
1

Triplicate functions
Lilya Budaghyan, Ivana Ivkovic, and Nikolay Kaleyski

Department of Informatics, University of Bergen

{lilya.budaghyan, nikolay.kaleyski}@uib.no, ivana.ivkovic@student.uib.no

Abstract

We define the class of triplicate functions as a generalization of 3-to-1 functions over the finite field F2n for even values of n.
We investigate the properties and behavior of triplicate functions, and of 3-to-1 among triplicate functions, with particular attention
to the conditions under which such functions can be APN. We compute the exact number of distinct differential sets of power APN
functions, quadratic 3-to-1 functions, and quadratic APN permutations; we show that, in this sense, quadratic 3-to-1 functions are
a generalization of quadratic power APN functions for even dimensions, while quadratic APN permutations are generalizations of
quadratic power APN functions for odd dimensions. We survey all known infinite families of APN functions with respect to the
presence of 3-to-1 functions among them, and conclude that for even n almost all of the known infinite families contain functions
that are quadratic 3-to-1 or EA-equivalent to quadratic 3-to-1 functions. Using the developed framework, we give the first proof
that the infinite APN families of Budaghyan, Helleseth and Kaleyski; of Gologlu; and of Zheng, Kan, Li, Peng, and Tang have a
Gold-like Walsh spectrum. We also give a simpler univariate representation of the Gogloglu family for dimensions n = 2m with
m odd than the ones currently available in the literature. We conduct a computational search for quadratic 3-to-1 functions in
even dimensions n ≤ 12. We find one new APN instance for n = 8, six new APN instances for n = 10, and the first sporadic
APN instance for n = 12 since 2006. We provide a list of all known 3-to-1 APN functions for n ≤ 12.

I. INTRODUCTION

An (n,m)-function, or vectorial Boolean function when the dimensions n and m are clear from the context, is any function
from the vector space Fn2 over the finite field F2 to the vector space Fm2 . Intuitively, an (n,m)-function maps an input of n bits
(zeros and ones) to an output of m bits; since any data can be encoded in binary, practically any operation on any kind of data
can be modeled as a vectorial Boolean function. For this reason, (n,m)-functions naturally occur in many different areas of
mathematics, computer science, and engineering. In particular, they play an important role in symmetric cryptography: virtually
all modern block ciphers incorporate cryptographically strong (n,m)-functions as essential parts of their design; typically, the
non-linear part of the cipher is modeled as a vectorial Boolean function, and so the cryptographic security of the encryption
directly depends on the properties of this vectorial Boolean function. A prime example is the well-known and near ubiquitously
used cipher Rijndael [32], [33], which was selected as the Advanced Encryption Standard (AES) by the US National Institute
of Standards and Technology (NIST), and is considered to be one of the most reliable block ciphers to date. A crucial part of
its design is an (8,8)-function carefully selected for its cryptographic properties.

One of the most efficient known cryptanalytic attacks that can be used against block ciphers is differential cryptanalysis
[4]. The differential uniformity δF of a vectorial Boolean function F measures how well it resists differential attacks; more
precisely, the lower the value of δF , the more resilient it is to this type of cryptanalysis. In the case when n = m (so that the
number of input bits is the same as the number of output bits, which is one of the most important cases in practice), we have
δF ≥ 2 for any (n, n)-function F . The functions that attain this lower bound with equality are called almost perfect nonlinear
(APN), and therefore provide the best possible resistance to differential cryptanalysis. The interest in studying these functions,
however, is not restricted to the practical needs of cryptography: APN functions have a natural combinatorial definition, and they
correspond to optimal objects in many other areas of research, including algebra, sequence design, coding theory, combinatorial
design theory, projective geometry, and others. Constructing new instances of such functions, and studying their properties
therefore has a far-reaching significance that has the potential to advance many other disciplines.

Unfortunately, APN functions tend to be very difficult to construct and analyze. This is partly due to the fact that they are
cryptographically optimal objects, and as such do not have much structure or clear patterns. On the other hand, the number
(2n)2n

of (n, n)-functions becomes prohibitively large even for relatively small values of n, and means that finding APN
functions by exhaustive search is completely out of the question; computational searches can only be performed on very
specific subclasses of functions (where the number of functions is small enough to be processed on a computer within a
reasonable amount of time), and even then, mathematical constructions and non-trivial techniques frequently have to be used
in order to make the entire procedure feasible.

The vector space Fn2 can be identified with the finite field F2n ; and APN (n, n)-functions are typically represented as univariate
polynomials over F2n . To date, six infinite families of APN monomials, and 15 infinite families of APN polynomials have
been constructed. Upon inspecting their polynomial representations in the case of even n, we can see that most of them are of
a very special form: namely, all of their exponents are divisible by 3, which has the consequence that they are 3-to-1 functions
(meaning that every element y 6= 0 in the image set Im(F ) of one of these functions F has precisely three preimages). Upon
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closer inspection, we can see that even many of the known APN functions whose exponents are not all divisible by 3 are still
3-to-1 functions. This suggests that there is some connection between a function being 3-to-1 and being APN.

Functions that are 3-to-1 with all exponents divisible by 3 (which in this paper we call “canonical”) have previously been
studied in [27]; that paper contains some interesting results on the behavior and properties of such functions. In particular, it
helps to explain why some of the known families of APN functions have a Gold-like Walsh spectrum. Recently, 3-to-1 APN
functions have been studied in more detail in [48], where some of the results from [27] are extended to the general case of
3-to-1 functions (in other words, 3-to-1 functions whose exponents are not necessarily divisible by 3). This interest in the
behavior and properties of 3-to-1 APN functions is, in our opinion, well deserved, and warrants further investigation.

In this paper, we take several different approaches to investigate the properties of these functions and to facilitate their study.
To begin with, we define a more general class of functions called triplicate functions that have the property that the sizes of
all of their preimages are divisible by 3; in this way, a triplicate function will always map triples of inputs {x1, x2, x3} to
the same output (so that F (x1) = F (x2) = F (x3)) but, unlike a 3-to-1 function, distinct triples may still map to the same
output; in this way, every 3-to-1 function is a triplicate function, but not every triplicate function is 3-to-1. We characterize
triplicate functions by the values of their Walsh transform, and show that quadratic 3-to-1 functions can be considered as
extremal objects (from several different points of view) among triplicate functions in a way very similar to how quadratic APN
functions can be considered as extremal objects among all plateaued functions.

One of the aspects in which we see that 3-to-1 functions are extremal objects is with respect to their number of distinct
differential sets (the differential sets of a function being the image sets of its derivatives). Besides deriving some results on
the number of distinct differential sets of canonical quadratic triplicate functions, we compute the exact number of distinct
differential sets of any power APN function (regardless of whether it is a triplicate or not). We show that if F is a power
function on F2n and a, b ∈ F2n , then F (a) = F (b) if and only if HaF = HbF (with HaF being the differential set of F in
direction a). In this way, 3-to-1 functions behave in the same way as power APN functions in the case of even n. We also
show that all the differential sets of any quadratic APN permutation (over a finite field of odd extension degree) are distinct,
and so, in this way, quadratic APN permutations are the analogue of power APN functions in the odd case.

The paper is organized as follows. In Section II, we recall most of the preliminaries and background knowledge needed
for the rest of the text. In Section III, we define the classes of triplicate functions and canonical triplicate functions (as well
as the zero-sum property and triple summation property, which all known 3-to-1 APN functions have), and mathematically
investigate their structural properties and behavior. In particular, we characterize triplicate functions and 3-to-1 among triplicate
functions by their Walsh transform, and show that 3-to-1 among triplicate functions are extremal objects in some sense. We
also characterize, in the case of power APN functions and of quadratic canonical 3-to-1 functions, when two differential sets
coincide, and compute the exact number of distinct differential sets of these two classes of functions. In Section VI, we survey
the known infinite APN families, and conclude that the majority of them contain functions that are canonical 3-to-1 functions.
Finally, in Section X, we summarize our results, and indicate some directions for future work.

II. PRELIMINARIES

Throughout the paper, we denote the cardinality of a set S by #S, while |s| denotes the absolute value of s ∈ Z. The sumset
of a set S is the set 2S = {s1 + s2 : s1, s2 ∈ S, s1 6= s2}. A multiset is an unordered collection of elements, much like a set;
unlike a set (which either contains or does not contain a certain element), a multiset can contain an element more than once.
The number of times that an element occurs in a multiset is called the multiplicity of that element1. We write multisets using
square brackets to distinguish them from ordinary sets; for instance, [a, b, a, a, c] is a multiset that contains the elements a, b,
and c, with multiplicities 3, 1, and 1, respectively. As shorthand, we will also write the number of occurrences of an element
appearing more than once in the multiset as a superscript; for instance, we would write [a, b, a, a, c] as [a3, b, c], indicating
that the element a occurs three times, while b and c occur only once. On rare occasions, we will indicate the multiplicities in
under-braces and write them underneath the respective elements instead.

A. Vectorial Boolean functions and their representations

Let n be a natural number. We denote by F2 the finite field of two elements, by Fn2 the vector space of dimension n over
F2, and by F2n the extension field of degree n over F2. The multiplicative group of F2n is denoted by F∗2n . We note that
the elements of Fn2 can be identified with those of F2n , and we will use both representations interchangeably throughout the
paper. For any two natural numbers m,n such that m | n, we denote by Trnm : F2n → F2m the trace function from F2n onto
F2m defined as

Trnm(x) =

n/m−1∑
i=0

x2mi

.

1Formally, a multiset would be defined as a pair (S,m), where S is some set of elements, and m : S → N is a mapping specifying the multiplicity of
each element in the multiset. We consider that the idea behind multisets is intuitively clear by itself, and omit this formal definition in the text.
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When m = 1, Trn1 is called the absolute trace; in this case, we will denote it more succinctly by Trn, or simply by Tr if the
value of n is clear from the context.

Let n and m be natural numbers. Any mapping f from Fn2 to F2 is called an n-dimensional Boolean function. Any mapping
from Fn2 to Fm2 is called an (n,m)-function; in particular, Boolean functions are (n, 1)-functions. When the dimensions are
not important, or are understood from the context, we refer to (n,m)-functions as vectorial Boolean functions. The intuition
behind the name is that any (n,m)-function F can be represented as a vector F = (f1, f2, . . . , fm) of m Boolean functions
f1, f2, . . . , fm : Fn2 → F2 of dimension n. The value fi(x) for some x ∈ Fn2 gives the i-th coordinate yi of the output
y = F (x) = (y1, y2, . . . , ym). For this reason, the Boolean functions f1, f2, . . . , fn are called the coordinate functions of F .
The non-zero linear combinations of the coordinate functions are called the component functions of F ; thus, every coordinate
function of F is also a component function of F , but not vice-versa. Some important properties of (n,m)-functions, including
cryptographically significant parameters such as the nonlinearity, can be defined and analyzed in terms of their component
functions.

The image set of an (n,m)-function F is the set Im(F ) = {F (x) : x ∈ Fn2}. For y ∈ Im(F ), we will call the set
F−1(y) = {x ∈ Fn2 : F (x) = y} the preimage set of y under F . If F (0) = 0 and #F−1(y) = 3 for every 0 6= y ∈ Im(F ),
we will say that F is a 3-to-1 function. If n = m and #Im(F ) = 2n, we will say that F is a permutation of Fn2 .

Vectorial Boolean functions can be represented in many different ways. The simplest representation involves writing down
(or storing in memory, in the case of a computer implementation) the values F (x) of the (n,m)-function F for all possible
inputs x ∈ Fn2 . This representation is referred to as the truth table (TT) or the look-up table (LUT) of F 2. This representation
can be quite efficient and convenient for computer implementations, since finding the value F (x) of the function F at some
input x ∈ Fn2 reduces to simply indexing an array stored in memory; this makes the implementation of (n,m)-functions as
truth tables both very simple and very fast in practice. The disadvantage is, of course, that the memory needed to store the
truth table increases rapidly with the dimensions n and m. Another drawback of the TT representation is that it is very hard
to observe any structure or properties of the function from it; as we shall see, the algebraic degree (among various other
properties) of a function can be extracted almost immediately from any of its polynomial representations, while in the case of
the TT, this is not straightforward to do.

Any (n,m)-function can be represented as a polynomial in n variables over Fm2 . More precisely, we can write

F (x1, x2, . . . , xn) =
∑

I⊆P({1,2,...,n})

aI
∏
i∈I

xi,

where P({1, 2, . . . , n}) is the power set of {1, 2, . . . , n}, and aI ∈ Fm2 for all I ⊆ P({1, 2, . . . , n}). This representation is
called the algebraic normal form (ANF) of F ; it always exists, and is uniquely defined. When the number of terms with non-
zero coefficients in the ANF is small, the ANF can provide a much more compact representation than the TT. A disadvantage
is that finding the value F (x) of F for some x ∈ Fn2 is no longer instantaneous, and involves performing some arithmetic
operations; however, the smaller size of the representation typically far outweighs this loss in performance. Another benefit of
the ANF over the TT is that it allows i.a. the algebraic degree of F to be easily extracted. For some F : Fn2 → Fm2 given in ANF,
its algebraic degree is simply the degree of the ANF (as a multivariate polynomial), and is denoted by deg(F ). The algebraic
degree has some cryptographic significance, as a higher algebraic degree indicates good resistance to higher-order differential
attacks [34], [47]. The algebraic degree also allows us to define some important classes of vectorial Boolean functions: for
instance, we call an (n,m)-function F affine if deg(F ) ≤ 1; then, much as the name would suggest, we have

F (x) + F (y) + F (z) = F (x+ y + z)

for any x, y, z ∈ Fn2 . If F is affine and F (0) = 0, so that F (x) + F (y) = F (x + y) for any x, y ∈ Fn2 , we say that F is
linear. If deg(F ) = 2 or deg(F ) = 3, we say that F is quadratic or cubic, respectively. The class of quadratic functions, in
particular, plays a central role in our investigations.

Perhaps the most frequently used representation of vectorial Boolean functions in the study of i.a. APN and AB functions is
the univariate representation, in which a function is represented by a univariate polynomial. For this purpose, the domain Fn2
and co-domain Fm2 of an (n,m)-function are identified with the finite fields F2n and F2m ; we further assume that m divides
n, so that F2m is contained as a subfield in F2n . Then F can be seen as a function over F2n which can be represented by a
polynomial

F (x) =

2n−1∑
i=0

cix
i,

where ci ∈ F2n for i = 1, 2, . . . , 2n − 1. Such a polynomial always exists (and can be obtained by e.g. Lagrange interpolation
from the TT representation of F ). In general, such a representation is not unique, and some additional restrictions need to be

2Some authors reserve the term “truth table” for Boolean functions, whose output values 0 and 1 can be interpreted as “false” and “true”, respectively, and
call the more general manifestation of the same principle for (n,m)-functions with m > 1 (where the output can be any element of Fm

2 ) a look-up table.
We will refer to this representation as a truth table in both cases.
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introduced in order to ensure uniqueness. However, when n = m (so that the domain of F is the same as its co-domain),
this representation is always unique. Since our study mostly concerns (n, n)-functions (as opposed to (n,m)-functions with
n 6= m), we do not go into further details.

The univariate representation is quite important to our work, and to the study of APN and AB functions in general. Almost
all of the known infinite constructions of APN functions are given in univariate form; and the class of canonical triplicate
functions that we investigate in Section III is defined in terms of the univariate representation. Since the algebraic degree also
plays a prominent role in our investigation, we note that it can be recovered quite easily from the univariate representation of
an (n, n)-function as well: indeed, the algebraic degree of F is the largest binary weight of any exponent i with ci 6= 0 in
the univariate representation (the binary weight, or 2-weight, of an integer i is the weight or, equivalently, number of non-zero
bits, in its binary expansion).

Other representations of vectorial Boolean functions exist, and some of them can be quite useful. For instance, if F is a
(2n,m)-function, it can be represented as a bivariate polynomial F (x, y) with x, y ∈ Fn2 . Some infinite constructions of APN
functions are given in this bivariate representation (in fact, the univariate and bivariate representations are the only ones that
have allowed for such infinite constructions at the time of writing). Representations of functions using tables, matrices, and
algebraic structures have been considered in the literature, and some of them have been utilized computationally to find many
new instances of APN and AB functions, e.g. [56], [59], [60], [53].

B. Derivatives of vectorial Boolean functions

The derivative of an (n,m)-function F in direction a ∈ F2n is the function DaF (x) = F (a + x) − F (a). Intuitively,
DaF (x) expresses the difference between a pair of values of the function F when the difference between their corresponding
inputs is equal to a. Since addition and subtraction represent the same operation over fields of even characteristic, we typically
write DaF (x) = F (a+ x) + F (x). An associated function is ∆aF (x) = F (x) + F (a+ x) + F (a) + F (0); in the case when
F is quadratic, this is sometimes referred to as a symplectic form. The functions DaF and ∆aF typically behave similarly
with respect to the study of i.a. cryptographic properties of functions; the advantage of ∆aF is that it may sometimes be more
convenient to work with due to it being symmetric in a and x, and since it has no constant term, i.e. ∆aF (0) = 0.

As remarked above, the value of DaF (x) intuitively represents the difference between two outputs of F for which their
corresponding inputs are at distance a. From a cryptographic point of view, it is desirable that there should be no strong
correlation between the input difference and the output difference. In other words, the possible output differences for some
fixed 0 6= a ∈ Fn2 should be distributed as closely to uniform as possible (throughout all choices of x ∈ Fn2 ). In particular, the
number of inputs x ∈ Fn2 for which DaF (x) = b should be as low as possible for all choices of b ∈ Fm2 . In order to quantify
this, we denote the number of solutions x ∈ Fn2 to the equation DaF (x) = b for some a ∈ Fn2 , b ∈ Fm2 by δF (a, b); that is,

δF (a, b) = #{x ∈ Fn2 : DaF (x) = b}.

Since we would like this number of solutions to be as low as possible throughout all choices of a, b, we define the differential
uniformity of F as

δF = max{δF (a, b) : 0 6= a ∈ Fn2 , b ∈ Fm2 }.

The multiset [δF (a, b) : a, b ∈ F2n ] of all values of δF (a, b) is called the differential spectrum of F .
An (n,m)-function F is vulnerable to differential cryptanalysis [4] if δF is large. We can easily see that the numbers

δF (a, b) are always even, since if x is a solution to DaF (x) = b for some choice of a and b, then so is a+ x. Consequently,
the optimal value of the differential uniformity is precisely 2. We say that an (n, n)-function F is almost perfect nonlinear
(APN) if δF = 2. Thus, the class of APN functions provides the best possible resistance to differential cryptanalysis.

While the notion of the derivative DaF as described above is fundamental to the definition and study of APN functions,
we can introduce some related auxiliary notions for the sake of convenience. The differential set HaF of an (n,m)-function
F in direction a ∈ Fn2 is simply the image set of the derivative DaF , that is

HaF = Im(DaF ) = {DaF (x) : x ∈ Fn2}.

Since F : Fn2 → Fn2 is APN if and only if all of its derivatives DaF for 0 6= a are 2-to-1 functions, we can see that F is APN
if and only if all of its differential sets HaF for 0 6= a have cardinality 2n−1.

An (n,m)-function closely related to the derivative DaF is

Ds
a(F ) = F (x) + F (a+ x) + F (a+ s) = DaF (x) + F (a+ s),

where s ∈ Fn2 . In [13], the function Ds
aF is called a shifted derivative with shift s. If s = 0, and F (0) = 0, this coincides

with the notion of the symplectic form ∆aF (x) = F (x) + F (a + x) + F (a) + F (0). Clearly, DaF is 2-to-1 if and only if
Ds
aF is 2-to-1 for any 0 6= a ∈ Fn2 , s ∈ Fn2 ; and so APN-ness (and, more generally, differential uniformity) can be equivalently

characterized in terms of Ds
aF .



5

Analogically to the differential sets HaF , we can define

Hs
aF = Im(Ds

aF ) = {Ds
aF (x) : x ∈ Fn2}

for any (n,m)-function F and any a, s ∈ Fn2 . We will refer to these sets as differential sets as well (in fact, we will see that
for any (n, n)-triplicate function T , we have HaT = H0

aT for any a ∈ F2n , and so this should never cause any confusion).
The study of APN functions is an important area in the mathematical foundations of cryptography, and has been a topic

of intense research at least since the 90’s when the notion of an APN function was first introduced [51]. Since then, a huge
number of APN instances have been found, and several infinite constructions of APN functions have been deduced; a survey
of these results is given in Section II-E below. As we shall see there, the vast majority of the known APN functions are
quadratic (or CCZ-equivalent to quadratic functions). In fact, there is only a single known example of an APN function that
is CCZ-equivalent to neither a monomial nor a quadratic function [8], [40], and finding more such instances is considered an
important open problem.

One intuitive explanation for this abundance of quadratic functions among the known APN constructions and instances, is
that checking and characterizing the APN-ness of quadratic functions is significantly easier than in the general case. The reason
for this, in turn, is that the derivatives of any quadratic function are affine functions; and since the differential uniformity of a
function (and the notion of being APN) is defined in terms of its derivatives, this means that in the quadratic case, characterizing
APN functions involves studying the behavior of a set of affine functions. While by no means trivial, this is significantly more
tractable than in the general case, where the derivatives may be of higher algebraic degree.

When the derivatives of F are affine, the differential sets HaF and Hs
aF are affine subspaces of Fm2 . As observed above,

we always have D0
aF (0) = 0, and so D0

aF is, in fact, a linear function for any a ∈ F∗2n when F is quadratic. Consequently,
the image set H0

aF is a linear subspace for any a ∈ F∗2n .
Recall that a linear hyperplane of Fn2 is any (n− 1)-dimensional linear subspace of Fn2 ; and that an affine hyperplane is

any affine (n− 1)-dimensional subspace of Fn2 (in other words, a linear hyperplane plus a constant). Any linear hyperplane of
Fn2 is a set of the form

H(a) = {x ∈ Fn2 : Tr(ax) = 0}

for 0 6= a ∈ Fn2 .
By the above discussion, we can see that if F is a quadratic (n, n)-function, then it is APN if and only if all the differential

sets HaF are affine hyperplanes (or, equivalently, if all the sets H0
aF are linear hyperplanes) for a ∈ F∗2n . More generally, we

say that an (n, n)-function F is generalized crooked if all of its differential sets HaF for a ∈ F∗2n are affine hyperplanes;
in the particular case when all the differential sets HaF are linear hyperplanes, we say that F is crooked. Clearly, any
generalized crooked function is APN, and any quadratic APN function is generalized crooked; the existence of generalized
crooked functions that are not quadratic is an open problem at the time of writing.

For any set S ⊆ F2n and any (n, n)-function F , we will denote by [S] = {a ∈ F2n : HaF = S} the set of all derivative
directions a for which the differential set HaF is equal to S. In particular, we have a ∈ [HaF ] for all a ∈ F2n .

The ortho-derivative πF [21] is an (n, n)-function that can be associated with any generalized crooked (n, n)-function F .
For any a ∈ F∗2n , the differential set H0

aF is a linear hyperplane, and so can be written as H0
aF = H(ca) for some ca ∈ F∗2n .

We define the ortho-derivative πF by setting πF (a) = ca for every a ∈ F∗2n , and πF (0) = 03. The ortho-derivatives of
two EA-equivalent quadratic APN functions are EA-equivalent themselves [21] which allows EA-inequivalent functions to be
distinguished with very high accuracy by comparing the values of EA-invariants (such as the differential spectrum) of their
ortho-derivatives (equivalence relations between (n, n)-functions are discussed in more detail in Section II-D).

C. The Walsh transform

The Walsh transform of an (n,m)-function F is the function WF : Fn2 × Fm2 → Z defined by

WF (a, b) =
∑
x∈Fn

2

(−1)b·F (x)+a·x,

where “·” is a scalar product on Fm2 and Fn2 , respectively (the dimension being understood from the context). A scalar product
on Fn2 is a symmetric bivariate function on Fn2 such that x 7→ a · x is a non-zero linear form for any 0 6= a ∈ Fn2 . Using the
identification of the vector space Fn2 with the finite field F2n , this is typically defined as x · y = Tr(xy), with the product
xy being computed in the finite field F2n , and then mapped to F2 via the absolute trace function. When n = m, the Walsh
transform WF : F2

2n → Z of an (n, n)-function F can equivalently be written as

WF (a, b) =
∑
x∈F2n

χ(bF (x) + ax),

3More generally, the ortho-derivative of F can be defined as any (n, n)-function πF for which πF (a) lies in the orthogonal complement of H0
aF , which

is possible even when F is not generalized crooked (as long as its differential sets H0
aF are linear hyperplanes). If F is not generalized crooked, however,

the ortho-derivative is not uniquely defined, and so we restrict to the case when F is generalized crooked.
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where χ : F2n → Z2 is the canonical additive character of F2n defined by χ(x) = (−1)Tr(x). For convenience, for a ∈ F2n , we
will also denote by χa the character χa(x) = χ(ax). The values of the Walsh transform WF are called the Walsh coefficients
of F . The multiset of all Walsh coefficients is called the Walsh spectrum of F ; and the multiset of their absolute values is
called the extended Walsh spectrum of F and denoted by WF ; symbolically:

WF = [|WF (a, b)| : a ∈ Fn2 , b ∈ Fm2 ].

The Walsh transform can be a useful theoretical tool for analyzing properties of vectorial Boolean functions, and it can be
used to speed up some computations in practice.

There is a number of well-known characterizations of various properties of vectorial Boolean functions in terms of the Walsh
transform. For instance, we know that any (n, n)-function F satisfies∑

a,b∈F2n

W 4
F (a, b) ≥ 3 · 24n − 23n+1,

with equality if and only if F is APN [29]. Similarly, we know that any APN (n, n)-function F with F (0) = 0 satisfies∑
a,b∈F2n

W 3
F (a, b) = 3 · 23n − 22n+1,

although, in general, this is only a necessary and not a sufficient condition for a function to be APN.
The Walsh transform allows for the definition of another important class of vectorial Boolean functions, viz. the plateaued

functions, that have a close connection to APN functions, and appear in the context of our investigations of triplicate functions
as well. We say that an (n,m)-function F is plateaued if there exist integers λb ∈ Z for b ∈ Fm2 such that

WF (a, b) ∈ {0,±λb}

for all a ∈ Fn2 ; we then call λb the amplitude of the component function Fb. If the amplitudes of all components are equal,
i.e. for all b, b′ ∈ Fm2 we have λb = λb′ , we say that F is plateaued with single amplitude.

As in the case of the generalized crooked functions, the interest in the study of plateaued functions arises from the behavior
of quadratic APN functions. More precisely, we know that any quadratic APN function is plateaued [62], [22], although there
exist APN functions that are not plateaued, and plateaued functions that are not APN.

D. Equivalence relations

The number of (n, n)-functions is very large even for small values of n, and for this reason, they are typically only classified
up to some notion of equivalence that preserves the properties of interest. In the case of APN functions, the most general
known equivalence relation that preserves the differential uniformity (and hence, the property of being APN) is the so-called
CCZ-equivalence (or Carlet-Charpin-Zinoviev equivalence) introduced in [26].

The graph ΓF of an (n,m)-function F is the set ΓF = {(x, F (x)) : x ∈ Fn2} ⊆ Fn2 × Fm2 . Note that Fn2 × Fm2 can be
naturally identified with Fn+m

2 , and so the set of pairs ΓF can be seen as a set of elements from Fn+m
2 . If F and G are two

(n,m)-functions, we say that they are CCZ-equivalent if there exists an affine permutation A of Fn+m
2 mapping ΓF to ΓG,

i.e. such that A(ΓF ) = ΓG.
Another widely used equivalence relation is the so-called extended affine equivalence, or EA-equivalence for short. We say

that F,G : Fn2 → Fm2 are EA-equivalent if there exist affine permutations A1 and A2 of Fm2 and Fn2 , respectively, and an
affine (n,m)-function A, such that

A1 ◦ F ◦A2 +A = G. (1)

We know that EA-equivalence is a special case of CCZ-equivalence; that is, if two functions are EA-equivalent, then they are also
CCZ-equivalent. However, CCZ-equivalence is strictly more general than EA-equivalence and taking inverses of permutations
[17]. Nonetheless, CCZ-equivalence coincides with EA-equivalence in the case of quadratic APN functions; more precisely, if
F and G are quadratic APN (n, n)-functions, then F and G are EA-equivalent if and only if they are CCZ-equivalent [57].
Since almost all of the known APN functions are quadratic, this means that in practice almost all tests for CCZ-equivalence
can be reduced to tests for EA-equivalence.

Some special cases of EA-equivalence can be obtained by applying additional constraints to the functions A1, A2, and A
from (1). If A = 0, we say that F and G are affine equivalent; and if, in addition, A1(0) = A2(0) = 0 so that A1 and A2

are linear, we say that F and G are linear equivalent.
In general, deciding whether two given (n, n)-functions are equivalent under one of the above equivalence relations is a

difficult computational problem. Both CCZ- and EA-equivalence can be tested by deciding the isomorphism of linear codes
associated with them [9], [38]. Recently, algorithms for deciding EA-equivalence in certain cases without going through coding
theory have been developed in [44] and [21].

Classifying functions up to an equivalence relation can be greatly facilitated by means of invariants, i.e. properties and
statistics that are constant within each equivalence class. For instance, the differential uniformity is a CCZ-invariant, since
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if F and G are CCZ-equivalent functions, then both of them have the same differential uniformity. Clearly, the differential
uniformity is not useful in classifying APN functions (which have a differential uniformity equal to 2 by definition) but there
exist many other invariants under CCZ- and EA-equivalence that can simplify the classification process quite significantly.
We refer the reader to the survey [45] for a detailed overview of various invariants and how they can be used to simplify
the classification of APN function. In this paper, we mostly consider the differential spectrum of the ortho-derivative, which
was already described in Section II-B above. The values that the ortho-derivative’s differential set can take are extremely
discriminating, and have virtually the same distinguishing power as an actual EA-equivalence test in practice.

E. Known APN functions

Some of the earliest, and most fascinating in a number of ways, examples of APN functions are given by monomials in their
univariate polynomial representation. These functions are referred to as power functions, or monomial functions. At present, we
know of six infinite families of monomial APN functions. These are summarized in Table I below. A conjecture of Dobbertin
states that any APN monomial is CCZ-equivalent to an instance from one of the families in Table I.

TABLE I
KNOWN INFINITE FAMILIES OF APN POWER FUNCTIONS OVER F2n

Family Exponent Conditions Algebraic degree Source

Gold 2i + 1 gcd(i, n) = 1 2 [41], [51]
Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [43], [46]
Welch 2t + 3 n = 2t+ 1 3 [36]

Niho 2t + 2t/2 − 1, t even
n = 2t+ 1

(t+ 2)/2 [35]
2t + 2(3t+1)/2 − 1, t odd t+ 1

Inverse 22t − 1 n = 2t+ 1 n− 1 [3], [51]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [37]

In addition to the six infinite monomial families, a number of infinite polynomial constructions have been discovered; these
are summarized in Table II. As we can observe from the table, the univariate polynomial form of these families can be quite
varied; and yet, despite this, all of the functions listed in Table II are quadratic. Constructing an infinite family of APN
functions CCZ-inequivalent to both monomials and quadratic functions would be a groundbreaking result. Furthermore, it is
almost certain that the infinite families from Tables I and II constitute only a minuscule portion of the possible constructions;
finding new infinite families of APN functions is an important ongoing problem.

We note that, in addition to the infinite families presented in Table II, there exists a construction of APN functions through
so-called isotopic shifts [11] which is sometimes considered to be an infinite APN family; for the purposes of this paper, we
do not do so. Our reasoning is that the conditions that characterize when the functions obtained from this construction are
APN, are quite complex, and constructing APN functions in practice requires non-trivial computational searches (unlike the
infinite families listed in Tables I and II for which the conditions are very simple, and can typically be verified “on paper”
regardless of how large the dimension n might be). In fact, it is not even clear whether the conditions on the method from
[11] can be satisfied for infinitely many dimensions n. The fact that the conditions are so complex means that, for one thing,
enumerating all such functions for a given dimension n becomes a challenging computational problem by itself; and, for
another, characterizing when these functions are 3-to-1 does not appear to be easily tractable. For all of these reasons, we
do not consider the functions from this construction in our computational searches and classifications. In particular, we skip
the label “C11” in Table II so that the indexing of the families in the table matches the one in say [1] or [20], where this
construction is listed as one of the infinite APN families.

We note that the families C14-1 and C14-2 have not been published yet, but univariate and bivariate representations can be
found e.g. in the survey [20].

III. TRIPLICATE FUNCTIONS

In this section, we introduce the class of triplicate functions as a generalization of 3-to-1 functions, and conduct a theoretical
study of their basic structural properties and their relation to APN functions. We derive several different characterizations of
such functions, and show that 3-to-1 functions among triplicate functions are extremal objects in a number of ways. We also
recall, adapt, and generalize some known results on 3-to-1 functions.

The section is organized as follows. In Subsection III-A, we introduce the classes of triplicate functions and canonical
triplicate functions, and some other basic notions that we will use throughout the paper. We recall the most important known
results on 3-to-1 functions from [27] and [48], and make some simple but fundamental structural observations on the behavior
of triplicate and canonical triplicate functions.

4F. Gologlu, private communication
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TABLE II
KNOWN INFINITE FAMILIES OF QUADRATIC APN POLYNOMIALS OVER F2n

ID Functions Conditions Source

C1-C2 x2
s+1 + u2

k−1x2
ik+2mk+s

n = pk, gcd(k, 3) = gcd(s, 3k) = 1, p ∈
{3, 4}, i = sk mod p,m = p − i, n ≥
12, u primitive in F∗2n

[14]

C3 sxq+1 + x2
i+1 + xq(2

i+1) +
cx2

iq+1 + cqx2
i+q

q = 2m, n = 2m, gcd(i,m) = 1, c ∈
F2n , s ∈ F2n \ Fq , X2i+1 + cX2i + cqX +
1 has no solution x s.t. xq+1 = 1

[12]

C4 x3 + a−1Trn(a3x9) a 6= 0 [15]
C5 x3 + a−1Tr3n(a

3x9 + a6x18) 3|n, a 6= 0 [16]
C6 x3 + a−1Tr3n(a

6x18 + a12x36) 3|n, a 6= 0 [16]
C7-C9 ux2

s+1 + u2
k
x2
−k+2k+s

+
vx2
−k+1 + wu2

k+1x2
s+2k+s

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1, v, w ∈
F2k , vw 6= 1, 3|(k + s), u primitive in F∗2n

[6]

C10 (x + x2
m
)2

k+1 + u′(ux +

u2
m
x2

m
)(2

k+1)2i + u(x +
x2

m
)(ux+ u2

m
x2

m
)

n = 2m,m ≥ 2 even, gcd(k,m) = 1 and i ≥ 2
even, u primitive in F∗2n , u′ ∈ F2m not a cube

[63]

C12 u(uqx + xqu)(xq + x) +

(uqx + xqu)2
2i+23i + a(uqx +

xqu)2
2i
(xq + x)2

i
+ b(xq +

x)2
i+1

q = 2m, n = 2m, gcd(i,m) = 1, x2
i+1 + ax+ b

has no roots in F2m

[55]

C13 x3 + a(x2
i+1)2

k
+ bx3·2

m
+

c(x2
i+m+2m )2

k
n = 2m = 10, (a, b, c) = (β, 1, 0, 0), i = 3,
k = 2, β primitive in F22

[18]

n = 2m, m odd, 3 - m, (a, b, c) = (β, β2, 1), β
primitive in F22 , i ∈ {m−2,m, 2m−1, (m−2)−1

mod n}
C14-1 (x2

i+1+xy2
i
+y2

i+1, x2
2i+1+

x2
2i
y + y2

2i+1)

n = 2m, gcd(3i,m) = 1 4

C14-2 (x2
i+1 + xy2

i
+ y2

i+1, x2
3i
y+

xy2
3i
)

n = 2m, gcd(3i,m) = 1, m odd 4

C15 aTrnm(bx3) + aqTrnm(b3x9) n = 2m, m odd, q = 2m, a /∈ Fq , b not a cube [61]

In Section III-B, we show how triplicate functions can be characterized using the Walsh transform. We then characterize
3-to-1 among the triplicate functions, show that they are extremal objects in some sense, and prove that some exponential sums
involving the second power moment of the Walsh transform are constant in the case of 3-to-1 functions.

In Section III-D, we show that the image set of any quadratic 3-to-1 function is a partial difference set with prescribed
parameters, generalizing a result from [27]. As a consequence of this fact, we compute the exact value of the multiset ΠF

from [13] (which is a CCZ-invariant for APN functions) for any quadratic 3-to-1 function, and use it compute a lower bound
on the Hamming distance between any two quadratic 3-to-1 functions, and to give an upper bound on the total number of such
functions over F2n for any even n.

A. Basic notions

A number of the known APN functions have a univariate polynomial form in which all exponents are multiples of 3. The
simplest example is the Gold function x3, which is known to be APN over F2n for any extension degree n; we also know that
any APN power function xd over F2n must have gcd(d, n) = 3 for n even (see e.g. [25]); and so any power APN function
over a finite field of even extension degree must be of this form. Furthermore, one can observe many such instances among
the APN functions from the known infinite polynomial families; for example, all the exponents of the binomials from family
C1-C2 over F2n are divisible by 3 when n is even (we present a formal proof in Proposition 9). In Section VI, we survey
the known infinite polynomial families of APN functions with respect to this property. Most of the known families contain
functions of this form, and some of them, in fact, consist entirely of such functions.

When n is even, the finite field F22 is a subfield of F2n ; let β be a primitive element of F22 . Suppose that F is a function
with no constant term (so that F (0) = 0) and that all of its exponents are divisible by 3. Since β3 = 1, we have

F (x) = F (βx) = F (β2x) (2)

for any x ∈ F2n . Thus, multiplying the input of the function F by a non-zero element from F22 does not change its output. In
particular, the non-zero inputs x ∈ F∗2n to F can be partitioned into triples {x, βx, β2x} such that F (x) = F (βx) = F (β2x).
Note that, depending on the concrete function F , distinct triples may also map to the same image; if all the triples map to
distinct images (in which case F is a 3-to-1 function), the image set of F will consist of precisely 1 + (2n − 1)/3 elements,
including 0. Another way to look at this is to consider the pre-images F−1(y) = {x ∈ F2n : F (x) = y} of the non-zero
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elements y ∈ F∗2n ; then the cardinality of each pre-image F−1(y) for y ∈ F∗2n is a multiple of 3; if all the triples map to
distinct values, then the size of each pre-image is exactly 3. We will call functions whose non-zero inputs can be partitioning
into triples {x, y, z} mapping to the same value triplicate functions. Note that triplicate functions can only exist for even values
of n, since 3 is a divisor of 2n − 1 if and only if n is even.

The number of distinct triples of non-zero elements, viz. (2n − 1)/3, will appear quite frequently throughout the following
discussion; for the sake of simplicity, we will typically denote it by K = (2n − 1)/3 when the dimension n is clear from the
context. We also introduce the following notion to facilitate the discussion.

Definition 1. Let n be an even natural number and K = (2n− 1)/3. We say that a sequence T = {Ti}Ki=1 = {{ai, bi, ci}}Ki=1

of unordered triples of elements from F∗2n is a triple partition of F2n if:
1)
⋃K
i=1 Ti = F∗2n ;

2) Ti ∩ Tj = ∅ for i 6= j.
If F is a function over F2n with F (0) = 0, we say that T corresponds to F if, for any {x, y, z} ∈ T , we have F (x) =
F (y) = F (z).

In the following definition, we consider the slightly more general case of (n,m)-functions (allowing the dimensions m and
n to be distinct). While we concentrate primarily on (n, n)-functions throughout the paper, the proof of Proposition 4 for
(n,m)-functions proceeds by induction on m (with the proof for (n, n)-functions that we are actually interested in following
from this general case by setting m = n), and so we need this more general context.

Definition 2. Let m,n be natural numbers with n even, and let F be an (n,m)-function with F (0) = 0. If F∗2n can be
partitioned into disjoint triples Ti = {ai, bi, ci}i for i = 1, 2, . . . ,K = (2n − 1)/3 such that F (ai) = F (bi) = F (ci) for
i = 1, 2, . . . , (2n− 1)/3 (equivalently, if there is a triple partition T that corresponds to F ), then we say that F is a triplicate
function. If Ti = {ai, bi, ci} ∈ T corresponding to F , we will sometimes write F (Ti) as shorthand for T (ai) (or, equivalently,
F (bi) or F (ci)).

While any (n, n)-function for even n with exponents divisible by 3 partitions the non-zero inputs of F2n into triples, the
converse implication is not true; that is, one can easily find triplicate functions whose exponents are not all multiples of 3.
Indeed, we can see that when the exponents of F are all divisible by 3, the triples Ti are necessarily of the form {x, βx, β2x}
for x ∈ F∗2n . Partitioning F∗2n into triples and assigning output values to those triples in an arbitrary way so that e.g. 1 and
β lie in triples mapping to distinct output values is then enough to define a triplicate function whose exponents are not all
divisible by 3. To differentiate between these two notions, we introduce the following definition. Note that we only define this
notion for (n, n)-functions (instead of (n,m)-functions as in Definition 2) since the definition is in terms of the univariate
representation.

Definition 3. Let n be an even natural number, and let F be an (n, n)-function with F (0) = 0. If every exponent i with a
non-zero coefficient ai in the univariate polynomial form of F is divisible by 3, then we say that F is a canonical triplicate
function.

Thus, any canonical triplicate function is a triplicate function, but not vice-versa. We note that 3-to-1 functions (as a special
subclass of triplicate functions and canonical triplicate functions) and their relation to APN functions have been previously
studied in [27]; canonical triplicate functions are also studied in [48] where they are called 3-divisible functions. In particular,
in [27] the authors show that any quadratic canonical triplicate function is APN if and only if it is 3-to-1 (in other words, if
all triples map to distinct values); and in [48], it is shown that any plateaued (and, in particular, quadratic) 3-to-1 function
is APN. Similarly, an important result of [27] is that any quadratic canonical triplicate APN function has a Gold-like Walsh
spectrum; and Theorem 11 of [48] extends this to the more general case of any plateaued triplicate function. We thus have the
following noteworthy results.

Theorem 1. [27], [48] Let F be an (n, n)-triplicate function for some even natural number n. Then:
1) if F is APN, then F is 3-to-1;
2) if F is plateaued and 3-to-1, then F is APN.

We note that any quadratic function is, in particular, plateaued [62], [22]. Consequently, the notions of 3-to-1-ness and
APN-ness coincide in the case of quadratic triplicate functions.

Theorem 2. [27], [48] Let F be a plateaued 3-to-1 APN function over F2n with n even. Then

WF (0, b) ∈ {(−1)k2k, (−1)k+12k+1} (3)

for any b ∈ F∗2n , where n = 2k, and so
WF (a, b) ∈ {0,±2k,±2k+1}

for any a ∈ F2n and any b ∈ F∗2n , i.e. F has a Gold-like Walsh spectrum.
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Theorem 2 allows us to give an easy proof that the extended Walsh spectra of functions belonging to a number of the known
infinite APN families are Gold-like. Particularly in the case of canonical triplicates, it can be quite easy to show that all the
exponents in the univariate representation of some families are divisible by 3; the exact form of the extended Walsh spectrum
then follows immediately from Theorem 2. We will see examples of such computations in Section VI, where we study which
of the known infinite families of APN polynomials contain, or consist of, triplicate functions.

In particular, the Walsh spectrum of the recently constructed family C13 has not been previously computed; in Proposition
9, we show that all functions belonging to this family are canonical triplicates, and thereby prove that they have a Gold-like
Walsh spectrum.

Due to Theorem 1, we will mostly be interested in the properties and behavior of 3-to-1 triplicate functions, whether canonical
or not. We can observe that canonical 3-to-1 functions have some useful properties that can be utilized in constructions and
proofs; in particular, virtually all proofs related to canonical 3-to-1 functions rely on one of these properties rather than the
functions being canonical triplicates per se. At the time of writing, all known 3-to-1 APN functions have these properties.
Whether this is true for any 3-to-1 APN function and, indeed, whether any 3-to-1 APN function is linear-equivalent to a
canonical one, we do not know at the moment. In order to make the subsequent proofs and arguments as general as possible,
we formulate these properties independently of the notion of canonical triplicates.

Recall that the sumset of a set S is the set 2S = {s1 + s2 : s1, s2 ∈ S, s1 6= s2}. As observed in [31], a necessary condition
for an (n, n)-function F to be APN is that for any a, b ∈ Im(F ) with a 6= b, the sumsets of F−1(a) and F−1(b) should
be disjoint. Indeed, if x1, x2 ∈ F−1(a) and y1, y2 ∈ F−1(b) with x1 + x2 = y1 + y2, then DwF (x1) = DwF (y1) = 0 for
w = x1 +x2, which implies that F is not APN. For this reason, we will frequently consider only triple partitions T for which
the sumsets of any two distinct triples Ti and Tj are disjoint. We formalize this as follows.

Definition 4. Let T = {Ti}Ki=1 be a triple partition of F2n for some even natural number n. We say that T has disjoint
sumsets if 2Ti ∩ 2Tj = ∅ for any i, j ∈ {1, 2, . . . ,K} with i 6= j. If T corresponds to an (n, n)-function F , then we will say
that F has disjoint sumsets.

We can immediately see that any canonical 3-to-1 function has disjoint sumsets. In fact, this is implied by the stronger
condition that the elements in any triple {x, βx, β2x} corresponding to a canonical 3-to-1 function sum to 0.

Definition 5. Let T = {Ti}Ki=1 = {{ai, bi.ci}}Ki=1 be a triple partition of F2n for some natural number n. We say that T has
the zero-sum property if ai + bi + ci = 0 for i = 1, 2, . . . ,K. If F corresponds to T , then we say that F has the zero-sum
property, or that F is a zero-sum triplicate.

We can easily see that any canonical 3-to-1 function has the zero-sum property since its preimage sets are of the form
{x, βx, β2x} for x ∈ F∗2n . It is also not difficult to see that the zero-sum property is preserved under linear equivalence.
Indeed, suppose that we have L1 ◦ F1 ◦ L2 = F2 for some (n, n)-functions F1, F2, L1, L2 with L1, L2 linear permutations.
Suppose, furthermore, that F1 has the zero-sum property. Since L1 maps 0 to 0, it cannot possibly affect the zero-sum property,
and so we can assume that L1 is the identity and we have simply F1 ◦ L2 = F2. Now, consider some distinct x, y, z ∈ F2n

such that F2(x) = F2(y) = F2(z). Then F1(L1(x)) = F1(L1(y)) = F1(L1(z)), and so L1(x) + L1(y) + L1(z) = 0 since F1

has the zero-sum property. By the linearity of L1, we get L1(x + y + z) = 0 and hence x + y + z = 0. Thus, F2 has the
zero-sum property as well.

According to our computational results, all known 3-to-1 APN functions over F2n for n ≤ 14 have the zero-sum property.
We conjecture that this is true in general. Note that we only formulate the conjecture for the quadratic case. In fact, we suspect
that it might hold for 3-to-1 APN functions of higher algebraic degree as well; but since at the time of writing we know very
few non-quadratic APN functions, we consider that we have sufficient empirical data to state such a conjecture only for the
quadratic case.

Conjecture 1. Any quadratic 3-to-1 function (which is then necessarily APN) has the zero-sum property.

We can observe that the canonical 3-to-1 functions have another interesting property: if we consider two distinct preimage
sets {x, βx, β2x} and {y, βy, β2y} for some x, y ∈ F2n , we can see that {x+ y, βx+ βy, β2x+ β2y} is also a preimage set;
and so is e.g. {x+ βy, βx+ β2y, β2x+ y}. In this sense, the “sum” of two triples Ti and Tj from T is also a triple Tk from
T . We note that two triples can be “summed” like this in 3! = 6 distinct ways, and precisely 3 of them give triples from T ;
for instance, if we add x to y but βx to β2y, then {x+ y, βx+ β2y, β2x+ βy} is not a triple Tk for any k. We will refer to
this as the triple summation property.

Definition 6. Let T = {Ti}Ki=1 be a triple partition of F2n for some even natural number n. We say that T has the triple
summation property if, for any two distinct triples of elements T = {a, b, c} and T ′ = {x, y, z} from T , the following three
conditions are satisfied:
• {a+ x, b+ y, c+ z} ∈ T , or {a+ x, b+ z, c+ y} ∈ T ; and
• {a+ y, b+ z, c+ x} ∈ T , or {a+ y, b+ x, c+ z} ∈ T ; and
• {a+ z, b+ y, c+ x} ∈ T , or {a+ z, b+ x, c+ y} ∈ T .
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Note that if e.g. {a + x, b + y, c + z} ∈ T in the first condition above, then {a + y, b + x, c + z} /∈ T and so necessarily
{a+ y, b+ z, c+ x} ∈ T from the second condition since c+ z cannot belong to two distinct triples from T . Following the
same logic, we can equivalently say that T has the triple summation property if
• {a+ x, b+ y, c+ z}, {a+ y, b+ z, c+ x}, {a+ z, b+ x, c+ y} ∈ T ; or
• {a+ x, b+ z, c+ y}, {a+ y, b+ x, c+ z}, {a+ z, b+ y, c+ x} ∈ T .

If an (n, n)-function F corresponds to T , then we also say that F has the triple summation property.

Just like the zero-sum property, the triple summation property is preserved under linear equivalence. Indeed, we can observe
that if L1 ◦ F1 ◦ L2 = F2 as before, then L1 does not affect this property since it only changes the image set of the function
(and not the way in which the elements of F∗2n combine into triples); we can thus assume that L1 is the identity, so that we
have F1 ◦L2 = F2. But since L2 is additive and maps triples from the triple partition corresponding to F1 to triples from the
triple partition corresponding to F2, we can see that F1 has the triple summation property if and only if F2 does.

We can observe that any function having the triple summation property and having disjoint sumsets also has the zero-sum
property as follows.

Proposition 1. Let F be a 3-to-1 (n, n)-function with the triple summation property and distinct sumsets. Then F has the
zero-sum property.

Proof. Let T = {Ti}Ki=1 be a triple partition corresponding to F , and let {a, b, c} and {x, y, z} be two distinct triples in T .
Since F has the triple summation property, then either {a+ x, b+ y, c+ z} or {a+ x, b+ z, c+ y} must also be a triple in
T . We will treat the case when {a+ x, b+ y, c+ z} ∈ T ; the other case is handled analogically. Again, since F has the triple
summation property, one of {a+y, b+z, c+x} or {a+y, b+x, c+z} must be a triple in T . But if both {a+x, b+y, c+z} and
{a+y, b+x, c+z} are in T , then they have the element c+z in common, and so {a+x, b+y, c+z} = {a+y, b+x, c+z} since
all distinct triples in T must be disjoint. If a+x = a+y, we get x = y which contradicts {x, y, z} ∈ T ; and if a+x = b+x,
we get a = b, which contradicts {a, b, c} ∈ T . So we must have that {a+ x, b+ y, c+ z} and {a+ y, b+ z, c+ x} are triples
in T . If these two triples are not distinct, then we must have one of a+x = a+y, or a+x = b+z, or a+x = c+x. The first
and third case imply x = y and a = c, respectively, and give an immediate contradiction; so we must have a+ b+ x+ z = 0.
In this case, however, the sumsets of {a, b, c} and {x, y, z} are not distinct, which contradicts the hypothesis. The triples
{a+ x, b+ y, c+ z} and {a+ y, b+ z, c+ x} must therefore be distinct. Applying the triple summation property, we see that
one of {x + y, y + z, x + z} and {x + y, b + c, b + c + x + y} must be in T . In the first case, we see that the sumsets of
{x+y, y+z, x+z} and {x, y, z} coincide, and so we must have {x, y, z} = {x+y, y+z, x+z} which implies x+y+z = 0.
In the second case, the sumset of {x+ y, b+ c, b+ c+ x+ y} intersects those of {x, y, z} and {a, b, c}, which cannot happen
since we assume that {x, y, z} and {a, b, c} are distinct. We have thus shown that for any two distinct triples {x, y, z} and
{a, b, c} in T , we must have x + y + z = 0. Since this is true for any two distinct triples, we can conclude that F has the
zero-sum property as claimed (the only case not handled by the above argument is when T contains a single triple, which
is the case for n = 2; but then T contains all non-zero elements of F22 , and so it has the zero-sum property in this case as
well).

We thus know that any canonical 3-to-1 function has the triple summation property, the zero-sum property, and disjoint
sumsets; any 3-to-1 function with the triplicate summation property and disjoint sumsets has the zero-sum property; and any
3-to-1 APN function has disjoint sumsets. We leave open the question of whether these inclusions are strict. Since according
to our computational data, all known quadratic 3-to-1 (and hence APN) functions do have the triple summation property, we
can formulate the following stronger conjecture. Since any quadratic 3-to-1 function is APN by Theorem 1, we can see by
Proposition 1 that Conjecture 2 implies Conjecture 1.

Conjecture 2. Any quadratic 3-to-1 APN function has the triple summation property.

We remark that Theorems 1 and 2 apply to any plateaued (and, in particular, quadratic) 3-to-1 function, regardless of whether
it has any of the above properties or not.

As pointed out above, a triplicate function can be constructed by arbitrarily partitioning the non-zero elements of F∗2n into
triples, and assigning each triple an arbitrary output value; the polynomial form of such a function can then be recovered by
e.g. Lagrange interpolation. Since we are mostly interested in constructing APN functions, a natural question would be whether
APN-ness might impose some additional restrictions on the way that F∗2n is partitioned into triples. As already discussed, the
triple partition T corresponding to an APN 3-to-1 function must have disjoint sumsets; and since the sumsets of T form a
triple partition themselves, this means that any element of F∗2n has a unique expression as the sum of two elements belonging
to the same triple of T . Since this is an important structural property of 3-to-1 APN functions, we state it as an observation.

Observation 1. Let F : F2n → F2n with F (0) = 0 be a 3-to-1 APN function for some even natural number n, and let
T = {Ti}Ki=1 be a triple partition of F2n corresponding to F . Then the sumsets 2Ti for i = 1, 2, . . . ,K partition F∗2n as well.
Furthermore, the sum of each sumset 2Ti is equal to 0 (in fact, this is true for any sumset), and so {2Ti}Ki=1 is a triple partition
with the zero-sum property; furthermore, {0} ∪ 2Ti is a linear flat for i = 1, 2, . . . ,K.
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Equivalently, any element v ∈ F∗2n can be uniquely expressed as a sum of two elements from the same triple Ti; that is, for
every v ∈ F∗2n , there exists a unique index i ∈ {1, 2, . . . ,K} such that ai + bi = v, or ai + ci = v, or bi + ci; and precisely
one of these possibilities occurs.

We note that partitioning F2n into disjoint two-dimensional linear subspaces is not a trivial problem5. A natural idea for
constructing such partitions would be to start with all non-zero elements of F∗2n and keep removing triples {a, b, a + b} of
elements from them, until no further elements remain. That is, we would keep track of a set S of elements that remain to
be partitioned (initially, we would have S = F∗2n ); and in each step, we would take a pair of distinct elements a, b ∈ S with
a + b ∈ S at random, and remove {a, b, a + b} from S. Using this approach is likely to lead to a “dead end”, in the sense
that we reach a point where a+ b /∈ S for any a, b ∈ S. A potentially interesting problem for future work would be to obtain
necessary or sufficient conditions allowing us to construct such partitions of F2n efficiently; this would then facilitate the search
for 3-to-1 APN functions.

Remark 1. We note that Observation 1 allows for a simple direct proof of Theorem 1 in the case of quadratic functions (the
proofs in [27] and [48] being consequences of more complex, general statements). For the sake of making the present paper as
self-contained as possible, and since the proof in terms of Observation 1 serves as a good illustration of some of the structural
properties of triplicate functions, we describe it below.

Let T = {Ti}Ki=1 be a triple partition corresponding to F , with Ti = {ai, bi, ci} for i = 1, 2, . . . ,K. First, we show that
any APN triplicate function F over F2n is 3-to-1. Suppose that F is not 3-to-1. Then we must have some 1 ≤ i < j ≤ K
such that F (ai) = F (aj). Let w = ai + aj and find two elements x, y ∈ F∗2n such that x, y ∈ Tk for some k and x+ y = w
(which exist and are uniquely defined by Observation 1). Then DwF (x) = DwF (ai). In order for F to be APN, we must
have {x, y} = {ai, aj}. But if x = ai, then w = ai + aj = x + aj = x + y so y = aj , which cannot be because x and y
should belong to the same triple. A similar contradiction follows if y = ai.

We now show the converse implication in the case of quadratic functions. Suppose F is a quadratic 3-to-1 function (and,
in particular, a triplicate function). Note that every differential set HaF contains 0 since for any a ∈ F∗2n we can find a triple
Ti such that a ∈ 2Ti by Observation 1. If F is not APN, then the equation DaF (x) = 0 must have at least four solutions
for some a ∈ F∗2n since F is quadratic and hence DaF is affine. Thus, we have four distinct elements x1, x2, x3, x4 ∈ F2n

with F (x1) = F (x2), F (x3) = F (x4), and x1 + x2 = x3 + x4. Now, if x1 and x2 belong to the same triple, then x3 and x4

must belong to different triples since a = x1 + x2 = x3 + x4 and by Observation 1, any non-zero element a ∈ F∗2n can be
expressed uniquely as a sum of two elements from the same triple. Thus, we necessarily have at least two elements belonging
to different triples for which F maps to the same value, and hence F is not 3-to-1.

An even simpler proof in the more general case of plateaued functions is possible using Theorem 2 of [24]. This proof
relies on counting the number of pairs (a, b) for which F (a) = F (b), and so we defer it until after Proposition 5, where we
characterize 3-to-1 among triplicate functions as those having the minimum possible number of such pairs. We still consider
the direct proof from Remark 1 to be of interest, as it demonstrates how the structure of the triples Ti can be used to prove
some important properties of 3-to-1 and triplicate functions. While the proof using Proposition 5 is seemingly shorter, both its
complexity and structure are “hidden” in Theorem 2 of [24].

B. Characterization by the Walsh transform

In this section, we show that an (n,m)-function F is triplicate if and only if all of its Walsh coefficients of the form
WF (0, b) for b ∈ F2n are congruent to 1 modulo 3. One of the implications is quite simple; namely, it is easy to see that if
F is a triplicate function, then its Walsh coefficients WF (0, b) are constant modulo 3 as shown in the following proposition.

Proposition 2. Suppose F is a triplicate (n,m)-function for some natural numbers m,n with n even. Then, for any b ∈ F2m ,
we have

3 |WF (0, b)− 1. (4)

Proof. The Walsh coefficient WF (0, b) is

WF (0, b) =
∑
x∈F2n

(−1)b·F (x) = (−1)b·F (0) +
∑

06=x∈F2n

(−1)b·F (x).

Since the non-zero elements of F2n form triples {ai, bi, ci} for i = 1, 2, . . . ,K = (2n − 1)/3 that map to the same value, the
above becomes

WF (0, b) = (−1)b·F (0) + 3

K∑
i=1

(−1)b·F (ai),

and since F (0) = 0 by the definition of a triplicate function, the claim follows immediately.

5When we refer to two linear subspace S1 and S2 as “disjoint”, we mean that S1 ∩ S2 = {0}, i.e. that they have a trivial intersection.
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We thus have the following immediate corollary.

Corollary 1. All components of a triplicate function are unbalanced.

We note that the property of all components being unbalanced can be rather useful when studying certain properties of
functions; in particular, plateaued functions with all components unbalanced have rather nice characterizations that do not hold
for the general case of plateaued functions [24].

We now prove the converse statement to Proposition 2 for (n,m)-functions. The proof proceeds by induction on m; we first
prove the base case, i.e. we show that any Boolean triplicate (n, 1)-function f has Walsh coefficients that satisfy the divisibility
property (4).

Proposition 3. Let f : F2n → F2 be a Boolean function with f(0) = 0 for some even natural number n. Suppose that

3 |Wf (0)− 1.

Then f is a triplicate function.

Proof. Let Zf = {x ∈ F2n : x 6= 0, f(x) = 0} and Of = {x ∈ F2n : f(x) = 1} be the pre-images of 0 and 1, respectively,
under f . Then f is triplicate if and only if #Zf and #Of are both multiples of 3. Since n must be even, we have 3 | 2n− 1,
and since #Zf + #Of = 2n − 1, it is enough to show that 3 | #Zf . By definition, the Walsh coefficient Wf (0) is

Wf (0) =
∑
x∈F2n

(−1)f(x) = (−1)f(0) +
∑

06=x∈F2n

(−1)f(x) = 1 + #Zf −#Of .

Since #Of = 2n − 1−#Zf , the above becomes

Wf (0) = 2#Zf − (2n − 1) + 1.

By assumption, 3 |Wf (0)−1, and so 3 | 2#Zf − (2n−1). Since 2n−1 itself is a multiple of three, this implies that 3 | #Zf ,
and thus f is a triplicate function.

The following proposition then described the induction step, and allows us to show, in particular, that any (n, n)-triplicate
function has the divisibility property (4).

Proposition 4. Let F be an (n,m)-function with F (0) = 0 for some natural numbers n,m such that n is even and

3 |WF (0, b)− 1

for all b ∈ F2n . Then F is a triplicate function.

Proof. From the previous proposition, we know that all component functions of F are triplicate functions. We prove the
statement by induction on m. If m = 1, there is nothing to prove. If m = 2, let A, resp. B, resp. C, resp. D denote the number
of pre-images among F∗2n of 00, resp. 01, resp. 10, resp. 11 (note that here we make use of the vector space representation,
and consider the elements of Fm2 = F2

2 as pairs of binary values). Since 00 and 01 exhaust all possible outputs where the first
coordinate is zero, and since the first coordinate function is a triplicate function, we must have 3 | A+B. Similarly, we have
3 | A+ C, and hence 3 | B − C. On the other hand, 01 and 10 exhaust all possibilities where the sum of the two coordinate
functions is equal to 1, and since all component functions are triplicates, we also have 3 | B+C. From this and 3 | B−C we
get 3 | B and 3 | C. But since 3 | A+C, this implies 3 | A; it is then easy to obtain also 3 | D, so that we have 3 | A,B,C,D.

Now suppose that the statement holds for all dimensions of the co-domain up to m; we will show that it also holds for
m+ 2. Let A, resp. B, resp. C, resp. D denote the number of pre-images among F∗2n of all elements of the form 00x̄, resp.
01x̄, resp. 10x̄, resp. 11x̄, for some fixed m-bit vector x̄ ∈ Fm2 . Let G be the (n,m+1)-function obtained from F by restricting
its output to the last m+ 1 coordinates; that is, if F = (f1, f2, . . . , fm+2), then let G = (f2, f3, . . . , fm+2). By the induction
hypothesis, G is a triplicate function. Since A + C is the number of all elements of F∗2n whose last m + 1 coordinates are
of the form 0x̄, this implies that 3 | A + C; in the same way, 3 | B + D. By restricting F to all coordinates except f2, we
also obtain 3 | A + B and 3 | C + D in the same way. From 3 | A + B and 3 | A + C, we have 3 | B − C. Consider now
the function G′ obtained from F by summing its first two coordinates, i.e. G′ = (f1 + f2, f3, f4, . . . , fm+2). By the induction
hypothesis, G′ is a triplicate function, and so the number of pre-images of 1x̄ under G′ is a multiple of 3. But this number
of pre-images is precisely B + C, and so 3 | B + C. Combining this with 3 | B − C, we have 3 | 2B and hence 3 | B. It is
then easy to get 3 | A, 3 | C, and 3 | D as well. If the same argument is repeated for all possible x̄ ∈ F2m , we see that the
number of pre-images of any element in F2m+2 is a multiple of three, and thus F is a triplicate function.

We thus obtain the following characterization of triplicate functions.

Theorem 3. Let F be an (n,m)-function with F (0) = 0 for some natural numbers n and m with n even. Then F is a
triplicate function if and only if

WF (0, b) ≡ 1 (mod 3)

for every b ∈ F2n .
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C. Characterization of 3-to-1 among triplicate functions

Since a triplicate function F always maps all elements from a triple Ti = {ai, bi, ci} ∈ T to the same value, for every i,
we have six pairs (ai, bi), (ai, ci), (bi, ai), (bi, ci), (ci, ai), and (ci, bi) that map to the same value under F . Since we have
K = (2n − 1)/3 triples Ti, there are at least 6K + 2n ordered pairs (x, y) ∈ F2

2n that map to the same value (the term 2n

coming from pairs of the form (x, x) for x ∈ F2n ). As shown in the following proposition, 3-to-1 triplicate functions are
precisely those triplicate functions that attain this lower bound with equality; we justify this by observing that if we take some
triplicate function F with triples Ti and Tj with F (Ti) 6= F (Tj) and modify it by “merging” the output values on Ti and Tj
(so that we obtain a function G with G(Ti) = G(Tj) and G(Tk) = F (Tk) for k 6= i, j), the number of pairs (x, y) for which
F (x) = F (y) can only increase.

Proposition 5. Let F be a triplicate (n, n)-function for some even natural number n, and let DF = {(x, y) : x, y ∈ F2n , F (x) =
F (y)} be the set of pairs of (not necessarily distinct) elements of F2n that map to the same value under F . Then

#DF ≥ 2n+1 + 2n − 2.

Furthermore, equality occurs if and only if F is a 3-to-1 function.

Proof. Let K = (2n − 1)/3 be the number of distinct triples as before. Since F (0) = 0 for any triplicate function F , in the
following we will consider only the values of F on F∗2n when discussing its image set. We know that a triplicate (n, n)-function
can have at most K distinct elements in its image set (which may also include 0 if F (a) = 0 for some a ∈ F∗2n ). Let us
consider all triplicate functions whose image set is a subset of some set of elements {y1, y2, . . . , yK}. We are interested in
how many triples Ti map to each yj for j = 1, 2, . . . ,K. In order to express this formally, we introduce the notion of a
configuration of triples. More precisely, we call any ordered K-tuple (k1, k2, . . . , kK) of natural numbers with ki ≥ 0 such
that

∑K
i=1 ki = K a configuration of triples. The intuition is that ki counts the number of triples that map to yi. If F is 3-to-1,

we have ki = 1 for all 1 ≤ i ≤ K. Observe that any configuration of triples can be obtained from (1, 1, . . . , 1) by an iterative
sequence of steps in which we “transfer” some elements from ki to kj ; more formally, such a step consists of taking some
natural number ∆ ≤ ki, and defining a new configuration (k′i)i of triples in which k′i = ki −∆, k′j = kj + ∆, and k′l = kl
for all l 6= i, j. Furthermore, we can observe that any configuration of triples can be obtained from (1, 1, . . . , 1) by always
“transferring” elements from ki to kj such that ki ≤ kj . It is thus sufficient to show that such an operation never decreases
the number of pairs in DF . Furthermore, we can assume ∆ = 1, since for larger values of ∆ the transfer can be decomposed
into several steps with ∆ = 1 for each step.

Suppose (ki)i is some configuration of triples in which ki = A and kj = B. If we have a new configuration of triples
(k′i)i as above with k′i = A − 1, k′j = B + 1, and k′l = kl for all l 6= i, j, the number of unordered pairs {x, y} for which
F (x) = F (y) with respect to (k′i)i increases by(

3A− 3

2

)
+

(
3B + 3

2

)
−
(

3A

2

)
−
(

3B

2

)
=

(3A− 3)(3A− 4) + (3B + 3)(3B + 2)− 3A(3A− 1)− 3B(3B − 1)

2
=

= 9(B −A+ 1)

as compared to the number of such pairs with respect to (ki)i. When A ≤ B, this always leads to a positive increase in the
number of pairs since B −A+ 1 > 0, and thus the uniform configuration of triples (1, 1, . . . , 1) corresponds to the minimum
number of such pairs.

Remark 2. The above result immediately suggests a comparison with a known characterization of APN functions among
plateaued functions. We know from Theorem 6 in [24] that any plateaued (n, n)-function having all of its component functions
unbalanced satisfies

#{(a, b) ∈ F2
2n : F (a) = F (b)} ≥ 2n+1 + 2n − 2,

with equality if and only if F is APN. Recall from Corollary 1 that the component functions of any triplicate functions are
necessarily unbalanced. Note that this is almost the same characterization as the one that we have in Proposition 5; in fact, the
two characterizations coincide in the case of plateaued (and, in particular, quadratic) functions. Despite this apparent similarity,
the two characterizations concern different cases: Theorem 6 in [24] applies to any plateaued function (regardless of whether
it is triplicate or not), while Proposition 5 addresses the case of any triplicate function (regardless of whether it is plateaued
or not). Furthermore, we know examples of triplicate APN functions that are not plateaued (for instance, the Dobbertin power
function over F2n for even n), and so the two characterizations do not coincide even in the APN case. In this sense, it is
remarkable that 3-to-1 and triplicate functions behave in the same way as APN and plateaued ones with respect to the size of
DF .
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Remark 3. As mentioned immediately after Remark 1, we can now combine Corollary 1 (stating that all components of
a triplicate function are unbalanced) with Proposition 5 and Theorem 2 of [24] to obtain a very short proof of Theorem 1.
Theorem 2 from [24] states that any (n,m)-function F is plateaued with component functions all unbalanced if and only if

#{(a, b) ∈ F2
2n : DaDbF (x) = v} = #{(a, b) ∈ F2

2n : F (a) + F (b) = v} (5)

for any v ∈ F2m (for our purposes, of course, we assume that n = m). Taking v = 0, we can see that F is APN if and only if
DaDbF (x) = 0 only when a = 0, b = 0, or a = b. In total, this amounts to 3 · 2n− 2 pairs (a, b). From Proposition 5, we see
that the quantity on the right-hand side of (5) is equal to 3 · 2n − 2 if and only if F is 3-to-1. The claim follows immediately.

Since the number of elements that map to the same image can be expressed using the second powers of Walsh coefficients
of the form WF (0, b), the characterization from Proposition 5 can be equivalently expressed in terms of the Walsh transform
as follows.

Corollary 2. Let F be a triplicate (n, n)-function for some even natural number n. We have∑
b∈F2n

W 2
F (0, b) ≥ 22n+1 + 22n − 2n+1,

with equality if and only if F is 3-to-1.

Proof. We have ∑
b∈F2n

W 2
F (0, b) =

∑
b,x,y∈F2n

χb(F (x) + F (y)) = 2n#{(x, y) ∈ F2
2n : F (x) = F (y)}.

As observed in Proposition 5, the number of ordered pairs (x, y) with F (x) = F (y) is always at least 2n+1 + 2n − 2, and
equality occurs if and only if F is 3-to-1. It then suffices to substitute this number in the above expression.

In fact, in the case when F is 3-to-1, we can explicitly evaluate the power moment
∑
b∈F2n

W 2
F (a, b) for any a ∈ F∗2n as

well; it can only take two possible values, one of which is attained for a = 0, and the other is attained for any a ∈ F∗2n . This
is another remarkable property of triplicate functions, as the values of these power moments can greatly vary in general (even
in the case of quadratic APN functions).

Proposition 6. Let F be a 3-to-1 (and hence triplicate) (n, n)-function for some even positive natural number n. Then:∑
b∈F2n

W 2
F (a, b) =

{
22n+1 + 22n − 2n+1 a = 0

2n(2n − 2) a 6= 0.
(6)

Proof. The case for a = 0 is contained in the statement of Corollary 2. For any fixed 0 6= a ∈ F2n , we have∑
b∈F2n

W 2
F (a, b) =

∑
b,x,y∈F2n

χb(F (x) + F (y))χa(x+ y)

=
∑

x,y∈F2n

χa(x+ y)
∑
b∈F2n

χb(F (x) + F (y))

= 2n
∑
x∈F2n

∑
y∈F2n

F (x)=F (y)

χa(x+ y)

= 2n[1 +
∑

06=x∈F2n

∑
y∈F−1(x)

χa(x+ y)]

= 2n[1 +
∑

06=x∈F2n

χa(x+ x) + χa(x+ yx) + χa(x+ zx)]

= 2n[1 +
∑

06=x∈F2n

χa(0) + χa(x+ yx) + χa(x+ zx)],

where yx and zx are the two elements forming a triple Ti = {x, yx, zx} for some 1 ≤ i ≤ K and x ∈ F2n . Note that as x
runs through all non-zero values x ∈ F∗2n , then so do x+ yx and x+ zx; and so the above becomes∑

b∈F2n

W 2
F (a, b) = 2n[1 + 2n − 1 + 2

∑
06=x∈F2n

χa(x)]

= 2n[2n − 2] = 22n − 2n+1

as claimed.

Recall from [27] that an (n, n)-function F is called zero-difference δ-balanced if the equation DaF (x) = 0 has precisely
δ solutions for every a ∈ F∗2n . Proposition 5 in [27] (when specialized to the case of δ = 2 and characteristic 2) states that a



16

function F satisfies (6) if and only if F is zero-difference 2-balanced. It has already been observed in [27] that what we call
canonical triplicates are zero-difference 2-balanced when they are 3-to-1. Proposition 6 allows us to generalize this to the case
of triplicate functions that are not necessarily canonical. We thus have the following corollary.

Corollary 3. Any 3-to-1 function is zero-difference 2-balanced.

Remark 4. For comparison, the quadratic APN (6, 6)-function α25x5 + x9 + α38x12 + α25x18 + α25x36 can take 9 distinct
values of the power moment

∑
bW

2
F (a, b) depending on the value of a.

D. The image of a quadratic 3-to-1 function as a partial difference set

An important result of [27] is that the image set of any quadratic canonical 3-to-1 function is a partial difference set with
prescribed parameters. This is a fascinating structural result having fundamental implications about the properties and behavior
of such functions. In this section, we generalize this result to the case of any quadratic 3-to-1 function, and investigate some
of its consequences.

We recall that a partial difference set of an additive group G with parameters (v, k, λ, µ) is a set D ⊆ G with #D = k
such that every non-identity element in D can be represented as g − h for g, h ∈ D, g 6= h in exactly λ ways; and each
non-identity element in G \D can be represented as g − h for g, h ∈ D, g 6= h in exactly µ different ways.

In order to prove Theorem 4, we will need the following lemma from [49], which was also used in [27] in the proof of
Theorem 2 (whose specialization to the case of 3-to-1 functions over fields of even characteristic is essentially the special case
of the following Theorem 4 for canonical triplicate 3-to-1 functions).

Lemma 1. [49] Let G be a group and D be a set of elements in G with |D| = k. Then, if D = −D, then D is a (v, k, λ, µ)
partial difference set if and only if, for any nonprincipal character χ of G we have

χ(D) =
∑
d∈D

χ(d) =
(λ− µ)±

√
(µ− λ)2 − 4(µ− k)

2
. (7)

Since we know that any quadratic 3-to-1 function has a Gold-like Walsh spectrum by Theorem 2, and also that any such
function has all components unbalanced by Theorem 3 and that every differential set is a linear (as opposed to merely affine)
hyperplane, we can now obtain the following.

Theorem 4. Let F be a 3-to-1 crooked (n, n)-function for some natural number n = 2k. Then the set of non-zero elements
D = Im(F ) \ {0} in its image set is a (2n, (2n − 1)/3, λ, µ) partial difference set, where

(λ, µ) = ((2k + 4)(2k − 2)/9, (2k + 1)(2k − 2)/9)

if k is odd, and
(λ, µ) = ((2k − 4)(2k + 2)/9, (2k − 1)(2k + 2)/9)

if k is even.

Proof. By Lemma 1, it is enough to show that χa(D) takes the value on the right-hand side of (7) for any a ∈ F∗2n . Observe
that

χa(D) =
∑
d∈D

χa(D) =
1

3

∑
x∈F∗

2n

χa(F (x)) =
1

3
(WF (0, a)− 1) (8)

since we know that F is 3-to-1. Thus, verifying that the hypothesis of Lemma 1 holds amounts to computing the values of
WF (0, a) for all a ∈ F∗2n . Since F is crooked and hence plateaued, we know that WF (0, a) ∈ {0,±λa}, where λa is the
amplitude of Fa. On the other hand, we know that WF (0, a) is not zero by Theorem 3. From Theorem 2, we know that F
has a Gold-like Walsh spectrum, and so λa ∈ {2n/2, 2n/2+1} for any a ∈ F∗2n . In order to finish the proof, it only remains to
compute the value on the right-hand side of (7) and to compare it with the two amplitudes. We treat the cases of k odd and
k even separately. When k is odd, we have

λ− µ =
(2k + 4)(2k − 2)− (2k + 1)(2k − 2)

9
=

2k − 2

3
;

µ− k =
(2k + 1)(2k − 2)

9
− 22k − 1

3
=

(2k + 1)(2k − 2)− 3(2k + 1)(2k − 1)

9
=

(2k + 1)(2k − 2− 3 · 2k + 3)

9
=

(2k + 1)(1− 2k+1)

9
;
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(µ− λ)2 − 4(µ− k) =
(2k − 2)2 − 4(2k + 1)(1− 2k+1)

9
=

22k − 2k+2 + 4− 4(2k − 22k+1 + 1− 2k+1)

9
=

22k − 2k+2 + 4− 4(1− 2k − 22k+1)

9
=

22k − 2k+2 + 4− 4 + 2k+2 + 22k+3

9
=

9 · 22k

9
= 22k.

Finally, the right-hand side of (7) becomes

(2k − 2)/3± 2k

2
=

2k − 2± 3 · 2k

6
=

{
(2k+2 − 2)/6

(−2k+1 − 2)/6.

When k is even, we have

λ− µ =
(2k − 4)(2k + 2)− (2k − 1)(2k + 2)

9
=

(2k + 2)(−3)

9
=
−2k − 2

3
;

µ− k =
(2k − 1)(2k + 2)

9
− 22k − 1

3
=

(2k − 1)(2k + 2)− 3(2k − 1)(2k + 1)

9
=

(2k − 1)(2k+2 − 3 · 2k − 3)

9
=

(2k − 1)(−1− 2k+1)

9
;

(µ− λ)2 − 4(µ− k) =
(2k + 2)2

9
+

4(2k − 1)(2k+1 + 1)

9
=

22k + 2k+2 + 4 + 4(22k+1 + 2k − 2k+1 − 1)

9
=

22k + 2k+2 + +4(22k+1 − 2k − 1)

9
=

22k + 2k+2 + 4 + 22k+3 − 2k+2 − 4

9
=

9 · 22k

9
= 22k;

in this case, (7) becomes
(−2k − 2)/3± 2k

2
=
−2k − 2± 3 · 2k

6
=

{
(−2k+2 − 2)/6

(2k+1 − 2)/6.

By (8), the values that we obtain above should be multiplied by 3 and incremented by 1; they should then match the value of
WF (0, a). The values become 2k+1 and −2k for k odd, and −2k+1 and 2k for k even. Comparing these with the ones from
(3) from Theorem 2, we can see that the values coincide. Consequently, D = Im(F ) \ {0} is a partial difference set with the
prescribed parameters as claimed.

From this, we can immediately get the following corollary, which counts the multiplicities of the elements in the multiset
MF = [F (x) + F (x+ y) + F (y) : x, y ∈ F2n ] for some given (n, n)-function F .

Note that the quantities given in Theorem 4 are given in terms of the number of non-zero elements of the image set of F
that add up to a given value. The multiplicities in MF will be larger, since F is a 3-to-1 function, and thus every non-zero
value from its image set can be obtained in 3 different ways. This means that the quantities given in the theorem have to be
multiplied by 9 (since, if i1 + i2 = v for some v ∈ F2n and i1, i2 ∈ Im(F ), then i1 and i2 can both be obtained in 3 different
ways). Furthermore, the quantities in Theorem 4 only account for combinations involving non-zero elements of Im(F ). If
i1 + i2 = v with e.g. i1 = 0, then v must be in the image set of F itself; and there are three ways to do this. The same happens
if i2 = 0, and so when computing the multiplicities of elements in MF belonging to the image of F , we have to add 6.

Corollary 4. Let F be a quadratic 3-to-1 function over F2n for some natural number n = 2k. Then all non-zero elements of
MF = [F (x) + F (y) + F (x+ y) : x, y ∈ F2n ] have multiplicity in MF either

(2k + 4)(2k − 2) + 6 or (2k + 1)(2k − 2)

when k is odd, or
(2k − 4)(2k + 2) + 6 or (2k − 1)(2k + 2)

when k is even. In both the odd and the even case, the number of elements having these two multiplicities is precisely (2n−1)/3
and 2(2n − 1)/3, respectively; and the (2n − 1) elements having the first multiplicity are precisely the non-zero elements in
the image set of F .

As a byproduct, Theorem 4 allows us to compute the multiset Π0
F for any crooked (and, in particular, quadratic) 3-to-1

function F ; in the case of quadratic F , we can also compute the exact form of the multiset ΠF . These multisets are defined
in [13], where it is shown that ΠF is invariant under CCZ-equivalence for APN functions; that is, if F and G are APN
and CCZ-equivalent, then ΠF = ΠG. According to Corollary 2 of [13], the minimum value of ΠF gives a lower bound on
the Hamming distance dH(F,G) between a given APN function F and any other APN function G; more precisely, we have
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dH(F,G) ≥ dmF /3e+ 1, where mF = min ΠF . Furthermore, in the case when F is quadratic, it is shown that it is enough
to compute the multiset

Π0
F = [#{a ∈ F2n : b ∈ H0

aF} : b ∈ F2n ],

which can then be used to immediately recover ΠF . If F is APN, it is easy to see that the number of derivative directions
a ∈ F2n for which b ∈ H0

aF for some b ∈ F∗2n is equal to half the number of pairs (a, x) ∈ F∗2n×F2n such that F (x)+F (a+
x) + F (a) = b. Clearly, this is the multiplicity of b in MF . As we already have these multiplicities computed in Corollary 4,
it is straightforward to combine this with Corollary 2 of [13] in order to obtain the following.

Corollary 5. Let F be a quadratic 3-to-1 function over F2n for some natural number n = 2k. Then

Π0
F =



 (2k + 1)(2k − 2)

2︸ ︷︷ ︸
×(2n−1)/3

, (2k + 4)(2k − 2)/2︸ ︷︷ ︸
×2(2n−1)/3

, 2n

 k odd

 (2k − 4)(2k + 2)

2︸ ︷︷ ︸
×(2n−1)/3

, (2k − 1)(2k + 2)/2︸ ︷︷ ︸
×2(2n−1)/3

, 2n

 k even,

where the multiplicities of the elements in the multiset are given in under-braces; consequently, for any APN function G over
F2n distinct from F , we have

dH(F,G) ≥

{
(2k+1)(2k−2)

6 + 1 k odd
(2k−4)(2k+2)

6 + 1 k even.
(9)

The same value was obtained in Proposition 6 of [13] for the particular case of the Gold function x3. We have thus
generalized this to any quadratic 3-to-1 triplicate function. As observed in [13], all instances from the known APN polynomial
(as opposed to monomial) families take the same, Gold-like value of ΠF (although ΠF can take thousands of distinct values
across the known sporadic APN instances). The preceding discussion explains this phenomenon for the case of those families
that contain 3-to-1 functions (or functions equivalent to 3-to-1 functions) among their instances; we refer to Section VI where
we survey the functions from the known infinite APN families with respect to the property of their instances being triplicates.

Corollary 5 gives a lower bound on the distance between any quadratic 3-to-1 function T , and any other APN function. In
particular, it gives a lower bound on the distance between any two quadratic 3-to-1 functions. We can apply the same approach
as in [30] to obtain an upper bound on the number of quadratic 3-to-1 functions over F2n for any even natural number n.
We can then see that the proportion of quadratic 3-to-1 functions over F2n goes to 0 as n approaches infinity; the same was
shown for planar and AB functions in [30].

Corollary 6. Let n be an even natural number. Then the number of quadratic 3-to-1 functions over F2n is at most

(2n)2n∑d−1
j=0

(
2n

j

)
(2n − 1)j

,

where d is the value of the lower bound in (9) from Corollary 5. Consequently, the proportion of quadratic 3-to-1 functions
over F2n to all (n, n)-functions converges to 0 as n approaches infinity.

Since the number of pairs (x, y) or triples (x, y, x + y) satisfying F (x) + F (y) = v or F (x) + F (y) + F (x + y) = v,
respectively, can be expressed using the Walsh transform, we can obtain the following equivalent form of Theorem 4.

Corollary 7. Let F be a quadratic 3-to-1 (n, n)-function for some even natural number n = 2k. Then

1

22n

∑
a,b∈F2n

χb(v)W 3
F (a, b) =

1

2n

∑
b∈F2n

χb(v)W 2
F (0, b) =



2n+1 + 2n − 2 v = 0

(2k + 4)(2k − 2) + 6 v ∈ Im(F ) \ {0}, k odd
(2k − 4)(2k + 2) + 6 v ∈ Im(F ) \ {0}, k even
(2k + 1)(2k − 2) v /∈ Im(F ), k odd
(2k − 1)(2k + 2) v /∈ Im(F ), k even.

Expressions of this form can be quite difficult to compute, in general, and we expect that the above expressions might lead
to even more insights about the structure of quadratic 3-to-1 functions in the future. We note that we formulate the above
results strictly for quadratic 3-to-1 functions, and not for crooked functions as in some other cases; this is because we know
that ΠF can be derived from the smaller multiset Π0

F only in the case of quadratic APN functions (Proposition 5 of [13]).
The proof of this proposition uses the fact that the derivatives of a quadratic function are affine, and so it is not immediately
clear whether this result can be generalized to crooked functions.
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IV. NUMBER OF DISTINCT DIFFERENTIAL SETS

As we have seen above, 3-to-1 functions among the triplicate functions (and, in particular, APN functions among the quadratic
triplicate functions) can be interpreted as extremal objects in the sense that they minimize the number of pairs (x, y) ∈ F2

2n

such that F (x) = F (y). We note that a tight upper bound on the number of such pairs for APN functions is given in Lemma 2
of [48]. As we know from [28] and [48], 3-to-1 APN functions also attain the smallest possible size of the image set among all
APN functions over finite fields of even extension degree. In this section, we show that 3-to-1 functions are extremal objects
in yet another sense. More precisely, we study the number of differential sets of canonical triplicate functions, and observe
that 3-to-1 functions among the quadratic canonical triplicate functions can also be characterized in terms of having the largest
possible number of distinct differential sets. In the course of comparing this with the behavior of APN functions in general,
we compute the exact number of distinct differential sets of any APN power function (even over F2n for odd n); moreover,
we show that for a power APN function F over F2n , we have HaF = HbF if and only if F (a) = F (b) for any a, b ∈ F2n .

In Subsection IV-A, we show that for any APN power function F (x) = xd, we have HaF = HbF if and only if F (a) = F (b),
and use this to compute the exact number of distinct differential sets of F . In Subsection IV-B, we do the same for the case
of quadratic canonical triplicate functions, and observe that they act as a generalization of power APN functions over fields
of even extension degree in this sense. Finally, in Subsection IV-C, we do the same for quadratic APN permutations for odd
n, and show that they act as a generalization of APN power functions for the case of odd n in this sense as well.

A. Differential sets of APN power functions

Recall that 3-to-1 APN functions behave like the power APN functions in a number of ways, e.g. with respect to having
an image set of size precisely (2n − 1)/3 + 1 elements in the case of even n. It is thus natural to begin our investigation by
studying the behaviour of the differential sets of power functions. It is not difficult to see that if F (x) = F (y) for some power
function F , then the differential sets HxF and HyF coincide.

Proposition 7. Let F (x) = xl be a power function over F2n . Let a, b ∈ F∗2n If F (a) = F (b), then HaF = HbF .

Proof. The derivative of F is simply DaF (x) = xl + (x + a)l, and for some given v = DaF (x), multiplying both sides by
(b/a)l = 1 yields yl + (y + b)l = v with y = (xb/a).

What is more surprising is that the converse implication also holds; that is, if HaF = HbF for some a, b ∈ F∗2n , then
F (a) = F (b) for a power function F . Before proceeding to the proof, we need to make the following auxiliary observation.

Lemma 2. Let F (x) = xl be a power function over F2n . Then, if HaF = HbF for some a, b ∈ F∗2n , the maps x 7→ (b/a)lx
and x 7→ (a/b)lx are permutations of F2n that fix HaF .

Proof. That e.g. x 7→ (b/a)lx is a permutation of F2n is clear; furthermore, for any value v ∈ HaF , i.e. for any

v = xl + (a+ x)l

we have
(b/a)lv = yl + (b+ y)l

for y = (bx/a) so that the image of v lies in HbF = HaF . Thus, x 7→ (b/a)lx does indeed fix HbF = HaF .

Then, to show that HaF = HbF necessarily implies F (a) = F (b), it suffices to prove that any element c defining a
permutation x 7→ cx of F2n that fixes a given differential set must, in fact, be the neutral element of F∗2n . To this end, we first
characterize the cardinality of any set S that is left invariant under a map of the type x 7→ cx.

Lemma 3. Let c ∈ F∗2n and define ϕ : F2n → F2n by ϕ(x) = cx. Furthermore, let S ⊆ F∗2n be a non-empty subset of F2n

such that ϕ(S) = S, i.e. {ϕ(s) : s ∈ S} = S. Then the cardinality of S can be written in the form

#S =

k∑
i=1

ai · gi

for some positive natural number k, where the numbers gi are the cardinalities of subgroups of F∗2n (i.e. divisors of 2n − 1)
and ai are natural numbers (that may be zero). Furthermore, the order of c must be a common divisor of the numbers gi with
i = 1, 2, . . . , k such that ai 6= 0.

Proof. Pick some arbitrary element s1 ∈ S; denote s2 = ϕ(s1), s3 = ϕ(s2), etc. After a finite number of such steps we
must reach some element sk with ϕ(sk) = s1. From the definition of ϕ this can be written simply as cks1 = s1; since by
assumption s1 6= 0, this implies ck = 1 so that the order of c must be a multiple of k.

Denote R = {s1, s2, . . . , sk}. If R = S, then we are done; otherwise, take S′ = S \ R and repeat the same procedure for
S′, observing that S′ satisfies the hypothesis of the proposition as well since ϕ(S) = S and ϕ(R) = R immediately implies
ϕ(S \R) = (S \R).
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To summarize, #S can indeed be be written as a sum of group orders, and c raised to the power of each such order must
evaluate to 1; hence, the order of c must be a common divisor of all these numbers.

We thus obtain the following corollary.

Corollary 8. Let F be an APN function over F2n and let c ∈ F∗2n be such that the permutation ϕ(x) = cx fixes S = HaF
for some a ∈ F∗2n ; then c = 1.

Proof. Suppose that F is APN and S = HaF for some a ∈ F∗2n so that #S = 2n−1. If ϕ(S) = S for some ϕ(x) = cx with
#S = g1 + g2 + · · ·+ gl and, denoting k = GCD(g1, g2, . . . , gk), we have k | 2n−1 or k | (2n−1 − 1) depending on whether
0 ∈ HaF (the first case corresponds to 0 /∈ HaF , while the second one corresponds to 0 ∈ HaF ).

However, both cases are impossible for k 6= 1. Indeed, in the case #S = 2n−1 only powers of two may divide #S, while
2n−1 is an odd number and thus not divisible by two; in the case #S = 2n−1−1, assuming ak = 2n−1−1 and bk = 2n−1
for some a, b ∈ Z leads to (b− a)k = 2n−1 so that we once again get a contradiction if we assume k 6= 1 due to 2n−1 being
divisible only by powers of two and the other two numbers involved being odd. Consequently, the order of any c such that
ϕ(x) = cx fixes HaF must be 1, i.e. c must be the neutral element.

From this and from Lemma 2 we obtain the desired result.

Theorem 5. Let F be an APN power function over F2n . Then, for any a, b ∈ F∗2n we have

HaF = HbF ⇐⇒ F (a) = F (b).

Proof. By Lemma 2, we have that if HaF = HbF , then x 7→ x(b/a)l is a permutation that fixes Ha = Hb. By Corollary
8, we see that (b/a)l = 1, and so bl = al, i.e. F (a) = F (b). The converse implication was already observed in Proposition
7.

This then immediately allows us to compute the number of distinct differential sets of the power APN functions.

Corollary 9. Let F be a power APN function over F2n . Then the number of distinct differential sets of F is equal to the
cardinality of its image over F2n , i.e.

#{HaF : a ∈ F2n} = #{F (x) : x ∈ F2n}.

In particular, a power APN function has 2n distinct differential sets when n is odd, and (2n − 1)/3 + 1 distinct differential
sets when n is even.

Note that Theorem 5 applies to any power APN function, which must then necessarily be a canonical triplicate for an even
dimension n; in particular, we do not assume anything about e.g. the algebraic degree. The condition that the power function is
APN is, however, necessary: taking e.g. F (x) = x5 over F28 , we can see that F has an image set consisting of 52 elements, but
only 18 distinct differential sets. In the general case of polynomials (as opposed to monomials), neither of the two implications
HaF = HbF ⇐⇒ F (a) = F (b) holds (even for quadratic APN functions), and it is easy to find counterexamples among the
known polynomial APN instances; for instance, the so-called Kim function x3 + x10 +αx24 over F26 (where α is a primitive
element of F26 ) serves as a simple counterexample to both implications.

B. Differential sets of canonical triplicate functions

We now proceed to the case of triplicate functions. In the case of a canonical triplicate (n, n)-function F , it is easy to
observe that HaF = HβaF = Hβ2aF for any a ∈ F∗2n ; in this way, all elements belonging to a triple Ti not only map to the
same output, but induce the same differential set as well. This is simply because for any a, x ∈ F2n we have

DβaF (βx) = F (βx) + F (β(x+ a)) = F (x) + F (a+ x) = DaF (x).

In the particular case when F is a quadratic APN function so that its ortho-derivative πF is well-defined, this observation
means that πF is itself a canonical triplicate function.

Observation 2. If F is a canonical triplicate (n, n)-function for some even natural number n, then HaF = HβaF = Hβ2aF
for any a ∈ F∗2n . In particular, the ortho-derivative of a crooked canonical triplicate function is a canonical triplicate function.

We thus know that a canonical triplicate function can have at most (2n − 1)/3 distinct non-trivial differential sets (by
“non-trivial”, we mean that we exclude the differential set H0F = {0}). Since 3-to-1 triplicate functions are precisely those
triplicate functions that maximize the size of the image set, one would intuitively expect that their differential sets might exhibit
a similar behavior; that is, that 3-to-1 functions have precisely (2n−1)/3 distinct non-trivial differential sets. In the following,
we prove that this is indeed so for the case of quadratic canonical triplicates.
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Recall that [HbF ] is the set of all a ∈ F2n for which HaF = HbF . Recall also the symplectic form ∆aF (x) = F (x) +
F (a+x) +F (a) +F (0), which in our case becomes simply ∆aF (x) = F (x) +F (a+x) +F (a) since any triplicate function
F satisfies F (0) = 0 by definition.

Lemma 4. For any generalized crooked (and, in particular, quadratic APN) function F with F (0) = 0, we have

W 2
F (0, β) = 2n(1 + #[H(β)]).

Proof. We have

W 2
F (0, β) =

∑
x,a∈F2n

χβ(F (x) + F (x+ a)) =
∑

x,a∈F2n

χβ(F (x) + F (x+ a) + F (a) + F (a))

=
∑

x,a∈F2n

χ(β∆aF (x) + βF (a)) =
∑

x,a∈F2n

χ(∆∗aF (β)x+ βF (a))

=
∑
a∈F2n

χ(βF (a))
∑
x

χx(∆∗aF (β))

= 2n
∑

a∈F2n :∆∗aF (β)=0

χ(βF (a)),

where ∆∗aF is the adjoint operator6 of ∆aF . We thus need to find all roots of ∆∗aF (β). Since Ker(L∗) = Im(L)⊥ for any
linear (n, n)-function L, we have that ∆∗aF (β) = 0 if and only if HaF = H(β). The statement follows immediately, bearing
in mind that 0 is a trivial root of ∆∗aF .

We can now show that a canonical quadratic 3-to-1 function has precisely (2n − 1)/3 distinct non-trivial differential sets.
In fact, we prove a slightly more general statement, where we assume that F is crooked instead of quadratic (note that any
generalized crooked triplicate function is crooked, since all differential sets contain 0). We know that any generalized crooked
function is also plateaued (see e.g. [25], p.278) which is a property that we need in the proof.

Theorem 6. Let F be a crooked canonical triplicate (n, n)-function. Then F has at most (2n − 1)/3 distinct non-trivial
differential sets, with equality if and only if F is 3-to-1. In the latter case, the ortho-derivative πF is a canonical triplicate
3-to-1 function as well.

Proof. From Observation 2, we already know that F has at most (2n−1)/3 distinct non-trivial differential sets (in fact, this is
true for any canonical triplicate function, regardless of whether it is crooked or not). We now show that, in the crooked case, if
F is 3-to-1, then all of the (2n− 1)/3 differential sets corresponding to distinct triples Ti are distinct. Since F is crooked, we
know that it is plateaued [25]; let λb denote the amplitude of the component function Fb for b ∈ F∗2n . Since Fb is unbalanced
by Corollary 1, we must have WF (0, b) ∈ {±λb}, and thus W 2

F (0, b) = λ2
b for all b ∈ F∗2n . Since by Theorem 2 F has a

Gold-like Walsh spectrum, we know that λb, and hence W 2
F (0, b), takes precisely two values across all b ∈ F∗2n , viz. 2n and

2n+2. By Lemma 4 we then have that the hyperplane H(b) corresponds to 3 differential sets Ha if W 2
F (0, b) = 2n+2; and that

it corresponds to no differential set if W 2
F (0, b) = 2n. Thus, HaF = HbF for some a, b ∈ F∗2n implies b ∈ {a, βa, β2a}, and

so πF is 3-to-1 as claimed. Conversely, if HaF = HbF for some b /∈ {a, βa, β2a}, then we must have W 2
F (0, b) /∈ {2n, 2n+2}

by Lemma 4, and so F does not have a Gold-like Walsh spectrum. We thus obtain a contradiction to Theorem 2.

Based on some limited computational experiments, we suspect that the same is true for triplicate functions that are not
necessarily canonical and not necessarily crooked (or, a fortiori, quadratic); in other words, that a triplicate function has
(2n − 1)/3 + 1 distinct differential sets if and only if it is 3-to-1. We leave this as an open question.

C. Differential sets of Quadratic APN permutations

As we have seen above, for even dimensions n, quadratic canonical 3-to-1 functions behave in the same way that monomial
APN functions do with respect to their number of distinct differential sets. In this section, we show an analogue of this
observation for odd dimensions n. We know that any APN monomial over a finite field of odd extension degree must be a
permutation, and by Theorem 5, we know that all of its differential sets are distinct. Below, we will prove that any quadratic
APN permutation also has this property. In fact, our proof does not rely on the parity of the dimension; but since we know
that quadratic APN permutations cannot exist for even n [42], this observation only makes sense in the odd case.

The following Lemma 5 concerns APN functions, and does not assume that the function in question is a permutation; it
could thus be useful in the even case as well. It allows us to differentiate between distinct differential sets of an APN function
F by means of exponential sums. We show that if HaF = HbF for some a, b ∈ F2n , then the exponential sum takes a
pre-determined value. When HaF 6= HbF , the values of the exponential sum can vary; however, in the quadratic case, we
know that all differential sets of F are affine hyperplanes, and we can once again evaluate the exponential sum explicitly.

6The adjoint of a linear function L is the linear function L∗ satisfying Tr(xL(y)) = Tr(L∗(x)y) for any x, y ∈ F2n .
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Lemma 5. Let F be an APN (n, n)-function, and let a, b ∈ F∗2n . If HaF = HbF , then∑
β,x,y∈F2n

χβ(F (a+ x) + F (x) + F (b+ y) + F (y)) = 22n+1.

If a = 0 and b ∈ F∗2n , then we have∑
β,x,y∈F2n

χβ(F (a+ x) + F (x)) =
∑
α,β

χα(a)W 2
F (α, β) = 2n{x ∈ F2n : F (x) = F (a+ x)}. (10)

If F is, in addition, quadratic, then for HaF 6= HbF we have∑
β,x,y∈F2n

χβ(F (a+ x) + F (x) + F (b+ y) + F (y)) = 22n.

Proof. The character χβ is evaluated over the sum of all pairs DaF (x) and DbF (y). If HaF = HbF , then for any x, there
are precisely two values of y for which DaF (x) = DaF (y). For each of these, the sum over β evaluates to 2n, while for the
remaining values of y (for which DaF (y) 6= DaF (x)) the sum evaluates to 0. There are 2n choices of x, and hence the first
claim follows.

In general, the above sum can take many different values if HaF 6= HbF . However, when F is quadratic, its differential
sets are affine hyperplanes, and so if Ha 6= Hb, then Ha ∩Hb is an (n− 2)-dimensional affine subspace. The differential sets
HaF and HbF thus have precisely 2n−2 elements in common, and for these elements, the sum over β evaluates to 2n; while
for the remaining elements, it evaluates to 0. Any of these 2n−2 elements has two pre-images under DaF , and so the entire
sum evaluates to 2n−2 · 2 · 2 · 2n = 22n.

Thus, the sum
∑
b

∑
β,x,y χβ(DaF (x) + DbF (y)) can be used to count for how many b ∈ F2n we have HbF = HaF . If

we assume, in addition, that F is a permutation, we can easily evaluate this sum.

Proposition 8. Let F be a quadratic APN permutation of F2n for some natural number n. Then all differential sets of F are
distinct.

Proof. Fix 0 6= a ∈ F2n ; we want to compute the sum∑
b,β,x,y

χβ(F (x) + F (a+ x) + F (b+ y) + F (y)) =
∑
β,x,y,z

χβ(F (x) + F (a+ x) + F (y) + F (z)),

which by Lemma 5 depends on the number of directions b ∈ F∗2n for which HaF = HbF . Note that the case of b = 0 can
be ignored by (10) since for a permutation F we have #{x ∈ F2n : F (x) = F (a+ x)} = 0 whenever a 6= 0. On account of
F being a permutation, we can run through F−1(y) instead of y; and similarly, we can run through F−1(z) instead of z. We
thus get ∑

β,x,y,z

χβ(F (x) + F (a+ x) + F (y) + F (z)) =
∑
β,x,y,z

χβ(F (x) + F (a+ x) + y + z)

=
∑
β,x

χβ(F (x) + F (a+ x))
∑
y,z

χβ(y + z) = 23n

since the sum
∑
y χβ(y) =

∑
y χ(βy) is equal to 2n if β = 0 and is equal to 0 otherwise. We now denote by M the number

of directions c ∈ F∗2n for which Ha = Hc, and by D the number of c ∈ F∗2n for which Ha 6= Hc. Then we solve the system

23n = 22n+1M + 22nD

2n − 2 = M +D

to obtain M = 1.

We suspect that the same might be true for APN permutations of higher algebraic degrees and, possibly, for permutations
in general. We have generated a number of permutations at random, and all of them appear to have this property. Due to the
huge number of permutations of F2n , however, we do not consider this experimental data to be conclusive.

D. Other extremal properties of 3-to-1 functions

As we have seen above, 3-to-1 functions can be characterized among quadratic canonical triplicate functions by minimizing
or maximizing the value of certain parameters (such as the size of the image set, or the number of distinct differential sets).
In this section, we formulate several more characterizations of this form and show, in particular, that 3-to-1 functions can be
characterized by their number of bent components, and their number of components having non-zero linear structures.
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1) Linear structures: Recall that a ∈ F∗2n is called a linear structure of f : F2n → F2 if Daf is constant. If F is a
crooked APN function (so that all of its differential sets are linear hyperplanes), then we can observe that HaF = H(b) for
some a, b ∈ F∗2n if and only if a is a linear structure of Fb. Indeed, if HaF = H(b), then we have Tr(bDaF (x)) = 0 for
all x ∈ F2n by the definition of H(b); but from the additivity of the trace function, we can write this as Tr(bDaF (x)) =
Tr(bF (x) + bF (a + x)) = Fb(x) + Fb(a + x) = DaFb(x) = 0 for any x ∈ F2n . We thus know that some linear hyperplane
H(b) corresponds to a differential set of F if and only if Fb has non-zero linear structures. The number of components with
non-zero linear structures of a crooked triplicate function is thus equal to the number of distinct differential sets. Theorem 6
can then be equivalently formulated as follows.

Corollary 10. Let F be a crooked canonical triplicate (n, n)-function. Then F has at most (2n − 1)/3 components having
non-zero linear structures. Furthermore, this bound is met with equality if and only if F is 3-to-1.

2) Bent components: Continuing from the above, we can see from Proposition 29 on page 100 of [25] that the derivative
Def a Boolean function f : F2n → F2 is equal to 0 if and only if the support Supp(Wf ) of its Walsh transform is contained
in {0, e}⊥ = H(e). Applying this to the components of an (n, n)-function F , we see that e ∈ F2n is a linear structure of Fb
for some b ∈ F∗2n if and only if He = H(b) if and only if Supp(WFb

) ⊆ H(e). On other hand, if Fb is bent for some b ∈ F2n ,
then we have Supp(WFb

) = F2n , and so the hyperplane H(b) does not correspond to any differential set. Thus, the number
of distinct differential sets of F is equal to the number of non-bent components. From the preceding discussion, we know that
this number is no greater than (2n − 1)/3 for any triplicate function, and is attained by the 3-to-1 functions; we thus obtain
yet another alternative expression of Theorem 6.

Corollary 11. Let F be a crooked canonical triplicate (n, n)-function. Then F has as most (2n− 1)/3 non-bent components.
Furthermore, this bound is met with equality if and only if F is 3-to-1.

V. EQUIVALENCE TO TRIPLICATE FUNCTIONS

In Section VI and VII we survey the known infinite families and sporadic APN instances, respectively, for triplicate functions.
Clearly, it is possible that some APN (n, n)-function F is not a triplicate (or, equivalently, 3-to-1) function per se, but is EA-
equivalent to a triplicate function. As we have already observed, compositions with linear permutations L1 and L2 of F2n

of the form L1 ◦ F ◦ L2 do not change the property of being a triplicate (or 3-to-1) function. Thus, to decide whether F is
EA-equivalent to a triplicate function, it suffices to check whether there exists a linear (n, n)-function L such that F +L is a
triplicate function. The following observation is instrumental to our approach.

Observation 3. Let F,G,L be (n, n)-functions for some natural number n such that L is linear and F = G+L+ c for some
c ∈ F2n . Then

WF (a, b) = χ(bc)WG(a+ L∗(b), b) (11)

for any a, b ∈ F2n , where L∗ is the adjoint operator of L.

Proof. From the definition of the Walsh transform, we have

WF (a, b) =
∑
x∈F2n

χ(bF (x) + ax) =
∑
x∈F2n

χ(bG(x) + bL(x) + bc+ ax)

=
∑
x∈F2n

χ(bG(x) + L∗(b)x+ bc+ ax)

= χ(bc)
∑
x∈F2n

χ(bG(x) + (L∗(b) + a)x) = χ(bc)WG(a+ L∗(b), b),

which completes the proof.

We can combine the characterization of triplicate functions by their Walsh coefficients from Theorem 3 with Observation 3
above to obtain the following condition.

Observation 4. Let T be a triplicate (n, n)-function for some natural number n, and let F = T + L + c for some linear
(n, n)-function L. Let L∗ be the adjoint operator of L. If L∗(b) = a for some a, b ∈ F2n , then χ(bc)WF (a, b) ≡ 1 (mod 3).

Proof. Since T is a triplicate function, we have WT (0, b) ≡ 1 (mod 3) for any b ∈ F2n by Theorem 3. If L∗(b) = a for some
a, b ∈ F2n , then WF (a, b) = WT (a+ L∗(b), b) = WT (0, b) by (11), and the claim follows.

This now allows for a conceptually simple algorithm that, for a given (n, n)-function F , tries to guess the values of L∗

on a basis B = {b1, b2, . . . , bn} of F2n such that F + L is a triplicate function. Essentially, having guessed the values of L∗

on b1, b2, . . . , bK for some K ≤ n, we also know the values of L∗ on the linear span of {b1, b2, . . . , bK}, and we can check
whether any of these values violates the condition from Observation 4. If so, we can immediately backtrack; and if not, then
we can proceed to guessing the value of bK+1 (if K < n); if we have already reached K = n and no contradictions have
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occurred, then we have found an L∗ satisfying Observation 4 from which we can, of course, immediately reconstruct L from
L∗.

A pseudocode description of this search procedure is given under Algorithm 1.

Algorithm 1: Testing EA-equivalence to a triplicate function
Data: A function F : F2n → F2n with F (0) = 0
Result: A linear (n, n)-function L such that F + L is a triplicate function, or failure

1 begin
2 let B = {b1, b2, . . . , bn} be a basis of F2n

3 for i = 1 to n do
4 # Pre-compute possible values for L∗(bi)
5 Di ← {x ∈ F2n : WF (x, bi) ≡ 1 (mod 3)}
6 # recursively try to guess the values of L∗ ob the basis
7 return Guess(1)

8 Function Guess(i):
9 # if we know the values of L∗ on the entire basis, we are finished

10 if i = n+ 1 then
11 reconstruct and return L

12 # otherwise, try the next value
13 backup Di #for backtracking
14 while #Di 6= 0 do
15 d← Random(Di)
16 Di ← Di \ {d}
17 L∗(bi)← d
18 # Check for violations on all known inputs of L∗

19 for I ⊆ {1, 2, . . . , i} do
20 x←

∑
i∈I bi

21 y ←
∑
i∈I L

∗(bi)
22 if WF (y, x) 6≡ 1 (mod 3) then
23 # try the next value for d
24 continue;

25 # if no contradictions have occured, go to the next basis element
26 result← Guess(i+ 1)
27 if result 6= false then
28 return result

29 # if we have run out of options for bi, then backtrack
30 restore Di

31 return false

To see how well this performs in practice, we test it on some of the known APN functions F over F2n for n ∈ {6, 8, 10} as
follows: we take a random linear function L, add it to F to obtain G = F +L, and then run a C implementation of Algorithm
1 to check for equivalence to triplicates. We do this both for APN functions F that are, or are equivalent to, triplicates, and for
ones that are not. For each tested function F , we repeat the experiment 10 times, and report the average running time of the
trials. We discuss the variant of Algorithm 1 which terminates upon finding the first linear L for which F + L is a triplicate
function; and so we report separately on the average running times for functions equivalent to triplicates, and for ones that are
not equivalent to triplicates. The observed running times are given in Table III. In the case of n = 10, the running time in the
negative case was too long, and we aborted the searches.

TABLE III
SAMPLE RUNNING TIMES (IN SECONDS) FOR DECIDING WHETHER A GIVEN FUNCTION F IS EA-EQUIVALENT TO A TRIPLICATE FUNCTION VIA

ALGORITHM 1

n 6 8 10
triplicate 0.006 1.035 1432

non-triplicate 0.008 11.954 -
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Despite the fact that the running times increase rapidly with the dimension n, this procedure is still efficient enough to allow
us to check whether known sporadic instances, and instances from the know APN families are EA-equivalent to triplicates for
n ≤ 8. Our computational results are summarized in Sections VI and VII.

VI. TRIPLICATES IN THE INFINITE FAMILIES

In this section, we demonstrate that triplicate and canonical triplicate functions are heavily represented among the instances of
the known infinite APN families. More precisely, we observe the following. Note that in all cases we consider even dimensions
n.

(i) all power APN functions are canonical triplicates;
(ii) family C1-C2 consists entirely of canonical triplicates;

(iii) the functions of family C3 are not canonical triplicates; the functions from C3 can be shown to be non-canonical 3-to-1
functions over F2n when 4 | n (however, we can computationally verify that they are linear-equivalent to canonical 3-to-1
functions);

(iv) families C4, C5, C6 consist entirely of canonical triplicates;
(v) the only canonical triplicates in C7-C9 are the ones that intersect C1-C2;

(vi) the functions from C10 are not canonical triplicates;
(vii) some of the functions in families C10 and C12 are non-canonical triplicates, and the remaining ones are not EA-equivalent

to 3-to-1 functions;
(viii) family C13 consists entirely of canonical triplicates;

(ix) family C14 consists entirely of canonical triplicates when n/2 is odd;
(x) family C15 consists entirely of canonical triplicates.

Proposition 9. All functions belonging to families C1-C2, C4, C5, C6, C13, C14, or C15, as well as any monomial APN
function over F2n for even n, is a canonical triplicate. None of the functions from family C3 are canonical triplicates. The
only functions from family C7-C9 that are canonical triplicates are the ones that intersect C1-C2.

Proof. The functions from family C1-C2 have the polynomial form

x2s+1 + u2k−1x2ik+2mk+s

,

so that the exponents in their univariate form are 2s + 1 and 2ik + 2mk+s. One of the conditions for such functions to be
APN is gcd(s, 3k) = gcd(s, n) = 1, and since n is even, we must have that s is odd. Hence 2s + 1 is a multiple of 3. When
considering the other exponent, we consider the cases p = 3 and p = 4 separately. In both cases, we have m = p − i, i.e.
m + i = p. In the case when p = 3, this means that we have either (i,m) = (1, 2), or (i,m) = (2, 1). In the first case, the
exponent becomes 2k + 22k+s = 2k(1 + 2k+s), which is divisible by 3 if and only if 3 | 1 + 2k+s, which is true if and only
if k + s is odd; since we know that s must be odd, this means that the second exponent is a multiple of 3 if and only if k is
even. Similarly, if (i,m) = (2, 1), the second exponent becomes 22k + 2k+s = 22k(1 + 2s−k), which is divisible by 3 if and
only if 3 | (1 + 2s−k) which, in turn, occurs if and only if s− k is odd; as before, we know that s is odd; we thus conclude
that when p = 3, the second exponent is divisible by 3 if and only if k is even. On the other hand, we have n = pk = 3k, and
since n is even by assumption, k must necessarily be even as well. Thus, all functions from C1-C2 for p = 3 are canonical
triplicates. When p = 4, we have three possibilities for the values of (i,m), viz. (1, 3), (2, 2), and (3, 1). The second exponent,
2ik + 2mk+s, then becomes 2k + 23k+s = 2k(1 + 22k+s) in the first case; 22k + 22k+s = 22k(1 + 2s) in the second case; and
23k + 2k+s = 2k+s(22k−s + 1) in the third case. Since s is odd, we can immediately see that this exponent is divisible by 3
in all three cases, and so the functions from C1-C2 are canonical triplicates when p = 4 as well.

To see that the functions from C3 are canonical 3-to-1 functions when n = 2m = 4k, we refer to the bivariate representation
of these functions given in [23], viz.

F (x, y) = (c+ cq)x2i+1 + (w2i

+ w2iq + cw2iq + cqw2i

)xy2i

+ (w + wq + cw + cqwq)x2i

y + (w2i+1 + w(2i+1)q+

cw2iq+1 + cqw2i+q)y2i+1 + (w + wq)xy + s(w2i

+ w2iq)(xy)2i

,

where w ∈ F2n \ F2m , q = 2m, and c, s ∈ F2n satisfy the conditions given in Table II. The sum of the last two terms in the
above expression, i.e. (w + wq)xy + s(w2i

+ w2iq)(xy)2i

, is linear, and can be ignored up to EA-equivalence. If n = 4k, so
that m is even, then we have that i must be odd thanks to the condition gcd(i,m) = 1. Consequently, we can see that in all
of the terms x2i+1, xy2i

, x2i

y, and y2i+1, the total degree is always a multiple of 3, and so (x, y), (βx, β2y), and (β2x, βy)
always map to the same output for any x, y ∈ F2m . Consequently, the functions are triplicates, and thanks to Theorem 1, they
are 3-to-1. Clearly, the elements of F2n represented by the pairs e.g. (x, y) and (βx, β2y) from F2

2m are not multiples of β,
and so these functions are not canonical.

The functions from families C4, C5, and C6 are obviously canonical triplicates since the composition L ◦C of a canonical
(n, n)-triplicate C with any linear function L (and, in particular, any trace function Trnm for m | n) is a canonical triplicate as
well.
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Similarly, as we know from e.g. [25], any power APN function xe over a field of even extension degree n must satisfy
gcd(e, 2n − 1) = 3 and, in particular, e must be a multiple of 3.

The functions from family C13 are of the form

x3 + a(x2i+1)2k

+ bx3·2m

+ c(x2i+m+2m

)2k

,

and we can clearly ignore the value of k since e is divisible by 3 if and only if e · 2k is divisible by 3 for any natural numbers
e and k. For the same reason, 3 · 2m is always a multiple of 3, and 2i+m + 2m is a multiple of 3 if and only if the same is
true for 2i + 1. We thus only have to consider the exponent 2i + 1. According to the conditions for family C13, we must have
i ∈ {m− 2,m, 2m− 1, (m− 2)−1 mod n}, and m must be odd. We then immediately see that 2i + 1 is a multiple of 3 in
all cases, and so all functions from family C13 are indeed canonical triplicates.

The functions from family C14 are defined in bivariate form. We remark that a univariate representation of these functions
can be found in e.g. [20]. However, it can be easily seen that this univariate representation does not correspond to canonical
3-to-1 functions since not all exponents are multiples of 3. On the other hand, as we shall see immediately, the bivariate form
does correspond to canonical 3-to-1 functions. This illustrates that the exact way in which a function is “translated” from
bivariate to univariate form affects whether the function is a canonical triplicate.

We divide the proof of C14 into two cases, depending on the parity of m. If m is odd, then all elements of F2n = F22m

can be expressed as pairs (x, y) ∈ F2
2m , with the pair (x, y) corresponding to the element x+ βy. We can see that β = (0, 1),

and that if X = (x, y) for some X ∈ F2n , x, y ∈ F2m , then βX = (y, x+ y) and β2X = (x+ y, x). We will now show that
in the case when m is odd, all three of these elements map to the same image for both constructions belonging to the C14
family.

When F (x, y) = (F1(x, y), F2(x, y)) = (x2i+1 + xy2i

+ y2i+1, x23i

y + xy23i

), we can easily see that

F1(y, x+ y) = y2i+1 + y(x+ y)2i

+ (x+ y)2i+1

= y2i+1 + x2i

y + y2i+1 + x2i+1 + x2i

y + xy2i

+ y2i+1

= y2i+1 + x2i+1 + xy2i

= F1(x, y).

Similarly, we have F1(x, y) = F1(x + y, x) and F2(x, y) = F2(y, x + y) = F2(x + y, x). Furthermore, we can see that
if e.g. (x, y) = (x + y, x), then we necessarily have (x, y) = (0, 0). Thus, F (x, y) = (F1(x, y), F2(x, y)) is a canonical
triplicate function. Under the conditions given in Table II, we know that F (x, y) is APN, and so must be 3-to-1 by Theorem
1. Consequently, all functions from C14-1 are canonical 3-to-1 APN functions. The same approach can be used for C14-2,
whose functions have the bivariate form F (x, y) = (F1(x, y), F2(x, y)) = (x2i+1 + xy2i

+ y2i+1, x23i

y+ xy23i

); it is enough
to verify that F1 and F2 map to the same output value for (x, y), (y, x+ y), and (x+ y, x).

It remains to handle the case when m is even. This is only possible in the case of C14-1, since for C14-2 one of the
conditions for the function to be APN is that m must be odd. In the even case, β ∈ F2m and so we cannot apply the above
approach. Instead, denoting F (x, y) = (F1(x, y), F2(x, y)) as above, we can note that F (x, y) = F (βx, β2y) = F (β2x, βy),
which can easily be verified by observing that for every term xiyj in the bivariate representation of F (x, y), we have 3 | i+ j.
Once again, we have shown that the functions from C14-1 are canonical triplicate functions; and combining Theorem 1 with
the fact that these functions are APN under the conditions in Table II, we see that they are, in fact, canonical 3-to-1 functions.

The function from family C15 have the univariate representation

aTrnm(bx3) + aqTrnm(b3x9),

and, as remarked above, the property of a function being a canonical triplicate is invariant under composition with linear
functions; it is thus obvious that C15 consists of canonical 3-to-1 functions.

To see that the functions from family C3 can never be canonical triplicates, we observe that their univariate representation,
viz.

sxq+1 + x2i+1 + xq(2
i+1) + cx2iq+1 + cqx2i+q

contains the exponent 2i + 1 and so, if such a function is a canonical triplicate, we must have that i is odd. On the other
hand, unless c = 0, we also have the exponent 2i + q = 2i + 2m = 2m(2i−m + 1); if this exponent is also a multiple of 3,
then we must have that i−m is odd, i.e. m must be even. However, since s ∈ F2n \ Fq (in particular, s 6= 0), the exponent
q + 1 = 2m + 1 has a non-zero coefficient, and it is clearly not divisible by 3. The only remaining possibility is that we have
c = 0; but in this case, the condition that x2i+1 + 1 = 0 has no solution x with xq+1 = 1 is immediately violated since x = 1
is such a solution. Thus, no function from family C3 can be a canonical triplicate.

The functions from family C7-C9 have the univariate form

ux2s+1 + u2k

x2−k+2k+s

+ vx2−k+1 + wu2k+1x2s+2k+s

.
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We can observe that 2−k + 1 = 22k + 1 is never a multiple of 3, and so we must have v = 0. Furthermore, if 3 | 2s + 2k+s =
2s(1 + 2k), then k must be odd; and 3 | 2s + 1 implies that s is odd as well so that s− k is even. But then

2−k + 2k+s = 22k + 2k+s = 22k(1 + 2s−k)

cannot be a multiple of 3, and so we must have w = 0 if the function is a canonical triplicate. When v = w = 0, all functions
from C7-C9 are, in fact, contained in C1-C2.

The functions from C10 have a univariate representation of the form

(x+ x2m

)2k+1 + u′(ux+ u2m

x2m

)(2k+1)2i

+ u(x+ x2m

)(ux+ u2m

x2m

).

One of the conditions states that u should be a primitive element of F2n , and so in particular u 6= 0. The last term from the
above expression expands to

u(ux2 + (u2m

+ u)x2m+1 + x2m+1

),

and so these functions are clearly not canonical triplicates.

Remark 5. As demonstrated in the previous proposition, the functions from families C14-1 and C14-2 as given by the
bivariate representation from Table II are canonical triplicate functions. On the other hand, it is easy to see that the univariate
representation of these functions found in e.g. [20] does not correspond to a canonical triplicate function. This suggests that
it may be possible to find a simple canonical form for these functions directly from their bivariate form. In the case of
n = 2m with m odd, we can easily obtain such a representation for C14-1 and C14-2 by writing every element X ∈ F2n as
X = x+βy for x, y ∈ F2m where x, y ∈ F2m and β is primitive in F4. This is possible only when m is odd due to β /∈ F2m .
The advantage in this case is that we have βk ∈ {1, β, β2} for any natural number k, which greatly simplifies the resulting
univariate translation. Denoting x = x2m

, we obtain:
• for m odd and i odd, the functions from C14-1 take the univariate form

x2i+1 + β2x2i+1 + βx22i

x+ xx22i

;

• for m odd and i even, they take the form

xx2i

+ β2x2i

x+ βx22i

x+ xx22i

;

• for i odd, the functions from C14-2 take the univariate form

x2i+1 + β2
(
x2i+1 + x23i+1 + x23i+1

)
;

• for i even, they take the form
xx2i

+ β2
(
x2i

x+ x23i

x+ xx23i
)
.

For the sake of completeness, we show how to derive the univariate form for C14-2 and i odd; the remaining three cases are
handled in the same way. Recall that any X ∈ F2n can be written as X = x+ βy with x, y ∈ F2m . Raising both sides to the
power 2m, we obtain X = x+β2y, and so y = X +X and hence x = β2X +βX . Observe that for i odd, we have β2i

= β2

and β2i+1 = 1. In the bivariate expression of C14-2, viz.

F (x, y) = (F1(x, y), F2(x, y)) = (x2i+1 + xy2i

+ y2i+1, x23i

y + x23i

),

we can first express the left-hand side as

F1(x, y) = (β2X + βX)2i+1 + (β2X + βX)(X +X)2i

+ (X +X)2i+1

= X2i+1 + β2X2i

X + βXX
2i

+X
2i+1

+ β2X2i+1 + β2XX
2i

+ βX2i

X + βX
2i+1

+X2i+1 +X2i

X +XX
2i

+X
2i+1

= β2X2i+1 + βX
2i+1

.

Similarly, we get

F2(x, y) = (β2X + βX)23i

(X +X) + (β2X + βX)(X +X)23i

= βX23i+1 + βX23i

X + β2XX23i

+ β2X
23i+1

+ β2X23i+1 + β2XX
23i

+ βX23i

X + βX
23i+1

= X23i+1 +X
23i

.

Combining the two, we get

F (x, y) = F1(x, y) + βF2(x, y) = β2X2i+1 + βX
2i+1

+ βX23i+1 + βX
23i+1

;
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it then suffices to divide by β2 in order to obtain the univariate representation above.
In the case where m is even, we have to decompose X ∈ F2n as X = x+ wy with x, y ∈ F2m for some w ∈ F2n \ F2m .

We then get x = (wX + wX)/(w + w) and y = (X +X)/(w + w). By substituting this into the bivariate representation of
C14-1, we can obtain a univariate expression by following the same strategy as above. However, since the order of w will be
greater than 3, this expression will not be as compact in general as the one that we give above for m odd.

Remark 6. For functions from C3 in doubly even dimensions n = 2m = 4k, we see in the proof above that the elements (x, y),
(βx, β2y), and (β2x, βy) map to the same output for any x, y ∈ F2m . Such functions are clearly not canonical triplicates, but
could potentially be used to define a variation of the notion of a canonical triplicate for functions in bivariate representation.
Namely, we could say that a function F (x, y) for x, y ∈ F2m with 2 | m is “bivariate canonical” if the total degree of every
term in its bivariate representation is a multiple of 3; that is, if for every xiyj , we have 3 | i+j. This is equivalent to saying that
F (x, y) = F (βx, β2y) = F (β2x, βy) for all x, y ∈ F2m . Note that a canonical triplicate function also satisfies this condition
(except that for canonical triplicates, not only the total degree, but the individual degrees of x and y must be multiples of 3 for
each term) but not vice-versa. We leave the investigation of triplicate functions in bivariate form as a problem for future work.
We also conduct an ad-hoc computational search, in which we take functions from C3 for n = 8, and attempt to compose
them with linear permutations on the right in order to obtain canonical 3-to-1 functions. According to our computations, all
such “bivariate canonical” functions for n = 8 are linear-equivalent to canonical ones.

Remark 7. By Theorem 2, we now obtain a very simple proof that these families have a Gold-like Walsh spectrum. Computing
the Walsh spectra of the infinite families from first principles can be quite technical; one can find proofs that the known infinite
families have Gold-like Walsh spectrum in [5] (for C1-C2), [7] (for C7-C9), [41] (for the Gold functions), [54] (for C10), [19]
(for C4, C5, C6).

In particular, we obtain the first (to the best of our knowledge) proof of the fact that families C13, C14, and C15 have a
Gold-like Walsh spectrum. We formulate this as a corollary.

Corollary 12. All functions from families C13, C14, and C15 in Table II have a Gold-like Walsh spectrum.

With the help of Algorithm 1, we can see (for n ∈ {6, 8}) that the functions from C7-C9 and C10-C12 that are not triplicates,
are not EA-equivalent to triplicates either.

VII. TRIPLICATES AMONG THE SPORADIC APN INSTANCES

With triplicate functions being so widely represented among the known infinite families of APN functions, it is natural to
expect that we will find many triplicate functions among the known sporadic APN instances as well, especially in the case of
n = 8 where we know thousands of CCZ-inequivalent sporadic APN instances. Surprisingly, it turns out that this is not so,
and only a very small number of the known sporadic instances are 3-to-1 functions; moreover, with the help of Algorithm 1,
we can verify that the functions in question are not EA-equivalent to 3-to-1 functions either. This suggests that 3-to-1 among
APN functions are quite special, in some sense, and that the majority of the known infinite constructions seem to exploit some
intrinsic property of these functions.

More precisely, we have applied Algorithm 1 (along with a simple program for checking whether a given function already
is 3-to-1) to all known sporadic APN functions over F2n with n = 6 (as given in [8]) and n = 8 (as given in [40], [59], [2],
[58] and [56]).

In the case of n = 6, the only two APN functions equivalent to triplicates are the Gold function x3, and the trinomial
x3 + α11x6 + αx9 (where α is a primitive element of F26 ). In particular, we note that neither the Kim function (which is
CCZ-equivalent to an APN permutation [10]) nor the only known APN function that is CCZ-inequivalent to monomials and
quadratic functions [40] is EA-equivalent to a 3-to-1 function. In the case of the Kim function (which is quadratic), we can
conclude that there is no triplicate function in its CCZ-equivalence class at all (due to EA- and CCZ-equivalence coinciding for
quadratic functions as discussed in Section II-D). In the case of the non-quadratic function, we cannot rule out the possibility
that it is CCZ-equivalent to a triplicate function, and can only state that it does not contain any triplicate functions in its
EA-equivalence class.

In the case of n = 8, with the exception of APN functions originating from the known infinite families, the only functions
that are EA-equivalent to triplicates are those obtained by Edel and Pott using the so-called switching construction [40]. In
addition, we find a new APN instance for n = 8 using our computational searches described in Section VIII. An overview of
all known quadratic 3-to-1 functions over F28 is given in Table IX.

In the case of n = 10, the running time of Algorithm 1 is unfortunately too long for us to go check whether the known
sporadic instances from [2] are EA-equivalent to 3-to-1 functions. We can, however, confirm, that they are not 3-to-1 functions
themselves.

VIII. EXPANSION SEARCHES FOR CANONICAL TRIPLICATES

A natural way to search for new e.g. APN functions is to perform an exhaustive search over all polynomials with a short
univariate representation. One would thus perform an exhaustive search over all monomials, binomials, trinomials, etc. of a
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given form, and check all of them for APN-ness. A variation of this technique is to “expand” a given function F by adding
a small number of terms to it; in other words, one would traverse all functions of the form F +G, where G runs through all
possible monomials, binomials, trinomials, etc. We remark that some of the earliest known instances of APN functions have
been found in this way [9]; and that computational searches of this form have provided sufficient data for the construction of
infinite families of APN functions in the past [18].

We can see that searching for quadratic canonical triplicate APN functions in this way is particularly promising since, for
one thing, by restricting the exponents of all terms to multiples of 3, we can guarantee that the examined functions will be
canonical triplicates; and, for another thing, the complexity of testing whether a quadratic triplicate function is APN amounts
to checking whether it is 3-to-1, which is a linear operation in the size of the finite field (in general, testing whether a given
function is APN is a quadratic operation). These considerations significantly reduce the time needed to perform an exhaustive
search, and allow us to search for APN functions over finite fields of larger dimensions than has been previously been possible.
Thanks to the differential spectrum and extended Walsh spectrum of the ortho-derivatives [21], we can quickly partition the
functions obtained in this way into smaller sets of functions; in the case of n = 8 and n = 10, we can use linear-code
equivalence test to classify the functions up to EA-equivalence.

Tables IV, V, and VIII provide an exact summary of the expansion searches that we conducted. In all cases, we attempted to
expand one of the quadratic Gold functions x2i+1 with i odd to a quadratic canonical 3-to-1 function by adding to it k terms
with coefficients in the subfield F2d and quadratic exponents divisible by 3. The aforementioned tables list the exact values of
the parameters k and d in our searches. Each entry of the tables lists the total number of APN functions that we obtained in
this way, and the number of distinct CCZ-equivalence classes. In the case of Table VIII, where the number of CCZ-classes is
very small, we give an explicit list of the CCZ-classes that we obtain from each search.

A. Dimension 8

Table IV summarizes the results of the expansion searches for n = 8. The running times are within a few hours in all cases;
in fact, the memory needed for storing the truth tables of the obtained APN functions is a bigger issue than the computation
time.

We are able to express a total of 18 distinct CCZ-classes of functions in this way. Among these, one is new7. This class is
represented by e.g.

x3 + α5x18 + α38x66 + α94x132,

where α is a primitive element of F28 . Surprisingly, this function is not CCZ-inequivalent to any of the thousands of APN
instances given in [2] and [60], which can be verified by examining the differential spectrum of its ortho-derivative, viz.

[038196, 222008, 44608, 6456, 812].

The EA-class of this function can be represented by a quadrinomial with coefficients in F28 or F24 , i.e. for k = 3 and d = 8
or d = 4 for both x3 and x9. Functions EA-equivalent to it also occur in the output of all searches for k > 3 for both x3 and
x9. Using SboxU [52], we can verify that this function is not CCZ-equivalent to a permutation.

TABLE IV
POLYNOMIAL EXPANSION OF QUADRATIC POWER FUNCTIONS ON F28

- d \k 1 2 3 4 5 6 7 8
3 8 0/0 54/4 3396/6 - - - - -
3 4 - - 260/6 1402/14 20396/18 - - -
3 2 - - - - - 17996/14 56872/14 197491/14
3 1 - - - - - - - -
9 8 - - 3388/6 - - - - -
9 4 - - - 1244/14 17608/18 - - -
9 2 - - - - - 17970/14 56824/14 197519/14
9 1 - - - - - - - -

B. Dimension 10

Table V documents the results of our computational search for n = 10. The running times are within a day in all cases; for
instance, the expansion of x33 by 7 terms with coefficients in F4 takes around 1119 minutes. The other “extremal” cases (e.g.
expansion of x3 by 7 terms with coefficients in F22 , or by 4 terms with coefficients in F25 ) have comparable running times.

We obtain six previously unknown (up to CCZ-equivalence) APN instances. Polynomial representations of these new classes,
along with the differential spectra of their ortho-derivatives are given in Table VI. To be more precise, we can obtain previously
unknown classes of APN functions by adding 5, 6, or 7 terms with coefficients in F22 to x3, x9 or x33. Using SboxU [52],

7A function from the same CCZ-class was independently discovered by a computational search in [50].
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TABLE V
POLYNOMIAL EXPANSION OF QUADRATIC POWER FUNCTIONS ON F210

- d \k 1 2 3 4 5 6 7
3 10 2/1 320/1 - - - - -
3 5 x x 0/- 0/0 - - -
3 2 x x x 0/- 2290/9 3757/16 17856/16
9 10 2/1 320/1 41650/8 - - - -
9 5 x x 0/- 0/0 - - -
9 2 x x x 0/- 2286/9 3730/16 17836/16
33 10 -/0/- 640/2 158728/4 - - - -
33 5 x x 0/- 0/0 - - -
33 2 x x x 0/- 4504/4 9190/15 17480/16

we can verify that none of these functions is CCZ-equivalent to a permutation. In Table VI, we give the shortest possible
polynomial representations of these new classes. We note that all six classes can be obtained by expanding either of the three
monomials x3, x9, or x33; in Table VI we list representatives obtained by expanding x3. Furthermore, we note that the first
two classes from the table can be expressed as hexanomials, while the shortest representation of the remaining four classes that
we know contains seven terms. Classes 1 and 2 can also be represented as heptanomials; and all six classes can be represented
as octanomials; in particular, all the new APN functions that we find by adding 7 terms to a Gold function are EA-equivalent
to the six classes represented in Table VI.

TABLE VI
NEW APN INSTANCES OVER F210

ID F diff. spec. of πF

1 x3 + x33 + β2x36 + βx66 + βx96 + x129 [0634041, 2320166, 478420, 613020, 81830, 1060, 1215]

2 x3 + βx9 + βx36 + x96 + β2x129 + x768 [0636306, 2315018, 482335, 611715, 82145, 2233]

3 x3 + x6 + β2x24 + βx48 + βx72 + x132 + x288 [0631911, 2323421, 478495, 611775, 81725, 10210, 1215]

4 x3 + x9 + β2x12 + x36 + x48 + βx264 + βx516 [0632286, 2322566, 478540, 612675, 81320, 10165]

5 x3 + x18 + β2x24 + β2x36 + x48 + x72 + β2x288 [0634746, 2318081, 479920, 613485, 81215, 1090, 1215]

6 x3 + x9 + βx24 + x33 + x66 + βx72 + βx258 [0636591, 2316371, 478720, 613740, 81935, 10165, 1230]

C. Dimension 12

Although the linear code equivalence test cannot be used in F212 due to the excessive memory requirements, we can still
compute the ortho-derivatives of any functions that we find in this dimension, and compare their differential spectrum to that
of the ortho-derivatives of instances from the known infinite families. To the best of our knowledge, there are no sporadic APN
instances currently known in this dimension, and so finding a differential spectrum of the ortho-derivative that is distinct from
those of the infinite families is enough to justify that a function is new. In this way, we find at least one new APN instance
over F212 (that is, we find several functions with a new differential spectrum of the ortho-derivative; since we are not able to
test the functions for equivalence among themselves, it is possible that they represent more than one CCZ-equivalence class).

Table VIII gives an overview of the searches that we conducted for n = 12. The format is similar to that of Table V; since
the number of CCZ-classes obtained in all cases is very small, we explicitly list them in the table (unlike Table V where we
only list the number of classes). The labels “A,B,C,D,E,X” assigned to the CCZ-classes correspond to the ones given in Table
VII. Most of the functions that we find have the same differential spectrum of the ortho-derivative as known APN instances;
however, we do find functions whose ortho-derivative’s differential spectrum is new, e.g. the quadrinomial

x3 + δ42x66 + δ21x129 + δ14x1536, (12)

where δ is a primitive element of F26 . This quadrinomial has an ortho-derivative with the differential spectrum

[010231011, 25093109, 41162917, 6228501, 842462, 102268, 126615, 161134, 203969, 221134].

We provide a list of the differential spectra that the ortho-derivatives of functions from the known families can take over F212

in Table VII; it can then be easily verified that the above function is indeed new. To the best of our knowledge, this is the first
sporadic APN instance over F212 since 2006 [39], and the only APN instance in that dimension that has not been classified
into an infinite family at the time of writing.
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TABLE VII
ORTHO-DERIVATIVE DIFFERENTIAL SPECTRA FOR THE KNOWN INFINITE FAMILIES ON F212

Family Label Differential spectrum
Gold x3 A 09832095, 26220305, 6716625, 84095

Gold x33 B 010077795, 25225220, 41253070, 6212940, 84095

C1 C 010118010, 25186790, 41238265, 6200130, 826775, 103150

D 010149615, 25124105, 41267560, 6201285, 829295, 101260

C3 F 010278072, 24954194, 41252503, 6237384, 842462, 107938, 20567

C4 G 010137531, 25156403, 41240776, 6208725, 826694, 102466, 12360, 14156, 169

H 010146186, 25159556, 41213488, 6219798, 830204, 103537, 12324, 1427

C5 E 010171467, 25096757, 41259532, 6215145, 826904, 102664, 12396, 14144, 1663, 1836, 2612

I 010164375, 25105754, 41262763, 6209601, 827261, 102835, 12459, 1472

C6 J 010156995, 25113977, 41268280, 6203805, 826442, 103060, 12432, 14120, 249

K 010173339, 25094351, 41259388, 6215262, 827090, 102943, 12657, 1490

C7-C9 L1 01011801025186790412382656200130826775103150

L2 01014961525124105412675606201285829295101260

L3 0101500072512896341257844620601782769910249212841414

L4 0101568392511546041265180620465982837810238012217147

L5 01016008025110679412651036206094828707102205122241428

L6 01016168325109307412642356205863829225102569122171421

L7 0101616902510787241266636620508682924610237312210147

L8 01016301325109461412600986207977830149102170122381414

L9 0101643642510302841268729620486982938610254812189147

L10 0101647632510407141265488620649382975710229612245167

L11 0101651342510297241266370620632582984810234512126

L12 01017203625094460412638156210014829820102716122451414

L13 01017456325086389412700106211085828637102296121121428

L14 0101748922508926641263759621365482912710222612196

C10 M 010278072, 24954194, 41252503, 6237384, 842462, 107938, 20567

N 010120950, 25169087, 41263276, 6191835, 825452, 102268, 12189, 3663

C12 O1 010120950, 25169087, 41263276, 6191835, 825452, 102268, 12189, 3663

O2 010161144, 25117994, 41247967, 6214578, 828728, 102268, 12441

O3 010171791, 25099346, 41257291, 6209790, 831752, 102772, 12252, 14126

O4 010171854, 25091156, 41272159, 6204246, 830240, 103402, 1263

O5 010199448, 25059341, 41258362, 6217539, 834650, 103402, 12378

TABLE VIII
POLYNOMIAL EXPANSION OF QUADRATIC POWER FUNCTIONS ON F212

- d \k 1 2 3 4 5 6
3 12 - - - - - -
3 6 - 183 (A,B) 12 928 (A,B,C,D,X) - - -
3 4 - 3 (A) 136(A,B) 480(A,B,E) - -
3 3 - - 276 (A,B,C,D) 944(A,B,C,D,E) - -
3 2 - - - - 74(A,B) -
9 12 - - 2184 (A,B,C,D) - - -
9 6 - - - - - -
9 4 - 0 24 (A,B) 120 (A,B,E) - -
9 3 - 0 0 56 (A,B,E) 6864 (A,B,C,D) -
9 2 - - - - - -

33 12 - - - - - -
33 6 - 183 (A,B) - - - -
33 4 - 3 (A,B) 32 (A,B) - - -
33 3 - 39 (A,B) 276 (A,B,C,D) 930 (A,B,C,D,E) 6864 (A,B,C,D) -
33 2 - - - - - -

IX. THE KNOWN QUADRATIC 3-TO-1 FUNCTIONS UP TO DIMENSION 12

As mentioned above, for n = 6, the only known 3-to-1 APN functions are x3 and x3 + α11x6 + αx9. Tables IX, IX, and
IX summarize the known 3-to-1 APN functions for n = 8, 10, 12, including the new instances found in the present paper. The
labels “sc” in Table IX refer to the switching classes given in [40]; for instance, “sc 4” means that the function corresponds
to switching class number 4. The classes are enumerated in the same order that they are given in Table 9 of [40].

X. CONCLUSION AND FUTURE WORK

We have introduced the classes of triplicate functions and canonical triplicate functions, and expressed 3-to-1 functions as
extremal objects among them in several ways. We have investigated the properties of such functions, with a particular focus
on quadratic 3-to-1 APN functions. We have computed the exact number of distinct differential sets of power APN functions,
and of quadratic canonical 3-to-1 functions. We have also conducted computational searches over F2n with n ∈ {8, 10, 12},
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TABLE IX
ALL KNOWN QUADRATIC 3-TO-1 FUNCTIONS OVER F28 UP TO EA-EQUIVALENCE

Families Representative Ortho-derivative differential spectrum

Gold x3 039780, 221930, 63570

Gold x9 035700, 226520, 43060

C3, C10 x3 + αx17 + α48x18 + α3x33 + x48 039600, 219680, 45220, 6600, 8180

C4 x3 +Tr(x9) 038004, 222614, 44008, 6630, 1024

C4 x3 + α−1Tr(α3x9) 038592, 221426, 44590, 6654, 818

C10,C12,C14 α2x2 + x3 + α29x12 + α35x17 +
x18 + α17x32 + x33 + x48 + α89x72 +
α149x132 + α209x192

036420, 225080, 43780

sc 4 x3 + x6 + x144 037980, 222272, 44716, 6312

sc 6 x3 + α65x18 + α120x66 + α135x144 038160, 222164, 44428, 6492, 836

sc 19 x3 + α24x6 + α182x132 + α67x192 037872, 222788, 44068, 6492, 860

sc 13 α160x3 + α97x6 + α91x9 + α75x12 +
α236x18 + α68x24 + α185x33 +
α187x36 + α31x48 + α229x66 +
α239x72 + α133x96 + α21x129 +
α22x132 + α143x144 + α189x192

038076, 222311, 44374, 6495, 824

sc 15 α241x3 + α189x6 + α94x9 + α202x12 +
α234x18 + α145x24 + x33 + α168x36 +
α142x48+α69x66+α232x72+α88x96+
α77x129 + α223x132 + α96x144 +
α155x192

038457, 221552, 44743, 6510, 818

sc 16 α236x3+α244x6+α119x9+α231x12+
α237x24 + α187x36 + α148x48 +
α187x66 + α221x72 + α79x96 +
α222x129 + α221x132 + α119x144 +
α126x192

038184, 222179, 44338, 6531, 848

sc 17 α107x3 + α19x6 + α201x9 + α201x12 +
α76x18 + α69x24 + α180x36 + α8x33 +
α26x48 + α244x66 + αx72 + α110x96 +
α143x129 + α13x144 + α151x192 +
α58x132

038439, 221618, 44671, 6528, 824

sc 18 α254x3+α58x6+α101x12+α170x18+
α14x24+α170x33+α102x36+α129x48+
α102x66+α163x96+α224x129+α86x192

038040, 222461, 44218, 6513, 836, 1012

sc 19 α41x3 + α54x6 + α32x9 + α230x12 +
α148x18+α23x24+α58x33+α202x48+
α159x36+α234x66+α45x72+α84x96+
α98x129 + α195x132 + α242x144 +
α95x192

038256, 222116, 44230, 6648, 830

sc 20 α181x3+α216x6+α163x9+α185x12+
α13x18 + α83x24 + α81x33 + α42x36 +
α252x48+α46x66+α162x72+α76x96+
α188x129 + α91x132 + α37x144 +
α132x192

038388, 221723, 44626, 6507, 836

sc 21 α157x3+α241x6+α45x12+α250x18+
α32x24+α100x33+α58x36+α163x48+
α138x66 + α172x72 + α59x96 +
α106x129 + α214x132 + α124x144 +
α91x192

038442, 221603, 44686, 6534, 812, 103

sc 22 α27x3 + α147x6 + α185x9 + α130x12 +
α46x18 + α9x24 + α211x33 + α74x36 +
α119x48+α149x66+α164x72+α42x96+
α129x129 + α59x132 + α140x144 +
α25x192

038160, 222104, 44536, 6456, 824

sc 23 α178x3 + α222x6 + α96x9 + α100x12 +
α91x18+α238x24+α14x33+α194x36+
α30x48+α159x66+α78x72+α91x96+
α155x129 + α68x132 + α56x144 +
α113x192

038439, 221717, 44506, 6564, 851, 103

new x3 + α5x18 + α38x66 + α94x132 038196, 222008, 44608, 6456, 812

and have found new quadratic 3-to-1 APN functions in all three dimensions, including the first (to the best of our knowledge)
sporadic APN instances for n = 12.

The topic of triplicate functions, 3-to-1 functions, and their relation to APN-ness appears to be very deep and quite promising,
and there are many avenues for future research remaining to be investigated. For one thing, all of the currently known quadratic
3-to-1 functions are canonical, or linear-equivalent to canonical. It would be very interesting to find examples of triplicate
3-to-1 APN functions linear-inequivalent to canonical ones, or to show that such functions do not exist. In the former case,
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TABLE X
CLASSIFICATION OF ALL KNOWN QUADRATIC 3-TO-1 FUNCTIONS OVER F210 UP TO EA-EQUIVALENCE

Families Representative Ortho-derivative differential spectrum

Gold x3 0595386, 2416361, 635805

Gold x9 0713031, 2211761, 492070, 615345, 85115, 1210230

C3 x33 + x72 + α31x258 0628401, 2329871, 475330, 612555, 81395

C3 x6 + x33 + α31x192 0629331, 2330336, 472540, 613020, 82325

C4 x3 +Tr(x9) 0633636, 2322701, 475045, 613980, 81905, 10285

C4 x3 + α−1Tr(α3x9) 0630216, 2327081, 476215, 612150, 81665, 10195, 1230

C13 x3 + α341x36 0636306, 2315018, 482335, 611715, 82145, 2233

C13, C14-1 x3 + x36 + α682x96 + α341x129 0626541, 2330336, 479515, 610230, 8930

C13, C14-1 x3 + α341x9 + α682x96 + x288 0637701, 2313131, 480910, 614415, 81395

C14-2 x3 + α682(x9 + x96 + x288) 0624216, 2334986, 476725, 611160, 8465

C14-2 x3 + x36 + x96 + βx129 0640491, 2304296, 489280, 613020, 8465

sporadic see Table VI

TABLE XI
CLASSIFICATION OF ALL KNOWN QUADRATIC 3-TO-1 FUNCTIONS OVER F212 UP TO EA-EQUIVALENCE

Families Representative Ortho-derivative differential spectrum

Gold x3 09832095, 26220305, 6716625, 84095

Gold x33 010077795, 25225220, 41253070, 6212940, 84095

C1 x3 + a15x528 010118010, 25186790, 41238265, 6200130, 826775, 103150

C1 x33 + a15x768 010149615, 25124105, 41267560, 6201285, 829295, 101260

C2 x3 + a7x528 010241910, 25003460, 41263465, 6219555, 834335, 105670, 123150, 14945, 20630

C2 x33 + a7x768 010171350, 25118120, 41234485, 6211050, 830555, 104410, 121890, 14630, 20630

C3, C10 a1031x256 + x192 + ax130 + ax129 +
a515x128+a64x66+x65+a401x4+x3+
a200x2

010278072, 24954194, 41252503, 6237384, 842462, 107938, 20567

C4 x3 +Tr(x9) 010137531, 25156403, 41240776, 6208725, 826694, 102466, 12360, 14156, 169

C4 x3 + a−1Tr(a3x9) 010146186, 25159556, 41213488, 6219798, 830204, 103537, 12324, 1427

C5 x3 +Tr123 (x9 + x18) 010171467, 25096757, 41259532, 6215145, 826904, 102664, 12396, 14144, 1663, 1836, 2612

C5 x3 + a−1Tr123 (a3x9 + a6x18) 010164375, 25105754, 41262763, 6209601, 827261, 102835, 12459, 1472

C6 x3 +Tr123 (x18 + x36) 010156995, 25113977, 41268280, 6203805, 826442, 103060, 12432, 14120, 249

C6 x3 + a−1Tr123 (a6x18 + a12x36) 010173339, 25094351, 41259388, 6215262, 827090, 102943, 12657, 1490

C10, C12 a833x768+a581x516+a329x264+x192+
x129 + a65x128 + x66 + a2211x65 +
a77x12 + x3 + a2x2

010120950, 25169087, 41263276, 6191835, 825452, 102268, 12189, 3663

sporadic x3 + δ42x66 + δ21x129 + δ14x1536 010231011, 25093109, 41162917, 6228501, 842462, 102268, 126615, 161134, 203969, 221134

we will obtain a 3-to-1 APN instance behaving in a completely different way than all the know ones. In the same vein, it
would be useful to resolve the inclusions between the classes of 3-to-1 functions having the zero-sum property and the triple
summation property.

Another interesting question would be to try to find non-quadratic 3-to-1 APN functions CCZ-inequivalent to monomials,
or to show that such functions do not exist. Regardless of whether the answer is positive or negative, this would be a step
towards resolving the problem of finding APN functions CCZ-inequivalent to quadratic functions and monomials.

Many of the properties derived in our investigation are proved for the case of quadratic 3-to-1 functions, or for canonical
3-to-1 functions. We suspect that many of them also hold for 3-to-1 functions of higher algebraic degree, but were not able
to prove or disprove this. For instance, we have proved that any quadratic canonical 3-to-1 function over F2n has precisely
(2n − 1)/3 distinct differential sets. We suspect that this is true for 3-to-1 triplicate functions in general, but it is not clear to
us at the moment how one could prove this.
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