
A Generic Construction of CCA-secure Attribute-based Encryption
with Equality Test ∗

Kyoichi Asano †1, Keita Emura †2, Atsushi Takayasu †3, and Yohei Watanabe †1

1 The University of Electro-Communications, Japan.
2 Kanazawa University, Japan.

3 The University of Tokyo, Japan.

April 2, 2024

Abstract

Attribute-based encryption with equality test (ABEET) is an extension of the ordinary
attribute-based encryption (ABE), where trapdoors enable us to check whether two ciphertexts
are encryptions of the same message. Thus far, several CCA-secure ABEET schemes have been
proposed for monotone span programs satisfying selective security under 𝑞-type assumptions.
In this paper, we propose a generic construction of CCA-secure ABEET from delegatable ABE.
Specifically, our construction is an attribute-based extension of Lee et al.’s generic construc-
tion of identity-based encryption with equality test from hierarchical identity-based encryption.
Even as far as we know, there are various delegatable ABE schemes. Therefore, we obtain
various ABEET schemes with new properties that have not been achieved before such as vari-
ous predicates, adaptive security, standard assumptions, compact ciphertexts/secret keys, and
lattice-based constructions. To obtain several pairing-based ABEET schemes, we explicitly de-
scribe how to transform a pair encoding scheme to be delegatable. Moreover, we propose the
first pair encoding scheme for key-policy ABE for non-monotone span programs with compact
ciphertexts satisfying relaxed perfect security.

∗An extended abstract appeared at ProvSec 2022 [AET+22]. This is the full version.
†During a part of this work, the authors are affiliated with National Institute of Information and Communications

Technology, Japan.

Contents
1 Introduction 1

1.1 Background . 1
1.2 Our Contribution . 2
1.3 Technical Overview . 4
1.4 Difference from the Conference Version [AET+22] 5
1.5 Roadmap . 6

2 Preliminaries 6
2.1 Delegatable Attribute-based Encryption . 6
2.2 One-time Signature . 8
2.3 Hash Functions . 8
2.4 Attribute-based Encryption with Equality Test . 9

3 Proposed Generic Construction 12
3.1 Our construction . 12
3.2 Correctness . 13

4 Security 15
4.1 OW-CCA2 Security against Type-I Adversaries . 15
4.2 IND-CCA2 Security against Type-II Adversaries . 18

5 New Pair Encoding Scheme 19
5.1 Pair Encoding Scheme . 20
5.2 Delegatable Transformation . 22
5.3 Proposed Scheme for KP-ABE . 28

6 Conclusion 32

1 Introduction

1.1 Background

The notion of public key encryption with equality test (PKEET) was introduced by Yang et
al. [YTH+10]. PKEET is similar to public key encryption with keyword search [BCO+04, ABC+08]
in a multi-user setting. PKEET has multiple public/secret key pairs (pk1, sk1), … , (pk𝑁, sk𝑁). Let
ct𝑖 and ct𝑗 denote encryptions of plaintexts M𝑖 and M𝑗 by pk𝑖 and pk𝑗, respectively. As the case of
the standard public key encryption, the secret keys sk𝑖 and sk𝑗 can decrypt ct𝑖 and ct𝑗, and recover
M𝑖 and M𝑗, respectively. Moreover, PKEET has a trapdoor td to perform the equality test. Let
td𝑖 and td𝑗 denote trapdoors created by the secret keys sk𝑖 and sk𝑗, respectively. Briefly speaking,
even if the 𝑖-th user obtains the 𝑗-th trapdoor td𝑗, they cannot decrypt the 𝑗-th ciphertext ct𝑗. In
contrast, any users who have trapdoors td𝑖 and td𝑗 can check whether ct𝑖 and ct𝑗 are encryptions of
the same plaintexts. There are several applications of PKEET; for example, Yang et al. [YTH+10]
considered outsourced databases with partitioning encrypted data where a database administrator
can collect and categorize confidential data without help of message owners. Thus far, several
PKEET schemes have been proposed [Tan11, LZL12, HTC+14, HTC+15, MZH+15, LLS+16a,
LLS+16b, LSQ18, QYL+18, DFK+19, DSB+19, LLS+19, ZCZ+19, ZCL+19, LLS+20, LSQ+21]
with stronger security models, efficiency improvements, additional properties, and under various
assumptions.

As a natural extension of PKEET, attribute-based encryption with equality test (ABEET) has
been studied. Here, we briefly explain ABEET with a predicate P ∶ 𝒳 × 𝒴 → {0, 1}. ABEET has
a single master public/secret key pair (mpk, msk). Let ct𝑖 and ct𝑗 denote encryptions of plaintexts
M𝑖 and M𝑗 for ciphertext-attributes 𝑥𝑖 and 𝑥𝑗, respectively. As the case of the standard attribute-
based encryption (ABE), the secret key sk𝑦𝑖

for key attribute 𝑦𝑖 (resp. sk𝑦𝑗
for 𝑦𝑗) can decrypt

ct𝑖 (resp. ct𝑗) if P(𝑥𝑖, 𝑦𝑖) = 1 (resp. P(𝑥𝑗, 𝑦𝑗) = 1) holds. Let td𝑦𝑖
and td𝑦𝑗

denote trapdoors
created by the secret keys sk𝑦𝑖

and sk𝑦𝑗
, respectively. Even if the user with the key-attribute 𝑦𝑖

obtains the trapdoor td𝑦𝑗
of the key-attribute 𝑦𝑗, they cannot decrypt the ciphertext ct𝑥𝑗

of the
ciphertext-attribute 𝑥𝑗 when P(𝑥𝑗, 𝑦𝑖) = 0. In contrast, any users who have trapdoors td𝑦𝑖

and td𝑦𝑗

can check whether ct𝑥𝑖
and ct𝑥𝑗

are encryptions of the same plaintexts if P(𝑥𝑖, 𝑦𝑖) = P(𝑥𝑗, 𝑦𝑗) = 1
holds.

The simplest case of ABEET is arguably identity-based encryption with equality test (IBEET)
that has an equality predicate PIBE ∶ 𝒱 × 𝒱 → {0, 1}, i.e., PIBE(𝑣, 𝑣′) = 1 ⇔ 𝑣 = 𝑣′. Thus far,
several IBEET schemes have been proposed such as [LLS+16b, Ma16, LSQ18, DLR+19, LMH+19,
LLS+20, NSD+20, SDL20, LWS+21, AET24]. ABEET schemes for more complex monotone span
programs have also been proposed [CHH+18, CHH+19, WCH+20, LSX+21] as ABE for the same
predicate has been actively studied. However, ABEET research has a major drawback in the sense
that progress in ABEET research is far behind that of ABE research. Although all the ABEET
schemes [CHH+18, CHH+19, WCH+20, LSX+21] satisfy only selective security under 𝑞-type as-
sumptions for monotone span programs, there are adaptively secure ABE schemes for monotone span
programs under standard assumptions [LOS+10, Att14, Wee14, CGW15, Att16, CG17, Att19] and
adaptively secure ABE schemes for more complex non-monotone span programs [AC17b, GWW19].
There are also several ABE schemes for other complex predicates such as (non-)deterministic fi-
nite automata [Att14, AC17b, GWW19, GW20] and circuits [BGG+14]. Although all the ABEET
schemes [CHH+18, CHH+19, WCH+20, LSX+21] are pairing-based, there are lattice-based ABE
schemes under the post-quantum learning with errors assumption such as [BGG+14]. Therefore, it
is an important open problem to improve ABEET based on techniques of the state-of-the-art ABE
schemes.

1

1.2 Our Contribution

To resolve the above mentioned open problem, we propose a generic construction of CCA-secure
ABEET schemes from CPA-secure delegatable ABE schemes and cryptographic hash functions. To
construct an ABEET scheme for a predicate P ∶ 𝒳 × 𝒴 → {0, 1}, our construction uses a dele-
gatable ABE scheme with a hierarchical structure of the depth three, where only the first level
supports the predicate P ∶ 𝒳 × 𝒴 → {0, 1} and the other two levels support only the equality
predicate PIBE ∶ 𝒱 × 𝒱 → {0, 1}. Since delegatable ABE has not been studied as much as (non-
delegatable) ABE, our generic construction does not immediately provide ABEET schemes that
have the same performance as all state-of-the-art ABE schemes. Nevertheless, there are several
delegatable ABE schemes that enable us to obtain various more attractive ABEET schemes than
known schemes [CHH+18, CHH+19, WCH+20, LSX+21]. At first, we can easily obtain selectively
secure lattice-based ABEET schemes for circuits from Boneh et al.’s delegatable ABE scheme for
circuits [BGG+14]. Next, we obtain several pairing-based ABEET schemes through the predicate
encoding and pair encoding frameworks introduced by Wee [Wee14] and Attrapadung [Att14], re-
spectively. These frameworks are unifying methods to design ABE for a large class of predicates,
where the pair encoding can handle more complex predicates than the predicate encoding. There-
fore, we can construct ABEET schemes for complex predicates captured by the predicate encoding
and pair encoding frameworks. As a result, we obtain new and impressive ABEET schemes for
various predicates at once.

Table 1 illustrates a comparison between CCA-secure ABEET schemes for some complex predi-
cate including monotone span programs. All the schemes are constructed over prime-order bilinear
groups. Since there are a huge number of ABE schemes through the pair encoding framework, all
ABEET schemes obtained by our generic construction may not be covered in Table 1. However, 18
schemes listed in Table 1 should be sufficient for clarifying the impact of our generic construction.
We briefly summarize how to obtain base ABE schemes as follows:

• Schemes 1 and 7: Instantiating predicate encoding scheme [Wee14] with compilers [CGW15,
CG17].

• Schemes 2 and 8: Instantiating pair encoding scheme [Att14] with compilers [AC16a, Tak21].

• Scheme 3: Instantiating a pair encoding scheme in Section 5 with compilers [AC16a, Tak21].

• Scheme 9: Instantiating a pair encoding scheme [Tak21] with compilers [AC16a, Tak21].

• Schemes 4–6 and 10–12: Instantiating pair encoding schemes [Att19] with a compiler [AC17b].

• Schemes 13–18: Instantiating pair encoding schemes [Att14] with a compiler [AC17b].

Then, we explain various advantages of our results compared with known ABEET schemes for
monotone span programs [CHH+18, CHH+19, WCH+20, LSX+21].

• Although all known ABEET schemes capture monotone span programs, Schemes 3–6 and
9–12 capture non-monotone span programs and Schemes 13–18 capture deterministic finite
automata.

• Although all known ABEET schemes satisfy only selective security, Schemes 1, 2, 4–8, and
10–14 satisfy adaptive security and Schemes 3 and 9 satisfy semi-adaptive security.

• Although all known ABEET schemes except [LSX+21] support only small universe, Schemes
2–6 and 8–18 support large universe.

2

Table 1: Comparison among known CCA-secure ABEET schemes for complex predicates. MSP,
NSP, DFA, CP, KP, ROM, and BDHE stand for monotone span program, non-monotone span
program, deterministic finite automata, ciphertext-policy, key-policy, random oracle, and bilinear
Diffie-Hellman exponent, respectively. The column “Compact Parameter” indicates that the content
consists of the constant number of group elements.

Known Scheme Predicate Security Policy Universe Model
Complexity
Assumption

Compact
Parameter

CHH+18 [CHH+18] MSP selective CP small ROM 𝑞-parallel BDHE none
CHH+19 [CHH+19] MSP selective CP small ROM 𝑞-parallel BDHE none
WCH+20 [WCH+20] MSP selective CP small Std. 𝑞-parallel BDHE none
LSX+21 [LSX+21] MSP selective CP large Std. 𝑞-1 |mpk|

Our Scheme
(Base Schemes)

Predicate Security Policy Universe Model
Complexity
Assumption

Compact
Parameter

Scheme 1 ([Wee14, CGW15, CG17]) MSP adaptive KP small Std. 𝑘-Lin none
Scheme 2 ([Att14, AC16a, Tak21]) MSP adaptive KP large Std. 𝑘-Lin none

Scheme 3 ([AC16a, Tak21]) NSP semi-adaptive KP large Std. 𝑘-Lin |ct|
Scheme 4 ([AC17b, Att19]) NSP adaptive KP large Std. 𝑞-ratio |mpk|
Scheme 5 ([AC17b, Att19]) NSP adaptive KP large Std. 𝑞-ratio |ct|
Scheme 6 ([AC17b, Att19]) NSP adaptive KP large Std. 𝑞-ratio |sk|

Scheme 7 ([Wee14, CGW15, CG17]) MSP adaptive CP small Std. 𝑘-Lin none
Scheme 8 ([Att14, AC16a, Tak21]) MSP adaptive CP large Std. 𝑘-Lin none

Scheme 9 ([AC16a, Tak21]) NSP semi-adaptive CP large Std. 𝑘-Lin |ct|
Scheme 10 ([AC17b, Att19]) NSP adaptive CP large Std. 𝑞-ratio |mpk|
Scheme 11 ([AC17b, Att19]) NSP adaptive CP large Std. 𝑞-ratio |ct|
Scheme 12 ([AC17b, Att19]) NSP adaptive CP large Std. 𝑞-ratio |sk|
Scheme 13 ([Att14, AC17b]) DFA adaptive KP large Std. 𝑞-ratio |mpk|
Scheme 14 ([Att14, AC17b]) DFA adaptive KP large Std. 𝑞-ratio |ct|
Scheme 15 ([Att14, AC17b]) DFA adaptive KP large Std. 𝑞-ratio |sk|
Scheme 16 ([Att14, AC17b]) DFA adaptive CP large Std. 𝑞-ratio |mpk|
Scheme 17 ([Att14, AC17b]) DFA adaptive CP large Std. 𝑞-ratio |ct|
Scheme 18 ([Att14, AC17b]) DFA adaptive CP large Std. 𝑞-ratio |sk|

• Although security of all known ABEET schemes are based on 𝑞-type assumptions, security of
Schemes 1–3 and 7–9 are based on the standard 𝑘-linear assumption.

• Although all known ABEET schemes do not have compact ciphertexts and secret keys,
Schemes 3, 5, 9, 11, 14, and 17 have compact ciphertexts and Schemes 6, 12, 15, and 18
have compact secret keys.

Therefore, we successfully obtain several improved ABEET schemes from our generic construction.
Moreover, although we only list proposed ABEET schemes for complex predicates in Table 1, our
generic construction also provides various ABEET schemes for less expressive but important predi-
cates captured by the pair encoding and the predicate encoding such as (non-zero) inner product
encryption, (negated) spatial encryption, doubly spatial encryption, and arithmetic span programs.

3

1.3 Technical Overview

We explain an overview of our construction. At first, we exploit the common essence of known
ABEET constructions and briefly summarize the fact that any IND-CPA secure ABE scheme for a
predicate P ∶ 𝒳×𝒴 → {0, 1} becomes CPA-secure ABEET scheme for the same predicate by combin-
ing with cryptographic hash functions. For this purpose, we run two ABE schemes for the same pred-
icate in parallel. Let ABE.mpk0 and ABE.mpk1 denote master public keys of the two ABE schemes
and let H denote a cryptographic hash function. Then, we set mpk = (ABE.mpk0, ABE.mpk1, H) as
the master public key of an ABEET scheme. We encrypt a plaintext M for a ciphertext attribute
𝑥 ∈ 𝒳 as ct𝑥 = (ABE.ct𝑥,0, ABE.ct𝑥,1), where ABE.ct𝑥,0 and ABE.ct𝑥,1 are encryptions of M and
H(M) for the same 𝑥 computed by ABE.mpk0 and ABE.mpk1, respectively. We set a secret key of
a key attribute 𝑦 ∈ 𝒴 as sk𝑦 = (ABE.sk𝑦,0, ABE.sk𝑦,1), where ABE.sk𝑦,0 and ABE.sk𝑦,1 are secret
keys for the same 𝑦 computed by (ABE.mpk0, ABE.msk0) and (ABE.mpk1, ABE.msk1), respectively.
The secret key sk𝑦 can decrypt the ciphertext ct𝑥 if P(𝑥, 𝑦) = 1 by simply decrypting the ABE ci-
phertext ABE.ct𝑥,0 with the ABE secret key ABE.sk𝑦,0 and recover M. We set a trapdoor for 𝑦 ∈ 𝒴
as td𝑦 = ABE.sk𝑦,1. Given two ciphertexts (ct𝑥, ct𝑥′) for (𝑥, 𝑥′) ∈ 𝒳2 and two trapdoors (td𝑦, td𝑦′)
such that P(𝑥, 𝑦) = P(𝑥′, 𝑦′) = 1, we can check whether the two ciphertexts are encryptions of the
same plaintexts by checking whether the decryption results of the ABE ciphertexts ABE.ct𝑥,1 and
ABE.ct𝑥′,1 by the trapdoors ABE.sk𝑦,1 and ABE.sk𝑦′,1, respectively, have the same values.

Next, we observe that the above ABEET scheme satisfies CPA security. Briefly speaking, ABEET
has to be secure against two types of adversaries called Type-I and Type-II. Let 𝑥∗ denote the
target ciphertext attribute. The Type-I adversary can receive trapdoors td𝑦 such that P(𝑥∗, 𝑦) = 1,
while the Type-II adversary cannot receive such trapdoors. Although the Type-I adversary trivially
breaks indistinguishability by definition, we can prove one-wayness against the Type-I adversary.
Thus, the challenge ciphertext ct∗

𝑥∗ is an encryption of M∗ that is sampled uniformly at random
from the plaintext space. The IND-CPA security of the underlying ABE scheme ensures that the
first element ABE.ct∗

𝑥∗,0 of the challenge ciphertext ct∗
𝑥∗ does not reveal the information of M∗ at all.

Since the Type-I adversary has the trapdoor td𝑦 = ABE.sk𝑦,1 such that P(𝑥∗, 𝑦) = 1, it can recover
H(M∗); however, the one-wayness of the hash function H ensures that M∗ cannot be recovered. In
contrast, we have to prove indistinguishability against the Type-II adversary. Thus, the challenge
ciphertext ct∗

𝑥∗ is an encryption of M∗
coin, where the tuple (M∗

0, M∗
1) is declared by the adversary and

coin ←$ {0, 1} is flipped by the challenger. In this case, the IND-CPA security of the underlying
ABE scheme ensures that both ABE.ct∗

𝑥∗,0 and ABE.ct∗
𝑥∗,1 do not reveal the information of M∗

coin and
H(M∗

coin) at all, respectively. We note that the above construction does not provide CCA security
even if the underlying ABE scheme satisfies IND-CCA security. Indeed, when the Type-II adversary
receives the challenge ciphertext ct∗

𝑥∗ = (ABE.ct∗
𝑥∗,0, ABE.ct∗

𝑥∗,1), it can guess the value of coin by
making a decryption query on (ABE.ct𝑥∗,0, ABE.ct∗

𝑥∗,1), where ABE.ct𝑥∗,0 is the encryption of M∗
0 or

M∗
1 computed by the adversary itself.

Based on the discussion so far, what we have to achieve is CCA security. For this purpose, we
follow the generic construction of CCA-secure IBEET from IND-CPA secure hierarchical IBE with
the depth three proposed by Lee et al. [LLS+20]. Lee et al. used the CHK transformation [CHK04]
to update the above scheme for achieving CCA security in the identity-based setting. Similarly,
we use the Yamada et al.’s transformation [YAH+11], which is the attribute-based variant of the
CHK transformation, to update the above CPA-secure construction for achieving CCA security in
the attribute-based setting. We use a IND-CPA-secure delegatable ABE scheme with the depth
three as a building block. Specifically, to construct ABEET for a predicate P ∶ 𝒳 × 𝒴 → {0, 1},
we use a delegatable ABE scheme for a predicate (𝒳 × {0, 1} × 𝒱) × (𝒴 × {0, 1} × 𝒱) → {0, 1},
where a secret key ABE.sk𝑦,𝑏′,𝑣′ can decrypt a ciphertext ABE.ct𝑥,𝑏,𝑣 correctly if it holds that

4

P(𝑥, 𝑦) = 1 ∧ 𝑏 = 𝑏′ ∧ 𝑣 = 𝑣′. Here, we use the second hierarchical level 𝑏, 𝑏′ ∈ {0, 1} to specify
which of the ABE schemes in the above CPA-secure construction and the third level 𝑣, 𝑣′ ∈ 𝒱 to
specify verification keys of the one-time signature scheme. As a result, we set a master public
key, ciphertexts for 𝑥 ∈ 𝒳, secret keys and trapdoors for 𝑦 ∈ 𝒴 of ABEET as mpk = ABE.mpk,
ct𝑥 = (verk, ABE.ct𝑥,0,verk, ABE.ct𝑥,1,verk, 𝜎), sk𝑦 = ABE.sk𝑦, and td𝑦 = ABE.sk𝑦,1, respectively,
where verk is a verification key of the one-time signature scheme and 𝜎 is a signature for the message
[ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk]. Intuitively, the construction achieves CCA security by combining
with security of the above CPA-secure construction and Yamada et al.’s technique [YAH+11].

1.4 Difference from the Conference Version [AET+22]

From the preliminary version of this paper [AET+22], this full version contains three main updates
summarized as follows.
Delegatable Transformation for Pair Encoding Scheme. As we explained in Section 1.3, we
do not use ABE itself but its delegatable one to construct ABEET. In other words, if we want to
construct ABEET for expressive predicates P, we have to construct delegatable ABE schemes whose
first hierarchical level supports P. In the case of lattice-based constructions, Boneh et al. [BGG+14]
constructed delegatable ABE schemes for circuits. If we do not consider expressive predicates for
pairing-based constructions, Ambrona et al. [ABS17] proposed a transformation for predicate en-
coding schemes to be delegatable ones. In contrast, there are no corresponding transformations for
pair encoding schemes that can handle more complex predicates than predicate encoding schemes.
In the preliminary version of this paper, we claimed that the desired transformation was available
by extending the Ambrona et al.’s transformation; however, we did not describe a concrete trans-
formation. In this full version, we explicitly describe how to transform pair encoding schemes to
be delegatable ones in Section 5.2. Although a restricted property of delegatable ABE is sufficient
for constructing ABEET as we explained in Section 1.3, our proposed delegatable transformation
is general in the sense that we can handle an arbitrary number of arbitrary predicates as long as
there are pair encoding schemes for these predicates.
New Pair Encoding Scheme. In the preliminary version of this paper, Scheme 3 in Table 1 was
a key-policy ABEET scheme for monotone span programs with compact ciphertexts. We obtained
the scheme from Agrawal and Chase’s relaxed perfectly secure pair encoding scheme1 [AC16a]
for the same predicate with compilers [AC16a, Tak21]. In contrast, we propose a new relaxed
perfectly secure pair encoding scheme for key-policy ABE for non-monotone span programs with
compact ciphertexts in Section 5.3. From the pair encoding scheme with compilers [AC16a, Tak21],
Scheme 3 in Table 1 supports non-monotone span programs. Moreover, although our pair encoding
scheme supports more complex non-monotone predicates, the proposed pair encoding scheme is
more efficient than Agrawal and Chase’s one.
New Instantiations of ABEET for DFA. In the preliminary version of this paper, there are only
two ABEET schemes for DFA, i.e., Schemes 13 and 16 in Table 1. We obtained the scheme from
Attrapadung’s pair encoding schemes [Att14] with a compiler [AC17b]. Since the pair encoding
schemes satisfy symbolic security introduced in [AC17b], we applied Agrawal and Chase’s transfor-
mation for symbolically secure pair encoding schemes to be those with compact ciphertexts/secret
keys. As a result, we obtain Schemes 14, 15, 17, and 18 in this full version.

1To be precise, the pair encoding scheme itself was introduced by Attrapadung [Att14]; however, its instantiation
requires a complex 𝑞-type assumption. Afterwards, Agrawal and Chase proved that the pair encoding scheme satisfies
relaxed perfect security; therefore, its instantiation requires only the standard 𝑘-linear assumption.

5

1.5 Roadmap

In Section 2, we introduce notations and give some definitions. We show our generic construction
of ABEET and prove its correctness in Section 3. We provide security proofs of our construction in
Section 4. In Section 5, we propose a transformation for a pair encoding scheme to be delegatable
and a new pair encoding scheme for key-policy ABE for non-monotone span programs.

2 Preliminaries

Notation. Throughout the paper, 𝜆 denotes a security parameter. For an 𝑖-bit binary string
s1 ∈ {0, 1}𝑖 and a 𝑗-bit binary string s2 ∈ {0, 1}𝑗, let [s1‖s2] ∈ {0, 1}𝑖+𝑗 denote an (𝑖 + 𝑗)-bit
concatenation of s1 and s2. For a finite set 𝑆, 𝑠 ←$ 𝑆 denotes a sampling of an element 𝑠 from
𝑆 uniformly at random and let |𝑆| denotes a cardinality of 𝑆. Probabilistic polynomial time is
abbreviated as PPT. For two probability distributions, “≡” and “≈” denote the same distribution
and statistically indistinguishable, respectively. Let bold letters a and A denote a row vector and
a matrix, respectively.

2.1 Delegatable Attribute-based Encryption

We define delegatable ABE (or simply called ABE hereafter). To make readers easier to understand,
we here consider a special case of ABE, which is sufficient to describe our construction. The
definition we use here differs from the general definition of ABE in the following ways:

• The hierarchical level is three, not an arbitrary number.

• The second and third levels support only the equality predicate as in identity-based encryp-
tion, where the second level and third level take elements of {0, 1} and an identity space 𝒱,
respectively.

• The Enc algorithm always takes a level-3 attribute.

Let P ∶ 𝒳 × 𝒴 → {0, 1} denotes a predicate, where 𝒳 and 𝒴 are attribute spaces for ciphertexts
and secret keys, respectively. In our definition of ABE for a predicate P, ciphertexts ABE.ct𝑥,𝑏,𝑣 and
secret keys ABE.sk𝑦,𝑏′,𝑣′ are associated with (𝑥, 𝑏, 𝑣) ∈ 𝒳×{0, 1}×𝒱 and (𝑦, 𝑏′, 𝑣′) ∈ 𝒴×{0, 1}×𝒱,
respectively. A secret key ABE.sk𝑦,𝑏′,𝑣′ can decrypt a ciphertext ABE.ct𝑥,𝑏,𝑣 if it holds that P(𝑥, 𝑦) =
1 ∧ 𝑏 = 𝑏′ ∧ 𝑣 = 𝑣′.

Syntax. An ABE scheme ΠABE for a predicate P consists of the five algorithms (ABE.Setup,
ABE.KeyGen, ABE.Enc, ABE.Dec, ABE.Delegate) as follows:

ABE.Setup(1𝜆) → (ABE.mpk, ABE.msk): On input the security parameter 1𝜆, it outputs a master
public key ABE.mpk and a master secret key ABE.msk. We assume that ABE.mpk contains a
description of a plaintext space ℳ that is determined only by the security parameter 𝜆.

ABE.Enc(ABE.mpk, (𝑥, 𝑏, 𝑣), M) → ABE.ct𝑥,𝑏,𝑣: On input a master public key ABE.mpk, (𝑥, 𝑏, 𝑣) ∈
𝒳 × {0, 1} × 𝒱, and a plaintext M ∈ ℳ, it outputs a ciphertext ABE.ct𝑥,𝑏,𝑣.

ABE.KeyGen(ABE.mpk, ABE.msk, 𝑌) → ABE.sk𝑌: On input a master public key ABE.mpk, a master
secret key ABE.msk, and 𝑌, it outputs a secret key ABE.sk𝑌, where 𝑌 is the element of 𝒴,
𝒴 × {0, 1} or 𝒴 × {0, 1} × 𝒱.

6

ABE.Dec(ABE.mpk, ABE.ct𝑥,𝑏,𝑣, ABE.sk𝑦,𝑏′,𝑣′) → M or ⊥: On input a master public key ABE.mpk,
a ciphertext ABE.ct𝑥,𝑏,𝑣, and a secret key ABE.sk𝑦,𝑏′,𝑣′ , it outputs the decryption result M if
P(𝑥, 𝑦) = 1 ∧ (𝑏, 𝑣) = (𝑏′, 𝑣′). Otherwise, output ⊥.

ABE.Delegate(ABE.mpk, ABE.sk𝑌, 𝑌 ′) → ABE.sk𝑌 ′: On input a master public key ABE.mpk, a se-
cret key ABE.sk𝑌 and 𝑌 ′, it outputs a secret key ABE.sk𝑌 ′ , where 𝑌 is the element of 𝒴 or
𝒴×{0, 1}, 𝑌 ′ is the element of {𝑌}×{0, 1} or {𝑌}×{0, 1}×𝒱 if 𝑌 ∈ 𝒴, and 𝑌 ′ is the element
of {𝑌} × {0, 1} × 𝒱 if 𝑌 ∈ 𝒴 × {0, 1}.

Correctness. For all 𝜆 ∈ ℕ, all (ABE.mpk, ABE.msk) ← ABE.Setup(1𝜆), all M ∈ ℳ, all
(𝑥, 𝑦) ∈ 𝒳 × 𝒴 such that P(𝑥, 𝑦) = 1, and all (𝑏, 𝑣) ∈ {0, 1} × 𝒱, it is required that M′ = M holds
with overwhelming probability, where ABE.ct𝑥,𝑏,𝑣 ← ABE.Enc(ABE.mpk, (𝑥, 𝑏, 𝑣), M), ABE.sk𝑦,𝑏,𝑣 ←
ABE.KeyGen(ABE.mpk, ABE.msk, (𝑦, 𝑏, 𝑣)), and M′ ← ABE.Dec(ABE.mpk, ABE.ct𝑥,𝑏,𝑣, ABE.sk𝑦,𝑏,𝑣).
In addition, there is a correctness for ABE.Delegate, where outputs of ABE.KeyGen(ABE.mpk,
ABE.msk, 𝑌 ′) and ABE.Delegate(ABE.mpk, ABE.KeyGen(ABE.mpk, ABE.msk, 𝑌), 𝑌 ′) follow the
same distribution.

Security. We consider adaptive IND-CPA security defined below. Note that the following defini-
tion is specific to the above syntax but implied by the general adaptive IND-CPA definition.

Definition 2.1 (Adaptive IND-CPA Security). The adaptive IND-CPA security of an ABE scheme
ΠABE is defined by a game between an adversary 𝒜 and a challenger 𝒞 as follows:

Init: 𝒞 runs (ABE.mpk, ABE.msk) ← ABE.Setup(1𝜆) and gives ABE.mpk to 𝒜.

Phase 1: 𝒜 is allowed to make the following key extraction queries to 𝒞:

Key extraction query: 𝒜 is allowed to make the query on 𝑌. Upon the query, 𝒞 runs
ABE.sk𝑌 ← ABE.KeyGen(ABE.mpk, ABE.msk, 𝑌) and returns ABE.sk𝑌 to 𝒜, where 𝑌 is
the element of 𝒴, 𝒴 × {0, 1} or 𝒴 × {0, 1} × 𝒱.

Challenge query: 𝒜 is allowed to make the query only once. Upon 𝒜’s query on
((𝑥∗, 𝑏∗, 𝑣∗), M0

∗, M1
∗) ∈ 𝒳 × {0, 1} × 𝒱 × ℳ2, where M0

∗ and M1
∗ have the same length

and (𝑥∗, 𝑏∗, 𝑣∗) should not satisfy the following conditions for all the attributes 𝑌 queried on
key extraction queries in Phase 1:

• If 𝑌 = 𝑦 ∈ 𝒴, P(𝑥∗, 𝑦) = 1 holds.
• If 𝑌 = (𝑦, 𝑏) ∈ 𝒴 × {0, 1}, P(𝑥∗, 𝑦) = 1 ∧ 𝑏∗ = 𝑏 holds.
• If 𝑌 = (𝑦, 𝑏, 𝑣) ∈ 𝒴 × {0, 1} × 𝒱, P(𝑥∗, 𝑦) = 1 ∧ (𝑏∗, 𝑣∗) = (𝑏, 𝑣) holds.

Then, 𝒞 flips a coin coin ←$ {0, 1} and runs ABE.ct∗
𝑥∗,𝑏∗,𝑣∗ ← ABE.Enc(ABE.mpk,

(𝑥∗, 𝑏∗, 𝑣∗), M∗
coin). Then, 𝒞 returns ABE.ct∗

𝑥∗,𝑏∗,𝑣∗ to 𝒜.

Phase 2: 𝒜 is allowed to make key extraction queries as in Phase 1 with the following exceptions:

Key extraction query: Upon 𝒜’s query on 𝑌, 𝑌 should not satisfy the conditions with 𝑥∗

as we mentioned in the challenge query.

Guess: At the end of the game, 𝒜 returns ĉoin ∈ {0, 1} as a guess of coin.

7

The adversary 𝒜 wins in the above game if ĉoin = coin and the advantage is defined to

AdvIND-CPA
ΠABE,𝒜 (𝜆) ≔ ∣Pr[ĉoin = coin] − 1

2
∣.

If AdvIND-CPA
ΠABE,𝒜 (𝜆) is negligible in the security parameter 𝜆 for all PPT adversaries 𝒜, an ABE scheme

ΠABE is said to satisfy adaptive IND-CPA security.

Remark 1. The Definition 2.1 states the adaptive IND-CPA security in the sense that 𝒜 declares
the target (𝑥∗, 𝑏∗, 𝑣∗) at the challenge query. The selective IND-CPA security can be defined in
the same way except that 𝒜 declares the target (𝑥∗, 𝑏∗, 𝑣∗) before the init phase. Similarly, the
semi-adaptive IND-CPA security can be defined in the same way except that 𝒜 declares the target
(𝑥∗, 𝑏∗, 𝑣∗) just after the init phase.

2.2 One-time Signature

Syntax. An one-time signature (OTS) scheme Γ consists of three algorithms (Sig.Setup, Sig.Sign,
Sig.Vrfy) with the same message space ℳ used in IBE scheme as follows:

Sig.Setup(1𝜆) → (verk, sigk): On input the security parameter 1𝜆, it outputs a verification key verk
and signing key sigk.

Sig.Sign(sigk, M) → 𝜎: On input a signing key sigk and a message M ∈ ℳ, it outputs a signature
𝜎.

Sig.Vrfy(verk, M, 𝜎) → 1 or 0: On input a verification key verk, a message M ∈ ℳ, and its signature
𝜎, it outputs 1 if the signature is valid and outputs 0 ⊥ otherwise.

Correctness. We require that for all security parameters 𝜆 ∈ ℕ, (verk, sigk) ← Sig.Setup(1𝜆),
and messages M ∈ {0, 1}∗, it holds that Sig.Vrfy(verk, M, Sig.Sign(sigk, M)) = 1 with overwhelming
probability.

Security. We define a security notion for OTS. Let Γ be an OTS scheme, and we consider a
game between an adversary 𝒜 and the challenger 𝒞. The game is parameterized by the security
parameter 𝜆. The game proceeds as follows: 𝒞 first runs (verk, sigk) ← Sig.Setup(1𝜆) and gives verk
to 𝒜. 𝒜 is allowed to make the signature generation query only once: upon a query M ∈ {0, 1}∗

from 𝒜, 𝒞 returns 𝜎 ← Sig.Sign(sigk, M) to 𝒜. 𝒜 outputs (M̂, �̂�) and terminates. In this game, 𝒜’s
advantage is defined by

AdvOTS
Γ,𝒜 (𝜆) ≔ Pr[Sig.Vrfy(verk, M̂, �̂�) → 1 ∧ (M̂, �̂�) ≠ (M, 𝜎)].

Definition 2.2 (Strong Unforgeability). We say that an OTS scheme Γ satisfies strong unforge-
ability, if the advantage AdvOTS

Γ,𝒜 (𝜆) is negligible for all PPT adversaries 𝒜.

2.3 Hash Functions

Let H ∶ ℳ → ℛ be a hash function. We require the following properties of hash functions for our
schemes.

8

Definition 2.3 (One-wayness). We say that a hash function H is one-way (or preimage resistant)
if for all PPT adversaries 𝒜,

AdvOW
H,𝒜(𝜆) ≔ Pr[M∗ ←$ ℳ, M̂ ← 𝒜(H(M∗)) ∶ H(M̂) = H(M∗)]

is negligible in 𝜆.

Definition 2.4 (Collision Resistance). We say that a hash function H is collision resistant if for
all PPT adversaries 𝒜,

AdvCR
H,𝒜(𝜆) ≔ Pr[(M0, M1) ← 𝒜 ∶ M0 ≠ M1 ∧ H(M0) = H(M1)]

is negligible in 𝜆.

2.4 Attribute-based Encryption with Equality Test

Syntax. An ABEET scheme Π for a predicate P ∶ 𝒳 × 𝒴 → {0, 1} consists of the following six
algorithms (Setup, Enc, KeyGen, Dec, Trapdoor, Test) as follows:

Setup(1𝜆) → (mpk, msk): On input the security parameter 1𝜆, it outputs a master public key mpk
and a master secret key msk. We assume that mpk contains a description of a plaintext space
ℳ that is determined only by the security parameter 𝜆.

Enc(mpk, 𝑥, M) → ct𝑥: On input a master public key mpk, 𝑥 ∈ 𝒳, and a plaintext M ∈ ℳ, it
outputs a ciphertext ct𝑥.

KeyGen(mpk, msk, 𝑦) → sk𝑦: On input a master public key mpk, a master secret key msk, and 𝑦 ∈ 𝒴,
it outputs a secret key sk𝑦.

Dec(mpk, ct𝑥, sk𝑦) → M or ⊥: On input a master public key mpk, a ciphertext ct𝑥, and a secret key
sk𝑦, it outputs the decryption result M if P(𝑥, 𝑦) = 1. Otherwise, output ⊥.

Trapdoor(mpk, sk𝑦) → td𝑦: On input a master public key mpk and a secret key sk𝑦, it outputs the
trapdoor td𝑦 for 𝑦 ∈ 𝒴.

Test(ct𝑥, td𝑦, ct𝑥′ , td𝑦′) → 1 or 0: On input two ciphertexts ct𝑥, ct𝑥′ and two trapdoors td𝑦, td𝑦′ , it
outputs 1 or 0.

Correctness. We require an ABEET scheme to satisfy the following three conditions. Briefly
speaking, the first condition ensures that the Dec algorithm works correctly. In contrast, the
second (resp. third) conditions ensure that the Test algorithm outputs 1 (resp. 0) if ct𝑥 and ct𝑥′

are encryptions of the same plaintext (resp. distinct plaintexts), respectively. We consider PPT
adversaries for the third condition. The three conditions are formally defined as follows:

(1) For all 𝜆 ∈ ℕ, all (mpk, msk) ← Setup(1𝜆), all M ∈ ℳ, all 𝑥 ∈ 𝒳 and all 𝑦 ∈ 𝒴, such
that P(𝑥, 𝑦) = 1, it is required that M′ = M holds with overwhelming probability, where
ct𝑥 ← Enc(mpk, 𝑥, M), sk𝑦 ← KeyGen(mpk, msk, 𝑦), and M′ ← Dec(mpk, ct𝑥, sk𝑦).

(2) For all 𝜆 ∈ ℕ, all (mpk, msk) ← Setup(1𝜆), all M ∈ ℳ, all 𝑥0, 𝑥1 ∈ 𝒳 and all 𝑦0, 𝑦1 ∈ 𝒴,
such that ∧𝑖∈{0,1}P(𝑥𝑖, 𝑦𝑖) = 1, it is required that 1 ← Test(ct𝑥0

, td𝑦0
, ct𝑥1

, td𝑦1
) holds with

overwhelming probability, where sk𝑦𝑖
← KeyGen(mpk, msk, 𝑦𝑖), ct𝑥𝑖

← Enc(mpk, 𝑥𝑖, M), and
td𝑦𝑖

← Trapdoor(mpk, sk𝑦𝑖
) for 𝑖 = 0, 1.

9

(3) For all 𝜆 ∈ ℕ, all (mpk, msk) ← Setup(1𝜆), all PPT adversaries 𝒜, all 𝑥0, 𝑥1 ∈ 𝒳 and all
𝑦0, 𝑦1 ∈ 𝒴, such that ∧𝑖∈{0,1}P(𝑥𝑖, 𝑦𝑖) = 1, it is required that

M0 ≠ M1 ∧ 1 ← Test(mpk, ct𝑥0
, td𝑦0

, ct𝑥1
, td𝑦1

)

holds with negligible probability, where (M0, M1) ← 𝒜(mpk, msk), sk𝑦𝑖
←

KeyGen(mpk, msk, 𝑦𝑖), ct𝑥𝑖
← Enc(mpk, 𝑥𝑖, M𝑖), and td𝑦𝑖

← Trapdoor(mpk, sk𝑦𝑖
) for

𝑖 = 0, 1.

Remark 2. In most ABEET papers, PPT adversaries do not appear in the definition of the third
condition. In these works, the authors defined the third condition in the same way as the second
condition except that 0 ← Test(ct𝑥0

, td𝑦0
, ct𝑥1

, td𝑦1
) holds with overwhelming probability, where

ct𝑥0
← Enc(mpk, 𝑥0, M0) and ct𝑥1

← Enc(mpk, 𝑥1, M1) such that M0 ≠ M1. Then, the authors
proved the third condition based on the collision resistance of hash functions. However, the collision
resistance itself is insufficient for proving the condition because unbounded adversaries may be able
to find collisions. To this end, we modify the definition along with PPT adversaries and formally
prove the condition based on the collision resistance of hash functions.

Security. For the security of ABEET, we consider two different types of adversaries. One has a
trapdoor for the target attribute or not.

• Type-I adversary: This type of adversaries has trapdoors td𝑦 such that P(𝑥∗, 𝑦) = 1. There-
fore, the adversaries can perform the equality test with the challenge ciphertext ct∗

𝑥∗ . Hence,
we consider one-wayness.

• Type-II adversary: This type of adversaries has no trapdoors td𝑦 such that P(𝑥∗, 𝑦) = 1.
Therefore, the adversaries cannot perform the equality test with the challenge ciphertext
ct∗

𝑥∗ . Hence, we consider indistinguishability.

Definition 2.5 (Adaptive OW-CCA2 Security against Type-I Adversaries). The adaptive OW-
CCA2 security against Type-I adversaries of an ABEET scheme Π is defined by a game between an
adversary 𝒜 and a challenger 𝒞 as follows:

Init: 𝒞 runs (mpk, msk) ← Setup(1𝜆) and gives mpk to 𝒜.

Phase 1: 𝒜 is allowed to make the following three types of queries to 𝒞:

Key extraction query: 𝒜 is allowed to make the query on 𝑦 ∈ 𝒴 to 𝒞. Upon the query, 𝒞
runs sk𝑦 ← KeyGen(mpk, msk, 𝑦) and returns sk𝑦 to 𝒜.

Decryption query: 𝒜 is allowed to make the query on (ct𝑥, 𝑦) to 𝒞. Upon the query, 𝒞
runs sk𝑦 ← KeyGen(mpk, msk, 𝑦) and M ← Dec(mpk, ct𝑥, sk𝑦), and returns M to 𝒜.

Trapdoor query: 𝒜 is allowed to make the query on 𝑦 ∈ 𝒴 to 𝒞. Upon the query, 𝒞 runs
sk𝑦 ← KeyGen(mpk, msk, 𝑦) and td𝑦 ← Trapdoor(mpk, sk𝑦), and returns td𝑦 to 𝒞.

Challenge query: 𝒜 is allowed to make the query only once. Upon 𝒜’s query on 𝑥∗ ∈ 𝒳, 𝑥∗

should not satisfy the condition P(𝑥∗, 𝑦) = 1 for all the attributes 𝑦 ∈ 𝒴 queried on key
extraction queries in Phase 1. Then, 𝒞 chooses M∗ ←$ ℳ and runs ct∗

𝑥∗ ← Enc(mpk, 𝑥∗, M∗).
Finally, 𝒞 returns ct∗

𝑥∗ to 𝒜.

Phase 2: 𝒜 is allowed to make key extraction queries, decryption queries and trapdoor queries as
in Phase 1 with the following exceptions:

10

Key extraction query: Upon 𝒜’s query on 𝑦 ∈ 𝒴, 𝑦 should not satisfy the condition
P(𝑥∗, 𝑦) = 1.

Decryption query: Upon 𝒜’s query on (ct𝑥, 𝑦), ct𝑥 = ct∗
𝑥∗ does not hold.

Guess: At the end of the game, 𝒜 returns M̂ ∈ ℳ as a guess of M∗.

The adversary 𝒜 wins in the above game if M̂ = M∗ and the advantage is defined to

AdvOW-CCA2
Π,𝒜 (𝜆) ≔ ∣Pr[M̂ = M∗] − 1

|ℳ|
∣.

If AdvOW-CCA2
Π,𝒜 (𝜆) is negligible in the security parameter 𝜆 for all PPT adversaries 𝒜, an ABEET

scheme Π is said to satisfy adaptive OW-CCA2 security against Type-I adversaries.

Definition 2.6 (Adaptive IND-CCA2 Security against Type-II Adversaries). The adaptive IND-
CCA2 security against Type-II adversaries of an ABEET scheme Π is defined by a game between
an adversary 𝒜 and a challenger 𝒞 as follows:

Init: 𝒞 runs (mpk, msk) ← Setup(1𝜆) and gives mpk to 𝒜.

Phase 1: 𝒜 is allowed to make the following three types of queries to 𝒞:

Key extraction query: 𝒜 is allowed to make the query on 𝑦 ∈ 𝒴 to 𝒞. Upon the query, 𝒞
runs sk𝑦 ← KeyGen(mpk, msk, 𝑦) and returns sk𝑦 to 𝒜.

Decryption query: 𝒜 is allowed to make the query on (ct𝑥, 𝑦) to 𝒞. Upon the query, 𝒞
runs sk𝑦 ← KeyGen(mpk, msk, 𝑦) and M ← Dec(mpk, ct𝑥, sk𝑦), and returns M to 𝒜.

Trapdoor query: 𝒜 is allowed to make the query on 𝑦 ∈ 𝒴 to 𝒞. Upon the query, 𝒞 runs
sk𝑦 ← KeyGen(mpk, msk, 𝑦) and td𝑦 ← Trapdoor(mpk, sk𝑦), and returns td𝑦 to 𝒞.

Challenge query: 𝒜 is allowed to make the query only once. Upon 𝒜’s query on (𝑥∗, M∗
0, M∗

1) ∈
𝒳 × ℳ2, |M∗

0| = |M∗
1| holds and 𝑥∗ should not satisfy the condition P(𝑥∗, 𝑦) = 1 for all the

attributes 𝑦 ∈ 𝒴 queried on key extraction queries and trapdoor queries in Phase 1. Then, 𝒞
flips a coin coin ←$ {0, 1} and runs ct∗

𝑥∗ ← Enc(mpk, 𝑥∗, M∗
coin). Finally, 𝒞 returns ct∗

𝑥∗ to 𝒜.

Phase 2: 𝒜 is allowed to make key extraction queries, decryption queries and trapdoor queries as
in Phase 1 with the following exceptions:

Key extraction query: Upon 𝒜’s query on 𝑦 ∈ 𝒴, 𝑦 should not satisfy the condition
P(𝑥∗, 𝑦) = 1.

Decryption query: Upon 𝒜’s query on (ct𝑥, 𝑦), ct𝑥 = ct∗
𝑥∗ does not hold.

Trapdoor query: Upon 𝒜’s query on 𝑦 ∈ 𝒴, 𝑦 should not satisfy the condition P(𝑥∗, 𝑦) = 1.

Guess: At the end of the game, 𝒜 outputs ĉoin ∈ {0, 1} as a guess of coin.

The adversary 𝒜 wins in the above game if ĉoin = coin and the advantage is defined to

AdvIND-CCA2
Π,𝒜 (𝜆) ≔ ∣Pr[ĉoin = coin] − 1

2
∣.

If AdvIND-CCA2
Π,𝒜 (𝜆) is negligible in the security parameter 𝜆 for all PPT adversaries 𝒜, an ABEET

scheme Π is said to satisfy adaptive IND-CCA2 security against Type-II adversaries.

Remark 3. As the case of ABE, we define selective security and semi-adaptive security for ABEET
by following Remark 1.

11

3 Proposed Generic Construction
In this section, we provide a generic construction of ABEET by following the discussion in Sec-
tion 1.3. In section 3.1, we show the construction. In Section 3.2, we prove the correctness of our
construction.

3.1 Our construction

In this section, we construct an ABEET scheme Π for a predicate P from an ABE scheme ΠABE,
an OTS scheme Γ and a hash function H. Here, we assume that plaintext spaces ℳ of ABE and
ABEET are the same. Moreover, ℳ is the same as the domain of the hash function H and the
range of ℛ is a subset of ℳ.

Setup(1𝜆) → (mpk, msk): Run

• (ABE.mpk, ABE.msk) ← ABE.Setup(1𝜆),

and output mpk ≔ (ABE.mpk, Γ, H) and msk ≔ ABE.msk.

Enc(mpk, 𝑥, M) → ct𝑥: Parse mpk = (ABE.mpk, Γ, H). Run

• (verk, sigk) ← Sig.Setup(1𝜆),
• ABE.ct𝑥,0,verk ← ABE.Enc(ABE.mpk, (𝑥, 0, verk), M),
• ABE.ct𝑥,1,verk ← ABE.Enc(ABE.mpk, (𝑥, 1, verk), H(M)),
• 𝜎 ← Sig.Sign(sigk, [ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk]).

Output ct𝑥 = (verk, ABE.ct𝑥,0,verk, ABE.ct𝑥,1,verk, 𝜎).

KeyGen(mpk, msk, 𝑦) → sk𝑦: Parse mpk = (ABE.mpk, Γ, H) and msk = ABE.msk. Run

• ABE.sk𝑦 ← ABE.KeyGen(ABE.mpk, ABE.msk, 𝑦).

Output sk𝑦 ≔ ABE.sk𝑦.

Dec(mpk, ct𝑥, sk𝑦) → M or ⊥: Parse mpk = (ABE.mpk, Γ, H), ct𝑥 = (verk, ABE.ct𝑥,0,verk,
ABE.ct𝑥,1,verk, 𝜎), and sk𝑦 = ABE.sk𝑦. If it holds that

• 0 ← Sig.Vrfy(verk, [ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk], 𝜎) ∨ P(𝑥, 𝑦) = 0,

output ⊥. Otherwise, run

• ABE.sk𝑦,0,verk ← ABE.Delegate(ABE.mpk, ABE.sk𝑦, (𝑦, 0, verk)),
• ABE.sk𝑦,1,verk ← ABE.Delegate(ABE.mpk, ABE.sk𝑦, (𝑦, 1, verk)),
• M ← ABE.Dec(ABE.mpk, ABE.ct𝑥,0,verk, ABE.sk𝑦,0,verk),
• ℎ ← ABE.Dec(ABE.mpk, ABE.ct𝑥,1,verk, ABE.sk𝑦,1,verk).

Output M if H(M) = ℎ holds and ⊥ otherwise.

Trapdoor(mpk, sk𝑦) → td𝑦: Parse mpk = (ABE.mpk, Γ, H) and sk𝑦 = ABE.sk𝑦. Run

• ABE.sk𝑦,1 ← ABE.Delegate(ABE.mpk, ABE.sk𝑦, (𝑦, 1)).

12

Output td𝑦 ≔ ABE.sk𝑦,1.

Test(mpk, ct𝑥, td𝑦, ct𝑥′ , td𝑦′) → 1 or 0: Parse mpk = (ABE.mpk, Γ, H), ct𝑥 = (verk, ABE.ct𝑥,0,verk,
ABE.ct𝑥,1,verk, 𝜎), ct𝑥′ = (verk′, ABE.ct𝑥′,0,verk′ , ABE.ct𝑥′,1,verk′ , 𝜎′), td𝑦 = ABE.sk𝑦,1, and
td𝑦′ = ABE.sk𝑦′,1. If it holds that

• 0 ← Sig.Vrfy(verk, [ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk], 𝜎) ∨ 0 ← Sig.Vrfy(verk′, [ABE.ct𝑥′,0,verk′

‖ABE.ct𝑥′,1,verk′], 𝜎′),

output 0. Otherwise, run

• ABE.sk𝑦,1,verk ← ABE.Delegate(ABE.mpk, ABE.sk𝑦,1, (𝑦, 1, verk)),
• ABE.sk𝑦′,1,verk′ ← ABE.Delegate(ABE.mpk, ABE.sk𝑦′,1, (𝑦′, 1, verk′)),
• ℎ ← ABE.Dec(ABE.mpk, ABE.ct𝑥,1,verk, ABE.sk𝑦,1,verk),
• ℎ′ ← ABE.Dec(ABE.mpk, ABE.ct𝑥′,1,verk′ , ABE.sk𝑦′,1,verk′).

Output 1 if ℎ = ℎ′ and 0 otherwise.

3.2 Correctness

We prove the correctness of our ABEET construction as follows.

Theorem 3.1. Our ABEET scheme Π satisfies correctness if the underlying ABE scheme ΠABE and
OTS scheme Γ satisfy correctness, and the hash function H satisfies collision resistance.

Proof. We can prove the condition (1) by using the correctness of the underlying ABE scheme ΠABE
and the underlying OTS scheme Γ. For all 𝜆 ∈ ℕ, all (ABE.mpk, ABE.msk) ← ABE.Setup(1𝜆) and
Γ, all M ∈ ℳ, all (𝑥, 𝑦) ∈ 𝒳 × 𝒴 such that P(𝑥, 𝑦) = 1, it is required that

Sig.Vrfy(verk, [ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk], 𝜎) → 1 ∧ M′ = M ∧ ℎ = H(M)

holds with overwhelming probability, where

• (verk, sigk) ← Sig.Setup(1𝜆),

• ABE.ct𝑥,0,verk ← ABE.Enc(ABE.mpk, (𝑥, 0, verk), M),

• ABE.ct𝑥,1,verk ← ABE.Enc(ABE.mpk, (𝑥, 1, verk), H(M)),

• 𝜎 ← Sig.Sign(sigk, [ct𝑥,0,verk‖ct𝑥,1,verk]),

• ABE.sk𝑦 ← ABE.KeyGen(ABE.mpk, ABE.msk, 𝑦),

• ABE.sk𝑦,0,verk ← ABE.Delegate(ABE.mpk, ABE.sk𝑦, (𝑦, 0, verk)),

• ABE.sk𝑦,1,verk ← ABE.Delegate(ABE.mpk, ABE.sk𝑦, (𝑦, 1, verk)),

• M′ ← ABE.Dec(ABE.mpk, ABE.ct𝑥,0,verk, ABE.sk𝑦,0,verk),

• ℎ ← ABE.Dec(ABE.mpk, ABE.ct𝑥,1,verk, ABE.sk𝑦,1,verk).

13

The correctness of the OTS scheme Γ ensures that Sig.Vrfy(verk, [ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk], 𝜎) →
1 holds with overwhelming probability. Moreover, the correctness of the ABE scheme ΠABE ensures
that M = M′ ∧ ℎ = H(M) holds with overwhelming probability. Therefore, the condition (1) holds.

We can prove the condition (2) by using the correctness of the underlying ABE scheme ΠABE
and the underlying OTS scheme Γ. For all 𝜆 ∈ ℕ, all (ABE.mpk, ABE.msk) ← ABE.Setup(1𝜆) and
Γ, all M ∈ ℳ, all (𝑥0, 𝑥1, 𝑦0, 𝑦1) ∈ 𝒳2 × 𝒴2 such that ∧𝑖∈{0,1}P(𝑥𝑖, 𝑦𝑖) = 1, it is required that

(∧𝑖∈{0,1}Sig.Vrfy(verk𝑖, [ABE.ct𝑥𝑖,0,verk𝑖
‖ABE.ct𝑥𝑖,1,verk𝑖

], 𝜎𝑖) → 1) ∧ ℎ0 = ℎ1

holds with overwhelming probability, where for 𝑖 ∈ {0, 1}

• (verk𝑖, sigk𝑖) ← Sig.Setup(1𝜆),

• ABE.ct𝑥𝑖,0,verk ← ABE.Enc(ABE.mpk, (𝑥𝑖, 0, verk𝑖), M),

• ABE.ct𝑥𝑖,1,verk ← ABE.Enc(ABE.mpk, (𝑥𝑖, 1, verk𝑖), H(M)),

• 𝜎𝑖 ← Sig.Sign(sigk𝑖, [ct𝑥𝑖,0,verk𝑖
‖ct𝑥𝑖,1,verk𝑖

]),

• ABE.sk𝑦𝑖
← ABE.KeyGen(ABE.mpk, ABE.msk, 𝑦𝑖),

• ABE.sk𝑦𝑖,1,verk𝑖
← ABE.Delegate(ABE.mpk, ABE.sk𝑦𝑖

, (𝑦𝑖, 1, verk𝑖)),

• ℎ𝑖 ← ABE.Dec(ABE.mpk, ABE.ct𝑥𝑖,1,verk𝑖
, ABE.sk𝑦𝑖,1,verk𝑖

).

The correctness of the OTS scheme Γ ensures that Sig.Vrfy(verk𝑖, [ABE.ct𝑥𝑖,0,verk𝑖
‖ABE.ct𝑥𝑖,1,verk𝑖

], 𝜎𝑖) → 1 holds with overwhelming probability. Moreover, the correctness of
the ABE scheme ΠABE ensures that ℎ𝑖 = H(M) for 𝑖 ∈ {0, 1} holds with overwhelming probability.
Therefore, the condition (2) holds.

We can prove the condition (3) by using the correctness of the underlying ABE scheme ΠABE
and collision resistance of underlying hash function H. For this purpose, we use an adver-
sary 𝒜 for breaking the condition (3) to construct a PPT adversary ℬ that breaks the col-
lision resistance of H. Here, we say that 𝒜 breaks the condition (3) if it holds that M0 ≠
M1 ∧ Test(mpk, ct𝑥0

, td𝑦0
, ct𝑥1

, td𝑦1
) → 1, where (M0, M1) ← 𝒜(mpk, msk), ct𝑥𝑖

← Enc(mpk, 𝑥𝑖, M),
sk𝑦𝑖

← KeyGen(mpk, msk, 𝑦𝑖) and td𝑦𝑖
← Trapdoor(mpk, sk𝑦𝑖

) for 𝑖 = 0, 1. For all 𝜆 ∈ ℕ, all
(ABE.mpk, ABE.msk) ← ABE.Setup(1𝜆) and (Γ, H), all PPT adversaries 𝒜, all (𝑥0, 𝑥1, 𝑦0, 𝑦1) ∈
𝒳2×𝒴2 such that ∧𝑖∈{0,1}P(𝑥𝑖, 𝑦𝑖) = 1, after 𝒜 outputs (M0, M1), ℬ also outputs the same (M0, M1).
If 𝒜 breaks the condition (3), it holds that M0 ≠ M1 ∧ ℎ0 = ℎ1, where for 𝑖 ∈ {0, 1}

• (verk𝑖, sigk𝑖) ← Sig.Setup(1𝜆),

• ABE.ct𝑥𝑖,1,verk𝑖
← ABE.Enc(ABE.mpk, (𝑥𝑖, 1, verk𝑖), H(M𝑖)),

• ABE.sk𝑦𝑖
← ABE.KeyGen(ABE.mpk, ABE.msk, 𝑦𝑖),

• ABE.sk𝑦𝑖,1,verk𝑖
← ABE.Delegate(ABE.mpk, ABE.sk𝑦𝑖

, (𝑦𝑖, 1, verk𝑖)),

• ℎ𝑖 ← ABE.Dec(ABE.mpk, ABE.ct𝑥𝑖,1,verk𝑖
, ABE.sk𝑦𝑖,1,verk𝑖

).

The correctness of the ABE scheme ΠABE ensures that ℎ𝑖 = H(M𝑖) hold for 𝑖 ∈ {0, 1} with over-
whelming probability. Therefore, if 𝒜 breaks the condition (3), ℬ breaks the collision resistance of
H with overwhelming probability since it holds that M0 ≠ M1 ∧ H(M0) = H(M1). Therefore, the
condition (3) holds.

From the above, it is proved that our proposed construction is correct.

14

4 Security
In this section, we provide security proofs of our generic construction given in Section 3.1. Specif-
ically, we prove OW-CCA2 security against Type-I adversaries and IND-CCA2 security against
Type-II adversaries in Sections 4.1 and 4.2, respectively.

4.1 OW-CCA2 Security against Type-I Adversaries

Theorem 4.1 (OW-CCA2 Security against Type-I Adversaries). If the underlying ABE scheme
ΠABE satisfies adaptive (resp. semi-adaptive, selective) IND-CPA security, OTS scheme Γ satisfies
strong unforgeability, and H satisfies one-wayness, then our proposed ABEET scheme Π satisfies
adaptive (resp. semi-adaptive, selective) OW-CCA2 security against Type-I adversaries.
Proof. Here, we prove Theorem 4.1 as the case of adaptive security. We note that the proofs for
semi-adaptive security and selective security are essentially the same.

Let ct∗
𝑥∗ = (verk∗, ABE.ct∗

𝑥∗,0,verk∗ , ABE.ct∗
𝑥∗,1,verk∗ , 𝜎∗) be the challenge ciphertext for the target

attribute 𝑥∗. We prove the theorem via game sequence Game0, Game1, and Game2. Let 𝑊𝑖
denote an event that 𝒜 wins in Game𝑖 for 𝑖 ∈ {0, 1, 2}.
Game0: This game is the same as the original adaptive OW-CCA2 security game in Definition 2.5
between the challenger 𝒞 and the adversary 𝒜.
Game1: This game is the same as Game0 except that if 𝒜 makes the decryption queries on
(ct𝑥, 𝑦) = ((verk, ABE.ct𝑥,0,verk, ABE.ct𝑥,1,verk, 𝜎), 𝑦) such that

verk = verk∗ ∧ Sig.Vrfy(verk, [ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk], 𝜎) → 1
∧ (ABE.ct𝑥,0,verk, ABE.ct𝑥,1,verk, 𝜎) ≠ (ABE.ct∗

𝑥∗,0,verk∗ , ABE.ct∗
𝑥∗,1,verk∗ , 𝜎∗)

then 𝒞 aborts the game and returns M ←$ ℳ. Let 𝐸 denote an event that 𝒜 makes such decryption
queries.

We show that Game0 and Game1 are computationally indistinguishable from 𝒜’s view if
the OTS scheme Γ satisfies strong unforgeability. For this purpose, we use 𝒜 to construct a
PPT adversary ℱ that breaks strong unforgeability of Γ. Let OTS.𝒞 denote a challenger of the
strong unforgeability game of Γ. OTS.𝒞 begins the strong unforgeability game and gives verk∗

to ℱ. Then, ℱ begins the OW-CCA2 security game with 𝒜 by running (ABE.mpk, ABE.msk) ←
ABE.Setup(1𝜆) and giving mpk = (ABE.mpk, Γ, H) to 𝒜. Since ℱ obtains msk = ABE.msk, it can
answer 𝒜’s key extraction queries and trapdoor queries. Similarly, if 𝐸 does not happen, ℱ can
answer 𝒜’s decryption queries. In contrast, if 𝐸 happens, ℱ aborts the OW-CCA2 security game
and returns M ←$ ℳ. Moreover, ℱ returns ([ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk], 𝜎) to OTS.𝒞 as a pair of
a message and a forged signature. Upon 𝒜’s challenge query on 𝑥∗, ℱ chooses M∗ ←$ ℳ and runs
ABE.ct∗

𝑥∗,0,verk∗ ← ABE.Enc(ABE.mpk, (𝑥∗, 0, verk∗), M∗) and ABE.ct∗
𝑥∗,1,verk∗ ← ABE.Enc(ABE.mpk,

(𝑥∗, 1, verk∗), H(M∗)). Then, ℱ makes a query on [ABE.ct∗
𝑥∗,0,verk∗‖ABE.ct∗

𝑥∗,1,verk∗] to OTS.𝒞 and
receives 𝜎∗. ℱ gives ct∗

𝑥∗ = (verk∗, ABE.ct∗
𝑥∗,0,verk∗ , ABE.ct∗

𝑥∗,1,verk∗ , 𝜎∗) to 𝒜.
Observe that all ℱ’s behavior except the challenge query does not depend on verk∗ if 𝐸 does not

occur. Thus, ℱ perfectly simulates Game0 if 𝐸 does not happen. Similarly, ℱ perfectly simulates
Game1 if 𝐸 happens. In this case, ℱ successfully breaks the strong unforgeability of Γ. Therefore,
we have

Pr[𝐸] ≤ AdvOTS
Γ,ℱ(𝜆).

If 𝐸 happens in Game1, ℱ outputs a random M ←$ ℳ. In other words, it holds that Pr[𝑊1 ∣ 𝐸] =
1/|ℳ|. Therefore, we have

Pr[𝑊1] = Pr[𝑊1 ∣ 𝐸] Pr[𝐸] + Pr[𝑊1 ∣ ¬𝐸] Pr[¬𝐸]

15

= 1
|ℳ|

⋅ Pr[𝐸] + Pr[𝑊1 ∣ ¬𝐸] Pr[¬𝐸].

If 𝐸 does not happen, Game0 and Game1 are the same from 𝒜’s view. In other words, it holds
that

Pr[𝑊1 ∣ ¬𝐸] Pr[¬𝐸] = Pr[𝑊0](1 − Pr[𝐸]).

Therefore, we have

Pr[𝑊1] = 1
|ℳ|

⋅ Pr[𝐸] + Pr[𝑊0] − Pr[𝑊0] ⋅ Pr[𝐸]

= Pr[𝑊0] + (1
|ℳ|

− Pr[𝑊0]) ⋅ Pr[𝐸]

≥ Pr[𝑊0] − Pr[𝐸].

Therefore, we have
|Pr[𝑊0] − Pr[𝑊1]| ≤ Pr[𝐸] ≤ AdvOTS

Γ,ℱ(𝜆). (1)

Next, we define the Game2 as follows.
Game2: This game is the same as Game1 except the way 𝒞 creates the challenge ciphertext
ct∗

𝑥∗ = (verk∗, ABE.ct∗
𝑥∗,0,verk∗ , ABE.ct∗

𝑥∗,1,verk∗ , 𝜎∗). In short, ABE.ct∗
𝑥∗,0,verk∗ is an encryption of the

challenge plaintext M∗ in Game1. In contrast, ABE.ct∗
𝑥∗,0,verk∗ is an encryption of a plaintext

M ∈ ℳ in Game2, where a distribution of M ∈ ℳ is independent of M∗ such as the uniform
distribution over ℳ.

We show that Game1 and Game2 are computationally indistinguishable from 𝒜’s view if the
ABE scheme ΠABE satisfies IND-CPA security. For this purpose, we use 𝒜 to construct a PPT
adversary ℬ that breaks IND-CPA security of ΠABE. Let ABE.𝒞 denote a challenger of the IND-
CPA security game of ΠABE. ℬ runs (verk∗, sigk) ← Sig.Setup(1𝜆). ABE.𝒞 begins the IND-CPA
security game and gives ABE.mpk to ℬ.2 Then, ℬ begins the OW-CCA2 security game with 𝒜 by
giving mpk = (ABE.mpk, Γ, H) to 𝒜.

In the Phase 1, ℬ can answer all three types of queries by interacting with ABE.𝒞 as follows.

• Key extraction query: Upon 𝒜’s query on 𝑦, ℬ makes a key extraction query on 𝑦 to
ABE.𝒞 and receives ABE.sk𝑦. Then, ℬ sends ABE.sk𝑦 to 𝒜.

• Decryption query: If 𝐸 happens, ℬ aborts the game and returns M ←$ ℳ. Other-
wise, upon 𝒜’s query on (ct𝑥 = (verk, ABE.ct𝑥,0,verk, ABE.ct𝑥,1,verk, 𝜎), 𝑦), ℬ returns ⊥ if
0 ← Sig.Vrfy(verk, [ABE.ct𝑥,0,verk‖ABE.ct𝑥,1,verk], 𝜎) ∨ P(𝑥, 𝑦) = 0. Otherwise, ℬ makes the
key extraction queries on (𝑦, 0, verk) and (𝑦, 1, verk) to ABE.𝒞 and receives ABE.sk𝑦,0,verk
and ABE.sk𝑦,1,verk. ℬ runs M ← ABE.Dec(ABE.mpk, ABE.ct𝑥,0,verk, ABE.sk𝑦,0,verk) and ℎ ←
ABE.Dec(ABE.mpk, ABE.ct𝑥,1,verk, ABE.sk𝑦,1,verk). ℬ returns M to 𝒜 if H(M) = ℎ holds and ⊥
otherwise.

• Trapdoor query: Upon 𝒜’s query on 𝑦, ℬ makes a key extraction query on (𝑦, 1) to ABE.𝒞
and receives ABE.sk𝑦,1. Then, ℬ sends td𝑦 = ABE.sk𝑦,1 to 𝒜.

2To prove selective security, after receiving 𝑥∗ from 𝒜, ℬ sends (𝑥∗, 0, verk∗) to ABE.𝒞 and ABE.𝒞 begins the IND-
CPA security game. Similarly, to prove semi-adaptive security, just after receiving 𝑥∗ from 𝒜, ℬ sends (𝑥∗, 0, verk∗)
to ABE.𝒞 before any queries in Phase 1.

16

Upon 𝒜’s challenge query on 𝑥∗, ℬ chooses M∗, M ←$ ℳ, makes the challenge query on
((𝑥∗, 0, verk∗), M∗, M) to ABE.𝒞, and receives ABE.ct∗

𝑥∗,0,verk∗ . Here, ABE.ct∗
𝑥∗,0,verk∗ are encryptions

of M∗ and M if coin = 0 and coin = 1, respectively. ℬ runs ABE.ct∗
𝑥∗,1,verk∗ ← ABE.Enc(ABE.mpk,

(𝑥∗, 1, verk∗), H(M∗)) and 𝜎∗ ← Sig.Sign(sigk, [ABE.ct∗
𝑥∗,0,verk∗‖ABE.ct∗

𝑥∗,1,verk∗]). ℬ gives ct∗
𝑥∗ =

(verk∗, ABE.ct∗
𝑥∗,0,verk∗ , ABE.ct∗

𝑥∗,1,verk∗ , 𝜎∗) to 𝒜. In the Phase 2, ℬ can answer all three types of
queries essentially in the same way as in Phase 1. After 𝒜 outputs M̂ as a guess of M∗, ℬ outputs
ĉoin = 0 if M̂ = M∗ and ĉoin = 1 otherwise as a guess of coin flipped by ABE.𝒞.

If ABE.ct∗
𝑥∗,0,verk∗ which ℬ received from ABE.𝒞 are encryptions of M∗ and M, the challenge

ciphertext ct∗
𝑥∗ distribute as in Game1 and Game2, respectively. Observe that all ℬ’s key extrac-

tion queries to ABE.𝒞 are valid, where the challenge ciphertext attribute of the IND-CPA security
game for an ABE scheme ΠABE is (𝑥∗, 0, verk∗). All ℬ’s key extraction queries to answer 𝒜’s key
extraction queries are valid since P(𝑥∗, 𝑦) = 0 holds. All ℬ’s key extraction queries to answer 𝒜’s
decryption queries are valid since verk ≠ verk∗ holds for the third hierarchy. All ℬ’s key extraction
queries to answer 𝒜’s trapdoor queries are valid since 1 ≠ 0 for the second hierarchy.

We analyze the quantity of |Pr[𝑊1] − Pr[𝑊2]|. By definition, Pr[coin = 0] = Pr[coin = 1] = 1/2
holds. As we mentioned above, ℬ perfectly simulates Game1 and Game2 if coin = 0 and coin = 1,
respectively; thus, Pr[ĉoin = 0 ∣ coin = 0] = Pr[𝑊1] and Pr[ĉoin = 0 ∣ coin = 1] = Pr[𝑊2] hold.
Therefore, we have

AdvABE
ΠABE,ℬ(𝜆) = ∣Pr[ĉoin = coin] − 1

2
∣

= ∣Pr[ĉoin = 0 ∣ coin = 0] Pr[coin = 0] + Pr[ĉoin = 1 ∣ coin = 1] Pr[coin = 1] − 1
2

∣

= 1
2

∣Pr[𝑊1] − (1 − Pr[ĉoin = 1 ∣ coin = 1])∣

= 1
2

∣Pr[𝑊1] − Pr[ĉoin = 0 ∣ coin = 1]∣

= 1
2

|Pr[𝑊1] − Pr[𝑊2]|.

In other words, it holds that

|Pr[𝑊1] − Pr[𝑊2]| = 2AdvABE
ΠABE,ℬ(𝜆). (2)

Finally, we show that it is computationally infeasible for 𝒜 to win in Game2 if the hash
function H satisfies one-wayness. For this purpose, we use 𝒜 to construct a PPT adversary 𝒟 that
breaks one-wayness of H. 𝒟 interacts with 𝒜 in the same way as ℬ except the creation of the
challenge ciphertext ct∗

𝑥∗ . Upon 𝒜’s challenge query on 𝑥∗, 𝒟 receives ℎ∗ such that M∗ ←$ ℳ, ℎ∗ =
H(M∗). 𝒟 chooses M ←$ ℳ and runs ABE.ct∗

𝑥∗,0,verk∗ ← ABE.Enc(ABE.mpk, (𝑥∗, 0, verk∗), M),
ABE.ct∗

𝑥∗,1,verk∗ ← ABE.Enc(ABE.mpk, (𝑥∗, 1, verk∗), ℎ∗), and 𝜎∗ ← Sig.Sign(sigk, [ABE.ct∗
𝑥∗,0,verk∗‖

ABE.ct∗
𝑥∗,1,verk∗]). 𝒟 sets the challenge ciphertext ct∗

𝑥∗ = (verk∗, ABE.ct∗
𝑥∗,0,verk∗ , ABE.ct∗

𝑥∗,1,verk∗ , 𝜎∗).
After 𝒜 outputs M̂ as a guess of M∗, 𝒟 outputs M̂ if H(M̂) = ℎ∗ and M̂ ←$ ℳ otherwise.

𝒟 perfectly simulates Game2. If 𝒜 wins in Game2, 𝒟 always breaks the one-wayness of H.
Therefore, we have

∣Pr[𝑊2] − 1
|ℳ|

∣ ≤ AdvOW
H,𝒟(𝜆). (3)

From (1) – (3), we have

∣Pr[𝑊0] − 1
|ℳ|

∣ ≤ |Pr[𝑊0] − Pr[𝑊1]| + |Pr[𝑊1] − Pr[𝑊2]| + ∣Pr[𝑊2] − 1
|ℳ|

∣

17

≤ AdvOTS
Γ,ℱ(𝜆) + 2AdvABE

ΠABE,ℬ(𝜆) + AdvOW
H,𝒟(𝜆).

4.2 IND-CCA2 Security against Type-II Adversaries

Theorem 4.2 (IND-CCA2 Security against Type-II Adversaries). If the underlying ABE scheme
ΠABE satisfies adaptive (resp. semi-adaptive, selective) IND-CPA security and OTS scheme Γ
satisfies strong unforgeability, then our proposed ABEET scheme Π satisfies adaptive (resp. semi-
adaptive, selective) IND-CCA2 security against Type-II adversaries.

Proof. Here, we prove Theorem 4.2 as the case of adaptive security. We note that the proofs for
semi-adaptive security and selective security are essentially the same.

Let ct∗
𝑥∗ = (verk∗, ABE.ct∗

𝑥∗,0,verk∗ , ABE.ct∗
𝑥∗,1,verk∗ , 𝜎∗) be the challenge ciphertext for the target

attribute 𝑥∗. We prove the theorem via game sequence Game0, Game1, and Game2. Let 𝑊𝑖
denote an event that 𝒜 wins in Game𝑖 for 𝑖 ∈ {0, 1, 2}.
Game0: This game is the same as the original adaptive IND-CCA2 security game in Definition 2.6
between the challenger 𝒞 and the adversary 𝒜.
Game1: This game is the same as Game0 except that if the event 𝐸 (which was defined in
Game1 in the proof of Theorem 4.1) happens, then the challenger 𝒞 aborts the game and returns
coin′ ←$ {0, 1}. Game0 and Game1 are computationally indistinguishable from 𝒜’s view if the
OTS scheme Γ satisfies strong unforgeability. In particular, there is a PPT adversary ℱ such that

|Pr[𝑊0] − Pr[𝑊1]| ≤ Pr[𝐸] ≤ AdvOTS
Γ,ℱ(𝜆) (4)

by following essentially the same discussion as in (1).
Next, we define the Game2 as follows.

Game2: This game is the same as Game1 except the way 𝒞 creates the challenge ciphertext
ct∗

𝑥∗ = (verk∗, ABE.ct∗
𝑥∗,0,verk∗ , ABE.ct∗

𝑥∗,1,verk∗ , 𝜎∗). In short, ABE.ct∗
𝑥∗,0,verk∗ is an encryption of M∗

coin
in Game1. In contrast, ABE.ct∗

𝑥∗,0,verk∗ is an encryption of a plaintext M ∈ ℳ in Game2, where a
distribution of M ∈ ℳ is independent of M∗

0, M∗
1 such as the uniform distribution over ℳ.

We show that Game1 and Game2 are computationally indistinguishable from 𝒜’s view
if the ABE scheme ΠABE satisfies IND-CPA security. For this purpose, we use 𝒜 to con-
struct a PPT adversary ℬ that breaks IND-CPA security of ΠABE. ℬ interacts with 𝒜 in
the same way as ℬ in the proof of Theorem 4.1 except the creation of the challenge cipher-
text ct∗

𝑥∗ and Guess phase. In this proof, upon 𝒜’s challenge query on (𝑥∗, M∗
0, M∗

1), ℬ chooses
coin ←$ {0, 1} and M ←$ ℳ, makes the challenge query on ((𝑥∗, 0, verk∗), M∗

coin, M) to ABE.𝒞,
and receives ABE.ct∗

𝑥∗,0,verk∗ . Here, ABE.ct∗
𝑥∗,0,verk∗ are encryptions of M∗

coin and M if coin′ = 0
and coin′ = 1, respectively. ℬ runs ABE.ct∗

𝑥∗,1,verk∗ ← ABE.Enc(ABE.mpk, (𝑥∗, 1, verk∗), H(M∗
coin))

and 𝜎∗ ← Sig.Sign(sigk, [ABE.ct∗
𝑥∗,0,verk∗‖ABE.ct∗

𝑥∗,1,verk∗]). ℬ gives ct∗
𝑥∗ = (verk∗, ABE.ct∗

𝑥∗,0,verk∗ ,
ABE.ct∗

𝑥∗,1,verk∗ , 𝜎∗) to 𝒜. After 𝒜 outputs ĉoin as a guess of coin flipped by ℬ, ℬ outputs ĉoin
′

= 0
if ĉoin = coin and ĉoin

′
= 1 otherwise as a guess of coin′ flipped by ABE.𝒞.

ℬ perfectly simulates Game1 and Game2 if coin′ = 0 and coin′ = 1, respectively, by follow-
ing essentially the same discussion as in the proof of Theorem 4.1. We analyze the quantity of
|Pr[𝑊1] − Pr[𝑊2]|. In particular, we have

AdvABE
ΠABE,ℬ(𝜆) = ∣Pr[ĉoin

′
= coin′] − 1

2
∣

18

= ∣Pr[ĉoin
′

= 0 ∣ coin′ = 0] Pr[coin′ = 0] + Pr[ĉoin
′

= 1 ∣ coin′ = 1] Pr[coin′ = 1] − 1
2

∣

= 1
2

∣Pr[𝑊1] − (1 − Pr[ĉoin
′

= 1 ∣ coin′ = 1])∣

= 1
2

∣Pr[𝑊1] − Pr[ĉoin
′

= 0 ∣ coin′ = 1]∣

= 1
2

|Pr[𝑊1] − Pr[𝑊2]|.

In other words, it holds that

|Pr[𝑊1] − Pr[𝑊2]| = 2AdvABE
ΠABE,ℬ(𝜆). (5)

Finally, we show that it is computationally infeasible for 𝒜 to win in Game2 if the ABE
scheme ΠABE satisfies IND-CPA security. For this purpose, we use 𝒜 to construct a PPT ad-
versary 𝒟 that breaks IND-CPA security of ΠABE. 𝒟 interacts with 𝒜 in the same way as ℬ
except the creation of the challenge ciphertext ct∗

𝑥∗ . Upon 𝒜’s challenge query on (𝑥∗, M∗
0, M∗

1), 𝒟
makes the challenge query on ((𝑥∗, 1, verk∗), H(M∗

0), H(M∗
1)) to ABE.𝒞 and receives ABE.ct∗

𝑥∗,1,verk∗ .
Here, ABE.ct∗

𝑥∗,1,verk∗ are encryptions of H(M∗
0) and H(M∗

1) if coin′ = 0 and coin′ = 1, re-
spectively. 𝒟 chooses M ←$ ℳ and runs ABE.ct∗

𝑥∗,0,verk∗ ← ABE.Enc(ABE.mpk, (𝑥∗, 0, verk∗),
M) and 𝜎∗ ← Sig.Sign(sigk, [ABE.ct∗

𝑥∗,0,verk∗‖ABE.ct∗
𝑥∗,1,verk∗]). 𝒟 sets the challenge ciphertext

ct∗
𝑥∗ = (verk∗, ABE.ct∗

𝑥∗,0,verk∗ , ABE.ct∗
𝑥∗,1,verk∗ , 𝜎∗), where coin = coin′. After 𝒜 outputs ĉoin as a

guess of coin = coin′, 𝒟 outputs ĉoin
′

= ĉoin as a guess of coin′ flipped by ABE.𝒞.
𝒟 perfectly simulates Game2 by following essentially the same discussion as in ℬ except the

validity for answering trapdoor queries. In this proof, all 𝒟’s Key extraction queries to answer 𝒜’s
trapdoor queries are valid since the definition of the Type-II adversaries ensures that P(𝑥∗, 𝑦) = 0
holds. We analyze the quantity of |Pr[𝑊2] − 1/2|. Since coin = coin′ and ĉoin = ĉoin

′
, we have

AdvABE
ΠABE,𝒟(𝜆) = ∣Pr[ĉoin

′
= coin′] − 1

2
∣

= ∣Pr[ĉoin = coin] − 1
2

∣

= ∣Pr[𝑊2] − 1
2

∣.

Therefore, we have
∣Pr[𝑊2] − 1

2
∣ = AdvABE

ΠABE,𝒟(𝜆). (6)

From (4) – (6), we have

∣Pr[𝑊0] − 1
2

∣ ≤ |Pr[𝑊0] − Pr[𝑊1]| + |Pr[𝑊1] − Pr[𝑊2]| + ∣Pr[𝑊2] − 1
2

∣

≤ AdvOTS
Γ,ℱ(𝜆) + 2AdvABE

ΠABE,ℬ(𝜆) + AdvABE
ΠABE,𝒟(𝜆).

5 New Pair Encoding Scheme
In this section, we propose a delegatable transformation for a pair encoding scheme and a new pair
encoding scheme for key-policy ABE for non-monotone span programs with compact ciphertexts.
In Section 5.1, we review the definition of pair encoding. In Section 5.2, we propose a delegatable
transformation. In Section 5.3, we propose a new pair encoding scheme.

19

5.1 Pair Encoding Scheme

In this section, we review a pair encoding scheme (PES) by following [Att14, AC16a, AC17b, Tak21].

Syntax. A PES for a predicate P consists of the following four polynomial time algorithms (Param,
EncC, EncK, Pair) defined as follows:

Param(par) → 𝑛: On input par, Param outputs 𝑛 ∈ ℕ that specifies the number of common variables
denoted by b ≔ (𝑏1, … , 𝑏𝑛).

EncC(𝑥, 𝑁) → (𝑤1, 𝑤2, c): On input 𝑥 ∈ 𝒳 and 𝑁 ∈ ℕ, EncC outputs a vector of 𝑤3 ciphertext-
encoding polynomials c = (𝑐1, … , 𝑐𝑤3

) in non-lone ciphertext-encoding variables 𝑠0 and s =
(𝑠1, … , 𝑠𝑤1

) and lone ciphertext-encoding variables ̂s = (̂𝑠1, … , ̂𝑠𝑤2
). The ℓ-th polynomial is

given by

𝑐ℓ ≔ ∑
𝑧∈[𝑤2]

𝜂ℓ,𝑧 ̂𝑠𝑧 + ∑
𝑖∈[0,𝑤1],𝑗∈[𝑛]

𝜂ℓ,𝑖,𝑗𝑠𝑖𝑏𝑗

for ℓ ∈ [𝑤3], where 𝜂ℓ,𝑧, 𝜂ℓ,𝑖,𝑗 ∈ ℤ𝑁.

EncK(𝑦, 𝑁) → (𝑚1, 𝑚2, k): On input 𝑦 ∈ 𝒴 and 𝑁 ∈ ℕ, EncK outputs a vector of 𝑚3 key-encoding
polynomials k = (𝑘1, … , 𝑘𝑚3

) in non-lone key-encoding variables r = (𝑟1, … , 𝑟𝑚1
) and lone

key-encoding variables 𝛼 and ̂r = (̂𝑟1, … , ̂𝑟𝑚2
). The 𝑡-th polynomial is given by

𝑘𝑡 ≔ 𝜙𝑡𝛼 + ∑
𝑧′∈[𝑚2]

𝜙𝑡,𝑧′ ̂𝑟𝑧′ + ∑
𝑖′∈[𝑚1],𝑗∈[𝑛]

𝜙𝑡,𝑖′,𝑗𝑟𝑖′𝑏𝑗

for 𝑡 ∈ [𝑚3], where 𝜙𝑡, 𝜙𝑡,𝑧′ , 𝜙𝑡,𝑖′,𝑗 ∈ ℤ𝑁.

Pair(𝑥, 𝑦, 𝑁) → (E, E): On input 𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴, and 𝑁 ∈ ℕ, Pair outputs two matrices E and E of
size (𝑤1 + 1) × 𝑚3 and 𝑤3 × 𝑚1, respectively.

Remark 4. A predicate encoding is a special case of pair encoding, where both the numbers of
non-lone ciphertext-encoding variable 𝑤1 and key-encoding variables 𝑚1 are always one.

Correctness. A PES for a predicate P is correct if for all 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 such that P(𝑥, 𝑦) = 1,
it holds that

s⊤Ek + c⊤Er = ∑
𝑖∈[0,𝑤1],𝑡∈[𝑚3]

𝑠𝑖𝐸𝑖,𝑡𝑘𝑡 + ∑
ℓ∈[𝑤3],𝑖′∈[𝑚1]

𝑐ℓ𝐸ℓ,𝑖′𝑟𝑖′ = 𝛼𝑠0. (7)

Security. We review the definitions of perfect security, relaxed perfect security, and symbolic secu-
rity. For this purpose, we may use the notation c(𝑠0, s, ̂s, b) and k(𝛼, r, r̂, b) to specify variables for
creating key-encoding polynomials k and ciphertext-encoding polynomials c, respectively. Further-
more, for 𝑑 ∈ [𝑚2], let k𝑑(𝑟𝑑, b) denote k(𝛼, r, r̂, b) except that 𝛼 = 0, 𝑟𝑑 = 0 for 𝑑 ∈ [𝑚1] ∖ {𝑑},
and ̂r = 0. Moreover, we use the following randomized polynomial time algorithm Samp to review
the definition of relaxed perfect security.

Samp(𝑑, 𝑥, 𝑦, 𝑁) → b𝑑 ≔ (𝑏𝑑,1, … , 𝑏𝑑,𝑛): This algorithm takes an index for non-lone key-encoding
variables 𝑑 ∈ [𝑚1], 𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴, and 𝑁 ∈ ℕ as input, and outputs a sequence of 𝑛 numbers
in ℤ𝑁. We require that the probability of this algorithm outputs (𝑢 ⋅ 𝑏𝑑,1, … , 𝑢 ⋅ 𝑏𝑑,𝑛) is equal
to the probability that it outputs (𝑏𝑑,1, … , 𝑏𝑑,𝑛) for any 𝑢 ∈ ℤ∗

𝑁.

20

Definition 5.1 (Perfect Security [Att14]). A PES = (Param, EncK, EncC, Pair) for a predicate P
satisfies perfect security if for all 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 such that P(𝑥, 𝑦) = 0, it holds that

(𝑠0, s, r, c(𝑠0, s, ŝ, b), k(0, r, r̂, b)) ≡ (𝑠0, s, r, c(𝑠0, s, ̂s, b), k(𝛼 , r, r̂, b)) (8)

where 𝑠0 ←$ ℤ𝑁, s ←$ ℤ𝑤1
𝑁 , r ←$ ℤ𝑚1

𝑁 , ̂s ←$ ℤ𝑤2
𝑁 , ̂r ←$ ℤ𝑚2

𝑁 , b ←$ ℤ𝑛
𝑁, and 𝛼 ←$ ℤ𝑁.

Theorem 5.1 ([Att14, AC16b, Tak21]). If there is a PES = (Param, EncK, EncC, Pair) for a pred-
icate P satisfying the perfect security, there is an adaptively secure ABE scheme for the same
predicate P under the standard 𝑘-linear assumption.

Remark 5. Our generic construction of ABEET requires three-level delegatable ABE whose second
and third levels support only the equality predicate as in identity-based encryption. A pair encoding
scheme for identity-based encryption satisfies perfect security.

Definition 5.2 (Relaxed Perfect Security [AC16b]). For a PES = (Param, EncK, EncC, Pair) for a
predicate P satisfies relaxed perfect security if there exists a PPT algorithm Samp such that for all
𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 such that P(𝑥, 𝑦) = 0, and all 𝑑 ∈ [𝑚1], it holds that

{𝑠0, s, 𝑟𝑑, c(𝑠0, s, ̂s, b), k𝑑(𝑟𝑑, b)} ≈ {𝑠0, s, 𝑟𝑑, c(𝑠0, s, ŝ, b), k𝑑(𝑟𝑑, b + b𝑑)} (9)

where 𝑠0 ←$ ℤ𝑁, s ←$ ℤ𝑤1
𝑁 , 𝑟𝑑 ←$ ℤ𝑁, ̂s ←$ ℤ𝑤2

𝑁 , b ←$ ℤ𝑛
𝑁, and b𝑑 ← Samp(𝑑, 𝑥, 𝑦, 𝑁).

Furthermore, it holds that

{𝑠0, s, r, c(𝑠0, s, ̂s, b), k(0, 0, r̂, 0) + ∑
𝑑∈[𝑚1]

k𝑑(𝑟𝑑, b + b𝑑)}

≈ {𝑠0, s, r, c(𝑠0, s, ̂s, b), k(𝛼 , 0, r̂, 0) + ∑
𝑑∈[𝑚1]

k𝑑(𝑟𝑑, b + b𝑑)} ,
(10)

where 𝑠0 ←$ ℤ𝑁, s ←$ ℤ𝑤1
𝑁 , r ←$ ℤ𝑚1

𝑁 , ŝ ←$ ℤ𝑤2
𝑁 , ̂r ←$ ℤ𝑚2

𝑁 , b ←$ ℤ𝑛
𝑁, 𝛼 ←$ ℤ𝑁, b𝑑 ←

Samp(𝑑, 𝑥, 𝑦, 𝑁) for 𝑑 ∈ [𝑚1].

Theorem 5.2 ([AC16b, Tak21]). If there is a PES = (Param, EncK, EncC, Pair) for a predicate P
satisfying the relaxed perfect security, there is a semi-adaptively secure ABE scheme for the same
predicate P under the standard 𝑘-linear assumption.

Remark 6. If PES satisfies the perfect security, it also satisfies the relaxed perfect security by
setting outputs of Samp as zero vectors.

Definition 5.3 (Symbolic Security [AC17b]). A PES = (Param, EncK, EncC, Pair) for a predicate
P satisfies (𝑑1, 𝑑2)-selective symbolic security for positive integers 𝑑1 and 𝑑2 if there exist three
deterministic polynomial-time algorithms EncB, EncS, and EncR such that for all 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴
such that P(𝑥, 𝑦) = 0,

• EncB(𝑥) → (B1, … , B𝑛) ∈ (ℤ𝑑1×𝑑2
𝑁)𝑛;

• EncR(𝑥, 𝑦) → (r1, … , r𝑚1
, a, r̂1, … , r̂𝑚2

) ∈ (ℤ𝑑1
𝑁)𝑚1 × (ℤ𝑑2

𝑁)𝑚2+1;

• EncS(𝑥) → (s0, s1, … , s𝑤1
, ̂s1, … , ̂s𝑤2

) ∈ (ℤ𝑑2
𝑁)𝑤1+1 × (ℤ𝑑1

𝑁)𝑤2 ;

21

such that ⟨s0, a⟩ ≠ 0, and if we substitute

𝑠𝑖 ∶ s⊤
𝑖 , ̂𝑠𝑖 ∶ ̂s⊤

𝑖 , 𝑠𝑖𝑏𝑗 ∶ B𝑗s⊤
𝑖 , 𝑟𝑖′ ∶ r𝑖′ , 𝛼 ∶ a, ̂𝑟𝑖′ ∶ r̂𝑖′ , 𝑟𝑖′𝑏𝑗 ∶ r𝑖′B𝑗,

for 𝑧 ∈ [𝑤2], 𝑖 ∈ [0, 𝑤1], 𝑗 ∈ [𝑛], 𝑧′ ∈ [𝑚2], and 𝑖′ ∈ [𝑚1] in all key-encoding polynomials output by
EncK(𝑦, 𝑁) and all ciphertext-encoding polynomials output by EncC(𝑥, 𝑁), then they evaluate to
0.

Similarly, the PES satisfies (𝑑1, 𝑑2)-co-selective symbolic security if there exist EncB, EncR, and
EncS as above except that inputs of these three algorithms are 𝑦, (𝑥, 𝑦), and 𝑦, respectively. Finally,
the PES satisfies (𝑑1, 𝑑2)-symbolic security if it satisfies (𝑑′

1, 𝑑′
2)-selective symbolic security such that

𝑑′
1 ≤ 𝑑1, 𝑑′

2 ≤ 𝑑2 and (𝑑″
1 , 𝑑″

2)-selective symbolic security such that 𝑑″
1 ≤ 𝑑1, 𝑑″

2 ≤ 𝑑2.

Theorem 5.3 ([AC17b]). If there is a PES = (Param, EncC, EncK, Pair) for a predicate P satisfying
the symbolic security, there is an adaptively secure ABE scheme for the same predicate P under the
𝑞-ratio assumption.

Remark 7. As Agrawal and Chase [AC17b] claimed, if PES satisfies the perfect security or the
relaxed perfect security, it also satisfies the symbolic security with a mild modification.

5.2 Delegatable Transformation

We show how to combine several pair encoding schemes to be delegatable one. Specifically, let
PES(ℓ) = (Param(ℓ), EncC(ℓ), EncK(ℓ), Pair(ℓ)) for ℓ ∈ [𝐿] denote pair encoding schemes for predicates
P(ℓ) ∶ 𝒳(ℓ) × 𝒴(ℓ) → {0, 1}, respectively. Hereafter, any values with superscripts (ℓ) denote those
for PES(ℓ), e.g., 𝑛(ℓ), 𝑤(ℓ)

1 , 𝑚(ℓ)
1 , and so on. We set 𝒳 = 𝒳(1) × ⋯ × 𝒳(𝐿) and 𝒴 = 𝒴(1) × ⋯ × 𝒴(𝐿).

Based on them, the goal is constructing PES = (Param, EncK, EncC, Pair) for a delegatable predicate
P ∶ 𝒳 × 𝒴 → {0, 1} defined as follows.

• For 𝑥 = (𝑥(1), … , 𝑥(𝐿)) ∈ 𝒳 (resp. 𝑦 = (𝑦(1), … , 𝑦(𝐿)) ∈ 𝒴), some 𝑥(ℓ) (resp. 𝑦(ℓ)) may not be
elements of 𝒳(ℓ) (resp. 𝒴(ℓ)) but empty denoted by ⊥. Let 𝐿𝑥 ⊆ [𝐿] (resp. 𝐿𝑦 ⊆ [𝐿]) denote
a set of indices such that 𝑥(ℓ) ≠ ⊥ hold for all ℓ ∈ 𝐿𝑥 (resp. 𝑦(ℓ) ≠ ⊥ hold for all ℓ ∈ 𝐿𝑦).
Moreover, we define ℓ𝑦 ∈ 𝐿𝑦 such that ℓ𝑦 ≤ ℓ holds for all ℓ ∈ 𝐿𝑦.

• For 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, it holds that P(𝑥, 𝑦) = 1 iff 𝐿𝑦 ⊆ 𝐿𝑥 holds and P(ℓ)(𝑥(ℓ), 𝑦(ℓ)) = 1 hold
for all ℓ ∈ 𝐿𝑦.

To handle 𝐿 predicates P(1), … , P(𝐿) simultaneously for PES, we use 𝑛 = ∑𝐿
ℓ=1 𝑛(ℓ) common

variables (b(1), … , b(𝐿)). Briefly speaking, ciphertext-encoding polynomials c for 𝑥 ∈ 𝒳 are con-
catenations of c(ℓ) for (𝑥ℓ)ℓ∈𝐿𝑥

, while key-encoding polynomials k for 𝑦 ∈ 𝒴 are concatenations of
k(ℓ) for (𝑦ℓ)ℓ∈𝐿𝑦

with auxiliary polynomials depending on (b(ℓ))ℓ∈[𝐿]∖𝐿𝑦
to realize key delegation.

To satisfy both correctness and security, the polynomials satisfy the following condition:

• Ciphertext-encoding polynomials and key-encoding polynomials for a predicate P(ℓ) depends
only on b(ℓ) as PES(ℓ).

• All c(ℓ) in the same c share the same non-lone ciphertext-encoding variables 𝑠0 and s. Simi-
larly, all k(ℓ) in the same k share the same non-lone key-encoding variables r.

• All c(ℓ) in the same c use distinct lone ciphertext-encoding variables ̂s(ℓ). Similarly, all k(ℓ)

in the same k use distinct lone key-encoding variables 𝛼(ℓ) and ̂r(ℓ), where it holds that
𝛼 = ∑ℓ∈𝐿𝑦

𝛼(ℓ).

22

We define PES = (Param, EncK, EncC, Pair) for a delegatable predicate P as follows.

Param(par): On input par = (par(ℓ))ℓ∈[𝐿], Param runs 𝑛(ℓ) ← Param(ℓ)(par(ℓ)) for ℓ ∈ [𝐿] and outputs
𝑛 ≔ ∑ℓ∈[𝐿] 𝑛(ℓ) that specifies the number of common variables denoted by b ≔ (b(ℓ))ℓ∈[𝐿].

EncC(𝑥, 𝑁): On input 𝑥 ∈ 𝒳 and 𝑁 ∈ ℕ, set 𝑤1 ≔ maxℓ∈𝐿𝑥
𝑤(ℓ)

1 and 𝑤2 ≔ ∑ℓ∈𝐿𝑥
𝑤(ℓ)

2 . EncC runs

(𝑤(ℓ)
1 , 𝑤(ℓ)

2 , c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ))) ← EncC(𝑥(ℓ), 𝑁) for ℓ ∈ 𝐿𝑥 and outputs a vector of

𝑤3 ≔ ∑ℓ∈𝐿𝑥
𝑤(ℓ)

3 ciphertext-encoding polynomials

c(𝑠0, s, ŝ, b) ≔ (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥

in non-lone ciphertext-encoding variables 𝑠0 and s and lone ciphertext-encoding variables
ŝ ≔ (̂s(ℓ))ℓ∈𝐿𝑥

.

EncK(𝑦, 𝑁) → (𝑚1, 𝑚2, k): On input 𝑦 ∈ 𝒴 and 𝑁 ∈ ℕ, set 𝑚1 ≔ maxℓ∈𝐿𝑦
𝑚(ℓ)

1 and 𝑚2 ≔
∑ℓ∈𝐿𝑦

𝑚(ℓ)
2 . EncK runs (𝑚(ℓ)

1 , 𝑚(ℓ)
2 , k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)

1
), r̂(ℓ), b(ℓ))) ← EncK(ℓ)(𝑦(ℓ), 𝑁) for

ℓ ∈ 𝐿𝑦 such that 𝛼(ℓ𝑦) = 𝛼 − ∑ℓ∈𝐿𝑦∖{ℓ𝑦} 𝛼(ℓ) and outputs a vector of 𝑚3 ≔ ∑ℓ∈𝐿𝑦
𝑚(ℓ)

3 +
𝑚′

1 ∑ℓ∈[𝐿]∖𝐿𝑦
𝑛(ℓ) key-encoding polynomials

k(𝛼, r, r̂, b) ≔ ((k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)
1

), r̂(ℓ), b(ℓ)))ℓ∈𝐿𝑦
, ((𝑟𝑖′𝑏(ℓ)

𝑗)𝑖′∈[𝑚′
1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

) ,

where 𝑚′
1 ≔ min{𝑚1, maxℓ∈[𝐿]∖𝐿𝑦

𝑚(ℓ)
1 }, in non-lone key-encoding variables r and lone key-

encoding variables ̂r ≔ ((𝛼(ℓ))ℓ∈𝐿𝑦∖{𝑦ℓ}, (r̂(ℓ))ℓ∈𝐿𝑦
).

Correctness. We did not describe Pair since it may be complicated. In turn, we describe how
to recover 𝛼𝑠0 if P(𝑥, 𝑦) = 1 holds since it should be simpler to understand. Due to the cor-
rectness of PES(ℓ) for ℓ ∈ 𝐿𝑦, since 𝐿𝑦 ⊆ 𝐿𝑥 holds, we can recover 𝛼(ℓ)𝑠0 for ℓ ∈ [𝐿𝑦] from
(c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)

1
), ̂s, b(ℓ)), k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)

1
), r̂(ℓ), b(ℓ))) for ℓ ∈ 𝐿𝑦, respectively. Then, we

can recover ∑ℓ∈𝐿𝑦
𝛼(ℓ)𝑠0 = 𝛼𝑠0.

Remark 8. Although we omit the detailed description, the above PES is obviously delegatable. In
particular, given k for 𝑦 ∈ 𝒴, we can compute k′ for 𝑦′ ∈ 𝒴 without changing 𝛼 if 𝑦(ℓ) = 𝑦′(ℓ) holds
for all ℓ ∈ 𝐿𝑦. A point to note is that, to share the same non-lone key-encoding variables between
ℓ ∈ 𝐿𝑦 and ℓ ∈ 𝐿𝑦′ ∖ 𝐿𝑦, k contains ((𝑟𝑖′𝑏(ℓ)

𝑗)𝑖′∈[𝑚′
1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

.

Security. We show that the PES preserves the security of PES(ℓ) for ℓ ∈ [𝐿] as stated in Theorems
5.4–5.6.

Theorem 5.4. A PES = (Param, EncC, EncK, Pair) for a predicate P described above satisfies the
perfect security when PES(ℓ) for ℓ ∈ [𝐿] also satisfy the perfect security.

Proof. If 𝐿𝑥 ⊂ 𝐿𝑦, it is obvious that PES satisfies the perfect security. Otherwise, i.e., 𝐿𝑦 ⊆ 𝐿𝑥, we
show that PES satisfies the perfect security (8) if there is an index ℓ⋆ such that P(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)) = 0.
For simplicity, we consider the case that ℓ⋆ ≠ ℓ𝑦. The proof for the other case is essentially the
same.

23

We first observe that the left and right hand sides of (8) satisfy that

{𝑠0, s, r, c(𝑠0, s, ̂s, b), k(0, r, r̂, b)}

=
⎧
{
⎨
{
⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(ℓ𝑦)(− ∑ℓ∈𝐿𝑦∖{ℓ𝑦} 𝛼(ℓ), (𝑟1, … , 𝑟
𝑚(ℓ𝑦)

1
), r̂(ℓ𝑦), b(ℓ𝑦)),

(k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)
1

), r̂(ℓ), b(ℓ)))ℓ∈𝐿𝑦∖{ℓ𝑦}, ((𝑟𝑖′𝑏(ℓ)
𝑗)𝑖′∈[𝑚′

1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

⎫
}
⎬
}
⎭

≡
⎧
{
⎨
{
⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(ℓ⋆)(− ∑ℓ∈𝐿𝑦∖{ℓ⋆} 𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆)),

(k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)
1

), r̂(ℓ), b(ℓ)))ℓ∈𝐿𝑦∖{ℓ⋆}, ((𝑟𝑖′𝑏(ℓ)
𝑗)𝑖′∈[𝑚′

1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

⎫
}
⎬
}
⎭

=
⎧
{
⎨
{
⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(ℓ⋆)(0, (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆)) + k(ℓ⋆)(− ∑ℓ∈𝐿𝑦∖{ℓ⋆} 𝛼(ℓ), 0, 0, 0),

(k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)
1

), r̂(ℓ), b(ℓ)))ℓ∈𝐿𝑦∖{ℓ⋆}, ((𝑟𝑖′𝑏(ℓ)
𝑗)𝑖′∈[𝑚′

1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

⎫
}
⎬
}
⎭

and

{𝑠0, s, r, c(𝑠0, s, ̂s, b), k(𝛼, r, r̂, b)}

=
⎧
{
⎨
{
⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(ℓ𝑦)(𝛼 − ∑ℓ∈𝐿𝑦∖{ℓ𝑦} 𝛼(ℓ), (𝑟1, … , 𝑟
𝑚(ℓ𝑦)

1
), r̂(ℓ𝑦), b(ℓ𝑦)),

(k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)
1

), r̂(ℓ), b(ℓ)))ℓ∈𝐿𝑦∖{ℓ𝑦}, ((𝑟𝑖′𝑏(ℓ)
𝑗)𝑖′∈[𝑚′

1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

⎫
}
⎬
}
⎭

≡
⎧
{
⎨
{
⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(ℓ⋆)(𝛼 − ∑ℓ∈𝐿𝑦∖{ℓ⋆} 𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆)),

(k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)
1

), r̂(ℓ), b(ℓ)))ℓ∈𝐿𝑦∖{ℓ⋆}, ((𝑟𝑖′𝑏(ℓ)
𝑗)𝑖′∈[𝑚′

1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

⎫
}
⎬
}
⎭

=
⎧
{
⎨
{
⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(ℓ⋆)(𝛼, (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆)) + k(ℓ⋆)(𝛼 − ∑ℓ∈𝐿𝑦∖{ℓ⋆} 𝛼(ℓ), 0, 0, 0),

(k(ℓ)(𝛼(ℓ), (𝑟1, … , 𝑟𝑚(ℓ)
1

), r̂(ℓ), b(ℓ)))ℓ∈𝐿𝑦∖{ℓ⋆}, ((𝑟𝑖′𝑏(ℓ)
𝑗)𝑖′∈[𝑚′

1],𝑗∈[𝑛(ℓ)])ℓ∈[𝐿]∖𝐿𝑦

⎫
}
⎬
}
⎭

where 𝑠0 ←$ ℤ𝑁, s ←$ ℤ𝑤1
𝑁 , (r(ℓ))ℓ∈𝐿𝑦

←$ ℤ𝑚1
𝑁 , (ŝ(ℓ))ℓ∈𝐿𝑥

←$ ℤ𝑤2
𝑁 , (r̂(ℓ))ℓ∈𝐿𝑦

←$ ℤ𝑚2
𝑁 , b ←$ ℤ𝑛

𝑁,

(𝛼(ℓ))ℓ∈𝐿𝑦
←$ ℤ|𝐿𝑦|

𝑁 , and 𝛼 ←$ ℤ𝑁. Thus, to prove the perfect security (8) of PES, it is sufficient
to show that

{𝑠0, s, r, c(ℓ⋆)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ⋆)
1

), ŝ(ℓ⋆), b(ℓ⋆)), k(ℓ⋆)(0, (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆))}

≡ {𝑠0, s, r, c(ℓ⋆)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ⋆)
1

), ŝ(ℓ⋆), b(ℓ⋆)), k(ℓ⋆)(𝛼, (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆))}

holds, where 𝑠0 ←$ ℤ𝑁, (𝑠1, … , 𝑠𝑤(ℓ⋆)
1

) ←$ ℤ𝑤(ℓ⋆)
1

𝑁 , (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

) ←$ ℤ𝑚(ℓ⋆)
1

𝑁 , ŝ(ℓ⋆) ←$ ℤ𝑤(ℓ⋆)
2

𝑁 , ̂r(ℓ⋆) ←$

ℤ𝑚(ℓ⋆)
2

𝑁 , b(ℓ⋆) ←$ ℤ𝑛(ℓ⋆)

𝑁 , and 𝛼 ←$ ℤ𝑁. Since the statistical equivalence is exactly the perfect security
of PES(ℓ⋆), the perfect security of PES holds.

Theorem 5.5. A PES = (Param, EncC, EncK, Pair) for a predicate P described above satisfies the
relaxed perfect security when PES(ℓ) for ℓ ∈ [𝐿] also satisfy the relaxed perfect security.

24

Proof. If 𝐿𝑥 ⊂ 𝐿𝑦, PES satisfies the perfect security. Thus, PES also satisfies the relaxed perfect
security from Remark 6. Otherwise, i.e., 𝐿𝑦 ⊆ 𝐿𝑥, we show that PES satisfies the relaxed perfect
security (9) and (10) if there is an index ℓ⋆ such that P(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)) = 0. For simplicity, we
consider the case that ℓ⋆ ≠ ℓ𝑦. The proof for the other case is essentially the same.

At first, we prove (9). We set outputs of Samp(𝑑, 𝑥, 𝑦, 𝑁) as 0 if 𝑑 > 𝑚(ℓ⋆)
1 holds, i.e.,

key-encoding polynomials k(ℓ⋆)(𝛼(ℓ⋆), (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆)) does not depend on a non-lone key-

encoding variable 𝑟𝑑. In this case, left and right hand sides of (9) are same. In contrast, if 𝑑 ≤ 𝑚(ℓ⋆)
1

holds, i.e., key-encoding polynomials k(ℓ⋆)(𝛼(ℓ⋆), (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

), r̂(ℓ⋆), b(ℓ⋆)) depend on a non-lone key-

encoding variable 𝑟𝑑, we set outputs (b(ℓ)
𝑑)ℓ∈[𝐿] ← Samp(𝑑, 𝑥, 𝑦, 𝑁) so that b(ℓ)

𝑑 = 0 if ℓ ∈ [𝐿] ∖ {ℓ⋆}
and b(ℓ⋆)

𝑑 ← Samp(𝑑, 𝑥(ℓ⋆), 𝑦(ℓ⋆), 𝑁) otherwise. In this case, the relaxed perfect security (9) of PES(ℓ⋆)

ensures that of PES.
Next, we prove (10). We first observe that the left and right hand sides of (10) satisfy that

{𝑠0, s, r, c(𝑠0, s, ŝ, b), k(0, 0, r̂, 0) + ∑
𝑑∈[𝑚1]

k𝑑(𝑟𝑑, b + b𝑑)}

=

⎧{{
⎨{{⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(− ∑ℓ∈[𝐿]∖{ℓ𝑦} 𝛼(ℓ), 0, r̂(ℓ𝑦), 0) + ∑
𝑑∈[𝑚(ℓ𝑦)

1]
k(ℓ𝑦)

𝑑 (𝑟𝑑, b(ℓ𝑦) + b(ℓ𝑦)
𝑑),

(k(𝛼(ℓ), 0, r̂(ℓ), 0) + ∑𝑑∈[𝑚(ℓ)
1] k(ℓ)

𝑑 (𝑟𝑑, b(ℓ) + b(ℓ)
𝑑))ℓ∈[𝐿]∖{ℓ𝑦}

⎫}}
⎬}}⎭

≡

⎧{{
⎨{{⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(− ∑ℓ∈[𝐿]∖{ℓ⋆} 𝛼(ℓ), 0, r̂(ℓ⋆), 0) + ∑𝑑∈[𝑚(ℓ⋆)
1] k(ℓ⋆)

𝑑 (𝑟𝑑, b(ℓ⋆) + b(ℓ⋆)
𝑑),

(k(𝛼(ℓ), 0, r̂(ℓ), 0) + ∑𝑑∈[𝑚(ℓ)
1] k(ℓ)

𝑑 (𝑟𝑑, b(ℓ)))ℓ∈[𝐿]∖{ℓ⋆}

⎫}}
⎬}}⎭

=

⎧{{
⎨{{⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(0, 0, r̂(ℓ⋆), 0) + ∑𝑑∈[𝑚(ℓ⋆)
1] k(ℓ⋆)

𝑑 (𝑟𝑑, b(ℓ⋆) + b(ℓ⋆)
𝑑) + k(− ∑ℓ∈[𝐿]∖{ℓ⋆} 𝛼(ℓ), 0, 0, 0),

(k(𝛼(ℓ), 0, r̂(ℓ), 0) + ∑𝑑∈[𝑚(ℓ)
1] k(ℓ)

𝑑 (𝑟𝑑, b(ℓ)))ℓ∈[𝐿]∖{ℓ⋆}

⎫}}
⎬}}⎭

and

{𝑠0, s, r, c(𝑠0, s, ̂s, b), k(𝛼, 0, r̂, 0) + ∑
𝑑∈[𝑚1]

k𝑑(𝑟𝑑, b + b𝑑)}

=

⎧{{
⎨{{⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(𝛼 − ∑ℓ∈[𝐿]∖{ℓ𝑦} 𝛼(ℓ), 0, r̂(ℓ𝑦), 0) + ∑
𝑑∈[𝑚(ℓ𝑦)

1]
k(ℓ𝑦)

𝑑 (𝑟𝑑, b(ℓ𝑦) + b(ℓ𝑦)
𝑑),

(k(𝛼(ℓ), 0, r̂(ℓ), 0) + ∑𝑑∈[𝑚(ℓ)
1] k(ℓ)

𝑑 (𝑟𝑑, b(ℓ) + b(ℓ)
𝑑))ℓ∈[𝐿]∖{ℓ𝑦}

⎫}}
⎬}}⎭

≡

⎧{{
⎨{{⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(𝛼 − ∑ℓ∈[𝐿]∖{ℓ⋆} 𝛼(ℓ), 0, r̂(ℓ⋆), 0) + ∑𝑑∈[𝑚(ℓ⋆)
1] k(ℓ⋆)

𝑑 (𝑟𝑑, b(ℓ⋆) + b(ℓ⋆)
𝑑),

(k(𝛼(ℓ), 0, r̂(ℓ), 0) + ∑𝑑∈[𝑚(ℓ)
1] k(ℓ)

𝑑 (𝑟𝑑, b(ℓ)))ℓ∈[𝐿]∖{ℓ⋆}

⎫}}
⎬}}⎭

=

⎧{{
⎨{{⎩

𝑠0, s, r, (c(ℓ)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ)
1

), ̂s(ℓ), b(ℓ)))ℓ∈𝐿𝑥
,

k(𝛼, 0, r̂(ℓ⋆), 0) + ∑𝑑∈[𝑚(ℓ⋆)
1] k(ℓ⋆)

𝑑 (𝑟𝑑, b(ℓ⋆) + b(ℓ⋆)
𝑑) + k(− ∑ℓ∈[𝐿]∖{ℓ⋆} 𝛼(ℓ), 0, 0, 0),

(k(𝛼(ℓ), 0, r̂(ℓ), 0) + ∑𝑑∈[𝑚(ℓ)
1] k(ℓ)

𝑑 (𝑟𝑑, b(ℓ)))ℓ∈[𝐿]∖{ℓ⋆}

⎫}}
⎬}}⎭

25

where 𝑠0 ←$ ℤ𝑁, s ←$ ℤ𝑤1
𝑁 , r ←$ ℤ𝑚1

𝑁 , (̂s(ℓ))ℓ∈𝐿𝑥
←$ ℤ𝑤2

𝑁 , (̂r(ℓ))ℓ∈𝐿𝑦
←$ ℤ𝑚2

𝑁 , b ←$ ℤ𝑛
𝑁,

(𝛼(ℓ))ℓ∈[𝐿𝑦] ←$ ℤ|𝐿𝑦|
𝑁 , 𝛼 ←$ ℤ𝑁, and b(ℓ⋆)

𝑑 ← Samp(𝑑, 𝑥(ℓ⋆), 𝑦(ℓ⋆), 𝑁) for 𝑑 ∈ [𝑚(ℓ⋆)
1]. Thus, to prove

the relaxed perfect security (10), it is sufficient to show that

{
𝑠0, (𝑠1, … , 𝑠𝑤(ℓ⋆)

1
), (𝑟1, … , 𝑟𝑚(ℓ⋆)

1
), c(ℓ⋆)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ⋆)

1
), ̂s(ℓ⋆), b(ℓ⋆)),

k(0, 0, r̂(ℓ⋆), 0) + ∑𝑑∈[𝑚(ℓ⋆)
1] k(ℓ⋆)

𝑑 (𝑟𝑑, b(ℓ⋆) + b(ℓ⋆)
𝑑)

}

≈ {
𝑠0, (𝑠1, … , 𝑠𝑤(ℓ⋆)

1
), (𝑟1, … , 𝑟𝑚(ℓ⋆)

1
), c(ℓ⋆)(𝑠0, (𝑠1, … , 𝑠𝑤(ℓ⋆)

1
), ̂s(ℓ⋆), b(ℓ⋆)),

k(𝛼, 0, r̂(ℓ⋆), 0) + ∑𝑑∈[𝑚(ℓ⋆)
1] k(ℓ⋆)

𝑑 (𝑟𝑑, b(ℓ⋆) + b(ℓ⋆)
𝑑)

} ,

where 𝑠0 ←$ ℤ𝑁, (𝑠1, … , 𝑠𝑤(ℓ⋆)
1

) ←$ ℤ𝑤(ℓ⋆)
1

𝑁 , (𝑟1, … , 𝑟𝑚(ℓ⋆)
1

) ←$ ℤ𝑚(ℓ⋆)
1

𝑁 , ŝ(ℓ⋆) ←$ ℤ𝑤(ℓ⋆)
2

𝑁 , ̂r(ℓ⋆) ←$ ℤ𝑚(ℓ⋆)
2

𝑁 ,

b(ℓ⋆) ←$ ℤ𝑛(ℓ⋆)

𝑁 , 𝛼 ←$ ℤ𝑁, and b(ℓ⋆)
𝑑 ← Samp(𝑑, 𝑥(ℓ⋆), 𝑦(ℓ⋆), 𝑁) for 𝑑 ∈ [𝑚(ℓ⋆)

1]. Since the statistical
indistinguishability is exactly the relaxed perfect security (10) of PES(ℓ⋆), the relaxed perfect security
(10) of PES holds.

Theorem 5.6. A PES = (Param, EncC, EncK, Pair) for a predicate P described above satisfies the
symbolic security when PES(ℓ) for ℓ ∈ [𝐿] also satisfy the symbolic security and correctness. In
particular, if PES(ℓ) for ℓ ∈ [𝐿] satisfy (𝑑(ℓ)

1 , 𝑑(ℓ)
2)-selective (resp. (𝑑(ℓ)

1 , 𝑑(ℓ)
2)-co-selective) symbolic

security, respectively, and correctness, PES satisfies (maxℓ′∈[𝐿] 𝑑(ℓ′)
1 , ∑ℓ′∈[𝐿] 𝑑(ℓ′)

2)-selective (resp.

(∑ℓ′∈[𝐿] 𝑑(ℓ′)
1 , ∑ℓ′∈[𝐿] 𝑑(ℓ′)

2)-co-selective) symbolic security.

Proof. If 𝐿𝑥 ⊂ 𝐿𝑦, PES satisfies the perfect security. Thus, PES also satisfies the symbolic se-
curity from Remark 7. Otherwise, i.e., 𝐿𝑦 ⊆ 𝐿𝑥, we can prove that PES satisfies the symbolic
security if there is an index ℓ⋆ ∈ 𝐿𝑦 such that P(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)) = 0. For simplicity, we consider
the case that there is only one such index satisfying ℓ⋆ ≠ ℓ𝑦. The proof for the other case is
essentially the same. Hereafter, we use the fact that since PES(ℓ) for ℓ ∈ [𝐿] satisfy (𝑑(ℓ)

1 , 𝑑(ℓ)
2)-

selective (resp. (𝑑(ℓ)
1 , 𝑑(ℓ)

2)-co-selective) symbolic security, they also satisfy (maxℓ′∈[𝐿] 𝑑(ℓ′)
1 , 𝑑(ℓ)

2)-
selective (resp. (maxℓ′∈[𝐿] 𝑑(ℓ′)

1 , 𝑑(ℓ)
2)-co-selective) symbolic security, respectively.

Selective Symbolic Security. At first, we describe EncB, EncS, and EncR for proving the selective
symbolic security.

• EncB(𝑥) → (B(ℓ)
1 , … , B(ℓ)

𝑛(ℓ))ℓ∈[𝐿]: Set B(ℓ)
1 , … , B(ℓ)

𝑛(ℓ) as uniformly random matrices if ℓ ∉ 𝐿𝑥.

Otherwise, set B(ℓ)
1 , … , B(ℓ)

𝑛(ℓ) ∈ ℤ
maxℓ′∈[𝐿] 𝑑(ℓ′)

1 ×∑ℓ′∈[𝐿] 𝑑(ℓ′)
2

𝑁 so that their left maxℓ′∈[𝐿] 𝑑(ℓ′)
1 ×

∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
2 sub-matrices and right maxℓ′∈[𝐿] 𝑑(ℓ′)

1 × ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
2 sub-matrices are zero

matrices. Moreover, set the remaining maxℓ′∈[𝐿] 𝑑(ℓ′)
1 × 𝑑(ℓ)

2 sub-matrices of them as corre-
sponding outputs of EncB(ℓ)(𝑥(ℓ)).

• EncR(𝑥, 𝑦) → ((r1, … , r𝑚1
), a, (a(ℓ))ℓ∈𝐿𝑦∖{ℓ𝑦}, (r̂(ℓ)

1 , … , r̂(ℓ)
𝑚(ℓ)

2
)ℓ∈𝐿𝑦

): Find an index ℓ⋆ ∈ 𝐿𝑥 such

that P(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)) = 0 and proceed as follows.

– Set r1, … , r𝑚1
∈ ℤ

maxℓ′∈[𝐿] 𝑑(ℓ′)
1

𝑁 as corresponding outputs of EncR(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)).

26

– Set a = a(ℓ⋆) ∈ ℤ
∑ℓ′∈[𝐿] 𝑑(ℓ′)

2

𝑁 so that their left ∑ℓ′∈[ℓ⋆−1] 𝑑(ℓ′)
2 -dimensional sub-vector and

right ∑ℓ′∈[ℓ⋆+1,𝐿] 𝑑(ℓ′)
2 -dimensional sub-vector are zero vectors. Moreover, set the remain-

ing 𝑑(ℓ⋆)
2 -dimensional sub-vector as the corresponding output of EncR(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)).

– Set all (a(ℓ))ℓ∈𝐿𝑦∖{ℓ𝑦,ℓ⋆} as zero vectors. Thus, it holds that a − ∑ℓ∈𝐿𝑦∖{ℓ𝑦} a(ℓ) = 0.

– For ℓ ∈ 𝐿𝑦, set ̂r(ℓ)
1 , … , r̂(ℓ)

𝑚(ℓ)
2

∈ ℤ
∑ℓ′∈[𝐿] 𝑑(ℓ′)

2

𝑁 so that their left ∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
2 -dimensional

sub-vectors and right ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
2 -dimensional sub-vectors are zero vectors. More-

over, set the remaining 𝑑(ℓ)
2 -dimensional sub-vectors as the corresponding outputs of

EncR(ℓ)(𝑥(ℓ), 𝑦(ℓ)).

• EncS(𝑥) → (s0, (s1, … , s𝑤1
), (̂s(ℓ)

1 , … , ̂s(ℓ)
𝑤(ℓ)

2
)ℓ∈𝐿𝑥

): Proceed as follows.

– Set s0, s1, … , s𝑤1
∈ ℤ

∑ℓ′∈[𝐿] 𝑑(ℓ′)
2

𝑁 by ∑ℓ∈𝐿𝑥
s(ℓ)

0 , ∑ℓ∈𝐿𝑥
s(ℓ)

1 , … , ∑ℓ∈𝐿𝑥
s(ℓ)

𝑤1 , where left

∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
2 -dimensional sub-vector and right ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)

2 -dimensional sub-vector

of s(ℓ)
0 , s(ℓ)

1 , … , s(ℓ)
𝑤1 are zero vectors. Moreover, set the remaining 𝑑(ℓ)

2 -dimensional sub-
vector as the corresponding output of EncS(ℓ)(𝑥(ℓ)).

– Set ̂s(ℓ)
1 , … , ̂s(ℓ)

𝑤(ℓ)
2

∈ ℤ
maxℓ′∈[𝐿] 𝑑(ℓ′)

1
𝑁 as the corresponding outputs of EncS(ℓ)(𝑥(ℓ)).

We show that the above EncB, EncR, and EncS satisfy all the requirements of selective symbolic
security in Definition 5.3. By construction, it holds that ⟨s0, a⟩ = ⟨s0, a(ℓ⋆)⟩. Since P(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)) =
0 holds, the selective symbolic security of PES(ℓ⋆) ensures that ⟨s0, a⟩ ≠ 0. Next, by substituting
the outputs of EncB, EncR, and EncS to the variables of PES, an evaluation result is the same as a
sum of evaluation results for (PES(ℓ))ℓ∈𝐿𝑦

. By construction, the variable 𝛼 for PES(ℓ) is substituted
as a(ℓ⋆) for ℓ = ℓ⋆ and zero vectors otherwise. Since PES(ℓ)(𝑥(ℓ), 𝑦(ℓ)) = 1 holds for ℓ ∈ 𝐿𝑦 ∖{ℓ⋆}, the
correctness of (PES(ℓ))ℓ∈𝐿𝑦∖{ℓ⋆} ensures that evaluation results for them are ⟨s0, a(ℓ)⟩ = ⟨s0, 0⟩ = 0
and the selective symbolic security for PES(ℓ⋆) ensures that the evaluation result for PES(ℓ⋆) is 0.
Therefore, the evaluation result for PES is also 0. Thus, we complete the proof of selective symbolic
security.
co-Selective Symbolic Security. Next, we describe EncB, EncS, and EncR for proving the co-selective
symbolic security.

• EncB(𝑦) → (B(ℓ)
1 , … , B(ℓ)

𝑛(ℓ))ℓ∈[𝐿]: Set B(ℓ)
1 , … , B(ℓ)

𝑛(ℓ) as uniformly random matrices if ℓ ∉

𝐿𝑦. Otherwise, set B(ℓ)
1 , … , B(ℓ)

𝑛(ℓ) ∈ ℤ
∑ℓ′∈[𝐿] 𝑑(ℓ′)

1 ×∑ℓ′∈[𝐿] 𝑑(ℓ′)
2

𝑁 so that their left ∑ℓ′∈[𝐿] 𝑑(ℓ′)
1 ×

∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
2 sub-matrices and right ∑ℓ′∈[𝐿] 𝑑(ℓ′)

1 × ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
2 sub-matrices are zero

matrices. Moreover, set the remaining ∑ℓ′∈[𝐿] 𝑑(ℓ′)
1 × 𝑑(ℓ)

2 sub-matrices so that their top

∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
1 ×𝑑(ℓ)

2 sub-matrices and bottom ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
1 ×𝑑(ℓ)

2 sub-matrices are zero ma-

trices. Finally, set the remaining 𝑑(ℓ)
1 × 𝑑(ℓ)

2 sub-matrices as the corresponding outputs of
EncB(ℓ)(𝑦(ℓ)).

• EncR(𝑦) → ((r1, … , r𝑚1
), a, (a(ℓ))ℓ∈𝐿𝑦∖{ℓ𝑦}, (r̂(ℓ)

1 , … , r̂(ℓ)
𝑚(ℓ)

2
)ℓ∈𝐿𝑦

): Proceed as follows.

27

– Set r1, … , r𝑚1
∈ ℤ

∑ℓ′∈[𝐿] 𝑑(ℓ′)
1

𝑁 so that their left ∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
1 -dimensional sub-vectors

and right ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
1 -dimensional sub-vectors are zero vectors. Moreover, set the

remaining 𝑑(ℓ)
1 -dimensional sub-vectors as the corresponding outputs of EncR(ℓ)(𝑦(ℓ)).

– Set a = ∑ℓ∈𝐿𝑦
a(ℓ) ∈ ℤ

∑ℓ′∈[𝐿] 𝑑(ℓ′)
2

𝑁 , where all a(ℓ) are defined below.

– Set a(ℓ) ∈ ℤ
∑ℓ′∈[𝐿] 𝑑(ℓ′)

2

𝑁 so that their left ∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
2 -dimensional sub-vector and right

∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
2 -dimensional sub-vector are zero vectors. Moreover, set the remaining

𝑑(ℓ)
2 -dimensional sub-vector as the corresponding output of EncR(ℓ)(𝑦(ℓ)).

– For ℓ ∈ 𝐿𝑦, set ̂r(ℓ)
1 , … , r̂(ℓ)

𝑚(ℓ)
2

∈ ℤ
∑ℓ′∈[𝐿] 𝑑(ℓ′)

2

𝑁 so that their left ∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
2 -dimensional

sub-vectors and right ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
2 -dimensional sub-vectors are zero vectors. More-

over, set the remaining 𝑑(ℓ)
2 -dimensional sub-vectors as the corresponding outputs of

EncR(ℓ)(𝑦(ℓ)).

• EncS(𝑥, 𝑦) → (s0, (s1, … , s𝑤1
), (ŝ(ℓ)

1 , … , ̂s(ℓ)
𝑤(ℓ)

2
)ℓ∈𝐿𝑥

): Find an index ℓ⋆ ∈ 𝐿𝑥 such that

P(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)) = 0 and proceed as follows.

– Set s0, s1, … , s𝑤1
∈ ℤ

∑ℓ′∈[𝐿] 𝑑(ℓ′)
2

𝑁 so that their left ∑ℓ′∈[ℓ⋆−1] 𝑑(ℓ′)
2 -dimensional sub-vector

and right ∑ℓ′∈[ℓ⋆+1,𝐿] 𝑑(ℓ′)
2 -dimensional sub-vector are zero vectors. Moreover, set the re-

maining 𝑑(ℓ⋆)
2 -dimensional sub-vector as the corresponding output of EncS(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)).

– For ℓ ∈ 𝐿𝑥, set ŝ(ℓ)
1 , … , ̂s(ℓ)

𝑤(ℓ)
2

∈ ℤ
∑ℓ′∈[𝐿] 𝑑(ℓ′)

1

𝑁 so that their left ∑ℓ′∈[ℓ−1] 𝑑(ℓ′)
1 -dimensional

sub-vectors and right ∑ℓ′∈[ℓ+1,𝐿] 𝑑(ℓ′)
1 -dimensional sub-vectors are zero vectors. More-

over, set the remaining 𝑑(ℓ)
1 -dimensional sub-vectors as the corresponding outputs of

EncS(ℓ)(𝑥(ℓ), 𝑦(ℓ)).

We show that the above EncB, EncR, and EncS satisfy all the requirements of co-selective
symbolic security in Definition 5.3. By construction, it holds that ⟨s0, a⟩ = ⟨s0, a(ℓ⋆)⟩. Since
P(ℓ⋆)(𝑥(ℓ⋆), 𝑦(ℓ⋆)) = 0 holds, the co-selective symbolic security of PES(ℓ⋆) ensures that ⟨s0, a⟩ ≠ 0.
Next, by substituting the outputs of EncB, EncR, and EncS to the variables of PES, an evaluation
result is the same as a sum of evaluation results for (PES(ℓ))ℓ∈𝐿𝑦

. Since PES(ℓ)(𝑥(ℓ), 𝑦(ℓ)) = 1 holds
for ℓ ∈ 𝐿𝑦 ∖ {ℓ⋆}, the correctness of (PES(ℓ))ℓ∈𝐿𝑦∖{ℓ⋆} ensures that evaluation results for them are
⟨s0, a(ℓ)⟩ = 0 and the co-selective symbolic security for PES(ℓ⋆) ensures that the evaluation result
for PES(ℓ⋆) is 0. Therefore, the evaluation result for PES is also 0. Thus, we complete the proof of
co-selective symbolic security.

5.3 Proposed Scheme for KP-ABE

At first, we review non-monotone span programs. Let ℤ𝑝 denote a universe of attributes with
an exponentially large prime 𝑝. A span program is a linear secret sharing scheme (𝐴, 𝜋), where
𝐴 ∈ ℤ𝑛1×𝑛2𝑝 is a matrix whose 𝑖-th row is denoted by 𝐴𝑖 and 𝜋 ∶ [𝑛1] → {0, 1} × ℤ𝑝 is a map. In the

28

case of monotone span programs (MSP), the first output of 𝜋 is always 0. When a set of attributes
𝑆 ⊂ ℤ𝑝 is given access to a span program (𝐴, 𝜋), we define a map 𝛾 ∶ [𝑛1] → {0, 1} for (𝐴, 𝜋) such
that 𝛾(𝑖) = 1 iff (𝜋(𝑖) = (0, 𝑠) ∧ 𝑠 ∈ 𝑆) ∨ (𝜋(𝑖) = (1, 𝑠) ∧ 𝑠 ∉ 𝑆). To specify the set of attributes 𝑆
explicitly, we may also use a notation 𝛾(𝑖, 𝑆). Let 𝐴𝑆 ≔ {𝐴𝑖 ∶ 𝑖 ∈ [𝑛1] ∧ 𝛾(𝑖, 𝑆) = 1} be a matrix
whose rows consist of a subset of 𝐴. An access structure (𝐴, 𝜋) is said to accept a set of attributes
𝑆 iff ⃗1 ∈ Span(𝐴𝑆) holds, where ⃗1 ≔ (1, 0, … , 0) ∈ ℤ𝑛2𝑝 . Otherwise, (𝐴, 𝜋) is said to reject 𝑆. If
𝑆 is accepted, we can efficiently compute a set of integers 𝑐𝑖’s such that ∑𝑖∶𝐴𝑖∈𝐴𝑆

𝑐𝑖𝐴𝑖 = ⃗1. In
contrast, it is known [Bei11] that if (𝐴, 𝜋) rejects 𝑆, there is a column vector v = (𝑣1, … , 𝑣𝑛2

)⊤ such
that 𝑣1 = 1 and 𝐴𝑖v = 0 for all 𝑖 such that 𝛾(𝑖, 𝑆) = 0. Let 𝐼 and ̄𝐼 denote sets of indices such
that 𝐼 ≔ {𝑖 ∶ 𝑖 ∈ [𝑛1] ∧ 𝜋(𝑖) = (0, ∗)} and ̄𝐼 ≔ {𝑖 ∶ 𝑖 ∈ [𝑛1] ∧ 𝜋(𝑖) = (1, ∗)}, where 𝐼 ∪ ̄𝐼 = [𝑛1] and
𝐼 ∩ ̄𝐼 = ∅ hold.

Then, we propose a PES for KP-ABE for non-monotone span programs with compact cipher-
texts.

Param(par) → 𝑇 + 1: Let b ≔ (𝑏𝑡)𝑡∈[0,𝑇].
EncC(𝑆, 𝑁) → 𝑐:

𝑐 ≔ 𝑠(𝑤0𝑏0 + ⋯ + 𝑤𝑇𝑏𝑇),

where s ≔ 𝑠, and 𝑤𝑗 is a coefficient of 𝑥𝑗 in 𝑞(𝑥) ≔ ∏𝑦∈𝑆(𝑥 − 𝑦).

EncK((𝐴, 𝜋), 𝑇 + 1) → k ≔ ((𝑘1,𝑖)𝑖∈[𝑛1], (𝑘2,𝑖,𝑡)𝑖∈𝐼,𝑡∈[𝑇], (�̄�2,𝑖,𝑡)𝑖∈ ̄𝐼,𝑡∈[0,𝑇]):

𝑘1,𝑖 ≔ 𝐴𝑖(𝛼, 𝑣2, … , 𝑣𝑛2
)⊤ + 𝜙𝑖,

𝑘2,𝑖,1 ≔ 𝜙𝑖 + 𝑟𝑖(𝑏1 − 𝜋(𝑖)𝑏0), 𝑘2,𝑖,𝑡 ≔ 𝑟𝑖(𝑏𝑡 − 𝜋(𝑖)𝑡𝑏0) for 𝑡 ∈ [2, 𝑇],
�̄�2,𝑖,𝑡 ≔ 𝜋(𝑖)𝑡𝜙𝑖 + 𝑟𝑖𝑏𝑡 for 𝑡 ∈ [0, 𝑇],

where r ≔ (𝑟𝑖)𝑖∈[𝑛1], and r̂ ≔ (𝑣2, … , 𝑣𝑛2
, (𝜙𝑖)𝑖∈[𝑛1]).

Correctness. Here, we informally explain how to recover 𝑠𝐴𝑖(𝛼, 𝑣2, … , 𝑣𝑛2
)⊤ for all 𝑖 ∈ [𝑛1] such

that 𝛾(𝑖) = 1 since they are sufficient to recover 𝛼𝑠. For a fixed 𝑖⋆ ∈ [𝑛1], it suffices to compute
𝑠𝜙𝑖⋆ for this purpose. In other words, we can recover 𝛼𝑠 from

𝑠𝑘1,𝑖 − 𝑠𝜙𝑖⋆ = 𝑠𝐴𝑖(𝛼, 𝑣2, … , 𝑣𝑛2
)⊤

for all 𝑖 ∈ [𝑛1] such that 𝛾(𝑖) = 1.
If 𝑖⋆ ∈ 𝐼, by taking a linear combination of 𝑘2,𝑖⋆,1, … , 𝑘2,𝑖⋆,𝑇 with 𝑤1, 𝑤2, … , 𝑤𝑇, we have

𝑤1𝑘2,𝑖⋆,1 + ⋯ + 𝑤𝑇𝑘2,𝑖⋆,𝑇

= 𝑤1𝜙𝑖⋆ + ∑
𝑡∈[𝑇]

𝑤𝑡(𝑟𝑖⋆(𝑏𝑡 − 𝜋(𝑖⋆)𝑡𝑏0))

= 𝑤1𝜙𝑖⋆ + 𝑟𝑖⋆ (𝑤1𝑏1 + ⋯ + 𝑤𝑇𝑏𝑇 − (𝜋(𝑖⋆)𝑤1 + ⋯ + 𝜋(𝑖⋆)𝑇𝑤𝑇)𝑏0)
= 𝑤1𝜙𝑖⋆ + 𝑟𝑖⋆ (𝑤1𝑏1 + ⋯ + 𝑤𝑇𝑏𝑇 − (𝑝(𝜋(𝑖⋆)) − 𝑤0)𝑏0)
= 𝑤1𝜙𝑖⋆ + 𝑟𝑖⋆(𝑤0𝑏0 + 𝑤1𝑏1 + ⋯ + 𝑤𝑇𝑏𝑇).

Here, we use the fact that 𝑞(𝜋(𝑖⋆)) = 0 since 𝜋(𝑖⋆) ∈ 𝑆 ⇔ 𝛾(𝑖⋆) = 1 ∧ 𝑖⋆ ∈ 𝐼. Thus, we have 𝑠𝜙𝑖⋆ by
computing

1
𝑤1

⋅ (𝑠(𝑤1𝑘2,𝑖⋆,1 + ⋯ + 𝑤𝑇𝑘2,𝑖⋆,𝑇) − 𝑟𝑖⋆𝑐) = 𝑠𝜙𝑖⋆ .

29

Next, we show how to recover 𝑠𝜙𝑖⋆ for a fixed 𝑖⋆ ∈ ̄𝐼. By taking a linear combination of
�̄�2,𝑖⋆,0, … , �̄�2,𝑖⋆,𝑇 with 𝑤0, … , 𝑤𝑇, we have

𝑤0�̄�2,𝑖⋆,0 + ⋯ + 𝑤𝑇�̄�2,𝑖⋆,𝑇 = ∑
𝑡∈[0,𝑇]

𝑤𝑡(𝜋(𝑖⋆)𝑡𝜙𝑖⋆ + 𝑟𝑖⋆𝑏𝑡)

= 𝑞(𝜋(𝑖⋆))𝜙𝑖⋆ + 𝑟𝑖⋆(𝑤0𝑏0 + ⋯ + 𝑤𝑇𝑏𝑇),

where 𝑞(𝜋(𝑖⋆)) ≠ 0 since 𝜋(𝑖⋆) ∉ 𝑆 ⇔ 𝛾(𝑖⋆) = 1 ∧ 𝑖⋆ ∈ ̄𝐼. Thus, we have 𝑠𝜙𝑖⋆ by computing

1
𝑞(𝜋(𝑖⋆))

⋅ 𝑠 ((𝑤0�̄�2,𝑖⋆,0 + ⋯ + 𝑤𝑇�̄�2,𝑖⋆,𝑇) − 𝑟𝑖⋆𝑐) = 𝑠𝜙𝑖⋆ .

Relaxed Perfect Security. We prove the relaxed perfect security of the proposed PES.

Lemma 5.1 (Relaxed Perfect Security of the PES). The above PES of KP-ABE for non-monotone
span programs with compact ciphertexts satisfies the relaxed perfect security.

Proof. We define the outputs (𝑧𝑑,0, … , 𝑧𝑑,𝑇) ←$ Samp(𝑑, 𝑥, 𝑦, 𝑁) as follows:

• If 𝛾(𝑑, 𝑆) = 1, (𝑧𝑑,0, … , 𝑧𝑑,𝑇) is a zero vector.

• If 𝛾(𝑑, 𝑆) = 0 ∧ 𝑑 ∈ 𝐼, (𝑧𝑑,0, … , 𝑧𝑑,𝑇) is a uniformly random vector.

• If 𝛾(𝑑, 𝑆) = 0 ∧ 𝑑 ∈ ̄𝐼, (𝑧𝑑,0, … , 𝑧𝑑,𝑇) = (𝜙′
𝑑, 𝜙′

𝑑 ⋅ 𝜋(𝑑), … , 𝜙′
𝑑 ⋅ 𝜋𝑇(𝑑)), where 𝜙′

𝑑 ←$ ℤ𝑁.

If 𝛾(𝑑, 𝑆) = 1, the left and right distributions of (9) are the same. If 𝛾(𝑑, 𝑆) = 0 ∧ 𝑑 ∈ 𝐼, the
left distribution of (9) is given by

{𝑠, 𝑟𝑑, 𝑠(𝑤0𝑏0 + ⋯ + 𝑤𝑇𝑏𝑇), (𝑟𝑑(𝑏𝑡 − 𝜋(𝑑)𝑡𝑏0))𝑡∈[𝑇]}.

We can specify the distribution by

⎡
⎢
⎢
⎣

𝑤0 𝑤1 ⋯ 𝑤𝑇
−𝜋(𝜏) 1

⋮ ⋱
−𝜋(𝜏)𝑇 1

⎤
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎣

𝑏0
𝑏1
⋮

𝑏𝑇

⎤
⎥
⎥
⎦

, (11)

where (𝑏0, … , 𝑏𝑇) ←$ ℤ𝑇 +1
𝑁 . Since 𝜋(𝑑) ∉ 𝑆, the left matrix of (11) is non-singular. Thus, the

value of (11) is uniformly random in ℤ𝑇 +1
𝑁 . Therefore, the left and right distributions of (9) are

statistically indistinguishable.
If 𝛾(𝑑, 𝑆) = 0 ∧ 𝑑 ∈ ̄𝐼, the left distribution of (9) is given by

{𝑠, 𝑟𝑑, 𝑠(𝑤0𝑏0 + ⋯ + 𝑤𝑇𝑏𝑇), (𝑟𝑑𝑏𝑡)𝑡∈[0,𝑇]}.

We can specify the distribution by

⎡
⎢
⎢
⎢
⎣

𝑤0 𝑤1 ⋯ 𝑤𝑇
1

1
⋱

1

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎣

𝑏0
𝑏1
⋮

𝑏𝑇

⎤
⎥
⎥
⎦

, (12)

30

where (𝑏0, … , 𝑏𝑇) ←$ ℤ𝑇 +1
𝑁 . Since the bottom (𝑇 + 1) × (𝑇 + 1) submatrix of the left matrix of

(12) is an identity matrix, the only way to check the distribution is whether multiplying a row
vector (−1, 𝑤0, 𝑤1, … , 𝑤𝑇) from the left becomes a zero vector or not. On the other hand, the right
distribution of (9) is given by

{𝑠, 𝑟𝑑, 𝑠(𝑤0𝑏0 + ⋯ + 𝑤𝑇𝑏𝑇), (𝑟𝑑(𝑏𝑡 + 𝜙′
𝑑 ⋅ 𝜋(𝑑)𝑡)𝑡∈[0,𝑇]}.

We can specify the distribution by

⎡
⎢
⎢
⎢
⎣

𝑤0 𝑤1 ⋯ 𝑤𝑇
1

1
⋱

1

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎣

𝑏0
𝑏1
⋮

𝑏𝑇

⎤
⎥
⎥
⎦

+ 𝜙′
𝑑 ⋅

⎡
⎢
⎢
⎢
⎣

0
1

𝜋(𝑑)
⋮

𝜋(𝑑)𝑇

⎤
⎥
⎥
⎥
⎦

, (13)

where (𝑏0, … , 𝑏𝑇) ←$ ℤ𝑇 +1
𝑁 and 𝜙′

𝑑 ←$ ℤ𝑁. Since 𝜋(𝑑) ∈ 𝑆, multiplying a row vector
(−1, 𝑤0, 𝑤1, … , 𝑤𝑇) from the left of (13) becomes a zero vector. Therefore, the left and right
distributions of (9) are statistically indistinguishable.

Finally, we prove the second indistinguishability (10). The only difference between the two
distribution is that (0, 𝑣2, … , 𝑣𝑛2

)⊤ in 𝑘1,𝑖 of the left distribution are replaced by (𝛼, 𝑣2, … , 𝑣𝑛2
)⊤,

where 𝛼 ←$ ℤ𝑁. If 𝛾(𝑖) = 0 ∧ 𝑖 ∈ 𝐼, 𝑘2,𝑖,1 is uniformly random in ℤ𝑁. Since the information of
𝜙𝑖 disappears, 𝑘1,𝑖 is also uniformly random in ℤ𝑁. If 𝛾(𝑖) = 0 ∧ 𝑖 ∈ ̄𝐼, �̄�2,𝑖,1 distributes according
to 𝜋(𝑖)𝑡(𝜙𝑖 + 𝜙′

𝑖) + 𝑟𝑖𝑏𝑡, where 𝜙′
𝑖 ←$ ℤ𝑁. Since the information of 𝜙𝑖 is masked by 𝜙′

𝑖, 𝑘1,𝑖 is also
uniformly random in ℤ𝑁. Thus, what we have to show is that

{𝐴𝑖 ⋅ (0, 𝑣2, … , 𝑣𝑛2
)⊤}𝑖∶𝛾(𝑖)=1 ≈ {𝐴𝑖 ⋅ (𝛼, 𝑣2, … , 𝑣𝑛2

)⊤}𝑖∶𝛾(𝑖)=1. (14)

Let a⊥ ∈ ℤ𝑛2
𝑁 denote a vector whose first element is 1 and satisfying 𝐴𝑖a⊥ = 0 for all 𝑖 such

that 𝛾(𝑖) = 1. Here, we replace 𝐴𝑖 ⋅ (0, 𝑣2, … , 𝑣𝑛2
)⊤ which is the left distribution of (14) by

𝐴𝑖 ⋅ ((0, 𝑣2, … , 𝑣𝑛2
)⊤ + 𝛼a⊥), where 𝑣2, … , 𝑣𝑛2

, 𝛼 ←$ ℤ𝑁. The modification does not change the
distribution since

𝐴𝑖 ⋅ ((0, 𝑣2, … , 𝑣𝑛2
)⊤ + 𝛼a⊥) = 𝐴𝑖 ⋅ (0, 𝑣2, … , 𝑣𝑛2

)⊤ + 𝛼𝐴𝑖a⊥

= 𝐴𝑖 ⋅ (0, 𝑣2, … , 𝑣𝑛2
)⊤.

Furthermore, (0, 𝑣2, … , 𝑣𝑛2
)⊤ + 𝛼a⊥ = (𝛼, 𝑣2 + 𝛼𝑎⊥

2 , … , 𝑣𝑛2
+ 𝛼𝑎⊥

𝑛2
)⊤ holds, where 𝑎⊥

𝑗 denotes
the 𝑗-th elements of a⊥. Since all 𝛼, 𝑣2 +𝛼𝑎⊥

2 , … , 𝑣𝑛2
+𝛼𝑎⊥

𝑛2
distribute uniformly in ℤ𝑁, they follow

according to the right distribution of (14). Thus, we complete the proof.

Comparison. Our proposed PES for non-monotone span programs have a 𝑇 +1 common variable,
one ciphertext-encoding polynomial with one non-lone ciphertext encoding variable, and 𝑂(𝑛1𝑇)
key-encoding polynomials with 𝑛1 key-encoding variables. In contrast, Agrawal and Chase’s PES
for monotone span programs have 𝑇 + 6 common variable, three ciphertext-encoding polynomials
with three ciphertext-encoding variables, and 𝑂(𝑛1𝑇) key-encoding polynomials with 𝑂(𝑛1 + 𝑛2)
key-encoding variables. Thus, although the proposed PES supports more complex non-monotone
predicate, it is more efficient than Agrawal and Chase’s one.

31

6 Conclusion
In this paper, we proposed a generic construction of CCA-secure ABEET from IND-CPA-secure
delegatable ABE with the hierarchical depth three. The construction is an attribute-based extension
of Lee et al.’s generic construction of CCA-secure IBEET from IND-CPA-secure hierarchical IBE with
the depth three [LLS+16b]. To achieve CCA security, we used Yamada et al.’s technique [YAH+11].
Based on the predicate encoding and pair encoding frameworks [Att14, Wee14] and known lattice-
based delegatable ABE schemes [ACM12, Xag13, BGG+14], we obtain various ABEET schemes with
new properties that have not been achieved so far. However, since there are no generic methods for
non-delegatable ABE to satisfy the delegatability, there are several open questions. Although we
obtained ABEET schemes for (non-)monotone span programs (Schemes 1–12) from ABE schemes
for the same predicates in the standard model, there are more efficient schemes in the random
oracle model [AC17a, TKN20]. Although we obtained the first ABEET schemes for deterministic
finite automata (Schemes 13 and 14) under the 𝑞-ratio assumption, there are ABE schemes for
the same predicate under the standard 𝑘-linear assumption [AMY19b, GWW19, GW20] and ABE
schemes for non-deterministic finite automata under the LWE assumptions [AMY19a]. Although we
obtained selectively secure lattice-based ABEET schemes for circuits and inner-product predicates,
there are semi-adaptively secure lattice-based ABE scheme for circuits [BV16] and adaptively secure
lattice-based inner-product encryption [KNY+20]. Therefore, it is an interesting open problem to
construct CCA-secure ABEET schemes with these properties. In addition to the construction of
ABEET, we proposed a delegatable transformation of pair encoding and a new pair encoding scheme
of key-policy ABE for non-monotone span programs with compact ciphertexts.

Acknowledgments
This work is supported by JSPS KAKENHI Grant Numbers JP18H05289, JP18K11293,
JP21H03441, JP23K21668, JP23KJ0968, and JP24K02939, and MEXT Leading Initiative for Ex-
cellent Young Researchers.

References
[ABC+08] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja

Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. “Search-
able Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and
Extensions.” In: J. Cryptol. 21.3 (2008), pp. 350–391.

[ABS17] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. “Generic Transformations of
Predicate Encodings: Constructions and Applications.” In: CRYPTO. 2017, pp. 36–
66.

[AC16a] Shashank Agrawal and Melissa Chase. “A Study of Pair Encodings: Predicate En-
cryption in Prime Order Groups.” In: TCC. 2016, pp. 259–288.

[AC16b] Shashank Agrawal and Melissa Chase. “A Study of Pair Encodings: Predicate En-
cryption in Prime Order Groups.” In: TCC. 2016, pp. 259–288.

[AC17a] Shashank Agrawal and Melissa Chase. “FAME: Fast Attribute-based Message En-
cryption.” In: ACM CCS. 2017, pp. 665–682.

[AC17b] Shashank Agrawal and Melissa Chase. “Simplifying Design and Analysis of Complex
Predicate Encryption Schemes.” In: EUROCRYPT. 2017, pp. 627–656.

32

[ACM12] Michel Abdalla, Angelo De Caro, and Karina Mochetti. “Lattice-Based Hierarchical
Inner Product Encryption.” In: LATINCRYPT. 2012, pp. 121–138.

[AET+22] Kyoichi Asano, Keita Emura, Atsushi Takayasu, and Yohei Watanabe. “A Generic
Construction of CCA-secure Attribute-based Encryption with Equality Test.” In:
ProvSec. 2022, pp. 3–19.

[AET24] Kyoichi Asano, Keita Emura, and Atsushi Takayasu. “More Efficient Adaptively Se-
cure Lattice-Based IBE with Equality Test in the Standard Model.” In: IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences
E107.A.3 (2024), pp. 248–259.

[AMY19a] Shweta Agrawal, Monosij Maitra, and Shota Yamada. “Attribute Based Encryption
(and more) for Nondeterministic Finite Automata from LWE.” In: CRYPTO. 2019,
pp. 765–797.

[AMY19b] Shweta Agrawal, Monosij Maitra, and Shota Yamada. “Attribute Based Encryption
for Deterministic Finite Automata from DLIN.” In: TCC. 2019, pp. 91–117.

[Att14] Nuttapong Attrapadung. “Dual System Encryption via Doubly Selective Security:
Framework, Fully Secure Functional Encryption for Regular Languages, and More.”
In: EUROCRYPT. 2014, pp. 557–577.

[Att16] Nuttapong Attrapadung. “Dual System Encryption Framework in Prime-Order
Groups via Computational Pair Encodings.” In: ASIACRYPT. 2016, pp. 591–623.

[Att19] Nuttapong Attrapadung. “Unbounded Dynamic Predicate Compositions in Attribute-
Based Encryption.” In: EUROCRYPT. 2019, pp. 34–67.

[BCO+04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. “Public
Key Encryption with Keyword Search.” In: EUROCRYPT. 2004, pp. 506–522.

[Bei11] Amos Beimel. “Secret-Sharing Schemes: A Survey.” In: IWCC. 2011, pp. 11–46.
[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,

Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. “Fully Key-
Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits.”
In: EUROCRYPT. 2014, pp. 533–556.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. “Circuit-ABE from LWE: Unbounded
Attributes and Semi-adaptive Security.” In: CRYPTO. 2016, pp. 363–384.

[CG17] Jie Chen and Junqing Gong. “ABE with Tag Made Easy - Concise Framework and
New Instantiations in Prime-Order Groups.” In: ASIACRYPT. 2017, pp. 35–65.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. “Improved Dual System ABE in Prime-
Order Groups via Predicate Encodings.” In: EUROCRYPT. 2015, pp. 595–624.

[CHH+18] Yuzhao Cui, Qiong Huang, Jianye Huang, Hongbo Li, and Guomin Yang. “Outsourced
Ciphertext-Policy Attribute-Based Encryption with Equality Test.” In: Inscrypt. 2018,
pp. 448–467.

[CHH+19] Yuzhao Cui, Qiong Huang, Jianye Huang, Hongbo Li, and Guomin Yang. “Ciphertext-
Policy Attribute-Based Encrypted Data Equality Test and Classification.” In: Comput.
J. 62.8 (2019), pp. 1166–1177.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. “Chosen-Ciphertext Security from
Identity-Based Encryption.” In: EUROCRYPT. 2004, pp. 207–222.

33

[DFK+19] Dung Hoang Duong, Kazuhide Fukushima, Shinsaku Kiyomoto, Partha Sarathi Roy,
and Willy Susilo. “A Lattice-Based Public Key Encryption with Equality Test in
Standard Model.” In: ACISP. 2019, pp. 138–155.

[DLR+19] Dung Hoang Duong, Huy Quoc Le, Partha Sarathi Roy, and Willy Susilo. “Lattice-
Based IBE with Equality Test in Standard Model.” In: ProvSec. 2019, pp. 19–40.

[DSB+19] Dung Hoang Duong, Willy Susilo, Minh Kim Bui, and Thanh Xuan Khuc. “A Lattice-
Based Certificateless Public Key Encryption with Equality Test in Standard Model.”
In: Inscrypt. 2019, pp. 50–65.

[GW20] Junqing Gong and Hoeteck Wee. “Adaptively Secure ABE for DFA from k-Lin and
More.” In: EUROCRYPT. 2020, pp. 278–308.

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. “ABE for DFA from 𝑘-Lin.” In:
CRYPTO. 2019, pp. 732–764.

[HTC+14] Kaibin Huang, Raylin Tso, Yu-Chi Chen, Wangyu Li, and Hung-Min Sun. “A New
Public Key Encryption with Equality Test.” In: NSS. 2014, pp. 550–557.

[HTC+15] Kaibin Huang, Raylin Tso, Yu-Chi Chen, Sk. Md. Mizanur Rahman, Ahmad Almo-
gren, and Atif Alamri. “PKE-AET: Public Key Encryption with Authorized Equality
Test.” In: Comput. J. 58.10 (2015), pp. 2686–2697.

[KNY+20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. “Adap-
tively Secure Inner Product Encryption from LWE.” In: ASIACRYPT. 2020, pp. 375–
404.

[LLS+16a] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. “CCA2 Attack and
Modification of Huang et al.’s Public Key Encryption with Authorized Equality Test.”
In: Comput. J. 59.11 (2016), pp. 1689–1694.

[LLS+16b] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. “Semi-generic con-
struction of public key encryption and identity-based encryption with equality test.”
In: Inf. Sci. 373 (2016), pp. 419–440.

[LLS+19] Hyung Tae Lee, San Ling, Jae Hong Seo, and Huaxiong Wang. “Public key encryption
with equality test from generic assumptions in the random oracle model.” In: Inf. Sci.
500 (2019), pp. 15–33.

[LLS+20] Hyung Tae Lee, San Ling, Jae Hong Seo, Huaxiong Wang, and Taek-Young Youn.
“Public key encryption with equality test in the standard model.” In: Inf. Sci. 516
(2020), pp. 89–108.

[LMH+19] Yunhao Ling, Sha Ma, Qiong Huang, Ru Xiang, and Ximing Li. “Group ID-Based
Encryption with Equality Test.” In: ACISP. 2019, pp. 39–57.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. “Fully Secure Functional Encryption: Attribute-Based Encryption and (Hi-
erarchical) Inner Product Encryption.” In: EUROCRYPT. 2010, pp. 62–91.

[LSQ+21] Xi Jun Lin, Lin Sun, Haipeng Qu, and Xiaoshuai Zhang. “Public key encryption sup-
porting equality test and flexible authorization without bilinear pairings.” In: Comput.
Commun. 170 (2021), pp. 190–199.

[LSQ18] Xi Jun Lin, Lin Sun, and Haipeng Qu. “Generic construction of public key encryption,
identity-based encryption and signcryption with equality test.” In: Inf. Sci. 453 (2018),
pp. 111–126.

34

[LSX+21] Cong Li, Qingni Shen, Zhikang Xie, Xinyu Feng, Yuejian Fang, and Zhonghai Wu.
“Large Universe CCA2 CP-ABE With Equality and Validity Test in the Standard
Model.” In: Comput. J. 64.4 (2021), pp. 509–533.

[LWS+21] Xi Jun Lin, Qihui Wang, Lin Sun, and Haipeng Qu. “Identity-based encryption with
equality test and datestamp-based authorization mechanism.” In: Theor. Comput. Sci.
861 (2021), pp. 117–132.

[LZL12] Yao Lu, Rui Zhang, and Dongdai Lin. “Stronger Security Model for Public-Key En-
cryption with Equality Test.” In: Pairing. 2012, pp. 65–82.

[Ma16] Sha Ma. “Identity-based encryption with outsourced equality test in cloud computing.”
In: Inf. Sci. 328 (2016), pp. 389–402.

[MZH+15] Sha Ma, Mingwu Zhang, Qiong Huang, and Bo Yang. “Public Key Encryption with
Delegated Equality Test in a Multi-User Setting.” In: Comput. J. 58.4 (2015), pp. 986–
1002.

[NSD+20] Giang Linh Duc Nguyen, Willy Susilo, Dung Hoang Duong, Huy Quoc Le, and Fuchun
Guo. “Lattice-Based IBE with Equality Test Supporting Flexible Authorization in the
Standard Model.” In: INDOCRYPT. 2020, pp. 624–643.

[QYL+18] Haipeng Qu, Zhen Yan, Xi Jun Lin, Qi Zhang, and Lin Sun. “Certificateless public
key encryption with equality test.” In: Inf. Sci. 462 (2018), pp. 76–92.

[SDL20] Willy Susilo, Dung Hoang Duong, and Huy Quoc Le. “Efficient Post-quantum
Identity-based Encryption with Equality Test.” In: ICPADS. 2020, pp. 633–640.

[Tak21] Atsushi Takayasu. “Tag-based ABE in prime-order groups via pair encoding.” In: Des.
Codes Cryptogr. 89.8 (2021), pp. 1927–1963.

[Tan11] Qiang Tang. “Towards Public Key Encryption Scheme Supporting Equality Test with
Fine-Grained Authorization.” In: ACISP. 2011, pp. 389–406.

[TKN20] Junichi Tomida, Yuto Kawahara, and Ryo Nishimaki. “Fast, Compact, and Expressive
Attribute-Based Encryption.” In: PKC. 2020, pp. 3–33.

[WCH+20] Yuanhao Wang, Yuzhao Cui, Qiong Huang, Hongbo Li, Jianye Huang, and Guomin
Yang. “Attribute-Based Equality Test Over Encrypted Data Without Random Ora-
cles.” In: IEEE Access 8 (2020), pp. 32891–32903.

[Wee14] Hoeteck Wee. “Dual System Encryption via Predicate Encodings.” In: TCC. 2014,
pp. 616–637.

[Xag13] Keita Xagawa. “Improved (Hierarchical) Inner-Product Encryption from Lattices.” In:
PKC. 2013, pp. 235–252.

[YAH+11] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru Kunihiro.
“Generic Constructions for Chosen-Ciphertext Secure Attribute Based Encryption.”
In: PKC. 2011, pp. 71–89.

[YTH+10] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong. “Probabilistic
Public Key Encryption with Equality Test.” In: CT-RSA. 2010, pp. 119–131.

[ZCL+19] Kai Zhang, Jie Chen, Hyung Tae Lee, Haifeng Qian, and Huaxiong Wang. “Efficient
public key encryption with equality test in the standard model.” In: Theor. Comput.
Sci. 755 (2019), pp. 65–80.

[ZCZ+19] Ming Zeng, Jie Chen, Kai Zhang, and Haifeng Qian. “Public key encryption with
equality test via hash proof system.” In: Theor. Comput. Sci. 795 (2019), pp. 20–35.

35

	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Technical Overview
	1.4 Difference from the Conference Version AETWProvSec22
	1.5 Roadmap

	2 Preliminaries
	2.1 Delegatable Attribute-based Encryption
	2.2 One-time Signature
	2.3 Hash Functions
	2.4 Attribute-based Encryption with Equality Test

	3 Proposed Generic Construction
	3.1 Our construction
	3.2 Correctness

	4 Security
	4.1 OW-CCA2 Security against Type-I Adversaries
	4.2 IND-CCA2 Security against Type-II Adversaries

	5 New Pair Encoding Scheme
	5.1 Pair Encoding Scheme
	5.2 Delegatable Transformation
	5.3 Proposed Scheme for KP-ABE

	6 Conclusion

