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Abstract. Bulletproofs (Bünz et al. IEEE S&P 2018) are a celebrated ZK proof system that allows
for short and efficient proofs, and have been implemented and deployed in several real-world systems.
In practice, they are most often implemented in their non-interactive version obtained using the
Fiat-Shamir transform, despite the lack of a formal proof of security for this setting.
Prior to this work, there was no evidence that malleability attacks were not possible against Fiat-
Shamir Bulletproofs. Malleability attacks can lead to very severe vulnerabilities, as they allow an
adversary to forge proofs re-using or modifying parts of the proofs provided by the honest parties.
In this paper, we show for the first time that Bulletproofs (or any other similar multi-round proof
system satisfying some form of weak unique response property) achieve simulation-extractability in
the algebraic group model.
This implies that Fiat-Shamir Bulletproofs are non-malleable.
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1 Introduction

Zero-knowledge (ZK) proof systems [GMR85] are one of the most fascinating ideas in modern cryptog-
raphy, as they allow a prover to persuade a verifier that some statement is true without revealing any
other information. In recent years we have observed a new renaissance for ZK proofs, motivated in large
part by their applications to advanced Blockchain applications. This has led, among other things, to a
standardization effort for ZK proofs.4

A celebrated modern ZK proof system is Bulletproofs [BBB+18]. Bulletproofs offer transparent setup,
short proofs and efficient verification (and it is therefore a zero-knowledge succinct argument of knowl-
edge or zkSNARK) using only very well established computational assumptions, namely the hardness of
discrete logarithms. At the heart of Bulletproofs lies an “inner product” component. This can be used
then for general purpose proofs (i.e., where the statement is described as an arithmetic circuit) or for
specific purpose proofs (i.e., range proofs, which are the most common use case in practice). Bulletproofs
have been implemented in real world systems, especially for confidential transaction systems, like Monero,
Mimblewimble, MobileCoin, Interstellar, etc.

Most practical applications of Bulletproofs utilize their non-interactive variant which, since Bullet-
proofs is a public-coin proof system, can be obtained using the Fiat-Shamir heuristic [FS87] e.g., the
interaction with the verifier (who is only supposed to send uniformly random challenges) is replaced by
interacting with a public hash function. Under the assumption that the hash function is a random oracle,
one can hope that the prover has no easier time producing proofs for false statements (or for statements
for which they do not know a witness) than when interacting with an actual verifier.

While the Fiat-Shamir heuristic has been around for decades, its formal analysis has only been per-
formed much later. It is first in [FKMV12] that it was formally proven that the Fiat-Shamir heuristic is
indeed sound. However, this proof only applies to classic Σ-protocols [CDS94], which are a special class
of ZK protocols with only 3 moves. Therefore this analysis does not cover the case of Bulletproofs, which
is a multiround protocol.

For the case of Bulletproofs, it was first in [GT21], that it was shown that Fiat-Shamir Bulletproofs are
indeed proofs of knowledge e.g., it is not possible for the prover to produce a valid proof without knowing
a witness for the statement (a similar result, but with less tight bounds, appeared concurrently also
in [BMM+19]). However, the results in [GT21] only consider a malicious prover “in isolation”, whereas in
most practical applications of Bulletproofs, several provers are producing and exchanging proofs at the
same time (e.g., on a Blockchain).

The notion of non-malleability in cryptography was introduced in [DDN91], and the notion of non-
malleability for zero-knowledge proofs was introduced in [Sah99]. In a nutshell, a malleability attack is
one in which the adversary gets to see proofs from honest parties, and then modifies or re-uses parts of
the proofs output by the honest parties to forge a proof on some statement for which they do not know
a witness. Malleability attacks can have very serious consequences, such as the famous MtGox attack of
2014 [DW14].

Therefore, it is worrisome that Fiat-Shamir Bulletproofs have been implemented in the wild without
any solid evidence that malleability attacks are not possible against them.

Luckily, in this paper we are able to show that Fiat-Shamir Bulletproofs satisfy a strong notion of
simulation-extractability which in particular implies non-malleability. We do so in the algebraic group
model (AGM) which is a model that only considers restricted classes of adversaries that, in a nutshell,
only operate on group elements by performing group operations and without exploiting any particular
property of their group representation. This is a limitation that our result shares with previous results in
this area [BMM+19,GT21] that studied concrete knowledge-soundness of Fiat–Shamir Bulletproofs. 5

1.1 Technical Overview

As already argued, in applications where proof systems are deployed, an adversary who tries to break
the system has access to proofs provided by other parties using the same scheme. Thus, any reason-
able security notion must require that a ZK proof system be secure against adversaries that potentially

4 https://zkproof.org
5 A recent ePrint of Attema, Fehr and Klooß [AFK21] formally proved the assumed concrete knowledge error of
Fiat–Shamir Bulletproofs in the standard (random oracle) model. As we discuss in Section 1.3 it is an interesting
open question how our simulation-extractability analysis can be built on top of their results.
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Fig. 1: Overview of modular security analysis towards simulation-extractability of multi-round Fiat–
Shamir NIZK.

see and utilise proofs generated by different parties. Simulation-soundness (SIM-SND) and simulation-
extractability (SIM-EXT) are the notions that guarantee soundness (the prover cannot prove false state-
ments) or the stronger property knowledge-soundness (the prover cannot prove statements without know-
ing a witness) to hold against adversaries who may see many (simulated) proofs.

Our starting point is the work of [GT21], that proves that the Fiat-Shamir transform of Bulletproofs
(henceforth BP) is knowledge-sound in the AGM and random oracle (RO) model. They do this by
first proving that the interactive version of BP satisfies a stronger property of state-restoration witness
extended emulation (SR-WEE), where the prover is allowed to rewind the verifier a polynomial number
of times (hence the name since the prover can “restore” the state of the verifier). They then turn this
into a result for Fiat-Shamir BP by showing that for any adversary who breaks the knowledge-soundness
of Fiat-Shamir BP, there exists an adversary for the SR-WEE property of the interactive BP.

The natural question is then, can their proof be easily extend to the case of SIM-EXT (where the result
needs to hold even when the simulator has to provide the adversary with simulated proofs on statements
of their choice)? To see why this is not straightforward, consider the following natural approach: just
answer the proof queries of the adversary by running the honest verifier zero-knowledge simulator of
BP, and then program the RO with the challenges returned by the simulator. The RO queries, on the
other hand, are simply forwarded to the state-restoration oracle as before. This simple approach works
if the underlying protocol satisfies “unique response”, which informally means that the adversary cannot
generate two distinct accepting transcripts that share a common prefix. (This notion has already been
used to prove simulation-extractability of Σ-protocols [FKMV12], multi-round public coin interactive
protocols [DFM20, KZ21], and Sonic and Plonk [KZ21]). However, BP does not have unique response
under their definition: this is simple to see since randomized commitments are sent from the prover
during the third round. Therefore, if the forged proof returned by the adversary has a matching prefix as
one of the simulated proofs, this forged proof cannot be used to break SR-WEE.6

The next natural attempt might then be to “de-randomize” later rounds of BP e.g., by letting the
prover choose and commit all their random coins in the first round, and then prove consistency of all
future rounds with these coins. This of course introduces new challenges, since these additional consistency
proofs must themselves not use any additional randomness in rounds other than the first one. While these
technical challenges could be overcome using the right tools, the final solution would be all but satisfactory.
First of all, the new protocol would be less efficient than the original BP. And perhaps more importantly,
all real-world implementations of BP would have to decide whether to switch to the new protocol without
any evidence that the original BP is insecure.

Instead, we present a new approach here that allows us to prove that Fiat-Shamir BP as is satisfies
SIM-EXT, which has wide-reaching impact for systems based on BP that are already in use. The diagram
in Fig. 1 summarizes our modular security analysis towards simulation-extractability of multi-round
Fiat–Shamir NIZK. We discuss our new security notions and a chain of implications below.
Unique response. We introduce two new definitions: state-restoration unique response (SR-UR), and
weak unique response (FS-WUR), which are the interactive, and non-interactive definitions for showing
unique response of protocols. We show that these two notions are tightly related, i.e., FS-WUR tightly
reduces to SR-UR of the interactive protocol (Lemma 2). Both notions require that it should be hard for
6 In a nutshell, this is because the forged proof may not be an accepting transcript in the SR-WEE game since
the shared prefix is a partial transcript that has not been queried to the oracle before. Hence, the oracle has
no knowledge of the simulated proofs and therefore any partial transcript that has a matching prefix with a
simulated proof.
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the adversary, on input a simulated proof, to output a proof which shares a prefix with it. This is opposed
to the previous notion of unique response that requires it should be infeasible for the adversary to come
up with two different proofs that share a prefix. As an analogy, our notion is akin to second preimage
resistance for hash functions, while the previous notion is akin to collision resistance. Clearly, it is easier
to show that an existing protocol satisfies the weaker definition. But it is in turn harder to show that
the weaker definition is enough to achieve the overall goal. However, note that the weaker variant of the
definition is also somewhat closer to the intuitive goal of non-malleability: we do not want the adversary
to be able to reuse parts of proofs generated by other parties to forge new proofs.
Simultation-extractability of multi-round Fiat–Shamir. Once we have FS-EXT (i.e., extractabil-
ity), FS-WUR, and NIZK for a non-interactive protocol, we are able to show its online simulation-
extractability (Lemma 3). Putting together, we prove a general theorem showing that:

Theorem 1 (General Theorem (Informal)). If a multi-round public-coin interactive protocol sat-
isfies: (1) adaptive state-restoration witness extended emulation (aSR-WEE), (2) perfect HVZK with an
algebraic simulator, and (3) state-restoration unique responses (SR-UR), then the non-interactive version
of the protocol achieved via the Fiat-Shamir transform, is online simulation-extractable (FS-SIM-EXT) in
the algebraic group model and the random oracle model.

While our framework has been built with Bulletproofs as its main use case, we believe that it is
general enough and could be used to show simulation-extractability for other public-coin protocols in the
literature.
Non-malleable Bulletproofs. We use our definitional foundation to show that Fiat-Shamir BP is non-
malleable and give concrete security bounds for it. The main technical contribution here is to show that
BP satisfies our (weaker) definition of unique response, namely SR-UR. For the other assumptions in the
theorem, we rely on existing knowledge with some adjustments: BP is already known to satisfy SR-WEE
(from [GT21]), however in our theorem we require a stronger (adaptive) version of the definition, namely
aSR-WEE, but it turns out that the proof of SR-WEE in [GT21] can be used to show the stronger definition
as well. Finally, BP is already known to admit a perfect HVZK simulator, which we have to extend to the
algebraic setting. Thus, using the general theorem, we get our result. We do this for two versions of BP,
namely Bulletproofs for arithmetic circuits (in Section 4) and range-proofs Bulletproofs (in Appendix D).

1.2 Related work

Goldwasser and Kalai [GK03] show that the Fiat-Shamir heuristic is not sound in general, by showing
explicit – and somewhat contrived – counterexamples that cannot be proven secure for any hash function.
However, there is no evidence that any natural construction using the Fiat-Shamir heuristic is insecure.

Faust et al. [FKMV12] are the first to analyze SIM-SND and SIM-EXT of Fiat–Shamir NIZK from
Σ-protocols. Kohlweiss and Zając [KZ21] extend their result to multi-round protocols with (n1, . . . , nr)-
special soundness where all-but-one ni’s are equal to 1, which is the case for some modern zkSNARKs
(cf. [MBKM19,GWC19]), but is not the case for Bulletproofs-style recursive protocols.

Don et al. [DFM20] study multi-round Fiat–Shamir in the quantum random oracle model, but their
generic claim (Corollary 15) incurs at least a multiplicative factor O(qr)7 in the loss in soundness due to
Fiat–Shamir, even if the result is downgraded to the classical setting. Hence their result leads to a super-
polynomial loss when the number of rounds r depends on the security parameter as in Bulletproofs. They
also showed SIM-EXT of multi-round Fiat–Shamir proofs in the QROM assuming the unique response
property of the underlying interactive protocols. As we shall see later, Bulletproofs do not meet their
definition of unique responses and we are thus motivated to explore alternative paths towards SIM-EXT,
but in the classical ROM and the AGM.

There are a limited number of works that analyze the concrete soundness loss incurred by Fiat–
Shamir when applied to non-constant round protocols. Ben-Sasson et al. [BCS16] show that if the under-
lying interactive oracle proof protocol satisfies state-restoration soundness (SR-SND) (a stronger variant
of soundness where the prover is allowed to rewind the verifier states) then Fiat–Shamir only intro-
duces 3(q2 + 1)2−λ of additive loss both in soundness (SND) and proof of knowledge (EXT). Canetti et
al. [CCH+18,CCH+19] propose the closely related notion of round-by-round soundness (RBR-SND) which
is sufficient to achieve soundness, even without round oracles. Following these works, Holmgren [Hol19]
shows SR-SND and RBR-SND are equivalent.
7 Here and below q is the number of queries to the random oracle, r is the number of rounds, and λ is the security
parameter.
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The latest works on this line of research are due to Ghoshal and Tessaro [GT21] and Bünz et
al. [BMM+19]. They both provide a detailed analysis of non-interactive Bulletproofs in the algebraic
group model (AGM) [FKL18] and, in particular, the former shows state-restoration witness extended
emulation (SR-WEE) of interactive Bulletproofs in the AGM and uses it to argue that EXT of non-
interactive Bulletproofs results in (q + 1)/2sLen(λ) in additive loss, where sLen(λ) is the bit length of the
shortest challenge. However, none of these works explore SIM-SND or SIM-EXT of non-constant round
Fiat–Shamir.

There are also other zkSNARKs that satisfy simulation-extractability such as e.g., [GM17] and
[Gro16, KZ21]. However, these constructions are very different than Bulletproofs since they rely on
a structured reference string which comes with a trapdoor, the knowledge of which compromises the
soundness. [BKSV20] show techniques to make [Gro16] black-box weakly SIM-EXT NIZK using verifiable
encryption. A generic framework to turn existing zkSNARKs into SIM-EXT zkSNARKs was presented
in [ARS20], but Bulletproofs is not covered by their result since their transform only works for schemes
with trusted setup.

1.3 Open question
Concurrent works due to Wikström [Wik21] and Attema, Fehr and Klooß [AFK21] show that, assuming
an (n1, . . . , nr)-special sound interactive protocol Π, one can relate the knowledge soundness of Π to that
of ΠFS without the AGM, while retaining only q+ 1 multiplicative loss in the knowledge error. Although
our generic chain of reductions in Section 3 is tailored to the AGM in order to invoke the results of [GT21],
we expect a large body of the analysis and definitions may be reusable without assuming the AGM. In
fact, our Lemma 2 and Lemma 3 even hold without the AGM because these reductions do not exploit
the fact that adversaries are algebraic—what is open is whether Bulletproofs satisfy the assumptions
required by these lemmas (i.e., SR-UR and FS-WUR) without the AGM. Hence it is an interesting open
question whether a chain of implications similar to Fig. 1 can be built on top of [Wik21,AFK21] to prove
SIM-EXT of Bulletproofs only in the ROM.

2 Preliminaries
We denote by N = {0, 1, 2, . . . } the natural numbers, and Z the integers. We use bold face to denote
vectors, e.g., a ∈ Zn is a vector of n integers. For a,b ∈ Zn we write 〈a,b〉 for the inner product. For
a group G where (g1, . . . , gn) = g ∈ Gn and (a1, . . . , an) = a ∈ Zn, we denote by ga =

∏n
i=1 g

ai
i . The

Hadamard product of vectors a = (a1, . . . , an) and b = (b1, . . . , bn) is a◦b = (a1b1, . . . , anbn). For z ∈ Z∗p,
denote zn as the vector (1, z, . . . , zn−1), and z−n = (1, z−1, . . . , z−n+1).

The security parameter λ is 1λ in unary. We use negl(λ) to denote a negligible function in λ. We write
Xλ ≡ Yλ to denote that probabilistic ensembles {Xλ}λ and {Yλ}λ are equivalent.
Lemma 1 (Schwartz-Zippel Lemma). Let F be a finite field and let f ∈ F[X1, . . . , Xn] be a non-zero
n variate polynomial with maximum degree d. Let S be a subset of F. Then Pr[f(x1, . . . , xn) = 0] ≤ d/|S|,
where the probability is taken over the choice of x1, . . . , xn according to xi

$←− S.

For a univariate polynomial f ∈ Zp[X] of degree d, where p is prime, let x $←− Z∗p, then Pr[f(x) = 0] ≤
d/(p− 1).

2.1 Discrete Logarithm Problems
Let {Gλ}λ be a family of groups with prime order p(λ), identity eGλ and generators G∗λ = Gλ \{eGλ}. We
can use game GDL in Figure 2 to define the advantage of an adversary in the discrete logartihm problem
over {Gλ}λ.
Definition 1 (DL [GT21]). The advantage of a non-uniform adversary {Aλ}λ against the discrete
logaritm problem in {Gλ}λ is

AdvDL(Gλ,Aλ) = Pr
[
GDL(Gλ,Aλ) = 1

]
.

Similarly, we can define the advantage for the discrete logarithm relation problem using game GDL-REL
n

in Figure 2.
Definition 2 (DL-REL [GT21]). The advantage of a non-uniform adversary {Aλ}λ against the discrete
logaritm relation problem in {Gλ}λ is

AdvDL-REL(Gλ,Aλ) = Pr
[
GDL-REL
n (Gλ,Aλ) = 1

]
.
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Game GDL(Gλ,Aλ)

g
$←− G∗λ, h

$←− Gλ
a← Aλ(g, h)
return (ga = h)

Game GDL-REL
n (Gλ,Aλ)

(g1, . . . , gn) $←− Gλ
(a1, . . . , an)← Aλ(g1, . . . , gn)
return (

∏n

i=1 g
ai
i = eGλ ∧ (a1, . . . , an) 6= 0)

Fig. 2: The games for the discrete logarithm problem and the discrete logarithm relation problem. Here
{Aλ}λ is a non-uniform adversary, {Gλ}λ a family of cyclic groups where G∗λ denotes the set of generators
of Gλ and eGλ is the identity.

2.2 Relations

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be an efficiently decidable relation. For given public parameters pp,
we call w a witness for statement x if (pp, x, w) ∈ R. The associated language for pp is Lpp = {x |
∃w s.t. (pp, x, w) ∈ R}.
Relation for inner product argument. The relation proven by the inner-product argument in
[BBB+18] is

RInPrd =
{

((n,g,h, u), (P ), (a,b)) | P = gahbuc ∧ c = 〈a,b〉
}

⊆ (N×Gn ×Gn ×G)× (G)× (Znp × Znp )
(1)

where g,h are vectors of independent generators.
Relation for arithmetic circuit satisfiability. [GT21] Any arithmetic circuit with n multiplication
gates can be represented using a constraint system (cf. [BCCJG16]). The constraint system consists of
three vectors aL,aR,aO ∈ Znp representing the left inputs, right inputs, and outputs of multiplication
gates respectively, so that aL ◦aR = aO, and additional Q ≤ 2n linear constraints. The linear constraints
can be represented as WL · aL + WR · aR + WO · aO = c, where WL,WR,WO ∈ ZQ×np and c ∈ ZQp .
This results in the following relation for arithmetic circuit satisfiability

RACS =
{

((n,Q), (WL,WR,WO, c), (aL,aR,aO)) |
aL ◦ aR = aO ∧WL · aL + WR · aR + WO · aO = c

}
⊆ (Z× Z)× (ZQ×np × ZQ×np × ZQ×np × ZQp )× (Znp × Znp × Znp )

For simplicity, we also include the Bulletproofs setup resulting in the relation

RACSPf =
{

((n,Q, g, h, u,g,h), (WL,WR,WO, c), (aL,aR,aO)) |
aL ◦ aR = aO ∧WL · aL + WR · aR + WO · aO = c

}
(2)

⊆ (Z2 ×G3 ×Gn ×Gn)× (ZQ×np × ZQ×np × ZQ×np × ZQp )× (Znp × Znp × Znp )

where G = {Gλ}λ∈N is a family of groups of order p = p(λ).

2.3 Interactive Proofs

An interactive proof [GMR85] is a tuple of three algorithms Π = (Setup,P,V). On input 1λ, the setup
algorithm Setup produces public parameters pp, also known as common reference string. The transcript
of the interaction between prover P with input x and PPT verifier V with input y is denoted by tr ←
〈P(pp, x) , V(pp, y)〉. We write b = 〈P(pp, x) , V(pp, y)〉 for the decision bit of the verifier, i.e., b = 1
means the verifier accepts. An interactive proof where the prover is PPT is also known as argument.

Intuitively an interactive proof for relation R allows a prover knowing a witness w to convince the
verifier of a statement x. Given (pp, x, w) ∈ R an honest prover should always convince the verifier
(completeness) while a prover should not be able to convince the verifier of x if x is not true (soundness),
nor without ‘knowing’ w such that (pp, x, w) ∈ R (proof of knowledge). Finally, the proof should not
reveal any more information than the validity of the statement (zero-knowledge).

Definition 3 (Public Coin). An interactive proof Π = (Setup,P,V) is public coin if all messages sent
by the verifier V during the interaction with P in round 2i are chosen uniform-randomly from the challenge
space Chi (where the challenge spaces Chi are specified by Setup). In particular, they are independent of
the provers messages.

7



Definition 4 (Completeness). An interactive proof Π = (Setup,P,V) satisfies perfect completeness
if for all λ and for all PPT adversaries A it holds that

Pr
[
1 = 〈P(pp, x, w) , V(pp, x)〉

∣∣∣∣ pp← Setup(1λ),
(x,w)← A(pp) s.t. (pp, x, w) ∈ R

]
= 1.

Definition 5 (Perfect Honest-Verifier Zero-Knowledge). A public coin argument of knowledge
(Setup,P,V) for relation R is perfect honest verifier zero-knowledge (HVZK) if there exists a PPT sim-
ulator S such that for all PPT adversaries A it holds that

〈P(pp, x, w) , V(pp, x)〉 ≡ S(pp, x)

where pp← Setup(1λ) and (x,w)← A(pp) such that (pp, x, w) ∈ R.

Min-entropy of commitments We want to assess how likely it is for first round messages of an
interactive protocol to collide with a fixed value.

Definition 6 (Min-entropy of commitments). Let λ be a security parameter and Lpp be an NP-
language with relation R. Consider a pair (pp, x, w) ∈ R and let Π = (Setup,P,V) be an arbitrary
multi-round interactive proof. Let Coin(λ) be the set of coins used by the prover and P1(·) the function
that outputs the first round message for P. Consider the set

msg(pp, x, w) = {Π.P1(Setup, x, w; ρ $←− Coin(λ))}

, i.e. the set of all possible first round messages associated to w. The min-entropy function associated
to Π is defined as ε(λ) = min(pp,x,w)(− log2 µ(pp, x, w)), where the minimum is taken over all possible
(pp, x, w) drawn from R, and µ(pp, x, w) is the maximum probability that a first round message takes on
a particular value, i.e.,

µ(pp, x, w) = maxm∈msg(pp,x,w)

(
Pr
[
Π.P1(pp, x, w; ρ) = m|ρ $←− Coin

])
2.4 Non-Interactive Proofs via Fiat–Shamir

In this paper we focus on non-interactive arguments obtained via the Fiat–Shamir heuristic [FS87], which
allows to transform an interactive proof into an non-interactive version in the random oracle model. Given
an interactive proof systemΠ = (Setup,P,V) and random oracles H = {Hi}i∈[1,r] with Hi : {0, 1}∗ → Chi,
we define the corresponding non-interactive argument ΠFS = (Setup,PFS,VFS) as follows. We write PH

FS
and VH

FS to denote that the prover and verifier have access to the random oracles H.
– We denote by π ← PH

FS(pp, x, w) the prover producing argument π on input pp, statement x,
and witness w. For each round i ∈ [1, r], PH

FS invokes P(pp, x, w, sti−1, ci−1) to get ai and ob-
tains the ith round challenge by computing ci ← Hi(pp, x, a1, c1, . . . , ci−1, ai). Then PH

FS outputs
π = (a1, c1, . . . , ar, cr, ar+1) as a proof.

– We write b ← VH
FS(pp, x, π) for the decision bit of the verifier on input of pp, statement x, and

argument π. VH
FS outputs b = 1, meaning the verifier accepts the argument, iff V(pp, x, π) = 1 and

ci = Hi(pp, x, a1, c1, . . . , ci−1, ai) holds for all i ∈ [1, r].

Definition 7 (Completeness). An non-interactive argument ΠFS = (Setup, PFS, VFS) for relation R
satisfies perfect completeness if for all λ and for all PPT adversaries A it holds that

Pr

1← VH
FS(pp, x, π)

∣∣∣∣∣∣
pp← Setup(1λ),

(x,w)← A(pp) s.t. (pp, x, w) ∈ R
π ← PH

FS(pp, x, w)

 = 1.

2.5 The Algebraic Group Model

The algebraic group model was introduced in [FKL18]. An adversary Aalg is called algebraic if every
group element output by Aalg is accompanied by a representation of that group element in terms of all
the group elements that Aalg has seen so far (input and output). Let y1, . . . , yk be all the group elements
previously input and output by Aalg. Then, every group element y output by Aalg, is accompanied by its
representation (x1, . . . , xk) such that y =

∏k
i=1 y

xi
i . Following [FKL18], we write [y] to denote a group

element enhanced with its representation; [y] = (y, x1, . . . , xk).
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2.6 Adaptive state-restoration witness extended emulation.

Here we define an adaptive variant of state-restoration witness extended emulation (aSR-WEE) defined
in [GT21]. Intuitively, state-restoration witness extended emulation says that having resettable access to
the verifier (or “restoring its state”, hence the name) should not help a malicious prover in producing a
valid proof without knowing a witness for the statement. Formally, the definition consists of two games
denoted as aWEE-1Palg,D

Π and aWEE-0E,Palg,D
Π,R described in Figure 3. The former captures the real game,

lets the prover Palg interact with an oracle O1
ext, which additionally stores all queried transcripts tr.

The latter is finally given to a distinguisher D which outputs a decision bit. In contrast, the ideal game
delegates the role of answering Palg’s oracle queries to a (stateful) extractor E . The extractor, at the end
of the execution, also outputs a witness candidate w. Due to the adaptive nature of our variant, we also
need to redefine the predicate Acc() so that it accepts a pair (x∗, T ∗) output by the adversary at the
end if and only if the pair exists in the execution paths and it gets accepted by the verifier. Formally,
Acc(tr, x∗, T ∗) now outputs 1 if (x∗, T ∗) ∈ tr and V(pp, x∗, T ∗) = 1, and outputs 0 otherwise.

For an interactive proof Π = (Setup,P,V) and an associated relation R, non-uniform algebraic prover
Palg, a distinguisher D, and an extractor E we define:

AdvaSR-WEE
Π,R (E ,Palg,D, λ) :=

∣∣∣Pr
[
aWEE-1Palg,D

Π (λ)
]
− Pr

[
aWEE-0E,Palg,D

Π,R (λ)
]∣∣∣ (3)

Definition 8 (aSR-WEE security). An interactive proof Π = (Setup,P,V) is online aSR-WEE secure
if there exists an efficient E such that for any (non-uniform algebraic) Palg and for any distinguisher D,
AdvaSR-WEE

Π,R (E ,Palg,D, λ) is negligible in λ.

The main difference with the original definition in [GT21] is that we allow the adversary to change
the statement associated with a transcript in every query, whereas [GT21] forces the adversary to commit
to the fixed statement x in advance. We remark that their results about Bulletproofs still hold under this
variant, because nowhere in the proof do they actually exploit the fact that the statement is fixed. Hence,
the following is immediate from [GT21]. We provide more details on this in Appendix A for completeness.

Theorem 2 (Adapted from Theorem 6 of [GT21]). The protocol BP is aSR-WEE secure.

2.7 NIZK and Simulation Oracles

We define zero-knowledge for non-interactive arguments in the explicitly programmable random oracle
model where the simulator can program the random oracle. The formalization below can be seen as that
of [FKMV12] adapted to multi-round protocols. The zero-knowledge simulator SFS is defined as a stateful
algorithm that operates in two modes. In the first mode, (ci, st′) ← SFS(1, st, t, i) takes care of random
oracle calls to Hi on input t. In the second mode, (T̃ , st′)← SFS(2, st, x) simulates the actual argument.
For convenience we define three “wrapper” oracles. These oracles are stateful and share state.
– S1(t, i) to denote the oracle that returns the first output of SFS(1, st, t, i);
– S2(x,w) that returns the first output of SFS(2, st, x) if (pp, x, w) ∈ R and ⊥ otherwise;
– S ′2(x) that returns the first output of SFS(2, st, x).
Since NIZK is a security property that is only guaranteed for valid statements in the language, the

definition below makes use of S2 as a proof simulation oracle. As we shall see later, simulation-extractability
on the other hand is defined with respect to an oracle similar to S ′2 following [FKMV12].

Definition 9 (Non-interactive Zero Knowledge.). A non-interactive argument ΠFS = (Setup,PH
FS,VH

FS)
for relation R is unbounded non-interactive zero knowledge (NIZK) in the random oracle model, if there
exist a PPT simulator SFS with wrapper oracles S1 and S2 such that for all PPT distinguisher D there
exist a negligible function µ(λ) it holds that∣∣∣Pr

[
DH,PH

FS(1λ) = 1
]
− Pr

[
DS1,S2(1λ)

]∣∣∣ ≤ µ(λ)

where both PH
FS(pp, x, w) and S2 return ⊥ if (pp, x, w) 6∈ R.

Given a perfect HVZK simulator S for Π, we immediately obtain the following canonical NIZK simu-
lator SFS for ΠFS by defining responses of each mode as follows.
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Game aWEE-1Palg,D
Π (λ) :

tr← (ε, ε)
pp← Setup(1λ)
([x∗], [T ∗], stPalg

)← PO1
ext

alg (pp)
b̃← D(stPalg

, tr, x∗, T ∗)
return (b̃ = 1)

Oracle O1
ext([x], [T ], [ai])

Parse T as T = (a1, c1, · · · , ai−1, ci−1)
if (x, T ) ∈ tr or (x, T ) = (x, ε) then

if i ≤ r then
ci

$←− Chi
tr← tr||(x, (T , ai, ci))
return ci

else if i = r + 1 then
tr← tr||(x, (T , ai))
d← V(pp, x, (T , ai))
return d

return ⊥

Game aWEE-0E,Palg,D
Π,R (λ):

tr← (ε, ε)
pp← Setup(1λ)
stE ← pp
([x∗], [T ∗], stPalg

)← PO0
ext

alg (pp)
w ← E(stE , [x∗], [T ∗])
b̃← D(stPalg

, tr, x∗, T ∗)
b← (Acc(tr, x∗, T ∗)⇒ (pp, x∗, w) ∈ R)
return (b̃ = 1) ∧ (b = 1)

Oracle O0
ext([x], [T ], [ai])

Parse T as T = (a1, c1, · · · , ai−1, ci−1)
if (x, T ) ∈ tr or (x, T ) = (x, ε) then

if i ≤ r then
(resp, stE)← E(stE , [x], [(T , ai)])
tr← tr||(x, (T , ai, resp))
return resp

else if i = r + 1 then
tr← tr||(x, (T , ai))
d← V(pp, x, (T , ai))
return d

return ⊥

Fig. 3: Online aSR-WEE Security (adapted from [GT21], with differences highlighted in orange).
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– To answer query (t, i) with mode 1, SFS(1, st, t, i) lazily samples a lookup table Q1,i kept in state st. It
checks whether Q1,i[t] is already defined. If this is the case, it returns the previously assigned value;
otherwise it returns and sets a fresh random value ci sampled from Chi.

– To answer query x with mode 2, SFS(2, st, x) calls the perfect HVZK simulator S of Π to obtain a
simulated proof π = (a1, c1, . . . , ar, cr, ar+1). Then, it programs the tables such that Q1,1[x, a1] :=
c1, . . . ,Q1,r[x, a1, c1, . . . , ar] := cr. If any of the table entries has been already defined SFS aborts,
which should happen with negligible probability assuming high min-entropy of a1.

2.8 Online Extractability in the AGM

Game EXT-1H,Palg,D
ΠFS

(λ) :

pp← Setup(1λ)
([x∗], [T ∗], stPalg

)← PH
alg(pp)

d← VH
FS(pp, x∗, T ∗)

b̃← D(stPalg
, x∗, T ∗,Q1)

return (b̃ = 1)

Game EXT-0E,Palg,D
ΠFS,R (λ):

pp← Setup(1λ)
stE ← pp
([x∗], [T ∗], stPalg

)← PE1
alg (pp)

d← VE1
FS (pp, x∗, T ∗)

b̃← D(stPalg
, x∗, T ∗,Q1)

w ← E0(stE , [x∗], [T ∗])
b← (d = 1⇒ (pp, x∗, w) ∈ R)
return (b̃ = 1) ∧ (b = 1)

Fig. 4: Extractability games. Note that in the EXT-1 experiment, calling the verification algorithm VFS
has an impact on the RO query set Q1. In particular, omitting this, there might be trivial distingushing
attacks due to the differences in Q1 between EXT-1 and EXT-0.

We introduce the definition of (adaptive) online extractability (FS-EXT) in the AGM. Unlike the usual
online extraction scenario (e.g., [Pas03,Fis05,Unr15]), where an extractor is only given x∗, T ∗ and the
random oracle query history as inputs and asked to extract the witness, our definition below requires the
extractor to intercept/program the queries/answers to the RO for Palg. We do so because some proofs
in [GT21] (such as Theorem 2 and 3) relating state-restoration witness-extended emulation for Π and
argument of knowledge for ΠFS do appear to exploit this extra power of the extractor, which to the best
of our understanding appears necessary for their proofs to go through.

This modification in turn requires the existence of an extractor (E0, E1) where E1 takes care of simu-
lating the RO responses for Palg and then E0 produces a valid witness given an adversarial forgery. Our
formalization therefore follows variants of extractability in the literature that explicitly introduce a dis-
tinguisher to guarantee the validity of simulation conducted by E1, e.g., [Unr17, Def. 11] for Fiat–Shamir
NIZK or [Gro06] for CRS-based NIZK. On the other hand, we do not grant the extractor an oracle access
to Palg to explicitly capture the “online” nature of extraction, i.e., no rewinding step is required.

Note also that the roles of (E0, E1) and D below are also analogous to those of the extractor and the
distinguisher in aSR-WEE. Thus, our definition allows smooth transition from aSR-WEE to FS-EXT.

Definition 10 (FS-EXT security). Consider a NIZK scheme ΠFS = (Setup,PFS,VFS) for language L.
Let H be a random oracle. ΠFS is online extractable (FS-EXT) in the AGM and the ROM if there exists an
efficient extractor E = (E0, E1) such that for every PPT algebraic adversary Palg and every distinguisher
D, the following probability is negligible in λ.

AdvFS-EXT
ΠFS,R (H, E ,Palg,D, λ) :=

∣∣∣Pr[EXT-1H,Palg,D
ΠFS

(λ)]− Pr[EXT-0E,Palg,D
ΠFS,R (λ)]

∣∣∣
In Fig. 4, each of Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding to queries to H or E1
with random oracle index i.

We recall a relation between aSR-WEE and FS-EXT, because one of our claims (Lemma 3) uses FS-EXT
as an assumption. Although Theorem 2 of [GT21] is for non-adaptive variants of these notions, the proof
for the following theorem is almost identical except that we do not ask P∗alg to submit the statement x in
the beginning, just like in Theorem 2.
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Theorem 3. Let R be a relation. Let Π be a r-challenge public coin interactive protocol for the relation
R where the ith challenge is sampled from Chi for i ∈ [1, r]. Let E be an aSR-WEE extractor for Π.
There exists an FS-EXT extractor E∗ = (E∗0 , E∗1 ) for ΠFS such that for every non-uniform algebraic prover
P∗alg against ΠFS that makes q random oracle queries, and for every distinguisher D∗, there exists a
non-uniform algebraic prover Palg and a distinguisher D such that for all λ ∈ N+,

AdvFS-EXT
ΠFS,R (H, E∗,P∗alg,D∗, λ) ≤ AdvaSR-WEE

Π,R (E ,Palg,D, λ) + (q + 1)/|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 . Moreover, Palg makes at most q queries
to its oracle and is nearly as efficient as P∗alg. The extractor E∗ is nearly as efficient as E.

For completeness, we sketch the proof in Appendix B.

3 Simulation-Extractability from State-restoration Unique Response

Our results make use of the concrete security proof of extractability for Bulletproofs given by [GT21] in
the algebraic group model. Thus, the first step towards proving simulation-extractability for Bulletproofs
is to provide a formal definition of simulation-extractabity in the algebraic group model, which has not
previously appeared in the literature.

3.1 Simulation-Extractability in the AGM

On a high-level, the simulation-extractability (SIM-EXT) property ensures that extractability holds even
if the cheating adversary sees simulated proofs. Defining SIM-EXT in the AGM is a non-trivial task:
because the algebraic adversary outputs group representation with respect to all the group elements they
have observed so far, the format of representation gets complex as the adversary receives more simulated
proofs, whose representation might not be w.r.t. generators present in pp. To make our analysis simpler,
we introduce the notion of algebraic simulator.

Definition 11 (Algebraic simulator). Consider a perfectly HVZK argument of knowledge (Setup,P,V)
with a PPT simulator S. The simulator S is algebraic if on receiving a statement x and its group repre-
sentation [x] as input, it outputs a proof T̃ and its group representation [T̃ ] with respect to generators in
pp and generators used for representing x. For an algebraic simulator S, we denote [T̃ ]← S([x]).

Definition 12 (Algebraic simulator for NIZK). Consider a non-interactive argument of knowledge
(Setup,PFS,VFS) with NIZK simulator SFS. The simulator SFS is algebraic if on receiving a statement x
and its group representation [x] as input, its second mode outputs proofs T̃ , their group representations
[T̃ ] with respect to generators in pp and generators used for representing x. For an algebraic simulator
SFS, we denote ([T̃ ], st′)← SFS(2, st, [x]).

Remark 1. Restricting the simulator to be algebraic does not seem to limit the class of protocols that we
can analyze, since typical simulators for discrete-log-based protocols are already algebraic. Consider the
simulator for the Schnorr protocol: given a statement x ∈ G and random challenge ρ the simulator outputs
(gzx−ρ, ρ, z) where z is uniformly sampled from Zq. In the next section, we show that the simulator for
Bulletproofs is also algebraic.

Remark 2. By construction, if we have an algebraic HVZK simulator S for Π, then the corresponding
canonical NIZK simulator SFS for ΠFS (see the paragraph after Definition 9) fixed by S is also algebraic,
since SFS internally invokes S to obtain a proof.

We now extend the definition of FS-EXT to simulation-extractability, by equipping the cheating alge-
braic prover with access to proof simulation oracles in addition to the random oracle. Formally, we define
simulation-exractability with respect to a specific NIZK simulator SFS and the corresponding wrapper or-
acles (S1,S ′2) (see Section 2.7). That is, S1 on input (t, i) returns the first output of SFS(1, st, t, i) (i.e.,
corresponding the random oracle H in FS-EXT) and S ′2 on an input statement x returns the first output
of SFS(2, st, x), respectively.

Following FS-EXT, we define a simulator-extractor E = (E0, E1, E2), where E1 receives a random oracle
query of the form (t, i) (similar to the wrapper oracle S1) and returns a challenge from Chi; E2 receives a
statement query x and returns a simulated proof (similar to the wrapper oracle S ′2); E0 extracts a witness
at the end. The differences with Definition 10 are highlighted in orange.
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Game SIM-EXT-1S1,S′2,Palg,D
ΠFS

(λ) :

pp← Setup(1λ)
([x∗], [T ∗], stPalg

)← PS1,S′2
alg (pp)

d← VS1
FS (pp, x∗, T ∗)

b̃← D(stPalg
, x∗, T ∗,Q1,Q2)

return (b̃ = 1)

Game SIM-EXT-0E,Palg,D
ΠFS,R (λ):

pp← Setup(1λ)
stE ← pp
([x∗], [T ∗], stPalg

)← PE1,E2
alg (pp)

d← VE1
FS (pp, x∗, T ∗)

b̃← D(stPalg
, x∗, T ∗,Q1,Q2)

w ← E0(stE , [x∗], [T ∗])
b← ((d = 1∧(x∗, T ∗) /∈ Q2)⇒ (pp, x∗, w) ∈ R)
return (b̃ = 1) ∧ (b = 1)

Fig. 5: Simulation extractability games. Like in Fig. 4, in the SIM-EXT-1 experiment, calling the verifica-
tion algorithm VFS has an impact on the RO query set Q1.

At a high-level, the security requirement of FS-SIM-EXT is two-fold: (1) (E1, E2) in the game SIM-EXT-0
correctly simulates the adversary’s view in SIM-EXT-1 (indicated by a bit b̃), and (2) the extractor E0
outputs a valid witness as long as an adversarial forgery (x∗, T ∗) is accepting and non-trivial, i.e., not
identical to what’s obtained by querying a proof simulation oracle (indicated by a bit b).

Definition 13 (FS-SIM-EXT security). Consider a NIZK scheme ΠFS = (Setup,PFS,VFS) for lan-
guage L with an NIZK simulator SFS. Let (S1,S ′2) be wrapper oracles for SFS as defined in Section 2.7.
ΠFS is online simulation-extractable (FS-SIM-EXT) with respect to SFS in the AGM and ROM, if there
exists an efficient simulator-extractor E = (E0, E1, E2) such that for every PPT algebraic adversary Palg
and every distinguisher D, the following probability is negligible in λ.

AdvFS-SIM-EXT
ΠFS,R (SFS, E ,Palg,D, λ) :=

∣∣∣Pr[SIM-EXT-1S1,S′2,Palg,D
ΠFS

(λ)]− Pr[SIM-EXT-0E,Palg,D
ΠFS,R (λ)]

∣∣∣
In Fig. 5, each of Q1 = {Q1,i}i∈[1,r] is a set of query response pairs corresponding to queries to S1 or E1

with random oracle index i. Q2 is a set of statement-transcript pairs (x, T̃ ), where x is a statement queried
to the proof simulation oracle S ′2 or E2 by Palg, and T̃ is the corresponding simulated proof, respectively.

Comparison with previous SIM-EXT definitions Although we borrow the formalization of wrapper
oracles (S1,S ′2) from [FKMV12], our definition of FS-SIM-EXT is different from their “weak” (Def. 6,
an extractor requires rewinding access to the adversary) and “full” (Def. 7, an extractor is tasked with
extracting a witness by only looking at an adversarial statement-proof pair) SIM-EXT. Indeed, neither of
these is suitable in our setting. The former is too weak because we aim for an “online” way of extraction;
the latter is too strong since the extractor used for showing reduction from FS-EXT to aSR-WEE (The-
orem 3) already needs additional control over RO queries. To the best of our knowledge, there has been
no previous work analyzing Fiat–Shamir NIZK under the latter notion even in the AGM.

Another difference with previous FS-SIM-EXT definitions is that ours explicitly handles indistinguisha-
bility of two games. This wasn’t the case in [FKMV12] because their proof of weak SIM-EXT invokes the
general forking lemma [BN06] that implicitly takes care of perfect indistinguishability of two runs. Our
definition can essentially be seen as Def. 11 of Unruh [Unr17] extended with a proof simulation oracle,
which however was considered “too strong” in that work as its focus is security in the QROM. In con-
trast, our main focus is analysis in the CROM and online extraction enabled by the AGM (following
the previous FS-EXT analysis conducted by [GT21]). Thus, we believe ours is most suitable for formally
analyzing SIM-EXT of Bulletproofs based on the state-of-the-art.

There also exist several SIM-EXT definitions for CRS-NIZK (e.g., [Sah99, DDO+01, Gro06, GO07,
ARS20, BKSV20]) but the way they are formulated is naturally different since the plain extractabil-
ity already varies and simulators for CRS-NIZK behave in a different fashion. Perhaps a variant of
Groth [Gro06] is somewhat close to ours: the first part of the extractor handles simulation of CRS (so
that it generates a trapdoor without the adversary noticing) and the second part takes care of witness
extraction.

Remark 3. In the AGM, the representation submitted by the adversary is w.r.t. the group elements
present in pp and all the simulated proofs they have seen so far. However, once we assume an algebraic
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simulator, it is always possible for E to convert such representation to the one w.r.t. pp and previously
queried statements. As we shall see later, this will greatly simplify our security proof in the AGM because
it will allow us to reuse the existing extractor analysis (where there is no simulation oracle).

3.2 State-restoration Unique Response and Weak Unique Response

In this part we introduce two new definitions for the unique response property: one for interactive and
the other for non-interactive protocols. Our supporting claim (Lemma 2) below relates the two notions,
which might be of independent interest.
State-restoration unique response. Our first definition considers the game SR-URAalg,S

Π (λ) in Figure 6.
As the name indicates it has a flavor of aSR-WEE and it is therefore – compared to the the usual UR
definition for interactive protocols – both stronger (in the sense that an adversary can rewind the verifier)
and weaker (in the sense that an adversary is forced to use the simulated transcript to find a forgery).

Concretely, the prover initially generates an instance x on which it attempts to break the unique
response property. Similar to aSR-WEE, we capture the power of the prover to rewind the verifier with
an oracle Oext. Roughly, the oracle allows the prover to build an execution tree, which is extended with
each query to it by the prover. The prover succeeds if it comes up with another accepting transcript
T that is part of the execution tree and have a prefix in common with the simulated transcript T̃ . Let
T = (a1, c1, . . . , ar, cr, ar+1) denote a transcript. We write T |i to denote a partial transcript consisting
of the first 2i messages of T , i.e., T |i = (a1, c1, . . . , ai, ci).

We also remark that, unlike aSR-WEE, our SR-UR is deliberately made non-adaptive to prove subse-
quent lemmas with a weaker assumption. Indeed, the reductions we present later will go through even
though the resulting simulation-extractability claim has an adaptive flavor.

Game SR-URAalg,S
Π (λ)

win← false
tr← ε
pp← Setup(1λ)
([x], stA)← A1(pp)
T̃ ← S(pp, x)
for i = 1, . . . , r do

tr← tr || (T̃ |i)
end for
Run AOext

2 (T̃ , stA)
return win

Oracle Oext([T ], [ai])

Parse T as T = (a1, c1, · · · , ai−1, ci−1)
if T ∈ tr then

if i ≤ r then
ci

$←− Chi; tr← tr||(T , ai, ci);
return ci

else if i = r + 1 then
d1 ← V(pp, x, (T , ai))
d2 ← (∃j ∈ [1, r] : T |j = T̃ |j ∧ aj+1 6= ãj+1)
if d1 = 1 ∧ d2 = 1 then

win← true
return d1

return ⊥

Fig. 6: State-restoration Unique Response.

Definition 14 (SR-UR). Consider a (2r+1)-round public-coin interactive proof system Π = (Setup,P,V)
that has perfect HVZK simulator S. Π is said to have state-restoration unique response (SR-UR) with re-
spect to a simulator S, if for all PPT algebraic adversaries Aalg = (A1,A2), the advantage AdvSR-UR

Π (Aalg,S) :=
Pr[SR-URAalg,S

Π (λ)] is negl(λ).

Weak Unique ResponseWe now present our weak unique response definition tailored to non-interactive
protocols. While typical unique response properties in the literature are defined for interactive protocols,
[KZ21, Definition 7] is in the non-interactive setting. Our definition below is strictly weaker than theirs,
as we only need to guarantee the hardness of finding another accepting transcript forked from simulated
(honest) one.

Definition 15 (FS-WUR). Consider a (2r+1)-round public-coin interactive proof system Π = (Setup,P,V)
and the resulting NIZK ΠFS = (Setup,PFS,VFS) via Fiat-Shamir transform. Let SFS be a perfect NIZK sim-
ulator for ΠFS (Definition 9) with wrapper oracles (S1,S ′2) as defined in Section 2.7. ΠFS is said to have
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weak unique responses (FS-WUR) with respect to SFS if given a transcript T̃ = (ã1, c̃1, . . . , ãr, c̃r, ãr+1)
simulated by SFS, it is hard to find another accepting transcript T = (a1, c1, . . . , ar, cr, ar+1) that both
have a common prefix up to the ith challenge for an instance x. That is, for all PPT algebraic adversaries
Aalg = (A1,A2) the advantage AdvFS-WUR

ΠFS
(Aalg,SFS) defined as the following probability is negl(λ).

Pr

 VS1
FS (pp, x, T ) = 1∧

(∃j ∈ [1, r] : T |j = T̃ |j ∧ aj+1 6= ãj+1)

∣∣∣∣∣∣∣∣
pp← Setup(1λ);

([x], st)← AS1
1 (pp);

T̃ ← S ′2(x);
[T ]← AS1

2 (T̃ , st);


We now show that FS-WUR of ΠFS reduces to SR-UR of the interactive proof system Π in the AGM.

Informally, the lemma below guarantees that one can construct an adversary breaking unique response in
the interactive setting, given an adversary breaking unique response in the non-interactive setting, as long
as it makes RO queries for the accepting transcript in right order. As mentioned earlier, the reduction
below does not crucially depend on the AGM: if a given protocol meets SR-UR without the AGM the
proof holds almost verbatim without the AGM as well.

Lemma 2. Consider a (2r + 1)-round public-coin interactive proof system Π = (Setup,P,V) and the
resulting NIZK ΠFS = (Setup,PFS,VFS) via Fiat-Shamir transform. Let S be a perfect algebraic HVZK
simulator for Π and SFS be the corresponding canonical NIZK simulator for ΠFS. If Π has SR-UR with
respect to S, then ΠFS has FS-WUR with respect to SFS. That is, for every PPT adversary A against
FS-WUR of ΠFS that makes q queries to S1, there exists a PPT adversary B against SR-UR of Π such
that,

AdvFS-WUR
ΠFS

(A,SFS) ≤ AdvSR-UR
Π (B,S) + q + 1

|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 . Moreover, B makes at most q queries
to its oracle and is nearly as efficient as A.

Proof. Let A = (A1,A2) be the NIZK prover against FS-WUR. We define an adversary B = (B1,B2)
against SR-UR. Without loss of generality we assume that A does not repeat the same RO queries.

In the first stage, B1 will run A1 on pp. Whenever A1 makes RO queries B1 invokes S1 and keeps track
of the query history in tables Q1 = {Q1,1, . . . ,Q1,r}. When A1 returns ([x], stA), B1 outputs ([x], stB)
where stB = (pp, stA, [x],Q).

In the second stage, B2 is given stB and T̃ , which is the output on invoking the HVZK simulator S on
x. Then, B2 programs the RO tables such that Q1,1[pp, x, ã1] := c̃1, . . . ,Q1,r[pp, x, ã1, c̃1, . . . , ãr] := c̃r.
Now, B2 invokes A2 on T̃ and stA and responds to the RO queries as follows.
– B2 initializes a set of partial transcripts tr as

tr = {(ã1, c̃1), . . . , (ã1, c̃1, . . . , ãr, c̃r)}.

– Whenever B2 receives fromA2 a query to S1 of the form ((pp, [x], [T ], [ai]), i) where T = (a1, c1, . . . , ai−1, ci−1),
it checks if T ∈ tr. If that is the case, it queries Oext with T and ai (with representation). On re-
ceiving challenge ci, it updates tr such that tr ← tr||(T , ai, ci) and programs the RO table such that
Q1,i[pp, x, T , ai] := ci. Note that the partial transcript set tr constructed as above is guaranteed to
be identical to that of SR-UR.

– When B2 receives from A2 a forged transcript T at the end, it checks whether the winning condition
is satisfied, i.e.,

VS1
FS (pp, x, T ) = 1 ∧ (∃j ∈ [1, r] : T |j = T̃ |j ∧ aj+1 6= ãj+1)

If that is the case but T |i /∈ tr for some i ∈ [1, r], B2 aborts, since it implies T is not present in the
partial transcript set maintained by Oext and therefore does not qualify as a winning transcript in
the SR-UR game. Otherwise, it forwards T to Oext (with representation).
If B2 does not abort, B2 wins the SR-UR game because all the partial transcripts of T are recorded by

Oext in the SR-UR game. We now bound the probability that B2 aborts. It aborts only if (1) the accepting
transcript T was crafted by A2 without querying the RO in order, or (2) the accepting transcript T
contains some challenge that was obtained without querying the RO at all.
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The first case happens only if for some i, j ∈ [1, r] such that j < i, a tuple (pp, x, T |i−1, ai) was
queried to S1 before (pp, x, T |j−1, aj) was queried. In that case, when (pp, x, T |j−1, aj) is queried later,
S1 must return cj already present in T |i−1 for T to be accepting. This happens with probability at most
q/|Chj | ≤ q/|Chi0 | (where i0 is the round with the smallest Chi0) since the adversary can try to guess
any challenge value for at most q times.

The second case happens only if for some i ∈ [1, r], a tuple (pp, x, T |i−1, ai) was never queried to S1
by A. In that case, when (pp, x, T |i−1, ai) is queried later, S1 must return ci already present in T for T
to be accepting. This happens with probability at most 1/|Chi| ≤ 1/|Chi0 | since VFS queries S1 once for
each challenge.

Overall, B wins whenever A wins except with probability at most (q + 1)/|Chi0 |.
ut

3.3 From Weak Unique Response to Simulation-extractability

We now prove the simulation-extractability of a non-interactive protocol ΠFS assuming it comes with an
algebraic NIZK simulator SFS, it is extractable and has weak unique responses with respect to SFS. On
a high-level the proof works by constructing another adversary Palg that forwards the RO queries made
by a FS-SIM-EXT adversary P∗alg to the FS-EXT game, except for the ones that have prefix in common
with any of the simulated transcripts. This will allow us to invoke the extractor E that is only guaranteed
to work in the FS-EXT setting. On the other hand, thanks to the FS-WUR property we can argue that
a cheating prover also has a hard time finding another transcript by reusing any prefix of a simulated
transcript.

We stress that, as long as FS-WUR and FS-EXT are satisfied without the AGM the proof below holds
almost verbatim without the AGM as well. Interestingly, proof in the AGM requires additional care
about representation submitted by Palg: whenever Palg forwards group elements with representation to
external entities (i.e., H, E1, and E0), it must always convert representation to the one only with respect
to generators in pp. This is made possible thanks to an algebraic simulator SFS; by probing how SFS
simulates a transcript with respect to the generators in pp, Palg can translate the group representation
submitted by P∗alg even if it depends on previously simulated transcripts. This is crucial for invoking the
extractor from FS-EXT, since a cheating prover against FS-EXT is only allowed to use the generators
present in pp.

We also remark that the additive security loss due to failure of RO programming by S ′2 is not present
in the bound since we use a canonical NIZK simulator as an assumption and such a loss already appears
when showing NIZK from HVZK.

Lemma 3. Consider a NIZK argument system ΠFS with an algebraic NIZK simulator SFS. If ΠFS is
FS-WUR with respect to SFS and online FS-EXT, then it is online FS-SIM-EXT with respect to SFS.

Concretely, let E = (E0, E1) be an FS-EXT extractor for ΠFS. There exists an efficient FS-SIM-EXT
simulator-extractor E∗ = (E∗0 , E∗1 , E∗2 ) for ΠFS such that for every algebraic prover P∗alg against ΠFS that
makes q1 random oracle queries (i.e., queries to S1 or E∗1 ), and q2 simulation queries (i.e., queries to S ′2
or E∗2 ), and for every distinguisher D∗, there exists another algebraic prover Palg, a distinguisher D, and
an FS-WUR adversary Aalg, such that for all λ ∈ N+,

AdvFS-SIM-EXT
ΠFS,R (SFS, E∗,P∗alg,D∗) ≤ AdvFS-EXT

ΠFS,R (H, E ,Palg,D) + q2 ·AdvFS-WUR
ΠFS,R (Aalg,SFS)

Moreover, Palg and Aalg make at most q1 queries to their oracle and is nearly as efficient as P∗alg. The
extractor E∗ is nearly as efficient as E.

Proof. Without loss of generality we assume P∗alg does not repeat the same RO queries. We first construct
a cheating prover Palg against FS-EXT that internally uses the FS-SIM-EXT adversary P∗alg and simulates
its view in FS-SIM-EXT.

We now describe the following simple hybrids.

G0 This game is identical to SIM-EXT-1S1,S′2,P
∗
alg,D

∗

ΠFS
(λ). We have

Pr[G0(P∗alg,D∗)] = Pr[SIM-EXT-1S1,S′2,P
∗
alg,D

∗

ΠFS
(λ)]

G1 This game is identical to G0 except that it aborts if d = 1 (i.e., (x∗, T ∗) is accepting) and (x∗, T ∗) /∈ Q2,
while there exists some (x∗, T̃ ) ∈ Q2 that has prefix in common with T ∗ but differs at the response right
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after that prefix, i.e., for some j ≤ r it holds that T ∗|j = T̃ |j and a∗j+1 6= ãj+1. The abort event implies
that there exists an efficient FS-WUR adversary Aalg that internally uses P∗alg. That is,∣∣Pr[G0(P∗alg,D∗)]− Pr[G1(P∗alg,D∗)]

∣∣ ≤ Pr[G1(P∗alg,D∗) aborts] ≤ q2 ·AdvFS-WUR
ΠFS,R (Aalg,SFS) (4)

We defer the reduction deriving (4) to later.
Constructing Palg and D for FS-EXT. We now construct a FS-EXT adversary Palg and a distinguisher
D. Palg plays an FS-EXT game while internally simulating the view of P∗alg in the game G1 as follows.

– On receiving pp from Setup(1λ), Palg forwards pp to P∗alg.
– Whenever P∗alg makes a simulation query with input [x], Palg internally invokes SFS(2, st, [x]) to obtain

([T̃ ], st′) and records a statement-proof pair (x, T̃ ) in the set Q2. Palg also separately keeps track of
representation of every entry in Q2. Then it programs the RO tables Q1 for every challenge in T̃ as
SFS(2, st, [x]) would do.

– Whenever P∗alg (or VFS at the end) makes a random oracle query with input ((pp, [x], [T ], [ai]), i),
where T = (a1, c1, . . . , ai−1, ci−1), Palg checks whether there exists some (x, T̃ ) ∈ Q2 that has prefix
in common with T , i.e., for some j ≤ i−1 it holds that T |j = T̃ |j . If that is the case, it lazily samples
ci from Chi and updates Q1,i accordingly, as SFS(1, st, (pp, [x], [T ], [ai]), i) would do. Otherwise, it
forwards the query ((pp, x, T , ai), i) to a FS-EXT game with converted group representation, receives
ci ∈ Chi, and updates Q1,i accordingly.

– When P∗alg outputs a forgery ([x∗], [T ∗]), Palg first checks whether it causes aborts in the game G1. If
that is the case, Palg also aborts because it implies that the challenge values in T ∗ are not obtained
by forwarding the corresponding queries to a FS-EXT game and therefore (x∗, T ∗) is not accepting
in the FS-EXT game.

– Otherwise, Palg outputs (x∗, T ∗, stPalg
) to a FS-EXT game with converted group representation, where

stPalg
= (Q1,Q2).

A FS-EXT distinguisher D internally invokes D∗ on input (stPalg
, x∗, T ∗,Q1,Q2) and outputs whatever

D∗ returns.
By construction, we have

Pr[G1(P∗alg,D∗)] = Pr[EXT-1H,Palg,D
ΠFS

(λ)]

Constructing E∗ for FS-SIM-EXT. We define a simulator-extractor E∗ = (E∗0 , E∗1 , E∗2 ) using a FS-EXT
extractor E = (E0, E1). E∗1 answers the random oracle queries made by P∗alg as Palg would, by using the
responses from E1. E∗2 answers the simulation queries made by P∗alg as Palg would, by internally invoking
SFS. E∗0 outputs whatever E0 returns on input (stE , [x∗], [T ∗]). Note that, if Palg does not abort, T ∗ has
no prefix in common with any of the previously simulated transcripts. In that case, thanks to the random
oracle simulation conducted by Palg as above, for every i ∈ [1, r], c∗i has been obtained by querying the
random oracle in a FS-EXT game with input ((pp, x∗, T ∗|i−1, a

∗
i ), i). Therefore, (x∗, T ∗) gets accepted by

VE1
FS whenever it gets accepted by VE

∗
1

FS , (x∗, T ∗) /∈ Q2, and Palg does not abort.
By construction, E∗ succeeds in extraction if and only if E does so in the game EXT-0E,Palg,D

ΠFS,R (λ). Thus
we have

Pr[SIM-EXT-0E
∗,P∗alg,D

∗

ΠFS,R (λ)] = Pr[EXT-0E,Palg,D
ΠFS,R (λ)]

Reduction to FS-WUR. We now bound the probability that the game G1 aborts. We argue that, if
there exists (P∗alg,D∗) that causes G1(P∗alg,D∗) to abort (or in other words, that causes Palg to abort),
one can use P∗alg to construct another adversary Aalg = (A1,A2) that breaks FS-WUR with respect to
SFS. The reduction goes as follows. The differences with Palg are highlighted in orange.
– A1 first picks a query index k ∈ [1, q2] uniformly at random.
– On receiving pp from Setup(1λ), A1 forwards pp to P∗alg.
– Whenever P∗alg makes a simulation query with input [x], if this is the kth simulation query then it

forwards x to S ′2 in the FS-WUR game with converted group representation. We denote the statement-
transcript pair of the kth query by (xk, T̃ k).8 Otherwise, A1 internally invokes SFS(2, st, [x]) to obtain

8 We note that Aalg does not get to know the representation of T̃ k unlike other simulated transcripts, as that
particular one comes from the FS-WUR game and its representation is not disclosed to the adversary. Therefore,
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([T̃ ], st′). It records a statement-proof pair (x, T̃ ) in the set Q2. A also separately keeps track of
representation of every entry in Q2. Then it programs the RO tables Q1 for every challenge in T̃ as
SFS(2, st, [x]) would do. A2 also responds to simulation queries in the same way, except that it never
forwards a statement to the FS-WUR game.

– Whenever P∗alg (or VFS at the end) makes a random oracle query with input ((pp, [x], [T ], [ai]), i), where
T = (a1, c1, . . . , ai−1, ci−1), A2 checks whether (xk, T̃ k) has prefix in common with T , i.e., for some
j ≤ i−1 it holds that T |j = T̃ k|j . If that is the case, it forwards the query ((pp, x, T , ai), i) to S1 in the
FS-WUR game with converted group representation, receives ci ∈ Chi, and updates Q1,i accordingly.
Otherwise, it lazily samples ci from Chi and updates Q1,i accordingly, as SFS(1, st, (pp, [x], [T ], [ai]), i)
would do. A1 also responds to random oracle queries in the same way, except that it never forwards
queries to the FS-WUR game.

– When P∗alg outputs a forgery ([x∗], [T ∗]), Aalg first checks whether it causes aborts in the game
G1. If that is the case, A2 forwards T ∗ to the FS-WUR game as a forgery with converted group
representation.
The above procedure perfectly simulates P∗alg’s view in the game G1. By construction Aalg breaks

FS-WUR with respect to SFS if G1 aborts and (x∗ = xk∧T ∗ has some prefix in common with T̃ k), because
then it is guaranteed that for every i ∈ [1, r], c∗i has been obtained by querying the oracles (S1,S ′2) in the
FS-WUR game. Therefore, T ∗ does qualify as a valid forgery in the FS-WUR game. Conditioned on the
event that G1 aborts, the probability that Aalg wins is at least 1/q2. Therefore, we have

1
q2
· Pr[G1(P∗alg,D∗) aborts] ≤ AdvFS-WUR

ΠFS,R (Aalg,SFS)

which derives (4).
Putting together, we obtain∣∣∣Pr[SIM-EXT-1S1,S′2,P

∗
alg,D

∗

ΠFS
(λ)]− Pr[SIM-EXT-0E

∗,P∗alg,D
∗

ΠFS,R (λ)]
∣∣∣

≤
∣∣∣Pr[EXT-1H,Palg,D

ΠFS
(λ)]− Pr[EXT-0E,Palg,D

ΠFS,R (λ)]
∣∣∣+ q2 ·AdvFS-WUR

ΠFS,R (Aalg,SFS)

≤AdvFS-EXT
ΠFS,R (H, E ,Palg,D) + q2 ·AdvFS-WUR

ΠFS,R (Aalg,SFS)

ut

3.4 Generic Result on Simulation-extractability

Theorem 4. Let R be a relation. Let Π be a r-challenge public coin interactive protocol for the relation
R where the ith challenge is sampled from Chi for i ∈ [1, r]. Suppose Π satisfies: aSR-WEE, perfect HVZK
with algebraic simulator S, and SR-UR with respect to S. Let SFS be the corresponding canonical NIZK
simulator for SFS fixed by S. Then ΠFS is FS-SIM-EXT with respect to SFS.

Concretely, let E be an aSR-WEE extractor for Π. There exists an efficient FS-SIM-EXT simulator-
extractor E∗ for ΠFS such that for every non-uniform algebraic prover P∗alg against ΠFS that makes q1
random oracle queries, and q2 simulation queries, and for every distinguisher D∗, there exists a non-
uniform algebraic prover Palg, an SR-UR adversary Aalg, and a distinguisher D such that for all λ ∈ N+,

AdvFS-SIM-EXT
ΠFS,R (SFS, E∗,P∗alg,D∗, λ)

≤AdvaSR-WEE
Π,R (E ,Palg,D, λ) + q2 ·AdvSR-UR

Π,R (Aalg,S, λ) + (q2 + 1)(q1 + 1)
|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 .

Proof. From Theorem 3, aSR-WEE of Π implies FS-EXT security of ΠFS. From Lemma 2, SR-UR and
HVZK of Π implies FS-WUR security of ΠFS. Finally, from Lemma 3, FS-EXT and FS-WUR imply
FS-SIM-EXT security of ΠFS. Putting together all the concrete bounds, we obtain the result. ut

all the subsequent outputs from P∗alg are with respect to pp and T̃ k. This, however, does not prevent us from
showing reduction because outputting representation w.r.t. pp and T̃ k is indeed allowed in the FS-WUR game.
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4 Non-Malleability of Bulletproofs – Arithmetic Circuits

The protocol for arithmetic circuit satisfiability (see relation 2) as it appears in Bulletproofs (henceforth
referred as BP) [BBB+17] is formally described in Protocol 1 and proceeds as follows: In the first round,
the prover commits to values on the wire of the circuit (i.e. aL,aR and aO), and the blinding vectors
(sL, sR). It receives challenges y, z from the verifier. Based on these challenges, the prover defines three
polynomials, l, r and t, where t(X) = 〈l(X), r(X)〉, and commits to the coefficients of the polynomial t in
the third round, i.e. commitments T1, T3, T4, T5, and, T6

9. On receiving a challenge x from the verifier, the
prover evaluates polynomials l, r on this challenge point, computes t̂ = 〈l(x), r(x)〉, and values βx, µ, and
sends βx, µ, t̂, l = l(x) and r = r(x) in the fifth round. The verifier accepts if: the commitments {Ti}i=S
(for S = {1, 3, 4, 5, 6}) are to the correct polynomial t and if t̂ = 〈l, r〉. To get logarithmic proof size,
the prover and verifier define an instance of the inner dot product for checking the condition t̂ = 〈l, r〉,
instead of sending vectors l, r in clear.

The inner product subroutine is presented in Appendix C.

Protocol 1: BP

RACSPf =
{

((n,Q, g, h, u,g,h), (WL,WR,WO, c), (aL,aR,aO)) |
aL ◦ aR = aO ∧WL · aL + WR · aR + WO · aR = c

}

1. P samples sL
$←− Znp ; sR

$←− Znp ;α, β, ρ $←− Zp. P sends:

S = hρgsLhsR ; AI = hαgaLhaR ; AO = hβgaO

2. V sends challenge y, z $←− Z∗p.

3. P samples βi
$←− Zp,∀i ∈ S, computes

l(X) = aLX + aOX
2 + y−n ◦ (zQ+1

[1:] ·WR) ·X + sLX
3

r(X) = yn ◦ aR ·X − yn + zQ+1
[1:] · (WL ·X + WO) + yn ◦ sR ·X3

t(X) = 〈l(X), r(X)〉 =
6∑
i=1

tiX
i

For i ∈ S : Ti = gtihβi

and sends {Ti}i=S .

4. V sends challenge x $←− Z∗p.
5. P computes

l = l(x); r = r(x); t̂ = 〈l, r〉 ,

βx = β1 · x+
6∑
i=3

βi · xi, µ = α · x+ β · x2 + ρ · x3,

P sends

t̂, βx, µ

6. V sends challenge w ∈ Zq.
9 The degree two term is independent of the witness and can be computed by the verifier, therefore there is no
T2 commitment.
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7. P computes P,V both compute

h′ = hy−n ;u′ = uw;

WL = h′z
Q+1
[1:] ·WL ;WR = gy−n◦(zQ+1

[1:] ·WR);WO = h′z
Q+1
[1:] ·WO ;

P = AxI ·Ax
2

O · h′−yn ·W x
L ·W x

R ·WO · Sx
3

P ′ = h−µP (u′)t̂;

P,V execute inner product argument protocol as 〈InPrd.P((g,h′, u′, P ′), (l, r)), InPrd.V(g,h′, u′, P ′)〉.
8. V computes

δ(y, z) =
〈

y−n ◦ (zQ+1
[1:] ·WR), zQ+1

[1:] ·WL

〉
R = g

x2(δ(y,z)+
〈

zQ+1
[1:] ,c

〉
) · T x1 ·

6∏
i=3

T x
i

i

InPrd.V(g,h′, u′, P ′)→ b

V returns 1 if b = 1 and gt̂hβx = R.

Protocol 2: SBP

The algebraic simulator SBP is given as input:

pp = (n,Q, g, h, u,g,h)
x = (WL,WR,WO, c)

The transcript is simulated as follows:
1. x, y, w, z $←− Zp;

2. βx, µ
$←− Zp;

3. l, r $←− Znp ;

4. t̂ = 〈l, r〉;

5. ρI , ρO, t3, t4, t5, t6, β3, β4, β5, β6
$←− Zp;a

6. AI = gρI , AO = uρO ;
7. Ti = gtihβi for i ∈ {3, 4, 5, 6};

8. h′ = hy−n ;u′ = uw;

9. WL = h′z
Q+1
[1:] ·WL ;WR = gy−n◦(zQ+1

[1:] ·WR);WO = hy−n◦(zQ+1
[1:] ·WO);

10. S =
(
AxI ·Ax

2

O · g−l · (h′)−yn−r ·W x
L ·W x

R ·WO · h−µ
)−x−3

11. T1 =
(
h−βx · gx

2·(δ(y,z)+〈zQ+1
[1:] ,c〉)−t̂ ·

∏6
i=3 T

xi

i

)−x−1

12. T = (S,AI , AO; y, z; {Ti}i∈S ;x; t̂, βx, µ;w; l, r);
13. Output [T ];

a Steps 5,6,7 are the difference with the original simulator.

4.1 Algebraic Simulation

In Protocol 2 we define an algebraic simulator SBP for BP which is going to be used in both the proof
of HVZK and SR-UR. The simulator SBP essentially works as the simulator from [BBB+18], except that,
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since it needs to explicitly output group representation for each simulated element, it will generate AI ,
AO as well as the Ti’s by learning their discrete logarithm in bases g, h, u instead of generically sampling
random group elements like in the original proof. This makes no difference for the ZK claim and makes
the proof of SR-UR simpler. Note that, since the simulator picks all the challenges at random in the first
step, the simulator can easily be changed to satisfy the stronger special HVZK. However, by defining the
simulator like this we can reuse it in both of the following claims. Note also that while the output of the
simulator does not explicitly contain the group representation (t1, β1) of T1 w.r.t base (g, h), it is possible
to compute these values from the output of the simulator.

Remark 4. The simulator for the recursive version of Bulletproof e.g., the one that calls InPrd instead of
sending l, r directly, can easily be constructed from the simulator above by running the InPrd protocol
on l, r. The algebraic simulator also outputs the representation for the elements Li, Ri generated during
this protocol and this representation will be used explicitly in the proof later.

Claim 1. The protocol BP (Protocol 1) is perfect HVZK with algebraic simulator SBP (Protocol 2) .

Proof. The claim follows directly from the proof of HVZK in [BBB+18] by observing that the way
AI , AO, T3, T4, T5, T6 are generated in our and their simulator produces the exact same distribution (in
their case they are sampled as random elements from the group; in ours, we generate them by raising
generators to random exponents, and those are not re-used anywhere else).

4.2 State-restoration Unique Responses

The following claim is crucial for invoking our generic result from Theorem 4. We remind the reader that
proving uniqueness of the randomized commitments Ti’s is made possible thanks to our relaxed definition:
if the adversary was allowed to control both transcripts, it would be trivial to break the (strong) unique
response by honestly executing the prover algorithm twice with known witness and by committing to ti
using distinct randomnesses βi and β′i. Our proof below on the other hand argues that a cheating prover
in SR-UR has a hard time forging Ti once one of the transcripts has been fixed by a simulator.

Claim 2. Protocol BP (Protocol 1) satifsies state-restoration unique response (SR-UR) with respect to
SBP (Protocol 2) in the AGM, under the assumption that solving the discrete-log relation is hard. That
is, for every PPT adversary Aur against SR-UR of BP that makes q queries to Oext (Fig. 6), there exists
a PPT adversary A against DL-REL such that,

AdvSR-UR
BP (Aur,SBP) ≤ AdvDL-REL(Gλ,Aλ) + (14n+ 8)q

(p− 1)

Proof. Given an algebraic adversary for SR-UR-game Aur = (A1,A2) for protocol BP (Fig. 6), we con-
struct an adversary, A, who breaks the discrete-log relation.
A, upon receiving a discrete-log relation challenge interacts with Aur as follows: It first runs A1(pp)

(where pp includes all the generators from the discrete-log relation assumption) to receive an instance [x]
and st. A then invokes the simulator SBP on [x] to receive a transcript T̃ . A then runs A2 on T̃ and st.
Queries to the SR-UR-oracle Oext are handled by A locally as in the SR-UR game, by sampling random
challenges and forwarding to A2. A locally records the tree of transcripts. Note that when Aur queries
Oext, it also submits the group representation in terms of all groups elements seen so far. Moreover, the
simulator SBP is algebraic, and therefore A can efficiently recover all representation for elements in T
and T̃ into an equivalent representation purely in terms of g,h, g, h, u which will be used to break the
discrete-logarithm assumption.

Since Aur wins the SR-UR game [T ] is an accepting transcript for statement [x] which is different from
[T̃ ], but has a common prefix. Therefore, at least the first two messages must be equal. In particular, SBP
outputs transcript of the form:

T̃ = (ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃, β̃x, µ̃, ˜̂t, w̃, L̃1, R̃1, x̃1, . . . , L̃m, R̃m, x̃m, ã, b̃)

and Aur outputs transcripts of the form:

T = (ÃI , ÃO, S̃; ỹ, z̃; (Ti)i∈S ;x, βx, µ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

We denote m = log(n).
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We now proceed with a case by case analysis based on the first message in T which is different from
T̃ .
If T̃i 6= Ti for some i ∈ S, then the verification equation satisfied by T is:

(g(m))a(h(m))b(u′)ab =(
m∏
i=1

L
x2
i
i

)
· h−µ · ÃxI · Ãx

2

O · (h̃′)−ỹn · W̃ x
L · W̃ x

R · W̃O · S̃x
3
· (u′)t̂ ·

(
m∏
i=1

R
x−2
i
i

)
.

(The values W̃(·) and h̃′ are also marked as (̃·) to remind the reader that they are the same in both T
and T̃ . Remember that g(m),h(m) are different in the two transcripts and they are generated as part of
the InPrd). Dividing it by the verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃ = (5)(
m∏
i=1

L
x2
i
i

)(
m∏
i=1

L̃
−x̃2

i
i

)(
m∏
i=1

R
x−2
i
i

)(
m∏
i=1

R̃
−x̃−2

i
i

)
· h−(µ−µ̃) · Ãx−x̃I · Ãx

2−x̃2

O · W̃ x−x̃
L · W̃ x−x̃

R · S̃x
3−x̃3

· (u′)t̂ · (ũ′)−t̂. (6)

We rearrange the exponents w.r.t. the generators (g, h,g,h, u). Let us focus on the exponent of g. The
only elements with a non-zero component for g are: the simulated ÃI and S̃ that have ρI and −ρI x̃−2

in the exponents of g, respectively; and Li (resp. Ri) with g-component li,g (resp. ri,g) submitted by the
adversary during the oracle queries. Then the exponent of g in (6) is

m∑
i=1

li,gx
2
i +

m∑
i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx (7)

If (7) is non-zero then we find a non-trivial DL solution since the left-hand side of 6 has g-component
0. Now we argue that (7) vanishes with negligible probability. Since the state-restoration adversary
makes queries to Oext in order (e.g., it cannot query a transcript whose prefix has not been queried
yet), the challenges x, x1, . . . , xm are also assigned in order. Suppose the first m variables are fixed to
x, x1, . . . , xm−1 and regard (7) as a univariate polynomial with indeterminate Xm. Define

e(m)
g (Xm) = lm,gX

2
m + rm,gX

−2
m +

m−1∑
i=1

li,gx
2
i +

m−1∑
i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx.

Then, by the Schwartz–Zippel (Lemma 1), if the polynomial e(m)
g (Xm) is non-zero, e(m)

g (xm) vanishes
with probability at most 4/(p− 1) over the random choice of xm ∈ Zp; if it is a zero-polynomial, it must
be that the constant term of e(m)

g is 0. Hence, if the polynomial

e(m−1)
g (Xm−1) = lm−1,gX

2
m−1 + rm−1,gX

−2
m−1 +

m−2∑
i=1

li,gx
2
i +

m−2∑
i=1

ri,gx
−2
i − ρI x̃

−2x3 + ρIx.

is non-zero, e(m−1)
g (xm−1) vanishes with probability at most 4/(p− 1) over the random choice of xm−1 ∈

Zp. Iterating the same argument, we are eventually tasked with showing e(0)
g (x) = −ρI x̃−2x3 + ρIx = 0

with negligible probability. This only happens if (1) ρI = 0, i.e., e(0)
g (X) is a zero-polynomial, or (2)

e
(0)
g (x) = 0 over the random choice of x ∈ Zp. The former happens with probability 1/(p− 1) because ρI
are uniformly chosen by the simulator; the latter happens with probability at most 3/(p− 1).

If βx 6= β̃x or t̂ 6= ˜̂t, then we have another transcript

TBP = (ÃI , ÃO, S̃; ỹ, z̃; (T̃i)i∈S ; x̃, βx, µ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

Since both simulated and adversarial transcripts satisfy the verification equation w.r.t. the same R, we
have

gt̂hβx = R = g
˜̂thβ̃x
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which leads to a non-trivial DL relation.

If µ 6= µ̃, the analysis is similar to the case where T̃i 6= Ti. The verification equation satisfied by TBP is

(g(m))a(h(m))b(u′)ab

=
(

m∏
i=1

L
x2
i
i

)
· h−µ · Ãx̃I · Ãx̃

2

O · (h̃′)−ỹn · W̃ x̃
L · W̃ x̃

R · W̃O · S̃x̃
3
· (u′)t̂ ·

(
m∏
i=1

R
x−2
i
i

)
.

Dividing it by the verification equation for the simulated transcript, we get

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃

=
(

m∏
i=1

L
x2
i
i

)(
m∏
i=1

L̃
−x̃2

i
i

)(
m∏
i=1

R
x−2
i
i

)(
m∏
i=1

R̃
−x̃−2

i
i

)
· h−(µ−µ̃) · (u′)t̂ · (ũ′)−t̂. (8)

We rearrange the exponents w.r.t. the generators (g, h,g,h, u). Let us focus on the exponent of h.
Then the exponent of h in (8) is

m∑
i=1

li,gx
2
i +

m∑
i=1

ri,gx
−2
i − (µ− µ̃) (9)

where li,h (resp. ri,h) is the exponent of h available as group representation of Li (resp. Ri) submitted
by the adversary. Using the same argument as before, since the h-component in the left-handside of 8 is
0, if µ 6= µ̃ we obtain non-trivial DL relation except with negligible probability.

If Li 6= L̃i or Ri 6= R̃i This part of the proof uses similar techniques as the ones for Lemma 8 in [GT21],
with the main difference that we explicitly show the equalities and constraints that must hold for all
exponents of parameters g,h, g, h, u. For instance, we introduce polynomials `g and `h which are essential
for the full analysis, but were absent from proof in [GT21].

Let the representations output by the adversary for Li, Ri be

Li =
n∏
j=1

(
g
ligj
j h

lihj
j

)
glghlhulu and Ri =

n∏
j=1

(
g
rigj
j h

rihj
j

)
grghrhuru

and let P ′ =
∏n
j=1

(
g
p′gj
j h

p′hj
j

)
gp
′
ghp

′
hup

′
u be the representation of P ′ which is same in both the transcript

of the simulator and the one of the adversary. In what follows we prove that the exponents of Li (resp. Ri)
match those of L̃i (resp. R̃i) for i = 1, . . . ,m except with negligible probability and otherwise one can find
non-trivial discrete-log relation. Let bit(k, i, t) be the function that return the bit ki where (k1, · · · , kt) is
the t-bit representation of k.

Since T is accepting, the outcome of InPrd.V should be 1, and therefore, the following must hold:

(g(m))a(h(m))b(u′)ab =
(

m∏
i=1

L
x2
i
i

)
P ′

(
m∏
i=1

R
x−2
i
i

)
, (10)

where g(m),h(m) are parameters for the last round, and a, b are the last round messages. All terms in
this equality can be expressed in terms of g,h, g, h, u and we can compute the tuple

(e(2)
g , e

(2)
h , e(2)

g , e
(2)
h , e(2)

u )

such that ge
(2)
g he

(2)
h ge

(2)
g he

(2)
g ue

(2)
u = 1. We compute e(2)

g , e
(2)
h , e

(2)
g , e

(2)
h , e

(2)
u as in Equations 11 to 15. Note

that if T is accepting, (e(2)
g , e

(2)
h , e

(2)
g , e

(2)
h , e

(2)
u ) = (0,0, 0, 0, 0), otherwise we get a non-trivial discrete-log
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relation.

For k=0 to n− 1 :

e(2)
gk+1

= 0 =
(

m∑
i=1

(lig1+kx
2
i + rig1+kx

−2
i ) + p′g1+k

)
− a ·

(
m∏
i=1

x
(−1)1−bit(k,i,m)

i

)
(11)

e
(2)
hk+1

= 0 =
(

m∑
i=1

(lih1+kx
2
i + rih1+kx

−2
i ) + p′h1+k

)
− by(−(k)) ·

(
m∏
i=1

x
(−1)bit(k,i,m)

i

)
(12)

e(2)
u = 0 =

(
m∑
i=1

(liux2
i + riux

−2
i ) + p′u

)
− w · ab (13)

e(2)
g = 0 =

(
m∑
i=1

(ligx2
i + rigx

−2
i ) + p′g

)
(14)

e
(2)
h = 0 =

(
m∑
i=1

(lihx2
i + rihx

−2
i ) + p′h

)
(15)

In order to derive relation between values ligj , rigj , lihj , rihj , ui, and the group representation of state-
ment P ′, we will invoke Schwartz-Zippel lemma in a recursive way. It is convenient to define the following
polynomials to invoke the lemma recursively. For all t ∈ {1, . . . ,m}, for all j ∈ {0, . . . , n− 1},

fg
t,j(X) = lt,g1+jX

2 + rt,g1+jX
−2 + p′g1+j

+
k−1∑
i=1

(
li,g1+jx

2
i + ri,g1+jx

−2
i

)
,

fh
t,j(X) = lt,h1+jX

2 + rt,h1+jX
−2 + p′h1+j

+
k−1∑
i=1

(
li,h1+jx

2
i + ri,h1+jx

−2
i

)
,

and

fut (X) = lt,uX
2 + rt,uX

−2 + p′u +
t−1∑
i=1

(
li,ux

2
i + ri,ux

−2
i

)
Combining different polynomials, one can eliminate a (and b) from Equation (11) (and similarly

from (12)) and rewrite the resultant equation in terms of polynomial fg
t,j (similarly, fh

t,j) to get: For
t ∈ {1, . . . ,m}, j ∈ {0, . . . , n/2t − 1},

fg
t,j(xt) · x

2
t − f

g
t,j+n/2t(xt) = 0 (16)

and

fulog(n)(xlog(n))− w · fg
log(n),j(xlog(n)) · fh

log(n),j(xlog(n)) = 0 (17)

Since all the challenges are in order, we rewrite (16) as a univariate polynomial in terms of variable Xt.

fg
t,j(Xt) ·X2

t − f
g
t,j+n/2t(Xt) = 0 (18)

(18) vanishes with probability at most 6/(p − 1), and otherwise it is a zero polynomial. Equating each
coefficient term to 0, we get:

rt,g1+j = fg
t−1,j+n/2t(xt−1), lt,g1+j = 0, (19)

rt,gj+n/2t
= 0, lt,gj+n/2t

= p′g1+j
+

t−1∑
i=1

(li,g1+jx
2
i + ri,g1+jx

−2
i ) = `g

t−1,j(xt−1), (20)

where the last term in (20) can be rewritten as a univariate polynomial: `g
t−1,j(X) = lt−1,g1+jX

2 +
rt−1,g1+jX

−2 + p′g1+j
+
∑t−2
i=1(lig1+jx

2
i + rig1+jx

−2
i ).

Iterating a similar argument for all rounds, for t = 1 we get, r1,g1+j = p′g1+j+n/2
and l1,gj+n/2 = p′g1+j

.
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Similarly, arguing for polynomial fh
k,j , we get the condition:

fh
t−1,j(Xt) ·X−2

t − fh
t,j+n/2t(Xt) = 0 (21)

Analogous to polynomial `g
t,j , we define `h

t,j(X) = lt−1,h1+jX
2 + rt−1,h1+jX

−2 + p′h1+j
+
∑t−2
i=1(lih1+jx

2
i +

rih1+jx
−2
i ). Equalities 18,21 gives following constraints:

For all t ∈ {2, . . . ,m}, for all j ∈ {0, . . . , n/2− 1} :
rtg1+j = fg

t−1,j+n/2t(xt−1), ltg1+j = 0, rt,gj+n/2t
= 0, lt,gj+n/2t

= `g
t,j(xt−1)

rth1+j = 0, lth1+j = fh
t−1,j+n/2t(xt−1) · yn/2t , lt,h1+j+n/2t

= 0, rt,h1+j+n/2t
= `h

t,j(xt−1)

For t = 1, for all j ∈ {0, . . . , n/2− 1} :
r1g1+j = p′g1+n/2

, l1g1+j = 0, r1,gj+n/2 = 0, l1,gj+n/2 = p′g1+j

r1h1+j = 0, l1h1+j = p′h1+j+n/2
· yn/2, l1,h1+j+n/2 = 0, r1,h1+j+n/2 = p′h1+j

· yn/2 (22)

Note that the output of polynomials fg
k,j , f

h
k,j , `

g
k,j , `

h
k,j are deterministic given challenges (x1, . . . , xk).

Also note, values p′g, . . . , p′u are fixed as they are equal to the representation output by the simulator.
Hence, values for ri,g1+j , ri,h1+j , li,g1+j and li,h1+j (in equation 22) are fixed given previous round chal-
lenges.

Now, consider exponents for generators g, h and u. Since equations (13,15,14) hold, using Schwartz-
Zippel lemma recursively, it can be shown that li,u, ri,u = 0, li,g, ri,g, li,h = ri,h = 0.

Note that, for a honest execution of InPrd, the exponents for Li, Ri are derived using constraints in
(22). Thus, Li, Ri cannot differ from L̃i, R̃i.

Concrete advantage of the adversary. This analysis comes directly from the Bad Challenge analysis
for ACSPf in [GT21]. For the case Ti 6= T̃i, the adversary succeeds in forging if any one of the polynomials
e

(0)
g , . . . , e

(m)
g vanishes. Using union bound, this happens with probability 4(m+ 1)/(p− 1). Similarly, for

the case µ 6= µ̃, we break discrete-log relation except with probability: 4m + 1/(p − 1). Now, consider
the case, Li 6= L̃i. The adversary succeeds in forging a proof for a false statement if they were lucky
enough to get a challenge xi such that equations 18, 21 and 17 vanish at xi. This means, for round
t ∈ {1, . . . ,m = log(n)}, if any of the

∑t−1
i=1 2n/2t polynomials of degree at most 4, 2n/2t polynomials of

degree at most 6, and one polynomial of degree at most 8, vanish, i.e., adversary succeeding in forging
a proof, which turns out to be at most (14n + 8)/(p − 1). Note that the adversary can query Oext for
SR-UR q times. It is enough to take max of all case-by-case probabilities to get an upper bound for the
probability of the adversary succeeding in forging a proof. This is because all the cases are sequential
and the adversary succeeds in forging unless we break discrete-log relation for the very first case that the
adversary exploits. Thus, adversary succeeds in forging a proof with probability at most (14n+8)q/(p−1).

ut

Combining the results from Theorem 4 and Claim 2, we get the following corollary.

Corollary 1. Fiat-Shamir transform of BP satisfies FS-SIM-EXT with respect to a canonical simulator
SFS-BP corresponding to the algebraic simulator SBP. Concretely, there exists an efficient FS-SIM-EXT
extractor E∗ for FS-BP such that for every non-uniform algebraic prover P∗alg against FS-BP that makes
q1 random oracle queries and q2 simulation queries, and for every distinguisher D∗, there exists a non-
uniform adversary A against DL-REL with the property that for all λ ∈ N+,

AdvFS-SIM-EXT
FS-BP,R (SFS-BP, E∗,P∗alg,D∗, λ) ≤

(
AdvDL-REL(Gλ,Aλ) + (14n+ 8)q1

(p− 1)

)
+q2 ·

(
AdvDL-REL(Gλ,Aλ) + (14n+ 8)q2

(p− 1)

)
+ (q2 + 1)(q1 + 1)

|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 .
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A Generalizing the results from [GT21] in the adaptive setting

As pointed out, our definitions of FS-EXT and aSR-WEE are the adaptive version of definitions that
appear in [GT21], i.e., FS-EXT-1 and SR-WEE. The results in [GT21], namely the proof for SR-WEE
security of BP (Theorem 6), and SR-WEE security implies FS-EXT-1 (Theorem 2), are presented for the
case where the adversary submits the statement beforehand. We notice that these proofs are applicable
even for the adaptive case where the adversary need not submit a statement beforehand. This observation
will imply Theorem 2 and Theorem 3 stated in preliminaries.

To see this, notice the proof strategy for Theorem 6 in [GT21]. It uses two functions e (which is the
extractor) and h (which solves discrete-log relation between the generators). The central claim in the proof
is that, given an accepting transcript, either e outputs a valid witness or h outputs a non-trivial discrete-
log relation. Both these functions take as input the statement and the transcript. Their description does
not depend on the statement being fixed beforehand. Theorem 2 is proved by constructing an adversary
for SR-WEE security of BP given an adversary for FS-EXT-1. Here, the idea is to forward all random
oracle queries to Oext in the SR-WEE definition. First, the adversary for FS-EXT-1 must send a statement
that is forwarded to SR-WEE and is used for intialization, i.e. the step ([x], stP)← P∗alg(pp) in definition
of SR-WEE (Fig.3) in [GT21]. However, this proof strategy does not depend on the statement being fixed.
We can extend the result for adaptive adversaries by first changing the SR-WEE definition to be adaptive
and then changing the proof to allow P∗alg to query the random oracle for statement and transcript pairs.
In fact, this argument can be seen as an alternative to their Theorem 3, which directly bounds the
advantage of FS-EXT-2 (equivalent to Definition 10) without assuming aSR-WEE.

B Proof for Theorem 3

Proof. We prove via standard hybrid arguments.

G0 This game is identical to EXT-1H,P∗alg,D
∗

ΠFS
(λ). We have

Pr[G0(P∗alg,D∗)] = Pr[EXT-1H,P∗alg,D
∗

ΠFS
(λ)]

G1 This game is identical to G0 except that it aborts if d = 1 (i.e., (x∗, T ∗) is accepting) while any of the
challenges in T ∗ have been queried in wrong order or have never been queried by P∗alg at all. According
to the proof for Theorem 2 of [GT21], this happens with probability at most (q+1)/|Chi0 |. Thus we have∣∣Pr[G0(P∗alg,D∗)]− Pr[G1(P∗alg,D∗)]

∣∣ ≤ (q + 1)/|Chi0 |.

Constructing Palg and D for aSR-WEE. We now construct an aSR-WEE adversary Palg and a distin-
guisher D. Palg plays an aSR-WEE game while internally simulating the view of P∗alg in the game G1 as
follows.
– On receiving pp in the aSR-WEE games, it Palg forwards pp to P∗alg.
– On receiving a random oracle query from P∗alg, if all of its prefix have been queried in order Palg

forwards that query to the oracle Oext in a aSR-WEE game to receive challenge and returns it to P∗alg.
Otherwise it lazily samples a challenge for P∗alg.

– On receiving ([x∗], [T ∗]) from P∗alg, it checks whether it causes aborts in the game G1. If that is
the case Palg also aborts because it implies that the challenge values in T ∗ were not obtained by
forwarding the corresponding queries to a aSR-WEE game and therefore (x∗, T ∗) is not accepting in
the aSR-WEE game.

– Otherwise, Palg outputs (x∗, T ∗, stPalg
) in the aSR-WEE game (together with group representations),

where stPalg
= Q1.

The aSR-WEE distinguisher D internally invokes D∗ on input (stP∗alg
, x∗, T ∗,Q1) and outputs whatever

D∗ returns.
By construction we have that

Pr[G1(P∗alg,D∗)] = Pr[aWEE-1Palg,D
Π (λ)]

Constructing E∗ for FS-EXT. We define an extractor E∗ = (E∗0 , E∗1 ) using an aSR-WEE extractor E . E∗1
answers the random oracle queries made by P∗alg as Palg would, by using the responses from E . E∗0 outputs
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whatever E returns on input (stE , [x∗], [T ∗]). By construction, E∗ succeeds in extraction if and only if E
does so in the game aWEE-0E,Palg,D

Π (λ). Thus we have

Pr[EXT-0E
∗,P∗alg,D

∗

ΠFS,R (λ)] = Pr[aWEE-0E,Palg,D
Π,R (λ)]

Putting together we obtain∣∣∣Pr[EXT-1H,P∗alg,D
∗

ΠFS
(λ)]− Pr[EXT-0E

∗,P∗alg,D
∗

ΠFS,R (λ)]
∣∣∣

≤
∣∣∣Pr[aWEE-1Palg,D

Π (λ)]− Pr[aWEE-0E,Palg,D
Π,R (λ)]

∣∣∣+ (q + 1)/|Chi0 |

=AdvaSR-WEE
Π,R (E ,Palg,D, λ) + (q + 1)/|Chi0 |

ut

C Inner Product Argument

In this section we recall the inner product argument protocol from BP [BBB+17].

Protocol 3: InPRd

RInPrd =
{

((n,g,h, u), (P ), (a,b)) | P = gahbuc ∧ c = 〈a,b〉
}

1. P and V initialize g(0) = g, h(0) = h, n0 = n, P0 = P . Additionally, P initializes a(0) = a
and b(0) = b.

2. For i = {1, · · · , log(n)}:
(a) P,V compute:

ni = ni−1/2

(b) P computes:

cL =
〈

a(i)
[:ni],b

(i)
[ni:]

〉
, cR =

〈
a(i)

[ni:],b
(i)
[:ni]

〉
Li =

(
g(i−1)

[ni:]

)a(i)[:ni] (
h(i−1)

[:ni]

)b(i)[ni:]
ucL

Ri =
(

g(i−1)
[:ni]

)a(i)[ni:] (
h(i−1)

[ni:]

)b(i)[:ni]
ucR

(c) P sends: Li, Ri to V.

(d) V sends challenge xi
$←− Z∗p.

(e) P,V compute:

g(i) =
(

g(i−1)
[:ni]

)x−1
i ◦

(
g(i−1)

[ni:]

)xi
h(i) =

(
h(i−1)

[:ni]

)xi
◦
(

h(i−1)
[ni:]

)x−1
i

Pi = L
x2
i
i Pi−1R

x−2
i
i

(f) P computes:

a(i) = a(i−1)[: ni]xi + a(i−1)[ni :]x−1
i

b(i) = b(i−1)[: ni]x−1
i + b(i−1)[ni :]xi

3. Let

g ← g(log(n)), h← h(log(n))

a← a(log(n)), b← b(log(n))
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P sends: a, b to V.
4. V checks:

Plog(n)
?= gahbuab

D Non-Malleability of Bulletproofs – Range Proofs

In this section we recall the range proof protocol from BP [BBB+17] and prove that they satisfy the
SR-UR notion. The arguments follow closely the ones for the proofs for arithemtic circuits.

D.1 Range Proof Protocol

Protocol 4: RngPf

RRngPf = {((n,g,h, g, h, u), (V ), (v, γ)) | V = gvhγ ∧ v ∈ [0, 2n − 1]}

1. P computes aL ∈ {0, 1}n such that 〈aL,2n〉 = v, and aR = aL − 1n.

2. P samples α, ρ $←− Zp, sL, sR
$←− Znp , and sends to V:

A = hαgaLhaR , S = hρgsLhsR

3. V sends challenges y, z $←− Z∗p.
4. P computes:

l(X) = (aL − z · 1n) + sL ·X
r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · 2n

t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X

5. P samples β1, β2
$←− Zp, and sends to V:

Ti = gtihβi , i ∈ {1, 2}

6. V sends challenge x $←− Z∗p.
7. P computes:

l = l(x), r = r(x), t̂ = 〈l, r〉
βx = β2 · x2 + β1 · x+ z2γ, µ = α+ ρ · x

8. P sends to V:

βx, µ, t̂

9. V sends challenge w $←− Z∗p.
10. P and V compute:

h′ = hy−n , u′ = uw

P = A · Sx · g−z·1
n

· h′z·y
n+z2·2n , P ′ = h−µP (u′)t̂

11. P,V execute inner product argument protocol as 〈InPrd.P((g,h′, u′, P ′), (l, r)), InPrd.V(g,h′, u′, P ′)〉.
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12. V computes:

δ(y, z) = (z − z2) · 〈1n,yn〉+ z2 · 2n

R = V z
2
gδ(y,z)T x1 T

x2

2

InPrd.V(g,h′, u′, P ′)→ b

V returns 1 if b = 1 and gt̂hβx = R.

D.2 Algebraic Simulator

In this section we present an algebraic simulator SRngPf for RngPf. The simulator works similarly to
[BBB+18] but now we explicitly mention how to generate elements A and T2. This helps in simplifying
the proof of SR-UR for RngPf.

Protocol 5: SRngPf

The algebraic simulator SBP is given as input:

pp = (n,Q, g, h, u,g,h), x = (V )

The transcript is simulated as follows:
1. x, y, w, z $←− Zp;

2. βx, µ
$←− Zp;

3. l, r $←− Znp ;

4. t̂ = 〈l, r〉;

5. ρA, t2, β2
$←− Zp;a

6. AI = gρA , T2 = gt2hβ2

7. h′ = hy−n ;u′ = uw;

8. S =
(
A · g−z·1n−l · (h′)z·yn+z2·2n−r · h−µ

)−x−1

9. T1 =
(
h−βx · g(δ(y,z)−t̂) · V z2 · T x2

2

)−x−1

10. T = (S,AI , AO; y, z; {Ti}i∈S ;x; t̂, βx, µ;w; l, r);
11. Output [T ].

a Steps 5,6 are the difference with the original simulator.

Claim 3. The protocol RngPf is perfect HVZK (Definition 5) with algebraic simulator SRngPf (Protocol 5).

Proof. Observer that elements A, and T2 are distributed exactly as in the HVZK simulator for Range
proofs in [BBB+18]. Thus, this claim follows from the HVZK proof in [BBB+18].

D.3 Unique Response for Range Proof

In this section we show that RngPf is SR-UR with respect to simulator SRngPf .

Claim 4. Protocol RngPf has state-restoration unique responses with respect to SRngPf in the AGM as
in Definition 14, under the assumption that solving the discrete-log relation is hard. That is, for every
PPT adversary Aur against SR-UR of RngPf that makes q queries to Oext (Fig. 6), there exists a PPT
adversary A against DL-REL such that,

AdvSR-UR
RngPf (Aur,SRngPf) ≤ AdvDL-REL(Gλ,Aλ) + (14n+ 8)q

(p− 1)
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Proof. Given an algebraic adversary for SR-UR-game Aur = (A1,A2) for protocol RngPf (Fig. 6), we
construct an adversary, A, who breaks the discrete-log relation.
A, upon receiving a discrete-log relation challenge interacts with Aur as follows: It runs A1(pp) to

receive an instance [x] and st, and invokes the simulator SRngPf on [x] to receive a transcript T̃ . A then
runs A2 on T̃ and st. Queries to the SR-UR-oracle Oext are handled by A locally as in the SR-UR game,
by sampling random challenges and forwarding to A2. A locally records the tree of transcripts. Note that
when Aur queries Oext, it also submits the group representation in terms of all groups elements seen so
far, which can represented purely in terms of g,h, g, h, u and will be used to break the discrete-logarithm
assumption.
SRngPf outputs transcript of the form:

T̃ = (Ã, S̃; ỹ, z̃; T̃1, T̃2; x̃, β̃x, µ̃, ˜̂t, w̃, L̃1, R̃1, x̃1, . . . , L̃m, R̃m, x̃m, ã, b̃)

and Aur outputs transcripts of the form:

T = (Ã, S̃; ỹ, z̃;T1, T2;x, βx, µ, t̂, w, L1, R1, x1, . . . , Lm, Rm, xm, a, b).

Note that at least the first two round messages are the same in both T and T̃ . In the following, we do a
case by case analysis of T and T̃ .
If T̃i 6= Ti for some i ∈ {1, 2}. Since transcript T is accepting, the InPrd sub-protocol returns b = 1.

(g(m))a(h(m))b(u′)ab =
(

m∏
i=1

L
x2
i
i

)
· P ′ ·

(
m∏
i=1

R
x−2
i
i

)
.

=
(

m∏
i=1

L
x2
i
i

)
h−µ ·A · Sx · g−z·1

n

· h′z·y
n+z2·2n · (u′)t̂

(
m∏
i=1

R
x−2
i
i

)
Let us focus on the exponent of generator g. We get li,g and ri,g from Li, Ri, respectively, ρA from A,
and ρ · (−x̃−1) from S.

m∑
i=1

li,gx
2
i +

m∑
i=1

ri,gx
−2
i − (ρA · x̃−1) · x+ ρA (23)

If (23) is non-zero then we find a non-trivial discrete-log relation. Otherwise, it must be a zero polynomial.
However, we show that (23) vanishes with negligible probability.

Note that challenges x, x1, . . . , xm are assigned in order. Let (23) be defined in terms of na univariate
polynomial with indeterminate Xm:

e(m)
g (Xm) = lm,gX

2
m + rm,gX

−2
m +

m−1∑
i=1

li,gx
2
i +

m−1∑
i=1

ri,gx
−2
i − (ρA · x̃−1) · x+ ρA.

Iterating argument similar to the case: “If T̃i 6= Ti for some i ∈ S” in Claim 2, we are eventually
tasked with showing e(0)

g (x) = −(ρA · x̃−1) · x+ ρA = 0. This only happens if ρA = 0, or e(0)
g (x) = 0 over

the random choice of x ∈ Zp. The former happens with probability 1/(p − 1) because ρA is uniformly
chosen by the simulator; the latter happens with probability at most 1/(p− 1).
If βx 6= β̃x or t̂ 6= ˜̂t. This case is the same as the analogous case in Claim 2.
If µ 6= µ̃. Similar to (Eq. (8)) in Claim 2, dividing the InPrd verification equation for T and T̃ , we get:

(g(m))a(h(m))b(u′)ab · (g̃(m))−ã(h̃(m))−b̃(ũ′)−ãb̃

=
(

m∏
i=1

L
x2
i
i

)(
m∏
i=1

L̃
−x̃2

i
i

)(
m∏
i=1

R
x−2
i
i

)(
m∏
i=1

R̃
−x̃−2

i
i

)
· h−(µ−µ̃) · (u′)t̂ · (ũ′)−t̂. (24)

The rest of the analysis is same as in Claim 2.
If Li 6= L̃i or Ri 6= R̃i. This case is the same as the analogous case in Claim 2.

Concrete advantage of the adversary. For the case Ti 6= T̃i, the adversary succeeds in forging if
any one of the polynomials e(0)

g , . . . , e
(m)
g vanishes. Using union bound, this happens with probability

4(m) + 1/(p − 1). For µ 6= µ̃, we break discrete-log relation except with probability: 4m + 1/(p − 1).
Finally, for Li 6= L̃i, the adversary succeeds with probability (14n+8)/(p−1). Thus, we upper bound the
probability of the adversary succeeding in forging a proof, which turns out to be at most (14n+8)q/(p−1).
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Combining the results from Theorem 4 and Claim 4, we get the following corollary.

Corollary 2. Fiat-Shamir transform of RngPf satisfies FS-SIM-EXT with respect to a canonical simulator
SFS-RngPf corresponding to the algebraic simulator SRngPf . Concretely, there exists an efficient FS-SIM-EXT
extractor E∗ for FS-RngPf such that for every non-uniform algebraic prover P∗alg against FS-RngPf that
makes q1 random oracle queries and q2 simulation queries, and for every distinguisher D∗, there exists a
non-uniform adversary A against DL-REL with the property that for all λ ∈ N+,

AdvFS-SIM-EXT
FS-RngPf,R(SFS-RngPf , E∗,P∗alg,D∗, λ) ≤

(
AdvDL-REL(Gλ,Aλ) + (14n+ 8)q1

(p− 1)

)
+q2 ·

(
AdvDL-REL(Gλ,Aλ) + (14n+ 8)q2

(p− 1)

)
+ (q2 + 1)(q1 + 1)

|Chi0 |

where i0 ∈ [1, r] is the round with the smallest challenge set Chi0 .
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