheme.

• (skrev, pkrev)← RRS.RevKeyGen(pp) is a PPT algorithm returning a private key and public key pair for
a revocation authority.

• σ← RRS.Sign(ski,m, {pk1, . . . , pkn}, pkrev) is a randomized signing algorithm taking as inputs the secret
key ski, the message m, a set of public keys {pk1, . . . , pkn} (including pki), and a public key for the
revocation authority. It returns σ as the signature.

• 0 | 1 ← RRS.Verify({pk1, . . . , pkn},m, pkrev, σ) is a deterministic verification algorithm taking as inputs
the set of public keys pk j of the ring, the message m, the revocation public key pkrev, and the signature
σ. It returns 1 to represent validity of the signature, or 0 otherwise.

• i ← RRS.Revoke({pk1, . . . , pkn}, skrev,m, σ) is a PPT algorithm taking as inputs the public keys pk j of
the ring, the revocation authority’s secret key skrev, the message m, and the signature σ. It returns an
index i to represent the identity of the member in the ring who generated the signature. If the signature is
invalid, then ⊥ is returned.

Important correctness and security properties for ring signatures are as follows:
Correctness. We require that the following two correctness properties hold:

RRS.Verify(PK,m, pkrev,RRS.Sign(ski,m,PK, pkrev)) = 1

with probability 1, where PK is a set of public keys including pki.

RRS.Revoke(PK, skrev,m, σ) = ⊥ ⇐⇒ RRS.Verify(PK,m, pkrev, σ)) = 0

That is, revocation fails to output an index if and only if the signature is invalid.

The security of a revocable ring signature scheme is based on three properties—unforgeability, anonymity,
and full-revocability. For these properties, we shall define four oracles to capture the powers of the adversary:

• Ogen(). The generation oracle runs (ski, pki) ← RRS.KeyGen(pp), sets Qgen ← Qgen ∪ {pki} and
SK[pki] = ski, and returns pki.

• Ocor(pki). The corruption oracle takes a public key pki ∈ Qgen as the input, sets Qcor ← Qcor ∪ {pki}, and
returns the corresponding secret key ski = SK[pki].

• Osig(PK,m, pki, pkrev). The signing oracle takes a set of public keys PK ⊆ Qgen, a message m, a public
key pki ∈ PK, and a revocation public key pkrev ∈ Qgen. It calls σ ← RRS.Sign(SK[pki],m,PK, pkrev),
sets Qsig ← Qsig ∪ {(m, σ)}, and returns the signature σ.
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• Orev(PK,m, pkrev, σ). The revoking oracle takes a set of public keys PK ⊆ Qgen, a message m, a revo-
cation public key pkrev ∈ Qgen, and a signature σ. It calls i ← RRS.Revoke(PK,SK[pkrev],m, σ), sets
Qrev ← Qrev ∪ {σ}, and returns the index i.

Unforgeability. This property ensures that an adversary cannot generate an accepting signature for a ring of
public keys they are not part of (and do not know any secret keys for). For security parameter λ, the challenger
C generates public parameters pp, and, for all i ∈ [n], keypairs (ski, pki) ← RRS.KeyGen(pp), and sets
SK[pki] = ski. The challenger also sets Qgen = {pk1, . . . , pkn}, Qcor = {} and Qsig = {}. A revocable ring
signature scheme is unforgeable if, for any PPT adversaryA, given {pk1, . . . , pkn} from C, as well as access to
oracles Ogen,Ocor,Osig, there exists a negligible function negl() such that

Advunf(A) := Pr


(σ∗,PK∗,m∗, pk∗rev)← AOgen,Ocor ,Osig({pk1, . . . , pkn})

RRS.Verify(PK∗,m∗, pk∗rev, σ
∗) = 1

∧ PK∗ ⊆ Qgen

∧ PK∗ ∩Qcor = ∅

∧ (m∗, σ∗) < Qsig


≤ negl(λ)

Note that unforgeability places no restriction on the revocation key, which the adversary generates them-
selves.

Full-anonymity. This property ensures anonymity for members even in the case of secret key exposure, and
even if the identity of the signer of several other signatures has been revealed. The challenger C first generates
public parameters pp for security parameter λ, and for all i ∈ [n], keypairs (ski, pki) ← RRS.KeyGen(pp).
The challenger also generates a revocation keypair (skrev, pkrev) ← RRS.RevKeyGen(pp). A revocable ring
signature scheme has full-anonymity if, for any PPT adversariesA1,A2 given {(sk1, pk1), . . . , (skn, pkn), pkrev}

from C, and access to oracle Orev, there exists a negligible function negl() such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


(m, i, j, state)← AOrev

1 ({(sk1, pk1), . . . , (skn, pkn)}, pkrev)
b←$ {i, j}

σ← RRS.Sign(skb,m, {pk1, . . . , pkn}, pkrev)
b∗ ← AOrev

2 (state, σ)
b∗ = b ∧ σ < Qrev


−

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

In the above definition, if the adversary’s access toOrev is removed, then the notion is called weak anonymity
or sometimes CPA-anonymity [dPLS18].

Remark 1. In the previous literature on revocable ring signatures [LLM+07, ZLS+20], anonymity was defined
as guessing the signer without knowing the two secret keys corresponding to pki, pk j in the challenge. Our
definition is thus stronger and more in-line with that of full-anonymity or CPA-anonymity in the group signature
setting, which requires the scheme to be secure against full key exposure. That is, even though the adversary
obtains all secret keys except for the revocation secret key, the adversary still cannot tell who the signer is.

Full-revocability. Roughly speaking, full-revocability ensures that the power of the revocation authority to
reveal the creator of a particular signature cannot be obstructed even if the opening key is stolen and a number
of ring members collude. Formally, in the revocability experiment, the challenger generates public parameters
pp for security parameter λ, and runs the key generation algorithm (ski, pki) ← RRS.KeyGen(pp) for all
i ∈ [n], and (skrev, pkrev)← RRS.RevKeyGen(pp). A revocable ring signature scheme has full-revocability if,
for any PPT adversary A given {pk1, . . . , pkn} and (skrev, pkrev) from C, and access to oracles Ogen,Osig,Ocor,
there exists a negligible function negl() such that

Advrev(A) := Pr


(m∗, σ∗,PK∗)← AOgen,Osig,Ocor ({pk1, . . . , pkn}, skrev, pkrev)

i← RRS.Revoke(PK∗, skrev,m∗, σ∗)
RRS.Verify(PK∗,m∗, pkrev, σ

∗) = 1
∧ PK∗ ⊆ Qgen

∧ i , ⊥ ∧ pki < Qcor ∧ (m∗, σ∗) < Qsig


≤ negl(λ)
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Essentially, the goal of the adversary is to generate a valid signature (m, σ) such that revoking the anonymity
of the signature does not indicate any identity in the group of corrupted parties (it must either point to an
uncorrupted member of the group, or fail to open to any member in the group).

Remark 2. The definition of revocability in previous works [LLM+07, ZLS+20] allows only one honest mem-
ber’s secret key to be corrupted, and does not allow access to the revocation authority’s secret key. That is much
weaker than the definition of full-revocability we provide.

In order to differentiate schemes satisfying these stronger security notions above, we shall call such schemes
collusion-resistant revocable ring signature schemes.

Definition 2.1. A revocable ring signature schemeRRS = (RRS.Setup,RRS.KeyGen,RRS.RevKeyGen,RRS.Sign,
RRS.Verify,RRS.Revoke) is said to be collusion-resistant if the scheme RRS has correctness, unforgeability,
CPA-anonymity, and full-revocabililty.

3 Instantiation from Hard Homogeneous Spaces

This section will present a practical construction of a collusion-resistant revocable ring signature scheme from
hard homogeneous spaces (weak-unpredictable-EGA of [ADMP20]). We will start with a sigma protocol,
obtain a signature scheme via the Fiat-Shamir transformation, and show the scheme meets the definitions of
security for a collusion-resistant revocable ring signature scheme.

3.1 Sigma Protocol

The foundation of our construction is a special sigma protocol for an OR-relation. This sigma protocol is similar
to the one presented in [BKP20]. Let the language R ⊂ En+2 × Cl where R := {(E, E′, E1, . . . , En, s) | s ∗ E =
E j for some j ∈ [n]}. Assume (E, E′, E1, E2, . . . , En) to be the ring public key, each party member Pi has the
corresponding secret key si such that si ∗ E = Ei, and pkrev = E′ = skrev ∗ E is the revocation authority’s public
key corresponding to secret key skrev. Given (E, E′, E1, . . . , En), a sigma protocol to prove the possession of sk

satisfying the relation (E, E′, E1, . . . , En, sk) ∈ R is specified as follows:

Protocol 1.

• Common Input: Both the proverPk and the verifierV are given group public key gpk = (E, E′, E1, . . . , En).

• Private Input: Pk has sk ∈ Cl such that (gpk, sk) is in the language R.

• Specification:

1. (Commitment) The prover Pk generates a value e ← Cl, values ri ← Cl for i ∈ [n], and a
permutation ψ ∈ Sn (represented as a string). The prover then computes E′i = ri ∗Ei for each i ∈ [n],
and then permutes these curves with ψ to obtain a curve array S = (S i)i∈[n] where S i = E′ψ(i). The
prover also generates the revocation data with respect to E′ by computing ct = (e∗E ∥ H(e∗E′)⊕ψ).
Finally, the prover sends the commitment comm = (S, ct) to the verifier V.

2. (Challenge) V randomly generates challenge bit c← {0, 1} and sends to the prover Pk.

3. (Response) Pk computes

resp =

skrk if c = 0

(ri)i∈[n] ∥ e ∥ ψ if c = 1

and sends resp to V.

4. (Verification) After parsing resp, the verifierV checks whetherresp ∗ E
?
∈ S if c = 0,

rψ(i) ∗ Eψ(i)
?
= S i for i ∈ [n] ∧ (e ∗ E ∥ H(e ∗ E′) ⊕ ψ) ?

= ct if c = 1.

If the equations hold, thenV outputs 1. Otherwise, it outputs 0.
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The following theorem shows non-abort HVZK for Protocol 1, which will be used in the security proofs.
Since the special soundness cannot be directly applied to the security proofs for the scheme, we omit it here to
save the space.

Theorem 3.1. Protocol 1 is correct. Besides, when H is modeled as a random oracle, if the parallelization
of HHS is hard, then Protocol 1 is non-abort honest verifier zero-knowledge (HVZK). That is, there exists
a simulator given the challenge c ← {0, 1} that generates a transcript (comm′, c, resp′) which is perfectly
indistinguishable from the one (comm, c, resp) generated from the real execution of Protocol 1.

Proof. See Appendix B □

3.2 Collusion-Resistant Revocable Ring Signatures from Protocol 1

We now illustrate the construction of a revocable ring signature scheme built on top of the aforementioned
sigma protocol. We will use the notation of Section 2 regarding hard homogeneous spaces. Given the security
parameter λ, n and two random oracles H1 and H2, our collusion-resistant revocable ring signature scheme is
specified as follows:

Protocol 2. (CR-RRS from Protocol 1)

• pp← RRS.Setup(1λ) where pp = {λ, E,E,Cl}, E ∈ E and (E,Cl) is a hard homogeneous space.

• (ski, pki) ← RRS.KeyGen(pp) where the secret key ski ← Cl and the public key is pki = ski ∗

E. The revocation authority’s secret key and public key are also generated through this procedure
(RRS.RevKeyGen() := RRS.KeyGen()).

• σ ← RRS.Sign(skk,m, {pk1 = E1, . . . , pkn = En}, pkrev = Erev) : Generate e, ri ← Cl for i ∈ [n] and
ψ ∈ Sn, compute comm = ((E′ψ(i))i, e ∗ E ∥ H2(e ∗ Erev) ⊕ ψ) as the commitment (Item 1 of Protocol
1). Repeat the process nλ times to get comm = (comm j) j∈[nλ]. Compute c = (c j) j∈[nλ] = H1(comm ∥
m) ∈ {0, 1}nλ as the challenge. Depending on whether c j is 0 or 1, set resp j to be either skrk or ((ri)i∈[n] ∥

e ∥ ψ) respectively as the jth response (Item 3 of Protocol 1). Let resp = (resp j) j∈[nλ]. Return σ =

(comm, c, resp) as a group signature on m.

• 0 | 1 ← RRS.Verify({pk1, . . . , pkn},m, pkrev, σ) : For each j ∈ [nλ], only if c = H1(comm ∥ m) holds,
proceed as the verifier of the sigma protocol described above (Item 4 of Protocol 1) component-wise, and
output 1 if all subroutines return 1. Otherwise, output 0.

• i← RRS.Revoke({pk1, . . . , pkn}, skrev,m, σ) proceeds as follows:

1. Execute RRS.Verify({pk1, . . . , pkn},m, pkrev, σ). Continue only if it outputs 1, otherwise return ⊥.

2. Repeat the following steps 3-5 for each j ∈ [nλ] such that c j = 0:

3. Extract the response resp j and parse the commitment as comm j = (S, ct) (where S ⊂ E) corre-
sponding to the challenge bit c j = 0 from σ.

4. Extract the string ψ j from the string ct in comm j with skrev by recomputing H2(skrev ∗ e ∗ E) ⊕ ct.

5. Use resp j to identify a member index. Say, during verification, the curve resp j ∗ E = E′k is in the
array S for some k ∈ [n]. Then one can recover k by looking up the permutation ψ j. Specifically,
resp j ∗ E = S ψ−1(k).

6. After executing steps 3-5 for each 0 bit in the challenge, we will obtain a set of indices, one from
each loop. Output the majority index (the most commonly occurring index in the set). If there is a
tie for most common, randomly select one of the majority indices.

Remark 3. For readability, throughout most following proofs, we will use specific index letters with the fol-
lowing convention. The index j ∈ [nλ] will be used for the jth component of the sigma protocol, such as
comm j ∈ comm and resp j ∈ resp. We will use i ∈ [n] to label the multiple sub-contents within each com-
ponent, for example the individual commitment curves E′ji (single per-round components, for example the
permutations ψ j, will simply be identified with the iteration index j). The index k ∈ [n] will be used to indicate
a specific member (for example, the one who signs or will be revealed).
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Theorem 3.2. Assuming H1,H2 are modeled by random oracles, if the parallelization problem of HHS is hard,
then the scheme Protocol 2 has CPA-anonymity.

Proof. In the CPA-anonymity experiment, the adversary is given all public keys, private keys, and a ring signa-
ture generated according to the protocol specification. The adversary’s task is to identify the index of the signer
after providing two indices and obtaining a signature from one of them.

Theorem 3.1 shows that the underlying sigma protocol is HVZK if the parallelization problem is hard. The
proof is similar here. We will sketch the proof that the signature is simulatable by using the programmability
of the random oracle H1.

Firstly, the simulator randomly generates the challenge string c ∈ {0, 1}nλ. Secondly, the simulator computes
the corresponding comm j and resp j for each ci, as in the proof of Theorem 3.1. Specifically, if c j = 1, then the
simulator generates e, ri for i ∈ [n] and ψ ∈ Sn, and computes comm j and sets the response resp j accordingly.
If c j = 0, the simulator randomly picks k ← [n], generates e, ri ← Cl, ψ ∈ Sn and computes E′i = ri ∗ Ei for
i ∈ [n]−{k} and E′k = rk∗E. The simulator computes comm j = (S , ct) where S follows the protocol specification
and ct is a string generated uniformly at random of the correct length. The response resp j is set to rk. Thirdly,
the simulator simulates the oracle H1 by assigning c to be the oracle value of H1(comm ∥ m). The simulator
ends the simulation by outputting (comm, c, resp) as the signature. Note that if the adversary makes the oracle
queries for H1, then the simulator simulates the oracle in an on-the-fly manner and returns the corresponding
values.

The simulated signature contains no information about the signer since the information about the permuta-
tion ψ is removed from the comm j for c j = 0, which was supposed to be contained in ct. Also we have shown
in the proof of Theorem 3.1, the simulation is perfectly indistinguishable for c = 1. The simulation is compu-
tationally indistinguishable for c = 0 by assuming the hardness of the parallelization problem for (E, E′, e ∗ E)
where E′ is the revocation authority’s public key. Therefore, when H1,H2 are modeled by random oracles, if
the parallelization problem is hard, Protocol 2 has CPA-anonymity. □ □

Theorem 3.3. Assuming that the vectorization problem of the hard homogeneous space is hard and H1,H2
are modelled as random oracles, Protocol 2 is unforgeable. Precisely, let A be an adversary with advantage
Advunf(A) against the unforgeability experiment, making n queries to the generation oracleOgen, and Q queries
to H1 and the signing oracle Osig. Then there exists an adversary B with advantage Advvec(B) against the
vectorization problem, such that

Advunf(A) ≤
Q +
√

Q2 + 4Advvec(B)
2

+
Q
2λ
.

Proof. The adversary A is given access to the oracles Ogen,Ocor, and Osig and is required to output (σ,PK,m)
where RRS.Verify(PK,m, σ) = 1 while none of the corresponding secret keys for PK are given to the adversary
by Ocor and (m, σ) is not listed in the past queries of the signing oracle, Qsig.

We claim that signatures from Osig are simulatable. We again rely on the programmability of the random
oracle H1. Say the adversary queries Osig for signatures of an party Pk. The simulation for the oracle Osig

proceeds as follows.

1. The simulator randomly generates the challenge string c ∈ {0, 1}nλ.

2. The simulator computes the corresponding comm j for each ci as in the proof of Theorem 3.1. Specifically,
if c j = 1, then the simulator generates e, ri for i ∈ [n] and ψ ∈ Sn, and computes comm j. If c j = 0, then
the simulator generates e, ri ← Cl, ψ ∈ Sn and computes E′i = ri ∗ Ei for i ∈ [n] − {k} and E′k = rk ∗ E.

3. The simulator simulates the oracle H1 by assigning c to be the oracle value of H1(comm ∥ m). The
simulator ends the simulation by outputting the corresponding (comm, c, resp) as the signature. Note
that if the adversary makes oracle queries to H1, then the simulator simulates the oracle in an on-the-fly
manner and returns the corresponding values.

Note that, compared to the simulator in Theorem 3.1, the simulator of the oracle here doesn’t need to ran-
domly select the index k since it is provided by the adversary. In contrast to the real execution of signing by
Pk, the only difference lies in Step 2—that for the case c j = 0 the simulator generates E′k through rk ∗ E with
rk ← Cl while it is computed as r′k ∗ Ek with r′k ← Cl in the real execution. Because the sampling of the group
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Cl is uniform, the distributions of generating E′k via these two methods are identical. Hence, these parts are
perfectly indistinguishable. It follows that the simulation is perfectly indistinguishable not only for the case
c j = 1 but also for c j = 0.

We will prove unforgeability by using a standard hybrid argument with the following series of games. Let
Advi(A) denote the advantage of the adversaryA in Gamei for i ∈ {0, . . . , 4}.

• Set Game0 to be the original unforgeability experiment where the adversary A has access to oracles
Ogen,Osig,Ocor.

• Let Game1 to be identical to Game0 except that the signing oracle is replaced by the simulator as de-
scribed above. If H1(comm ∥ m) has been queried before in Step 3, then abort. Since for any E ∈ E
the distribution of a ∗ E is uniform if a uniformly sampled from Cl, the min-entropy of the distribution
is λ. (Recall that |E| ≈

√
p ≥ 2λ) It follows that comm contains nλ bits entropy. Hence, we have

Advunf(A) := Adv0(A) ≤ Adv1(A) + Q/2nλ ≤ Adv1(A) + Q/2λ.

• Let Game2 to be identical to Game1 except that the adversary does not obtains keys from the oracle
Ogen. Instead, a simulator samples sk ← Cl, computes pk = sk ∗ E, and returns (sk, pk) to the query.
Hence, we have Adv1(A) = Adv2(A).

• Let Game3 to be identical to Game2 except that we restrict the success condition: the challenger guesses
an index k ∈ {1, . . . , n} uniformly at random. The adversary wins if the forged signature not only sat-
isfies the original condition but pkk is also an element of PK output by the adversary. Hence, we have
Adv2(A) ≤ n · Adv3(A).

From an adversaryA of Game3, we can construct an adversary against the HHS vectorization problem by
using the rewinding technique. GivenA and the vectorization problem instance (E, Echa), the reduction B can
be made as follows,

1. Start the experiment and invoke the adversary A. During the execution, the reduction also simulates the
oracles H1 and H2 in an on-the-fly manner and returns the corresponding values. Also, the reduction
simulates the signing oracle as described in Game1,

2. Pick an index k from [n] uniformly at random corresponding to the index that the adversary needs to guess
(the additional requirement made in Game3). To simulate the key generation oracle Ogen, the reduction
follows the simulation in Game2 and stores the secret keys, except assigning the instance Echa as k-th
public key. Note that the reduction has no secret keys for the k-th public key.

3. If the adversary inquires secret keys through the corruption oracle Ocor, the reduction B returns the
corresponding stored secret key but aborts ifA inquires the k-th secret key.

4. ExecuteA and obtain (m, σ,PK). We may assume pkk ∈ PK. Parse σ as (comm, c, resp).

5. Rewind A and obtain a second output (m′, σ′,PK) such that the commitment components are the same
(and so is PK). That is, we can parse σ = (comm, c′, resp′).

6. If c = c′, then abort. Otherwise, choose an index j ∈ [nλ] such that c j , c′j. We have two elements
a, b ∈ Cl such that a ∗ Echa = E j and b ∗ E = E j for some E j taken from comm. Then we have a−1b ∈ Cl
such that (a−1b) ∗ E = Echa.

We have shown the correctness. By the Forking lemma [BN06], if the success probability ofA is Adv3(A)
with less than Q random oracle queries of H1, then the advantage of this method to recover a secret key (i.e. to
solve the vectorization problem) is greater than Adv3(A) ∗ (Adv3(A)

Q − 1
2nλ ). Therefore, we have

Advunf(A) ≤
Q +
√

Q2 + 4Advvec(B)
2

+
Q
2λ
.

□ □
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Next, we provide two lemmas that we will use to show revocability of our RRS scheme.

Definition 3.1. Let M be a binary matrix where the rows represent the possible commitments from the adversary
and the columns represent the possible challenges given by the random oracle. A matrix entry is 1 if the
adversary will succeed in the experiment, otherwise the entry is 0. Say the advantage of the adversary is ϵ. A
row of M is said to be heavy if the fraction of 1’s is not less than ϵ/2.

Lemma 3.4. (Heavy Row Lemma [MR02]) Given an entry of 1 in the binary matrix M, the probability that the
given entry lies in a heavy row is at least 1/2. □

Lemma 3.5. Let X be a random variable defined as X =
∑nλ

1 Bi where Bi are from independent Bernoulli
distributions of p = 1/2. Then, Pr[X < nλ/4] ≤ e−nλ/14.

Proof. Since the expectation is E[X] = nλ/2, by applying the Chernoff bound, we have

Pr[X < (1 − 1/2)nλ/2] < (2/e)E[X]/2 < e−nλ/14.

□

Theorem 3.6. Assuming that the vectorization of hard homogeneous spaces is hard and H1,H2 can be modeled
as random oracles, Protocol 2 has full-revocability. Precisely, letA be an adversary with advantage Advrev(A)
against the full-revocability experiment, making n queries to the generation oracle Ogen and Q queries to H1
and the signing oracle Osig. Then there exists an algorithm B with advantage Advvec(B) against the HHS
vectorization problem, such that

Advrev(A) ≤ 2n
√

Advvec(B) + Q/2λ + e−nλ/14.

Proof. Recall that in the full-revocability experiment, the adversary is given three oracles Ogen, Osig, Ocor for
key generation, signing, and corrupting, respectively. Further, the adversary possesses the revocation authority’s
public key pkrev and secret key skrev. The goal of the adversary is to forge a signature that will be opened to an
index of an honest (uncorrupted) member by the revocation algorithm RRS.Revoke.

We will prove full-revocability by using the rewinding technique and a standard hybrid argument with the
following series of games. Let Advi(A) denote the advantage of the adversaryA in Gamei for i ∈ {0, . . . , 4}.

• Set Game0 to be the original revocability experiment where the adversary A has access to oracles
Ogen,Osig,Ocor.

• Let Game1 to be identical to Game0 except that the signing oracle is replaced by the simulator as de-
scribed in Theorem 3.3. If H1(comm ∥ m) has been queried before in Step 3, then abort. Since for any
E′ ∈ E the distribution of a ∗ E′ is uniform if a is uniformly sampled from Cl, the min-entropy of the
distribution is λ (recall that |E| ≈

√
p ≥ 2λ). It follows that comm contains nλ bits entropy. Hence, we

have Advrev(A) := Adv0(A) ≤ Adv1(A) + Q/2nλ ≤ Adv1(A) + Q/2λ.

• Let Game2 to be identical to Game1 except that the adversary does not obtain keys from the oracle Ogen.
Instead, a simulator samples sk ← Cl, computes pk = sk ∗ E, and returns (sk, pk) to the query. This
behavior is indistinguishable, so we have Adv1(A) = Adv2(A).

• Let Game3 be identical to Game2 except that we restrict the success condition: the adversary wins if the
forged signature not only satisfies the original condition, but also the Hamming weight of the challenge
string c is not greater than 3nλ/4. By using the Chernoff bound (Lemma 3.5), we have Adv2(A) ≤
Adv3(A) + e−nλ/14.

• Let Game4 be identical to Game3 except that we restrict the success condition again: the challenger
guesses an index k ∈ {1, . . . , n} uniformly at random. The adversary wins if the forged signature not only
satisfies the conditions of Game3, but also is opened to the k-th member. Hence, we have Adv3(A) =
n · Adv4(A).

From an adversary A against Game4, we construct a reduction to an adversary against the vectorization
problem by using the rewinding technique. Given A and the vectorization problem instance (E, Echa), the
reduction B can be made as follows,
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1. Start the experiment and invoke the adversary A. During the execution, the reduction also simulates the
oracles H1 and H2 in an on-the-fly manner and returns the corresponding values. Also, the reduction
simulates the signing oracle as described in Game1.

2. Pick an index k ∈ [n] uniformly at random, as the index that the adversary needs to guess (the additional
requirement made in Game4). To simulate the key generation oracle Ogen, the reduction follows the
simulation in Game2 and stores the secret keys, except assigning the instance Echa as the k-th public key.
Note therefore that the reduction has no secret keys for the k-th public key.

3. If the adversary queries secret keys through the corruption oracle Ocor, the reduction returns the corre-
sponding stored secret key, but aborts ifA inquires after the k-th secret key.

4. Execute A and obtain (m, σ,PK). Let I ⊆ [nλ] be a set of indices such that the responses resp j∈I

corresponding to c j∈I = 0 are individually opened (by RRS.Revoke) to the k-th honest party. Parse σ as
(comm, c, resp).

5. RewindA and, obtain a second output (m′, σ′,PK) such that the commitment components are the same.
That is, we can parse σ = (comm, c′, resp′). Say I′ ⊆ [nλ] such that the responses resp′j∈I′ corresponding
to the challenges c′j∈I′ = 0 are individually opened (by RRS.Revoke) to an honest party, say Pk whose
pkk ∈ PK and pkk < Qcor.

6. If c = c′, then abort. Otherwise, let j ∈ I′ and say c′j is flipped. That is, c j = 1 and c′j = 0 (or vice
versa). Parse resp j = ((r ji)i∈[n] ∈ Cl ∥ e ∥ ψ) and resp′j ∈ Cl, then the secret key sk for the member Pk is
(resp′j) ∗ (r jk)−1.

Correctness. For the case where j ∈ I′ and c′j is flipped, from the procedure (Step 5) of RRS.Revoke that opens
to the honest member Pk, we know resp′j ∗ E = S ψ−1(k) where S and ψ are obtained from the corresponding
comm j (we omit the subscript j for ease of notation). Also, we have S i = r jψ(i) ∗ Eψ(i) for any i ∈ [n]. Hence,
we have

resp′j ∗ E = S ψ−1(k) = r jk ∗ Ek,

and therefore (resp′j) ∗ (r jk)−1 ∗ E = Ek = Echa. That is, (resp′j) ∗ (r jk) is the secret key for the member Pk and
the solution for the vectorization problem.

Probability Analysis.
By the heavy row lemma 3.4, with probability 1/2, the commitment comm lies in a heavy row. The

advantage of the reduction, Advvec(B), is not less than Adv2
4

4 . Therefore, we have Advrev(A) ≤ 2n∗
√

Advvec(B)+
Q/2λ + e−nλ/14.

□

We end this subsection with the following result.

Theorem 3.7. Protocol 2 is a collusion-resistant revocable ring signature scheme (and therefore also a group
signature scheme—see Appendix C for details). That is, it satisfies correctness, unforgeability, CPA-anonymity,
and full-revocability.

Remark 4. We use the looser Q/2λ instead of Q/2nλ in Game1 of both the proofs of unforgeability and
full-revocability so that the numbers in the statement of the theorem will not change after the optimization in
Section 3.3.

3.3 Cost Analysis and Optimization

In this section, we analyze the cost of the scheme and propose three methods to improve the efficiency. The
summary is made in Table 1 by comparing the cost before and after the improvement. The techniques in
this section consist make use of a computational binding commitment scheme, Merkle trees, and a pseudo-
random number generator (PRNG). All of these can be instantiated by SHA-3, for example. As long as all
the components have the same strength of security (regarding the computational binding, second preimage
resistance, and pseudo-randomness, respectively), the changes will not downgrade the security strength of the
signature scheme (see Remark 4). Thus all the results of the previous section apply to the scheme with these
improvements applied.
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Cost. The signature of a message m consists of (comm, c, resp), and the group public key is (PK, pkrev). Let λ
represent the security parameter, n = |PK| be the number of members in the ring, and let the outputs of H1,H2
be of length nλ and N = max{2λ, nlog(n)} respectively. We represent the permutation element from Sn with
n log(n) bits by using cycle notation.

The commitment component comm = ((S ji)i∈[n], ct j) j∈[nλ] is of n2λ+nλ elements in the set E and nλ binary
strings of length N. The challenge component c is a binary string of length nλ. The response component is
resp = (resp j) j∈nλ where each resp j is either (r j) or ((r ji)i∈[n] ∥ e j ∥ ψ j). On average, it contains n2λ/2 + nλ
elements of the group Cl and nλ binary strings of length N.

The public key set PK is composed of n elements of the set E, plus one element for the revocation key. In
total, apart from the message, the ring signature for security parameter λ and n participants on average consists
of n2λ + n + 1 elements in E, n2λ/2 + nλ elements in Cl and 3nλ2 + nλ bits.

Optimization. Here we list several ways to compress the signature size. Firstly, we can apply the technique
used by Beullens et al. [BKP20] to optimize their signature. Instead of generating n random elements r ji ∈ Cl
for r ji ∗ Ei for the jth commitment, the prover uses the same r j ∈ Cl and commits to Com(r ∗ Ei, stri)i∈[n] where
Com is a binding commitment scheme and stri are random strings. The string stri is of length 3λ to secure
against the quantum collision algorithm by Brassard et al. [BHT98].

Furthermore, we can apply standard Merkle trees to the commitment component. By committing to
Com(r ∗ Eψ(i), strψ(i))i∈[n], the prover Pk reveals r and ψ for the challenge 1 or reveals rsk and the path for
challenge 0. Note that we are not using the index-hiding Merkle trees in [BKP20], since we need to extract the
permutation element—the index-hiding Merkle trees are used to replace the permutation by using the lexico-
graphical ordering of the hash digests, while we will simply use order-preserving concatenation. Additionally,
we can use a pseudo-random number generator taking as input seeds sd1 and sd2 of 3λ bits to generate the
(stri)i∈[n] and the permutation element ψ, respectively. For the case of the challenge 1, then the prover sends to
the verifier the seeds sd1, sd2 instead of the entire string (stri)i∈[n] and the permutation element ψ. As a result,
comm consists of nλ elements in E and 6nλ2 bits.

Components E (Set elements) Cl (Group elements) Bits
Commitment n2λ + nλ; nλ - 2nNλ; 6nλ2

Challenge - - nλ
Response - n2λ/2 + nλ; nλ nNλ; nλ(3λ log(n) + 6λ)/2
Public Key n + 1 - -

Table 1: The signature size analysis of the construction where N = max{λ, n log(n)}. The notation a; b repre-
sents the original size of a and the improved size of b.

4 Conclusion

This work presents the following contributions. It introduces a better security notion for revocable ring signa-
tures, establishes another connection between a ring signature and a group signature, and provides an approach
to obtaining a group signature (as shown in Fig 1). Also, it provides a construction from hard homogeneous
spaces. This work also presents the first efficient construction of an efficient group signature scheme from iso-
genies, and also the first construction of a post-quantum (collusion-resistant) revocable ring signature scheme.

As a limitation, we remark that the non-tight proof in Section 3 is in the classical random oracle model in-
stead of the quantum random oracle model (QROM), a common obstacle for Σ-protocol-based schemes. Clas-
sically, after rewinding an adversary who can forge a signature, an extractor can get two responses for distinct
challenges but for the same commitment by programming and extracting the random oracle (programmability
and extractability of ROM). As a result, an extractor is able to extract a witness (a secret) of a computationally
hard problem, by 2-special soundness. However, in QROM, this tactic will be detected by the adversary since
observing the oracle query in a quantum state will make it collapse. A state-of-the-art work on Σ-protocols is
[DFMS19]. However, the technique does not apply to this work since the signature scheme does not satisfy
quantum computationally unique responses. In particular, when the challenge is 0, two distinct responses can-
not be used to construct a solution for a hard computational assumption. Also, we admit that efficiency is not as
competitive as the start-of-the-art lattice instances like [dPLS18]. We look forward to an improvement of our
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construction, developments in quantum security proof techniques or in isogeny cryptography to have a more
efficient or secure isogeny-based group signature scheme in QROM.
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A A Brief Survey of Ring Signature and Group Signature

A.1 Ring Signatures

Ring signature and group signature schemes share a lot of commonality, but differ in important ways. We begin
with some history and definitions in the ring signature setting. Ring signatures [RST01, AOS02, CWLY06]
were proposed later than group signatures, and are designed to provide signers with a level of anonymity while
still retaining credibility. Specifically, a signer will choose an ad-hoc “ring” of other users’ public keys, and
create a signature with respect to that ring, such that anyone can publicly verify that the signature came from
one of the keys in said ring, but cannot ascertain which. Unlike group signatures we will see below, there is no
concept of “opening” or revoking anonymity in this plain setting since no trusted third party is assumed.

Further constructions in this vein resulted in variations such as

• Linkable ring signatures [LWW04, BKP20] - in which it can be publicly checked whether two signatures
were generated by the same signer (still without revealing who that signer was).

• Traceable ring signatures [FS07, Fuj11] - similar to linkable ring signatures, but where two signatures by
the same signer publicly identify who the signer was.

In this work we are interested in another extension of ring signatures, where the signer may grant a chosen
authority the power to reveal who the signer was. Previous work on this idea has labelled it under two different
names:

• Revocable ring signatures [LLM+07, ZLS+20]- there exists special keys granted authority to revoke
anonymity and reveal the signer of a particular signature. This idea was introduced by [LLM+07] using
bilinear pairings and a proof-of-knowledge.

• Accountable ring signatures [XY04, BCC+15, KP17] - similar to revocable ring signatures but with a
stronger security model. The revocation authority is required to provide a publicly verifiable proof of the
signers identity upon opening - not just return the identity itself.

There have been a number of ring signature constructions based on lattice assumptions, the first of these be-
ing [CLRS10]. Recently, a group-action based linkable ring signature was introduced by Beullens, Katsumata,
and Pintore [BKP20], which can be instantiated using isogenies or lattices - both resulting in post-quantum
constructions. This work is discussed further below. Our work is (to the best of our knowledge) the first to in-
troduce a secure post-quantum (strong) revocable ring signature scheme and an isogeny-based group signature
scheme. We also remark that there are no post-quantum accountable ring signature schemes in the literature.

A.1.1 Group Signatures

Group signatures have had a long and rich history of development since their initial introduction by Chaum
and van Heyst [CvH91]. In the early stages of their development, most group signature schemes proposed
had no formal model or definition of security and thus no security proof. A large step forward in efficiency
was taken in [ACJT00], which also gave a proof of security and adaptive-coalition-resistance in the random
oracle model under the strong RSA assumption. Further works [CL02, CL04] based on the LRSW assump-
tion [LRSW99] followed, as well as a formalization of definitions and notions of security for (static) group
signatures in [BMW03]. This formal treatment was extended to the case of dynamic groups in [BSZ05].
Kiayias and Yung [KY05] subsequently improved the joining mechanism for new members of the group. How-
ever, all these preceding works required either a trusted third party to generate the keys, or a very complicated
multi-round interaction with the group manager.

Boneh, Boyen, and Shacham [BBS04] made large progress in terms of efficiency, with their presentation
of short group signatures based on bilinear maps. The security of their scheme is based on the Strong Diffie-
Hellman (SDH) assumption and Decisional Linear Diffie-Hellman assumption in groups with such a map, and
is proven in the random oracle model. It builds on the previous work of Boneh, Lynn, and Shacham [BLS04]
and Boneh and Boyen [BB04] which developed short signature schemes based on similar assumptions.

A number of works have aimed at bringing quantum resistance to the realm of group signatures. Notably,
[ELL+15] introduced a code based group signature, while there has been a rich history of works with lat-
tice based group signature schemes [GKV10, LLLS13, NZZ15, LNW15, KY19]. In 2018, Bansarkhani and
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Misoczki [EM18] introduced the first hash-based group signature scheme. Being hash-based with standard
assumptions - namely the existence of one-way functions - this scheme also claims post-quantum security. Fi-
nally, [KKW18], working in the MPC-in-the-head paradigm, introduced new zero-knowledge proofs based on
symmetric primitives alone, which also result in quantum-resistant group and ring signature schemes.

B Proof for Theorem 3.1

Theorem B.1. Protocol 1 is correct. Besides, when H is modeled as a random oracle, if the parallelization
of HHS is hard, then Protocol 1 is non-abort honest verifier zero-knowledge (HVZK). That is, there exists a
simulator given the challenge c← {0, 1} that generates a transcript (comm′, c, resp′) which is computationally
indistinguishable from the one (comm, c, resp) generated from the real execution of Protocol 1.

Proof. (Correctness) When the challenge c = 1, the response is ((ri)i∈[n] ∥ e ∥ ψ). Since S i = E′ψ(i) = rψ(i)∗Eψ(i),
we have S i = rψ(i) ∗ Eψ(i) for any i ∈ [n]. Also, (e ∗ E ∥ H(e ∗ E′) ⊕ ψ) = ct holds directly. When the challenge
c = 0, the response is skrk. In the verification phase (skrk) ∗ E = rk ∗ Ek = E′k ∈ S holds.

(HVZK) (Challenge c = 1) Given the challenge c ∈ {0, 1}, if c = 1, then the simulator generates e, ri ← Cl
for i ∈ [n] and ψ ← Sn and computes (E′i )i = (ri ∗ Ei)i for each i ∈ [n], the curve array S = (E′ψ(i))i∈[n], and the
string ct = (e ∗ E ∥ H(e ∗ E′) ⊕ ψ). The simulator outputs comm′ = (S , ct), c and resp′ = ((ri)i∈[n] ∥ e ∥ ψ) and
completes simulation.

Note that for an honest prover Pk, the secret sk will not be used if the challenge c is 1. It follows that when
c = 1, the simulation is perfectly indistinguishable. That is, the distribution of the transcripts generated by the
simulator is identical to the distribution of real transcripts from the execution of the protocol.

(Challenge c = 0) If c = 0, then the simulator S1 randomly picks k ← [n], generates e, ri ← Cl and computes
E′i = ri ∗ Ei for i ∈ [n] − {k} and E′k = rk ∗ E. Additionally, the simulator generates ψ ← Sn and computes
the curve array S = (E′ψ(i))i∈[n], and the string ct = (e ∗ E ∥ H(e ∗ E′) ⊕ ψ). After replacing ct by a string of
the same length generated uniformly at random, the simulator outputs (comm′ = (S , ct′), c = 0, resp′ = rk) and
completes simulation.

The situation is slightly different from the case of c = 1. The first difference is that the simulator generates
E′k through rk ∗ E with rk ← Cl, while it is generated as r′k ∗ Ek with rk ← Cl in the real execution. Because
the sampling of the group Cl is uniform, the distributions of these two methods of generating E′k are identical.
Hence, these parts are perfectly indistinguishable. The second difference, roughly speaking, is that S1 simulates
Pk for a randomly chosen k ∈ [n] while the real transcript is generated by a specific prover.

We claim that the output of S1 is computationally indistinguishable from real transcripts if the paralleliza-
tion of HHS is hard. To see this, we apply the hybrid argument. Let V(0) represent the algorithm that outputs
the real transcript with a fixed input c = 0 after interacting with a prover. Let V ′(0) to be the same algorithm
as V(0) except that it replaces ct by a string of the same length generated uniformly at random. Specifically,
while V(0) generates ((S , ct), 0, resp), the algorithm V ′(0) will output ((S , ct′), 0, resp) where ct′ is generated
uniformly at random.

The distributions of the outputs of V ′(0) and S1 are identical (perfectly indistinguishable). Due to the as-
sumption of the parallelization problem, it is infeasible to compute e∗E′ when given (E, E′, e∗E). Furthermore,
since H is modeled by a random oracle of which the output is uniform, V(0) and V ′(0) are computationally in-
distinguishable. Therefore, the transcripts generated by S1 are computationally indistinguishable from the real
transcripts.

□

C Collusion-Resistant Revocable Ring Signature to Group Signature

In this section we will show how to construct a group signature from a collusion-resistant revocable ring signa-
ture, as defined in Section 2. We start with the definition of a group signature scheme.

C.1 Group Signature Schemes

Group signature schemes are similar to revocable ring signatures as outlined above. The key difference is that
membership in the group is controlled strictly by the group manager (who also acts as the revocation authority
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/ opener), rather than allowing ad-hoc collections of members for each signature.
Formally, a group signature scheme consists of six polynomial-time algorithmsGS = (GS.Setup,GS.KeyGen,GS.MKeyGen,

GS.Sign,GS.Verify,GS.Open):

• (pp)← GS.Setup(1λ) is a PPT algorithm returning a set of public parameters for the scheme (which will
be implicitly used in the other functions).

• (ski, pki)← GS.KeyGen(pp) is a PPT algorithm returning a private key and public key pair for a user in
the scheme.

• (gpk = (pkopen, pkissue), gmsk = (skopen, skissue)) ← GS.MKeyGen(pp) is a PPT algorithm returning a
private key and public key pair for the group manager in the scheme.

• σ← GS.Sign(ski,m, {pk1, . . . , pkn}, π, gpk) is a randomized signing algorithm taking as inputs the secret
key si, the message m, a set of public keys of the group {pk j} (including pki), proof of membership π of
all pki in the group, and a group public key gpk. It returns σ as the signature.

• 0 | 1 ← GS.Verify({pk1, . . . , pkn}, π, gpk,m, σ) is a deterministic verification algorithm taking as inputs
the set of public keys pk j of the group, proof π of membership of all the public keys in the group, the
group public key gpk, the message m, and the signature σ. It returns 0 or 1 to represent validity of the
signature.

• i← GS.Open({pk1, . . . , pkn}, π, gpk, skopen,m, σ) is a PPT algorithm taking as inputs the public keys pk j
of the group, proof of membership of these keys π, the group public key gpk, the revocation authority’s
secret key skopen, the message m, and the signature σ. It returns an index i to represent the identity of the
member who generated the signature. If the signature is invalid, ⊥ is returned.

One can omit the membership proof π and identify gpk as {pk1, · · · , pkn, pkopen} and obtain a static group
signature scheme. For clarity and simplicity of exposition, we omit the details of members joining the group
dynamically from our formal treatment. It is easy to add this functionality in by simply having the new member
send their public key to the group manager, who will update the certificate π with their secret issuing key, to
include said member. This certificate is then enough to verify that the new member is indeed part of the group.
Removal of group members could additionally be accomplished with a revocation list or other similar methods,
which are studied in the literature. The details of the certificate π are given in Section C.2

Note that we pass the set of public keys to functions separately from the group public key for this reason -
in the case of a fixed group, the group public key may contain this set, but in the case of a dynamic group, in
order for the group public key not to change upon each join, it shouldn’t contain the list.

Remark 5. We emphasize the unfortunate difference in terminology between the GS and RRS settings - re-
vocation in a ring signature scheme equates to opening in a group signature scheme (revealing which member
created a given signature or revoking anonymity), while revocation in a group signature scheme denotes the
removal of a member from the group. As our treatment of group and ring signatures is fairly separate, and the
meaning should be clear from context, this hope this will not cause undue confusion.

The two key security notions for group signature schemes are anonymity and traceability [BMW03]. To
prove security with respect to these two properties, we shall define four oracles to capture the powers of the
adversary:

• Ogen(). The generation oracle, runs (ski, pki) ← GS.KeyGen(pp), sets Qgen ← Qgen ∪ {pki} and
SK[pki] = ski, and returns pki.

• Ocor(pki). The corruption oracle, takes a public key pki ∈ Qgen as the input, sets Qcor ← Qcor ∪ {pki},
and returns the corresponding secret key ski = SK[pki].

• Osig(gpk,PK, π,m, pki). The signing oracle, takes a group public key, a set of public keys PK ⊆ Qgen,
a membership certificate π of PK under gpk, a message m, and a public key pki ∈ PK. It calls σ ←
GS.Sign(SK[pki], π,m,PK, gpk), sets Qsig ← Qsig ∪ {(m, σ)}, and returns the signature σ.

• Oopen(PK, π,m, gpk, σ). The opening oracle, takes a set of public keys PK ⊆ Qgen, a message m, a
group public key gpk, and a signature σ. It calls i ← GS.Open(PK, π, gpk,SK[pkopen],m, σ), sets
Qrev ← Qrev ∪ {σ}, and returns the index i.
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Correctness and Unforgeability. These properties are identical to the case of RRS above - correctness ensures
that valid signatures are always accepted and that Open() only fails if the signature is invalid, while unforge-
ability ensures that an adversary cannot generate an accepting signature for a group they do not know any secret
keys for. We omit the formal definition as it is identical to the RRS one (replacing RRS with GS).

Full-anonymity. This property ensures anonymity for members even in the case of secret key exposure, and
even if the identity of the signer of several other signatures has been revealed. The challenger C first generates
public parameters pp for security parameter λ, and for all i ∈ [n], keypairs (ski, pki) ← GS.KeyGen(pp). The
challenger also generates an opening keypair and issuing keypair (gpk = (pkopen, pkissue), gmsk = (skopen, skissue))←
GS.MKeyGen(pp). A group signature scheme has full-anonymity if, for any PPT adversaries A1,A2 given
{(sk1, pk1), . . . , (skn, pkn), gpk} from C, and access to oracle Oopen, there exists a negligible function negl()
such that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


(m, i, j, state)← AOopen

1 ({(sk1, pk1), . . . , (skn, pkn)}, gpk)
b←R {i, j}

σ← GS.Sign(skb,m, {pk1, . . . , pkn}, π, gpk)
b∗ ← AOopen

2 (state, σ)
b∗ = b ∧ σ < Qopen


−

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< negl(λ)

In the above definition, if the adversary’s access to Oopen is removed, then the notion is called weak
anonymity or sometimes CPA-anonymity [dPLS18].

Full-traceability. Roughly speaking, full-traceability ensures that the power of the opening authority to reveal
the creator of a particular signature cannot be obstructed even if the opening key is stolen and a number of group
members collude. Formally, in the traceability experiment, the challenger executes generates public parame-
ters pp for security argument λ, and runs the key generation algorithm (ski, pki) ← GS.KeyGen(pp) for all
i ∈ [n]. The challenger also generates an opening keypair and issuing keypair (gpk = (pkopen, pkissue), gmsk =
(skopen, skissue)) ← GS.MKeyGen(pp). A group signature scheme has full-traceability if, for any PPT ad-
versary A given {pk1, . . . , pkn}, gpk and gmsk from C, and access to oracles Ogen,Osig,Ocor, there exists a
negligible function negl() such that

Pr


(m, σ,PK, π)← AOgen,Osig,Ocor ({pk1, . . . , pkn}, gpk, gmsk)

i← GS.Open(PK, π, skopen,m, σ)
GS.Verify(PK, π, gpk,m, σ) = 1

∧ pki ∈ Qgen ∧ pki < Qcor ∧ (m, σ) < Qsig

 < negl(λ)

Essentially, the goal of the adversary is to generate a valid signature (m, σ) such that the signature is opened
to an uncorrupted member of the group or none of the members in the group.

C.2 Construction

Given a collusion-resistant revocable ring signature scheme, we demonstrate the construction of a secure group
signature scheme.

Protocol 3.

• GS.Setup(1λ) will call RRS.Setup(1λ) to obtain pp.

• GS.MKeyGen(pp) runs RRS.RevKeyGen(pp) twice to obtain keypairs (pkopen,

skopen) and (pkissue, skissue), and returns (gpk = (pkopen, pkissue), gmsk = (skopen,

skissue)).

• We define GS.KeyGen(pp) to call RRS.KeyGen(pp) and obtain a keypair (ski, pki).

For a member to join a group, that member must then obtain a group membership certificate from the
group manager. Formally, for a group with public key gpk = (pkissue, pkopen), and current users Y =
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{pk1, . . . , pkn}, user pkn+1 joins by setting Y ′ = Y ∪ {pkn+1} and setting the group certificate π to be a
signature on (gpk,Y ′) with skissue. π defines the group members and is a proof of group membership for
all users in Y ′.

• GS.Sign(ski,m, {pk1, . . . , pkn}, π, gpk) - The sign function takes as input a message m, the full set of
public keys of the group, the certificate for the set of public keys π, a secret key ski corresponding to
pki for some 1 ≤ i ≤ n, and the group public key gpk. It generates a signature as follows: First verify
that the certificate on the set of public keys is valid for gpk (i.e. it is a valid signature under pkissue), and
fail if not. Let pkopen be the opening key from gpk, and call RRS.Sign(ski,m, {pk1, . . . , pkn}, pkopen) to
generate a signature σ. Return σ.

• GS.Verify({pk1, . . . , pkn}, π, gpk,m, σ) First verify that π is a valid certificate for all the public keys pk j
for the group gpk (under pkissue), and return 0 if not. Then call and return RRS.Verify({pk1, . . . , pkn},

m, σ, pkopen).

• GS.Open({pk1, . . . , pkn}, π, gpk, skopen,m, σ) should check signature validity under GS.Verify (returning
⊥ if invalid) and then simply call and return RRS.Revoke({pk1, . . . , pkn}, skopen,m, σ).

Note that functionality to remove group members can also be added by again generating a new group
membership certificate π with all but the revoked members’ public keys, and publishing a revocation list with
the old certificate on it, so that signatures under the old group become invalid.

Theorem C.1. A group signature scheme constructed as in Protocol 3 is correct and unforgeable, and satisfies
full-anonymity (CPA-anonymity, resp) and full-traceability, assuming the underlying revocable ring signature
scheme has correctness, unforgeability, full-anonymity (CPA-anonymity, resp) and revocability.

Proof. Here we prove that if the RRS scheme is secure, then the GS scheme constructed from it as above will
also be secure. We prove each property sequentially:

Correctness and unforgeability Correctness and unforgeability directly follow from the correctness and
unforgeability of the underlying RRS scheme - the group membership certificate checks ensure the group is
well formed during signing and verification, and the underlying signature is generated and checked with the
RRS scheme functions.

Full-Anonymity/CPA-anonymity Recall that the adversary is given a group PK = {(sk1, pk1), . . . , (skn, pkn)},
π, gpk and an opening oracle Oopen. For CPA-anonymity, access to Oopen is removed. The adversary outputs a
message m and two indices i, j, and obtains a signature σ generated by either ski or sk j on message m. If the
adversary has non-negligible advantage in guessing which of the two keys was used to generate the message,
the same adversary can beat the full-anonymity game of the underlying ring signature:

Given an instance of the RRS full-anonymity game, the adversary will generate a keypair (pkissue, skissue),
create a group membership certificate π on the set of public keys {pki} using skissue, and then pass PK, π and
gpk = (pkrev, pkissue) to the GS full-anonymity adversary. Queries to the GS opening oracle Oopen can simply
be forwarded to the RRS revocation oracle Orev. The output of this adversary is a valid output to win the RRS
full-anonymity game.

Thus if the RRS scheme has full-anonymity (CPA-anonymity), so too does the GS scheme built on it.

Full-Traceability The adversary is given here the set of public keys of the group PK, the membership cer-
tificate π, the group public key gpk, the group manager’s secret key’s gmsk = (skopen, skissue), and access
to a corruption oracle Ocor, generation oracle Ogen, and a signing oracle Osig. The adversary outputs a tuple
(m, σ,PK, π). If the adversary has non-negligible advantage in winning the full-traceability game - that is, out-
putting a valid signature, message, and set of public keys for the group, such that Open() does not point to any
corrupted member - then we can also use this adversary to win the full-revocability game on the base RRS:

Given an instance of the RRS full-revocability game, the adversary will generate a keypair (pkissue, skissue),
and then pass PK, gpk = (pkrev, pkissue) and gmsk = (skrev, skissue) to the GS full-traceability adversary. The
adversary will return a tuple (m, σ,PK, π). Then (m, σ,PK) is, with non-negligible advantage, a successful
output for the RRS full-revocability game.
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Thus if the RRS scheme has full-revocability, the GS scheme built on it has full-traceability.
□
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