
How to Prove Schnorr Assuming Schnorr: Security of Multi- and
Threshold Signatures

Elizabeth Crites1, Chelsea Komlo2, and Mary Maller3

1 University of Edinburgh
2 University of Waterloo, Zcash Foundation

3 Ethereum Foundation

Abstract. In this paper, we present new techniques for proving the security of multi- and threshold signature schemes
under discrete logarithm assumptions in the random oracle model. The purpose is to provide a simple framework for
analyzing the relatively complex interactions of these schemes in a concurrent model, thereby reducing the risk of
attacks. We make use of proofs of possession and prove that a Schnorr signature suffices as a proof of possession in
the algebraic group model without any tightness loss. We introduce and prove the security of a simple, three-round
multisignature SimpleMuSig.

Using our new techniques, we prove the concurrent security of a variant of the MuSig2 multisignature scheme that
includes proofs of possession as well as the FROST threshold signature scheme. These are currently the most efficient
schemes in the literature for generating Schnorr signatures in a multiparty setting. Our variant of MuSig2, which we
call SpeedyMuSig, has faster key aggregation due to the proofs of possession.

1 Introduction

Current methods for proving the security of multi- and threshold signature schemes can be overwhelmingly complex or
difficult to audit. Even a seemingly intuitive analysis can contain subtle errors that render the proof completely invalid.
Indeed, Drijver’s et al. [13] demonstrated that a wide range of multisignature schemes cannot be proven secure under the
one-more discrete logarithm assumption. Benhamouda et al. [7] later confirmed that there exists a polynomial-time ROS
attack against these multisignatures as well as against various blind and threshold signature schemes. The attack assumes
a concurrent adversary; prior security reductions either did not consider concurrency or had an incorrect arguments arising
from the complexity of using forking lemmas in reductions.

The goal of this work is to provide an alternative method for proving the security of multisignature and threshold
signature schemes under discrete logarithm assumptions in the random oracle model. A multisignature scheme allows
a group of n signers, each in possession of a public/private key pair, to jointly compute a signature σ on a message m.
Threshold signature schemes define a t-out-of-n access structure of a private key that is shared by a set of n parties, at
least t of which are required to cooperate in order to issue a valid signature. Each multi- and threshold signature scheme
in this work produces a Schnorr signature [34], which is a Σ-protocol zero-knowledge proof of knowledge of the discrete
logarithm of the group public key, made non-interactive and bound to the message m by the Fiat-Shamir transform [15].
Our proving methods involve only straight-line adversaries in the sense that the reduction only runs the adversary once in
its attempt to break the appropriate security assumption. An immediate consequence is that concurrent security comes for
free, and our reductions hold against adversaries that can open multiple signing sessions at the same time.

To achieve our results, we introduce three novel and relatively strong assumptions, which we justify in the algebraic group
model and the random oracle model. Our first assumption is the Schnorr knowledge of exponent assumption (schnorr-koe),
which says that an adversary that forges a Schnorr proof with respect to a public key of its choosing can extract the
corresponding secret key. We prove that schnorr-koe holds without any tightness loss in the algebraic group model. The
schnorr-koe assumption allows us to use Schnorr signatures as “proofs of possession,” wherein each signer must prove
knowledge of its secret key upon registering the corresponding public key into the system. The proofs of possession cost
no more to store and verify than a standard Schnorr signature. (512 bit proofs verify in 0.5 milliseconds [38].) While our
schnorr-koe assumption is non-falsifiable, it allows us to obtain concretely efficient proofs of possession and prove tight
security at the same time. It is similar in style to knowledge of exponent assumptions that are widely used in the SNARK
literature [11].

Our second assumption is the Schnorr computational assumption (schnorr), which says that it is difficult for an adversary
to forge a Schnorr signature. This assumption can be reduced to the discrete logarithm assumption in the random oracle
model assuming that the adversary is run twice. We argue that these assumptions have already stood the test of time in sense
that Schnorr signatures are one of the most widely used and studied proofs of knowledge in the cryptographic literature.
Armed with our new assumptions, we are able to prove the concurrent security of a simple, three-round multisignature

scheme SimpleMuSig without any explicit dependence on rewinding the adversary. There is still an implicit dependence, as
the schnorr assumption is proven by rewinding the adversary once. Our simplification is that any advantage gained by a
concurrent adversary is already modelled into the schnorr reduction to the discrete logarithm assumption and does not
need to be reconsidered in any straight-line protocol that reduces to the schnorr assumption.

Having proven our simple scheme secure, we then look to the most efficient multi- and threshold signature schemes in the
literature to see if we can apply our framework. In particular, we analyze a variant of the MuSig2 [29] multisignature scheme
with proofs of possession as well as the FROST [25] threshold signature scheme, both of which only require two signing
rounds. Here we find that our schnorr assumption is not strong enough. This is unsurprising because MuSig2 and FROST
are secure under the one-more discrete logarithm assumption, which is a stronger assumption than the discrete logarithm
assumption. We therefore introduce a third assumption, the binonce Schnorr computational assumption (bischnorr), and
reduce its security to the one-more discrete logarithm assumption (omdl). Our proof of security encompasses nuanced
attacks that prior security models did not consider, such as ROS-style attacks that emerge in the concurrent setting.
Our security reduction is in the random oracle model and uses two iterations of the adversary. Equipped with our new
assumption, we are able to prove the concurrent security of both a MuSig2 variant and FROST in a straightforward manner.
To increase confidence in our arguments, we implement our bischnorr and FROST reductions in python and see that the
algorithm succeeds when the adversary does and that the oracle responses are structured correctly.

Our variant of the MuSig2 multisignature scheme with proofs of possession, which we call SpeedyMuSig, is likely of
independent interest, as it offers significant efficiency improvements over alternative schemes in the literature. This is
because proofs of possession allow the aggregate public key under which the multisignature is formed to be simply the
product of the signers’ individual public keys. It involves group multiplications instead of costly group exponentiations and
remains secure against rogue-key attacks. See Table 2 for a breakdown of costs.

1.1 Our Contributions

The contributions of this paper are as follows:

– We present new techniques for proving the concurrent security of multi- and threshold signatures, where any dependence
on rewinding is abstracted into the assumptions, making the security proofs more modular. As a result, our security
reductions are less involved and easier to both write and audit.

– We introduce and prove the tight security of the Schnorr knowledge of exponent assumption (schnorr-koe) in the
algebraic group model. This is of independent interest and useful for any application involving proofs of possession.

– We introduce and prove the security of the Schnorr computational assumption (schnorr) and the binonce Schnorr
computational assumption (bischnorr). Our security reductions only run two iterations of the adversary.

– We introduce and prove secure a simple multisignature scheme with proofs of possession, called SimpleMuSig.
– We introduce and prove secure a variant of the MuSig2 multisignature scheme with proofs of possession, called

SpeedyMuSig. To the best of our knowledge, SpeedyMuSig is the most efficient Schnorr multisignature in the literature.
– We prove the security of the FROST threshold signature scheme using our new techniques. We introduce a modification

to FROST that allows for improved efficiency during signing, reducing the number of exponentiations from at least t to
one.

– We provide an open source python implementation of our reduction for bischnorr and our reduction for FROST.4

2 Related Work

Bellare and Neven [5] introduced a multisignature scheme with three rounds of signing and signature verification matching
that of a standard Schnorr signature (BN06). Maxwell et al. [27] expanded upon this scheme to allow for key aggregation
(MuSig). Drijvers et al. [13] gave the first two-round scheme that is secure under the discrete logarithm assumption (and
not susceptible to ROS attacks), but the resulting signature format is custom made (mBCJ). Nick et al. [30] presented
an alternative two-round multisignature scheme that outputs a Schnorr signature. They rely on relatively expensive
zero-knowledge proofs, which hurt the performance of the signer. Nick et al. [29] proposed a two-round multisignature
scheme with efficient signing under the one-more discrete logarithm assumption (MuSig2). A variant of this two-round
multisignature scheme was simultaneously proposed by Alper and Burdges [2]. Our work improves on these schemes in
efficiency and also because our security reductions are more modular. Unlike prior schemes, we separate the part of the
security reduction that depends on rewinding adversaries from the part of the reduction that analyzes the interactive
nature of the multisignature scheme.

4 https://github.com/mmaller/multi_and_threshold_signature_reductions

2

https://github.com/mmaller/multi_and_threshold_signature_reductions

Scheme KeyGen KeyVerify Sign Combine Verify
exp G F exp round exp G F exp exp

BN06 [5] 1 1 0 - 3 1 1 1 0 n+ 1
mBCJ [13] 2 2 1 2 2 4 2 3 0 8
MuSig [27] 1 1 0 - 3 n+ 1 1 2 n n+ 1
MuSig2 [29] 1 1 0 - 2 n+ 3 2 1 n+ 1 n+ 2
DWMS [2] 1 1 0 - 2 3n+ 2 2 1 n+ 1 n+ 1

This Work

SimpleMuSig 2 2 1 2 3 1 1 2 0 2
SpeedyMuSig 2 2 1 2 2 3 2 1 1 2

Fig. 1. Table of Efficiency of Multisignature Schnorr Schemes. Here, exp stands for the number of group exponentiations. The
number of rounds is given in the round column. The number of group and field elements is denoted by G and F, respectively, and
is given as the total number of elements sent per signer. In some protocols, there is the output of a hash function, which we have
counted as a field element. The only protocol that outputs a signature that is not a standard Schnorr signature is mBCJ.

Multisignature proofs can also be given in the algebraic group model (AGM) [29, 2]; however, AGM proofs in more
complicated settings have their own delicacies and have been known to result in serious errors [17]. We limit the intricate
linear algebra arguments inherent in algebraic group model proofs to our analysis of the schnorr-koe assumption, for which
the AGM proof can be kept simple.

Boldyreva [8] and Ristenpart and Yilek [33] showed that proofs of possession can be used to efficiently instantiate
knowledge-of-secret-key assumptions for certain schemes in pairing-based groups. Boneh et al. [9] considered key aggregation
in pairing-based groups. They also proposed a three-round multisignature scheme MSDL as well as a variant that included
proofs of possession, called MSDL-pop. The modified scheme was claimed to have a proof of security similar to that of
DG-CoSi [12] and was therefore omitted; however, in a follow-up work [13], the proof of DG-CoSi was determined to be
flawed, leaving open the question of how to prove security of MSDL-pop. We relabel MSDL-pop as SimpleMuSig and prove
security, thus filling this gap in the literature.

Regarding Schnorr-based threshold signature schemes, Gennaro et al. [21] suggested a two-round protocol, which is
not secure in the concurrent setting due to ROS attacks. Komlo and Goldberg proposed FROST [25], which is concretely
efficient and secure in the concurrent setting. However, their security proof requires an interactive construction and cannot
extend to the non-interactive variant without a heuristic assumption. Our techniques allow for proving the security of
FROST directly.

Fuchsbauer et al. [16] demonstrated that the security of Schnorr signatures can be tightly reduced to the discrete
logarithm assumption in the algebraic group model. However, they showed that the adversary cannot forge a signature
under a public key given to them by the challenger. In Theorem 1, we show a stronger property: there exists an extractor
that can output the secret key even when the adversary can forge under a public key of its choosing. In other words, we
allow the adversary to produce new signatures, but when they do, they must also know the secret key.

Bellare and Dai [4] recently proposed a new proving framework for multisignatures via a chain of sub-reductions and
proved the security of existing three-round schemes [27, 5] as well as their own two-round scheme. However, their scheme is
incompatible with standard Schnorr signature verification. This work proves the security of existing two-round Schnorr
multisignatures and threshold signatures.

3 Preliminaries

Let λ ∈ N denote the security parameter and 1λ its unary representation. A function ν : N→ R is called negligible if for all
c > 0, there exists k0 such that ν(k) < 1

kc for all k > k0. For a non-empty set S, let x←$S denote sampling an element of
S uniformly at random and assigning it to x.

Let PPT denote probabilistic polynomial-time. Algorithms are randomized unless explicitly noted otherwise. Let
y ← A(x; r) denote running algorithm A on input x and randomness r and assigning its output to y. Let y←$A(x) denote
y ← A(x; r) for a uniformly random r. The set of values that have non-zero probability of being output by A on input x is
denoted by [A(x)].

Code-based games are used in security definitions [6]. A game GamesecA (λ), played with respect to a security notion sec
and adversary A, has a main procedure whose output is the output of the game.

3

Definition 1 (Group Generator). A group generator GroupGen is a deterministic polynomial-time algorithm that takes
as input a security parameter 1λ and outputs a group description G = (G, p, g) consisting of a group G of order p, where p
is a λ-bit prime, and a generator g of G.

Definition 2 (Schnorr Signatures). Let GroupGen be a group generator that outputs G = (G, p, g), and let H be a hash
function. The signer’s secret key is a value x←$Zp, and its public key is X ← gx. In order to sign a message m, the signer
samples r←$Zp and computes a nonce R← gr, hash H(m,R), and z = r + cx. The signature is the pair (R, z), and it is
valid if RXc = gz.

Assumption 1 (Discrete Logarithm Assumption (DL)) Let GroupGen be a group generator that outputs G = (G, p, g).
The discrete logarithm assumption holds with respect to G if for all PPT adversaries A, there exists a negligible function ν
such that Pr[G ← GroupGen(1λ);X ←$G;x←$A(G, X) : X = gx] < ν(λ).

Assumption 2 (One-More Discrete Logarithm Assumption (OMDL)) Let GroupGen be a group generator that
outputs G = (G, p, g), and let Odl be a discrete logarithm oracle that can be called at most n times. The one-more discrete
logarithm assumption holds with respect to G if for all PPT adversaries A, there exists a negligible function ν such that

Pr[G ← GroupGen(1λ); (X0, . . . , Xn)←$Gn+1; (x0, . . . , xn)←$AOdl

(G, X0, . . . , Xn) : Xi = gxi ∀ 0 ≤ i ≤ n] < ν(λ).

Assumption 3 (Algebraic Group Model (AGM) [16]) An adversary is algebraic if for every group element Z ∈
G = 〈g〉 that it outputs, it is required to output a representation a = (a0, a1, a2, . . .) such that Z = ga0

∏
Yi
ai , where

Y1, Y2, · · · ∈ G are group elements that the adversary has seen thus far.

4 Schnorr Assumptions

In this section, we introduce and justify three new assumptions: the Schnorr knowledge of exponent assumption (schnorr-koe),
the Schnorr computational assumption (schnorr), and the binonce Schnorr computational assumption (bischnorr). We
reduce the security of these three assumptions to the discrete logarithm assumption (schnorr-koe and schnorr) and the
one-more discrete logarithm assumption (bischnorr) in Theorems 1, 2, and 3, respectively. We then employ them to prove
the security of a selection of multi- and threshold signature schemes.

4.1 Schnorr Knowledge of Exponent Assumption

We now introduce a new knowledge of exponent assumption that reduces to the discrete logarithm assumption in the
algebraic group model. It greatly simplifies proofs for multiparty signature schemes, as we will see in Sections 5 and 6.
Our Schnorr knowledge of exponent assumption states that if an adversary can forge a Schnorr signature for some public
key, then it must know the corresponding secret key. This is a non-falsifiable assumption. We prove that the schnorr-koe
assumption holds in the algebraic group model without any tightness loss (Appendix A). This reduction expands on a
result by Fuchsbauer et al., which showed that the security of Schnorr signatures can be tightly reduced to the discrete
logarithm assumption in the algebraic group model [16]. We improve on their result by allowing extraction even when the
adversary chooses their own public key.

Our schnorr-koe assumption is reminiscent of the knowledge of exponent assumption first introduced by Damgard [11]
and employed to prove the security of Succinct NIZK arguments (SNARKs). We give more background on knowledge of
exponent assumptions and their use in Appendix A.

Our schnorr-koe assumption is as follows. An adversary A has access to a signing oracle Oschnorr-pop that outputs a
Schnorr signature under a randomly sampled key X on the message X. When A terminates, if it outputs a verifying
Schnorr signature under X∗ on the message X∗ for X∗ it has chosen itself, either A’s signature is simply one it has already
seen or A must know the discrete logarithm of X∗. In other words, for every PPT algorithm A given a group description
G = 〈g〉, if A outputs a Schnorr signature (X,m, σ) = (X∗, X∗, σ∗) such that Verify(X∗, X∗, σ∗) = 1, then there exists an
extractor algorithm E that, given the transcript of A, outputs x∗ such that X∗ = gx

∗
.

Assumption 4 (The Schnorr Knowledge of Exponent Assumption) Let GroupGen be a group generator that out-
puts G = (G, p, g) in which the discrete logarithm assumption holds, and let H be a hash function. Let Advschnorr-koeA,E (λ) =

Pr[Gameschnorr-koeA,E (λ) = 1], where Gameschnorr-koeA,E (λ) is defined in Figure 2. The Schnorr knowledge of exponent assumption
holds with respect to G and H if for all PPT adversaries A, there exists a PPT extractor E and a negligible function ν such
that Advschnorr-koeA,E (λ) < ν(λ).

Theorem 1 (dl⇒ schnorr-koe). Let GroupGen be a group generator that outputs G = (G, p, g), and let Hpop be a random
oracle. The Schnorr knowledge of exponent assumption (Assumption 4) is implied by the discrete logarithm assumption in
the algebraic group model with respect to G and Hpop.

4

main Gameschnorr-koeA,E (λ)

G ← GroupGen(1λ)

Q← ∅

(X∗, R∗, z∗)←$AO
schnorr-pop

(G)

α← E(transA)

// transA is the transcript of A

if R∗(X∗)Hpop(X
∗,X∗,R∗) = gz

∗

∧ (X∗, R∗, z∗) /∈ Q
∧ gα 6= X∗ return 1

else return 0

Oschnorr-pop()

// PoP: Schnorr signature on X

x, r←$F
X ← gx

R← gr

c← Hpop(X,X,R)

z ← r + cx

// proof of knowledge of x

Q← Q ∪ {(X,R, z)}
return (X,R, z)

Fig. 2. The Schnorr knowledge of exponent game. PoP refers to “proof of possession,” which in this setting means demonstrating
knowledge of x.

main GameschnorrA (λ)

G ← GroupGen(1λ)

x←$F; X ← gx

Q← ∅

(m∗, R∗, z∗)←$AO
schnorr

(G, X)

if R∗XHschnorr(X,m
∗,R∗) = gz

∗

∧m∗ /∈ Q return 1

else return 0

Oschnorr(m)

r←$F; R← gr

c← Hschnorr(X,m,R)

z ← r + cx

Q← Q ∪ {m}
return (R, z)

Fig. 3. The Schnorr computational game.

4.2 Schnorr Computational Assumption

Our second assumption is that Schnorr signatures are unforgeable. An adversary with access to a Schnorr signing oracle
wins the Schnorr computational game if it can forge a Schnorr signature. Security follows from the discrete logarithm
assumption in the random oracle model and requires rewinding the adversary once. For completeness, we have included
the proof in Appendix B, although we note that multiple versions of this reduction appear in the literature [32, 31, 35].
Mostly, it allows for comparison to our reduction in Section 4.3 of the bischnorr assumption to the omdl assumption, which
is new to this work. The schnorr assumption allows us to abstract away details involving rewinding adversaries so that our
reduction for SimpleMuSig can focus solely on a straight-line adversary.

Assumption 5 (The Schnorr Computational Assumption) Let GroupGen be a group generator that outputs G =
(G, p, g) in which the discrete logarithm assumption holds, and let Hschnorr be a hash function. Let AdvschnorrA (λ) =
Pr[GameschnorrA (λ) = 1], where GameschnorrA (λ) is defined in Figure 3. The Schnorr computational assumption holds with
respect to G and Hschnorr if for all PPT adversaries A, there exists a negligible function ν such that AdvschnorrA (λ) < ν(λ).

Theorem 2 (dl⇒ schnorr). Let GroupGen be a group generator that outputs G = (G, p, g), and let Hschnorr be a random
oracle. The Schnorr computational assumption (Assumption 5) is implied by the discrete logarithm assumption with respect
to G and Hschnorr.

The Schnorr signature scheme was proven to reduce to the hardness of the discrete logarithm problem with a tightness
loss of O(qH) by Pointcheval and Stern [32], where qH is the number of random oracle queries the forger makes. The reason
for the tightness loss qH is that the probability that the adversary outputs two distinct forgeries with the same random
oracle query Hschnorr(X

∗,m∗, R∗) could be as as low as 1/qH . This is still non-negligible because the adversary can only
make a polynomial number of queries. Currently, the only tight reduction is in the algebraic group model [16]. While the
schnorr assumption could be proven in the AGM, we find the proof to be cleaner in the ROM. Note that even when the
adversary is allowed to interact with the simulator concurrently, the tightness loss for the security reduction remains qH ,
since the simulator can always correctly program the random oracle to return a valid signing response.

5

main GamebischnorrA (λ)

G ← GroupGen(1λ)

x←$F; X ← gx

Q1, Q2, Q3 ← ∅

(m∗, R∗, z∗)←$AO
binonce,Obisign

(G, X)

if R∗XHschnorr(X,m
∗,R∗) = gz

∗

∧ (m∗, R∗) /∈ Q3 return 1

else return 0

Obinonce()

r, s←$F
R,S ← gr, gs

Q1 ← Q1 ∪ {(R,S, r, s)}
return (R,S)

Obisign(m, k, (γ1, R1, S1), . . . , (γ`, R`, S`))

if (Rk, Sk, rk, sk) 6∈ Q1

∨ (Rk, Sk) ∈ Q2 return ⊥
else

Q2 ← Q2 ∪ {(Rk, Sk)}
a← Hbischnorr(X,m, (γ1, R1, S1), . . . , (γ`, R`, S`))

R̃←
∏̀
i=1

RiS
a
i

c← Hschnorr(X,m, R̃)

zk ← rk + ask + cγkx

Q3 ← Q3 ∪ {(m, R̃)}
return zk

Fig. 4. The binonce Schnorr computational game.

4.3 The Binonce Schnorr Computational Assumption

Our third assumption is computational and proven secure under the one-more discrete logarithm assumption in the random
oracle model. We do not know how to reduce the security to the discrete logarithm assumption. Our binonce Schnorr
computational assumption (bischnorr) is inspired by the work of Nick et al. [29] and Komlo and Goldberg [25], whose
constructions employ the approach of using two nonces to thwart a concurrent forgery attack [13]. We expand on this
attack and why it does not affect the bischnorr assumption in Appendix C.

The bischnorr assumption is our most complex, but seemingly the simplest that allows us to prove the security of
FROST. The assumption equips an adversary with two oracles, Obinonce and Obisign, and two hash functions, Hbischnorr and
Hschnorr, and asks it to forge a new Schnorr signature with respect to a challenge public key X. The Obinonce oracle takes no
input and responds with two random nonces (R,S). The Obisign oracle takes as input a message m, an index k, and a set of
nonces and scalars {(γ1, R1, S1), . . . , (γ`, R`, S`)}. It checks that (Rk, Sk) is a Obinonce response and that it has not been

queried on (Rk, Sk) before. It returns an error if not. It then computes an aggregated randomized nonce R̃ =
∏`
i=1RiS

a
i ,

where a = Hbischnorr(X,m, (γ1, R1, S1), . . . , (γ`, R`, S`)). Obisign then returns z such that (R̃, z) is a valid Schnorr signature
with respect to Hschnorr. The adversary wins if it can output a verifying (m∗, R∗, z∗) that was not output by Obisign.

The oracle Obisign can only be queried once for each pair of nonces (R,S) output by Obinonce. The index k denotes which
(γk, Rk, Sk) out of the list {(γ1, R1, S1), . . . , (γ`, R`, S`)} is being queried; the remaining scalars and nonces appear only to
inform Obinonce what to include as input to Hbischnorr. The scalar γk allows the response z to be given as z = rk + ask + cγkx,
as opposed to rk + ask + cx. We will see that this is useful for threshold signatures, where γk will correspond to the
Lagrange coefficient. Note that (γ1, . . . , γk) (in addition to the nonces) must be included as input to Hbischnorr or else there
is an attack.

Assumption 6 (The Binonce Schnorr Computational Assumption) Let GroupGen be a group generator that out-
puts G = (G, p, g) in which the discrete logarithm assumption holds, and let H be a hash function. Let AdvbischnorrA (λ) =
Pr[GameschnorrA (λ) = 1], where GamebischnorrA (λ) is defined in Figure 4. The binonce Schnorr computational assumption holds
with respect to G and H if for all PPT adversaries A, there exists a negligible function ν such that AdvbischnorrA (λ) < ν(λ).

Using two nonces does avoid one specific ROS attack (Appendix C), but to be certain that there are not others, we
need a watertight security reduction. Nick et al. [29] provide two reductions to the one-more discrete logarithm assumption:
one in the random oracle model and one in the algebraic group model. We use their intuition and techniques heavily in
reducing our binonce assumption to the omdl assumption in Theorem 3. We do not require a double forking lemma, as in
Nick et al., and only rewind the adversary once. Our tightness loss is qH rather than q2

H , where qH the number of hash
queries that the adversary can make.

Our proof resembles the reduction for Schnorr signatures to the discrete logarithm assumption in the random oracle
model, but here the adversary is allowed to adaptively influence the messages, scalars, and nonces. We implement our
security reduction in python and check that it succeeds against an adversary that makes a wide variety of queries.

6

Theorem 3 (omdl⇒ bischnorr). Let GroupGen be a group generator that outputs G = (G, p, g), and let Hbischnorr,Hschnorr

be random oracles. The binonce Schnorr computational assumption (Assumption 6) is implied by the one-more discrete
logarithm assumption with respect to G and Hbischnorr,Hschnorr.

Proof. Let A be a PPT adversary playing GamebischnorrA (λ) that makes up to qH queries to Hbischnorr,Hschnorr in total. We
describe a PPT reduction B playing Gameomdl

B (λ) that uses A as a subroutine such that

AdvbischnorrA (λ) ≤ qHAdvomdl
B (λ)

The reduction B runs A two times in total. On the second iteration, B programs Hschnorr to output a different random
value on a single point so that it can extract a discrete logarithm from A. Over the two iterations, B makes no more
than n queries to a discrete logarithm oracle Odl and aims to output n + 1 discrete logarithms that constitute a valid
solution to the OMDL challenge. If B makes fewer than n queries while responding to A’s oracle queries, then it makes
the additional queries necessary to extract a OMDL solution. B perfectly simulates GamebischnorrA (λ). However, B can only
extract a discrete logarithm if A’s output (m∗, R∗, z∗) at the end of each iteration includes the same nonce R∗. This
happens with probability at least equal to 1/qH , resulting in a tightness loss of qH .
B is responsible for simulating oracle responses for queries to Obinonce and Obisign as well as Hbischnorr and Hschnorr. Let

Qbischnorr, Qschnorr be the set of Hbischnorr,Hschnorr queries and responses. B initializes them to the empty set and maintains
them across both iterations of the adversary. Let Q1, Q2, Q3 be the set of Obinonce,Obisign queries and responses as in
GamebischnorrA (λ). B initializes them to the empty set. At the beginning of the second iteration, B makes a copy Q̄2 of Q2 to
ensure it responds to the same Obisign query with the same answer across the two iterations. It then resets Q1, Q2, Q3 to
the empty set.

OMDL Input. B takes as input the group description G = (G, p, g) and a OMDL challenge of n+ 1 values (X0, . . . , Xn),
where n/2 is greater than the number qB of Obisign queries that A may make in an iteration. B has access to a discrete
logarithm oracle Odl, which it may query up to n times. B aims to output (x0, . . . , xn) such that Xi = gxi for all 0 ≤ i ≤ n.

Hash Queries. B responds to A’s hash queries as follows.

Hbischnorr: When A queries Hbischnorr on (X,m, (γ1, R1, S1), . . . , (γ`, R`, S`)) (` can vary), B checks whether (X,m, (γ1, R1, S1),
. . . , (γ`, R`, S`), a) ∈ Qbischnorr and, if so, returns a. Else, B samples a←$Zp, appends (X,m, (γ1, R1, S1), . . . , (γ`, R`, S`), a)
to Qbischnorr, and returns a.

Hschnorr: When A queries Hschnorr on (X,m,R), B checks whether (X,m,R, c) ∈ Qschnorr and, if so, returns c. Else, B samples
c←$Zp, appends (X,m,R, c) to Qschnorr, and returns c.

Obinonce Queries. For A’s ith query to Obinonce, B adds (X2i−1, X2i, i) to a set Q̃1 and returns (Ri, Si) = (X2i−1, X2i).
Note that B cannot keep track of the set Q1 = {(R,S, r, s)} as in the real GamebischnorrA since it does not know the discrete
logarithms of (X2i−1, X2i); however, the OMDL challenge components (X2i−1, X2i) are randomly distributed, so B’s
simulation is perfect.

Obisign Queries. For A’s jth query to Obisign on queryj = (mj , kj , (γ1j , R1j , S1j), . . . , (γ`j , R`j , S`j)),B checks if (Rkj , Skj)

corresponds to (X2i−1, X2i, i) ∈ Q̃1 for some i and, if so, that ((Rkj , Skj), (i, ·, ·, ·), ·) /∈ Q2 as in the real GamebischnorrA .
If these checks hold, then the query is valid and B will respond. B checks whether (Rkj , Skj) corresponds to the query
((Rkt , Skt), (i, zt, at, ctγkt), queryt) ∈ Q̄2 for some t. If so, B adds ((Rkj , Skj), (i, zt, at, ctγkt), queryt) to Q2 and returns zt.

If not, B computes aj ← Hbischnorr(X0,mj , (γ1j , R1j , S1j), . . . , (γ`j , R`j , S`j)), R̃j ←
∏`
i=1RijS

aj
ij

, and cj ← Hschnorr(X0,

mj , R̃j). Now, B must return zj = x2i−1 + ajx2i + cjγjx0 without knowledge of x0, x2i−1, x2i. To accomplish this, B queries

Odl on RkjS
aj
kj
X
cjγkj
0 to get zj such that gzj = RkjS

aj
kj
X
cjγkj
0 . B appends (queryj , aj) to Qbischnorr, (queryj , cj) to Qschnorr,

((Rkj , Skj), (i, zj , aj , cjγkj), queryj) to Q2, (queryj , zj) to Q̃2, and (mj , R̃j) to Q3. Finally, B returns zj to A.

Extracting the Discrete Logarithm of X0 from the Adversary. The reduction B first selects some random coins
coins. It then runs A(X0; coins) and responds to A’s oracle queries as above.

Suppose A terminates with (m∗, R∗, z∗). If A succeeds, then R∗Xc∗

0 = gz
∗
, where c∗ = Hschnorr(X0,m

∗, R∗) and
(m∗, R∗) /∈ Q3. Here, z∗ does not suffice for B to extract the discrete logarithm of X0 because it does not necessarily know
the discrete logarithm of R∗. Thus, B chooses c′←$Zp and programs Hschnorr to output c′ on input (X0,m

∗, R∗). B copies

Q̄2 = Q2 to have a record of these queries, and then resets Q̃1, Q2, Q3 to the empty set. The sets Q̃2, Qschnorr, Qbischnorr are
also kept for the second iteration of the adversary. B then runs A(X0; coins) again on the same random coins.

After the second iteration, suppose A terminates with (m′, R′, z′). If (m′, R′) = (m∗, R∗), then B can extract x0 = z∗−z′
c∗−c′

such that X0 = gx0 . If (m′, R′) 6= (m∗, R∗), then B must abort. The probability that B does not abort is strictly greater
than 1/qH (which is polynomial) because: (1) A makes no more than qH queries to Hbischnorr,Hschnorr in total; and (2) the

7

statistical probability of A succeeding if it did not query Hschnorr on (X0,m
∗, R∗) and (X0,m

′, R′) is less than 2
p <

1
qH

.

Thus, the probability that B extracts x0 is at least 1/qH .

Extracting a OMDL Solution. The reduction B must now extract the remaining x1, . . . , xn such that Xi = gxi . For
each Xi, the method for extracting xi will be one of four cases, depending on how A queried Obinonce and Obisign over the
two iterations.

Case 1 ((X2i−1, X2i) has not appeared in an Obisign query over the two iterations). In this case, X2i−1 and X2i have not
yet been queried by B. Thus, B queries Odl directly to obtain x2i−1 and x2i. Two queries are made for each i in this case.

Case 2 ((X2i−1, X2i) has appeared in an Obisign query in a single iteration). A single query has been made by B to
Odl containing (X2i−1, X2i). If it occurred in the first iteration, then ((Rkj , Skj), (i, zj , aj , cjγkj), queryj) ∈ Q̄2 is such

that zj = rkj + ajskj + cjγkjx0. To obtain a second value, B queries X2i to Odl and thus learns x2i. Then B sets
x2i−1 = zj − ajx2i − cjγkjx0. The case where the query occurred in the second iteration is similar. In total, two queries are
made for each i in this case.

Now consider when (X2i−1, X2i) appears in an Obisign query in both iterations. Let queryj be that query from the first
iteration and queryj′ from the second

queryj = (mj , kj , (γ1j , R1j , S1j), . . . , (γ`j , R`j , S1,`j))

queryj′ = (mj′ , kj′ , (γ1j′ , R1j′ , S1j′), . . . , (γ`j′ , R`j′ , S`j′))

such that (X2i−1, X2i) = (Rkj , Skj) = (Rkj′ , Skj′).

Case 3 (The query containing (X2i−1, X2i) is the same in both iterations). In this case, queryj = queryj′ . A single

query has been made by B to Odl containing (X2i−1, X2i), and ((Rkj , Skj), (i, zj , aj , cjγkj), queryj) ∈ Q̄2 is such that

zj = rkj + ajskj + cjγkjx0. To obtain a second value, B queries X2i to Odl and thus learns x2i. Then B sets x2i−1 =
zj − ajx2i − cjγkjx0. In total, two queries are made for each i in this case.

Case 4 (There exist two distinct queries containing (X2i−1, X2i) over the two iterations). In this case, queryj 6= queryj′
and ((Rkj , Skj), (i, zj , aj , cjγkj), queryj) ∈ Q̄2 and ((Rkj′ , Skj′), (i, zj′ , aj′ , cj′γkj′), queryj′) ∈ Q2. Then B sets

x2i =
zj′ − zj + (cjγkj − cj′γkj′)x0

aj′ − aj
x2i−1 = zj − ajx2i − cjγkjx0 (1)

Suppose aj = aj′ . That is,

Hbischnorr(X0,mj , (γ1j , R1j , S1j), . . . , (γ`j , R`j , S`j)) = Hbischnorr(X0,mj′ , (γ1j′ , R1j′ , S1j′), . . . , (γ`j′ , R`j′ , S`j′))

With probability greater than 1− qH/p, the inputs are equal. This implies mj = mj′ and (γij , Rij , Sij) = (γij′ , Rij′ , Sij′)
for all 1 ≤ i ≤ `. The only values in queryj and queryj′ not hashed in Hbischnorr are kj and kj′ . For queryj 6= queryj′ , we must
have kj 6= kj′ . But it is possible that (X2i−1, X2i) = (Rkj , Skj) = (Rkj′ , Skj′) in both queries. There must be an explicit
check for repeated nonce pairs within a query to eliminate this Bad Case. If Bad Case does not occur, then the probability
that aj′ = aj for queryj′ 6= queryj is less than qH/p. Two queries are made for each i in this case.

Thus, B has extracted xi for all Xi using exactly n queries and returns (x0, x1, . . . , xn) to win the Gameomdl
B (λ) game.

5 Proving the Security of Multisignatures

In this section, we first discuss the definition of a multisignature scheme. We then construct and prove the security of a
simple, three-round multisignature scheme with proofs of possession under the Schnorr computational assumption and the
Schnorr knowledge of exponent assumption. Finally, we construct and prove the security of a variant of the two-round
MuSig2 multisignature scheme with proofs of possession under the binonce Schnorr computational assumption and the
Schnorr knowledge of exponent assumption.

5.1 Definition of Security for Multisignatures

We build upon the definition of a multisignature scheme with proofs of possession given by Ristenpart and Yilek [33],
assuming without loss of generality that there is a single honest signer whose index is 1.

8

Definition of Multisignatures. A multisignature scheme M with proofs of possession is a tuple of algorithms M =
(Setup,KeyGen,KeyVerify, (Sign,Sign′,Sign′′),Combine,Verify). The public parameters are generated by a trusted party
par ← Setup and given as input to all other algorithms. Each of the n signers generates a public/private key pair
(pki, ski)←$KeyGen(), where pki consists of a standard public key component Xi and a proof of possession πi of Xi.
Participants output their public keys and verify the public keys of others using KeyVerify. To collectively sign a message m,
each of the signers calls the interactive signing protocol (Sign,Sign′,Sign′′) on its individual secret key ski, a set PK of
public keys, and the message m. At the end of the signing protocol, the signers’ individual signature shares are combined
using the Combine algorithm to form the multisignature σ. Note that Combine may be performed by one of the signers or
an external party. The multisignature σ on m is valid if Verify(PK,m, σ) = 1.

A multisignature scheme should be correct and unforgeable.

Correctness. Correctness requires that for all λ, for all n, and for all messages m, if (pki, ski)←$KeyGen() for 1 ≤ i ≤ n and
all signers input (PK = {X1, . . . , Xn}, ski,m) to the signing protocol (Sign,Sign′,Sign′′), then every signer will output
a signature share that, when combined with all other shares, results in a signature σ satisfying Verify(PK,m, σ) = 1.

Unforgeability. EUF-CMA security is described by the following game. (See Fig. 6 in Appendix D for a formal definition.)

Setup. The challenger generates the public parameters par← Setup and a challenge key pair (pk1, sk1)←$KeyGen(),
where pk1 = (X1, π1). It runs the adversary A on input pk1.

Signature Queries. A is allowed to make signature queries on any message m for any set of signer public keys PK
with X1 ∈ PK, meaning that it has access to oracles OSign,Sign′,Sign′′ that will simulate the single honest signer
interacting in a signing protocol with the other signers of PK to sign message m. Note that A may make any
number of such queries concurrently.

Output. Finally, the adversary outputs a multisignature forgery σ∗, a message m∗, and a set of public keys PK∗ =
{X∗1 , . . . , X∗n}. The adversary wins if X∗1 = X1, A made no signing queries on m∗, and Verify(PK∗,m∗, σ∗) = 1.

5.2 Three-Round Proof-of-Possession Multisignature SimpleMuSig

In this section, we define a three-round multisignature scheme SimpleMuSig (Fig. 7) with proofs of possession and prove its
EUF-CMA security under the Schnorr computational assumption and the Schnorr knowledge of exponent assumption
(Theorem 4). Any complexity around rewinding the adversary has already been abstracted away into the assumptions,
allowing us to focus on the primary concerns of the security proof, namely (1) whether the reduction aborts; (2) whether
the adversary can distinguish between its interaction with the reduction and the real EUF-CMA game; and (3) whether
the reduction succeeds whenever the adversary succeeds.

In all of our proofs, we assume the adversary only makes well-formed queries. Any ill-formed query could be answered
with random values by the reduction. We also assume the adversary completes every signing session and that the reduction
does not program a random oracle on a point that has already been queried by the adversary.

The public parameters par generated during setup are provided as input to all other algorithms and protocols.

SimpleMuSig Description.

Parameter Generation. On input the security parameter 1λ, the setup algorithm runs (G, p, g)← GroupGen(1λ), selects
hash functions Hreg,Hcm,Hsig : {0, 1}∗ → Zp, and outputs public parameters par← ((G, p, g),Hreg,Hcm,Hsig).

Key Generation. Each signer generates a public/private key pair as follows. They first sample x←$Zp and compute
X ← gx. They then compute a proof of possession of X as a Schnorr signature on X as follows. They sample r̄←$Zp
and compute R̄← gr̄. They then compute the hash c̄← Hreg(X,X, R̄) and z̄ ← r̄ + c̄x. Their proof of possession is the
signature π ← (R̄, z̄). The signer outputs their public/private key pair (pk, sk) = ((X,π), x).

Key Verification. On input a public key pk = (X,π) = (X, (R̄, z̄)), the verifier computes c̄← Hreg(X,X, R̄) and accepts
if R̄X c̄ = gz̄, adding X to the set LPK of potential signers.

Signing Round 1 (Sign). Let (pki, ski) be the public/private key pair of a specific signer. They sample ri←$Zp, compute
Ri ← gri and cmi ← Hcm(Ri), and output their commitment cmi.

Signing Round 2 (Sign′). On input a set PK = {X1, . . . , Xn} of public keys, the corresponding commitments {cm1, . . . , cmn},
and the message m to be signed5, the signer outputs their nonce Ri.

5 While the input values are not explicitly used at this stage of signing, revealing nonces before these values are fixed leads to known
insecurities [28].

9

Signing Round 3 (Sign′′). On input a set PK = {X1, . . . , Xn} of public keys, the corresponding commitments and
nonces {(R1, cm1), . . . , (Rn, cmn)}, and the message m, the signer first checks that cmj = Hcm(Rj) for all j 6= i. If for

some j′, cmj′ 6= Hcm(Rj′), abort. Otherwise, the signer computes the aggregate key X̃ ←
∏n

1 Xj , aggregate nonce

R̃←
∏n

1 Rj , hash c← Hsig(X̃,m, R̃), and zi ← ri + cxi and outputs zi.
Combining Signatures. On input a set PK = {X1, . . . , Xn} of public keys and the corresponding signatures {(R1, z1),

. . . , (Rn, zn)} on the message m, the combiner computes X̃ ←
∏n

1 Xj , R̃←
∏n

1 Rj , c← Hsig(X̃,m, R̃), and z ←
∑n

1 zj
and outputs the signature σ ← (R̃, z).

Verification. On input a set of public keys PK = {X1, . . . , Xn}, a message m, and a signature σ = (R̃, z), the verifier
computes X̃ =

∏n
1 Xj and c← Hsig(X̃,m, R̃) and accepts if R̃X̃c = gz.

Correctness of SimpleMuSig is straightforward to verify. Note that verification of the multisignature σ is identical to
verification of a standard, key-prefixed Schnorr signature with respect to the aggregate nonce R̃ and aggregate key X̃.

Theorem 4 (SimpleMuSig). SimpleMuSig is EUF-CMA secure under the Schnorr computational assumption (Assump-
tion 5) and the Schnorr knowledge of exponent assumption (Assumption 4).

Proof. Let A be a PPT adversary attempting to break the EUF-CMA security of SimpleMuSig. We construct a PPT
reduction B playing GameschnorrB (λ) such that whenever A outputs a valid forgery, B breaks the Schnorr computational
assumption.

The reduction B is responsible for simulating oracle responses for key registration, the three rounds of signing, and
queries to Hreg, Hcm, and Hsig. B may program Hreg, Hcm, and Hsig, but not Hpop or Hschnorr (because it is part of B’s
challenge). Let Qreg be the set of Hreg queries and their responses, and similarly for Qcm and Qsig. B initializes Qreg,Qcm,Qsig

to the empty set.
B receives as input group parameters G = (G, p, g) and a challenge public key X1. B simulates a proof of possession of

X1 as follows. It chooses c̄1, z̄1←$Zp and sets R̄1 ← gz̄1X−c̄11 . It then sets π1 ← (R̄1, z̄1) and pk1 ← (X1, π1). B programs
Hreg to return c̄1 on input (X1, X1, R̄1) and appends (X1, X1, R̄1, c̄1) to Qreg. It adds X1 to the list LPK of potential
signers and runs A on input pk1.

Hash Queries. When A queries Hreg on (X,X, R̄), B checks whether (X,X, R̄, c̄) ∈ Qreg and, if so, returns c̄. Else, B
queries c̄← Hpop(X,X, R̄), appends (X,X, R̄, c̄) to Qreg, and returns c̄.

When A queries Hcm on R, B checks whether (R, cm) ∈ Qcm and, if so, returns cm. Else, B samples cm←$Zp, appends
(R, cm) to Qcm, and returns cm.

When A queries Hsig on (X,m,R), B checks whether (X,m,R, m̂, ĉ) ∈ Qsig and, if so, returns ĉ. Else, B samples a
random message m̂ (to prevent trivial collisions), queries ĉ ← Hschnorr(X1, m̂, R), appends (X,m,R, m̂, ĉ) to Qsig, and
returns ĉ.

Key Registration. During key registration, all parties send their public keys. When A queries ORegister to register
pk = (X,π) such that KeyVerify(X,π) = 1, B adds X to the list LPK of potential signers (if X isn’t already included) and
runs the extractor E to obtain x such that X = gx.

Signing Round 1 (Sign). In the first round of signing, all parties who intend to participate send commitments cm1, . . . , cmn.
For A’s query to OSign, B samples a random message ṁ and queries Oschnorr on ṁ to get a signature (R1, z1). B checks
whether (R1, cm1) ∈ Qcm and, if so, returns cm1. Else, B samples cm1←$Zp, appends (R1, cm1) to Qcm, and returns cm1.

Signing Round 2 (Sign′). In the second round of signing, all parties corresponding to PK = {X1, . . . , Xn} take as input
the message m to be signed and reveal nonces R1, . . . , Rn such that cmi = Hcm(Ri). B looks up cm2, . . . , cmn for records
(Ri, cmi) ∈ Qcm. If there exists some j for which a record (Rj , cmj) does not exist, then B aborts. If all records exist,

then B computes X̃ ←
∏n
i=1Xi and R̃ =

∏n
i=1Ri, queries ċ ← Hschnorr(X1, ṁ, R1) (note that it’s not R̃), and appends

(X̃,m, R̃, ṁ, ċ) to Qsig. (However, if A has already queried Hsig on (X̃,m, R̃), then B aborts.) For A’s query to OSign′ , B
returns R1.

Signing Round 3 (Sign′′). The third round of signing only proceeds if the second round terminated, i.e., all parties
revealed their nonces in the second round. For A’s query to OSign′′ , B returns z1.

Output. When A returns (PK∗,m∗, σ∗) such that PK∗ = {X∗1 , . . . , X∗n}, X∗i ∈ LPK ∀i,X∗1 = X1, σ
∗ = (R̃∗, z∗), and

Verify(PK∗,m∗, σ∗) = 1, B computes its output as follows. B looks up x∗2, . . . , x
∗
n from registration such that X∗i = gx

∗
i .

B also looks up m̂∗ from when A queried Hsig on (X̃∗,m∗, R̃∗) and B had responded with ĉ∗ ← Hschnorr(X1, m̂
∗, R̃∗). B

outputs (m̂∗, R̃∗, z∗ − ĉ∗(x∗2 + · · ·+ x∗n)).

To complete the proof, we must argue that: (1) B only aborts with negligible probability; (2) A cannot distinguish
between the real EUF-CMA game and its interaction with B; and (3) whenever A succeeds, B succeeds.

10

(1) B aborts in Signing Round 2 if A reveals Rj such that cmj = Hcm(Rj) but A never queried Hcm on Rj . The
probability that A guessed cmj correctly is 1/p, which is negligible.

B also aborts in Signing Round 2 if A had previously queried Hsig on (X̃,m, R̃). In that case, B had returned

ĉ← Hschnorr(X1, m̂, R̃) for some random message m̂, so the reduction fails. However, this implies that A guessed R1 before
B revealed it, which occurs with negligible probability.

(2) As long as B does not abort, B is able to simulate the appropriate responses to A’s oracle queries so that A cannot
distinguish between the real EUF-CMA game and its interaction with B.

When A queries Hreg on (X,X, R̄) 6= (X1, X1, R̄1), B queries its Hpop oracle on (X,X, R̄), so A receives a random value.
For (X1, X1, R̄1), B programmed Hreg to output its simulated c̄1 at the beginning of the game. B’s simulation of the proof
of possession of X1 is perfect because c̄1 is random and π1 = (R̄1, z̄1) verifies as R̄1X

c̄1
1 = gz̄1 .

When A queries Hsig on (X,m,R), B queries ĉ ← Hschnorr(X1, m̂, R) on a random message m̂. The random message
prevents trivial collisions; for example, if A were to query Hsig on (X,m,R) and (X ′,m,R), where X ′ 6= X, A would receive
the same value c ← Hschnorr(X1,m,R) for both and would know it was operating inside a reduction. Random messages
ensure that the outputs are random, so A’s view is correct.

When the three signing rounds have been completed, A may verify the signature share z1 on m as follows. A checks if

R1X
Hsig(X̃,m,R̃)
1 = gz1 , where Hsig(X̃,m, R̃) was programmed by B as Hschnorr(X1, ṁ, R1). When B queried Oschnorr on ṁ in

Signing Round 1, the signature share z1 was computed such that R1X
Hschnorr(X1,ṁ,R1)
1 = gz1 , so B simulates z1 correctly.

(3) A’s forgery satisfies Verify(PK∗,m∗, σ∗) = 1 and X∗1 = X1, which implies:

R̃∗(X̃∗)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(X∗1 · · ·X∗n)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(X1g
x2∗ · · · gx

∗
n)Hsig(X̃

∗,m∗,R̃∗) = gz
∗

R̃∗X
Hsig(X̃

∗,m∗,R̃∗)
1 = gz

∗−Hsig(X̃
∗,m∗,R̃∗)(x∗2+···+x∗n)

At some point, for all 2 ≤ i ≤ n, A queried ORegister to register (X∗i , π
∗
i) such that KeyVerify(X∗i , π

∗
i) = 1. This implies that

R̄∗i (X
∗
i)Hpop(X

∗
i ,X

∗
i ,R̄
∗
i) = gz̄

∗
i , which is a valid output in the Schnorr knowledge of exponent game (provided that X∗i 6= X1).

Thus, the Schnorr knowledge of exponent assumption guarantees that E succeeds at outputting x∗i such that X∗i = gx
∗
i

with overwhelming probability. This allows B to obtain x∗2, . . . , x
∗
n.

At some point, A queried Hsig on (X̃∗,m∗, R̃∗) and received ĉ∗ ← Hschnorr(X1, m̂
∗, R̃∗), so A’s forgery satisfies:

R̃∗X
Hschnorr(X1,m̂

∗,R̃∗)
1 = gz

∗−Hschnorr(X1,m̂
∗,R̃∗)(x∗2+···+x∗n)

Thus, B’s output (m̂∗, R̃∗, z∗ − ĉ∗(x∗2 + · · ·+ x∗n)) under X1 is correct. If A outputs a valid forgery for SimpleMuSig with
non-negligible probability, then B breaks the Schnorr computational assumption.

5.3 Two-Round Proof-of-Possession Multisignature SpeedyMuSig

We now construct a variant of the two-round multisignature scheme MuSig2 [29] that includes proofs of possession,
which we call SpeedyMuSig (Fig. 8). Similar to SimpleMuSig, the proofs of possession allow the aggregated public key
X̃ to be computed simply as the product of the public keys PK = {X1, . . . , Xn}, rather than X̃ ←

∏n
1 X

aj
j , where

aj ← Hagg(PK, Xj), as in the original MuSig2 scheme. We show that SpeedyMuSig is EUF-CMA secure under the binonce
Schnorr computational assumption and the Schnorr knowledge of exponent assumption (Theorem 5). Since SpeedyMuSig
consists of two rounds of signing, there is no need for a Sign′′() algorithm, but for the purpose of aligning with our generic
definition of EUF-CMA security (Fig. 6), one may assume it returns no value. The public parameters par generated during
setup are provided as input to all other algorithms and protocols.

SpeedyMuSig Description.

Parameter Generation. On input the security parameter 1λ, the setup algorithm runs (G, p, g)← GroupGen(1λ), selects
hash functions Hreg,Hnon,Hsig : {0, 1}∗ → Zp, and outputs public parameters par← ((G, p, g),Hreg,Hnon,Hsig).

Key Generation. Each signer generates a public/private key pair as follows. They first choose x←$Zp and compute
X ← gx. They then compute a proof of possession of X as a Schnorr signature on X as follows. They choose r̄←$Zp
and compute R̄← gr̄. They then compute the hash c̄← Hreg(X,X, R̄) and z̄ ← r̄ + c̄x. Their proof of possession is the
signature π ← (R̄, z̄). The signer outputs their public/private key pair (pk, sk) = ((X,π), x).

11

Key Verification. On input a public key pk = (X,π) = (X, (R̄, z̄)), the verifier computes c̄← Hreg(X,X, R̄) and accepts
if R̄X c̄ = gz̄, adding X to the set LPK of potential signers.

Signing Round 1 (Sign). Let (pki, ski) be the public/private key pair of a specific signer. They choose ri, si←$Zp,
compute Ri, Si ← gri , gsi , and output their two nonces (Ri, Si).

Signing Round 2 (Sign′). On input a set PK = {X1, . . . , Xn} of public keys, the corresponding nonces {(R1, S1), . . . ,
(Rn, Sn)}, and the message m to be signed, first check if (Ri, Si) = (Rj , Sj) for any i 6= j and if so, abort.6 Else, the

signer computes the aggregate key X̃ ←
∏n

1 Xj , a ← Hnon(X̃,m, {(R1, S1), . . . , (Rn, Sn)}), and the aggregate nonce

R̃←
∏n

1 RjS
a
j . The signer computes the hash c← Hsig(X̃,m, R̃) and zi ← ri + asi + cxi and outputs zi.

Combining Signatures. On input a set of public keys PK = {X1, . . . , Xn}, the corresponding nonces {(R1, S1), . . . ,
(Rn, Sn)}, and the message m, the combiner computes X̃ ←

∏n
1 Xj , a ← Hnon(X̃,m, {(R1, S1), . . . , (Rn, Sn)}), R̃ ←∏n

1 RjS
a
j , and c← Hsig(X̃,m, R̃). Finally, it computes z ←

∑n
1 zj and outputs the signature σ ← (R̃, z).

Verification. On input a set of public keys PK = {X1, . . . , Xn}, a message m, and a signature σ = (R̃, z), the verifier
computes X̃ =

∏n
1 Xj and c← Hsig(X̃,m, R̃) and accepts if R̃X̃c = gz.

Correctness of SpeedyMuSig is straightforward to verify. Note that verification of the multisignature σ is identical to
verification of a standard, key-prefixed Schnorr signature with respect to the aggregate nonce R̃ and aggregate key X̃.

Theorem 5 (SpeedyMuSig). SpeedyMuSig is EUF-CMA secure under the binonce Schnorr computational assumption
(Assumption 6) and the Schnorr knowledge of exponent assumption (Assumption 4).

Proof. Let A be a PPT adversary attempting to break the EUF-CMA security of SpeedyMuSig. We construct a PPT reduc-
tion B playing GamebischnorrB (λ) such that whenever A outputs a valid forgery, B breaks the binonce Schnorr computational
assumption.

The reduction B is responsible for simulating oracle responses for key registration, the two rounds of signing, and
queries to Hreg, Hnon, and Hsig. B may program Hreg, Hnon, and Hsig, but not Hpop,Hschnorr, or Hbischnorr (because they are
part of B’s challenge). Let Qreg be the set of Hreg queries and their responses, and similarly for Qnon and Qsig. B initializes
Qreg,Qnon,Qsig to the empty set.

B receives as input group parameters G = (G, p, g) and a challenge public key Ẋ1. B simulates a proof of possession of
Ẋ1 as follows. It chooses c̄1, z̄1←$Zp and sets R̄1 ← gz̄1Ẋ−c̄11 . B sets π1 ← (R̄1, z̄1) and pk1 ← (Ẋ1, π1). B programs Hreg

to return c̄1 on input (Ẋ1, Ẋ1, R̄1) and appends (Ẋ1, R̄1, c̄1) to Qreg. B then runs A on input pk1.

Hash Queries. When A queries Hreg on (X,X, R̄), B checks whether (X,X, R̄, c̄) ∈ Qreg and, if so, returns c̄. Else, B
queries c̄← Hpop(X,X, R̄), appends (X,X, R̄, c̄) to Qreg, and returns c̄.

When A queries Hnon on (X,m,R1, S1, . . . , Rn, Sn), B checks whether (X,m,R1, S1, . . . , Rn, Sn, m̂, â) ∈ Qnon and,
if so, returns â. Else, B samples a random message m̂ (to prevent trivial collisions), sets γi = 1 ∀i7, computes â ←
Hbischnorr(Ẋ1, m̂, (γ1, R1, S1), . . . , (γn, Rn, Sn)), and appends (X,m,R1, S1, . . . , Rn, Sn, m̂, â) to Qnon. B then checks if there
exists a record (X,m,

∏n
1 RiS

â
i , ṁ, ċ) ∈ Qsig and, if so, aborts. Else, B computes ĉ← Hschnorr(Ẋ1, m̂,

∏n
1 RiS

â
i) and appends

(X,m,
∏n

1 RiS
â
i , m̂, ĉ) to Qsig. Finally, B returns â.

When A queries Hsig on (X,m,R), B checks whether (X,m,R, m̂, ĉ) ∈ Qsig and, if so, returns ĉ. Else, B samples a

random message ṁ, computes ċ← Hschnorr(Ẋ1, ṁ, R), appends (X,m,R, ṁ, ċ) to Qsig, and returns ċ.

Key Registration. During key registration, all parties send their public keys. When A queries ORegister to register
pk = (X,π) such that KeyVerify(X,π) = 1, B adds X to the list LPK of potential signers (if X isn’t already included) and
runs the extractor E to obtain x such that X = gx.

Signing Round 1 (Sign). In the first round of signing, all parties who intend to participate send two nonces (R1, S1), . . . ,
(Rn, Sn). B queries Obinonce to get (Ṙ1, Ṡ1). For A’s query to OSign, B returns (Ṙ1, Ṡ1).

Signing Round 2 (Sign′). In the second round of signing, all parties PK = {X1, . . . , Xn} take as input the mes-
sage m to be signed. B checks if (Ri, Si) = (Rj , Sj) for any i 6= j and if so, aborts. Else, B computes X̃ =

∏n
1 Xi,

checks if there exists a record (X̃,m, Ṙ1, Ṡ1, . . . , Rn, Sn, m̂
′, â′) ∈ Qnon and, if so, sets γi = 1 ∀i and queries Obisign on

(m̂′, 1, (γ1, Ṙ1, Ṡ1), . . . , (γn, Rn, Sn)) to get z1. Else, B samples a random message m̂′, programs Hnon and Hsig as described

above, and queries Obisign on (m̂′, 1, (γ1, Ṙ1, Ṡ1), . . . , (γn, Rn, Sn)) to get z1. For A’s query to OSign′ , B returns z1.

Output. When A returns (PK∗,m∗, σ∗) such that PK∗ = {X∗1 , . . . , X∗n}, X∗i ∈ LPK ∀i,X∗1 = X1, σ
∗ = (R̃∗, z∗), and

Verify(PK∗,m∗, σ∗) = 1, B computes its output as follows. It looks up x∗2, . . . , x
∗
n from registration such that X∗i = gx

∗
i .

6 The proof of Theorem 3 demonstrates why this is required.
7 Lagrange coefficients for multisignatures are 1.

12

B also looks up m̂∗ from when A queried Hsig on (X̃∗,m∗, R̃∗) and B had responded with ĉ∗ ← Hschnorr(Ẋ1, m̂
∗, R̃∗). B

outputs (m̂∗, R̃∗, z∗ − ĉ∗(x∗2 + · · ·+ x∗n)).

To complete the proof, we must argue that: (1) B only aborts with negligible probability; (2) A cannot distinguish
between the real EUF-CMA game and its interaction with B; and (3) whenever A succeeds, B succeeds.

(1) B aborts if A queries Hsig on (X,m,
∏n

1 RiS
â
i) without having first queried Hnon on (X,m,R1, S1, . . . , Rn, Sn). This

requires A to have guessed â ahead of time, which occurs with negligible probability.
(2) As long as B does not abort, B is able to simulate the appropriate responses to A’s oracle queries so that A cannot

distinguish between the real EUF-CMA game and its interaction with B.
When A queries Hnon on (X,m,R1, S1, . . . , Rn, Sn), B queries â ← Hbischnorr(Ẋ1, m̂, (γ1, R1, S1), . . . , (γn, Rn, Sn))

on a random message m̂. The random message prevents trivial collisions; for example, if A were to query Hnon on
(X,m,R1, S1, . . . , Rn, Sn) and (X ′,m,R1, S1, . . . , Rn, Sn) for X ′ 6= X, A would receive the same value a← Hbischnorr(Ẋ1,m,
(γ1, R1, S1), . . . , (γn, Rn, Sn)) for both and would know it was operating inside a reduction. Random messages ensure that
the outputs are random, so A’s view is correct. B also ensures that A receives Hnon values that are consistent with Hsig

queries.
After the signing rounds have been completed, A may verify the signature share z1 on m as follows. A checks if

Ṙ1Ṡ
Hnon(X̃,m,Ṙ1,Ṡ1,...,Rn,Sn)
1 Ẋ

Hsig(X̃,m,
∏n

1 RiS
Hnon(X̃,m,Ṙ1,Ṡ1,...,Rn,Sn)
i

1 = gz1

When B queried Obisign on (m̂′, 1, (γ1, Ṙ1, Ṡ1), . . . , (γn, Rn, Sn)) in Signing Round 2, the signature share z1 was computed
such that

Ṙ1Ṡ
Hbischnorr(Ẋ1,m̂

′,(γ1,Ṙ1,Ṡ1),...,(γn,Rn,Sn))
1 Ẋ

Hschnorr(Ẋ1,m̂
′,
∏n

1 RiS
Hbischnorr(Ẋ1,m̂

′,(γ1,Ṙ1,Ṡ1),...,(γn,Rn,Sn))

i)
1 = gz1

B has programmed the hash values to be equal and therefore simulates z1 correctly.
(3) A’s forgery satisfies Verify(PK∗,m∗, σ∗) = 1 and X∗1 = Ẋ1, which implies:

R̃∗(X̃∗)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(X∗1 · · ·X∗n)Hsig(X̃
∗,m∗,R̃∗) = gz

∗

R̃∗(Ẋ1g
x2∗ · · · gx

∗
n)Hsig(X̃

∗,m∗,R̃∗) = gz
∗

R̃∗Ẋ
Hsig(X̃

∗,m∗,R̃∗)
1 = gz

∗−Hsig(X̃
∗,m∗,R̃∗)(x∗2+···+x∗n)

At some point, for all 2 ≤ i ≤ n, A queried ORegister to register (X∗i , π
∗
i) such that KeyVerify(X∗i , π

∗
i) = 1. This implies that

R̄∗i (X
∗
i)Hpop(X

∗
i ,X

∗
i ,R̄
∗
i) = gz̄

∗
i , which is a valid output in the Schnorr knowledge of exponent game (provided that X∗i 6= Ẋ1).

Thus, the Schnorr knowledge of exponent assumption guarantees that E succeeds at outputting x∗i such that X∗i = gx
∗
i

with overwhelming probability. This allows B to obtain x∗2, . . . , x
∗
n.

At some point, A queried Hsig on (X̃∗,m∗, R̃∗) and received one of two values: (1) ĉ∗ ← Hschnorr(Ẋ1, m̂
∗,
∏n

1 R
∗
i (S
∗
i)â
∗
)

related to a query A made to Hnon on (X̃∗,m∗, R∗1, S
∗
1 , . . . , R

∗
n, S

∗
n), where it received â∗ ← Hbischnorr(Ẋ1, m̂

∗, (1, R∗1, S
∗
1),

. . . , (1, R∗n, S
∗
n)), or (2) ċ∗ ← Hschnorr(Ẋ1, ṁ

∗, R̃∗) without having queried Hnon on (X̃∗,m∗, R̃∗). In either case, B has a
record (X̃∗,m∗, R̃∗, m̂∗, ĉ∗) ∈ Qsig such that ĉ∗ ← Hschnorr(Ẋ1, m̂

∗, R̃∗). (Note that B can check which case occurred by
looking for m̂∗ in its Qnon records.) Thus, A’s forgery satisfies:

R̃∗Ẋ
Hschnorr(Ẋ1,m̂

∗,R̃∗)
1 = gz

∗−Hschnorr(Ẋ1,m̂
∗,R̃∗)(x∗2+···+x∗n)

and B’s output (m̂∗, R̃∗, z∗ − ĉ∗(x∗2 + · · ·+ x∗n)) under Ẋ1 is correct. If A outputs a valid forgery for SpeedyMuSig with
non-negligible probability, then B breaks the binonce Schnorr computational assumption.

6 Proving Security of Threshold Signatures

In this section, we describe and prove the two-round threshold signature scheme FROST secure under the Schnorr knowledge
of exponent assumption (Assumption 4) and the binonce Schnorr computational assumption (Assumption 6). FROST uses
the Pedersen distributed key generation protocol (DKG) [20] with proofs of possession in order to generate the joint public
key. We call this protocol PedPoP and provide a description in Figure 9. The Pedersen DKG can be viewed as n parallel
instantiations of Feldman verifiable secret sharing (VSS) [14], which itself is derived from Shamir secret sharing [36] but
additionally requires each participant to provide a vector commitment C to ensure their received share is consistent with
all other participants’ shares. Following FROST [25], we require each participant to provide a Schnorr proof of knowledge
of the secret corresponding to the first term of their commitment. This is to ensure that unforgeability (but not liveness)
holds even if more than half of the participants are dishonest.

13

6.1 Definition of Security for Threshold Signatures

We build upon prior definitions of threshold signature schemes in the literature [19, 22, 18], but define an additional
algorithm for combining signatures that is separate from the signing rounds.

Definition of Threshold Signatures. A threshold signature scheme T is a tuple of algorithms T = (Setup,KeyGen,
KeyVerify, (Sign,Sign′,Sign′′),Combine,Verify). The public parameters are generated by a trusted party par← Setup and
given as input to all other algorithms. We assume the use of a distributed key generation protocol (DKG) for KeyGen,
which outputs the signing group’s public key X̃ and n secret keys, one held by each signer. To collectively sign a message
m, at least t signers participate in an interactive signing protocol (Sign,Sign′,Sign′′). At the end of the signing protocol,
the signers’ individual signature shares are combined using the Combine algorithm to form the threshold signature σ. Note
that Combine may be performed by one of the signers or an external party. The threshold signature σ on m is valid if
Verify(X̃,m, σ) = 1.

Unforgeability. EUF-CMA security is described by the following game. Assume without loss of generality that there are
t− 1 adversarial signers and at least one honest signer.

Setup. The challenger generates the parameters par← Setup and a challenge public key Ẋ used when running KeyGen
with the adversary A to derive the joint public key X̃.

Signature Queries. A is allowed to make signature queries on any message m, meaning that it has access to oracles
OSign,Sign′,Sign′′ that will simulate the honest signers interacting in a signing protocol to sign a message m with
respect to X̃. Note that A may make any number of such queries concurrently.

Output. Finally, A outputs a threshold signature forgery σ∗ and a message m∗. A wins if it made no signing queries
on m∗ and Verify(X̃,m∗, σ∗) = 1.

6.2 Two-Round Threshold Signature FROST

We review FROST key generation and signing in Figure 10. We introduce a modification to FROST that allows for improved
efficiency during signing, reducing the number of exponentiations from at least t to one. We achieve this by using the same
hash value for all signers.

First, the joint public key X̃ is generated using PedPoP (Fig. 9). At the end of key generation, there exists a degree
t− 1 polynomial f(Z) such that f(0) = x̃, where X̃ = gx̃, and each party idi knows f(idi). The first round of signing can
be run in advance of knowing the participants or the message (or even X̃); signers simply generate two random nonces
Ri = gri and Si = gsi .

In the second round of signing, signers hash X̃, the message, the participant identifiers, and the nonces of all of the
parties that are expected to sign:

a← Hnon(X̃,m, {(idi, Ri, Si)}i∈S)

where t ≤ |S| ≤ n and S is ordered to ensure consistency. They then compute the aggregate nonce and hash it together
with X̃ and m:

c← Hsig(X̃,m,
∏
i∈S

RiS
a
i)

They also compute the Lagrange coefficients {λi}i∈S , where λi = Li(0) and {Li(Z)}i∈S are the Lagrange polynomials
relating to the set {idi}i∈S . Finally, the ith signer returns zi = ri + asi + cλif(idi).

A combine algorithm computes the value a and the aggregate nonce R̃ =
∏
i∈S RiS

a
i the same as the signers in the

second round of signing. It then computes z =
∑
i∈S zi and returns the signature (R̃, z).

Theorem 6 (FROST). FROST is secure under the binonce Schnorr computational assumption (Assumption 6) and the
Schnorr knowledge of exponent assumption (Assumption 4).

Proof. Let A be a PPT adversary attempting to break the EUF-CMA security of FROST. We construct a PPT reduction
B playing GamebischnorrB (λ) such that whenever A outputs a valid forgery, B breaks the binonce Schnorr computational
assumption.

The reduction B is responsible for simulating honest parties in PedPoP (Fig. 9), the two rounds of signing, and queries
to Hreg, Hnon, and Hsig. B receives as input group parameters G = (G, p, g) and a challenge public key Ẋ. Let cor = {idj}
be the set of corrupt parties, and let hon = {idk} be the set of honest parties. Assume without loss of generality that
|cor| = t− 1 and |hon| = n− (t− 1).

14

We will show that when PedPoP outputs the joint public key X̃, B returns y such that X̃ = Ẋgy. Additionally, when
PedPoP outputs public key share X̃k = gx̄k for each honest party idk ∈ hon, B returns (αk, βk) such that X̃k = Ẋαkgβk .
This representation allows B to simulate FROST signing under each X̃k.

Initialization. B may program Hreg,Hnon, and Hsig, but not Hbischnorr or Hschnorr (because they are part of B’s challenge).
Let Qreg be the set of Hreg queries and their responses, and similarly for Qnon and Qsig. Let QSign be the set of OSign queries

and responses in the first round of signing, and let QSign′ be the set of OSign′ queries and responses in the second round. B
initializes all of them to the empty set.
B computes αk for each honest party idk ∈ hon as follows. First, B computes the t Lagrange polynomials {L′k(Z),

{L′j(Z)}idj∈cor} relating to the set idk ∪ cor. Then, B sets αk ← L′k(0)−1. (It will become clear why αk is computed this
way.)

Hash Queries. B handles A’s hash queries throughout the protocol as follows.

Hreg: When A queries Hreg on (X,X, R̄), B checks whether (X,X, R̄, c̄) ∈ Qreg and, if so, returns c̄. Else, B queries

c̄← Hpop(X,X, R̄), appends (X,X, R̄, c̄) to Qreg, and returns c̄.

Hnon: When A queries Hnon on (X,m, {(idi, Ri, Si)}i∈S), B checks whether (X,m, {(idi, Ri, Si)}i∈S , m̂, â) ∈ Qnon and, if so,
returns â. Else, B checks whether there exists some k′ ∈ S such that (idk′ , Rk′ , Sk′) ∈ QSign. If not, B samples a random
message m̂ and a random value â, appends (X,m, {(idi, Ri, Si)}i∈S , m̂, â) to Qnon, and returns â.

If there does exist some k′ ∈ S such that (idk′ , Rk′ , Sk′) ∈ QSign, B computes the Lagrange coefficients {λi}i∈S , where
λi = Li(0) and {Li(Z)}i∈S are the Lagrange polynomials relating to the set {idi}i∈S . B sets γk = λkαk for all idk ∈ hon
and γj = λj for all idj ∈ cor in the set S. B then samples a random message m̂ (to prevent trivial collisions), queries

â ← Hbischnorr(Ẋ, m̂, {(γi, Ri, Si)}i∈S), and appends (X,m, {(idi, Ri, Si)}i∈S , m̂, â) to Qnon. B computes R̂ =
∏
i∈S RiS

â
i

and checks if there exists a record (X,m, R̂, m̂, ĉ) ∈ Qsig. If so, B aborts. Else, B queries ĉ← Hschnorr(Ẋ, m̂, R̂) and appends

(X̃,m, R̂, m̂, ĉ) to Qsig. Finally, B returns â.

Hsig: When A queries Hsig on (X,m,R), B checks whether (X,m,R, m̂, ĉ) ∈ Qsig and, if so, returns ĉ. Else, B samples a

random message m̂, queries ĉ← Hschnorr(Ẋ, m̂, R), appends (X,m,R, m̂, ĉ) to Qsig, and returns ĉ.

Simulating the DKG. B runs PedPoP with A as follows. B embeds the challenge Ẋ as the public key of the honest
party that the adversary queries first. Let this first honest party be idτ . B simulates the public view of idτ but follows the
PedPoP protocol for all other honest parties {idk}k 6=τ as prescribed. Note that A can choose the order in which it interacts
with honest parties, so B must be able to simulate any of them.

Honest Party idτ . B is required to output

(R̄τ , z̄τ),Cτ = (Aτ,0 = Xτ,0, Aτ,1, . . . , Aτ,t−1)

that are indistinguishable from valid outputs as well as t− 1 shares fτ (idj) = x̄τ,j , one to be sent to each corrupt party
idj ∈ cor. Here, (R̄τ , z̄τ) is a Schnorr signature proving knowledge of the discrete logarithm of Xτ,0, and Cτ is a commitment
to the coefficients that represent fτ . B simulates honest party idτ as follows.

1. B sets the public key Xτ,0 ← Ẋ and simulates a Schnorr proof of possession of Ẋ as follows. B samples c̄τ , z̄τ ←$Zp,
computes R̄τ ← gz̄τ Ẋ−c̄τ , and appends (Ẋ, Ẋ, R̄τ , c̄τ) to Qreg.

2. B simulates a verifiable Shamir secret sharing of the discrete logarithm of Ẋ by performing the following steps.
(a) B samples t− 1 random values x̄τ,j ←$Zp for idj ∈ cor.
(b) Let fτ be the polynomial whose constant term is the challenge fτ (0) = ẋ and for which fτ (idj) = x̄τ,j for all

idj ∈ cor. B computes the t Lagrange polynomials {L′0(Z), {L′j(Z)}idj∈cor} relating to the set 0 ∪ cor.
(c) For 1 ≤ i ≤ t− 1, B computes

Aτ,i = ẊL′0,i
∏

idj∈cor

gx̄τ,jL
′
j,i (2)

where L′j,i is the ith coefficient of L′j(Z) = L′j,0 + L′j,1Z + · · ·+ L′j,t−1Z
t−1.

(d) B outputs (R̄τ , z̄τ),Cτ = (Aτ,0 = Xτ,0, Aτ,1, . . . , Aτ,t−1) for the broadcast round, and then sends shares x̄τ,j for
each j ∈ cor.

3. B simulates private shares fτ (idk) = x̄τ,k for honest parties idk ∈ hon by computing α′k, β
′
k such that gx̄τ,k = Ẋα′kgβ

′
k .

First, B computes the t Lagrange polynomials {L′k(Z), {L′j(Z)}idj∈cor} relating to the set idk ∪ cor. Then, implicitly,

fτ (0) = ẋ = x̄τ,kL
′
k(0) +

∑
idj∈cor

x̄τ,jL
′
j(0)

Solving for x̄τ,k, B sets α′k = L′k(0)−1 and β′k = −α′k
∑

idj∈cor x̄τ,jL
′
j(0).

15

All Other Honest Parties. For all other honest parties idk ∈ hon, k 6= τ , B follows the protocol. B samples fk(Z) =
ak,0 +ak,1Z+ . . .+ak,t−1Z

t−1←$Zp[Z] and sets Ak,i ← gak,i for all 0 ≤ i ≤ t− 1. B provides a proof of possession (R̄k, z̄k)
of the public key Xk,0 = Ak,0 and computes the private shares x̄k,i = fk(idi).

Adversarial Contributions. When A returns a contribution

(R̄j , z̄j),Cj = (Aj,0 = Xj,0, Aj,1, . . . , Aj,t−1)

if (Xj,0, R̄j , z̄j) verifies (i.e., R̄jX
Hreg(Xj,0,Xj,0,R̄j)
j,0 = gz̄j), then B runs the extractor E(transA) to obtain aj,0 such that Xj,0 =

gaj,0 . The Schnorr knowledge of exponent assumption guarantees that E succeeds at outputting aj,0 with overwhelming
probability.

Complaints. If A broadcasts a complaint, B reveals the relevant x̄k,j . If A does not send verifying x̄j,k to party idk ∈ hon,
then B broadcasts a complaint. If x̄j,k fails to satisfy the equation, or should A not broadcast a share at all, then idj is
disqualified and aj,0 is set to 0.

DKG Termination. When PedPoP terminates, the output is the joint public key

X̃ =

n∏
i=0

Xi,0

B computes
y =

∑n
i=1,i6=τ ai,0

Then

X̃ = Ẋgy

B simulates private shares x̄k for honest parties idk ∈ hon by computing αk, βk such that X̃k = gx̄k = Ẋαkgβk . Implicitly,
x̄k = x̄τ,k +

∑n
i=1,i6=τ x̄i,k and x̄τ,k = ẋα′k + β′k from Step 3 above, so αk = α′k and βk = β′k +

∑n
i=1,i6=τ x̄i,k. B returns y

and {(αk, βk)}idk∈hon.

Simulating FROST Signing. After completing simulation of PedPoP, B then simulates honest parties in the FROST
signing protocol.

Signing Round 1 (Sign). When A queries OSign on idk ∈ hon, B queries Obinonce to get (Rk, Sk), appends (idk, Rk, Sk) to
QSign, and returns (Rk, Sk).

Signing Round 2 (Sign′). When A queries OSign′ on (m, k′, {(idi, Ri, Si)}i∈S), B first checks if (Ri, Si) = (Rj , Sj) for
any i 6= j and, if so, aborts. Then, B checks whether (idk′ , Rk′ , Sk′) ∈ QSign and, if not, returns ⊥. B also checks whether
(Rk′ , Sk′) ∈ QSign′ and, if so, returns ⊥.

If all checks pass, B internally queries Hnon on (X̃,m, {(idi, Ri, Si)}i∈S) to get â′ and looks up m̂′ such that (X̃,m,
{(idi, Ri, Si)}i∈S), m̂′, â′) ∈ Qnon. B computes R̂′ =

∏
i∈S RiS

â′

i and internally queries Hsig on (X̃,m, R̂′) to get ĉ′.
Next, B computes the Lagrange coefficients {λi}i∈S , where λi = Li(0) and {Li(Z)}i∈S are the Lagrange polynomials

relating to the set {idi}i∈S . B sets γk = λkαk for all idk ∈ hon and γj = λj for all idj ∈ cor in the set S. Then, B queries
Obisign on (m̂′, k′, {(γi, Ri, Si)}i∈S) to get zk′ . Finally, B computes

z̃k′ = zk′ + ĉ′λk′βk′ (3)

For A’s query to OSign′ , B returns z̃k′ .

Output. When A returns (X̃,m∗, σ∗) such that σ∗ = (R̃∗, z∗) and Verify(X̃,m∗, σ∗) = 1, B computes its output as follows.
B looks up m̂∗ such that (X̃,m∗, R̃∗, m̂∗, ĉ∗) ∈ Qsig and outputs (m̂∗, R̃∗, z∗ − ĉ∗y).

To complete the proof, we must argue that: (1) B only aborts with negligible probability; (2) A cannot distinguish
between a real run of the protocol and its interaction with B; and (3) whenever A succeeds, B succeeds.

(1) B aborts if A queries Hsig on (X̃,m,
∏
i∈S RiS

â
i) before having first queried Hnon on (X̃,m, {(idi, Ri, Si)}i∈S). This

requires A to have guessed â ahead of time, which occurs with negligible probability.
(2) As long as B does not abort, B is able to simulate the appropriate responses to A’s oracle queries so that A cannot

distinguish between a real run of the protocol and its interaction with B.
Indeed, B’s simulation of PedPoP is perfect, as performing validation of each player’s share (Step 4 in Fig. 9) holds, and

by Equation 2, interpolation in the exponent correctly evaluates to the challenge Ẋ.

16

When A queries Hsig on (X,m,R), B queries ĉ ← Hschnorr(Ẋ, m̂, R) on a random message m̂. The random message
prevents trivial collisions; for example, if A were to query Hsig on (X,m,R) and (X ′,m,R), where X ′ 6= X, A would receive

the same value c ← Hschnorr(Ẋ,m,R) for both and would know it was operating inside a reduction. Random messages
ensure that the outputs are random, so A’s view is correct. B also ensures that A receives Hnon values that are consistent
with Hsig queries.

After the signing rounds have been completed, A may verify the signature share z̃k′ on m as follows. A checks if

Rk′S
Hnon(X̃,m,{(idi,Ri,Si)}i∈S)
k′ X̃

λk′Hsig(X̃,m,
∏
i∈S RiS

Hnon(X̃,m,{(idi,Ri,Si)}i∈S)

i)

k′ = gz̃k′ (4)

When B queried Obisign on (m̂′, k′, {(γi, Ri, Si)}i∈S) in Signing Round 2, the signature share zk′ was computed such that

Rk′S
Hbischnorr(Ẋ,m̂

′,{(γi,Ri,Si)}i∈S)
k′ Ẋγk′Hschnorr(Ẋ,m̂

′,
∏
i∈S RiS

Hbischnorr(Ẋ,m̂
′,{(γi,Ri,Si)}i∈S)

i) = gzk′

B computed the signature share z̃k′ (Equation 3) as

z̃k′ = zk′ + ĉ′λk′βk′ = rk′ + ask′ + ĉ′γk′ ẋ+ ĉ′λk′βk′

= rk′ + ask′ + ĉ′λk′(αk′ ẋ+ βk′)

where ĉ′ = Hschnorr(Ẋ, m̂
′,
∏
i∈S RiS

Hbischnorr(Ẋ,m̂
′,{(γi,Ri,Si)}i∈S)

i). Thus, z̃k′ satisfies

Rk′S
Hbischnorr(Ẋ,m̂

′,{(γi,Ri,Si)}i∈S)
k′ X̃

λk′Hschnorr(Ẋ,m̂
′,
∏
i∈S RiS

Hbischnorr(Ẋ,m̂
′,{(γi,Ri,Si)}i∈S)

i)

k′ = gz̃k′ (5)

B has programmed the hash values in Equations 4 and 5 to be equal and therefore simulates z̃k′ correctly.
(3) A’s forgery satisfies Verify(X̃,m∗, σ∗) = 1, which implies:

R̃∗(X̃)Hsig(X̃,m
∗,R̃∗) = gz

∗

R̃∗(Ẋgy)Hsig(X̃,m
∗,R̃∗) = gz

∗

R̃∗ẊHsig(X̃,m
∗,R̃∗) = gz

∗−Hsig(X̃,m
∗,R̃∗)(y)

At some point, A queried Hsig on (X̃,m∗, R̃∗) and received one of two values: (1) ĉ∗ ← Hschnorr(Ẋ, m̂
∗,
∏
i∈S∗ R

∗
i (S
∗
i)â
∗
)

related to a query A made to Hnon on (m∗, {(id∗i , R∗i , S∗i)}i∈S∗), where it received â∗ ← Hbischnorr(Ẋ, m̂
∗, (γ∗i , R

∗
i , S
∗
i)i∈S∗),

or (2) ċ∗ ← Hschnorr(Ẋ, ṁ
∗, R̃∗) without having queried Hnon first. In either case, B has a record (X̃,m∗, R̃∗, m̂∗, ĉ∗) ∈ Qsig

such that ĉ∗ ← Hschnorr(Ẋ, m̂
∗, R̃∗). (Note that B can check which case occurred by looking for m̂∗ in its Qnon records.)

Thus, A’s forgery satisfies:

R̃∗ẊHschnorr(Ẋ,m̂
∗,R̃∗) = gz

∗−Hschnorr(Ẋ,m̂
∗,R̃∗)(y)

and B’s output (m̂∗, R̃∗, z∗− ĉ∗y) under Ẋ is correct. If A outputs a valid forgery for FROST with non-negligible probability,
then B breaks the binonce Schnorr computational assumption.

7 Conclusion

We present an improved method for proving the security of multi- and threshold signature schemes, building upon three
novel but intuitive assumptions. We demonstrate the strength of this methodology by proving the security of a range of
multi-party schemes, from simple three-round constructions to variants of the more recent two-round MuSig2 [29] and
FROST [25] signatures. Our goal is to provide a simple framework for proving the security of other multi-party Schnorr
signature schemes in the future, perhaps even blinded or unlinkable variants.

Acknowledgements. Elizabeth Crites was supported by the Blockchain Technology Laboratory at the University of
Edinburgh and funded by Input Output Global.

17

References

[1] B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac. “A Subversion-Resistant SNARK”. In: ASIACRYPT 2017, Hong Kong,
China, December 3-7, 2017, Proceedings, Part III. Ed. by T. Takagi and T. Peyrin. Vol. 10626. LNCS. Springer, 2017, pp. 3–33.

[2] H. K. Alper and J. Burdges. “Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses”. In: CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part I. Ed. by T. Malkin and C. Peikert. Vol. 12825. LNCS. Springer, 2021,
pp. 157–188.

[3] A. Bagherzandi, J. H. Cheon, and S. Jarecki. “Multisignatures secure under the discrete logarithm assumption and a generalized
forking lemma”. In: CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008. Ed. by P. Ning, P. F. Syverson, and S. Jha.
ACM, 2008, pp. 449–458.

[4] M. Bellare and W. Dai. “Chain Reductions for Multi-Signatures”. In: IACR Cryptol. ePrint Arch. (2021), p. 404. url:
https://eprint.iacr.org/2021/404.

[5] M. Bellare and G. Neven. “Multi-signatures in the plain public-Key model and a general forking lemma”. In: CCS 2006,
Alexandria, VA, USA, October 30 - November 3, 2006. Ed. by A. Juels, R. N. Wright, and S. D. C. di Vimercati. ACM, 2006,
pp. 390–399.

[6] M. Bellare and P. Rogaway. “The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs”.
In: EUROCRYPT 2006, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings. Ed. by S. Vaudenay. Vol. 4004. LNCS.
Springer, 2006, pp. 409–426.

[7] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. “On the (in)security of ROS”. In: EUROCRYPT 2021, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part I. Ed. by A. Canteaut and F. Standaert. Vol. 12696. LNCS. Springer, 2021,
pp. 33–53.

[8] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature
Scheme”. In: PKC 2003, Miami, FL, USA, January 6-8, 2003, Proceedings. Ed. by Y. Desmedt. Vol. 2567. LNCS. Springer,
2003, pp. 31–46.

[9] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures for Smaller Blockchains”. In: ASIACRYPT 2018, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II. Ed. by T. Peyrin and S. D. Galbraith. Vol. 11273. LNCS. Springer,
2018, pp. 435–464.

[10] D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography. 2020. url: http://toc.cryptobook.us/book.pdf.
[11] I. Damg̊ard. “Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks”. In: CRYPTO ’91, Santa

Barbara, California, USA, August 11-15, 1991, Proceedings. Ed. by J. Feigenbaum. Vol. 576. LNCS. Springer, 1991, pp. 445–456.
[12] M. Drijvers, K. Edalatnejad, B. Ford, and G. Neven. “Okamoto Beats Schnorr: On the Provable Security of Multi-Signatures”.

In: IACR Cryptol. ePrint Arch. (2018), p. 417. url: https://eprint.iacr.org/2018/417.
[13] M. Drijvers et al. “On the Security of Two-Round Multi-Signatures”. In: SP 2019, San Francisco, CA, USA, May 19-23, 2019.

IEEE, 2019, pp. 1084–1101.
[14] P. Feldman. “A Practical Scheme for Non-interactive Verifiable Secret Sharing”. In: 28th Annual Symposium on Foundations

of Computer Science, Los Angeles, California, USA, 27-29 October 1987. IEEE, 1987, pp. 427–437.
[15] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to Identification and Signature Problems”. In: CRYPTO

1986, Santa Barbara, California, USA, 1986, Proceedings. Ed. by A. M. Odlyzko. Vol. 263. LNCS. Springer, 1986, pp. 186–194.
[16] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic Group Model and its Applications”. In: CRYPTO 2018, Santa Barbara,

CA, USA, August 19-23, 2018, Proceedings, Part II. Ed. by H. Shacham and A. Boldyreva. Vol. 10992. LNCS. Springer, 2018,
pp. 33–62.

[17] A. Gabizon. “On the security of the BCTV Pinocchio zk-SNARK variant”. In: IACR Cryptol. ePrint Arch. (2019), p. 119. url:
https://eprint.iacr.org/2019/119.

[18] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast Trustless Setup”. In: CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang. ACM, 2018, pp. 1179–1194.

[19] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust Threshold DSS Signatures”. In: Inf. Comput. 164.1 (2001),
pp. 54–84.

[20] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Applications of Pedersen’s Distributed Key Generation Protocol”.
In: CT-RSA 2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings. Ed. by M. Joye. Vol. 2612. LNCS. Springer, 2003,
pp. 373–390.

[21] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key Generation for Discrete-Log Based Cryptosystems”.
In: J. Cryptol. 20.1 (2007), pp. 51–83.

[22] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. “Robust and Efficient Sharing of RSA Functions”. In: J. Cryptol. 20.3
(2007), p. 393.

[23] C. Gentry and D. Wichs. “Separating Succinct Non-Interactive Arguments From All Falsifiable Assumptions”. In: STOC 2011,
San Jose, CA, USA, 6-8 June 2011. Ed. by L. Fortnow and S. P. Vadhan. ACM, 2011, pp. 99–108.

[24] J. Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In: ASIACRYPT 2010, Singapore, December 5-9,
2010. Proceedings. Ed. by M. Abe. Vol. 6477. LNCS. Springer, 2010, pp. 321–340.

[25] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold Signatures”. In: SAC 2020, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers. Ed. by O. Dunkelman, M. J. J. Jr., and C. O’Flynn.
Vol. 12804. LNCS. Springer, 2020, pp. 34–65.

18

https://eprint.iacr.org/2021/404
http://toc.cryptobook.us/book.pdf
https://eprint.iacr.org/2018/417
https://eprint.iacr.org/2019/119

[26] C. Ma, J. Weng, Y. Li, and R. H. Deng. “Efficient discrete logarithm based multi-signature scheme in the plain public key
model”. In: Des. Codes Cryptogr. 54.2 (2010), pp. 121–133.

[27] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. “Simple Schnorr multi-signatures with applications to Bitcoin”. In: Des.
Codes Cryptogr. 87.9 (2019), pp. 2139–2164.

[28] J. Nick. Insecure Shortcuts in MuSig. 2019. url: https://medium.com/blockstream/insecure- shortcuts- in- musig-

2ad0d38a97da.
[29] J. Nick, T. Ruffing, and Y. Seurin. “MuSig2: Simple Two-Round Schnorr Multi-signatures”. In: CRYPTO 2021, Virtual Event,

August 16-20, 2021, Proceedings, Part I. Ed. by T. Malkin and C. Peikert. Vol. 12825. LNCS. Springer, 2021, pp. 189–221.
[30] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. “MuSig-DN: Schnorr Multi-Signatures with Verifiably Deterministic Nonces”.

In: CCS 2020, Virtual Event, USA, November 9-13, 2020. Ed. by J. Ligatti, X. Ou, J. Katz, and G. Vigna. ACM, 2020,
pp. 1717–1731.

[31] D. Pointcheval and J. Stern. “Security Arguments for Digital Signatures and Blind Signatures”. In: J. Cryptol. 13.3 (2000),
pp. 361–396.

[32] D. Pointcheval and J. Stern. “Security Proofs for Signature Schemes”. In: EUROCRYPT 1996, Saragossa, Spain, May 12-16,
1996, Proceedings. Ed. by U. M. Maurer. Vol. 1070. LNCS. Springer, 1996, pp. 387–398.

[33] T. Ristenpart and S. Yilek. “The Power of Proofs-of-Possession: Securing Multiparty Signatures against Rogue-Key Attacks”.
In: EUROCRYPT 2007, Barcelona, Spain, May 20-24, 2007, Proceedings. Ed. by M. Naor. Vol. 4515. LNCS. Springer, 2007,
pp. 228–245.

[34] C. Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptol. 4.3 (1991), pp. 161–174.
[35] Y. Seurin. “On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model”. In: EUROCRYPT 2012,

Cambridge, UK, April 15-19, 2012. Proceedings. Ed. by D. Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer, 2012,
pp. 554–571.

[36] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–613.
[37] E. Syta et al. “Scalable Bias-Resistant Distributed Randomness”. In: SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE,

2017, pp. 444–460.
[38] M. Zochowski. Benchmarking Hash and Signature Algorithms. 2019. url: https://medium.com/logos-network/benchmarking-

hash-and-signature-algorithms-6079735ce05.

A Background on Knowledge of Exponent Assumptions

Here we frame our Schnorr knowledge of exponent assumption in the context of prior knowledge of exponent assumptions.
Signature schemes are not the only branch of cryptography where standard model security proofs are evasive. For

example, there exist CCA encryption schemes that are provably secure in the random oracle model but not in the standard
model [10]. In arguing the security of a practical CCA encryption scheme using assumptions that more closely resemble
real restrictions on the adversary, Damgard [11] introduced the knowledge of exponent assumption (KoE). KoE says that
for every algorithm A given a generator g and random power X = gx, if A outputs (A,B) such that B = Ax, then there
exists an extractor algorithm E that, given the same input, outputs a such that (A,B) = (ga, Xa). Informally, this means
that, given a pair (g, gx), the only way to produce such a pair (A,B) is by exponentiating the original pair (g, gx) by the
exponent a, thereby implying knowledge of a. This assumption is non-falsifiable, i.e., one cannot show the non-existence
of an extractor, and provides one of the few alternatives to the random oracle model should a standard model proof be
impossible.

main GamekoeA,E(λ)

G ← GroupGen(1λ)

x←$F;X ← gx

(A,B)←$A(G, X)

α← E(transA)

// transA is the transcript of A

if B = Ax ∧ gα 6= A return 1

// A wins if (A,B) = (g
β
, X

β
) but β 6= α

else return 0

Fig. 5. The knowledge of exponent game.

19

https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/logos-network/benchmarking-hash-and-signature-algorithms-6079735ce05
https://medium.com/logos-network/benchmarking-hash-and-signature-algorithms-6079735ce05

Definition 3 (The Knowledge of Exponent Assumption). Let GroupGen be a group generator that outputs G =
(G, p, g). Let AdvkoeA,E(λ) = Pr[GamekoeA,E(λ) = 1], where GamekoeA,E(λ) is defined in Figure 5. The knowledge of exponent
assumption holds with respect to G if for all PPT adversaries A, there exists a PPT extractor E and a negligible function ν
such that AdvkoeA,E(λ) < ν(λ).

Knowledge of exponent assumptions have subsequently been generalized, with Abdolmaleki et al. [1] extending them to
bilinear groups and Groth [24] suggesting a “q-type” variation. They are used extensively in the security proofs of Succinct
NIZK Arguments (SNARKs). This is often justified by arguing that SNARKs do not exist in the standard model due to an
impossibility result of Gentry and Wich’s [23]. One extreme variation is the algebraic group model, which suggests that all
natural KoE assumptions hold but that security proofs should still reduce to computational assumptions.

We now provide a proof of Theorem 1, which states that our schnorr-koe assumption (Fig. 2) is implied by the discrete
logarithm assumption in the algebraic group model.

Proof. (dl ⇒ schnorr-koe) The algebraic adversary A takes as input the group description G = (G, p, g). Let Q =
{(X1, R1, z1), . . . , (Xqs , Rqs , zqs)} denote the responses made by the signing oracle Oschnorr-pop in Gameschnorr-koeA,E . If A
returns a verifying (X∗, R∗, z∗) 6∈ Q, it also outputs an algebraic representation of X∗ and R∗. Let E be the extractor that
returns x∗. We argue that there exists a reduction B such that whenever E does not succeed, i.e., X∗ 6= gx

∗
, then B returns

the solution to a discrete logarithm instance. B is responsible for simulating oracle responses for queries to Oschnorr-pop and
Hpop, which B may program. B sees A’s algebraic representations but does not rewind the adversary.

DL Input. B takes as input the discrete logarithm challenge X and aims to output x such that X = gx.

Hash Queries. When A queries Hpop on (X,X, R̄), B checks whether (X,X, R̄, c̄) ∈ Qreg and, if so, returns c̄. Else, B
samples c̄←$Zp, appends (X,X, R̄, c̄) to Qreg, and returns c̄.

Oschnorr-pop Queries. When A queries Oschnorr-pop for the jth time, B samples aj , cj , zj ←$Zp and sets Xj ← Xaj and

Rj ← gzjX
−cj
j . B appends (Xj , Xj , Rj , cj) to Qreg, (Xj , Rj , zj) to Q, and returns (Xj , Rj , zj).

Extracting the Discrete Logarithm Solution. B initializes the sets Q,Qreg to the empty set and runs A(G). Suppose A
terminates with (X∗, R∗, z∗) and that c∗ = Hpop(X∗, X∗, R∗). If A succeeds, then c∗ 6= cj for 1 ≤ j ≤ qs and R∗Xc∗ = gz

∗
.

A also outputs a representation

(α0, γ0, α1, β1, γ1, δ1, . . . , αqs , βqs , γqs , δqs)

X∗ = gα0

qs∏
j=1

X
αj
j R

βj
j R∗ = gγ0

qs∏
j=1

X
γj
j R

δj
j

Then B computes

f(W) = (α0 +

qs∑
j=1

βjzj) +

qs∑
j=1

aj(αj − cjβj)W = f0 + f1W

h(W) = (γ0 +

qs∑
j=1

δjzj) +

qs∑
j=1

aj(γj − cjδj)W = h0 + h1W

where W is some indeterminate value, X∗ = gf(x), and R∗ = gh(x).

Now because R∗(X∗)c
∗

= gz
∗
, we have that z∗ = h(x) + c∗f(x) and

x =
z∗ − h0 − c∗f0

h1 + c∗f1

Thus, B returns x successfully as long as h1 + c∗f1 6= 0. The probability that h1 + c∗f1 = 0 for h1, f1 not both 0 and for
(R∗, X∗, c∗) 6∈ Q is 1/p. Since the adversary can make no more than qH queries to Hpop, the probability that this holds for
h1, f1 not both zero is bounded by qH/p.

If h1 = f1 = 0, then f(x) = f0 = (α0 +
∑qs
j=1 βjzj), which is exactly the output of the extractor. This completes the

proof.

20

B Proof of the Schnorr Computational Assumption

We now provide a proof of Theorem 2, which states that our schnorr assumption (Fig. 3) is implied by the discrete logarithm
assumption in the random oracle model.

Proof. (dl⇒ schnorr) Let A be a PPT adversary playing GameschnorrA (λ) that makes up to qH queries to Hschnorr. We describe
a PPT reduction B playing GamedlB(λ) that uses A as a subroutine such that

AdvschnorrA (λ) ≤ qHAdvdlB(λ)

The reduction B runs A two times in total. On the second iteration, B programs Hschnorr to output a different random value
on a single point so that it can extract a discrete logarithm from A’s outputs. B perfectly simulates GameschnorrA . However,
B can only extract a discrete logarithm if A’s output (m∗, R∗, z∗) at the end of each iteration includes the same nonce R∗.
This happens with probability at least equal to 1/qH , resulting in a tightness loss of qH .
B is responsible for simulating oracle responses for queries to Oschnorr as well as Hschnorr. Let Q be the set of Oschnorr

queries as in GameschnorrA . Let Qschnorr be the set of Hschnorr queries and responses.

DL Input. B takes as input the group description G = (G, p, g) and a discrete logarithm challenge X. B aims to output x
such that X = gx.

Simulating Hash Queries. When A queries Hschnorr on (X,m,R), B checks whether (X,m,R, c) ∈ Qschnorr and, if so,
returns c. Else, B samples c←$Zp, appends (X,m,R, c) to Qschnorr, and returns c.

Simulating Oracle Queries. For A’s ith query to Oschnorr on input mi, B samples ci, zi←$Zp and sets Ri ← gziX−ci .
B appends (Xi,mi, Ri, ci) to Qschnorr and mi to Q and returns (Ri, zi).

Extracting the Discrete Logarithm from the Adversary. B initializes Q and Qschnorr to the empty set. It then runs
A(X; r) on the challenge X with randomness r.

Suppose A terminates with (m∗, R∗, z∗). If A succeeds, then R∗Xc∗ = gz
∗
, where c∗ = Hschnorr(X,m

∗, R∗). Here, z∗

does not suffice for B to extract the discrete logarithm of X because it does not necessarily know the discrete logarithm of
R∗. Thus, B chooses c′←$Zp and programs Hschnorr such that c′ = Hschnorr(X,m

∗, R∗). It then runs A(X; r) again on the
same randomness r.

After the second iteration, suppose A terminates with (m′, R′, z′). If (m′, R′) = (m∗, R∗) but z′ 6= z∗, then B can

extract x = z∗−z′
c∗−c′ such that X = gx. If (m′, R′) 6= (m∗, R∗), then B must abort. The probability that B aborts is strictly

less than 1/qH because: (1) A makes no more than qH queries to Hschnorr in total; and (2) the statistical probability of
A succeeding if it did not query Hschnorr on (X,m∗, R∗) or (X,m′, R′) is less than 2

p <
1
qH

. Thus, the probability that B
extracts x such that X = gx is at least 1/qH . This completes the proof.

C Background on the Two-Nonce Fix

In Section 4.3, we introduce the binonce Schnorr computational assumption, which we later use to prove the security of
SpeedyMuSig and FROST. We now expand on the use of two nonces in SpeedyMuSig and FROST.

Why two nonces are necessary. There is a danger when reducing two-round Schnorr multisignatures secure in the concurrent
setting to the discrete logarithm assumption that if the adversary can learn the nonce before the reduction does, the
reduction cannot always correctly program the random oracle (unlike in the single-party setting). Specifically, when the
reduction publishes its nonce Rs (simulating the honest signer), it must guess when programming the random oracle
whether or not the adversary will query this nonce in the second round (and so is only guaranteed to succeed with likelihood
1/qH). Consequently, if κ is the number of signing requests the adversary can open at once, the reduction might only
be able to simulate responses with probability O(qH

κ). A failure of the simulator in any “open” signing session requires
re-setting all open sessions. Therefore, an adversary that is allowed to open an unlimited number of signing queries in
parallel leads to an exponential tightness loss in the security reduction when proving security purely in the random oracle
model.

Two avoid this concurrency failure, many schemes in the literature instead reduce security to the omdl assumption, so
that the reduction can adaptively request information about the discrete logarithm and answer the oracle queries. However,
as observed by Drijvers et al.[13], many previous security proofs [3, 26, 37, 27] did not correctly count the number of omdl
queries made by the reduction, which in fact might exceed the number of omdl challenges. They did not observe that
the reduction might make up to twice as many queries with respect to the same challenges should the messages that the

21

adversary queries in its second iteration be different. This invalidated the reductions, and Drijvers et al. showed that a
variety of schemes in the literature cannot be proven secure under omdl.

Confirming this danger for concrete protocols, Benhamouda et al. designed a concurrent ROS attack against many
schemes with broken security proofs [7]. This ROS attack relies on the fact that the adversary can choose their nonce R as
a linear combination of X1 and the simulated nonces such that any dependence on X1 will ultimately cancel out. The idea
in recent protocols to thwart this attack is to essentially enforce that the honest signers only respond in the second round
with a nonce RsS

a
s , where a is the output of a hash function whose inputs include all nonces for all signing parties as well

as the message being signed. As such, the forger cannot determine a at the point of choosing their own nonce. Preventing
the forger from cancelling a requires two nonces; otherwise, the forger could simply incorporate a−1 into the linear verifier’s
equation. We implemented a basic version of the attack in python against an early version of MuSig on the BN254 curve.
Our script generates a forgery in an average of 4.58 seconds over 100 trials on an Intel Core i5 processor with 2.3 GHz.8

Two nonces mean the number of omdl challenges given to the reduction is twice as large. Thus, the reduction succeeds
when making twice as many omdl queries over the two iterations of the adversary.

D Figures for Definitions and Constructions

Here we provide figures for the multisignature EUF-CMA security game as well as the multi- and threshold signature
constructions.

main GameEUF-CMA
A (λ)

par← Setup(1λ)

j ← 0 // signing session counter

S, S′ ← ∅ // open signing sessions

Q← ∅
st1, st

′
1, st

′′
1 ← 0

// state vectors for honest signer

((X1, π1), x1)←$KeyGen()

// π1 is PoP of X1

pk1 ← (X1, π1); sk1 ← x1

LPK ← {X1}

(PK∗,m∗, σ∗)←$AO
Register,Sign,Sign′,Sign′′

(pk1)

if ∀X∗i ∈ PK∗, X∗i ∈ LPK ∧X∗1 = X1

∧m∗ /∈ Q ∧ Verify(PK∗,m∗, σ∗) = 1

return 1

else return 0

ORegister(pk)

parse (X,π)← pk

if KeyVerify(X,π) = 1

LPK ← LPK ∪ {X}
return 1

else return 0

OSign()

j ← j + 1

S ← S ∪ {j}
(ρ1, st1,j)← Sign()

return ρ1

OSign′(j,m, (X2, ρ2), . . . , (Xn, ρn))

if j /∈ S ∨Xi /∈ LPK for some 2 ≤ i ≤ n
return ⊥
else

(ρ′1, st
′
1,j)← Sign′(st1,j , sk1,m, {(Xi, ρi)}n2)

Q← Q ∪ {m}
S ← S \ {j}; S′ ← S′ ∪ {j}
return ρ′1

OSign′′(j,m, (X2, ρ2, ρ
′
2), . . . , (Xn, ρn, ρ

′
n))

if j /∈ S′ return ⊥
else

(ρ′′1 , st
′′
1,j)← Sign′′(st′1,j , sk1,m, {(Xi, ρi, ρ′i)}n2)

S′ ← S′ \ {j}
return ρ′′1

Fig. 6. The EUF-CMA security game for a multisignature scheme with proofs of possession. The public parameters par are implicitly
given as input to all algorithms, and ρ represents messages defined within the construction. Note that the winning condition cannot
be (PK∗,m∗) /∈ Q because A can find PK∗ 6= PK such that X̃∗ = X̃.

8 https://github.com/mmaller/multi_and_threshold_signature_reductions

22

https://github.com/mmaller/multi_and_threshold_signature_reductions

Setup(1λ)

LPK ← ∅ // registered public keys

(G, p, g)← GroupGen(1λ)

select three hash functions

Hreg,Hcm,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hreg,Hcm,Hsig)

return par

KeyGen()

x←$Zp; X ← gx

r̄←$Zp; R̄← gr̄

c̄← Hreg(X,X, R̄)

z̄ ← r̄ + c̄x

π ← (R̄, z̄) // PoP: Schnorr sig on X

pk← (X,π); sk← x

return (pk, sk)

KeyVerify(X,π)

parse (R̄, z̄)← π

c̄← Hreg(X,X, R̄)

if R̄X c̄ = gz̄

LPK ← LPK ∪ {X}
return 1

else return 0

Sign()

// local signer has index 1

r1 ←$Zp; R1 ← gr1

cm1 ← Hcm(R1)

ρ1 ← cm1

st1 ← r1

return (ρ1, st1)

Sign′(st1, sk1,m, (X2, ρ2), . . . , (Xn, ρn))

parse r1 ← st1

R1 ← gr1

ρ′1 ← R1; st′1 ← st1

return (ρ′1, st
′
1)

Sign′′(st′1, sk1,m, (X2, ρ2, ρ
′
2), . . . , (Xn, ρn, ρ

′
n))

parse r1 ← st′1; x1 ← sk1

X1 ← gx1

parse cmi ← ρi, Ri ← ρ′i, 2 ≤ i ≤ n
if cmi 6= Hcm(Ri) for some 2 ≤ i ≤ n return ⊥

else X̃ ←
n∏
i=1

Xi; R̃←
n∏
i=1

Ri

c← Hsig(X̃,m, R̃)

z1 ← r1 + cx1

ρ′′1 ← z1; st′′1 ← R̃

return (ρ′′1 , st
′′
1)

Combine(m, (X1, ρ
′
1, ρ
′′
1), . . . , (Xn, ρ

′
n, ρ
′′
n))

parse Ri ← ρ′i, zi ← ρ′′i , 1 ≤ i ≤ n

X̃ ←
n∏
i=1

Xi; R̃←
n∏
i=1

Ri; z ←
n∑
i=1

zi

σ ← (R̃, z)

return σ

Verify(PK,m, σ)

parse {X1, . . . , Xn} ← PK; (R̃, z)← σ

X̃ ←
n∏
i=1

Xi

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz return 1

else return 0

Fig. 7. The three-round SimpleMuSig multisignature scheme with proofs of possession. The public parameters par are implicitly
given as input to all algorithms.

23

Setup(1λ)

LPK ← ∅ // registered public keys

(G, p, g)← GroupGen(1λ)

select three hash functions

Hreg,Hnon,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hreg,Hnon,Hsig)

return par

KeyGen()

x←$Zp; X ← gx

r̄←$Zp; R̄← gr̄

c̄← Hreg(X,X, R̄)

z̄ ← r̄ + c̄x

π ← (R̄, z̄) // PoP: Schnorr sig on X

pk← (X,π); sk← x

return (pk, sk)

KeyVerify(X,π)

parse (R̄, z̄)← π

c̄← Hreg(X,X, R̄)

if R̄X c̄ = gz̄

LPK ← LPK ∪ {X}
return 1

else return 0

Sign()

// local signer has index 1

r1 ←$Zp; R1 ← gr1

s1 ←$Zp; S1 ← gs1

ρ1 ← (R1, S1)

st1 ← (r1, s1)

return (ρ1, st1)

Sign′(st1, sk1,m, (X2, ρ2), . . . , (Xn, ρn))

// Sign′ must be called at most once per st1

parse (r1, s1)← st1; x1 ← sk1

R1 ← gr1 ; S1 ← gs1 ; X1 ← gx1

parse (Ri, Si)← ρi, 2 ≤ i ≤ n
if (Ri, Si) = (Rj , Sj) for i 6= j return ⊥

else X̃ ←
n∏
i=1

Xi

a← Hnon(X̃,m, (R1, S1), . . . , (Rn, Sn))

R̃←
n∏
i=1

RiS
a
i

c← Hsig(X̃,m, R̃)

z1 ← r1 + as1 + cx1

ρ′1 ← z1; st′1 ← R̃

return (ρ′1, st
′
1)

Combine(m, (X1, ρ1, ρ
′
1), . . . , (Xn, ρn, ρ

′
n))

parse (Ri, Si)← ρi, zi ← ρ′i, 1 ≤ i ≤ n

X̃ ←
n∏
i=1

Xi

a← Hnon(X̃,m, (R1, S1), . . . , (Rn, Sn))

R̃←
n∏
i=1

RiS
a
i ; z ←

n∑
i=1

zi

σ ← (R̃, z)

return σ

Verify(PK,m, σ)

parse {X1, . . . , Xn} ← PK; (R̃, z)← σ

X̃ ←
n∏
i=1

Xi

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz return 1

else return 0

Fig. 8. The two-round SpeedyMuSig multisignature scheme with proofs of possession. The public parameters par are implicitly given
as input to all algorithms.

24

PedPoP.KeyGen(t, n)

1. Each party Pi chooses a random polynomial fi(Z) over F of degree t− 1

fi(Z) = ai,0 + ai,1Z + · · ·+ ai,t−1Z
t−1

and computes Ai,k = gai,k for k = 0, . . . , t− 1. Denote xi = ai,0 and Xi,0 = Ai,0. Each Pi computes a proof of possession of
Xi,0 as Schnorr signature on Xi,0 as follows. They sample r̄i ←$F and set R̄i ← gr̄i . They compute c̄i ← Hreg(Xi,0, Xi,0, R̄i)
and set z̄i ← r̄i + c̄ixi. They then derive a commitment Ci = (Ai,0, . . . , Ai,t−1) and broadcast ((R̄i, z̄i),Ci).

2. After receiving commitments from all other parties, each participant verifies the Schnorr signatures by checking that

R̄jAj,0
c̄j = gz̄j for j = 1, . . . , n

If any checks fail, they disqualify the corresponding participant; otherwise, they continue to the next step.
3. Each Pi computes secret shares x̄i,j = fi(idj) for j = 1, . . . , n, where idj is the participant identifier, and sends x̄i,j secretly

to party Pj .
4. Each party Pj verifies the shares they received from the other parties by checking that

gx̄i,j =

t−1∏
k=0

A
idkj
i,k

If the check fails for an index i, then Pj broadcasts a complaint against Pi.
5. For each of the complaining parties Pj against Pi, Pi broadcasts the share x̄i,j . If any of the revealed shares fails to satisfy

the equation, or should Pi not broadcast anything for a complaining player, then Pi is disqualified. The share of a disqualified
party Pi is set to 0.

6. The secret share for each Pj is x̄j =
∑n
i=1 x̄i,j .

7. The output is the joint public key X̃ =
∏n
i=1 Xi,0.

Fig. 9. PedPoP: Pedersen’s distributed key generation protocol with proofs of possession.

25

Setup(1λ)

(G, p, g)← GroupGen(1λ)

select three hash functions

Hreg,Hnon,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hreg,Hnon,Hsig)

return par

KeyGen(t, n)

(X̃, trans)←$PedPoP.KeyGen(t, n)

// Pedersen DKG with PoP

return X̃

Sign(idk)

rk ←$Zp;Rk ← grk

sk ←$Zp;Sk ← gsk

ρk ← (idk, Rk, Sk)

stk ← (rk, sk)

return (ρk, stk)

Sign′(k, stk, skk,m, {ρi}i∈S)

// Sign′ must be called at most once per stk

// S ⊆ {1, . . . , n} is the ordered signing set

parse (rk, sk)← stk; xk ← skk

Rk ← grk ; Sk ← gsk

parse (idi, Ri, Si)← ρi, i ∈ S
if (Ri, Si) = (Rj , Sj) for i 6= j return ⊥
else

a← Hnon(X̃,m, {(idi, Ri, Si)}i∈S)

R̃←
∏
i∈S

RiS
a
i

c← Hsig(X̃,m, R̃)

zk ← rk + ask + cλkxk

// λk is the k
th

Lagrange coefficient

st′k ← R̃; ρ′k ← zk

return (ρ′k, st
′
k)

Combine(m, {(ρi, ρ′i)}i∈S)

parse (idi, Ri, Si)← ρi, zi ← ρ′i, i ∈ S

a← Hnon(X̃,m, {(idi, Ri, Si)}i∈S)

R̃←
∏
i∈S

RiS
a
i ; z ←

∑
i∈S

zi

σ ← (R̃, z);

return σ

Verify(X̃,m, σ)

parse (R̃, z)← σ

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz return 1

else return 0

Fig. 10. The two-round FROST threshold signature scheme. The public parameters par are implicitly given as input to all algorithms.
FROST assumes an external mechanism to choose the set S ⊆ {1, . . . , n} of signers, where t ≤ |S| ≤ n. S is required to be ordered to
ensure consistency.

26

	How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures

