A Generic Construction of CCA-secure Attribute-based Encryption with Equality Test

Kyoichi Asano^{1, 2}, Keita Emura², Atsushi Takayasu ^{*, 3}, and Yohei Watanabe^{1, 2}

¹ The University of Electro-Communications, Japan.
 ² National Institute of Information and Communications Technology, Japan.
 ³ The University of Tokyo, Japan.

October 11, 2021

Abstract

Attribute-based encryption with equality test (ABEET) is an extension of the ordinary attribute-based encryption (ABE), where trapdoors enable us to check whether two ciphertexts are encryptions of the same message. Thus far, several CCA-secure ABEET schemes have been proposed for monotone span programs satisfying selective security under q-type assumptions. In this paper, we propose a generic construction of CCA-secure ABEET from delegatable ABE. Specifically, our construction is an attribute-based extension of Lee et al.'s generic construction of identity-based encryption with equality test from hierarchical identity-based encryption. Even as far as we know, there are various delegatable ABE schemes. Therefore, we obtain various ABEET schemes with new properties that have not been achieved before such as various predicates, adaptive security, standard assumptions, compact ciphertexts/secret keys, and lattice-based constructions.

^{*}During a part of this work, the author is affiliated with National Institute of Information and Communications Technology, Japan.

Contents

1	Introduction	1
	1.1 Background	1
	1.2 Our Contribution	2
	1.3 Technical Overview	4
	1.4 Roadmap	5
2	Preliminaries	5
	2.1 Delegatable Attribute-based Encryption	5
	2.2 One-Time Signature	7
	2.3 Hash Functions	
	2.4 Attribute-based Encryption with Equality Test	8
3	Proposed Generic Construction	10
	3.1 Our construction	10
	3.2 Correctness	
4	Security	13
	4.1 OW-CCA2 Security against Type-I Adversaries	13
	4.2 IND-CCA2 Security against Type-II Adversaries	16
5	Conclusion	18

1 Introduction

1.1 Background

The notion of public key encryption with equality test (PKEET) was introduced by Yang et al. [Yan+10]. PKEET is similar to public key encryption with keyword search [Bon+04, Abd+08] in a multi-use setting. PKEET has multiple public/secret key pairs $(pk_1, sk_1), \ldots, (pk_N, sk_N)$. Let ct_i and ct_j denote encryptions of plaintexts M_i and M_j by pk_i and pk_j , respectively. As the case of the standard public key encryption, the secret keys sk_i and sk_j can decrypt ct_i and ct_j , and recover M_i and M_j , respectively. Moreover, PKEET has a trapdoor td to perform the equality test. Let td_i and td_j denote trapdoors created by the secret keys sk_i and sk_j , respectively. Briefly speaking, even if the *i*-th user obtains the *j*-th trapdoor td_j , they cannot decrypt the *j*-th ciphertext ct_j . In contrast, any users who have trapdoors td_i and td_j can check whether ct_i and ct_j are encryptions of the same plaintexts. PKEET has several practical applications such as cloud storage systems. Thus far, several PKEET schemes have been proposed [Tan11, LZL12, Hua+14, Hua+15, Ma+15, Lee+16a, Lee+16b, LSQ18, Qu+18, Duo+19a, Duo+19c, Lee+19, Zen+19, Zha+19, Lee+20, Lin+21a] with stronger security models, efficiency improvements, additional properties, and under various assumptions.

As a natural extension of PKEET, attribute-based encryption with equality test (ABEET) has been studied. Here, we briefly explain ABEET with a predicate $P : \mathcal{X} \times \mathcal{Y} \rightarrow \{0, 1\}$. ABEET has a single master public/secret key pair (mpk, msk). Let ct_i and ct_j denote encryptions of plaintexts M_i and M_j for ciphertext-attributes x_i and x_j , respectively. As the case of the standard attributebased encryption (ABE), the secret keys sk_{y_i} and sk_{y_j} for key-attributes y_i and y_j can decrypt ct_i and ct_j , and recover M_i and M_j if $P(x_i, y_i) = 1$ and $P(x_j, y_j) = 1$ hold, respectively. Let td_{y_i} and td_{y_j} denote trapdoors created by the secret keys sk_{y_i} and sk_{y_j} , respectively. Even if the user with the key-attribute y_i obtains the trapdoor td_{y_j} of the key-attribute y_j , they cannot decrypt the ciphertext ct_{x_j} of the ciphertext-attribute x_j when $P(x_j, y_i) = 0$. In contrast, any users who have trapdoors td_{y_i} and td_{y_j} can check whether ct_{x_i} and ct_{x_j} are encryptions of the same plaintexts if $P(x_i, y_i) = P(x_j, y_j) = 1$ holds.

The simplest case of ABEET is arguably identity-based encryption with equality test (IBEET) that has an equality predicate $\mathsf{P}_{\mathsf{IBE}}: \mathcal{V} \times \mathcal{V} \to \{0,1\}$, i.e., $\mathsf{P}_{\mathsf{IBE}}(v,v') = 1 \Leftrightarrow v = v'$. Thus far, several IBEET schemes have been proposed [Lee+16b, Ma16, LSQ18, Duo+19b, Lin+19, Lee+20, Ngu+20, SDL20, Lin+21b]. ABEET schemes for more complex predicates have also been proposed [Zhu+17, Cui+18, Wan+18, Cui+19, Wan+20, Li+21]. Among them, there are several ABEET schemes for monotone span programs [Cui+18, Cui+19, Wan+20, Li+21] as ABE for the same predicate has been actively studied. However, ABEET research has a major drawback in the sense that progress in ABEET research is far behind that of ABE research. Although all the ABEET schemes [Zhu+17, Cui+18, Wan+18, Cui+19, Wan+20, Li+21] satisfy only selective security under q-type assumptions for monotone span programs or less expressive predicates, there are adaptively secure ABE schemes for monotone span programs under standard assumptions [Lew+10, Att14, Wee14, AY15, CGW15, KL15, Att16, OT16, AC17a, CG17, OT19] and adaptively secure ABE schemes for more complex non-monotone span programs [OT16, AC17b, Att19, GWW19, OT19, TKN20]. There are also several ABE schemes for other complex predicates such as (non-)deterministic finite automata [Wat12, Att14, AC17b, AS17, AMY19a, AMY19b, GWW19, GW20] and circuits [Bon+14, GVW15a, GVW15b, BV16]. Although all the ABEET schemes [Zhu+17, Cui+18, Wan+18, Cui+19, Wan+20, Li+21] are pairing-based, there are latticebased ABE schemes under the post-quantum learning with errors assumption [AFV11, ACM12, Agr+12, Xag13, Bon+14, GMW15, GVW15a, GVW15b, BV16, AS17, Kat17, AMY19a, Kat+20].

Known Scheme	predicate	security	policy	universe	model	complexity assumption	compact parameter
CHH+18 [Cui+18]	MSP	selective	CP	small	ROM	q-parallel BDHE	none
CHH+19 [Cui+19]	MSP	selective	CP	small	ROM	q-parallel BDHE	none
WCH+20 [Wan+20]	MSP	selective	CP	small	Std.	q-parallel BDHE	none
LSX+21 [Li+21]	MSP	selective	CP	large	Std.	q-1	mpk
Our Scheme (base schemes)	predicate	security	policy	universe	model	complexity assumption	compact parameter
Scheme 1 ([Wee14, CGW15, CG17])	MSP	adaptive	KP	small	Std.	$k ext{-Lin}$	none
Scheme 2 ([Att14, AC16, Tak21])	MSP	adaptive	KP	large	Std.	$k ext{-Lin}$	none
Scheme 3 ($[AC16, Tak21]$)	MSP	semi-adaptive	\mathbf{KP}	large	Std.	$k ext{-Lin}$	ct
Scheme 4 ($[AC17b, Att19]$)	NSP	adaptive	\mathbf{KP}	large	Std.	q-ratio	mpk
Scheme 5 ([AC17b, $Att19$])	NSP	adaptive	\mathbf{KP}	large	Std.	q-ratio	ct
Scheme 6 ([AC17b, $Att19$])	NSP	adaptive	\mathbf{KP}	large	Std.	q-ratio	sk
Scheme 7 ([Wee14, CGW15, CG17])	MSP	adaptive	CP	small	Std.	k-Lin	none
Scheme 8 ([Att14, AC16, Tak21])	MSP	adaptive	CP	large	Std.	$k ext{-Lin}$	none
Scheme 9 ($[AC16, Tak21]$)	NSP	semi-adaptive	CP	large	Std.	k-Lin	ct
Scheme 10 ([AC17b, Att19])	NSP	adaptive	CP	large	Std.	q-ratio	mpk
Scheme 11 ([AC17b, Att19])	NSP	adaptive	CP	large	Std.	q-ratio	ct
Scheme 12 ([AC17b, Att19])	NSP	adaptive	CP	large	Std.	q-ratio	sk
Scheme 13 ([Att14, AC17b])	DFA	adaptive	KP	large	Std.	q-ratio	mpk
Scheme 14 ([Att14, AC17b])	DFA	adaptive	CP	large	Std.	q-ratio	mpk

Table 1: Comparison among known CCA-secure ABEET schemes for complex predicates

Based on the situation, it is an important open problem to improve ABEET based on techniques of the state-of-the-art ABE schemes.

1.2 Our Contribution

To resolve the above mentioned open problem, we propose a generic construction of CCA-secure ABEET schemes from CPA-secure *delegatable* ABE schemes and cryptographic hash functions. The definition of delegatable ABE should be much simpler than what readers may expect. To construct an ABEET scheme for a predicate $P : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$, our construction uses a delegatable ABE scheme with a hierarchical structure of the depth three, where only the first level supports the predicate $P : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ and the other two levels support only the equality predicate $P_{\text{IBE}} : \mathcal{V} \times \mathcal{V} \to \{0, 1\}$. Since delegatable ABE has not been studied as much as (non-delegatable) ABE, we do not know whether our generic construction provides ABEET schemes that have the same performance as all state-of-the-art ABE schemes.

Nevertheless, we know that our generic construction provides various attractive ABEET schemes that should be better than known ABEET schemes [Zhu+17, Cui+18, Wan+18, Cui+19, Wan+20, Li+21]. At first, we can easily obtain selectively secure lattice-based ABEET schemes for circuits and inner product predicates from Boneh et al.'s delegatable ABE scheme for circuits [Bon+14] and hierarchical inner product encryption [ACM12, Xag13], respectively. Next, we obtain several

pairing-based ABEET schemes through the predicate encoding and pair encoding frameworks introduced by Wee [Wee14] and Attrapadung [Att14], respectively. These frameworks are unifying methods to design ABE for a large class of predicates, where the pair encoding can handle more complex predicates than the predicate encoding. Furthermore, Ambrona et al.'s transformation [ABS17] enables us to modify a predicate encoding scheme and a pair encoding scheme for a predicate P as a delegatable one. Therefore, we can construct ABEET schemes for complex predicates captured by the predicate encoding and pair encoding frameworks. As a result, we obtain new and impressive ABEET schemes for various predicates at once.

Table 1 illustrates a comparison between CCA-secure ABEET schemes for some complex predicate including monotone span programs. Here, we omit two previous ABEET schemes [Zhu+17, Wan+18] since they consider non-standard predicates in the literature (of ABE). All the schemes are constructed over prime-order bilinear groups. Since there are huge number of ABE schemes through the pair encoding framework, all ABEET schemes obtained by our generic construction may not be covered in Table 1. However, fourteen schemes listed in Table 1 should be sufficient for clarifying the impact of our generic construction. We briefly summarize how to obtain base ABE schemes as follows:

- Schemes 1 and 7: Instantiating predicate encoding scheme [Wee14] with [CGW15, CG17].
- Schemes 2 and 8: Instantiating pair encoding scheme [Att14] with [AC16, Tak21].
- Scheme 3: Instantiating a pair encoding scheme [AC16] with [AC16, Tak21].
- Scheme 9: Instantiating a pair encoding scheme [Tak21] with [AC16, Tak21].
- Schemes 4–6 and 10–12: Instantiating pair encoding schemes [Att19] with [AC17b].
- Schemes 13 and 14: Instantiating pair encoding schemes [Att14] with [AC17b].

Then, we explain various advantages of our results compared with known ABEET schemes for monotone span programs [Cui+18, Cui+19, Wan+20, Li+21].

- Although all known ABEET schemes capture monotone span programs, Schemes 4–6 and 9–12 capture non-monotone span programs and Schemes 13 and 14 capture deterministic finite automata.
- Although all known ABEET schemes satisfy only selective security, Schemes 1, 2, 4–8, 10–14 satisfy adaptive security and Schemes 3 and 9 satisfy semi-adaptive security.
- Although all known ABEET schemes except [Li+21] support only small universe, Schemes 2–6 and 8–14 support large universe.
- Although security of all known ABEET schemes are based on q-type assumptions, security of Schemes 1–3 and 7–9 are based on the standard k-linear assumption.
- Although all known ABEET schemes do not have compact ciphertexts and secret keys, Schemes 3, 5, 9, 11 have compact ciphertexts and Schemes 6 and 12 have compact secret keys.

Therefore, we successfully obtain several improved ABEET schemes from our generic construction. Moreover, although we only list proposed ABEET schemes for complex predicates in Table 1, our generic construction also provides various ABEET schemes for less expressive but important predicates captured by the pair encoding and the predicate encoding such as (non-zero) inner product encryption, (negated) spatial encryption, doubly spatial encryption, and arithmetic span programs.

1.3 Technical Overview

We explain an overview of our construction. At first, we briefly summarize the fact that any IND-CPA-secure ABE scheme for a predicate $P: \mathcal{X} \times \mathcal{Y} \to \{0,1\}$ becomes IND-CPA-secure ABEET scheme for the same predicate by combining with cryptographic hash functions. For this purpose, we run two ABE schemes for the same predicate in parallel. Let $ABE.mpk_0$ and $ABE.mpk_1$ denote master public keys of the two ABE schemes and let $H: \{0,1\}^* \to \mathcal{M}$ denote a cryptographic hash function, where \mathcal{M} denotes the plaintext space of the underlying ABE scheme. Then, we set $mpk = (ABE.mpk_0, ABE.mpk_1, H)$ as the master public key of an ABEET scheme. We encrypt a plaintext $M \in \mathcal{M}$ for a ciphertext attribute $x \in \mathcal{X}$ as $ct_x = (ABE.ct_{x,0}, ABE.ct_{x,1})$, where $ABE.ct_{x,0}$ and ABE. $ct_{x,1}$ are encryptions of M and H(M) for the same x computed by ABE.mpk₀ and ABE.mpk₁, respectively. We set a secret key of a key attribute $y \in \mathcal{Y}$ as $\mathsf{sk}_y = (\mathsf{ABE}.\mathsf{sk}_{y,0}, \mathsf{ABE}.\mathsf{sk}_{y,1})$, where $ABE.sk_{y,0}$ and $ABE.sk_{y,1}$ are secret keys for the same y computed by $(ABE.mpk_0, ABE.msk_0)$ and $(ABE.mpk_1, ABE.msk_1)$, respectively. The secret key sk_y can decrypt the ciphertext ct_x if P(x, y) = 1by simply decrypting the ABE ciphertext ABE.ct_{x,0} with the ABE secret key ABE.sk_{y,0} and recover M. We set a trapdoor for $y \in \mathcal{Y}$ as $\mathsf{td}_y = \mathsf{ABE.sk}_{y,1}$. Given two ciphertexts $(\mathsf{ct}_x, \mathsf{ct}_{x'})$ for $(x, x') \in \mathcal{X}^2$ and two trapdoors $(\mathsf{td}_y, \mathsf{td}_{y'})$ such that $\mathsf{P}(x, y) = \mathsf{P}(x', y') = 1$, we can check whether the two ciphertexts are encryptions of the same plaintexts by checking whether the decryption results of the ABE ciphertexts $ABE.ct_{x,1}$ and $ABE.ct_{x',1}$ by the trapdoors $ABE.sk_{y,1}$ and $ABE.sk_{y',1}$, respectively, have the same values.

Next, we observe that the above ABEET scheme satisfies CPA security. Briefly speaking, ABEET has to be secure against two types of adversaries called Type-I and Type-II. Let x^* denote the target ciphertext attribute. The Type-I adversary can receive trapdoors td_u such that $\mathsf{P}(x^*, y) = 1$, while the Type-II adversary cannot receive such trapdoors. Although the Type-I adversary trivially breaks indistinguishability by definition, we can prove one-wayness against the Type-I adversary. Thus, the challenge ciphertext $ct_{x^*}^*$ is an encryption of $M^* \leftarrow_{\$} \mathcal{M}$. The IND-CPA security of the underlying ABE scheme ensures that the first element ABE. $ct_{x^*,0}$ of the challenge ciphertext $ct_{x^*}^*$ does not reveal the information of M^{*} at all. Since the Type-I adversary has the trapdoor $\mathsf{td}_y = \mathsf{sk}_{y,1}$ such that $\mathsf{P}(x^*, y) = 1$, it can recover $\mathsf{H}(\mathsf{M}^*)$; however, the one-wayness of the hash function H ensures that M^{*} cannot be recovered. In contrast, we have to prove indistinguishability against the Type-IIadversary. Thus, the challenge ciphertext $ct_{x^*}^*$ is an encryption of M^*_{coin} , where the tuple $(\mathsf{M}_0^*, \mathsf{M}_1^*)$ is declared by the adversary and coin $\leftarrow_{\$} \{0, 1\}$ is flipped by the challenger. In this case, the IND-CPA security of the underlying ABE scheme ensures that both $ABE.ct_{x^*,0}$ and ABE.ct_{x*,1} do not reveal the information of M^*_{coin} and $H(M^*_{coin})$ at all, respectively. We note that the above construction does not provide CCA security even if the underlying ABE scheme satisfies IND-CCA security. Indeed, when the Type-IIadversary receives the challenge ciphertext $ct_{x^*} = (ABE.ct_{x^*,0}, ABE.ct_{x^*,1})$, it can guess the value of coin by making a decryption query on $(ABE.ct_{x,0}, ABE.ct_{x^*,1})$, where $ABE.ct_{x,0}$ is the encryption of M_0^* or M_1^* computed by the adversary itself.

Based on the discussion so far, what we have to achieve is CCA security. For this purpose, we follow the generic construction of CCA-secure IBEET from IND-CPA-secure hierarchical IBE with the depth three proposed by Lee et al. [Lee+16b]. Lee et al. used the CHK transform [CHK04] to update the above scheme for achieving CCA security in the identity-based setting. Similarly, we use the Yamada et al.'s transform [Yam+11], which is the attribute-based variant of the CHK transform, to update the above scheme for achieving CCA security in the attribute-based setting. We use IND-CPA-secure delegatable ABE scheme with the depth three as a building block. Specifically, to construct ABEET for a predicate $P : \mathcal{X} \times \mathcal{Y} \to \{0,1\}$, we use a delegatable ABE scheme for a predicate $(\mathcal{X} \times \{0,1\} \times \mathcal{V}) \times (\mathcal{Y} \times \{0,1\} \times \mathcal{V}) \to \{0,1\}$, where a secret key ABE.sk_{y,b',v'} can decrypt

a ciphertext $ABE.ct_{x,b,v}$ correctly iff it holds that $P(x, y) = 1 \land b = b' \land v = v'$. Here, we use the second hierarchical level $b, b' \in \{0, 1\}$ to specify which of the ABE scheme in the above CPA-secure construction and the third level $v, v' \in \mathcal{V}$ to specify verification keys of the one-time signature scheme. As a result, we set a master public key, ciphertexts for $x \in \mathcal{X}$, secret keys and trapdoors for $y \in \mathcal{Y}$ of ABEET as mpk = ABE.mpk, $ct_x = (ABE.ct_{x,0,verk}, ABE.ct_{x,1,verk}, \sigma)$, $sk_y = ABE.sk_y$, and $td_y = ABE.sk_{y,1}$, respectively, where verk is a verification key of the one-time signature scheme and σ is a signature for the message [ABE.ct_{x,0,verk} ||ABE.ct_{x,1,verk}]. Intuitively, the construction achieves CCA security by combining with security of the above CPA-secure construction and Yamada et al.'s technique [Yam+11].

1.4 Roadmap

In Section 2, we introduce notations and give some definitions. We show our generic construction of ABEET and prove its correctness in Section 3. We provide security proofs of our construction in Section 4.

2 Preliminaries

Notation. Throughout the paper, λ denotes a security parameter. For an *i*-bit binary string $s_1 \in \{0,1\}^i$ and a *j*-bit binary string $s_2 \in \{0,1\}^j$, let $[s_1||s_2] \in \{0,1\}^{i+j}$ denote an (i+j)-bit concatenation of s_1 and s_2 . For a finite set $S, s \leftarrow_{\$} S$ denotes a sampling of an element *s* from *S* uniformly at random and let |S| denotes a cardinality of *S*.

2.1 Delegatable Attribute-based Encryption

We define delegatable attribute-based encryption (ABE). To make readers easier to understand, we here consider a special case of ABE, which is sufficient to describe our construction. The definition we use here differs from the general definition of ABE in the following ways:

- The hierarchical level is three, not an arbitrary number.
- The second and third levels support only the equality predicate as in identity-based encryption, where the second level and third level take elements of $\{0, 1\}$ and an identity space \mathcal{V} , respectively.
- The Enc algorithm always takes a level-3 attribute.

Let $\mathsf{P}: \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ denotes a predicate, where \mathcal{X} and \mathcal{Y} are attribute spaces for ciphertexts and secret keys, respectively. In our definition of ABE for a predicate P , ciphertexts $\mathsf{ct}_{x,b,v}$ and secret keys $\mathsf{sk}_{y,b',v'}$ are associated with $(x, b, v) \in \mathcal{X} \times \{0, 1\} \times \mathcal{V}$ and $(y, b', v') \in \mathcal{Y} \times \{0, 1\} \times \mathcal{V}$, respectively. A secret key $\mathsf{sk}_{y,b',v'}$ can decrypt a ciphertext $\mathsf{ct}_{x,b,v}$ if it holds that $\mathsf{P}(x, y) = 1 \land b = b' \land v = v'$.

Syntax. An ABE scheme Π_{ABE} for a predicate P consists of the five algorithms (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec, ABE.Delegate) as follows:

- $ABE.Setup(1^{\lambda}) \rightarrow (ABE.mpk, ABE.msk)$: On input the security parameter 1^{λ} , it outputs a master public key ABE.mpk and a master secret key ABE.msk. We assume that mpk contains a description of a plaintext space \mathcal{M} that is determined only by the security parameter λ .
- $\mathsf{ABE}.\mathsf{Enc}(\mathsf{ABE}.\mathsf{mpk}, (x, b, v), \mathsf{M}) \to \mathsf{ABE}.\mathsf{ct}_{x, b, v}$: On input a master public key $\mathsf{ABE}.\mathsf{mpk}, (x, b, v) \in \mathcal{X} \times \{0, 1\} \times \mathcal{V}$, and a plaintext $\mathsf{M} \in \mathcal{M}$, it outputs a ciphertext $\mathsf{ABE}.\mathsf{ct}_{x, b, v}$.

- ABE.KeyGen(ABE.mpk, ABE.msk, Y) \rightarrow ABE.sk_Y: On input a master public key ABE.mpk, a master secret key ABE.msk, and Y, it outputs a secret key ABE.sk_Y, where Y is the element of \mathcal{Y} , $\mathcal{Y} \times \{0, 1\}$ or $\mathcal{Y} \times \{0, 1\} \times \mathcal{V}$.
- ABE.Dec(ABE.mpk, ABE.ct_{x,b,v}, ABE.sk_{y,b',v'}) \rightarrow M or \perp : On input a master public key ABE.mpk, a ciphertext ABE.ct_{x,b,v}, and a secret key ABE.sk_{y,b',v'}, it outputs the decryption result M if $P(x, y) = 1 \land (b, v) = (b', v')$. Otherwise, output \perp .
- $\begin{array}{l} \mathsf{ABE}.\mathsf{Delegate}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{sk}_Y,Y') \to \mathsf{ABE}.\mathsf{sk}_{Y'} \text{: On input a master public key } \mathsf{ABE}.\mathsf{mpk}, \text{ a secret key } \mathsf{ABE}.\mathsf{sk}_Y \text{ and } Y', \text{ it outputs a secret key } \mathsf{ABE}.\mathsf{sk}_{Y'}, \text{ where } Y \text{ is the element of } \mathcal{Y} \text{ or } \mathcal{Y} \times \{0,1\}, Y' \text{ is the element of } \{Y\} \times \{0,1\} \text{ or } \{Y\} \times \{0,1\} \times \mathcal{V} \text{ if } Y \in \mathcal{Y}, \text{ and } Y' \text{ is the element of } \{Y\} \times \{0,1\} \times \mathcal{V} \text{ if } Y \in \mathcal{Y} \times \{0,1\}. \end{array}$

Correctness. For all $\lambda \in \mathbb{N}$, all (ABE.mpk, ABE.msk) \leftarrow ABE.Setup (1^{λ}) , all $M \in \mathcal{M}$, all $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that $\mathsf{P}(x, y) = 1$, and all $(b, v) \in \{0, 1\} \times \mathcal{V}$, it is required that $\mathsf{M}' = \mathsf{M}$ holds with overwhelming probability, where $\mathsf{ABE.ct}_{x,b,v} \leftarrow \mathsf{ABE.Enc}(\mathsf{ABE.mpk}, (x, b, v), \mathsf{M})$, $\mathsf{ABE.sk}_{y,b,v} \leftarrow \mathsf{ABE.KeyGen}(\mathsf{ABE.mpk}, \mathsf{ABE.msk}, (y, b, v))$, and $\mathsf{M}' \leftarrow \mathsf{ABE.Dec}(\mathsf{ABE.mpk}, \mathsf{ABE.ct}_{x,b,v}, \mathsf{ABE.sk}_{y,b,v})$. In addition, there is a correctness for $\mathsf{ABE.Delegate}$, where outputs of $\mathsf{ABE.KeyGen}(\mathsf{ABE.mpk}, \mathsf{ABE.mpk}, \mathsf{ABE.mpk}, \mathsf{ABE.Mex}, Y')$ and $\mathsf{ABE.Delegate}(\mathsf{ABE.mpk}, \mathsf{ABE.KeyGen}(\mathsf{ABE.mpk}, \mathsf{ABE.msk}, Y), Y')$ follow the same distribution.

Security. We consider adaptive IND-CPA security defined below. Note that the following definition is specific to the above syntax but implied by the general adaptive IND-CPA definition.

Definition 2.1 (Adaptive IND-CPA Security). The adaptive IND-CPA security of an ABE scheme Π_{ABE} is defined by a game between an adversary \mathcal{A} and a challenger \mathcal{C} as follows:

Init: C runs (ABE.mpk, ABE.msk) \leftarrow ABE.Setup (1^{λ}) and gives mpk to A.

Phase 1: \mathcal{A} is allowed to make the following two types of queries to \mathcal{C} :

- **Key extraction query:** \mathcal{A} is allowed to make the query on Y. Upon the query, \mathcal{C} runs $\mathsf{ABE.sk}_Y \leftarrow \mathsf{ABE.KeyGen}(\mathsf{ABE.mpk}, \mathsf{ABE.msk}, Y)$ and returns $\mathsf{ABE.sk}_Y$ to \mathcal{A} , where Y is the element of $\mathcal{Y}, \mathcal{Y} \times \{0, 1\}$ or $\mathcal{Y} \times \{0, 1\} \times \mathcal{V}$.
- **Challenge query:** \mathcal{A} is allowed to make the query only once. Upon \mathcal{A} 's query on $((x^*, b^*, v^*), M_0^*, M_1^*) \in \mathcal{X} \times \{0, 1\} \times \mathcal{V} \times \mathcal{M}^2$, where M_0^* and M_1^* have the same length and (x^*, b^*, v^*) should not satisfy the following conditions for all the attributes Y queried on key extraction queries in Phase 1:
 - If $Y = y \in \mathcal{Y}$, $\mathsf{P}(x^*, y) = 1$ holds.
 - If $Y = (y, b) \in \mathcal{Y} \times \{0, 1\}$, $\mathsf{P}(x^*, y) = 1 \land b^* = b$ holds.
 - If $Y = (y, b, v) \in \mathcal{Y} \times \{0, 1\} \times \mathcal{V}$, $\mathsf{P}(x^*, y) = 1 \land (b^*, v^*) = (b, v)$ holds.

Then, C flips a coin coin $\leftarrow_{\$} \{0,1\}$ and runs $\mathsf{ABE.ct}^*_{x^*,b^*,v^*} \leftarrow \mathsf{ABE.Enc}(\mathsf{ABE.mpk},(x^*,b^*,v^*),\mathsf{M}^*_{\mathsf{coin}})$. Then, C returns $\mathsf{ABE.ct}^*_{x^*,b^*,v^*}$ to \mathcal{A} .

Phase 2: \mathcal{A} is allowed to make key extraction queries as in Phase 1 with the following exceptions:

Key extraction query: Upon \mathcal{A} 's query on Y, Y should not satisfy the conditions with x^* as we mentioned in the challenge query.

Guess: At the end of the game, \mathcal{A} returns $coin' \in \{0, 1\}$ as a guess of coin.

The adversary \mathcal{A} wins in the above game if coin = coin' and the advantage is defined to

$$\mathsf{Adv}^{\mathrm{IND-CPA}}_{\Pi_{\mathsf{ABE}},\mathcal{A}}(\lambda) \coloneqq \left| \Pr[\mathsf{coin}' = \mathsf{coin}] - \frac{1}{2} \right|.$$

If $\mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{A}}^{\mathrm{IND-CPA}}$ is negligible in the security parameter λ for all PPT adversaries \mathcal{A} , an ABE scheme Π_{ABE} is said to satisfy adaptive IND-CPA security.

Remark 1. The Definition 2.1 states the adaptive IND-CPA security in the sense that \mathcal{A} declares the target (x^*, b^*, v^*) at the challenge query, the *selective* IND-CPA security can be defined in the same way except that \mathcal{A} declares the target (x^*, b^*, v^*) before the init phase. Similarly, the *semi-adaptive* IND-CPA security can be defined in the same way except that \mathcal{A} declares the target (x^*, b^*, v^*) just after the init phase.

2.2 One-Time Signature

Syntax. An one-time signature (OTS) scheme Γ consists of three algorithms (Sig.Setup, Sig.Sign, Sig.Vrfy) as follows:

- Sig.Setup $(1^{\lambda}) \rightarrow (\text{verk}, \text{sigk})$: given the security parameter 1^{λ} , it outputs a key pair (verk, sigk).
- Sig.Sign(sigk, M) $\rightarrow \sigma$: given the signing key sigk and a message M $\in \{0, 1\}^*$, it outputs a signature σ .
- Sig.Vrfy(verk, M, σ) $\rightarrow 1$ or 0: given the verification key verk, a message $M \in \{0, 1\}^*$, and its signature σ , it outputs 1, which indicates "acceptance", or 0, which indicates "rejection".

Correctness. We require that for all security parameters $\lambda \in \mathbb{N}$, $(\mathsf{verk}, \mathsf{sigk}) \leftarrow \mathsf{Sig}.\mathsf{Setup}(1^{\lambda})$, and messages $\mathsf{M} \in \{0, 1\}^*$, it holds that $\mathsf{Sig}.\mathsf{Vrfy}(\mathsf{verk}, \mathsf{M}, \mathsf{Sig}.\mathsf{Sign}(\mathsf{sigk}, \mathsf{M})) = 1$ with overwhelming probability.

Security. We define a security notion for OTS. Let Γ be an OTS scheme, and we consider a game between an adversary \mathcal{A} and the challenger \mathcal{C} . The game is parameterized by the security parameter λ . The game proceeds as follows: \mathcal{C} first runs (verk, sigk) \leftarrow Sig.Setup(1^{λ}) and gives verk to \mathcal{A} . \mathcal{A} is allowed to make the *signature generation query* only once: upon a query $\mathsf{M} \in \{0, 1\}^*$ from \mathcal{A} , \mathcal{C} returns $\sigma \leftarrow \mathsf{Sig.Sign}(\mathsf{sigk}, \mathsf{M})$ to \mathcal{A} . \mathcal{A} outputs (M^*, σ^*) and terminates. In this game, \mathcal{A} 's advantage is defined by

$$\mathsf{Adv}_{\Gamma,\mathcal{A}}^{\mathsf{OTS}}(\lambda) \coloneqq \Pr[\mathsf{Sig}.\mathsf{Vrfy}(\mathsf{verk},\mathsf{M}^*,\sigma^*) \to 1 \land (\mathsf{M}^*,\sigma^*) \neq (\mathsf{M},\sigma)].$$

Definition 2.2 (Strong Unforgeability). We say that an OTS scheme Γ satisfies strong unforgeability, if the advantage $\mathsf{Adv}_{\Gamma,\mathcal{A}}^{\mathsf{OTS}}(\lambda)$ is negligible for all PPT adversaries \mathcal{A} .

2.3 Hash Functions

Let $H: \mathcal{M} \to \mathcal{R}$ be a hash function. We require the following properties of hash functions for our schemes.

Definition 2.3 (One-wayness). We say that a hash function H is one-way (or preimage resistant) if for all PPT adversaries \mathcal{A} ,

$$\mathsf{Adv}^{\mathsf{OW}}_{\mathsf{H},\mathcal{A}}(\lambda) \coloneqq \Pr\left[\mathsf{M}^* \leftarrow_{\$} \mathcal{M}, h^* = \mathsf{H}(\mathsf{M}^*), \mathsf{M}' \leftarrow \mathcal{A}(h^*) : \mathsf{H}(\mathsf{M}') = h^*\right]$$

is negligible in λ .

Definition 2.4 (Collision Resistance). We say that a hash function H is collision resistant if for all PPT adversaries \mathcal{A} ,

$$\mathsf{Adv}_{\mathsf{H},\mathcal{A}}^{\mathsf{CR}}(\lambda) \coloneqq \Pr\left[(\mathsf{M}_0,\mathsf{M}_1) \leftarrow \mathcal{A} : \mathsf{M}_0 \neq \mathsf{M}_1 \land \mathsf{H}(\mathsf{M}_0) = \mathsf{H}(\mathsf{M}_1)\right]$$

is negligible in λ .

2.4 Attribute-based Encryption with Equality Test

Syntax. An ABEET scheme Π for a predicate $P : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ consists of the following six algorithms (Setup, Enc, KeyGen, Dec, Trapdoor, Test) as follows:

- Setup $(1^{\lambda}) \rightarrow (\mathsf{mpk}, \mathsf{msk})$: On input the security parameter 1^{λ} , it outputs a master public key mpk and a master secret key msk . We assume that mpk contains a description of a plaintext space \mathcal{M} that is determined only by the security parameter λ .
- $\mathsf{Enc}(\mathsf{mpk}, x, \mathsf{M}) \to \mathsf{ct}_x$: On input a master public key $\mathsf{mpk}, x \in \mathcal{X}$, and a plaintext $\mathsf{M} \in \mathcal{M}$, it outputs a ciphertext ct_x .
- $\mathsf{KeyGen}(\mathsf{mpk},\mathsf{msk},y) \to \mathsf{sk}_y$: On input a master public key mpk , a master secret key msk , and $y \in \mathcal{Y}$, it outputs a secret key sk_y .
- $\mathsf{Dec}(\mathsf{mpk}, \mathsf{ct}_x, \mathsf{sk}_y) \to \mathsf{M} \text{ or } \bot$: On input a master public key mpk , a ciphertext ct_x , and a secret key sk_y , it outputs the decryption result M if $\mathsf{P}(x, y) = 1$. Otherwise, output \bot .
- Trapdoor(mpk, sk_y) $\rightarrow td_y$: On input a master public key mpk and a secret key sk_y , it outputs the trapdoor td_y for $y \in \mathcal{Y}$.
- $\mathsf{Test}(\mathsf{ct}_x, \mathsf{td}_y, \mathsf{ct}_{x'}, \mathsf{td}_{y'}) \to 1 \text{ or } 0$: On input two ciphertexts $\mathsf{ct}_x, \mathsf{ct}_y$ and two trapdoors $\mathsf{td}_y, \mathsf{td}_{y'}$, it outputs 1 or 0.

Correctness. We require an ABEET scheme to satisfy the following three conditions. Briefly speaking, the first condition ensures that the Dec algorithm works correctly. In contrast, the second (resp. third) conditions ensure that the Test algorithm outputs 1 (resp. 0) if ct_x and $ct_{x'}$ are encryptions of the same plaintext (resp. distinct plaintexts), respectively. The three conditions are formally defined as follows:

- (1) For all $\lambda \in \mathbb{N}$, $(\mathsf{mpk}, \mathsf{msk}) \leftarrow \mathsf{Setup}(1^{\lambda})$, $\mathsf{M} \in \mathcal{M}$, $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, such that $\mathsf{P}(x, y) = 1$, it is required that $\mathsf{M}' = \mathsf{M}$ holds with overwhelming probability, where $\mathsf{ct}_x \leftarrow \mathsf{Enc}(\mathsf{mpk}, x, \mathsf{M})$, $\mathsf{sk}_y \leftarrow \mathsf{KeyGen}(\mathsf{mpk}, \mathsf{msk}, y)$, and $\mathsf{M}' \leftarrow \mathsf{Dec}(\mathsf{mpk}, \mathsf{ct}_x, \mathsf{sk}_y)$.
- (2) For all $\lambda \in \mathbb{N}$, all (mpk, msk) \leftarrow Setup (1^{λ}) , all $\mathsf{M} \in \mathcal{M}$, all $x_0, x_1 \in \mathcal{X}$ and all $y_0, y_1 \in \mathcal{Y}$, such that $\wedge_{i \in \{0,1\}} \mathsf{P}(x_i, y_i) = 1$, it is required that $\mathsf{Test}(\mathsf{ct}_{x_0}, \mathsf{td}_{y_0}, \mathsf{ct}_{x_1}, \mathsf{td}_{y_1}) \to 1$ holds with overwhelming probability, where $\mathsf{sk}_{y_i} \leftarrow \mathsf{KeyGen}(\mathsf{mpk}, \mathsf{msk}, y_i)$, $\mathsf{ct}_{x_i} \leftarrow \mathsf{Enc}(\mathsf{mpk}, x_i, \mathsf{M})$, and $\mathsf{td}_{y_i} \leftarrow \mathsf{Trapdoor}(\mathsf{mpk}, \mathsf{sk}_{y_i})$ for i = 0, 1.

(3) For all $\lambda \in \mathbb{N}$, all (mpk, msk) \leftarrow Setup (1^{λ}) , all PPT adversaries \mathcal{A} , all $x_0, x_1 \in \mathcal{X}$ and all $y_0, y_1 \in \mathcal{Y}$, such that $\wedge_{i \in \{0,1\}} \mathsf{P}(x_i, y_i) = 1$, it is required that

 $\mathsf{M}_0 \neq \mathsf{M}_1 \land \mathsf{Test}(\mathsf{ct}_{x_0}, \mathsf{td}_{y_0}, \mathsf{ct}_{x_1}, \mathsf{td}_{y_1}) \to 1$

holds with negligible probability, where $(M_0, M_1) \leftarrow \mathcal{A}(\mathsf{mpk}, \mathsf{msk})$, $\mathsf{sk}_{y_i} \leftarrow \mathsf{KeyGen}(\mathsf{mpk}, \mathsf{msk}, y_i)$, $\mathsf{ct}_{x_i} \leftarrow \mathsf{Enc}(\mathsf{mpk}, x_i, \mathsf{M})$, and $\mathsf{td}_{y_i} \leftarrow \mathsf{Trapdoor}(\mathsf{mpk}, \mathsf{sk}_{y_i})$ for i = 0, 1.

Security. For the security of ABEET, we consider two different type of adversary. One has a trapdoor for the target attribute or not.

- Type-I adversary: This type of adversaries have trapdoors td_y such that $\mathsf{P}(x^*, y) = 1$. Therefore, the adversaries can perform the equality test with the challenge ciphertext $\mathsf{ct}_{x^*}^*$. Hence, we consider one-wayness.
- Type-II adversary: This type of adversaries have no trapdoors td_y such that $\mathsf{P}(x^*, y) = 1$. Therefore, the adversaries cannot perform the equality test with the challenge ciphertext $\mathsf{ct}_{x^*}^*$. Hence, we consider indistinguishability.

Definition 2.5 (Adaptive OW-CCA2 Security against Type-I Adversaries). The adaptive OW-CCA2 security against Type-I adversaries of an ABEET scheme Π is defined by a game between an adversary \mathcal{A} and a challenger \mathcal{C} as follows:

Init: C runs (mpk, msk) \leftarrow Setup (1^{λ}) and gives mpk to A.

Phase 1: \mathcal{A} is allowed to make the following three types of queries to \mathcal{C} :

- **Key extraction query:** \mathcal{A} is allowed to make the query on $y \in \mathcal{Y}$ to \mathcal{C} . Upon the query, \mathcal{C} runs $\mathsf{sk}_y \leftarrow \mathsf{KeyGen}(\mathsf{mpk},\mathsf{msk},y)$ and returns sk_y to \mathcal{A} .
- **Decryption query:** \mathcal{A} is allowed to make the query on (ct_x, y) to \mathcal{C} . Upon the query, \mathcal{C} runs $\mathsf{sk}_y \leftarrow \mathsf{KeyGen}(\mathsf{mpk}, \mathsf{msk}, y)$ and $\mathsf{M} \leftarrow \mathsf{Dec}(\mathsf{mpk}, \mathsf{sk}_y, \mathsf{ct}_x)$, and returns M to \mathcal{A} .
- **Trapdoor query:** \mathcal{A} is allowed to make the query on $y \in \mathcal{Y}$ to \mathcal{C} . Upon the query, \mathcal{C} runs $\mathsf{sk}_y \leftarrow \mathsf{KeyGen}(\mathsf{mpk},\mathsf{msk},y)$ and $\mathsf{td}_y \leftarrow \mathsf{Trapdoor}(\mathsf{mpk},\mathsf{sk}_y)$, and returns td_y to \mathcal{C} .
- **Challenge query:** \mathcal{A} is allowed to make the query only once. Upon \mathcal{A} 's query on $x^* \in \mathcal{X}$, x^* should not satisfy the condition $\mathsf{P}(x^*, y) = 1$ for all the attributes $y \in \mathcal{Y}$ queried on key extraction queries in Phase 1. Then, \mathcal{C} chooses $\mathsf{M}^* \leftarrow_{\$} \mathcal{M}$ and runs $\mathsf{ct}^* \leftarrow \mathsf{Enc}(\mathsf{mpk}, x^*, \mathsf{M}^*)$. Then, \mathcal{C} returns $\mathsf{ct}^*_{x^*}$ to \mathcal{A} .
- **Phase 2:** \mathcal{A} is allowed to make key extraction queries, decryption queries and trapdoor queries as in Phase 1 with the following exceptions:
 - **Key extraction query:** Upon \mathcal{A} 's query on $y \in \mathcal{Y}$, y should not satisfy the condition $\mathsf{P}(x^*, y) = 1$.

Decryption query: Upon \mathcal{A} 's query on (ct_x, y) , $\mathsf{ct}_x = \mathsf{ct}_{x^*}^*$ does not hold.

Guess: At the end of the game, \mathcal{A} returns $M' \in \mathcal{M}$ as a guess of M^* .

The adversary \mathcal{A} wins in the above game if $M^* = M'$ and the advantage is defined to

$$\mathsf{Adv}_{\Pi,\mathcal{A}}^{\mathrm{OW-CCA2}}(\lambda) \coloneqq \left| \Pr[\mathsf{M}^* = \mathsf{M}'] - \frac{1}{|\mathcal{M}|} \right|.$$

If $\mathsf{Adv}_{\Pi,\mathcal{A}}^{\mathrm{OW-CCA2}}$ is negligible in the security parameter λ for all PPT adversaries \mathcal{A} , an ABEET scheme Π is said to satisfy adaptive OW-CCA2 security against Type-I adversaries.

Definition 2.6 (Adaptive IND-CCA2 Security against Type-II Adversaries). The adaptive IND-CCA2 security against Type-II adversaries of an ABEET scheme II is defined by a game between an adversary \mathcal{A} and a challenger \mathcal{C} as follows:

Init: C runs (mpk, msk) \leftarrow Setup (1^{λ}) and gives mpk to A.

Phase 1: \mathcal{A} is allowed to make the following three types of queries to \mathcal{C} :

- **Key extraction query:** \mathcal{A} is allowed to make the query on $y \in \mathcal{Y}$ to \mathcal{C} . Upon the query, \mathcal{C} runs $\mathsf{sk}_y \leftarrow \mathsf{KeyGen}(\mathsf{mpk},\mathsf{msk},y)$ and returns sk_y to \mathcal{A} .
- **Decryption query:** \mathcal{A} is allowed to make the query on (ct_x, y) to \mathcal{C} . Upon the query, \mathcal{C} runs $\mathsf{sk}_y \leftarrow \mathsf{KeyGen}(\mathsf{mpk}, \mathsf{msk}, y)$ and $\mathsf{M} \leftarrow \mathsf{Dec}(\mathsf{mpk}, \mathsf{sk}_y, \mathsf{ct}_x)$, and returns M to \mathcal{A} .
- **Trapdoor query:** \mathcal{A} is allowed to make the query on $y \in \mathcal{Y}$ to \mathcal{C} . Upon the query, \mathcal{C} runs $\mathsf{sk}_y \leftarrow \mathsf{KeyGen}(\mathsf{mpk}, \mathsf{msk}, y)$ and $\mathsf{td}_y \leftarrow \mathsf{Trapdoor}(\mathsf{mpk}, \mathsf{sk}_y)$, and returns td_y to \mathcal{C} .
- **Challenge query:** \mathcal{A} is allowed to make the query only once. Upon \mathcal{A} 's query on $(x^*, \mathsf{M}_0^*, \mathsf{M}_1^*) \in \mathcal{X} \times \mathcal{M}^2$, $|\mathsf{M}_0^*| = |\mathsf{M}_1^*|$ holds and x^* should not satisfy the condition $\mathsf{P}(x^*, y) = 1$ for all the attributes $y \in \mathcal{Y}$ queried on key extraction queries and trapdoor queries in Phase 1. \mathcal{C} flips a coin coin $\leftarrow_{\$} \{0, 1\}$ and runs $\mathsf{ct}^* \leftarrow \mathsf{Enc}(\mathsf{mpk}, x^*, \mathsf{M}^*_{\mathsf{coin}})$. Then, \mathcal{C} returns ct^* to \mathcal{A} .
- **Phase 2:** \mathcal{A} is allowed to make key extraction queries, decryption queries and trapdoor queries as in Phase 1 with the following exceptions:

Key extraction query: Upon \mathcal{A} 's query on $y \in \mathcal{Y}$, y should not satisfy the condition $\mathsf{P}(x^*, y) = 1$.

Decryption query: Upon \mathcal{A} 's query on (ct_x, y) , $\mathsf{ct}_x = \mathsf{ct}^*$ does not hold.

Trapdoor query: Upon \mathcal{A} 's query on $y \in \mathcal{Y}$, y should not satisfy the condition $\mathsf{P}(x^*, y) = 1$.

Guess: At the end of the game, \mathcal{A} outputs $coin' \in \{0, 1\}$ as a guess of coin.

The adversary \mathcal{A} wins in the above game if coin = coin' and the advantage is defined to

$$\operatorname{\mathsf{Adv}}_{\Pi,\mathcal{A}}^{\operatorname{IND-CCA2}}(\lambda) \coloneqq \left| \operatorname{Pr}[\operatorname{\mathsf{coin}} = \operatorname{\mathsf{coin}}'] - \frac{1}{2} \right|.$$

If $\mathsf{Adv}_{\Pi,\mathcal{A}}^{\mathrm{IND-CCA2}}$ is negligible in the security parameter λ for all PPT adversaries \mathcal{A} , an ABEET scheme Π is said to satisfy adaptive IND-CCA2 security against Type-II adversaries.

Remark 2. As the case of ABE, we define selective security and semi-adaptive security for ABEET by following Remark 1.

3 Proposed Generic Construction

3.1 Our construction

In this section, we construct an ABEET scheme Π for a predicate P from an ABE scheme Π , an OTS scheme Γ and a hash function H. Here, we assume that plaintext spaces \mathcal{M} of ABE and ABEET are the same. Moreover, \mathcal{M} is the same as the domain of the hash function H and the range of \mathcal{R} is a subset of \mathcal{M} .

- $\begin{array}{l} \mathsf{Setup}(1^{\lambda}) \to (\mathsf{mpk},\mathsf{msk}) \texttt{:} \ \operatorname{Run} (\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{msk}) \leftarrow \mathsf{ABE}.\mathsf{Setup}(1^{\lambda}) \ \mathrm{and} \ \mathrm{output} \ \mathsf{mpk} \coloneqq (\mathsf{ABE}.\mathsf{mpk}, \Gamma,\mathsf{H}) \ \mathrm{and} \ \mathsf{msk} \coloneqq \mathsf{ABE}.\mathsf{msk}. \end{array}$
- $\begin{array}{l} \mathsf{KeyGen}(\mathsf{mpk},\mathsf{msk},y) \to \mathsf{sk}_y \texttt{:} \ \mathrm{Parse} \ \mathsf{mpk} = (\mathsf{ABE}.\mathsf{mpk},\Gamma,\mathsf{H}) \ \mathrm{and} \ \mathsf{msk} = \mathsf{ABE}.\mathsf{msk}. \ \mathrm{Run} \ \mathsf{ABE}.\mathsf{sk}_y \leftarrow \mathsf{ABE}.\mathsf{KeyGen}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{msk},y). \ \mathrm{Output} \ \mathsf{sk}_y \coloneqq \mathsf{ABE}.\mathsf{sk}_y. \end{array}$
- $\begin{array}{l} \mathsf{Dec}(\mathsf{mpk},\mathsf{ct}_x,\mathsf{sk}_y)\to\mathsf{M}\,\mathrm{or}\,\bot\colon\,\mathsf{Parse}\,\mathsf{mpk}=(\mathsf{ABE}.\mathsf{mpk},\Gamma,\mathsf{H}),\,\mathsf{ct}_x=(\mathsf{verk},\mathsf{ABE}.\mathsf{ct}_{x,0,\mathsf{verk}},\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}},\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}},\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}},\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}},\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}}],\sigma)\vee\mathsf{P}(x,y)=0,\\ \mathsf{output}\,\,\bot\,\,\mathsf{Otherwise},\,\,\mathsf{run}\,\,\mathsf{ABE}.\mathsf{sk}_{y,0,\mathsf{verk}}\,\leftarrow\,\mathsf{ABE}.\mathsf{Delegate}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{sk}_y,(y,0,\mathsf{verk})),\\ \mathsf{ABE}.\mathsf{sk}_{y,1,\mathsf{verk}}\,\,\leftarrow\,\,\mathsf{ABE}.\mathsf{Delegate}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{sk}_y,(y,1,\mathsf{verk})),\,\,\mathsf{M}\,\,\leftarrow\,\,\mathsf{ABE}.\mathsf{Dec}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}},\mathsf{ABE}.\mathsf{sk}_{y,1,\mathsf{verk}}),\,\,\mathsf{Output}\,\,\mathsf{M}\,\,\leftarrow\,\,\mathsf{ABE}.\mathsf{Dec}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}},\mathsf{ABE}.\mathsf{sk}_{y,1,\mathsf{verk}}).\,\,\mathsf{Output}\,\,\,\mathsf{M}\,\,\leftarrow\,\,\mathsf{ABE}.\mathsf{dec}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{ABE}.\mathsf{ct}_{x,1,\mathsf{verk}},\mathsf{ABE}.\mathsf{sk}_{y,1,\mathsf{verk}}).\,\,\mathsf{Output}\,\,\,\mathsf{M}\,\,\,\mathsf{M}\,$
- $\begin{aligned} \mathsf{Trapdoor}(\mathsf{mpk},\mathsf{sk}_y) \to \mathsf{td}_y &: \operatorname{Parse} \mathsf{mpk} = (\mathsf{ABE}.\mathsf{mpk},\Gamma,\mathsf{H}) \text{ and } \mathsf{sk}_y = \mathsf{ABE}.\mathsf{sk}_y. \ \operatorname{Run} \mathsf{ABE}.\mathsf{sk}_{y,1} \leftarrow \mathsf{ABE}.\mathsf{Delegate}(\mathsf{ABE}.\mathsf{mpk},\mathsf{ABE}.\mathsf{sk}_y,(y,1)). \ \operatorname{Output} \mathsf{td}_y &\coloneqq \mathsf{ABE}.\mathsf{sk}_{y,1}. \end{aligned}$
- $\begin{aligned} \mathsf{Test}(\mathsf{ct}_x,\mathsf{td}_y,\mathsf{ct}_{x'},\mathsf{td}_{y'}) &\to 1 \, \mathrm{or} \, 0: \, \mathsf{Parse} \, \mathsf{ct}_x \, = \, (\mathsf{verk},\mathsf{ABE.ct}_{x,0,\mathsf{verk}},\mathsf{ABE.ct}_{x,1,\mathsf{verk}},\sigma), \, \mathsf{ct}_{x'} \, = \, (\mathsf{verk}',\mathsf{ABE.ct}_{x',0,\mathsf{verk}'},\mathsf{ABE.ct}_{x',1,\mathsf{verk}'},\sigma'), \, \mathsf{td}_y \, = \, \mathsf{ABE.sk}_{y,1}, \, \mathrm{and} \, \mathsf{td}_{y'} \, = \, \mathsf{ABE.sk}_{y',1}. \, \mathrm{If} \, 0 \leftarrow \mathsf{Sig.Vrfy}(\mathsf{verk}, \\ [\mathsf{ABE.ct}_{x,0,\mathsf{verk}} \| \mathsf{ABE.ct}_{x,1,\mathsf{verk}}], \sigma) \lor 0 \leftarrow \mathsf{Sig.Vrfy}(\mathsf{verk}', [\mathsf{ABE.ct}_{x',0,\mathsf{verk}'} \| \mathsf{ABE.ct}_{x',1,\mathsf{verk}'}], \sigma), \, \mathrm{output} \, 0. \quad \mathrm{Otherwise}, \, \, \mathrm{run} \, \mathsf{ABE.sk}_{y,1,\mathsf{verk}} \, \leftarrow \, \mathsf{ABE.Delegate}(\mathsf{mpk}, \mathsf{ABE.sk}_{y,1}, (y, 1, \mathsf{verk})) \, \mathrm{and} \\ \mathsf{ABE.sk}_{y',1,\mathsf{verk}'} \, \leftarrow \, \mathsf{ABE.Delegate}(\mathsf{mpk}, \mathsf{ABE.sk}_{y',1}, (y', 1, \mathsf{verk}')), \quad h \, \leftarrow \, \mathsf{ABE.Dec}(\mathsf{mpk}, \\ \mathsf{ABE.ct}_{x,1,\mathsf{verk}}, \mathsf{ABE.sk}_{y,1,\mathsf{verk}}), \, \mathrm{and} \, \, h' \, \leftarrow \, \mathsf{ABE.Dec}(\mathsf{mpk}, \mathsf{ABE.ct}_{x'}, \mathsf{ABE.sk}_{y',1,\mathsf{verk}}). \, \, \mathrm{Output} \, 1 \\ \mathrm{if} \, h = h' \, \mathrm{and} \, 0 \, \mathrm{otherwise}. \end{aligned}$

3.2 Correctness

We prove the correctness of our ABEET construction as follows.

Theorem 1. Our ABEET scheme Π satisfies correctness if the underlying ABE scheme Π_{ABE} and OTS scheme Γ satisfy correctness, and the hash function H satisfies collision resistance.

Proof. We prove the three conditions for correctness below.

(1). We can prove the condition (1) by using the correctness of the underlying ABE scheme Π_{ABE} and the underlying OTS scheme Γ . For all $\lambda \in \mathbb{N}$, all (ABE.mpk, ABE.msk) \leftarrow ABE.Setup(1^{λ}) and Γ , all $M \in \mathcal{M}$, all $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that P(x, y) = 1, it is required that

Sig.Vrfy(verk, [ABE.ct_{x,0,verk}||ABE.ct_{x,1,verk}], σ) \rightarrow 1 \wedge M' = M \wedge h = H(M)

holds with overwhelming probability, where

- (verk, sigk) \leftarrow Sig.Setup (1^{λ}) ,
- ABE.ct_{x,0,verk} \leftarrow ABE.Enc(ABE.mpk, (x, 0, verk), M),
- ABE.ct_{x,1,verk} \leftarrow ABE.Enc(ABE.mpk, (x, 1, verk), H(M)),
- $\sigma \leftarrow \text{Sig.Sign}(\text{sigk}, [\text{ct}_{x,0,\text{verk}} \| \text{ct}_{x,1,\text{verk}}]),$

- ABE.sk_y \leftarrow ABE.KeyGen(ABE.mpk, ABE.msk, y),
- ABE.sk_{y,0,verk} \leftarrow ABE.Delegate(ABE.mpk, ABE.sk_y, (y, 0, verk)),
- ABE.sk_{y,1,verk} \leftarrow ABE.Delegate(ABE.mpk, ABE.sk_y, (y, 1, verk)),
- $M' \leftarrow ABE.Dec(ABE.mpk, ABE.ct_{x,0,verk}, ABE.sk_{y,0,verk}),$
- $h \leftarrow ABE.Dec(ABE.mpk, ABE.ct_{x,1,verk}, ABE.sk_{y,1,verk})$.

The correctness of the OTS scheme Γ ensures that Sig.Vrfy(verk, [ABE.ct_{x,0,verk} ||ABE.ct_{x,1,verk}], σ) \rightarrow 1 holds with overwhelming probability. Moreover, the correctness of the ABE scheme Π_{ABE} ensures that $M = M' \wedge h = H(M)$ holds with overwhelming probability. Therefore, the condition (1) holds. (2). We can prove the condition (2) by using the correctness of the underlying ABE scheme Π_{ABE} and the underlying OTS scheme Γ . For all $\lambda \in \mathbb{N}$, all (ABE.mpk, ABE.msk) \leftarrow ABE.Setup(1^{λ}) and Γ , all $M \in \mathcal{M}$, all $(x_0, x_1, y_0, y_1) \in \mathcal{X}^2 \times \mathcal{Y}^2$ such that $\wedge_{i \in \{0,1\}} \mathsf{P}(x_i, y_i) = 1$, it is required that

 $(\wedge_{i \in \{0,1\}} \mathsf{Sig.Vrfy}(\mathsf{verk}_i, [\mathsf{ABE.ct}_{x_i,0,\mathsf{verk}_i} \| \mathsf{ABE.ct}_{x_i,1,\mathsf{verk}_i}], \sigma_i) \to 1) \land h_0 = h_1$

holds with overwhelming probability, where for $i \in \{0, 1\}$

- $(\operatorname{verk}_i, \operatorname{sigk}_i) \leftarrow \operatorname{Sig.Setup}(1^{\lambda}),$
- ABE.ct_{x_i,0,verk} \leftarrow ABE.Enc(ABE.mpk, (x_i, 0, verk_i), M),
- ABE.ct_{x_i,1,verk} \leftarrow ABE.Enc(ABE.mpk, (x_i, 1, verk_i), H(M)),
- $\sigma_i \leftarrow \mathsf{Sig.Sign}(\mathsf{sigk}_i, [\mathsf{ct}_{x_i,0,\mathsf{verk}_i} \| \mathsf{ct}_{x_i,1,\mathsf{verk}_i}]),$
- ABE.sk_{y_i} \leftarrow ABE.KeyGen(ABE.mpk, ABE.msk, y_i),
- ABE.sk_{y_i,1,verk_i} \leftarrow ABE.Delegate(ABE.mpk, ABE.sk_{y_i}, (y_i, 1, verk_i)),
- $h_i \leftarrow ABE.Dec(ABE.mpk, ABE.ct_{x_i,1, verk_i}, ABE.sk_{y_i,1, verk_i}).$

The correctness of the OTS scheme Γ ensures that Sig.Vrfy(verk_i, [ABE.ct_{xi,0,verk_i}||ABE.ct_{xi,1,verk_i}], σ_i) $\rightarrow 1$ holds with overwhelming probability. Moreover, the correctness of the ABE scheme Π_{ABE} ensures that $h_i = H(M)$ for $i \in \{0, 1\}$ holds with overwhelming probability. Therefore, the condition (2) holds.

(3). We can prove the condition (3) by using the correctness of the underlying ABE scheme Π_{ABE} and collision resistance of underlying hash function H. For this purpose, we use an adversary \mathcal{A} for breaking the condition (3) to construct a PPT adversary \mathcal{B} that breaks the collision resistance of H. Here, we say that \mathcal{A} breaks the condition (3) if it holds that $M_0 \neq M_1 \wedge \text{Test}(\mathsf{ct}_{x_0}, \mathsf{td}_{y_0}, \mathsf{ct}_{x_1}, \mathsf{td}_{y_1}) \to 1$, where $(\mathsf{M}_0, \mathsf{M}_1) \leftarrow \mathcal{A}(\mathsf{mpk}, \mathsf{msk}), \mathsf{ct}_{x_0} \leftarrow \mathsf{Enc}(\mathsf{mpk}, x_0, \mathsf{M}), \mathsf{ct}_{x_1} \leftarrow \mathsf{Enc}(\mathsf{mpk}, x_1, \mathsf{M}_1), \mathsf{sk}_{y_i} \leftarrow \mathsf{KeyGen}(\mathsf{mpk}, \mathsf{msk}, y_i) \text{ and } \mathsf{td}_{y_i} \leftarrow \mathsf{Trapdoor}(\mathsf{mpk}, \mathsf{sk}_{y_i}) \text{ for } i = 0, 1$. For all $\lambda \in \mathbb{N}$, all (ABE.mpk, ABE.msk) $\leftarrow \mathsf{ABE}.\mathsf{Setup}(1^{\lambda})$ and (Γ, H) , all PPT adversaries \mathcal{A} , all $(x_0, x_1, y_0, y_1) \in \mathcal{X}^2 \times \mathcal{Y}^2$ such that $\wedge_{i \in \{0,1\}} \mathsf{P}(x_i, y_i) = 1$, after \mathcal{A} outputs $(\mathsf{M}_0, \mathsf{M}_1)$, \mathcal{B} also outputs the same $(\mathsf{M}_0, \mathsf{M}_1)$. If \mathcal{A} breaks the condition (3), it holds that $\mathsf{M}_0 \neq \mathsf{M}_1 \wedge h_0 = h_1$, where for $i \in \{0,1\}$

- $(\operatorname{verk}_i, \operatorname{sigk}_i) \leftarrow \operatorname{Sig.Setup}(1^{\lambda}),$
- ABE.ct_{x_i,1,verk_i} \leftarrow ABE.Enc(ABE.mpk, (x_i, 1, verk_i), H(M_i)),

- ABE.sk_{y_i} \leftarrow ABE.KeyGen(ABE.mpk, ABE.msk, y_i),
- ABE.sk_{yi,1,verki} \leftarrow ABE.Delegate(ABE.mpk, ABE.sk_{yi}, (y_i, 1, verk_i)),
- $h_i \leftarrow ABE.Dec(ABE.mpk, ABE.ct_{x_i,1,verk_i}, ABE.sk_{y_i,1,verk_i}).$

The correctness of the ABE scheme Π_{ABE} ensures that $h_i = H(M_i)$ hold for $i \in \{0, 1\}$ with overwhelming probability. Therefore, if \mathcal{A} breaks the condition (3), \mathcal{B} breaks the collision resistance of H with overwhelming probability since it holds that $M_0 \neq M_1 \wedge H(M_0) = H(M_1)$. Therefore, the condition (3) holds.

П

From the above, it is proved that our proposed construction is correct.

4 Security

4.1 OW-CCA2 Security against Type-I Adversaries

Theorem 2 (OW-CCA2 Security against Type-I Adversaries). If the underlying ABE scheme Π_{ABE} satisfies adaptive (resp. semi-adaptive, selective) IND-CPA security, OTS scheme Γ satisfies strongly unforgeability, and H satisfies one-wayness, then our proposed ABEET scheme Π satisfies adaptive (resp. semi-adaptive, selective) OW-CCA2 security against Type-I adversaries.

Proof. Here, we prove Theorem 2 as the case of *adaptive* security. We note that the proofs for semi-adaptive security and selective security are essentially the same.

Let $\operatorname{ct}_{x^*}^* = (\operatorname{verk}^*, \operatorname{ABE.ct}_{x^*, 0, \operatorname{verk}^*}^*, \operatorname{ABE.ct}_{x^*, 1, \operatorname{verk}^*}^*, \sigma^*)$ be the challenge ciphertext for the target attribute x^* . We prove the theorem via game sequence Game_0 , Game_1 , and Game_2 . Let W_i denote a event that \mathcal{A} wins in Game_i for $i \in \{0, 1, 2\}$.

Game₀: This game is the same as the original adaptive OW-CCA2 security game in Definition 2.5 between the challenger C and the adversary A.

Game₁: This game is the same as **Game**₀ except that if \mathcal{A} makes the decryption queries on $(\mathsf{ct}_x, y) = ((\mathsf{verk}, \mathsf{ABE.ct}_{x,0,\mathsf{verk}}, \mathsf{ABE.ct}_{x,1,\mathsf{verk}}, \sigma), y)$ such that

$$\mathsf{verk} = \mathsf{verk}^* \land (\mathsf{ABE.ct}_{x,0,\mathsf{verk}}, \mathsf{ABE.ct}_{x,1,\mathsf{verk}}, \sigma) \neq (\mathsf{ABE.ct}^*_{x^*,0,\mathsf{verk}^*}, \mathsf{ABE.ct}^*_{x^*,1,\mathsf{verk}^*}, \sigma^*) \land \mathsf{Sig.Vrfy}(\mathsf{verk}, [\mathsf{ABE.ct}_{x,0,\mathsf{verk}} \| \mathsf{ABE.ct}_{x,1,\mathsf{verk}}], \sigma) \rightarrow 1$$

then \mathcal{C} aborts the game and returns $\mathsf{M} \leftarrow_{\$} \mathcal{M}$. Let E denote an event that \mathcal{A} makes such decryption queries.

We show that \mathbf{Game}_0 and \mathbf{Game}_1 are computationally indistinguishable from \mathcal{A} 's view if the OTS scheme Γ satisfies strong unforgeability. For this purpose, we use \mathcal{A} to construct a PPT adversary \mathcal{F} that breaks strong unforgeability of Γ . Let OTS. \mathcal{C} denote a challenger of the strong unforgeability game of Γ . OTS. \mathcal{C} begins the strong unforgeability game and gives verk to \mathcal{F} . Then, \mathcal{F} begins the OW-CCA2 security game with \mathcal{A} by running (ABE.mpk, ABE.msk) \leftarrow ABE.Setup(1^{λ}) and giving mpk = (ABE.mpk, Γ , H) to \mathcal{A} . Since \mathcal{F} obtains msk = ABE.msk, it can answer \mathcal{A} 's key extraction queries and trapdoor queries in the same ways as in Game₀ and Game₁. Similarly, if E does not happen, \mathcal{F} can answer \mathcal{A} 's decryption queries in the same ways as in Game₀ and Game₁. Moreover, \mathcal{F} returns σ to OTS. \mathcal{C} as a forged signature. Upon \mathcal{A} 's challenge query on x^* , \mathcal{F} chooses $\mathbb{M}^* \leftarrow_{\$} \mathcal{M}$ and runs ABE.ct^{**}_{x,0,verk*} \leftarrow ABE.Enc(ABE.mpk, ($x^*, 0, verk^*$), \mathbb{M}^*) and ABE.ct^{**}_{x,1,verk*} \leftarrow ABE.Enc(ABE.mpk, ($x^*, 1, verk^*$), $\mathbb{H}(\mathbb{M}^*)$). Then, \mathcal{F} makes a query on [ABE.ct^{**}_{x,0,verk*} ||ABE.ct^{**}_{x,1,verk*}, σ^*) to \mathcal{A} .

Observe that all \mathcal{F} 's behavior except the challenge query does not depend on verk^{*} if E does not occur. Thus, \mathcal{F} perfectly simulates **Game**₀ if E does not happen. Similarly, \mathcal{F} perfectly simulates **Game**₁ if E happens. In this case, \mathcal{F} successfully breaks the strong unforgeability of Γ . Therefore, we have

$$\Pr[E] \leq \mathsf{Adv}_{\Gamma,\mathcal{F}}^{\mathsf{OTS}}(\lambda).$$

If E happens in **Game**₁, \mathcal{F} outputs a random $M^* \leftarrow_{\$} \mathcal{M}$. In other words, it holds that $\Pr[W_1 | E] = 1/|\mathcal{M}|$. Therefore, we have

$$\Pr[W_1] = \Pr[W_1 \mid E] \Pr[E] + \Pr[W_1 \mid \neg E] \Pr[\neg E]$$
$$= \frac{1}{|\mathcal{M}|} \cdot \Pr[E] + \Pr[W_1 \mid \neg E] \Pr[\neg E].$$

If E does not happen, \mathbf{Game}_0 and \mathbf{Game}_1 are the same from \mathcal{A} 's view. In other words, it holds that

$$\Pr[W_1 \mid \neg E] \Pr[\neg E] = \Pr[W_0](1 - \Pr[E]).$$

Therefore, we have

$$\Pr[W_1] = \frac{1}{|\mathcal{M}|} \cdot \Pr[E] + \Pr[W_0] - \Pr[W_0] \cdot \Pr[E]$$
$$= \Pr[W_0] + \left(\frac{1}{|\mathcal{M}|} - \Pr[W_0]\right) \cdot \Pr[E]$$
$$\geq \Pr[W_0] - \Pr[E].$$

Therefore, we have

$$|\Pr[W_0] - \Pr[W_1]| \le \Pr[E] \le \mathsf{Adv}_{\Gamma,\mathcal{F}}^{\mathsf{OTS}}(\lambda).$$
(1)

Next, we define the $Game_2$ as follows.

Game₂: This game is the same as **Game**₁ except the way C creates the challenge ciphertext $ct_{x^*}^* = (verk^*, ABE.ct_{x^*,0,verk^*}^*, ABE.ct_{x^*,1,verk^*}^*, \sigma^*)$. In short, $ABE.ct_{x^*,0,verk^*}^*$ is an encryption of the challenge plaintext M^* in **Game**₁. In contrast, $ABE.ct_{x^*,0,verk^*}^*$ is an encryption of a plaintext $M \in \mathcal{M}$ in **Game**₂, where a distribution of $M \in \mathcal{M}$ is independent of M^* such as the uniform distribution over \mathcal{M} .

We show that \mathbf{Game}_1 and \mathbf{Game}_2 are computationally indistinguishable from \mathcal{A} 's view if the ABE scheme Π_{ABE} satisfies IND-CPA security. For this purpose, we use \mathcal{A} to construct a PPT adversary \mathcal{B} that breaks IND-CPA security of Π_{ABE} . Let $\mathsf{ABE}.\mathcal{C}$ denote a challenger of the IND-CPA security game of Π_{ABE} . \mathcal{B} runs (verk^{*}, sigk) \leftarrow Sig.Setup(1^{λ}). ABE. \mathcal{C} begins the IND-CPA security game and gives ABE.mpk to $\mathcal{B}.^1$ Then, \mathcal{B} begins the IND-CCA2 security game with \mathcal{A} by giving mpk = (ABE.mpk, Γ, H) to \mathcal{A} .

In the Phase 1, \mathcal{B} can answer all three types of queries by interacting with ABE. \mathcal{C} as follows.

• Key extraction query: Upon \mathcal{A} 's query on y, \mathcal{B} makes a key extraction query on y to ABE. \mathcal{C} and receives ABE. sk_y . Then, \mathcal{B} sends ABE. sk_y to \mathcal{A} .

¹To prove selective security, after receiving x^* from \mathcal{A} , \mathcal{B} sends $(x^*, 0, \mathsf{verk}^*)$ to ABE. \mathcal{C} and ABE. \mathcal{C} begins the IND-CPA security game. Similarly, to prove semi-adaptive security, just after receiving x^* from \mathcal{A} , \mathcal{B} sends $(x^*, 0, \mathsf{verk}^*)$ to ABE. \mathcal{C} before any queries in Phase 1.

- Decryption query: If E happens, B aborts the game and returns M ←_{\$} M. Otherwise, upon A's query on (ct_x = (verk, ABE.ct_{x,0,verk}, ABE.ct_{x,1,verk}, σ), y), B returns ⊥ if 0 ← Sig.Vrfy(verk, [ABE.ct_{x,0,verk} ||ABE.ct_{x,1,verk}], σ) ∨ P(x, y) = 0. Otherwise, B makes the key extraction queries on (y, 0, verk) and (y, 1, verk) to ABE.C and receives sk_{y,0,verk} and sk_{y,1,verk}. B runs M ← ABE.Dec(ABE.mpk, ABE.ct_{x,0,verk}, ABE.sk_{y,0,verk}) and h ← ABE.Dec(ABE.mpk, ABE.ct_{x,1,verk}, ABE.sk_{y,1,verk}) and h ← ABE.Dec(ABE.mpk, ABE.ct_{x,1,verk}, ABE.sk_{y,1,verk}). B returns M to A if H(M) = h holds and ⊥ otherwise.
- Trapdoor query: Upon \mathcal{A} 's query on y, \mathcal{B} makes a key extraction query on (y, 1) to ABE. \mathcal{C} and receives ABE. $\mathsf{sk}_{y,1}$. Then, \mathcal{B} sends $\mathsf{td}_y = \mathsf{sk}_{y,1}$ to \mathcal{A} .

Upon \mathcal{A} 's challenge query on x^* , \mathcal{B} chooses M^* , $\mathsf{M} \leftarrow_{\$} \mathcal{M}$, makes the challenge query on $((x^*, 0, \mathsf{verk}^*), \mathsf{M}^*, \mathsf{M})$ to ABE. \mathcal{C} , and receives ABE. $\mathsf{ct}^*_{x^*,0,\mathsf{verk}^*}$. Here, ABE. $\mathsf{ct}^*_{x^*,0,\mathsf{verk}^*}$ are encryptions of M^* and M if coin = 0 and coin = 1, respectively. \mathcal{B} runs ABE. $\mathsf{ct}^*_{x^*,1,\mathsf{verk}^*} \leftarrow \mathsf{ABE}.\mathsf{Enc}(\mathsf{ABE}.\mathsf{mpk}, (x^*, 1, \mathsf{verk}^*), \mathsf{H}(\mathsf{M}^*))$ and $\sigma^* \leftarrow \mathsf{Sig.Sign}(\mathsf{sigk}, [\mathsf{ABE.ct}^*_{x^*,0,\mathsf{verk}^*} \| \mathsf{ABE.ct}^*_{x^*,1,\mathsf{verk}^*}])$. \mathcal{B} gives $\mathsf{ct}^*_{x^*} = (\mathsf{verk}^*, \mathsf{ABE.ct}^*_{x^*,0,\mathsf{verk}^*}, \mathsf{ABE.ct}^*_{x^*,1,\mathsf{verk}^*}, \sigma^*)$ to \mathcal{A} . In the Phase 2, \mathcal{B} can answer all three types of queries essentially in the same way as in Phase 1. After \mathcal{A} outputs M' as a guess of $\mathsf{M}^*, \mathcal{B}$ outputs $\mathsf{coin}' = 0$ if $\mathsf{M}' = \mathsf{M}^*$ and $\mathsf{coin}' = 1$ otherwise as a guess of coin flipped by ABE. \mathcal{C} .

If $ABE.ct_{x^*,0,verk^*}^*$ which \mathcal{B} received from $ABE.\mathcal{C}$ are encryptions of M^* and M, the challenge ciphertext $ct_{x^*}^*$ distribute as in **Game**₁ and **Game**₂, respectively. Observe that all \mathcal{B} 's key extraction queries to $ABE.\mathcal{C}$ are valid, where the challenge ciphertext attribute of the IND-CPA security game for an ABE scheme Π_{ABE} is $(x^*, 0, verk^*)$. All \mathcal{B} 's key extraction queries to answer \mathcal{A} 's key extraction queries are valid since $P(x^*, y) = 0$ holds. All \mathcal{B} 's key extraction queries to answer \mathcal{A} 's decryption queries are valid since $verk \neq verk^*$ holds for the third hierarchy. All \mathcal{B} 's key extraction queries to answer \mathcal{A} 's trapdoor queries are valid since $1 \neq 0$ for the second hierarchy.

We analyze the quantity of $|\Pr[W_1] - \Pr[W_2]|$. By definition, $\Pr[\operatorname{coin} = 0] = \Pr[\operatorname{coin} = 1] = 1/2$ holds. As we mentioned above, \mathcal{B} perfectly simulates **Game**₁ and **Game**₂ if coin = 0 and coin = 1, respectively; thus, $\Pr[\operatorname{coin}' = 0 \mid \operatorname{coin} = 0] = \Pr[W_1]$ and $\Pr[\operatorname{coin}' = 0 \mid \operatorname{coin} = 1] = \Pr[W_2]$ hold. Therefore, we have

$$\begin{aligned} \mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{B}}^{\mathsf{ABE}}(\lambda) &= \left| \Pr[\mathsf{coin}' = \mathsf{coin}] - \frac{1}{2} \right| \\ &= \left| \Pr[\mathsf{coin}' = 0 \mid \mathsf{coin} = 0] \Pr[\mathsf{coin} = 0] + \Pr[\mathsf{coin}' = 1 \mid \mathsf{coin} = 1] \Pr[\mathsf{coin} = 1] - \frac{1}{2} \right| \\ &= \frac{1}{2} \left| \Pr[W_1] - (1 - \Pr[\mathsf{coin}' = 1 \mid \mathsf{coin} = 1]) \right| \\ &= \frac{1}{2} \left| \Pr[W_1] - \Pr[\mathsf{coin}' = 0 \mid \mathsf{coin} = 1] \right| \\ &= \frac{1}{2} \left| \Pr[W_1] - \Pr[W_2] \right|. \end{aligned}$$

In other words, it holds that

$$|\Pr[W_1] - \Pr[W_2]| = 2\mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{B}}^{\mathsf{ABE}}(\lambda).$$
(2)

Finally, we show that it is computationally infeasible for \mathcal{A} to win in **Game**₂ if the hash function H satisfies one-wayness. For this purpose, we use \mathcal{A} to construct a PPT adversary \mathcal{D} that breaks one-wayness of H. \mathcal{D} interacts with \mathcal{A} in the same way as \mathcal{B} except the creation of the challenge ciphertext ct^{*}_{x*}. Upon \mathcal{A} 's challenge query on x^* , \mathcal{D} receives h^* such that $\mathsf{M}^* \leftarrow_{\$} \mathcal{M}, h^* =$ $\mathsf{H}(\mathsf{M}^*)$. \mathcal{D} chooses $\mathsf{M} \leftarrow_{\$} \mathcal{M}$ and runs $\mathsf{ABE.ct}^*_{x^*,0,\mathsf{verk}^*} \leftarrow \mathsf{ABE.Enc}(\mathsf{ABE.mpk}, (x^*,0,\mathsf{verk}^*),\mathsf{M}),$ $\mathsf{ABE.ct}^*_{x^*,1,\mathsf{verk}^*} \leftarrow \mathsf{ABE.Enc}(\mathsf{ABE.mpk}, (x^*,1,\mathsf{verk}^*), h^*), \text{ and } \sigma^* \leftarrow \mathsf{Sig.Sign}(\mathsf{sigk}, [\mathsf{ABE.ct}^*_{x^*,0,\mathsf{verk}^*}]$ ABE.ct^{*}_{x*,1,verk*}]). \mathcal{D} sets the challenge ciphertext ct^{*}_{x*} = (verk^{*}, ABE.ct^{*}_{x*,0,verk*}, ABE.ct^{*}_{x*,1,verk*}, σ^*). After \mathcal{A} outputs M' as a guess of M^{*}, \mathcal{D} outputs M' if H(M') = h^{*} and M' $\leftarrow_{\$} \mathcal{M}$ otherwise.

 \mathcal{D} perfectly simulates **Game**₂. If \mathcal{A} wins in **Game**₂, \mathcal{D} always breaks the one-wayness of H. Therefore, we have

$$\left|\Pr[W_2] - \frac{1}{|\mathcal{M}|}\right| \le \mathsf{Adv}^{\mathsf{OW}}_{\mathsf{H},\mathcal{D}}(\lambda).$$
(3)

From (1) - (3), we have

$$\begin{aligned} \left| \Pr[W_0] - \frac{1}{|\mathcal{M}|} \right| &\leq \left| \Pr[W_0] - \Pr[W_1] \right| + \left| \Pr[W_1] - \Pr[W_2] \right| + \left| \Pr[W_2] - \frac{1}{|\mathcal{M}|} \right| \\ &\leq \mathsf{Adv}_{\Gamma,\mathcal{F}}^{\mathsf{OTS}}(\lambda) + 2\mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{B}}^{\mathsf{ABE}}(\lambda) + \mathsf{Adv}_{\mathsf{H},\mathcal{D}}^{\mathsf{OW}}(\lambda). \end{aligned}$$

4.2 IND-CCA2 Security against Type-II Adversaries

Theorem 3 (IND-CCA2 Security against Type-II Adversaries). If the underlying ABE scheme Π_{ABE} satisfies adaptive (resp. semi-adaptive, selective) IND-CPA security and OTS scheme Γ satisfies strongly unforgeability, then our proposed ABEET scheme Π satisfies adaptive (resp. semi-adaptive, selective) IND-CCA2 security against Type-II adversaries.

Proof. Here, we prove Theorem 3 as the case of *adaptive* security. We note that the proofs for semi-adaptive security and selective security are essentially the same.

Let $\operatorname{ct}_{x^*}^* = (\operatorname{verk}^*, \operatorname{ABE.ct}_{x^*,0,\operatorname{verk}^*}^*, \operatorname{ABE.ct}_{x^*,1,\operatorname{verk}^*}^*, \sigma^*)$ be the challenge ciphertext for the target attribute x^* . We prove the theorem via game sequence Game_0 , Game_1 , and Game_2 . Let W_i denote a event that \mathcal{A} wins in Game_i for $i \in \{0, 1, 2\}$.

 $Game_0$: This game is the same as the original adaptive IND-CCA2 security game in Definition 2.6 between the challenger C and the adversary A.

Game₁: This game is the same as **Game**₀ except that if the event E (which was defined in **Game**₁ in the proof of Theorem 2) happens, then the challenger C aborts the game and returns $\operatorname{coin}' \leftarrow_{\$} \{0, 1\}$. **Game**₀ and **Game**₁ are computationally indistinguishable from \mathcal{A} 's view if the OTS scheme Γ satisfies strong unforgeability. In particular, there is a PPT adversary \mathcal{F} such that

$$|\Pr[W_0] - \Pr[W_1]| \le \Pr[E] \le \mathsf{Adv}_{\Gamma,\mathcal{F}}^{\mathsf{OTS}}(\lambda) \tag{4}$$

by following essentially the same discussion as in (1).

Next, we define the $Game_2$ as follows.

Game₂: This game is the same as **Game**₁ except the way C creates the challenge ciphertext $ct_{x^*}^* = (verk^*, ABE.ct_{x^*,0,verk^*}^*, ABE.ct_{x^*,1,verk^*}^*, \sigma^*)$. In short, $ABE.ct_{x^*,0,verk^*}^*$ is an encryption of M_{coin}^* in **Game**₁. In contrast, $ABE.ct_{x^*,0,verk^*}^*$ is an encryption of a plaintext $M \in \mathcal{M}$ in **Game**₂, where a distribution of $M \in \mathcal{M}$ is independent of M_0^*, M_1^* such as the uniform distribution over \mathcal{M} .

We show that **Game**₁ and **Game**₂ are computationally indistinguishable from \mathcal{A} 's view if the ABE scheme Π_{ABE} satisfies IND-CPA security. For this purpose, we use \mathcal{A} to construct a PPT adversary \mathcal{B} that breaks IND-CPA security of Π_{ABE} . \mathcal{B} interacts with \mathcal{A} in the same way as \mathcal{B} in the proof of Theorem 2 except the creation of the challenge ciphertext $ct^*_{x^*}$ and Guess. In this proof, upon \mathcal{A} 's challenge query on $(x^*, \mathsf{M}^*_0, \mathsf{M}^*_1)$, \mathcal{B} chooses coin $\leftarrow_{\$} \{0, 1\}$ and $\mathsf{M} \leftarrow_{\$} \mathcal{M}$, makes the challenge query on $((x^*, 0, \mathsf{verk}^*), \mathsf{M}^*_{\mathsf{coin}}, \mathsf{M})$ to ABE. \mathcal{C} , and receives ABE. $ct^*_{x^*,0,\mathsf{verk}^*}$. Here, ABE. $ct^*_{x^*,0,\mathsf{verk}^*}$ are encryptions of $\mathsf{M}^*_{\mathsf{coin}}$ and M if $\widehat{\mathsf{coin}} = 0$ and $\widehat{\mathsf{coin}} = 1$, respectively. \mathcal{B} runs ABE. $ct^*_{x^*,1,\mathsf{verk}^*} \leftarrow$

ABE.Enc(ABE.mpk, $(x^*, 1, \text{verk}^*)$, $H(M^*)$) and $\sigma^* \leftarrow \text{Sig.Sign}(\text{sigk}, [ABE.ct^*_{x^*,0,\text{verk}^*} || ABE.ct^*_{x^*,1,\text{verk}^*}]$). \mathcal{B} gives $ct^*_{x^*} = (\text{verk}^*, \text{ABE.ct}^*_{x^*,0,\text{verk}^*}, \text{ABE.ct}^*_{x^*,1,\text{verk}^*}, \sigma^*)$ to \mathcal{A} . After \mathcal{A} outputs coin' as a guess of coin flipped by \mathcal{B} , \mathcal{B} outputs $\widehat{\text{coin}'} = 0$ if $\operatorname{coin'} = \operatorname{coin}$ and $\operatorname{coin'} = 1$ otherwise as a guess of $\widehat{\text{coin}}$ flipped by ABE. \mathcal{C} .

 \mathcal{B} perfectly simulates **Game**₁ and **Game**₂ if $\dot{\text{coin}} = 0$ and $\dot{\text{coin}} = 1$, respectively, by following essentially the same discussion as in the proof of Theorem 2. We analyze the quantity of $|\Pr[W_1] - \Pr[W_2]|$. In particular, we have

$$\begin{aligned} \mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{B}}^{\mathsf{ABE}}(\lambda) &= \left| \Pr[\widehat{\mathsf{coin}}' = \widehat{\mathsf{coin}}] - \frac{1}{2} \right| \\ &= \left| \Pr[\widehat{\mathsf{coin}}' = 0 \mid \widehat{\mathsf{coin}} = 0] \Pr[\widehat{\mathsf{coin}} = 0] + \Pr[\widehat{\mathsf{coin}}' = 1 \mid \widehat{\mathsf{coin}} = 1] \Pr[\widehat{\mathsf{coin}} = 1] - \frac{1}{2} \right| \\ &= \frac{1}{2} \left| \Pr[W_1] - (1 - \Pr[\widehat{\mathsf{coin}}' = 1 \mid \widehat{\mathsf{coin}} = 1]) \right| \\ &= \frac{1}{2} \left| \Pr[W_1] - \Pr[\widehat{\mathsf{coin}}' = 0 \mid \widehat{\mathsf{coin}} = 1] \right| \\ &= \frac{1}{2} \left| \Pr[W_1] - \Pr[\widehat{\mathsf{coin}}' = 0 \mid \widehat{\mathsf{coin}} = 1] \right| \\ &= \frac{1}{2} \left| \Pr[W_1] - \Pr[W_2] \right|. \end{aligned}$$

In other words, it holds that

$$|\Pr[W_1] - \Pr[W_2]| = 2\mathsf{Adv}_{\Pi_{\mathsf{ABF}},\mathcal{B}}^{\mathsf{ABE}}(\lambda).$$
(5)

Finally, we show that it is computationally infeasible for \mathcal{A} to win in **Game**₂ if the ABE scheme Π_{ABE} satisfies IND-CPA security. For this purpose, we use \mathcal{A} to construct a PPT adversary \mathcal{D} that breaks IND-CPA security of Π_{ABE} . \mathcal{D} interacts with \mathcal{A} in the same way as \mathcal{B} except the creation of the challenge ciphertext $\mathsf{ct}_{x^*}^*$. Upon \mathcal{A} 's challenge query on $(x^*, \mathsf{M}_0^*, \mathsf{M}_1^*), \mathcal{D}$ makes the challenge query on $((x^*, 1, \mathsf{verk}^*), \mathsf{H}(\mathsf{M}_0^*), \mathsf{H}(\mathsf{M}_1^*))$ to $\mathsf{ABE.C}$ and receives $\mathsf{ABE.ct}_{x^*,1,\mathsf{verk}^*}^*$. Here, $\mathsf{ABE.ct}_{x^*,1,\mathsf{verk}^*}^*$ are encryptions of $\mathsf{H}(\mathsf{M}_0^*)$ and $\mathsf{H}(\mathsf{M}_1^*)$ if $\widehat{\mathsf{coin}} = 0$ and $\widehat{\mathsf{coin}} = 1$, respectively. \mathcal{D} chooses $\mathsf{M} \leftarrow_{\$} \mathcal{M}$ and runs $\mathsf{ABE.ct}_{x^*,0,\mathsf{verk}^*}^* \leftarrow \mathsf{ABE.Enc}(\mathsf{ABE.mpk}, (x^*, 0, \mathsf{verk}^*), \mathsf{M})$ and $\sigma^* \leftarrow \mathsf{Sig.Sign}(\mathsf{sigk}, [\mathsf{ABE.ct}_{x^*,0,\mathsf{verk}^*}^* \| \mathsf{ABE.ct}_{x^*,1,\mathsf{verk}^*}^*])$. \mathcal{D} sets the challenge ciphertext $\mathsf{ct}_{x^*}^* = (\mathsf{verk}^*, \mathsf{ABE.ct}_{x^*,0,\mathsf{verk}^*}^*, \mathsf{ABE.ct}_{x^*,1,\mathsf{verk}^*}^*, \sigma^*)$, where $\mathsf{coin} = \widehat{\mathsf{coin}}$. After \mathcal{A} outputs coin' as a guess of $\mathsf{coin} = \widehat{\mathsf{coin}}$, \mathcal{D} outputs $\widehat{\mathsf{coin}}' = \mathsf{coin}'$ as a guess of $\widehat{\mathsf{coin}}$ flipped by $\mathsf{ABE.C}$.

 \mathcal{D} perfectly simulates **Game**₂ by following essentially the same discussion as in \mathcal{B} except the validity for answering Trapdoor queries. In this proof, all \mathcal{D} 's Key extraction queries to answer \mathcal{A} 's Trapdoor queries are valid since the definition of the Type-II adversaries ensures that $\mathsf{P}(x^*, y) = 0$ holds. We analyze the quantity of $|\Pr[W_2] - 1/2|$. Since $\mathsf{coin} = \widehat{\mathsf{coin}}$ and $\mathsf{coin}' = \widehat{\mathsf{coin}}'$, we have

$$\begin{aligned} \mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{D}}^{\mathsf{ABE}}(\lambda) &= \left| \Pr[\widehat{\mathsf{coin}}' = \widehat{\mathsf{coin}}] - \frac{1}{2} \right| \\ &= \left| \Pr[\mathsf{coin}' = \mathsf{coin}] - \frac{1}{2} \right| \\ &= \left| \Pr[W_2] - \frac{1}{2} \right|. \end{aligned}$$

Therefore, we have

$$\left|\Pr[W_2] - \frac{1}{2}\right| = \mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{D}}^{\mathsf{ABE}}(\lambda).$$
(6)

From (4) - (6), we have

$$\begin{aligned} \left| \Pr[W_0] - \frac{1}{2} \right| &\leq \left| \Pr[W_0] - \Pr[W_1] \right| + \left| \Pr[W_1] - \Pr[W_2] \right| + \left| \Pr[W_2] - \frac{1}{2} \right| \\ &\leq \mathsf{Adv}_{\Gamma,\mathcal{F}}^{\mathsf{OTS}}(\lambda) + 2\mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{B}}^{\mathsf{ABE}}(\lambda) + \mathsf{Adv}_{\Pi_{\mathsf{ABE}},\mathcal{D}}^{\mathsf{ABE}}(\lambda). \end{aligned}$$

5 Conclusion

In this paper, we proposed a generic construction of CCA-secure ABEET from IND-CPA-secure delegatable ABE with the hierarchical depth three. The construction is an attribute-based extension of Lee et al.'s generic construction of CCA-secure IBEET from IND-CPA-secure hierarchical IBE with the depth three [Lee+16b]. To achieve CCA security, we used Yamada et al.'s technique [Yam+11]. Based on the predicate encoding and pair encoding frameworks [Att14, Wee14] and known latticebased delegatable ABE schemes [ACM12, Xag13, Bon+14], we obtain various ABEET schemes with new properties that have not been achieved so far. However, since there are no generic methods for non-delegatable ABE to satisfy the delegatability, there are several open questions. Although we obtained ABEET schemes for (non-)monotone span programs (Schemes 1–12) from ABE schemes for the same predicates in the standard model, there are more efficient schemes in the random oracle model [AC17a, TKN20]. Although we obtained the first ABEET schemes for deterministic finite automata (Schemes 13 and 14) under the q-ratio assumption, there are ABE schemes for the same predicate under the standard k-linear assumption [AMY19b, GWW19, GW20] and ABE schemes for non-deterministic finite automata under the LWE assumptions [AMY19a]. Although we obtained selectively secure lattice-based ABEET schemes for circuits and inner-product predicates, there are semi-adaptively secure lattice-based ABE scheme for circuits [BV16] and adaptively secure lattice-based inner-product encryption [Kat+20]. Therefore, it is an interesting open problems to construct CCA-secure ABEET schemes with these properties.

Acknowledgments

This work is supported by JSPS KAKENHI Grant Numbers JP21H03441, JP18H05289, and JP18K11293, and MEXT Leading Initiative for Excellent Young Researchers.

References

- [Abd+08] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. "Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions". In: J. Cryptol. 21.3 (2008), pp. 350–391.
- [ABS17] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. "Generic Transformations of Predicate Encodings: Constructions and Applications". In: Advances in Cryptology -CRYPTO 2017 - 37th Annual International Cryptology Conference, Proceedings, Part I. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10401. Lecture Notes in Computer Science. Springer, 2017, pp. 36–66.

- [AC16] Shashank Agrawal and Melissa Chase. "A Study of Pair Encodings: Predicate Encryption in Prime Order Groups". In: Theory of Cryptography 13th International Conference, TCC 2016-A, Proceedings, Part II. Ed. by Eyal Kushilevitz and Tal Malkin. Vol. 9563. Lecture Notes in Computer Science. Springer, 2016, pp. 259–288.
- [AC17a] Shashank Agrawal and Melissa Chase. "FAME: Fast Attribute-based Message Encryption". In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. ACM, 2017, pp. 665–682.
- [AC17b] Shashank Agrawal and Melissa Chase. "Simplifying Design and Analysis of Complex Predicate Encryption Schemes". In: Advances in Cryptology - EUROCRYPT 2017
 - 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Part I. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen. Vol. 10210. Lecture Notes in Computer Science. 2017, pp. 627–656.
- [ACM12] Michel Abdalla, Angelo De Caro, and Karina Mochetti. "Lattice-Based Hierarchical Inner Product Encryption". In: Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference on Cryptology and Information Security in Latin America, Proceedings. Ed. by Alejandro Hevia and Gregory Neven. Vol. 7533. Lecture Notes in Computer Science. Springer, 2012, pp. 121–138.
- [AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. "Functional Encryption for Inner Product Predicates from Learning with Errors". In: Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and Information Security, Proceedings. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes in Computer Science. Springer, 2011, pp. 21–40.
- [Agr+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and Hoeteck Wee. "Functional Encryption for Threshold Functions (or Fuzzy IBE) from Lattices". In: Public Key Cryptography - PKC 2012 - 15th International Conference on Practice and Theory in Public Key Cryptography, Proceedings. Ed. by Marc Fischlin, Johannes Buchmann, and Mark Manulis. Vol. 7293. Lecture Notes in Computer Science. Springer, 2012, pp. 280–297.
- [AMY19a] Shweta Agrawal, Monosij Maitra, and Shota Yamada. "Attribute Based Encryption (and more) for Nondeterministic Finite Automata from LWE". In: Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Proceedings, Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture Notes in Computer Science. Springer, 2019, pp. 765–797.
- [AMY19b] Shweta Agrawal, Monosij Maitra, and Shota Yamada. "Attribute Based Encryption for Deterministic Finite Automata from \mathsfDLIN". In: Theory of Cryptography - 17th International Conference, TCC 2019, Proceedings, Part II. Ed. by Dennis Hofheinz and Alon Rosen. Vol. 11892. Lecture Notes in Computer Science. Springer, 2019, pp. 91–117.
- [AS17] Shweta Agrawal and Ishaan Preet Singh. "Reusable Garbled Deterministic Finite Automata from Learning With Errors". In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017. Ed. by Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl. Vol. 80. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2017, 36:1–36:13.

- [Att14] Nuttapong Attrapadung. "Dual System Encryption via Doubly Selective Security: Framework, Fully Secure Functional Encryption for Regular Languages, and More". In: Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer Science. Springer, 2014, pp. 557–577.
- [Att16] Nuttapong Attrapadung. "Dual System Encryption Framework in Prime-Order Groups via Computational Pair Encodings". In: Advances in Cryptology ASIACRYPT 2016 22nd International Conference on the Theory and Application of Cryptology and Information Security, Proceedings, Part II. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. Lecture Notes in Computer Science. 2016, pp. 591–623.
- [Att19] Nuttapong Attrapadung. "Unbounded Dynamic Predicate Compositions in Attribute-Based Encryption". In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Part I. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11476. Lecture Notes in Computer Science. Springer, 2019, pp. 34–67.
- [AY15] Nuttapong Attrapadung and Shota Yamada. "Duality in ABE: Converting Attribute Based Encryption for Dual Predicate and Dual Policy via Computational Encodings". In: Topics in Cryptology - CT-RSA 2015, The Cryptographer's Track at the RSA Conference 2015, Proceedings. Ed. by Kaisa Nyberg. Vol. 9048. Lecture Notes in Computer Science. Springer, 2015, pp. 87–105.
- [Bon+04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. "Public Key Encryption with Keyword Search". In: Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings. Ed. by Christian Cachin and Jan Camenisch. Vol. 3027. Lecture Notes in Computer Science. Springer, 2004, pp. 506–522.
- [Bon+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. "Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits". In: Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer Science. Springer, 2014, pp. 533–556.
- [BV16] Zvika Brakerski and Vinod Vaikuntanathan. "Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security". In: Advances in Cryptology - CRYPTO 2016
 - 36th Annual International Cryptology Conference, Proceedings, Part III. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9816. Lecture Notes in Computer Science. Springer, 2016, pp. 363–384.
- [CG17] Jie Chen and Junqing Gong. "ABE with Tag Made Easy Concise Framework and New Instantiations in Prime-Order Groups". In: Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Proceedings, Part II. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10625. Lecture Notes in Computer Science. Springer, 2017, pp. 35–65.

- [CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. "Improved Dual System ABE in Prime-Order Groups via Predicate Encodings". In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer Science. Springer, 2015, pp. 595–624.
- [CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. "Chosen-Ciphertext Security from Identity-Based Encryption". In: Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings. Ed. by Christian Cachin and Jan Camenisch. Vol. 3027. Lecture Notes in Computer Science. Springer, 2004, pp. 207–222.
- [Cui+18] Yuzhao Cui, Qiong Huang, Jianye Huang, Hongbo Li, and Guomin Yang. "Outsourced Ciphertext-Policy Attribute-Based Encryption with Equality Test". In: Information Security and Cryptology - 14th International Conference, Inscrypt 2018, Revised Selected Papers. Ed. by Fuchun Guo, Xinyi Huang, and Moti Yung. Vol. 11449. Lecture Notes in Computer Science. Springer, 2018, pp. 448–467.
- [Cui+19] Yuzhao Cui, Qiong Huang, Jianye Huang, Hongbo Li, and Guomin Yang. "Ciphertext-Policy Attribute-Based Encrypted Data Equality Test and Classification". In: Comput. J. 62.8 (2019), pp. 1166–1177.
- [Duo+19a] Dung Hoang Duong, Kazuhide Fukushima, Shinsaku Kiyomoto, Partha Sarathi Roy, and Willy Susilo. "A Lattice-Based Public Key Encryption with Equality Test in Standard Model". In: Information Security and Privacy - 24th Australasian Conference, ACISP 2019, Proceedings. Ed. by Julian Jang-Jaccard and Fuchun Guo. Vol. 11547. Lecture Notes in Computer Science. Springer, 2019, pp. 138–155.
- [Duo+19b] Dung Hoang Duong, Huy Quoc Le, Partha Sarathi Roy, and Willy Susilo. "Lattice-Based IBE with Equality Test in Standard Model". In: Provable Security - 13th International Conference, ProvSec 2019, Proceedings. Ed. by Ron Steinfeld and Tsz Hon Yuen. Vol. 11821. Lecture Notes in Computer Science. Springer, 2019, pp. 19–40.
- [Duo+19c] Dung Hoang Duong, Willy Susilo, Minh Kim Bui, and Thanh Xuan Khuc. "A Lattice-Based Certificateless Public Key Encryption with Equality Test in Standard Model".
 In: Information Security and Cryptology 15th International Conference, Inscrypt 2019, Revised Selected Papers. Ed. by Zhe Liu and Moti Yung. Vol. 12020. Lecture Notes in Computer Science. Springer, 2019, pp. 50–65.
- [GMW15] Romain Gay, Pierrick Méaux, and Hoeteck Wee. "Predicate Encryption for Multidimensional Range Queries from Lattices". In: Public-Key Cryptography - PKC 2015
 - 18th IACR International Conference on Practice and Theory in Public-Key Cryptography, Proceedings. Ed. by Jonathan Katz. Vol. 9020. Lecture Notes in Computer Science. Springer, 2015, pp. 752–776.
- [GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. "Attribute-Based Encryption for Circuits". In: J. ACM 62.6 (2015), 45:1–45:33.
- [GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. "Predicate Encryption for Circuits from LWE". In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Proceedings, Part II. Ed. by Rosario Gennaro and Matthew Robshaw. Vol. 9216. Lecture Notes in Computer Science. Springer, 2015, pp. 503–523.

- [GW20] Junqing Gong and Hoeteck Wee. "Adaptively Secure ABE for DFA from k-Lin and More". In: Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Part III. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12107. Lecture Notes in Computer Science. Springer, 2020, pp. 278–308.
- [GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. "ABE for DFA from k-Lin". In: Advances in Cryptology CRYPTO 2019 39th Annual International Cryptology Conference, Proceedings, Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture Notes in Computer Science. Springer, 2019, pp. 732–764.
- [Hua+14] Kaibin Huang, Raylin Tso, Yu-Chi Chen, Wangyu Li, and Hung-Min Sun. "A New Public Key Encryption with Equality Test". In: Network and System Security - 8th International Conference, NSS 2014, Proceedings. Ed. by Man Ho Au, Barbara Carminati, and C.-C. Jay Kuo. Vol. 8792. Lecture Notes in Computer Science. Springer, 2014, pp. 550–557.
- [Hua+15] Kaibin Huang, Raylin Tso, Yu-Chi Chen, Sk. Md. Mizanur Rahman, Ahmad Almogren, and Atif Alamri. "PKE-AET: Public Key Encryption with Authorized Equality Test". In: Comput. J. 58.10 (2015), pp. 2686–2697.
- [Kat+20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Adaptively Secure Inner Product Encryption from LWE". In: Advances in Cryptology -ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Proceedings, Part III. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12493. Lecture Notes in Computer Science. Springer, 2020, pp. 375–404.
- [Kat17] Shuichi Katsumata. "On the Untapped Potential of Encoding Predicates by Arithmetic Circuits and Their Applications". In: Advances in Cryptology ASIACRYPT 2017 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Proceedings, Part III. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10626. Lecture Notes in Computer Science. Springer, 2017, pp. 95–125.
- [KL15] Lucas Kowalczyk and Allison Bishop Lewko. "Bilinear Entropy Expansion from the Decisional Linear Assumption". In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Proceedings, Part II. Ed. by Rosario Gennaro and Matthew Robshaw. Vol. 9216. Lecture Notes in Computer Science. Springer, 2015, pp. 524–541.
- [Lee+16a] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. "CCA2 Attack and Modification of Huang *et al.*'s Public Key Encryption with Authorized Equality Test". In: *Comput. J.* 59.11 (2016), pp. 1689–1694.
- [Lee+16b] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. "Semi-generic construction of public key encryption and identity-based encryption with equality test". In: Inf. Sci. 373 (2016), pp. 419–440.
- [Lee+19] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. "Public key encryption with equality test from generic assumptions in the random oracle model". In: Inf. Sci. 500 (2019), pp. 15–33.
- [Lee+20] Hyung Tae Lee, San Ling, Jae Hong Seo, Huaxiong Wang, and Taek-Young Youn. "Public key encryption with equality test in the standard model". In: Inf. Sci. 516 (2020), pp. 89–108.

- [Lew+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. "Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption". In: Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings. Ed. by Henri Gilbert. Vol. 6110. Lecture Notes in Computer Science. Springer, 2010, pp. 62–91.
- [Li+21] Cong Li, Qingni Shen, Zhikang Xie, Xinyu Feng, Yuejian Fang, and Zhonghai Wu. "Large Universe CCA2 CP-ABE With Equality and Validity Test in the Standard Model". In: Comput. J. 64.4 (2021), pp. 509–533.
- [Lin+19] Yunhao Ling, Sha Ma, Qiong Huang, Ru Xiang, and Ximing Li. "Group ID-Based Encryption with Equality Test". In: Information Security and Privacy 24th Australasian Conference, ACISP 2019, Proceedings. Ed. by Julian Jang-Jaccard and Fuchun Guo. Vol. 11547. Lecture Notes in Computer Science. Springer, 2019, pp. 39–57.
- [Lin+21a] Xi Jun Lin, Lin Sun, Haipeng Qu, and Xiaoshuai Zhang. "Public key encryption supporting equality test and flexible authorization without bilinear pairings". In: Comput. Commun. 170 (2021), pp. 190–199.
- [Lin+21b] Xi Jun Lin, Qihui Wang, Lin Sun, and Haipeng Qu. "Identity-based encryption with equality test and datestamp-based authorization mechanism". In: *Theor. Comput. Sci.* 861 (2021), pp. 117–132.
- [LSQ18] Xi Jun Lin, Lin Sun, and Haipeng Qu. "Generic construction of public key encryption, identity-based encryption and signcryption with equality test". In: *Inf. Sci.* 453 (2018), pp. 111–126.
- [LZL12] Yao Lu, Rui Zhang, and Dongdai Lin. "Stronger Security Model for Public-Key Encryption with Equality Test". In: *Pairing-Based Cryptography Pairing 2012 5th International Conference, Revised Selected Papers.* Ed. by Michel Abdalla and Tanja Lange. Vol. 7708. Lecture Notes in Computer Science. Springer, 2012, pp. 65–82.
- [Ma+15] Sha Ma, Mingwu Zhang, Qiong Huang, and Bo Yang. "Public Key Encryption with Delegated Equality Test in a Multi-User Setting". In: Comput. J. 58.4 (2015), pp. 986– 1002.
- [Ma16] Sha Ma. "Identity-based encryption with outsourced equality test in cloud computing". In: Inf. Sci. 328 (2016), pp. 389–402.
- [Ngu+20] Giang Linh Duc Nguyen, Willy Susilo, Dung Hoang Duong, Huy Quoc Le, and Fuchun Guo. "Lattice-Based IBE with Equality Test Supporting Flexible Authorization in the Standard Model". In: Progress in Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryptology in India, Proceedings. Ed. by Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran. Vol. 12578. Lecture Notes in Computer Science. Springer, 2020, pp. 624–643.
- [OT16] Tatsuaki Okamoto and Katsuyuki Takashima. "Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption". In: *IEICE Trans. Fundam. Electron. Commun. Comput. Sci.* 99-A.1 (2016), pp. 92–117.
- [OT19] Tatsuaki Okamoto and Katsuyuki Takashima. "Fully Secure Functional Encryption with a Large Class of Relations from the Decisional Linear Assumption". In: J. Cryptol. 32.4 (2019), pp. 1491–1573.

- [Qu+18] Haipeng Qu, Zhen Yan, Xi Jun Lin, Qi Zhang, and Lin Sun. "Certificateless public key encryption with equality test". In: *Inf. Sci.* 462 (2018), pp. 76–92.
- [SDL20] Willy Susilo, Dung Hoang Duong, and Huy Quoc Le. "Efficient Post-quantum Identitybased Encryption with Equality Test". In: 26th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2020. IEEE, 2020, pp. 633–640.
- [Tak21] Atsushi Takayasu. "Tag-based ABE in prime-order groups via pair encoding". In: Des. Codes Cryptogr. 89.8 (2021), pp. 1927–1963.
- [Tan11] Qiang Tang. "Towards Public Key Encryption Scheme Supporting Equality Test with Fine-Grained Authorization". In: Information Security and Privacy - 16th Australasian Conference, ACISP 2011, Proceedings. Ed. by Udaya Parampalli and Philip Hawkes. Vol. 6812. Lecture Notes in Computer Science. Springer, 2011, pp. 389–406.
- [TKN20] Junichi Tomida, Yuto Kawahara, and Ryo Nishimaki. "Fast, Compact, and Expressive Attribute-Based Encryption". In: Public-Key Cryptography PKC 2020 23rd IACR International Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part I. Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas. Vol. 12110. Lecture Notes in Computer Science. Springer, 2020, pp. 3– 33.
- [Wan+18] Qiang Wang, Li Peng, Hu Xiong, Jianfei Sun, and Zhiguang Qin. "Ciphertext-Policy Attribute-Based Encryption With Delegated Equality Test in Cloud Computing". In: *IEEE Access* 6 (2018), pp. 760–771.
- [Wan+20] Yuanhao Wang, Yuzhao Cui, Qiong Huang, Hongbo Li, Jianye Huang, and Guomin Yang. "Attribute-Based Equality Test Over Encrypted Data Without Random Oracles". In: *IEEE Access* 8 (2020), pp. 32891–32903.
- [Wat12] Brent Waters. "Functional Encryption for Regular Languages". In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Proceedings. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer, 2012, pp. 218–235.
- [Wee14] Hoeteck Wee. "Dual System Encryption via Predicate Encodings". In: Theory of Cryptography 11th Theory of Cryptography Conference, TCC 2014, Proceedings. Ed. by Yehuda Lindell. Vol. 8349. Lecture Notes in Computer Science. Springer, 2014, pp. 616–637.
- [Xag13] Keita Xagawa. "Improved (Hierarchical) Inner-Product Encryption from Lattices".
 In: Public-Key Cryptography PKC 2013 16th International Conference on Practice and Theory in Public-Key Cryptography, Proceedings. Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778. Lecture Notes in Computer Science. Springer, 2013, pp. 235–252.
- [Yam+11] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru Kunihiro.
 "Generic Constructions for Chosen-Ciphertext Secure Attribute Based Encryption".
 In: Public Key Cryptography PKC 2011 14th International Conference on Practice and Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings. Ed. by Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi.
 Vol. 6571. Lecture Notes in Computer Science. Springer, 2011, pp. 71–89.

- [Yan+10] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong. "Probabilistic Public Key Encryption with Equality Test". In: Topics in Cryptology - CT-RSA 2010, The Cryptographers' Track at the RSA Conference 2010, Proceedings. Ed. by Josef Pieprzyk. Vol. 5985. Lecture Notes in Computer Science. Springer, 2010, pp. 119–131.
- [Zen+19] Ming Zeng, Jie Chen, Kai Zhang, and Haifeng Qian. "Public key encryption with equality test via hash proof system". In: *Theor. Comput. Sci.* 795 (2019), pp. 20–35.
- [Zha+19] Kai Zhang, Jie Chen, Hyung Tae Lee, Haifeng Qian, and Huaxiong Wang. "Efficient public key encryption with equality test in the standard model". In: *Theor. Comput. Sci.* 755 (2019), pp. 65–80.
- [Zhu+17] Huijun Zhu, Licheng Wang, Haseeb Ahmad, and Xinxin Niu. "Key-Policy Attribute-Based Encryption With Equality Test in Cloud Computing". In: *IEEE Access* 5 (2017), pp. 20428–20439.