
Group Signatures and Accountable Ring
Signatures from Isogeny-based Assumptions

Kai-Min Chung1, Yao-Ching Hsieh1, Mi-Ying (Miryam) Huang2,
Yu-Hsuan Huang1,3, Tanja Lange4, and Bo-Yin Yang1

1 Academia Sinica, Taiwan
2 University of Southern California, United States

3 Centrum Wiskunde & Informatica, The Netherlands
4 Eindhoven University of Technology, The Netherlands

kmchung@iis.sinica.edu.tw, ychsieh@ntu.edu.tw, miying.huang@usc.edu,

Yu-Hsuan.Huang@cwi.nl, byyang@iis.sinica.edu.tw, tanja@hyperelliptic.org

Abstract. Group signatures are an important cryptographic primitive
providing both anonymity and accountability to signatures. Accountable
ring signatures (ARS) combine features from ring signatures (RS) and
group signatures (GS), and can be directly transformed into either of
both. While there exist extensive works on constructing GS from vari-
ous post-quantum assumptions, there has not been any research using
isogeny-based assumptions. In this work, we propose the first isogeny-
based GS, which is a direct result of our isogeny-based ARS. Our schemes
are based on the decisional CSIDH assumption (D-CSIDH) and are
proven secure under the quantum random oracle model (QROM). This
work is also the first post-quantum ARS and GS that are proven QROM-
secure.

1 Introduction

Group signatures. Group signatures (GS), first proposed by Chaum and van
Heyst [15], are signature schemes that permit signing by a group, a set of players
chosen by a prescribed group manager. Each of the players can generate publicly
verifiable signatures on behalf of the group while keeping itself anonymous to
everyone except the group manager. The group manager has the authority to
open, i.e. to reveal the signer’s identity from a signature with its master secret
key.

Since their proposal, there have been numerous works devoted to group signa-
tures. Many of them aimed to give refinements and extensions to the primitive.
Some of these extensions, such as separating the opening authority from the

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. Date: 2021.10.10.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

manager [3,12], or additionally requiring a “Judge” functionality to verify open-
ing results [3], are widely adopted in the formulation for many succeeding works.
Nevertheless, in this work, we will focus on the formulation which contains only
fundamental components of a group signature.

Accountable ring signatures. An important line of research on group signa-
tures studies variants with dynamic groups. In contrast to the original formula-
tion where only static groups are supported [2, 15], a dynamic group signature
allows a group to be updated after the setup stage. The notion of partially dy-
namic group signatures was formulated by Bellare, Shi, and Zhang [3] and
Kiayias and Yung [25], where parties can join a group but cannot be removed.
There are also many works that achieve group signatures with removal of group
members, as early as [10,39].

Accountable ring signatures (ARS), first proposed by Xu and Yung [42], pro-
vides the “dynamic property for groups” in a different aspect. ARS, while having
a “ring signature” [37] within its name, can also be viewed as a variant of group
signatures where groups are fully dynamic but not authenticated. In an ARS
scheme, the manager no longer has any control over the group. Instead, a signer
can freely decide which master public key to use and which group to sign for,
and its identity can then be opened by the corresponding master secret key.
Though seemingly incomparable to a standard group signature, an ARS scheme
can in fact trivially imply a group signature scheme, simply by fixing the group
at the setup stage. Later, Bootle, Cerulli, Chaidos, Ghadafi, Groth, and Petit [9]
proposed a stringent formulation for ARS, along with a provable construction
based on the DDH assumption. It is further shown in [8] that such a stringent
ARS scheme can be generally transformed to a fully dynamic group signature
scheme.

Group signatures from post-quantum assumptions. In the past decade,
there has been increasing attention on the importance of post-quantum secu-
rity for cryptographic primitives. Various attempts emerged to construct group
signatures based on cryptographic assumptions that resist quantum attacks.
Gordon, Katz, and Vaikuntanathan first gave a group signature construction
from lattice-based assumptions [23]. This was followed by several constructions
of lattice-based group signatures, either for static groups [28, 34] or dynamic
groups [31, 32]. There have also been a few attempts on constructing group sig-
natures from other classes of post-quantum assumptions, such as code-based
assumptions [20] or hash-based assumptions [1]. However, to the best of our
knowledge, none of these are from isogeny-based assumptions, which is the main
focus of this work.

We also note that current constructions of accountable ring signatures are
based on either pre-quantum assumptions (DDH [9], q-SDH [29]) or primitives
in the absence of post-quantum constructions (iO [27]).

Our results. As a main result, we construct accountable ring signatures from
isogeny-based assumptions in the quantum random oracle model (QROM). More-
over, since they can be easily transformed into group signatures and ring signa-

2

tures5 (RS) while preserving its QROM securities, we achieve various milestones
listed below.

– In terms of ARS and GS, this is the first isogeny-based and the first QROM-
secure proposal.6

– In terms of RS, this is the first isogeny-based proposal proven QROM-secure.

On top of it, we propose the notion of openable sigma protocol, which is an inter-
mediate primitive for constructing ARS. Such primitive is simple yet fit well with
the Fiat-Shamir methodology. A (secure) openable sigma protocol give rise to
ARS when Fiat-Shamir transformed. Furthermore, we show that typical (addi-
tional) requirement for a QROM-secure signature, the unique response property,
suffices to provide a QROM-secure ARS.

We base our construction on the decisional CSIDH assumption (D-CSIDH).
From an abstract viewpoint, D-CSIDH is a natural generalization of DDH which
is built over the weaker group-action structure.

Due to the lack of the homomorphic property in group-action assumptions,
it is usually infeasible to transform results obtained from group-based assump-
tions to those from group-action-based assumptions. Our work demonstrates the
possibility of constructing advanced cryptographic primitives with group-action-
based assumptions, despite its limited properties.

Our construction of ARS does not satisfy some of the (too) stringent defini-
tions, such as that provided in [9]. Nevertheless, our construction already suffices
to imply a group signature, with fully dynamic control over the group members.
Therefore, we believe our work would be a meaningful starting point for the
study of advanced isogeny-based signatures.

Concurrent works. Independent and concurrent to our work, [4,30] also man-
aged to construct isogeny-based group signatures, with the former based on
the accountable ring signatures as we do, and the latter based on the so-called
collusion-resistant revocable ring signatures.

Indeed, updated soon after, we have achieved the QROM security, whereas
neither of [4,30] do. Since the queried random function models a cryptographic
hash function, an adversary could then build its quantum circuit with the addi-
tional power to make the queries in superposition. This justifies QROM securities
to be more desirable compared to their classical counterpart. Below listed what
has been achieved qualitatively between our works and a previous relevant work
that is also in the scope of advanced isogeny-based signatures.

5 ARS⇒RS is trivial, by throwing away the opening functionality.
6 To the best of our knowledge, relevant post-quantum proposals for ARS/GS only

claim their security in the classical random oracle model.

3

Table 1: Milestones of Isogeny-based Advanced Signatures
QROM security Functionality Timeline

[5] × RS previous
Our work X ARS + RS + GS
[4] × ARS + GS concurrent
[30] × CR-RRS + GS concurrent

1.1 Technical overview

In this overview, we assume some familiarity for sigma protocols and the Fiat-
Shamir transformation [22].

Signatures based on isogeny class group action. Stolbunov [40] gave a
first attempt toward an isogeny-based signature scheme in his thesis. His scheme
applies the Fiat-Shamir transformation [22] to the sigma protocol of Couveignes
[16]. While Couveignes’ protocol is structurally similar to the discrete log based
protocol by Chaum and van Heyst [15], its challenge space cannot be extended
as in Schnorr’s protocol [38]. Parallel repetition is thus necessary for Stolbunov’s
signature scheme.

Later, following the proposal of an efficient class group action implementation
by CSIDH [13], SeaSign [21] and CSI-FiSh [6] separately gave efficient signature
constructions based on Stolbunov’s approach. One main contribution of their
works is that they overcome the lack of canonical representation for elements
in the class group Cl(O). In Stolbunuov’s scheme, the signer would reveal rs

for r
$←− Cl(O) and secret s ∈ Cl(O). However, since r and s are represented

as element wise bounded vectors in the CSIDH representation, a naive repre-
sentation for rs does not hide the information of s. To cope with this issue,
SeaSign proposed a solution using the Fiat-Shamir with abort technique [33],
while CSI-FiSh computes the whole class group structure and its relation lattice
for a specific parameter set, CSIDH-512. In this work, we will adopt the latter
approach, where we can simply assume canonical representation for elements in
Cl(O).

Recently, Beullens, Katsumata, and Pintore [5] showed how to construct
an isogeny-based ring signature with the sigma protocol for an OR-relation.
Our work similarly starts with a sigma protocol which additionally supports an
opening operation. We want a sigma protocol that takes n statements and a
master public key as inputs, computes a proof for one of the statements and
embeds the “identity” of the proved statement into the transcript so that it can
be extracted with the master secret key. As the first step, we will discuss how
we can embed information for opening into the transcript.

Embedding opening information. In a group signature scheme, the informa-
tion for the signer’s identity must be somehow embedded into the signature, so
that the master can open it. One natural approach to embed opening informa-

4

tion is to encrypt the information with the master public key. Such an approach
is proven successful in a few previous works on group signatures [7,9]. However,
since the opening information is now a ciphertext under the master key, a veri-
fier can only check the validity of the ciphertext via homomorphic operations or
NIZK. Unfortunately, unlike group-based assumptions, it is not yet known how
to achieve such homomorphic property from the weaker group action structure
given by isogeny-based assumptions. There is also no isogeny-based NIZK con-
struction in the literature. Thus, we will have to come up with a structurally
simpler way to encode our opening information.

In light of this, we construct our opening functionality in a very naive way.
For a signature with group/ring size n and a master secret key sm for opening,
we embed the signer identity by one DDH tuple and n − 1 dummies. Namely,
the opening information is in the form

τ = ((r1E, r2E, . . . , rnE), rkEm), where r1, . . . , rn
$←− G and Em = smE ,

which embeds the signer’s identity k ∈ [n] through position, and is extractable
for the manager holding sm. Note that such τ keeps all its elements in the form
of curves/set elements, hence the verifier can do further group action on τ for
consistency checking. This circumvents the previous difficulty, but with the cost
of a larger payload.

Openable sigma protocol. To construct a group signature/accountable ring
signature scheme through Fiat-Shamir transformation, we first introduce an in-
termediate primitive called openable sigma protocol. We refer the reader to
Section 3 for more details.

The formulation of the openable sigma protocol looks similar to the standard
OR sigma protocol. They both take n statements and one witness as input.
However, there is a major difference between them. The OR sigma protocol is
a proof of knowledge for the OR-relation. The openable sigma protocol, on the
other hand, is a proof of knowledge for the relation of the kth statement, where
k is chosen at the proving stage and embedded in the first message com, and can
then be extracted by the master secret key sm.

For our openable sigma protocol, the special soundness would thus require an
extractor that extracts the kth witness which matches the opening result. Such
a stronger extractor is crucial for proving unforgeability for group signatures, in
which we transform a forger for party k into the extractor for the kth witness.
Extractors for standard OR sigma protocols cannot provide such reduction.

Also, unlike an OR sigma protocol, an openable sigma protocol cannot get
anonymity directly from the HVZK property, as the proving statement is now
embedded in com. To achieve anonymity, we need an extra property computa-
tional witness indistinguishability (CWI) which states that, for an honest master
key pair (mpk,msk), the proof for the k1th statement is indistinguishable from
the proof for the k2th statement. This promises that when transformed to signa-
tures, the signer would be anonymous as long as the manager has not colluded.

5

The construction of our openable sigma protocol is built on top of the pre-
vious identity embedding component. For statements E1 . . . , En along with the
kth witness sk s.t. Ek = skE and the master key pair (sm, Em = smE), the
opening information in our protocol is set to

τ = (Eβ , EOpen) = ((r1E1, r2E2, . . . , rnEn), rkskEm), r1, . . . , rn
$←− G

As argued earlier, the manager can extract k from τ with sm. To complete a
proof of knowledge protocol, we use two challenges (ch = 1, 2) to extract the
knowledge of each ri, and use another two challenges (ch = 3, 4) to extract
“some d = rksk s.t. dE ∈ Eβ and dEm = EOpen.” This gives us a four challenge
openable sigma protocol with a corresponding special soundness property. We
detail the full construction and the security proof in Section 3.

Rewinding, reprogramming, and Fiat-Shamir transformation. From a
series of parallel repetitions of sigma protocols with multi-special soundness, hash
functions are queried in order to decide the next challenges. This transforms an
interactive protocol to an non-interactive one. In order to argue the soundness
of such non-interactive protocol, various techniques are adopted. Classically, by
using the improved forking lemma, such an adversary breaking non-interactive
soundness could be rewound multiple times, in order to collect multiple outputs
and extract a secret from it. In the quantum setting, each-time measuring an
output corrupts the internal state potentially, and would require a different set
of techniques. A recently developed technique measure-and-reprogram [17] gives
a non-trivial reduction from non-interactive soundness to the interactive ones.
Then, by means of generalized Unruh’s rewinding, one can again rewind the in-
teractive adversary and use it to extract a secret. In the non-interactive setting,
the transcripts from both are mostly the same, with the challenge sampled differ-
ently. With the hash input being “random enough,” a recent technique adaptive
reprogramming [24] help one shows indistinguishability between these scenarios.

From our 4-challenge sigma protocol with opening property, we immediately
obtain an identification scheme with a soundness error 3

4 . It may be tempting to
claim that we can achieve soundness (3

4)λ through a λ repetition. Unfortunately,
this is not the case because each parallel session can be independently generated
with a different witness, and some of the witnesses might be validly owned by
the adversary. As a concrete example, in a λ-parallel protocol, an adversary
that owns 3 keys can generate λ/4− 1 honest parallel sessions on behalf of each
key, and then cheat on only λ/4 + 3 sessions to achieve a successful forgery. The
succeeding probability is (3

4)λ/4+3 instead of (3
4)λ. Thus, for an adversary owning

nA keys, we would need t = nA(λ− 1) + 1 = O(nAλ) repetition to ensure that,
any adversary that wishes to successfully prove for an honest identity would
need to cheat on at least λ parallel sessions, and the success probability is thus
at most (3

4)λ.

With an identification scheme with a negligible soundness error, we can now
apply the Fiat-Shamir transformation and obtain a signature scheme. With the

6

improved forking lemma [11] detailed in Section 2.4, a forging adversary A that
can with non-negligible probability generate accepting tuples of (com, ch, resp)
would imply an algorithm B that generates 4 accepting tuples with identical
com and distinct ch. Note that as we are applying the forking lemma on a t-
parallel protocol, obtaining 4 distinct challenges does not immediately imply
extraction. For instance, the forking lemma may output 4 distinct vectors of
length t, while on every position i ∈ [t] the four vectors are not completely
distinct, resulting in an extraction fail on every parallel session. Nevertheless,
we can easily show that, under polynomial many rewinds on the random oracle,
the probability of the existence of such “bad” vector tuples among all queries
is negligible. Thus, we can successfully extract witnesses with non-negligible
probability, which immediately implies unforgeability.

2 Preliminary

2.1 Isogeny and class group action

At the bottom level of our construction is the so-called isogeny class group action,
which considers a commutative class group Cl(O) acting on the set of supersin-
gular elliptic curves E``p(O, πp) up to Fp isomorphisms. The group action is free
and transitive: for every E1, E2 ∈ E``p(O, πp), there is exactly one a ∈ Cl(O)
such that E2

∼=Fp aE1. For the use of cryptography, we note that computing the
action is efficient, while extracting a from the end-point curves is considered in-
tractable. This introduces a hard-to-compute relation, while regarding the curves
as public keys, and the group element a as secret. Note that validating the public
key is efficient because it is efficient to validate the supersingularity of a curve.
We refer readers to Appendix C for a guided walk through.

Hardness assumptions. Hardness for the group action inverse problem (GAIP)
in Definition 1 is commonly assumed for the above-mentioned group action,
which has been shown useful on constructing signature schemes such as CSI-
FiSh [6] and SeaSign [21].

Definition 1 (Group Action Inverse Problem (GAIP)). On inputs E1, E2 ∈
E``p(O, πp), find a ∈ Cl(O) such that E2

∼=Fp a · E1.

In this work, we need to assume hardness for a weaker problem, the deci-
sional CSIDH problem (abbreviated as D-CSIDH7) in Definition 2, which was
considered already in [16,40], and is the natural generalization of the decisional
Diffie-Hellman problem for group actions.

Definition 2 (Decisional CSIDH (D-CSIDH) / DDHAP). For E ∈
E``p(O, πp), distinguish the two distributions

7 This problem is called the decisional Diffie-Hellman group action problem (DDHAP)
in [40].

7

– (E, aE, bE, cE), where a, b, c
$←− Cl(O),

– (E, aE, bE, abE), where a, b
$←− Cl(O).

We note that for typical cryptographic constructions such as CSIDH, addi-
tional heuristic assumptions are required to sample a random element from the
class group (as in Definition 2). This is because the “CSIDH-way” for doing this
is by sampling exponents (e1, . . . , en) satisfying ∀i : |ei| ≤ bi, and the resulting
distribution for ideals le11 . . . lenn is generally non-uniform within Cl(O). To get
rid of such heuristics, one could instead work with specific parameters, where a
bijective (yet efficient) representation of ideals is known. For instance, in [6], the
structure of Cl(O) is computed, including a full generating set of ideals l1, . . . , ln
and the entire lattice Λ := {(e1, . . . , en)|le11 . . . lenn = id}. Evaluating the group
action is just a matter of approximating a closest vector and then evaluating
the residue as in CSIDH. In this work, we will be working with such a “perfect”
representation of ideals, unless otherwise specified.

As a remark, we note that the D-CSIDH problem for characteristic p = 1
mod 4 is known to be broken [14]. Nevertheless, the attack is not applicable to
the standard CSIDH setting where p = 3 mod 4.

2.2 Group action DDH

In this section, we give an abstract version of the CSIDH group action. Such
formulation will simplify our further construction and security proof.

A commutative group action GAλ = (Gλ, Eλ) with security parameter λ (we
will omit the subscripts for simplicity) is called a DDH-secure group action if
the following holds:

– G acts freely and transitively on E .
– DDHAP is hard on GAλ. i.e., for any efficient adversary A and E ∈ E , the

advantage for A distinguishing the following two distributions is negl(λ).

• (E, aE, bE, cE), a, b, c
$←− G

• (E, aE, bE, abE), a, b
$←− G

As a side remark, the GAIP problem is also hard on a DDH-secure group action.

For a DDH-secure group action, we can also have a natural parallel extension
for DDHAP. Such extension is also discussed in [19].

Definition 3 (Parallelized-DDHAP (P-DDHAP)). Given E ∈ E, distin-
guish the two distributions

– (aE, {biE}i∈[m], {ciE}i∈[m]), where a, {bi}i∈[m], {ci}i∈[m]
$←− G,

– (aE, {biE}i∈[m], {abiE}i∈[m]), where a, {bi}i∈[m]
$←− G.

8

By a simple hybrid argument, we can easily see that if DDHAP is ε-hard,
then P-DDHAP is mε hard. To see this, note that a single DDHAP can be turned

into a P-DDHAP as (aE, {ribE}i∈[m], {ricE}i∈[m]) for {ri}i∈[m]
$←− G.

In the following we will use this in the form (aE, {biE}i∈[m], {ciE}i∈[m]) ≈c
(aE, {cia−1E}i∈[m], {ciE}i∈[m]).

2.3 Sigma protocol

A sigma protocol is a three message public coin proof of knowledge protocol. For
a relation R ⊆ X×W , where X is the space of statements and W is the space of
witnesses, a sigma protocol for R consists of two proving algorithm P1, P2 and
a verifying algorithm V . P1(x,w) → (com, st) outputs the first prover message

com, named commitment, and a state st for P2. The second message ch
$←− C

from verifier, named challenge, honestly samples a challenge from the challenge
space C. Finally, P2(st, ch) → resp outputs the third message resp, named re-
sponse. The verifying algorithm V (x, com, ch, resp) → 0(reject)/1(accept) out-
puts whether the verifier accepts the transcript. A sigma protocol should satisfy
several properties. We refer readers to Appendix D for further details.

2.4 The forking lemma

A sigma-protocol-based signature naturally allows witness extraction from the
special soundness property. Through extracting the witness from signature forg-
eries, one can reduce the unforgeability property to the hardness of computing
the witness. However, the main gap between special soundness and unforge-
ability is that special soundness needs multiple related transcripts to extract
the witness, while a signature forging adversary only provides one. The forking
lemma [35] is thus proposed to close this gap. For our particular application, as
elaborated in Appendix E.1, a generalized variant is adopted for the classical
analysis.

2.5 Group signature

A group signature scheme consists of one manager and n parties. The manager
can set up a group and provide secret keys to each party. Every party is al-
lowed to generate signatures on behalf of the whole group. Such signatures are
publicly verifiable without revealing the corresponding signers, except the man-
ager can open signers’ identities with his master secret key. We refer readers to
Appendix F for group signature syntax and formal definitions.

2.6 Accountable ring signature

Accountable ring signatures (ARS) are a natural generalization for both group
signatures and ring signatures. Compared to a group signature, ARS gives the

9

power of group decision to the signer. On signing, the signer can sign for an
arbitrary group (or ring, to fit the original naming), and can decide a master
independent from the choice of the group. The master can open the identity of
the signer among the group without needing to participate in the key generation
of parties in the ring. Note that accountable ring signatures directly imply group
signatures, simply by fixing the group and the master party at the key generation
step. Thus, ARS can be viewed as a more flexible form of group signature.

Syntax. An accountable ring signature scheme ARS consists of the following
algorithms.

– MKeygen(1λ)→ (mpk,msk) generates master public key/secret key pair.

– Keygen(1λ)→ (pk, sk) generates public key/secret key pair for group mem-
bers.

– Sign(mpk, S = {pki}i∈R,m, skid) → σ generates a signature σ for message
m for a set S with some secret key skid for id ∈ R.

– Verify(mpk, S = {pki}i∈R,m, σ) → 1/0 verifies whether (m,σ) is valid.
Verify outputs 1 if verification passes and 0 otherwise.

– Open(msk, S = {pki}i∈R,m, σ)→ pk ∈ S ∪ {⊥} reveals the identity pk ∈ S
for which the matching secret key was used to generate the signature σ. It
outputs id =⊥ when the opening fails. (i.e. when σ is malformed)

We define the message space to beM, the master public key space to be Km and
the public key space to be K. We also define KPm to be the set of all master key
pairs (mpk,msk), and KP to be the set of all public/private key pairs (pk, sk).
For simplicity, we keep the parameter λ implicit for the before-mentioned key
spaces, and additionally require public keys to be all distinct for a set S of size
|S| ≤ poly(λ).

An accountable ring signature scheme should satisfy the following security
properties.

Correctness. An ARS is said to be correct if every honest signature can be
correctly verified and opened.

Definition 4. An accountable ring signature scheme ARS is correct if for any
master key pair (mpk,msk) ∈ KPm, any key pair (pk, sk) ∈ KP, and any set of
public keys S such that pk ∈ S,

Pr

[
acc=1∧out=pk :

σ←Sign(mpk,S,m,sk),
acc←Verify(mpk,S,m,σ),
out←Open(msk,S,m,σ)

]
> 1− negl(λ).

Anonymity. An ARS is said to be anonymous if no adversary can determine
the signer’s identity within the set of signers of a signature without using the
master secret key.

10

Definition 5. An accountable ring signature scheme ARS is anonymous if for
any PPT adversary A and any two key pairs (pk0, sk0), (pk1, sk1) ∈ KP,∣∣∣Pr
[
1← ASign∗(mpk•,•,•,sk0),mpk•(x)

]
− Pr

[
1← ASign∗(mpk•,•,•,sk1),mpk•(x)

]∣∣∣ ≤ negl(λ) ,

with each query Sign∗(mpkν , S,m, skb) returning an honest signature only when
both pk0, pk1 ∈ S and otherwise abort, where each master key pairs (mpkν ,mskν)←
MKeygen(1λ) are sampled honestly.

Remark 1. As we do not forbid x to contain information about the secret keys,
adversaries in Definition 5 are referred to as being under the full key exposure.

Unforgeability. An ARS is said to be unforgeable if no adversary can forge a
valid signature that fails to open or opens to some non-corrupted party, even if
the manager has also colluded.

We model this property with the unforgeability game GUF
nh

. Among nh honest
keys pairs, the adversaryA can call the signing oracle to obtain honest signatures,
or call the corruption oracle to obtain the secret keys of the honest parties. The
adversary wins if it outputs a valid signature that opens to a non-corrupted
party or fails to open. We abuse the notation ski ∈ Hon if pki ∈ Hon.

GUF
A,nh

: Unforgeability game

1: ∀i ∈ [nh], (pki, ski)← Keygen(1λ). Let Hon = {pki}i∈[nh],Cor = {}.
2: (S,m∗, σ∗)← ASign(•,•,•,ski∈Hon),Corrupt(•)(Hon)
{Corrupt(pki) returns ski for pki ∈ Hon and stores query pki in list Cor}

3: A wins if (m∗, σ∗) is not an output of Sign, 1← Verify(mpk, S,m∗, σ∗) and
pk← Open(msk, S,m, σ∗) satisfies pk ∈ {⊥} ∪ Hon \ Cor

Definition 6. An accountable ring signature scheme ARS is unforgeable if for
any PPT adversary A, any valid master key pair (mpk,msk) ∈ KPm and any
nh = poly(λ)

Pr[A wins GUF
A,nh

(mpk,msk)] < negl(λ).

Transforming ARS to GS. As mentioned earlier, an accountable ring signa-
ture can be viewed as a generalization of a group signature. We give here the
general transformation from an ARS scheme ARS to a group signature scheme
GSARS .

The algorithms of the group signature scheme GSARS are detailed as follows:

– GKeygen(1λ, 1n):

1: (mpk,msk)← ARS.MKeygen(1λ)

11

2: ∀i ∈ [n], (pki, ski) ← ARS.Keygen(1λ), Let S = {pki}i∈[n] and gpk =
(mpk, S)

3: return (gpk, {ski}i∈[n],msk)

– GSign(gpk = (mpk, S),m, skk)

1: return σ ← ARS.Sign(mpk, S,m, skk)

– GVerify(gpk = (mpk, S),m, σ):

1: return σ ← ARS.Verify(mpk, S,m, σ)

– GOpen(gpk = (mpk, S),msk,m, σ):

1: pk← ARS.Open(msk, S,m, σ)
2: return k s.t. pk = pkk ∈ S or ⊥ otherwise

Note that the transformation only changes the formulation of the setup stage.
Thus, the security properties from ARS transfer directly to the induced group
signature scheme GSARS .

3 Openable OR-sigma protocol

In this section, we will introduce the openable sigma protocol, which is an inter-
mediate primitive toward group signatures and accountable ring signatures. We
will first give some intuition on how we formulate this primitive, and then give
a formal definition and construction from DDH-hard group actions.

3.1 Intuition

A typical construction of a Fiat-Shamir based signature starts from a sigma pro-
tocol. As introduced in Section 2.3, the three message protocol (com, ch, resp)
only requires special soundness, which is, informally speaking, weaker than the
unforgeability property in the sense that multiple transcripts are required in or-
der to break the underlying hardness. The forking lemma closes this gap with the
power of rewinding and random oracle programming. As stated in Section 2.4,
the lemma takes a forger that outputs a single forgery and gives an algorithm
that outputs multiple instances of valid (com, chj , respj)’s. This gives a transfor-
mation from a signature breaker to a witness extractor, bridging the two security
notions.

For our accountable ring signature, we thus plan to follow the previous
roadmap. We design a sigma protocol that supports an extra “opening” prop-
erty. Our openable sigma protocol takes n statements as input, and additionally
requires the prover to take a master public key mpk as input on generating the
first message com. The function Open, with the master secret key msk, can then
extract the actual statement to which the proving witness corresponds to. For a
com generated from statement (x1, . . . , xn) and witness wi with (xi, wi) ∈ R, we
have xi = Open(com,msk). As our target is a signature scheme, (xi, wi) would

12

be set to public key/secret key pairs, and thus the open function outputs the
signer’s identity.

To achieve the stronger security property of ARS after the Fiat-Shamir trans-
formation, our openable sigma protocol needs to have modified security prop-
erties correspondingly. For special soundness, we would not be satisfied with
extracting only “one of the witnesses,” instead we need to build an extractor
that extracts a witness which matches the opening result. Such a stronger ex-
tractor will allow us to extract secret keys from adversaries that can impersonate
other players. For honest verifier zero knowledge (HVZK), we require the tran-
script to be ZK even when given the master secret key msk. This is crucial for
proving that the impersonating attack cannot succeed even with a corrupted
manager. Note that when given msk, one cannot hope to hide the signer’s iden-
tity, so we only require ZK against the signer’s witness. The formulation for the
HVZK simulator thus takes the signer identity as input. Finally, we need an ex-
tra property to provide anonymity for the signer, which we named computational
witness indistinguishability (CWI). CWI requires that, given honest master key
pairs, the transcript generated from two different witnesses/identities should be
indistinguishable. This property is formulated as the indistinguishability of two
signing oracles.

3.2 Definition

An openable sigma protocol Σλ with security parameter λ is defined with re-
spect to two relations. A base relation (x, s) ∈ Rλ ⊂ X ×W , and an efficiently
samplable opening relation MKeygen(1λ) → (mpk,msk) ∈ Rλm. We will omit
the superscripts λ when there is no ambiguity. We also define the or-relation for
R. ({xi}i∈[n], s) ∈ Rn if and only if all xi are distinct and ∃i ∈ [n] s.t. (xi, s) ∈ R

The openable sigma protocol Σ contains the following four algorithms.

– Commit(xm, {xi}i∈[n], s) → (com, st) generates a commitment com based
on ({xi}i∈[n], s) ∈ Rn. Commit also generates a state st which is shared
with Resp and will be kept implicit for convenience.

– Resp(xm, {xi}i∈[n], s, com, ch, st) → resp computes a response resp relative

to a challenge ch
$←− C.

– Verify(xm, {xi}i∈[n], com, ch, resp)→ 1/0 verifies whether a tuple (com, ch, resp)
is valid. Verify outputs 1 if the verification passes and 0 otherwise.

– Open(sm, {xi}i∈[n], com) → x ∈ {xi}i∈[n] ∪ {⊥} reveals some (x, s) ∈ R,
where s is the witness used to generate the commitment com. It outputs
x =⊥ when the opening fails. (i.e. when com is malformed)

A (secure) openable OR sigma protocol should also satisfy the following prop-
erties.

13

Definition 7 (High min-entropy). An openable sigma protocol Σ is of high
min-entropy if the for any possible commitment com0

Pr[Commit(x)→ com = com0] ≤ negl(λ)

Definition 8 (Correctness). An openable sigma protocol Σ is correct if for
all n = poly(λ), (xm, sm) ∈ Rm, ({xi}i∈[n], s) ∈ Rn, ch ∈ C, and x ∈ {xi}i∈[n]
such that (x, s) ∈ R,

Pr

acc = 1 ∧ id = x :

com←Commit(xm,{xi}i∈[n],s),

resp←Resp(xm,{xi}i∈[n],s,com,ch),

acc←Verify({xm,{xi}i∈[n],com,ch,resp),

id←Open(sm,{xi}i∈[n],com)

 ≥ 1− negl(λ).

Definition 9 (µ-Special Soundness). An openable sigma protocol Σ is µ-
special sound if for all n = poly(λ) there exists an efficient extractor Ext such
that, for all (xm, sm) ∈ Rm and any ({xi}i∈[n], com, {chj}j∈[µ], {respj}j∈[µ]) such
that each chj ∈ C are distinct, then

Pr

[
(∀j∈[µ], accj=1)∧
(x=⊥∨(x,s)/∈R) :

∀j∈C, accj←Ver(xm,{xi}i∈[n],com,chj ,respj),

x←Open(sm,{xi}i∈[n],com),

s←Ext({xi}i∈[n],com,{chj}j∈[µ],{respj}j∈[µ])

]
= 0. (1)

Definition 10 (Statistical Honest Verifier Zero Knowledge / sHVZK).
An openable sigma protocol Σ is statistical HVZK if there exists an efficient
simulator Sim such that, for any xm ∈ Xm, any ({xi}i∈[n], s) ∈ Rn, and x ∈
{xi}i∈[n] such that (x, s) ∈ R,

Trans(xm, {xi}i∈[n], s) ≈s Sim(xm, {xi}i∈[n], x)

where Trans outputs honest transcript (com, ch, resp) generated honestly by Commit

and Resp with honestly sampled ch
$←− C.

Definition 11 (Computational Witness Indistinguishability / CWI).
An openable sigma protocol Σ is computational witness indistinguishable with
respect to an efficient instance generator MKeygen(1λ) → (mpk,msk) ∈ Rm,
if for any two (xi, si), (xj , sj) ∈ R and any efficient adversary A, with mpk•(ν)
returning mpkν ←MKeygen for each ν, we have∣∣∣Pr
[
1← ATrans∗(mpk•,•,si),mpk•(x)

]
− Pr

[
1← ATrans∗(mpk•,•,sj),mpk•(x)

]∣∣∣ ≤ negl(λ)

where Trans∗(mpkν , S, sk) for whichever k ∈ {i, j} returns an honest transcript
(com, ch, resp) tuple from Σ if both xi, xj ∈ S and aborts otherwise.

3.3 Construction

Here, we give our construction to an openable or sigma protocol ΣGA,λ for
relations from our DDH-secure group action GAλ = (G, E). We let E ∈ E be some

14

fixed element in E . When implemented with CSIDH, we can choose the curve
E0 : y2 = x3 + x for simplicity. Let the relation RE = {(aE, a)|a ∈ G} ⊂ E ×G.

For our ΣGA, we define its opening relation Rm = RE , with the natural

instance generator MKeygen(1λ) that samples a
$←− G and outputs (aE, a).

The base relation is also set to RE . For inputs Em ∈ E and ({Ei}i∈[n], s) ∈ Rn
with any n = poly(λ), the algorithms for ΣGA are constructed as follow.

– Commit(Em, {Ei}i∈[n], s)
1: set k ∈ [n] s.t. (Ek, s) ∈ R.

2: {∆i}i∈[n], {∆′i}i∈[n], b
$←− G

3: τ
$←− sym(n) {τ is a random permutation}

4: ∀i ∈ [n] : Eαi := ∆iEi
5: ∀i ∈ [n] : Eβi := ∆′iE

α
i = ∆i∆

′
iEi

6: ∀i ∈ [n] : Eγi := bEβi = ∆i∆
′
ibEi

7: EOpen := ∆k∆
′
ksEm

8: ECheck := ∆k∆
′
kbsEm = bEOpen

9: st = ({∆i}i∈[n], {∆′i}i∈[n], b, l = ∆k∆
′
kbs)

10: return (com, st) = (({Eαi }i∈[n], {E
β
i }i∈[n], τ({Eγi }i∈[n]), EOpen, ECheck), st)

{We use τ(•) as a lazy convention of sending a permuted list}
– Resp(Em, {Ei}i∈[n], s, com, ch, st):

1: if ch = 1 then
2: return resp := {∆i}i∈[n]
3: if ch = 2 then
4: return resp := {∆′i}i∈[n]
5: if ch = 3 then
6: return resp := b
7: if ch = 4 then
8: return resp := l = ∆k∆

′
kbs

– Verify(Em, {Ei}i∈[n], com, ch, resp):

1: return 0 if {Ei}i∈[n] or {Eβi }i∈[n] are not all distinct
2: if ch = 1 then
3: check ∀i ∈ [n] : Eαi = ∆iEi
4: if ch = 2 then
5: check ∀i ∈ [n] : ∆′iE

α
i = Eβi

6: if ch = 3 then
7: check ∃τ ′ ∈ sym(n) s.t. τ ′({bEβi }i∈[n]) = τ({Eγi }i∈[n])
8: check ECheck = bEOpen

9: if ch = 4 then
10: check ECheck = lEm
11: check ∃Eγ ∈ τ({Eγi }i∈[n]) s.t. Eγ = lE
12: return 1 if all checks pass

– Open(sm := msk, {Ei}i∈[n] := {pki}i∈[n], com):

1: for i ∈ [n] do

15

2: if smE
β
i = EOpen then

3: return Ei
4: return ⊥

The construction of our openable sigma protocol looks complicated, but the
intuition is simple. The core section of the message com is (Eβ , EOpen), which
allows opening. The other parts of com are to ensure that the opening section is
honestly generated. Eα along with the challenge/response pair on ch = 1, 2 al-
lows extraction for ∆i∆

′
i’s, ensuring that Eβ is honestly generated. (Eγ , ECheck)

along with the challenge/response pair on ch = 3, 4 verifies the relation between
Eβ and EOpen. By using a permuted Eγ , the CWI property is preserved through
such a verification process. Combined together, we complete the proof of knowl-
edge protocol.

Theorem 1. ΣGA is an openable sigma protocol with RE being both the opening
relation and the base relation

3.4 Security

The proof for Theorem 1 is broken down into proving each of the required prop-
erties.

Lemma 1. ΣGA is correct

Proof. By the definition of Commit and Verify, any honestly generated (com, ch, resp)

based on ({Ei}i∈[n], s) ∈ Rn will be accepted as long as the set {Eβi }i∈[n] is
pairwise distinct. Since GA is free and transitive, there is a unique g ∈ G s.t.
gEi = Ej . Thus, Eβi = Eβj if and only if (∆j∆

′
j)
−1∆i∆

′
i = g, which happens with

negligible probability since all ∆’s are honestly sampled. Hence with probability
1− n · negl(λ), the set {Eβi }i∈[n] are all distinct, and hence Verify accepts.

For the function Open, note that if (Em, sm) ∈ Rm and (Ek, s) ∈ R, then

EOpen = ∆k∆
′
ksEm = ∆k∆

′
kssmE, hence smE

β
k = EOpen. As argued previously,

{Eβi }i∈[n] are all distinct with probability 1− negl(λ), and k would be unique if
this is the case. Thus the probability that Open outputs Ek is overwhelming,
concluding the proof that ΣGA is correct.

Lemma 2. ΣGA is 4-special sound

Proof. For any Em ∈ E and any ({Ei}i∈[n], com, {respj}j∈C) where

com = ({Eαi }i∈[n], {E
β
i }i∈[n], σ({Eγi }i∈[n]), and {respj}j∈[4] = ({∆i}i∈[n], {∆′i}i∈[n], b, l).

16

Suppose that ∀j ∈ [4], 1← Ver(Em, {Ei}i∈[n], com, j, respj), then by the defini-
tion of Verify, we can get the following equations:

{Ei}i∈[n], {Eβi }i∈[n] are both pairwise distinct sets

∀i ∈ [n] : Eαi = ∆iEi, E
β
i = ∆′iE

α
i

∃τ ′ ∈ sym(n) s.t. τ ′({bEβi }i∈[n]) = τ({Eγi }i∈[n])
∃Eγ ∈ τ({Eγi }i∈[n]) s.t. Eγ = lE

ECheck = lEm = bEOpen

Thus, there exists a unique k ∈ [n] such that lE = bEβk = ∆′kbE
α
k =

∆k∆
′
kbEk, which means l(∆k∆

′
kb)
−1E = Ek. This implies that (Ek, l(∆k∆

′
kb)
−1) ∈

RE . Furthermore, we also have EOpen = b−1lEm = smb
−1lE = smE

β
k . This im-

plies that Ek ← Open(sm, {Ei}i∈[n], com). Thus Open does not output⊥. From
these observations, we can easily construct the extractor Ext(com, {respj}j∈C),
which simply searches through k ∈ [n] for k satisfying lE = bEβk , then output
s = l(∆k∆

′
kb)
−1. This concludes the proof that ΣGA is 4-special sound.

Lemma 3. ΣGA is statistically honest verifier zero-knowledge.

Proof. The construction of Sim is given in the following algorithm. We will show
that Sim is in fact a perfect simulator for Trans.

Sim(Em, {Ei}i∈[n], Ek)

1: ch
$←− {1, 2, 3, 4}

2: b
$←− G, τ

$←− sym(n)
3: if ch = 1 then
4: {∆i}i∈[n], {Di}i∈[n]

$←− G
5: ∀i ∈ [n] : Eαi := ∆iEi
6: ∀i ∈ [n] : Eβi := ∆iDiE
7: EOpen := ∆kDkEm
8: else if ch = 2, 3, 4 then

9: {Di}i∈[n], {∆′i}i∈[n]
$←− G

10: ∀i ∈ [n] : Eαi := DiE

11: ∀i ∈ [n] : Eβi := ∆′iE
α
i

12: EOpen := Dk∆
′
kEm

13: ∀i ∈ [n] : Eγi := bEβi
14: if ch = 1, 2, 3 then
15: ECheck := bEOpen

16: else if ch = 4 then
17: l := ∆kDkb
18: ECheck

km := lEm
19: return (com, ch, resp) with the

same definition as honest Commit
and Resp

Since GA is free and transitive, for every Ei ∈ E , there exists a unique
si ∈ G s.t. siE = Ei. In Sim1, we can thus set ∆′i = Dis

−1
i in case ch = 1

and ∆i = Dis
−1
i in case ch = 2, 3, 4. Since the distribution of Dis

−1
i is uniformly

random, Sim generates identical distributions for ∆’s as Trans. Thus the output
distribution of Sim should also be identical to the real transcript. Checking that
verification passes for all cases shows that Sim is a perfect simulator.

17

Lemma 4. ΣGA is computational witness indistinguishable with respect to the
natural instance generator MKeygen, (assuming DDHAP is hard for GA).

Here we will finally use the fact that GA is DDH-hard. We will prove this
theorem through two hybrids. We highlight the changes between Trans and
Hyb1 and between Hyb1 and Hyb2 with different colors for easier comparison.

Lemma 5. For any efficient adversary A with mpk•(ν) generating mpkν from
(mpkν ,mskν)←MKeygen(1λ) for each ν, regardless of s ∈ Gλ, we have∣∣∣Pr

[
1← ATrans(mpk•,•,s),mpk•(x)

]
− Pr

[
1← AHyb1(mpk•,•,s),mpk•(x)

]∣∣∣ ≤ negl(λ) ,

where Hyb1 is as specified below.

Hyb1(Em, {Ei}i∈[n], s)

1: ch
$←− {1, 2, 3, 4}

2: set k ∈ [n] s.t. (Ek, s) ∈ R.

3: {∆i}i∈[n], {∆′i}i∈[n], b
$←− G

4: τ
$←− sym(n)

5: ∀i ∈ [n] : Eαi = ∆iEi, E
β
i = ∆′iE

α
i

6: ∀i ∈ [n] : Eγi = bEβi

7: r
$←− G, EOpen = rE

8: if ch = 1, 2, 3 then
9: ECheck = bEOpen

10: else if ch = 4 then
11: l = ∆k∆

′
kbs, E

Check = lEm
12: set resp honestly w.r.t ch
13: return (com, ch, resp)

Proof. Each query input of Trans and Hyb1 is of form (Em, {Ei}i∈[n], s) where
({Ei}i∈[n], s) ∈ Rn and Em is the curve correspoinding to the random master
public key. We first note that the difference between honest transcript Trans
and Hyb1 is that Hyb1 replaces honest EOpen with rE for a random r ∈ G. For
ch 6= 4, ECheck is also replaced accordingly to EOpen.

We will prove the indistinguishability of (com, ch, resp)← Trans and (com′, ch′, resp′)←
Hyb1 for each different challenge ch ∈ C separately. In the following proof, we
set k s.t. (Ek, s) ∈ R, as in both Trans and Hyb1

For ch′ = 1, we have resp′ = {∆i}i∈[n], which is honestly generated and thus
identical to Trans. We thus focus on the com′ part.

By the hardness of P-DDHAP, for random ∆′k, r
$←− G, we have

(Em, ∆
′
kE,∆

′
kEm) ≈c (Em, ∆

′
kE, rE)

18

Hence, for random ∆k, ∆
′
k, b, r

$←− G and honestly generated (Em, E
β
k , E

γ
k , E

Open,
ECheck), we have

(Em, E
β
k , E

γ
k , E

Open, ECheck)

=(Em, ∆ks(∆
′
kE), ∆kbs(∆

′
kE), ∆ks(∆

′
kEm), ∆kbs(∆

′
kEm))

≈c(Em, ∆ks(∆
′
kE), ∆kbs(∆

′
kE), ∆ks(rE), ∆kbs(rE))

=(Em, E
β
k , E

γ
k , r
′E, br′E)

Where LHS is the output com from Trans, restricted to the variables dependent
on sm or ∆′k. RHS is the corresponding partial output from Hyb1. As the
remaining parts of Trans and Hyb1 are equivalent, this equation shows that
the output distributions of Trans and Hyb1 are indistinguishable for ch = 1.

For the case ch = 2, 3, the indistinguishability can be proved in a simi-

lar fashion. Notice again that for random ∆k, r
$←− G, (Em, ∆kE,∆kEm) ≈c

(Em, ∆kE, rE). Thus for random ∆k, ∆
′
k, b, r

$←− G

(Em, E
α
k , E

β
k , E

γ
k , E

Open, ECheck)

=(Em, s(∆kE), ∆′ks(∆kE), ∆′kbs(∆kE), ∆′ks(∆kEm), ∆′kbs(∆kEm))

≈c(Em, s(∆kE), ∆′ks(∆kE), ∆′kbs(∆kE), ∆′ks(rE), ∆′kbs(rE))

=(Em, E
α
k , E

β
k , E

γ
k , r
′E, br′E)

For the case ch = 4, we would need a slight change. First we recall the fact
that, since GA is free and transitive, for every Ei there exists a unique si ∈ G
s.t. siE = Ei. Thus, sampling {Di}i∈[n], b

$←− G and letting ∆′i = (bsi)
−1Di gives

us a uniformly distributed {∆′i}i∈[n].

Now, again from P-DDHAP, for random b, r
$←− G,

(Em, b
−1E, b−1Em) ≈c (Em, b

−1E, rE)

Thus, for random {∆i}i∈[n], {Di}i∈[n], b, r
$←− G where Di = ∆′ibsi, we have

(Em, {Eαi }i∈[n], {E
β
i }i∈[n], {E

γ
i }i∈[n], E

Open, ECheck, l)

=(Em, {∆iEi}i∈[n], {∆i∆
′
iEi}i∈[n], {∆i∆

′
ibEi}i∈[n], ∆k∆

′
kskEm, ∆k∆

′
kbskEm, ∆k∆

′
kbsk)

=(Em, {∆iEi}i∈[n], {∆iDi(b
−1E)}i∈[n], {∆iDiE}i∈[n], ∆kDk(b−1Em), ∆kDkEm, ∆kDk)

≈c(Em, {∆iEi}i∈[n], {∆iDi(b
−1E)}i∈[n], {∆iDiE}i∈[n], ∆kDk(rE), ∆kDkEm, ∆kDk)

=(Em, {Eαi }i∈[n], {E
β
i }i∈[n], {E

γ
i }i∈[n], r

′E,ECheck, l)

Finally, since both ch and ch′ are sampled randomly in {1, 2, 3, 4}, we can
conclude that Trans and Hyb1 are computationally indistinguishable.

19

Lemma 6. For any efficient adversary A with mpk•(ν) generating mpkν from
(mpkν ,mskν)←MKeygen(1λ) for each ν, regardless of s ∈ Gλ, we have∣∣∣Pr
[
1← AHyb1(mpk•,•,s),mpk•(x)

]
− Pr

[
1← AHyb2(mpk•,•,s),mpk•(x)

]∣∣∣ ≤ negl(λ) ,

where Hyb2 is as defined below.

Hyb2(Em, {Ei}i∈[n], s)

1: ch
$←− {1, 2, 3, 4}

2: set k ∈ [n] s.t. (Ek, s) ∈ R.

3: {∆i}i∈[n], {∆′i}i∈[n], b
$←− G

4: τ
$←− sym(n)

5: ∀i ∈ [n] : Eαi = ∆iEi, E
β
i = ∆′iE

α
i

6: r
$←− G, EOpen = rE

7: if ch = 1, 2, 3 then
8: ECheck = bEOpen

9: ∀i ∈ [n] : Eγi = bEβi
10: else if ch = 4 then
11: ∀i ∈ [n] : ri

$←− G,Eγi = riE
12: l = rk, ECheck = lEm
13: set resp honestly w.r.t ch
14: return (com, ch, resp)

Proof. The hybrids Hyb1 and Hyb2 differ only in the case ch = 4, in which we
replace the whole Eγ with random curves, ECheck and l are also changed corre-

spondingly. As in the previous proof, we use the fact that sampling {Di}i∈[n], b
$←−

G and letting ∆′i = (bsi)
−1Di gives us uniformly random ({∆′i}i∈[n], b)

By P-DDHAP, for random b, {Di}i∈[n]\{k}, {ri}i∈[n]\{k},

(b−1E, {DiE}i∈[n]\{k}, {Dib
−1E}i∈[n]\{k})

≈c(b−1E, {riE}i∈[n]\{k}, {Dib
−1E}i∈[n]\{k})

For simplicity, we let S = [n]\{k}. Now, for random {∆i}i∈[n], {Di}i∈[n], b, {ri}i∈S
where Di = ∆′ibsi, and (Em, {Eαi }i∈[n], {E

β
i }i∈S , {E

γ
i }i∈S , E

β
k , E

γ
k , E

Check, l) are
the elements output from Hyb1, we have

(Em, {Eαi }i∈[n], {E
β
i }i∈S , {E

γ
i }i∈S , E

β
k , E

γ
k , E

Check, l)

=(Em, {∆iEi}i∈[n], {∆i(Dib
−1E)}i∈S , {∆i(DiE)}i∈S , ∆kDk(b−1E),

∆kDkE,∆kDkEm, ∆kDk)

≈c(Em, {∆iEi}i∈[n], {∆i(Dib
−1E)}i∈S , {∆i(riE)}i∈S , ∆kDk(b−1E),

∆kDkE,∆kDkEm, ∆kDk)

=(Em, {Eαi }i∈[n], {E
β
i }i∈S , {r

′
iEi}i∈S , E

β
k , E

γ
k , E

Check, l)

20

Finally we let r′k = ∆kDk, which is obviously independent from all other r′i,

then (Eβk , E
γ
k , E

Check, l) = (r′kb
−1E, r′kE, r

′
kEm, r

′
k). Note that r′kb

−1 gives fresh
randomness since b is now independent from all other elements in RHS. Thus
RHS perfectly fits the distribution for Hyb2. This concludes that Hyb1 and
Hyb2 are computationally indistinguishable.

Lemma 7. For any Em ∈ Xm, {Ei}i∈[n] ∈ Xn, and sk0 , sk1 s.t. both ({Ei}i∈[n], sk0),
({Ei}i∈[n], sk1) ∈ Rn then

Hyb2(Em, {Ei}i∈[n], sk0) = Hyb2(Em, {Ei}i∈[n], sk1)

Proof. We always have Hyb2(Em, {Ei}i∈[n], sk0) = Hyb2(Em, {Ei}i∈[n], sk1)
for ch = 1, 2, 3, as every elements in the output is generated independently
from k. For ch = 4, we can give a deeper look on elements in (com, resp) =
(Eα, Eβ , Eγ , EOpen, ECheck, l). The part (Eα, Eβ , EOpen) is generated indepen-
dent from k, and the part (Eγ , ECheck, l) is of the form (τ({riE}i∈[n]), rkEm, rk).
Since τ is a random permutation and ri’s are independent randomness, the two
distributions (τ({riE}i∈[n]), rk0Em, rk0) and (τ({riE}i∈[n]), rk1Em, rk1) are ob-
viously identical. Hence Hyb2(Em, {Ei}i∈[n], sk0) = Hyb2(Em, {Ei}i∈[n], sk1).

Finally, by combining Lemma 5, Lemma 6, and Lemma 7, we conclude that
for any efficient adversary A with mpk• and Trans∗ defined as usual, and any
si, sj ∈ Gλ, we have∣∣∣Pr
[
1← ATrans∗(mpk•,•,si),mpk•(x)

]
− Pr

[
1← ATrans∗(mpk•,•,sj),mpk•(x)

]∣∣∣ ≤ negl(λ) ,

by restricting the query inputs (Em, {Ei}i∈[n], sk) to those ({Ei}i∈[n], si), ({Ei}i∈[n], sj) ∈
Rn for whichever k ∈ {i, j}. This concludes the proof of Lemma 4, and thus ΣGA
is indeed an openable sigma protocol.

4 Constructing accountable ring signatures

In this section, we will show how to obtain an accountable ring signature scheme
from our openable sigma protocol. The construction can be decomposed into two
parts. We first take multiple parallel repetitions to the protocol for soundness
amplification, then we apply the Fiat-Shamir transformation on the parallelized
protocol to obtain the full construction. One subtle issue is that since every
sigma protocol in the parallel repetition is generated independently, each parallel
session of the transcript may open to a different party. Hence, we need an opening
function for the parallelized protocol which returns the majority output over the
opening results of the parallel sessions.

21

4.1 Construction

More generally, we are going to construct our ARS scheme ARSΣ by performing
Fiat-Shamir transformed to the protocol Σ⊗t where the number of repetitions t
is determined on-the-fly. Let IGλ and MIGλ be some hard instance generator of Σ
for the base and opening relations respectively, with the validity of the instances
being publicly verifiable. The construction of ARSΣ is detailed as follows.

Remark 2. This can later be instantiated to ARSGA := ARSΣGA,λ by choosing
Σ := ΣGA,λ to be our previously constructed protocol over the group action
GAλ = (Gλ, Eλ), and t := 2λn for n members. In our construction of ΣGA,
the opening relation and the base relation are both set to RE . Thus, when
transformed to an ARS scheme, we can have an identical generator for master
key pairs and party key pairs, and identical key spaces KPm = RE = KP, where
IGλ and MIGλ generate sE for some randomly sampled s← Gλ.

– MKeygen(1λ):

1: return (mpk,msk)← MIGλ
– Keygen(1λ):

1: return (pk, sk)← IGλ
– Sign(mpk, S,m, sk)

1: decide t according to instantiation
2: ∀j ∈ [t], (comj , stj)← ΣGA.Commit(mpk, S, sk)
3: (ch1, . . . , cht)← H(com1, . . . , comt,m)
4: ∀j ∈ [t], respj ← Σ.Resp(mpk, S, sk, comj , chj , stj)
5: return σ = (com, resp) := ((com1, . . . , comt), (resp1, . . . , respt))

– Verify(mpk, S,m, σ):

1: t = 2λ|S|
2: parse σ = (com, resp)
3: ch := H(com,m)
4: check ∀j ∈ [t] : 1← Σ.Verify(mpk, {pki}i∈[n], comj , chj , respj)
5: return 1 if all checks pass

– Open(msk, S,m, σ):

1: decide t according to instantiation
2: parse σ = (com, ch, resp)
3: ∀j ∈ [t], outj ← Σ.Open(msk, S, comi)
4: pk = Maj({outj}j∈[t]) {Maj outputs the majority element from its input

list. In case of ties, it outputs a random choice of the majority elements.}
5: return pk

Theorem 2. Let Σ be a secure openable sigma protocol being O(1)-special sound.
Then, the derived ARSΣ is secure by setting the number of repetitions t :=
Θ(nλ) for n members. If Σ is furthermore perfect-unique-response, then ARSΣ
is QROM-secure.

22

Proof. See Section 4.2 for the proof. This is concluded directly from Theorem 3.

From Section 3.4 we know that ΣGA is a secure openable sigma protocol
being 4-special sound, and by applying the transformation from Section 2.6, we
immediately get the following corollaries.

Corollary 1. ARSGA is a QROM-secure ARS scheme, if DDHAP is hard.

Corollary 2. GSARSGA is a QROM-secure GS scheme, if DDHAP is hard.

This completes our construction of both an accountable ring signature scheme
and a group signature scheme.

Remark 3. One additional benefit of using class group action as the key relation
is that honest public keys can be efficiently verified. As discussed in Section 2.1,
any Ei ∈ E``p(O, πp) is a valid public key since the group action is transitive,
and furthermore any Ei /∈ E``p(O, πp) can be efficiently detected. This prevents
the possibility of malformed master key or malformed public keys, which is a
potential attacking interface of an ARS scheme.

4.2 Security

For the proof of Theorem 2 we again break down the theorem into proving each
security property. For proving the unforgeability, we first consider the classical
ROM only. Then, by the same spirit but swapping to a more involved secret key
extraction, we obtain the unforgeability in QROM.

Lemma 8. Let Σ be a secure openable sigma protocol, then ARSΣ is correct.

Proof. For any master key pair (mpk,msk) ∈ KPm, any key pair (pk, sk) ∈ KP,
and any set of public keys S such that pk ∈ S, we directly have (mpk,msk) ∈ Rm
and (S, sk) ∈ Rn where n = |S|. Let σ ← Sign(mpk, S,m, sk) be an honest signa-
ture on message m and ring S. Notice that in an honest execution of Sign, each
comj and respj is honestly generated according to Σ. Thus by the correctness of
Σ, we know for ch := H(com,m) and every j ∈ [t] with probability 1− negl(λ),
that 1 ← Σ.Verify(mpk, S, comj , chj , respj) and pk ← Σ.Open(mpk, S, comj).
Hence we directly obtain that, with probability 1 − t · negl(λ) = 1 − negl(λ),
we have that 1 ← Verify(mpk, S,m, σ) and pk ← Open(msk, S,m, σ). This
concludes the proof that ARSΣ is correct.

Lemma 9. Let Σ be a secure openable sigma protocol, then ARSΣ is anony-
mous in ROM.

23

Proof. The anonymity of ARSΣ follows immediately from the CWI property of
Σ. For any adversary A with at most Q queries to the random oracle, it can have
at most Q/|H| = negl(λ) advantage on distinguishing Sign∗ and (Trans∗)t. And
by CWI from Σ, we have Trans∗(mpk, S, skid0) ≈c Trans∗(mpk, S, skid1). Hence
we can directly conclude that Sign∗(mpk, S, skid0) ≈c Sign∗(mpk, S, skid1), which
proves that ARSΣ is anonymous.

Lemma 10. Let Σ be a secure openable sigma protocol being O(1)-special sound,
with the instance relations being hard (to extract a witness), then by setting the
number of parallel repetitions to t = Θ(nλ), where n is the number of members,
ARSΣ is unforgeable in the classical ROM.

We refer readers to E.2 for the proof.

4.3 QROM security

To start off, we show the anonymity first.

Lemma 11. Let Σ be an openable sigma protocol that is of high min-entropy
and computationally unique response. Then ARSΣ is anonymous in QROM.

Proof. Let A be any efficient adversary trying to distinguish the signing oracles
Sign∗(mpk•, •, •, skk) for whichever k ∈ {i, j} with additional access to QRO
H and mpk•. A can be simulated by A2, if further given the power to access
both the QRO H and the augmented signing oracle Sign∗2(mpk•, ·, ·, skk), which
returns the entire transcript (com, ch, resp) used within the underlying sigma
protocol.

We try to simulate A2 via another efficient adversary A3 in order to dis-
tinguish the signing oracles, but without access to H. Instead, B will need to
simulate the oracle locally, via Zhandry’s compressed oracle technique.

– BSign∗2(mpk•,•,skk)(x):

1: while A2 not terminated yet do
2: if the next step of A2 is local computation then
3: simulate the local computation
4: else if the next step of A2 queries QRO H then
5: queries H similarly
6: else
7: {the next step of A2 queries Sign∗2(mpkν , S,m, skk)}
8: queries (com, ch, resp)← Sign∗2(mpkν , S,m, skk)
9: program H(mpkν ,m, S, com) := ch

10: send back (com, ch, resp) to the simulation
11: return the output of A2

24

To help us argue that A
Sign∗2(mpk•,•,•,skk),H
2 ≈ BSign∗2(mpk•,•,•,skk), where we use

“≈” as a short-hand notation for computational indistinguishability, we derive
a distinguisher D against the adaptive reprogramming games REPROb as in [24,
Fig. 2].

– DREPROGRAM(ski, skj):

1: while A2 not terminated yet do
2: if the next step of A2 is local computation then
3: simulate the local computation
4: else if the next step of A2 queries QRO H then
5: queries H similarly
6: else
7: {the next step of A2 queries Sign∗2(mpkν , S,m, skk)}
8: let p be the distribution of generating fixed x′ := (mpkν , S,m) and

the transcript (com, ch, resp)← Sign∗2(mpkν , S,m, skk)
9: (x, x′)← REPROGRAM(p)

10: parse x =: (com, ch, resp)
11: send back (com, ch, resp) to the simulation
12: return the output of A

Where the terms are as specified in [24]. The output distribution of REPROD
0 and

REPROD
1 are identical to A2 and B respectively. And by the high min-entropy,

the distribution p in each query is of high marginal entropy on the variable x.
Thus, as in [24, Theorem 1], we have

A
Sign∗2(mpk•,•,•,skk),H
2 ≈ REPROD

0 ≈ REPROD
1 ≈ BSign∗2(mpk•,•,•,skk)

Next, we simulate B by itself, but instead given access to Trans∗(mpk•, •, skk).
We note the difference between a signing oracle and a transcript oracle is that,
the former generate the same challenge if the corresponding (mpkν ,m, S, com) is
the same, but since com is of high min-entropy, this happens with only negligible
probability.

BSign∗2(mpk•,•,•,skk) ≈ BTrans∗(mpk•,•,skk) .

Then, by the computational witness indistinguishability,

BTrans∗(mpk•,•,ski) ≈ BTrans∗(mpk•,•,skj) .

Putting things together, the proof is concluded

ASign∗(mpk•,•,•,ski),H ≈ ASign∗2(mpk•,•,•,ski),H
2 ≈ BSign∗2(mpk•,•,•,ski) ≈ BTrans∗(mpk•,•,ski)

≈ BTrans∗(mpk•,•,skj) ≈ BSign∗2(mpk•,•,•,skj) ≈ ASign∗2(mpk•,•,•,skj),H
2 ≈ ASign∗(mpk•,•,•,skj),H .

25

The key to lifting Lemma 10 into QROM, is a quantum extraction technique.
The classical forking lemma, which measures out part of the transcript before
rewinding, may ruin the internal quantum state of the adversary, and therefore
does not trivially apply to the quantum setting.

Note that our underlying openable sigma protocol satisfies the crucial perfect
unique response property. This enables us to adopt the measure-and-reprogram
technique in [18]. Let ARSΣ be the ARS produced by performing the Fiat-
Shamir transform to an underlying openable sigma protocol Σ with t-repetitions.
The overall reasoning goes as follows:

– Similar to the proof of Lemma 10, the signing oracle can be efficiently sim-
ulated by the adversary, and thus does not help forging a signature.

– As will be explained in Lemma 13, any adversary forging an ARS can be
transformed into an adversary against the soundness of the t-repetition pro-
tocol Σ⊗t.

– Applying generalized Unruh’s rewinding, such adversary can then be used
to extract the secret key of an incriminated honest member.

For the sake of analysis, we then derive the sigma protocols Σ⊗tk one for each
k ∈ [n] ∪ {⊥} as in Definition 12. This is in order to capture the target k whom
the adversary is going to incriminate. Indeed, the unforgeability of ARSΣ as
an ARS reduces to the simultaneous unforgeability across {FS[Σ⊗tk]}k∈[n]∪{⊥}.
From there, the unforgeability of each FS[Σ⊗tk] against chosen-message attacks
is reduced to the one against no-message attacks via standard results.

Definition 12. Let Σ⊗t be a t-repetition openable sigma protocol, with t deter-
mined on-the-fly. For each k ∈ [n] ∪ {⊥}, the k-th sub-protocol Σ⊗tk consists of
the following components.

– Σ⊗tk .Commit(x, sk) :

1: parse x =:
(
xk, {xi, si}i∈[n]\{k}, aug

)
2: parse aug =: (xm, sm, S)
3: return com, st← Σ⊗t.Commit(xm, S, sk)

– ch← Σ⊗t.C
– Σ⊗tk .Resp(x, sk, com, ch, st) :

1: return resp← Σ⊗t.Resp(xm, S, sk, com, ch, st)

– Σ⊗tk .Verify(x, com, ch, resp):

1: check 1← Σ⊗t.Verify(xm, S, sk, com, ch, resp)
2: check xk ← Σ⊗t.Open(sm, S, com)
{We take convention that x⊥ := ⊥.}

3: return 1 if all check pass

The corresponding non-interactivization FS∗[Σ⊗tk] is defined as in Appendix B,
where we also explicitly spell out here.

26

– FS∗[Σ⊗tk].Keygen(1λ):

1: ∀i ∈ [n] : (pki, ski)← FS[Σ⊗t].Keygen(1λ)
2: pk := ({pki, ski}i∈[n]\{k}, pkk)
3: return (pk, skk)
{We take convention that (pk⊥, sk⊥) := (⊥,⊥)}

– FS∗[Σ⊗tk].Sign(pk, aug,m, skk):

1: parse aug =: (mpk,msk, S)
2: x :=

(
pkk, {pki, ski}i∈[n]\{k}, aug

)
3: (com, st) := Σ⊗tk .Commit(x, skk)
4: ch := H(m, com)
5: resp := Σ⊗tk .Resp(x, skk, com, ch, st)
6: return σ := (com, resp, aug)

– FS∗[Σ⊗tk].Verify(pk,m, σ):

1: parse σ =: (com, resp, aug)
2: x :=

(
pkk, {pki, ski}i∈[n]\{k}, aug

)
3: aug =: (mpk,msk, S)
4: check mpk ∼ msk
5: 1← Σ⊗tk .Verify(x, com, ch, resp)
6: return 1 if all check pass

Corollary 3. FS∗[Σ⊗tk] can be equivalently defined as follows.

– FS∗[Σ⊗tk].Keygen(1λ):

1: ∀i ∈ [n] : (pki, ski)← ARSΣ .Keygen(1λ)
2: (mpk,msk)← ARSΣ .MKeygen(1λ)
3: pk := (pkk, {pki, ski}i∈[n]\{k})
4: return (pk, skk)
{We take convention that (pk⊥, sk⊥) := (⊥,⊥)}

– FS∗[Σ⊗tk].Sign(pk, aug,m, skk):

parse pk =: (pkk, {pki, ski}i∈[n]\{k})
parse aug =: (mpk,msk, S)
return σ ← ARSΣ .Sign(mpk, S,m, skk)

– FS∗[Σ⊗tk].Verify(pk,m, σ):

parse σ =: (com, resp, aug)
parse aug =: (mpk,msk, S)
parse pk =: (pkk, {pki, ski}i∈[n]\{k})
σ′ := (com, resp)
check mpk ∼ msk
check 1← ARSΣ .Verify(mpk, S,m, skk)
check pkk ← ARSΣ .Open(msk, S,m, σ′)
return 1 if all check pass

Lemma 12. Let Σ be an openable sigma protocol. Consider any efficient ad-
versary A against FS∗[Σ⊗t]. There exists efficient adversaries Ak, one for each

27

k ∈ [n] \ {⊥}, against FS∗[Σ⊗tk] such that

Pr
[
A wins GUF

A,n

]
≤

∑
k∈[n]∪{⊥}

AdvsUF−CMA

FS∗[Σ⊗tk]
(Ak) ,

where the advantage is as defined in Appendix B.

Corollary 4. Let Σ be an openable sigma protocol being perfect HVZK, perfect-
unique-response, and having high min-entropy (as defined in [26, Definition 2.6].
Consider any efficient adversary A against ARSΣ. There exists efficient adver-
saries Ak, one for each k ∈ [n] \ {⊥}, against FS∗[Σ⊗tk] such that

Pr
[
A wins GUF

A,n

]
≤

∑
k∈[n]∪{⊥}

AdvUF−NMA

FS[Σ⊗tk]
(Ak) + negl ,

where the advantage is as defined in Appendix B.

Proof. This is obtained by applying Theorem 4 to the bound in Lemma 12.

Proof of Lemma 12. We note in each respective unforgeability game, A is given
access to the ARS signing oracle ARSΣ .Sign(•, •, •, ski) for arbitrary i ∈ [n],
while each Ak is given FS∗[Σ⊗tk].Sign(pk, •, •, skk) ≈ ARSΣ .Sign(•, •, •, skk)
due to Corollary 3. For queries where i 6= k, Ak simulates the oracle on its own,
since the secret key ski is already given as input. We thus define Ak as follows.

– A
FS∗[Σ⊗tk].Sign(pk,•,•,skk)
k (pk,m):

1: parse pk =: (mpk,msk, {pki, ski}i∈[n]\{k}, pkk)
2: while A not terminated do
3: if the next step of A is local computation then
4: simulate the local computation
5: else if the next step of A queries H then
6: queries H the same way
7: else if the next step of A queries Cor(pki) for some i ∈ [n] then
8: if i = k then
9: abort

10: else
11: send back ski as the query output
12: else
13: {the next step queries ARSΣ .Sign(mpk, S,m, ski) for some i ∈ [n]}
14: if i = k then
15: aug := (mpk,msk, S)
16: query FS∗[Σ⊗tk].Sign(pk, aug,m, skk) and send back the outcome
17: else
18: compute the query ARSΣ .Sign(mpk, S,m, ski) on its own

28

Consider, within the simulation of Ak, in case of any successful forgery by A,
the produced signature σ∗ must open to some pkk for k ∈ [n] ∪ {⊥}, taking
the convention that pk⊥ := ⊥. Furthermore, if σ∗ is opened to pkk, then the
simulated A must not query Cor(pkk) thus Ak would not abort and will make a
successful forgery against FS∗[Σ⊗tk]. By union bound, this concludes the proof.

Lemma 13. Let Σ be a perfect-unique-response sigma protocol with a super-
polynomially large challenge space. For any k ∈ [n]∪{⊥}, consider any efficient
adversary Ak against FS∗[Σ⊗tk]. There exists efficient adversaries Bk against
Σ⊗tk such that

Ω

AdvUF−NMA

FS∗[Σ⊗tk]
(Ak)

q2

− negl ≤ Pr

out = 1

∣∣∣∣∣∣
(pk,skk)←Σ⊗tk .Keygen(1λ)

(com,|st〉)←Bk.Commit(x,sk)

ch←Σ⊗tk .C ; resp←Bk.Resp(ch,|st〉)
out←Σ⊗tk .Verify(x,com,ch,resp)

 ,

where the right-hand side will be written as the soundness advantage Advsound
Σ⊗tk

(Bk).

Proof. We adopt the generic (measure-and-reprogram) transformation in [18,
Section 3.3] onto Ak as follows. Suppose A in total has q quantum queries to
the random oracle H. The algorithm Bk simulates H by itself via Zhandry’s
compressed oracle technique.

– Bk.Commit(x, sk):

1: i← [q];
2: simulate A until the i-th query
3: measure the querying register with outcome a =: (m, com)
{The working state collapses to |ψ〉}

4: |st〉 := (|ψ〉 , x0)
5: return (com, |st〉)

– ch← FS[Σ⊗tk].C
– Bk.Resp(ch, |st〉):

1: b← {0, 1}
2: if b = 1 then
3: simulate A for the next query
4: program H(x) := ch
5: simulate the rest of A and obtain a forgery σ =: (com′, resp)
6: return resp

Note that, in order to clean up the interface, the verificationΣ⊗tk .Verify(x, com, ch, resp)
can be thought of as a predicate on the intermediate random variables (a, resp),
and A could have kept a copy of x′ so that at the end (a, resp) instead of σ is
produced. By applying [18, Theorem 2], the proof is concluded.

Finally, we are going to extract the secret from such adversary Bk. The
idea goes as follows. Consider the number of repetitions t = (n + 1)κ, where

29

κ(λ) is some parameter to be determined later. By the pigeonhole principle,
there must be at least κ commitments opened to xk. Furthermore, since the
opening result at each repetition is fixed by the commitment, for a µ-special
sound protocol, obtaining µ accepted responses for distinct challenges against
the same commitment suffices to extract a secret s ∈ {si}i∈[n] where s = sk
for k ∈ [n]. Our goal is therefore, by means of rewinding Bk, collecting µ such
responses in at least one of the κ repetitions.

Lemma 14. Let Σ be a µ-special sound openable sigma protocol of n members,
with additional parameters κ such that the number of repetitions is decided by
t = (n+ 1)κ where n is the number of members. For any efficient adversary Ak
against Σ⊗tk there exists an efficient extractor Extk producing a secret such that

Advsound
Σ⊗tk

(Ak)2µ−1 − exp

(
−κ
µµ

)
≤ Pr

[
s=sk if k∈[n]

s∈{si}i∈[n] if k=⊥

∣∣∣s← Extk(x)
]
,

where x = (xk, {xi, si}i∈[n]\{k}, xm, sm, S) is an instance as defined in Defini-
tion 12, with sk being the corresponding secret witness to xk.

Proof. We adopt the generalized Unruh’s rewinding, as mentioned in [18, Lemma 29].
The extraction goes as follows:

– Extk(x):

1: simulate Ak.Commit(x, sk)→ (com, |st0〉)
2: for j ∈ [µ] do
3: chj ← Σ⊗tk .C
4: respj ← Ak.Resp(chj , |stj−1〉)
5: {The state collapses to |st′j−1〉}
6: rewind |stj〉 ← Ak.Resp(chj , |st′j−1〉)†
7: {Each com, chj and respj consists of commitments {comi}i∈[t], challenges
{chij}i∈[t] and responses {resp}i∈[t] in all of i-th repetition for i ∈ [t]
respectively.}

8: for i ∈ [t] do
9: if #{chij}j∈[µ] = µ and

∧
j∈[µ]Σ.Verify(comi, chij, respij) = 1 then

10: return s← Σ.Sim(com, {chij}j∈[µ], {respij}j∈[µ])
11: abort

Assoiciate Pi, where i = ch runs through the challenge space Σ⊗tk .C, with the
projector induced by computing Ak.Resp, measuring and getting an outcome
resp, and then uncompute Ak.Resp such that 1← Σ.Verify(com, ch, resp). The
bound in [18, Lemma 29] corresponds to

Pr

 ∧
j∈[µ]

outj = 1

∣∣∣∣∣∣ com=com0; ∀j∈[µ]:
outj←Σ⊗t.Verify(com,chj ,respj)

 ≥ Pr

out = 1

∣∣∣∣∣∣∣
(pk,skk)←Σ⊗tk .Keygen(1λ)

(com,|st〉)←Bk.Commit(x,sk)

ch←Σ⊗tk .C ; resp←Bk.Resp(ch,|st〉)
out←Σ⊗tk .Verify(x,com,ch,resp)

com=com0


2µ−1

,

30

for each prescribed com0. The conditioning on both sides can be gotten rid of
by Jensen’s inequality,

Pr
[
∀j ∈ [µ] : 1← Σ⊗t.Verify(com, chj , respj)

]
≥ Advsound

Σ⊗tk
(Ak)2µ−1 . (2)

Let I be the set of indices collecting i ∈ [t] such that comi is opened to k. As
mentioned earlier, by the pigeonhole principle, we have #I ≥ κ for certain. Since
{chj}j∈[t] is independent with com,

Pr[Extk(x) aborts] ≤
∑
com0

Pr
[

∀i∈[t]:
#{chij}j∈[µ]<µ

∣∣∣com = com0

]
Pr[com = com0]

≤
∑
com0

(
1−

(
C
µ

)
Cµ

)κ
Pr[com = com0] ≤ exp

(
−κ
µµ

)
, (3)

where C := #Σ.C is the size of the challenge space. Combining Equation (1), (2), (3)
with union bound, the proof is concluded.

Theorem 3. Let Σ be an openable sigma protocol being correct, µ-special sound,
statistical HVZK, perfect-unique-response, computationally witness indistinguish-
able, and having high min-entropy where the number of repetitions is decided by
t = (n+1)κ for n members and exp (−κ/µµ) is negligible. Then the ARS ARSΣ
with a hard instance generator is unforgeable in QROM.

Proof. Combining Lemma 13, 14 and Corollary 4, the proof is concluded.

5 Discussion

Our setting has premised an honest manager, as the opening result is only avail-
able to the manager. A corrupted manager can thus incriminate any party as
the signer of an arbitrary signature. Many previous works on group signatures
then provide an extra judging function allowing the manager to generate a pub-
licly verifiable proof for its opening results. Due to the majority voting that we
have adopted in our opening design, we do not know yet how to construct a
proof for the exact opening output. Nevertheless, we are able to provide, see
Appendix A, a weaker variant where the manager proves the following: a suf-
ficient number of sessions within a signature is opened to the claimed signer
k. This is essentially proving for multiple sessions that smE

β
k = EOpen (as in

Section 3.3), which is done with a slight twist to Couveignes’ sigma protocol.
Though weaker, this notion is still meaningful as it also prevents a corrupted
manager from incriminating honest non-signers. We will leave the construction
supporting a full-fledged judging function to future work.

31

Acknowledgments

Authors were supported by Taiwan Ministry of Science and Technology Grant
109-2221-E-001-009-MY3, Sinica Investigator Award (AS-IA-109-M01), Execu-
tive Yuan Data Safety and Talent Cultivation Project (AS-KPQ-109-DSTCP),
and Young Scholar Fellowship (Einstein Program) of the Ministry of Science
and Technology (MOST) in Taiwan, under grant number MOST 110-2636-E-
002-012, and by the Netherlands Organisation for Scientific Research (NWO)
under grants 628.001.028 (FASOR) and 613.009.144 (Quantum Cryptanalysis
of Post-Quantum Cryptography), and by the NWO funded project HAPKIDO
(Hybrid Approach for quantum-safe Public Key Infrastructure Development for
Organisations), and by the NSF CAREER award 2141536. This work was car-
ried out while the fifth author was visiting Academia Sinica, she is grateful for
the hospitality.

References

1. R. E. Bansarkhani and R. Misoczki. G-Merkle: A Hash-Based Group Signature
Scheme from Standard Assumptions. In PQCrypto, volume 10786 of Lecture Notes
in Computer Science, pages 441–463. Springer, 2018.

2. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group Signatures:
Formal Definitions, Simplified Requirements, and a Construction Based on Gen-
eral Assumptions. In EUROCRYPT, volume 2656 of Lecture Notes in Computer
Science, pages 614–629. Springer, 2003.

3. M. Bellare, H. Shi, and C. Zhang. Foundations of Group Signatures: The Case of
Dynamic Groups. In CT-RSA, volume 3376 of Lecture Notes in Computer Science,
pages 136–153. Springer, 2005.

4. W. Beullens, S. Dobson, S. Katsumata, Y-F Lai, and F. Pintore. Group signatures
and more from isogenies and lattices: Generic, simple, and efficient. Cryptology
ePrint Archive, 2021.

5. W. Beullens, S. Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic
(Linkable) Ring Signatures from Isogenies and Lattices. In ASIACRYPT (2),
volume 12492 of Lecture Notes in Computer Science, pages 464–492. Springer,
2020.

6. W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient Isogeny Based
Signatures Through Class Group Computations. In ASIACRYPT (1), volume
11921 of Lecture Notes in Computer Science, pages 227–247. Springer, 2019.

7. D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. In CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

8. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of Fully
Dynamic Group Signatures. In ACNS, volume 9696 of Lecture Notes in Computer
Science, pages 117–136. Springer, 2016.

9. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short Ac-
countable Ring Signatures Based on DDH. In ESORICS (1), volume 9326 of
Lecture Notes in Computer Science, pages 243–265. Springer, 2015.

10. E. Bresson and J. Stern. Efficient Revocation in Group Signatures. In Public Key
Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 190–206.
Springer, 2001.

32

11. E. F. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design Validations for
Discrete Logarithm Based Signature Schemes. In Public Key Cryptography, volume
1751 of Lecture Notes in Computer Science, pages 276–292. Springer, 2000.

12. J. Camenisch and M. Michels. A Group Signature Scheme with Improved Ef-
ficiency. In ASIACRYPT, volume 1514 of Lecture Notes in Computer Science,
pages 160–174. Springer, 1998.

13. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An
Efficient Post-Quantum Commutative Group Action. In ASIACRYPT (3), volume
11274 of Lecture Notes in Computer Science, pages 395–427. Springer, 2018.

14. W. Castryck, J. Sotáková, and F. Vercauteren. Breaking the Decisional Diffie-
Hellman Problem for Class Group Actions Using Genus Theory. In CRYPTO (2),
volume 12171 of Lecture Notes in Computer Science, pages 92–120. Springer, 2020.

15. D. Chaum and E. van Heyst. Group Signatures. In EUROCRYPT, volume 547 of
Lecture Notes in Computer Science, pages 257–265. Springer, 1991.

16. J. Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report
2006/291, 2006.

17. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the fiat-shamir transfor-
mation in the quantum random-oracle model. In Annual International Cryptology
Conference, pages 356–383. Springer, 2019.

18. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir Trans-
formation in the Quantum Random-Oracle Model. In CRYPTO (2), volume 11693
of Lecture Notes in Computer Science, pages 356–383. Springer, 2019.

19. A. El Kaafarani, S. Katsumata, and F. Pintore. Lossy CSI-FiSh: Efficient Signature
Scheme with Tight Reduction to Decisional CSIDH-512. In Public Key Cryptog-
raphy (2), volume 12111 of Lecture Notes in Computer Science, pages 157–186.
Springer, 2020.

20. M. F. Ezerman, H. Tae Lee, S. Ling, K. Nguyen, and H. Wang. A Provably
Secure Group Signature Scheme from Code-Based Assumptions. In ASIACRYPT
(1), volume 9452 of Lecture Notes in Computer Science, pages 260–285. Springer,
2015.

21. L. De Feo and S. D. Galbraith. SeaSign: Compact Isogeny Signatures from Class
Group Actions. In EUROCRYPT (3), volume 11478 of Lecture Notes in Computer
Science, pages 759–789. Springer, 2019.

22. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

23. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A Group Signature Scheme from
Lattice Assumptions. In ASIACRYPT, volume 6477 of Lecture Notes in Computer
Science, pages 395–412. Springer, 2010.

24. A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. Tight adaptive repro-
gramming in the qrom. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 637–667. Springer, 2021.

25. A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Secur. Networks, 1(1/2):24–45, 2006.

26. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 552–586.
Springer, 2018.

27. S. Kumawat and S. Paul. A New Constant-Size Accountable Ring Signature
Scheme Without Random Oracles. In Inscrypt, volume 10726 of Lecture Notes
in Computer Science, pages 157–179. Springer, 2017.

33

28. F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé. Lattice-Based Group Sig-
natures with Logarithmic Signature Size. In ASIACRYPT (2), volume 8270 of
Lecture Notes in Computer Science, pages 41–61. Springer, 2013.

29. R. W. F. Lai, T. Zhang, S. S. M. Chow, and D. Schröder. Efficient Sanitizable
Signatures Without Random Oracles. In ESORICS (1), volume 9878 of Lecture
Notes in Computer Science, pages 363–380. Springer, 2016.

30. Y-F Lai and S. Dobson. Collusion resistant revocable ring signatures and group
signatures from hard homogeneous spaces. Cryptology ePrint Archive, 2021.

31. Benôıt Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature
Schemes with Efficient Protocols and Dynamic Group Signatures from Lattice
Assumptions. In ASIACRYPT (2), volume 10032 of Lecture Notes in Computer
Science, pages 373–403, 2016.

32. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-Based Group Signatures: Achiev-
ing Full Dynamicity with Ease. In ACNS, volume 10355 of Lecture Notes in Com-
puter Science, pages 293–312. Springer, 2017.

33. V. Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures. In ASIACRYPT, volume 5912 of Lecture Notes in Computer
Science, pages 598–616. Springer, 2009.

34. P. Q. Nguyen, J. Zhang, and Z. Zhang. Simpler Efficient Group Signatures from
Lattices. In Public Key Cryptography, volume 9020 of Lecture Notes in Computer
Science, pages 401–426. Springer, 2015.

35. D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In EU-
ROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 387–398.
Springer, 1996.

36. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptol., 13(3):361–396, 2000.

37. R. L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In ASIACRYPT,
volume 2248 of Lecture Notes in Computer Science, pages 552–565. Springer, 2001.

38. Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptol.,
4(3):161–174, 1991.

39. D. X. Song. Practical forward secure group signature schemes. In CCS, pages
225–234. ACM, 2001.

40. A. Stolbunov. Cryptographic Schemes Based on Isogenies. PhD thesis, 01 2012.
41. J. Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A, 273:305–

347, 1971.
42. S. Xu and M. Yung. Accountable Ring Signatures: A Smart Card Approach. In

CARDIS, volume 153 of IFIP, pages 271–286. Kluwer/Springer, 2004.

A Judging the opening

As a natural byproduct of our construction, we could also empower the manager
to generate a proof π additionally from Open that could be publicly verified
using an additional algorithm Judge as (re)defined below:

– Open(msk, S = {pki}i∈[n],m, σ)→ (pk, π) ∈ (S ∪ {⊥})× {0, 1}∗: The rede-
fined open algorithm not only reveals signer identity pk but also produces a
publicly verifiable proof π for it.

34

– Judge(mpk, S = {pki}i∈[n], σ, pk, π) → acc ∈ {0, 1}: The judge algorithm
accepts if the manager opened correctly,

Note that in Section 3.3, the opening within the sigma protocol is done by
picking the index k such that smE

β
k = EOpen. A manager could therefore prove

this equality in a Schnorr-like manner, re-starting from the sigma protocol ΣGA
with three additional algorithms JCommit,JResp,JVerify.

– JCommit(sm := msk, {Ei}i∈[n] := {pki}i∈[n], com):

1: b′
$←− G

2: parse com = ({Eαi }i∈[n], {E
β
i }i∈[n], τ({Eγi }i∈[n]),EOpen,ECheck) {We use τ(•)

as a lazy convention of sending a permuted list}
3: EJudge := b′EOpen

4: Eb
′

m := b′smE

5: return (jcom, jst) =
(

(EJudge, Eb
′

m), (b′, sm)
)

– JResp(Em, {Ei}i∈[n], jcom, jch, jst):

1: parse jst = (b′, sm)
2: if jch = 0 then
3: return jresp := b′

4: if jch = 1 then
5: return jresp := l′ = b′sm

– JVerify(Em := mpk, {Ei}i∈[n] := {pki}i∈[n], Ek := pk, com, jcom, jch, jresp):

1: parse com = ({Eαi }i∈[n], {E
β
i }i∈[n], τ({Eγi }i∈[n]), EOpen, ECheck)

2: parse jcom = (EJudge, Eb
′

m)
3: if jch = 0 then
4: check EJudge = b′EOpen

5: check Eb
′

m = b′Em
6: if jch = 1 then
7: check EJudge = l′Eβk
8: check Eb

′

m = l′E
9: return 1 if all check pass

For each run of Commit→ (com, st), we have to do additionally ι repetitions
of JCommit (and thus ιt repetitions in total) to confirm that it is opened to the
k-th signer with negl(ι) probability. Similar as before, the Fiat-Shamir transform
is applied for non-interactivity as follows.

– Open(msk, S = {pki}i∈[n],m, σ)

1: t = 2λ|S|; ι = λ
2: parse σ = (com, resp)
3: ∀j ∈ [t], outj ← ΣGA.Open(msk, S, comi)
4: ∀(i, j) ∈ [ι]× [t], jcomi,j ← ΣGA.JCommit(msk, {Ei}i∈[n], comj)
5: jch := {jchi,j}(i,j)∈[ι]×[t] ← H(σ, {jcomi,j}(i,j)∈[ι]×[t])
6: ∀(i, j) ∈ [ι]×[t], (jrespi,j , jsti,j)← ΣGA.JResp(Em, {Ei}i∈[n], jcomi,j , jchi,j , jsti,j)

35

7: pk = Maj({outj}j∈[t]) {Maj outputs the majority element of a set. In
case of ties, Maj outputs a random choice of the marjority elements.}

8: π := {jcomi,j , jrespi,j}(i,j)∈[ι]×[t]
9: return (pk, π)

– Judge(mpk, S = {pki}i∈[n], σ, pk, π):

1: return 0 if pk = ⊥
2: t = 2λ|S|; ι = λ
3: parse σ = (com, ch, resp)
4: parse π = {jcomi,j , jrespi,j}(i,j)∈[ι]×[t]
5: jch := {jchi,j}(i,j)∈[ι]×[t] ← H(σ, {jcomi,j}(i,j)∈[ι]×[t])
6: ∀j ∈ [t], joutj ←

∧
i∈[ι]ΣGA.JVerify(mpk, {Ei}i∈[n], pk, comj , jcomi,j , jchi,j , jrespi,j)

7: return 1 if
∑
j∈[t] joutj ≥ λ

Here, a corrupted manager gets to selectively generate a partial proof {Eoutj , jcomi,j , jchi,j , jrespi,j}(i,j)∈[ι]×J
where J ⊆ [t] is adaptively chosen. So long as we have

∑
j∈J joutj ≥ λ, the

judged proof is accepted. This does not prevent the manager from generating
accepted proofs that open to different members when #{Eoutj} > 1, which could
happen if the corresponding signature is generated by multiple colluding signers.
Otherwise, incriminating an honest non-signer would require to make up at least
λ valid sessions of Commit, which will succeed with only negligible probability,
i.e. for any PPT adversary A, any nh ≤ n ≤ poly(λ) and valid master key pair
(mpk,msk) ∈ KPm,

Pr[A wins GJUF
A,nh

] ≤ negl(λ),

where the judging unforgeability game GJUF
A,nh

is as specified below.

GJUF
A,nh

: Judging unforgeability game

1: ∀i ∈ [nh], (pki, ski)← Keygen(1λ). Let Hon = {pki}i∈[nh],Cor = {}.
2: (S,m∗, σ∗)← ASign(•,•,•,ski∈Hon),Corrupt(•)(Hon)
{Corrupt(pki) returns ski for pki ∈ Hon and stores query pki in list Cor}

3: A wins if (m∗, σ∗) is not an output of Sign, 1 ← Verify(mpk, S,m∗, σ∗),
(pk, π) ← Open(msk, S,m, σ∗) satisfies pk ∈ {⊥} ∪ Hon \ Cor, and 1 ←
Judge(mpk, S, σ, pk, π).

B Fiat-Shamir transform with augmented input

In this section, we talk about a natural way to generalize the Fiat-Shamir trans-
fomration into a broader class of signatures, in which a signer can have an
augmented input aug on its choice. This is in order to capture that, in our ac-
countable ring signature (ARS) scheme, a signer gets to choose some subset S
of members and the master mpkν before signing a message. In principle, such

36

generalization allows a broader class of attack, but as we will discuss later, some
standard results generalize as well.

Given a sigma protocol Σ, define the augmented Fiat-Shamir transform
FS∗[Σ], as the following signature scheme:

– Keygen(1λ):

1: return (pk, sk)← G {Generate the key pair as usual, by some instance
generator of a hard relation.}

– Sign(pk, aug,m, sk):

1: w := sk {Associate the witness with the secret key as usual.}
2: x := (pk, aug) {Squeeze in the augmented input aug into the statement
x.}

3: com, st← Σ.Commit(x,w)
4: ch := H(m, com)
5: resp← Σ.Resp(x, com, ch, st)
6: return σ := (com, resp, aug)

– Verify(pk,m, σ):

1: parse σ =: (com, resp, aug)
2: x := (pk, aug)
3: ch := H(m, com)
4: return acc← Σ.Verify(x, com, ch, resp)

Correspondingly, the unforgeability games against chosen message attacksGsUF−CMA
FS∗[Σ],A (λ)

andGUF−CMA
FS∗[Σ],A(λ) now allows adversaryA to query the signing oracle Sign(pk, •, •, sk),

as follows. Note that, for any choices of augmented inputs aug1 and aug2, the
equality Sign(pk, aug1,m, sk) = Sign(pk, aug2,m, sk), would imply aug1 = aug2.
Therefore the strong unforgeability game defined below is without ambiguity.

GsUF−CMA
FS∗[Σ],A (λ): Strong unforgeability game against chosen-message attacks

1: (pk, sk)← Keygen(1λ)
2: (m∗, σ∗)← ASign(pk,•,•,sk)(pk)
3: check σ∗ is not an oracle output of Sign using the message m∗

4: check 1← Verify(pk,m∗, σ∗)
5: A wins if all check pass

GsUF−CMA
FS∗[Σ],A (λ): Weak unforgeability game against chosen-message attacks

1: (pk, sk)← Keygen(1λ)
2: σ∗ ← ASign(pk,•,•,sk)(pk)
3: check σ∗ is not an oracle output of Sign
4: check 1← Verify(pk,m∗, σ∗)
5: A wins if all check pass

37

GUF−NMA
FS∗[Σ],A(λ): Unforgeability game against no-message attacks

1: (pk, sk)← Keygen(1λ)
2: (m∗, σ∗)← A(pk)
3: A wins if 1← Verify(pk,m∗, σ∗)

Although FS∗[Σ] may be exposed to a stronger attack, it doesn’t seem to
provide any additional handle to the adversary if there is no access to the signing
oracle. As opposed to the chosen-message attacks, this is often referred to as the
no-message attacks, which is described above following the standard definition.
In line with Corollary 5, if the regular Fiat-Shamir signature FS[Σ] is UF-NMA
secure, then so is FS∗[Σ].

Corollary 5. Let Σ be a sigma protocol. Then for any efficient adversary A
against FS∗[Σ], there is an efficient adversary B against FS[Σ] such that

AdvUF−NMA
FS∗[Σ] (A) ≤ AdvUF−NMA

FS[Σ] (B) ,

where the advantages are as defined in [26, Section 2.4].

Proof. B simply simulatesA in order to produce a FS∗[Σ]-forgery σ =: (com, resp, aug)
for the message m, and then produce (com, resp) as a FS[Σ]-signature of the mes-
sage (m, aug). The signature is FS∗[Σ]-valid if σ is FS[Σ]-valid.

Other than that, we note that one of the standard results is a reduction from
sUF-CMA security to UF-NMA. Indeed, this can then be generalized as follows.

Lemma 15. Let Σ be a sigma protocol that is of high entropy, statstical HVZK.
Then for any efficient algorithm A(x) making queries to the signing oracle
FS∗[Σ].Sign(pk, •, •, sk) and the QRO H, there is an efficient simulator B(x)
without access to the oracles such that for any efficient predicate V (y)∣∣∣Pr

[
acc = 1

∣∣∣AFS∗[Σ].Sign(pk,•,•,sk),H(x)→y
V (y)→acc

]
− Pr

[
acc = 1

∣∣∣ B(x)→y
V (y)→acc

]∣∣∣ ≤ negl

Proof. The proof is similar as in the proof of Lemma 11 we can always simu-
late A via A2 with the signing oracle further augmented to (com, ch, resp, aug)←
Sign2(pk, •, •, sk). Next, we simulateA2 viaA3 making queries only to Sign2(pk, •, •, sk)
but not the QRO H. A3 will need to simulate H on its own.

– A
Sign2(pk,•,•,sk)
3 (x):

1: while A2 not terminated do
2: if the next step queries Sign2(pk, aug,m, sk) then
3: queries (com, ch, resp, aug)← Sign2(pk, aug,m, sk)

38

4: program H(m, com) := ch
5: send back (com, ch, resp, aug) to the simulation
6: else
7: simulate the same procedure
8: return the output of A2

Since Σ is of high min-entropy, via [24, Theorem 1] we obtain

V
(
A

Sign2(pk,•,•,sk),H
2 (x)

)
≈ V

(
A

Sign2(pk,•,•,sk)
3 (x)

)
.

Then, we simulate A3 using A4 querying Trans(•) the transcript of the under-
lying sigma protocol.

– A
Trans(•)
4 (x):

1: while A2 not terminated do
2: if the next step queries Sign2(pk, aug,m, sk) then
3: x′ := (pk, aug)
4: (com, ch, resp)← Σ.Trans(x′)
5: send back σ := (com, ch, resp, aug) to the simulation
6: else
7: simulate the same procedure
8: return the output of A3 .

The output distribution only differs at the situation where the same com occurs
twice from Trans. Due to the high min-entropy, this only happens with negligible
probability.

Finally, due to the statistical HVZK property, B simulates A4 by changing
the queries of Trans to using the simulator of the sigma protocol directly. Such
effect to the output distribution is only negligible. Putting things together, we
get

V
(
AFS∗[Σ].Sign(pk,•,•,sk),H(x)

)
≈ V

(
A

Sign2(pk,•,•,sk),H
2 (x)

)
≈ V

(
A

Sign2(pk,•,•,sk)
3 (x)

)
≈ V

(
A

Trans(•)
4 (x)

)
≈ V (B(x)) .

Theorem 4. Let Σ be a sigma protocol that is of high entropy, perfect-unique-
response, and statistical HVZK, then for any efficient adversary A there is an
efficient adversary B such that

AdvUF−CMA
FS∗[Σ] (A) ≤ AdvUF−NMA

FS∗[Σ] (B) + negl (4)

AdvsUF−CMA
FS∗[Σ] (A) ≤ AdvUF−NMA

FS∗[Σ] (B) + negl (5)

Proof. By setting the predicate in Lemma 15 to the verification FS[Σ]∗.Verify(pk,m, •),
we obtain the adversary B with success probability negligibly close.

39

C Isogeny class group action

Here we briefly cover the basics for elliptic curve isogenies. For simplicity, we
consider a working (finite) field Fq with characteristic p > 3. An isogeny φ be-
tween elliptic curves E1 → E2 defined over an algebraic closure F̄q is a surjective
homomorphism between the groups of rational points E1(F̄q) → E2(F̄q) with a
finite kernel. If, additionally, φ is assumed separable, i.e. the induced extension
of function fields φ∗ : F̄q(E2) ↪→ F̄q(E1) by F̄p(E2) 3 f 7→ f ◦φ ∈ F̄p(E1) is sepa-
rable, then for any finite subgroup H ≤ E1(F̄p), there is an isogeny φ : E1 → E2

having H as its kernel, and the co-domain curve is furthermore uniquely de-
termined up to isomorphisms (in F̄q). We refer to the co-domain curve as the
quotient curve, denoted E1/H. A corresponding isogeny could be computed us-
ing Velu’s formula specified in [41], which works by expanding the coordinates
of Q = φ(P) as follows,

x(Q) = x(P) +
∑

R∈H\{0}

(x(P +R)− x(R)) ,

y(Q) = y(P) +
∑

R∈H\{0}

(y(P +R)− y(R)) .

The separable degree degsep φ is defined as the separable degree for φ∗, which co-
incides with the size of its kernel # kerφ, and since any isogeny could be acquired
by precomposing Frobenius maps to a separable isogeny, i.e. of form φ◦πkp where

φ is separable, we can (equivalently) define the (full) degree deg
(
φ ◦ πpk

)
=

degsep(φ)pk. From now on, we will assume separability of isogenies unless other-
wise specified, and therefore deg φ = degsep φ in this case.

For large degree φ, when both domain E1 and co-domain E2 (supersingular)
curves are prescribed, it could be hard to determine the kernel (and thus φ). The
current best-known (generic) quantum algorithm is claw finding, which takes
Õ
(
deg(φ)1/3

)
operations.

One important structure for isogenies is the so-called isogeny class group ac-
tion, which was first used for cryptographic constructions by [16, 40], and was
viewed as a weaker alternative for discrete logarithm. However, although theo-
retically feasible, the instantiated group action used to rely heavily on techniques
regarding the so-called modular polynomials, which is computationally expensive
in practice. Later on, improvements in the Commutative SIDH (CSIDH) [13]
scheme got rid of these techniques. Concretely, the space X is instantiated as a
set E``p(O, πp) = {E/Fp supersingular elliptic curves}/ ∼=Fp acted by their ideal
class group Cl(O) of the Fp-rational endomorphism ring O = Endp(E) where
E ∈ E``p(O, πp) but O⊗Q tensored as a Z-module is identical regardless of the
choice of E ∈ E``p(O, πp) thus so is Cl(O). The additional parameter πp denotes
the p-power Frobenius πp : (x, y) 7→ (xp, yp). Elements of Cl(O) are equivalence
classes a of ideals of the (partial) endomorphism ring J C Endp(O). Any such
ideal class a ∈ Cl(O) therefore acts on the curves by sending E ∈ E``p(O, πp)

40

to the quotient curve a · E := E/E[J] where J ∈ a is a representative of the
equivalence class a and E[J] =

⋂
f∈J ker f is the simultaneous kernel of J .

The working base field Fp for CSIDH is carefully selected such that p =
4`1 · · · `n−1 where each `i > 2 is a small prime generally referred to as an Elkies
prime. This allows one to generate a heuristically large enough sub-covering
{le11 . . . lenn |∀i : |ei| ≤ bi} of Cl(O) where each prescribed bi is small8 and each l±1i
is the class of ideal 〈πp ∓ 1, `i〉. The indices (e1, . . . , en) thus represent the ideal
class le1i · · · lenn , making it easier to compute the co-domain curve. In particular,
for a curve E ∈ E``p(O, πp) and any choice of `i, the curve li · E := E/E[〈πp −
1, `i〉] is computed by sampling a generator of the kernel,

E[〈πp − 1, `i〉] = E(Fp)[`i] = {P ∈ E(Fp)|`iP = 0},

which is a one dimensional Z/`-linear eigen-subspace of πp within the `i-torsion

E[`i]. For the opposite direction, one can compute l−1i ·E = (li · Et)
t

where the
superscript t is referred to as the quadratic twist of the specified curve, by taking
the convention that the curve is fixed when its j-invariant is 1728, or equivalently,
this can be done by sampling from the other Z/`i-linear eigen-subspace of πp in
E[`i], which sits in the quadratic extension E(Fp2).

We also list here some well-known properties for the considered class group
action. First, the class group Cl(O) commutes, which is a direct result of the fact
that the Fp-rational endomorphism ring Endp(E) commutes. Second, as noted
in [13, Theorem 7], Cl(O) acts freely and transitively on E``p(O, πp), which means
that for all E1, E2 ∈ E``p(O, πp), there exists a unique a ∈ Cl(O) such that
a ·E1 = E2. Finally, elements in E``p(O, πp) can be efficiently verified. We note
that a curve E is supersingular if and only if it has p + 1 points over Fp. This
can be efficiently tested by finding some P ∈ E(Fp) with order ord(P) ≥ 4

√
p

dividing p+ 1. A random point P sampled from E(Fp) satisfies such a condition
with high probability if E is supersingular, and whether it does can be verified
efficiently as follows. If (p+ 1)P 6= 0, then ord(P) does not divide p+ 1 and E is
ordinary. Otherwise, we can perform the so-called batch co-factor multiplication
computing Pi = p+1

`i
P for each i, by using convention that `0 = 4. This allows

us to determine ord(P) =
∏
i ord(Pi).

For typical cryptographic constructions such as CSIDH, additional heuristic
assumptions are required to sample a random element from the class group (as
in Definition 2). This is because the “CSIDH-way” for doing this is by sampling
exponents (e1, . . . , en) satisfying ∀i : |ei| ≤ bi, and the resulting distribution
for ideals le11 . . . lenn is generally non-uniform within Cl(O). To get rid of such
heuristics, one could instead work with specific parameters, where a bijective
(yet efficient) representation of ideals is known. For instance, in [6], the structure
of Cl(O) is computed, including a full generating set of ideals l1, . . . , ln and the
entire lattice Λ := {(e1, . . . , en)|le11 . . . lenn = id}. Evaluating the group action is
just a matter of approximating a closest vector and then evaluating the residue as

8 For CSIDH-512 [13] proposes b1 = · · · = bn = 5.

41

in CSIDH. In this work, we will be working with such a “perfect” representation
of ideals, unless otherwise specified.

As a remark, we note that the D-CSIDH problem for characteristic p = 1
mod 4 is known to be broken [14]. Nevertheless, the attack is not applicable to
the standard CSIDH setting where p = 3 mod 4.

D Sigma protocol

A sigma protocol should satisfy the following three properties.

Definition 13. (Correctness) A sigma protocol is correct if for any (x,w) ∈ R,
the probability

Pr
[
(com, st)← P1(x,w), ch

$←− C, resp← P2(st, ch), 0← V (x, com, ch, resp)
]

is negligible.

Definition 14. (Honest Verifier Zero Knowledge/HVZK) Let Trans(x,w) →
(com, ch, resp) be a function that honestly executes the sigma protocol and outputs
a transcript. We say that the sigma protocol is HVZK if there exists a simulator
Sim(x) → (com, ch, resp) such that the output distribution of Trans(x,w) and
Sim(x) is indistinguishable.

Definition 15. (µ-special soundness) A sigma protocol is µ-special sound if
there exist an efficient extractor Ext such that, for any set of µ transcripts
with the same (x, com), denoted as (x, com, {chi}i∈[µ], {respi}i∈[µ]), where every
chi is distinct, the probability

Pr
[
(x, s) /∈ R ∧ ∀i ∈ [µ], acci = 1 :

∀i∈[µ], acci←V (x,com,chi,respi),
s←Ext(x,com,{chi}i∈[µ],{respi}i∈[µ])

]
is negligible.

Here, we formulate a more general form of special soundness. While most
sigma protocol constructions in the literature adopt 2-special soundness, any
µ-special sound protocol with constant µ can be similarly transformed into a
signature scheme, simply by applying more rewinding trials.

E Analysis in classical ROM

E.1 The forking lemma

The concept of the forking lemma is as follows. In the random oracle model,
let A be an adversary that can with non-negligible probability generate valid

42

transcripts (m, com, ch, resp) with ch = H(m, com). Since H is a random oracle,
for some (m, com), A should be able to succeed on sufficiently many different ch′

from H in order to achieve an overall non-negligible success probability. If we
can rewind and rerun A with different oracle outputs on H(m, com), we should
be able to get multiple accepting transcripts.

To dig a little bit deeper, we can construct an efficient algorithm B that runs
A as a subroutine, where A → (m, com, ch, resp) has at most Q oracle queries.
The tuple (m, com) should, with all but negligible probability, be among one
of the Q queries. B first guesses the critical query i ∈ [Q], the index where
Qi = (m, com) is being queried. Then, B replays A with fixed random tape,
fixed oracle outputs for the first i− 1 queries, and fresh random oracle outputs
for the remaining queries. If the query guess i and fixed randomness are “good,”
which should happen with non-negligible probability, then among sufficiently
many retries we should get t successful outputs of A, which are transcripts with
identical (m, com) with distinct challenges ch’s. For a rigorous proof, we refer
the reader to [35, 36] for the forking lemma with 2 transcripts and [11] for a
µ-transcript version.

Here, we give a reformulated version of the improved forking lemma proposed
by [11]. We renamed the variables to fit our notion and restricted parameters to
the range that is sufficient for our proof.

Theorem 5. (The Improved Forking Lemma [11], Reformulated) Let A be a
probabilistic polynomial-time algorithm and Sim be a probabilistic polynomial-
time simulator which can be queried by A. Let H be a random oracle with image
size |H| ≥ 2λ. If A can output some valid tuple (m, com, ch, resp) with non-
negligible probability ε ≥ 1/poly(λ) within less than Q queries to the random
oracle, then with O(Qµ logµ/ε) rewinds of A with different random oracles, A
will, with at least constant probability, output µ valid tuples (m, com, chi, respi)
with identical (m, com) and pairwise distinct chi’s.

E.2 Proof of Lemma 10

Proof. Assume that there exists an efficient adversaryA that winsGUF
A,nh

(mpk,msk)
on some valid key pair (mpk,msk) ∈ KPm with non-negligible probability. We
aim to show that we can construct some algorithm AEXT which runs A as a
subroutine and extract an un-corrupted secret key.

As it doesn’t hurt for a signing oracle to produce the challenges, let’s abuse
the notation as say the signing oracle returns not only the signature, but also
those corresponding challenges. First, we replace the Sign oracle with a sim-
ulator, so that AEXT can emulate the oracle responses to A. We consider a
modified game GUF,1

A,nh
which replaces the signing oracle Sign(•, •, •, ski ∈ Hon)

by a simulator Sim(•, •, •, pki ∈ Hon), where Sim is defined as follows:

– Sim(mpk, S,m, pk ∈ S):

43

1: decide t correspondingly
2: for j ∈ [t], (comj , chj , respj)← ΣGA.Sim(mpk, S, pk ∈ S)
3: program H(com1, . . . , comt,m) := (ch1, . . . , cht)
4: return σ = (com, ch, resp) := ((com1, . . . , comt), (ch1, . . . , cht), (resp1, . . . , respt))

Since Σ.Sim is a statistical HVZK simulator, any adversary with Q = poly(λ)
queries to H cannot distinguish Sign from Sim with non-negligible probability.
Thus A should also win GUF,1

A,nh
with non-negligible probability.

Now, since A wins GUF,1
A,nh

(mpk,msk) only if it outputs some (R,m∗, σ∗) such
that out∗ ← Open(msk, R,m, σ∗) satisfies out∗ = pki ∈ Hon or out∗ =⊥, either A
wins with non-negligible probability with out∗ =⊥, or there exists some k such
that A wins with non-negligible probability with out∗ = pkk ∈ Hon. We deal
with these cases separately.

We first prove that there cannot exist efficient A⊥ that wins GUF,1
A,nh

(mpk,msk)
with non-negligible probability with out∗ =⊥. If such A⊥ exists, we can con-
struct an algorithm B that honestly generates {(pki, ski)}i∈[nh] and runs A⊥
with input Hon = {pki}i∈[nh]. The oracle Corrupt can be perfectly emulated
by B since B holds every ski. With non-negligible probability, A⊥ will output
valid (S,m, σ = (com, ch, resp)) such that ⊥← Open(msk, S,m, σ). By applying
the improved forking lemma (Theorem 5), with r = O(Q/ε) rewinds of A⊥, it
would, with constant probability, output four valid signatures (S,m, σ1, . . . , σ4)
with identical com and pairwise distinct chc, and that ⊥← Open(msk, S,m, σc)
for all c ∈ [4]. We now claim that with high probability, we can find some par-
allel session j ∈ [t] such that ⊥← Σ.Open(msk, S, comj) and ch1

j , . . . , ch4
j are

distinct. Note that this is not trivially true, as the forking lemma only promises
that ch1, . . . , ch4 are pairwise distinct as vectors, so they might not be pairwise
distinct on any index j.

Let T be the set of indices j where ⊥← Σ.Open(msk, S, comj). Since ⊥←
Open(msk, S,m, σ), by the definition of Open, ⊥ must be (one of) the majority
output among the t parallel sessions. Thus |T | ≥ t/(|S| + 1) ≥ λ. We say that

four challenges ch′
1
, . . . , ch′

4
are good on T if there exists some j ∈ T such

that ch′1j , . . . , ch′4j are distinct. For 4 independently random challenges in [4]t,

the probability that they are good on T is 1− (1− (4!/44))|T | = 1− negl(λ).

Unfortunately, the challenges ch1, . . . , ch4 obtained from rewinding A are not
necessarily independent. To cope with this, we will need the fact that in each
rewind of A, the valid ch is a new random output from the new random oracle
H. Thus, the finally output 4-tuple ch1, . . . , ch4 must be a subset of r = O(Q/ε)
independent random samples from [4]t. By the union bound, the probability that
all 4-tuples in the r samples are good on T is 1−

(
r
4

)
negl(|T |) ≥ 1−negl(λ). Thus

we can find j ∈ T such that ch1
j , . . . , ch4

j are distinct with probability 1−negl(λ).

For such j, we without loss of generality let (ch1
j , . . . , ch4

j) = (1, . . . , 4) and
consider (S, comj , resp1

j , . . . , resp4
j). NowB achieves ∀c ∈ [4], 1← Σ.Verify(S, comj , c, respcj),

44

and ⊥← Σ.Open(msk, S, comj). Thus B violates the 4-special soundness prop-
erty of Σ and brings a contradiction. Hence such A⊥ cannot exist.

Now we consider the case where some Ak wins GUF,1
A,nh

(mpk,msk) with non-
negligible probability with out∗ = pkk. We will show that if such Ak exists, we
can build AEXT from Ak.

We first do some modification on the Corrupt oracle by considering the game
GUF,2
A,nj ,k

(mpk,msk, pk) which, on top of GUF,1
A,nh

, applies the following modification:

1. Set (pkk, skk) = (pk,⊥). Other (pki, ski)’s are generated honestly for i ∈
[nh] \ {k}

2. Replace the oracle Corrupt() with Corrupt∗k(), which aborts when pkk is
queried and otherwise honestly outputs as Corrupt.

3. Change the winning condition to: A wins if (m∗, σ∗) is not an output of
Sign, 1← Verify(mpk, S,m∗, σ∗) and pk = pkk ← Open(msk, S,m, σ∗). In
other words, we restrict to the case that A wins with out∗ = pkk.

Note that for Ak to win GUF,1
A,nh

(mpk,msk) with out∗ = pkk, it cannot query

Corrupt(pkk), thus Ak should also win GUF
A,2,k(mpk,msk, pk) with non-negligible

probability, 1/nh times as likely, for pk honestly generated from Keygen. By
the construction of Keygen, it is equivalent to sampling a random Ech ∈ E .

Now, for Ak winning GUF,2
A,nh,k

(mpk,msk, pk) with non-negligible probability,
we can similarly construct an algorithm B that honestly generates nh − 1 key
pairs {(pki, ski)}i∈[nh]\{k} and runs Ak with input Hon = {pki}i∈[nh] where pkk =
pk. Then again by applying the improved forking lemma, with the same probabil-
ity, r = O(Q/ε) rewinds of Ak will output four valid signatures (S,m, σ1, . . . , σ4)
with identical com and pairwise distinct chc, so that pk← Open(msk, S,m, σc)
for all c ∈ [4]. Again by the same argument as in the case of A⊥, we can with
high probability find some j ∈ [t] such that pk← ΣGA.Open(msk, S, comj) and
ch1
j , . . . , ch4

j are distinct.

Now, without loss of generality let (ch1
j , . . . , ch4

j) = (1, . . . , 4) and consider
(S, comj , resp1

j , . . . , resp4
j). We have ∀c ∈ [4], 1 ← ΣGA.Verify(S, comj , c, respcj),

and that the challenge statement pk ← ΣGA.Open(msk, S, comj). Thus by the
4-special soundness property of ΣGA, we can extract the matching secret key
sk← ΣGA.Ext(S, comj , resp1

j , . . . , resp4
j), such that (pk, sk) ∈ RE .

From the previous arguments, we see that if such efficient Ak exists, then
we can obtain an algorithm B based on Ak that, on inputting random pk ∈
PK, output sk such that (pk, sk) ∈ RE with non-negligible probability. Thus,
we successfully construct a secret extractor from adversary A that wins the
unforgeability game, which concludes the proof that our ARSΣ is unforgeable
assuming the instance relations are hard (to extract witness) for Σ.

Remark 4. For instantiation where Σ = ΣGA, this extractor breaks GAIP as
follows, when obtaining random challenges E1, E2 ∈ E , we simply run B twice

45

to get s1, s2 such that s1E = E1, s2E = E2, then we directly obtain E2 =
(s1s

−1
2)E1.

F Group signature

A group signature scheme consists of one manager and n parties. The manager
can set up a group and provide secret keys to each party. Every party is allowed
to generate signatures on behalf of the whole group. Any party can verify the
signature for the group without knowing the signer, while the manager party
can open the signer’s identity with his master secret key.

Syntax. A group signature scheme GS consists of the following four algorithms.

– GKeygen(1λ, 1n) → (gpk, {ski}i∈[n],msk): The key generation algorithm

GKeygen takes 1λ and 1n as inputs where λ is the security parameter and
n ∈ N is the number of parties in the group, and outputs (gpk, {ski}i∈[n],msk)
where gpk is the public key for the group, ski being the secret key of the i-th
player for each i ∈ [n], and msk is the master secret key held by the manager
for opening.

– GSign(gpk,m, skk) → σ: The signing algorithm GSign takes a secret key
skk and a message m as inputs, and outputs a signature σ of m using skk.

– GVerify(gpk,m, σ)→ y ∈ {0, 1}: The verification algorithm GVerify takes
the public key gpk, a message m, and a candidate signature σ as inputs, and
outputs either 1 for accept or 0 for reject.

– GOpen(gpk,msk,m, σ) → k ∈ [n]: The open algorithm GOpen takes the
public key gpk, the manager’s master secret key msk, a message m, and a
signature σ as inputs, and outputs an identity k or abort with output ⊥.

A group signature scheme should satisfy the following security properties.

Correctness. A group signature scheme is said to be correct if every honest
signature can be correctly verified and opened.

Definition 16. A group signature scheme GS is correct if for any tuple of keys
(gpk, {ski}i∈[n],msk)← GKeygen(1κ, 1n), any i ∈ [n] and any message m,

Pr

[
acc=1∧out=i :

σ←GSign(gpk,m,ski),
acc←GVerify(gpk,m,σ),

out←GOpen(gpk,msk,m,σ)

]
> 1− negl(λ)

Anonymity. A group signature is said to be anonymous if no adversary can
determine the signer’s identity among the group of signers given a signature,
without using the master’s secret key (msk).

46

Definition 17. A group signature scheme GS is anonymous if for any PPT
adversary A and any n = poly(λ),∣∣Pr[1← GAnon

A,0 (λ, n)]− Pr[1← GAnon
A,1 (λ, n)]

∣∣ ≤ negl(λ),

where the game GAnon
A,b (λ, n) is defined below.

GAnon
A,b (λ, n): Anonymity game

1: (gpk, {ski}i∈[n],msk)← GKeygen(1λ, 1n)
2: (st, i0, i1)← A(gpk, {ski}i∈[n])
3: b← {0, 1}
4: return out← AGSign(gpk,·,skib)(st)

Unforgeability. A group signature is said to be unforgeable if no adversary can
forge a valid signature that fails to open or opens to some non-corrupted parties,
even if the manager has also colluded.

Definition 18. A group signature scheme GS is unforgeable if for any PPT
adversary A and any n = poly(λ),

Pr[A wins GUF
A (λ, n)] < negl(λ),

where the game GUF
A (λ, n) is defined below.

GUF
A (λ, n): Unforgeability game

1: (gpk, {ski}i∈[n],msk)← GKeygen(1λ, 1n), Cor = {}
2: (m∗, σ∗)← AGSign(gpk,•,ski /∈Cor),Corrupt(•)(gpk,msk)
{Corrupt(i) returns ski stores query i in list Cor}

3: A wins if (m∗, σ∗) is not an output of GSign, 1← GVerify(gpk,m∗, σ∗)
and i← GOpen(gpk,msk,m∗, σ∗) satisfies i /∈ Cor

47

	Group Signatures and Accountable Ring Signatures from Isogeny-based Assumptions

