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Abstract. Most existing work on secure multi-party computation (MPC) ignores a key idiosyncrasy
of modern communication networks, that there are a limited number of communication paths between
any two nodes, many of which might even be corrupted. The problem becomes particularly acute in
the information-theoretic setting, where the lack of trusted setups (and the cryptographic primitives
they enable) makes communication over sparse networks more challenging. The work by Garay and
Ostrovsky [EUROCRYPT’08] on almost-everywhere MPC (AE-MPC), introduced “best-possible secu-
rity” properties for MPC over such incomplete networks, where necessarily some of the honest parties
may be excluded from the computation.

In this work, we provide a universally composable definition of almost-everywhere security, which
allows us to automatically and accurately capture the guarantees of AE-MPC (as well as AE-
communication, the analogous “best-possible security” version of secure communication) in the Uni-
versal Composability (UC) framework of Canetti. Our results offer the first simulation-based treatment
of this important but under-investigated problem, along with the first simulation-based proof of AE-
MPC. To achieve that goal, we state and prove a general composition theorem, which makes precise
the level or “quality” of AE-security that is obtained when a protocol’s hybrids are replaced with
almost-everywhere components.

1 Introduction

Secure multi-party computation (MPC) allows n parties communicating over a network to compute a func-
tion on their private inputs so that an adversary corrupting some of the parties can neither disrupt the
computation (correctness) nor learn more than (what can be inferred from) the output of the function being
computed (privacy).

Despite great progress on the problem since it was first introduced and proven feasi-
ble [Yao82,GMW87,BGW88,CCD88] involving hundreds, if not thousands, of published results in cryp-
tography and security, and, more recently, even implemented systems, the overwhelming majority of the
solutions assume a complete communication network of either authenticated (aka reliable) or secure (both
authenticated and private) point-to-point channels. In fact with only a few exceptions, discussed below, this
is the case for both practical and theoretical works on MPC, and in particular for works on composable
security of MPC—indeed, the latter almost exclusively assume a network that cannot be disconnected by
the adversary. This creates a disconnect (pun intended) between the vast MPC literature and modern ad-hoc
networks, such as the Internet, where the communication might be occurring over an incomplete communi-
cation graph with the nodes being routing nodes, that might themselves be corrupted, and/or might even
be part of the participating MPC nodes themselves.

At first approximation, there are two situations that might present themselves in such an incomplete
network: Either the adversary is able to disconnect the communication graph—by corrupting nodes whose
edges are in cuts of the graph—or not. In the former case, it is known that if the parties do not share an
authentication-enabling setup, such as a PKI, then the best that can be achieved is the so-called secure com-
putation without authentication [BCL+11]: The adversary is able to break down the player set into connected



components, so that parties in different connected components compute different instances of the function
with inputs from the component—and all other inputs chosen by the adversary, and potentially different for
each component. Even this weak form of security is only achievable for computationally bounded adversaries;
if one is after information-theoretic (aka unconditional) security, where the adversary is unbounded, then
the above guarantee is too much to ask for.

Notwithstanding, even in the latter case, where the adversary cannot disconnect the network, the situation
is trickier than one might expect. Indeed, if a PKI-like setup is not assumed1 then it is known that secure
communication between any two parties requires the existence of O(n) paths among them (known to or
discoverable by the receiver), the majority of which must remain uncorrupted. This is the well-known secure
message transmission (SMT) problem [DDWY90]. The result holds even for the reliable message transmission
(RMT) problem, in which only correctness is required.

The above leads to the following natural question: What is the “best-possible” MPC security we can
obtain in such a situation where SMT cannot be in general guaranteed? Towards answering this question,
Garay and Ostrovsky [GO08] introduced the properties of so-called almost-everywhere MPC (AE-MPC),
which extended the concept of AE reliable communication previously studied by Dwork, Peleg, Pippenger,
and Upfal [DPPU86]. In a nutshell, this paradigm, which we will refer to as almost-everywhere security
(AE-security for short) recognizes that when even all-to-all SMT is not possible, then, inevitably, there will
be honest (uncorrupted) parties for which we are unable to offer the security guarantees that honest parties
enjoy in MPC (i.e., privacy, correctness, etc). The core mission of such protocols is then to minimize the
number of such left-out (aka doomed) parties in an AE-secure construction, while tolerating the maximum
number of corruptions.

However, despite a number of elegant combinatorial arguments to achieve the above goal, the security
definition used by these constructions has not caught up with the state of the art in MPC security. In
particular, to the best of our knowledge, there exists no simulation-based treatment of AE-security. This
means that one cannot directly compose the elegant constructions of AE-secure primitives into a higher
level protocol. For example, one would hope to be able to prove that running a standard MPC protocol
over an AE-SMT network yields an AE-MPC protocol which does not leave more doomed parties than the
underlying AE-SMT construction. Given the state of the art, such a modular statement would be impossible,
and one would need to prove AE-MPC security from scratch. Instead, a simulation-based treatment in one of
the composable security frameworks would inherit a modular composition theorem making such statements
tractable and simpler.

This work’s main goal is to derive such a treatment in the Universal Composability (UC) framework of
Canetti [Can01]. A major challenge, which we tackle, is to obtain a generic definition of AE-security which
can be applied to any type of functionality and captures both AE-communication and AE-computation, two
primitives whose treatment has been very different. In fact, we achieve this goal by introducing a generic,
composition-preserving transformation from a secure variant of a functionality to its AE-secure counterpart.
We show that the derived AE-secure functionalities for secure communication (AE-RMT and AE-SMT) and
for secure MPC (AE-MPC): (1) preserve all the desired properties of the previous definitions, and (2) are
securely realized by (straightforward UC adaptations of) the corresponding AE-secure protocols. The fact
that our treatment preserves composability of the (AE-)security statements allows us to derive, as a simple
corollary, the first simulation-based proof of AE-MPC. Next, before providing more details on our results,
we provide some necessary literature background that should help the reader appreciate the relevance of our
contributions and the challenges associated with them.

In passing, we note that although we adopt the language of UC in our treatment, our definitional frame-
work is generic and can be applied to any of the main-stream composable security frameworks for crypto-
graphic protocols [BPW03,CDPW07,MR11,HS15,CKKR19,BCH+20].

1.1 Related Work

The origins of the “almost-everywhere” (AE) notion can be traced back to the work of Dwork et al. [DPPU86],
who considered the task of Byzantine agreement [PSL80,LSP82] over sparse communication networks. In such

1 A PKI setup makes the problem trivial in this case as a complete graph can be trivially built by gossip (i.e.,
flooding) of signed messages.
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networks, correctness cannot be guaranteed for all honest parties, since for example the adversary can cut a
node off from the rest of the network by corrupting all of its neighbors. Thus, some honest parties must be
given up, and correctness is guaranteed only almost everywhere, i.e., only for the remaining honest parties.
The AE notion can be applied to other distributing computing tasks as well: Given a set of parties P of size
n and an adversary who corrupts T ⊆ P , the parties in some set D ⊆ P −T (D for “doomed”) are considered
abandoned and the correctness conditions of the task are only guaranteed for the parties in W = P −T −D,
which are called “privileged.” Note that both D and W are functions of T as well as of the underlying
protocol and graph. The number of doomed parties thus becomes another parameter to the problem, and
the goal is to construct a low-degree network (ideally of constant degree) admitting a protocol that tolerates
a large number t of corruptions (ideally, a constant fraction) while dooming as few nodes as possible (ideally
O(t) for constant-degree networks).

Returning to the problem of Byzantine agreement, Dolev [Dol81] showed that it requires connectivity
at least 2t + 1 to solve, which implies that every node in the network must have degree Ω(t). Given this
high connectivity requirement, Dwork et al. [DPPU86] proposed the notion of AE agreement, in which
the agreement and validity properties are guaranteed only for the privileged parties. They showed how to
simulate, over an incomplete network, an agreement protocol designed for a complete network by replacing the
point-to-point communication with a transmission scheme that works over multiple paths between any two
nodes. Thus, they reduced the problem of AE agreement to the problem of AE reliable message transmission
(RMT), which guarantees that any two privileged nodes can communicate perfectly reliably.

Dwork et al. gave a number of constructions achieving AE-RMT with various combinations of parameters;
the two most important are a constant-degree graph admitting an AE-RMT scheme tolerating t = O(n/ log n)
corruptions while dooming O(t) nodes, and a graph of degree nε (for any 0 < ε < 1) admitting an AE-RMT
scheme tolerating t = O(n) corruptions while dooming O(t) nodes. Several follow-up works have obtained
improved parameters for AE-RMT (and thus also for AE agreement). Upfal [Upf92] gave a transmission
scheme tolerating t = O(n) corruptions and only dooming O(t) nodes in a network of constant degree,
which is the optimal set of parameters, but at the expense of an exponential-time protocol. Chandran et
al. [CGO10] proposed a scheme tolerating t = O(n) corruptions and dooming O(t/ log n) nodes in a network
of polylogarithmic degree. Most recently, Jayanti et al. [JRV20] used the probabilistic method to show the
existence of a logarithmic-degree graph admitting an AE-RMT scheme with the same parameters, thereby
strictly improving the [CGO10] result.

Due to the results in [Dol81,DDWY90], standard MPC (guaranteeing correctness and privacy for all
honest parties) is possible only in networks with connectivity at least 2t + 1. To circumvent this high-
connectivity requirement and still obtain a meaningful notion of (property-based) MPC over sparse networks,
Garay and Ostrovsky [GO08] introduced the notion of AE-MPC, which guarantees correctness and privacy
only for the privileged parties.2 “Regular” information-theoretic MPC (i.e., MPC over a complete network)
requires t < n/3 [BGW88,CCD88]. In the AE setting, the effect of dooming nodes is equivalent to letting
the adversary corrupt some additional t′ nodes (which are doomed) by requesting the corruption of t nodes
(which are actually corrupted). As shown by Garay and Ostrovsky, AE-MPC in the information-theoretic
setting can be achieved when t + t′ < n/3. Their approach resembles that of Dwork et al. [DPPU86] for
simulating a protocol meant for a complete network, but there is an additional challenge given the privacy
requirement of MPC. To replace point-to-point secure channels, they introduced a new model for the existing
(perfectly) SMT problem termed secure message transmission by public discussion (SMT-PD), which we now
turn to.

The original SMT problem [DDWY90] considers two honest parties, a sender S and a receiver R, con-
nected by n disjoint “wires” and sharing no information. The task is for S to send a message to R in the
presence of a computationally unbounded adversary A who can adaptively corrupt up to t of the wires.
SMT requires that the message be conveyed perfectly reliably to R, and also that no information about
the message leaks to A. We refer to the simpler problem in which there is no secrecy guarantee as reliable
message transmission (RMT), and it should be clear that this is consistent with our usage of the term AE-
RMT above. While RMT can be achieved for t < n/2 by simply sending the message over all wires, Dolev

2 Technically, they considered the related task of secure function evaluation (SFE). We do the same, although for
consistency we still refer to the functionality that we realize as AE-MPC.
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et al. [DDWY90] showed that SMT is also possible if and only if t < n/2. We give a more detailed history
of the SMT literature in Appendix A.

Returning to the work by Garay and Ostrovsky [GO08], the SMT-PD model overcomes the necessity
of 2t + 1 wires in SMT by in addition allowing access to an authentic and reliable public channel. Given
such a channel (which can be constructed using, e.g., a broadcast protocol), they gave a protocol that is
secure as long as at least one of the wires remains honest, at the cost of a small error. To use their SMT-
PD protocol over sparse networks (in effect achieving AE-SMT), the wires are replaced by multiple paths
between a pair of nodes and the public channel is replaced by AE broadcast. Garay and Ostrovsky provided
a way to construct graphs that admit SMT-PD from any of the networks in the AE agreement literature,
with asymptotically preserved parameters. Finally, they showed how to “compile” a standard information-
theoretic MPC protocol into an AE-MPC protocol over any such graph so that the protocol gives up (i.e.,
considers as doomed) the same number of parties as the underlying (AE-secure) communication network.

To reiterate, all the above constructions are shown secure in a property-based manner. In Appendix A,
we review other related notions from the literature, which do not quite consider AE-security.

1.2 Overview of Our Results

In this work we put forth the first composable (simulation-based) definition and treatment of AE-security.
In particular, we devise a definition in Canetti’s UC framework [Can01] and prove that the (UC adaptation
of) existing AE-secure communication/computation protocols achieve this definition. We emphasize that all
of our constructions tolerate adaptive corruptions.

There are several challenges associated with such a task. First, as should be evident from the above
discussion, the related literature—from RMT/SMT, to Byzantine agreement, to MPC, and even their AE
counterparts—treats the underlying network in different ways: e.g., in MPC, the network is typically a
complete graph of point-to-point channels (one per pair), whereas the literature on (AE-)RMT assumes
multiple paths (wires or indirect paths) between two parties (Sender and Receiver). Thus, in order to derive
a formulation that is general enough to capture the security of the above constructions, one first needs to
develop a unified approach to them. Towards this goal, we adopt the graph model as a basis for all these
protocols, and express the wires for the AE-secure communication literature as a simple graph which for
each wire includes a path going through a unique “wire-party.” This allows us to model corrupted wires as
standard (party) corruptions in UC.

The second, and more thorny challenge is regarding the (simulation of) doomed parties. Recall that those
are parties that due to their poor connectivity (which might be the result of the sparsity of the graph and
the corruption choices of the adversary) cannot enjoy the security guarantees that the protocol is designed to
offer to honest parties (e.g., correctness and privacy for an MPC protocol). A strawman approach would be
to capture those parties plainly as corrupted. This, however, is problematic in several ways: First, corrupted
parties lose their security guarantees as soon as they become corrupted, unlike doomed parties who might,
at the adversary’s discretion, still be allowed some level of security. In particular, the real-world adversary
might allow those parties to receive their outputs, which would mean that in the ideal world, the simulator
would also need to allow them to produce an output on their output tape, which is not allowed by the UC
corruption mechanism.

An attempt to fix the above issue would be to define weaker corruption types corresponding to the flexible
guarantees offered to the doomed parties. This, however, is also problematic, as corruptions in UC are by
default known to (and declared by) the adversary/environment, whereas the actual identities of doomed
parties are not, and depend on the behavior of the adversary (not just the identities of malicious parties). In
particular, an adversary following for example a random strategy might not even be aware who is becoming
doomed by this strategy.

A third attempt would be to completely change the corruption mechanism of UC so that certain cor-
ruptions are not to be declared by the environment. But this would immediately invalidate the composition
theorem, which defeats the purpose of using UC in the first place.

It might seem like we are in a deadlock, but the second attempt above is the one that breaks through.
In particular, we observe that although the adversary might not include in its view the identities of the
doomed parties, still its behavior defines these identities and the corresponding guarantees they receive. This
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is similar to how inputs of corrupted parties are treated in standard UC security: It is the job of the simulator
to extract them from the adversary and hand them over to the functionality.

Using the above idea, instead of modifying the foundations of UC, we define a class of functionalities
which take from their adversary (simulator) as an input requests to turn parties as doomed, and upon such
requests, allows the simulator to use these parties as if they were corrupted, but without declaring them as
corrupted to the framework and without grounding their input/output tapes (e.g., the simulator might still
instruct this new functionality to deliver output for doomed parties). In fact, this is done in a way which uses
the underlying (non-AE) functionality as a black-box; in other words, by means of an AE-security wrapper.

In more detail, in order to properly use the functionality, our AE wrapper builds the entire infrastructure
of UC around it (including a fake corruption directory), and whenever a doom request comes in, the wrapper
pretends towards its wrapped functionality to be an adversary that corrupts this party. This way, the party
remains honest as far as the UC experiment is concerned, but the wrapper has now the ability to give full
control over this party to the actual simulator it interacts with.

The final piece of the puzzle is capturing the different assumptions on the ratios of corrupted vs doomed
parties while making a composable statement. Here we use an idea inspired by [BMTZ17]: We parameterize
the wrapper by the set of all allowable corruption/doom patterns, and make sure that any corruption outside
this allowable set is ignored. As an example, if we want to prove security of AE-MPC with t < αn corruptions
and d < βn doomed parties, we can do it by parameterizing the wrapper with the pair (α, β) and ignoring
requests of simulators which do not respect the above requirements.

In fact, to allow for the tightest possible results that accurately translate non-threshold corruption/doom
patterns—these are the types of results we get by using structural properties of the underlying graph—we
draw inspiration from the mixed general adversary literature [HM97,BTFH+08]. Concretely, we parameterize
the wrapper with a corruption/doom structure (“doom structure” for short) which consists of all allowed
pairs (C,D) where parties in D can be doomed simultaneously to parties in C being corrupted. We note that,
as is common in the general adversary literature, such a structure might be exponentially large. Although
this is not an issue in our definition, we note that all of our concrete instantiations consider structures that
have a polynomial (in n) representation.

We then apply our definitional framework to capture known AE-secure constructions, as well as
(simulation-based) AE-MPC. Next, we describe our results in greater detail.

Almost-everywhere RMT and SMT. We start in Section 3 by modelling the tasks of RMT and SMT
(with a dedicated sender and receiver connected by a number of corruptible wires). As part of this, we show
how primitives like secure message transmission [DDWY90], which have classically only been considered for
an honest majority of wires, can be captured so that their security is defined independently of the number
of corrupted wires. This seemingly simple task already has complications when ported to a composable
framework like UC: the wires cannot be viewed as reliable/secure message transmission functionalities, since
UC functionalities are by default incorruptible. We cast the problem so that we can apply a unified treatment:
We model each wire with a dummy party called a “wire-party” that is connected to the sender and receiver
and relays messages between them. Wire corruptions can now be modelled by corrupting wire-parties.

In Section 3.1, we confirm that classical RMT/SMT protocols [DDWY90] are UC-secure (in the ordinary,
non-AE sense) in our model against corrupted minorities of wire-parties. To handle corrupted majorities (and
more generally to capture AE-security), in Section 3.2 we introduce an AE wrapper functionality (Figure 8)
that is parameterized by a doom structure as defined above. The wrapper accepts requests to doom parties
from the simulator according to the doom structure and the current set of corruptions, and it pretends
to the underlying functionality that those parties are actually corrupted. We are then able to state the
security of RMT/SMT protocols independently of the number of corrupted wires, by using the AE wrapper
parameterized by a simple doom structure like the one that allows dooming the sender or receiver when
a majority of the wire-parties are corrupted. We finish up in Section 3.3 with a universally composable
treatment of the SMT-PD problem [GO08]. In addition to simple wires, SMT-PD requires access to a public
channel, which we model with access to an authenticated channel functionality (the same functionality we
used to capture RMT security). Looking ahead, we need SMT-PD when we want to elevate RMT to SMT
over some classes of sparse graphs (like those in [Upf92,CGO10,JRV20]) that do not rely on paths with
an honest majority to obtain reliable message transmission. However, for other sparse graphs, like those
in [DPPU86], the technique from [DDWY90] suffices to achieve SMT.
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Almost-everywhere remote RMT and SMT. In Section 4, we move on to the more complicated case
in which an incomplete graph connects several parties and all-to-all communication is desired among them.
Interestingly, we show that the same wrapper from Section 3.2, which allowed for the simulation-based
treatment of tasks like RMT and SMT (with dedicated sender and receiver) even against corrupted majorities
of wires, can also be used to model AE-security of the all-to-all versions of those tasks over an incomplete
graph. In particular, in Section 4.1 we use the same ideal functionalities and wrapper (of course, with more
complex doom structures) from Section 3 to provide the first universally composable treatment of (AE)
reliable communication over the specially constructed sparse graphs in [DPPU86,Upf92,CGO10,JRV20],
which we refer to as AE remote RMT. Using the same wrapper, we also extend our treatment to AE remote
SMT for all of these graphs. First, we show that a perfect SMT protocol from [DDWY90] can be adapted
to realize perfectly secure AE-SMT over a class of sparse graphs constructed in [DPPU86]. In general, the
same approach cannot be directly extended to achieve privacy for other graphs. To overcome this, we adapt
an SMT-PD protocol from [GO08] to realize AE-SMT over the graphs in [Upf92,CGO10,JRV20], at the
cost of obtaining only statistical UC security. Somewhat surprisingly, for each class of graphs considered in
Section 4, both AE-RMT and AE-SMT are achieved under the same doom structure.

Almost-everywhere secure computation. Lastly, we study the composability of AE-security guarantees,
with the ultimate goal of realizing AE-MPC. In Section 5.1, we state and prove a general composition theorem,
which makes precise the level or “quality” of AE-security (as captured in a doom structure) that is obtained
when a protocol’s hybrids are replaced with almost-everywhere counterparts, even against general (i.e., not
necessarily threshold) adversaries (Theorem 14). We emphasize that this AE compiler need not replace all
of the hybrids with AE-wrapped versions using the same doom structure; thus, we are able to explain, for
example, what happens when a protocol uses subprotocols to emulate secure channels and broadcast over a
sparse network, but those subprotocols provide different levels of AE-security.

Our composition theorem applies even to protocols that already carry some level of AE-security, and
therefore the compiled protocol can easily be composed with higher-level protocols. The crux of the security
proof is that the simulator for the compiled protocol can make use of an existing simulator for the original
protocol, by pretending that doomed parties are fully corrupted (in reality the situation is more complex,
because the given simulator may itself request to doom parties according to the AE-security of the original
protocol). As a simple corollary, we show that a protocol achieving standard (non-AE) security using a single
hybrid can be compiled into an AE-secure protocol while preserving the doom structure associated with the
AE version of that hybrid, at the cost of tolerating a lower corruption threshold (Corollary 6).

In Section 5.2, we apply this corollary to obtain the first simulation-based proof of AE-MPC, over any of
the classes of sparse graphs considered in the AE agreement literature—[DPPU86,Upf92,CGO10,JRV20]. In
more detail, we simply overlay an AE-secure communication protocol (designed for a sparse network) with a
standard information-theoretically secure MPC protocol (designed for fully connected networks), to obtain
an AE-secure MPC protocol that only relies on secure channels between parties actually connected in the
sparse network and yet achieves the same level of AE-security as the underlying AE-secure communication
protocol (Corollaries 7 and 8). Depending on which class of sparse graphs is used, our results from Section 4.2
on realizing AE-SMT over those graphs convey either perfect or statistical UC security.

Next, we review some UC basics, and present some building blocks and their property-based definitions
to contrast with our simulation-based treatment in later sections. For the sake of readability, some of the
functionalities, protocols, and proofs are presented in the appendix.

2 Preliminaries

2.1 UC Basics

Our results are in the UC framework [Can01] and we briefly summarize it here. Protocol machines, ideal
functionalities, the adversary, and the environment are all modeled as interactive Turing machine (ITM)
instances, or ITIs. An execution of protocol π consists of a series of activations of ITIs, starting with the
environment Z who provides inputs to and collects outputs from the parties and the adversary A; parties can
also give input to and collect output from sub-parties, and A can communicate with parties via messages.
Corruption of parties is modeled by a special corrupt message sent from A to the party; upon receipt of
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this message, the party sends its entire local state to A, and in all future activations follows the instructions
of A. Note that a party pi can only be corrupted once A receives a special (corrupt pi) input from Z. The
(binary) output of the environment Z at the end of an execution of π with adversary A is denoted by the
random variable execπ,A,Z(k, z), where k ∈ N is the security parameter and z ∈ {0, 1}∗ is the input to Z.
The ensemble {execπ,A,Z}k∈N,z∈{0,1}∗ is denoted by execπ,A,Z . The ideal-world process for functionality
F is simply defined as an execution of the ideal protocol idealF , in which the so-called “dummy” parties
just forward inputs from Z to F and forward outputs from F to Z (in particular, the dummy parties do not
communicate with the adversary, but rather the adversary is expected to send messages directly to F, for
example corruption messages). The corresponding ensemble is denoted by idealF,S,Z , as the adversary in
the ideal world is actually a simulator S.

We are interested in unconditional security. Thus, we say that a protocol π UC-realizes an ideal func-
tionality F if for any computationally unbounded adversary A, there exists a simulator S (which is poly-
nomial in the complexity of A) such that for any computationally unbounded environment Z, we have
idealF,S,Z ≡ execπ,A,Z . We sometimes consider statistical security, which requires only that the two en-
sembles be indistinguishable, not identical. For a (G1, . . . ,Gn)-hybrid protocol π (which makes subroutine
calls to the ideal protocols for the ideal functionalities G1, . . . ,Gn), we say that π UC-realizes F in the
(G1, . . . ,Gn)-hybrid model. It turns out that (regular) UC-realization is equivalent to UC-realization with
respect to a very specific adversary, namely the “dummy” adversary D: this adversary simply follows the
instructions of Z on which messages to send, and moreover reports all received messages to Z. We sometimes
use this alternate definition of security, as it is simpler to work with and involves one less quantifier.

Synchrony. We will assume synchronous computation, i.e., our protocols proceed in rounds, where in each
round: the uncorrupted parties generate their messages for the current round, as described in the protocol;
then the messages addressed to the corrupted parties become known to the adversary; then the adversary
generates the messages to be sent by the corrupted parties in this round; and finally, each uncorrupted
party receives all the messages sent in this round. Although our treatment is in the (G)UC setting, to avoid
over-complicating the exposition, we will use the standard round-based language of, e.g., [Can00,Nie03] to
specify our protocols. Notwithstanding, such specifications can be directly translated to the synchronous UC
model of Katz et al. [KMTZ13] by assuming a clock functionality and bounded (zero) delay channels. (See
[KMTZ13] for details.)

2.2 Building Blocks

Here we present building blocks that we will be using in our constructions and their property-based defi-
nitions. However, we are not completely formal with the definitions since their main purpose is to contrast
with our UC formulations of them.

Recall that the SMT problem involves a sender S connected to a receiver R over n disjoint wires. A
solution to SMT is formally defined as follows:

Definition 1 (SMT). A protocol Π achieves SMT if it allows S to send a message m ∈M to R such that
the following properties hold for any adversary A corrupting up to t of the wires:

Reliability: R correctly outputs m′ = m.

Secrecy: A learns no information about m.

We can define RMT by simply omitting the secrecy condition, and AE-RMT and AE-SMT are defined
by only requiring the reliability and/or secrecy properties to hold for privileged S and R (e.g., according to
an RMT or SMT protocol over a sparse network).

For simplicity, we will use the 3-phase protocol in Fig. 1 which is basically the FastSMT protocol from
[DDWY90] that tolerates the optimal number (a minority) of “wire” corruptions. The n wires are denoted
by ~γ = (γ1, . . . , γn) and let τ = dn2 e − 1. The protocol works for messages in the field M = Zq, and it
assumes access to an authenticated channel between the sender and receiver (which can be implemented
by simply duplicating the message to be sent over the n wires and having the receiver take majority). The
high-level idea of the protocol is that the sender chooses nτ+1 secret pads and secret-shares them among the
n wires and associates each share with some checking pieces. The receiver uses the checking pieces to verify
the correctness of each pad. If there is a correct pad, the receiver sends its index back to the sender using
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the authenticated channel so the sender can use the corresponding pad to encrypt the message and send
it to the receiver via the authenticated channel. The receiver knows the pad and can decrypt the message
successfully. Otherwise, if there is no correct pad, the receiver sends some error detection information to the
sender over the authenticated channel. The sender uses the information to detect the faults and send them
to the receiver associated with an encryption of the message. Now the receiver fixes the faults, computes the
correct pad, and decrypts the message. All the arithmetic in the protocol is modular.

Protocol ΠDDWY(~γ, τ,m)

1. (Phase 1) The sender S sends nτ+1 strong pads SP1,SP2, . . . , SPnτ+1. To send each strong pad, S chooses a
random polynomial f(x) ∈ Zq(x) of degree τ and sets pad = f(0). Then for each i ∈ [n] S chooses an additional
random polynomial hi(x) ∈ Zq of degree τ such that hi(0) = f(i). Finally, for each i ∈ [n], S sends hi(·) with
a vector of checking pieces Ci = (c1i, c2i, . . . , cni) to R using wire γi where for all i, j ∈ [n], cji = hj(i).

2. (Phase 2) For each k ∈ [n], let Tk be received in the attempted transmission of SPk and gi, Di be possibly
corrupted information received as hi, Ci. If for any Ta all the checking pieces cji and all polynomials hi(·)
are consistent then R interpolates the pada from Ta and sends “a,OK” to S over the authenticated channel.
Otherwise, R finds a l such that

{conflicts of Tl} ⊂ ∪m 6=l{conflicts of Tm},

where any unordered pair (i, j) is called a conflict of Tk if dji 6= gj(i). Then R sends l and all Tm, m 6= l back
to S using authenticated channel.

3. (Phase 3)
– If “a,OK” received over the authenticated channel in phase 2, then S sends z = m + pada to R using

the authenticated channel. Otherwise, S preforms error detection on all Tj ’s received from R and sends
detected faults and z = m+ padi to R using authenticated channel.

– If R previously sent “a,OK” to S in phase 1, then s/he computes m = z − pada. Otherwise, R corrects
the faults in Ti, obtains padi and computes m = z − padi.

Fig. 1. Perfectly secure message transmission protocol over wires

We will sometimes need an SMT-PD protocol, and for that we use the protocol in Fig. 2 from [GO08],
which tolerates n− 1 wire corruptions, assuming access to a public channel and allowing a small probability
of error. Intuitively, the sender sends n random bit strings each over a wire to the receiver. In the next step,
the sender uses the public channel to send the values corresponding to some random positions in each bit
string to the receiver. Now the receiver can use the revealed bits to detect the tampered wires with some
probability. Then the receiver informs the sender about the faulty wires over the public channel. Now the
sender uses the remaining private bits of the (potentially) non-faulty wires to generate a key and encrypt the
message before sending it via the public channel. The receiver can also compute the same key and decrypt
the ciphertext. In the protocol, E and D are respectively the encoding and decoding algorithms for an
error-correcting code.

Finally, we present the security definition for (property-based) AE-MPC that was given in [GO08]. Recall
that W is the set of privileged nodes, as a function of the set of corruptions.

Definition 2 (AE-MPC). An n-player two-phase protocol Π achieves AE-MPC if for any initial value xi
for party Pi for each i ∈ [n], any probabilistic polynomial-time computable function f , and any adversary A
corrupting a set T of parties there exists a subset W of honest parties such that the following two properties
hold at the end of the respective phases:
Commitment phase: During this phase, all players commit to their inputs.

Binding: For all Pi there is a uniquely defined value x∗i ; if Pi ∈W , then x∗i = xi.

Privacy: For all Pi ∈W , x∗i is information-theoretically hidden.

Computation phase:

Correctness: All Pi ∈W output f(x∗1, . . . , x
∗
n).

Privacy: For all Pi ∈ W , no information about x∗i beyond what can be inferred from the output of the
corrupted parties leaks to A by this phase.
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Protocol Πpub-smt(~γ, Pub,m, l)

1. The sender S sends n uniformly random bit strings R1, R2, . . . , Rn of length 15l to the receiver R through
wires γ1, γ2, . . . , γn, respectively. Let R′1, R

′
2, . . . , R

′
n be the strings received by R. R rejects all wires where

|R′i| 6= 15l.
2. For i ∈ [n], S generates R∗i by replacing 12l randomly chosen positions of Ri with “∗.” Then S sends

R∗1, R
∗
2, . . . , R

∗
n to R over Pub.

3. For any i ∈ [n], if R∗i and R′i differ in any “opened” bits, R marks γi as “faulty.” Then R sends an n-bit string
to S over Pub that identifies faulty wires. Let ~γ = {γ1, γ2, . . . , γs}, s ≤ n denote the set of non-faulty wires,
and Ri, |Ri| = 12l, 1 ≤ i ≤ s, denote the corresponding string of unopened bits; let R′i be the corresponding
string is R’s possession.

4. For 1 ≤ i ≤ s, S chooses mi such that m = m1 ⊕m2 ⊕ · · · ⊕ms, and sends Si = E(mi)⊕ Ri, 1 ≤ i ≤ s, over
Pub. R computes m′i = D(Si ⊕R′i) for all 1 ≤ i ≤ s. Then R outputs m′ = m′1 ⊕m′2 ⊕ · · · ⊕m′s.

Fig. 2. Secure message transmission by public discussion protocol over wires

3 Almost-Everywhere RMT and SMT

In this section, we use the UC framework to capture classical RMT and SMT protocols, which work in a
model where the sender S and receiver R are connected by n disjoint wires, as in the abstract formulation
in [DDWY90]. Although this is a simple model, here we give a novel treatment of these tasks that also serves
as a warm-up to our later results, which look at these tasks over sparse graphs. Since the classical protocols
may not provide security when enough of the wires are corrupted, we also introduce an AE wrapper that
allows parties interacting with the underlying functionality to be marked as “doomed” in such cases. In
Section 4, where we consider remote RMT and SMT, we will realize the same functionalities for RMT and
SMT defined in this section, just in a wrapped form albeit with different parameters.

We begin by modeling the disjoint wires from the classical setting as virtual wires that are represented
by UC parties, which we call wire-parties and denote by W1, . . . ,Wn. The idea is that a wire-party can
securely forward a message from S to R or vice versa as long as it is not corrupted, just as a wire in
the classical model can securely transmit a message between S and R as long as it is free of corruptions.
Since the basic communication model in UC is completely unprotected, we assume access to the ideal secure

channel functionality FS,R, ~Wsc in Fig. 3 , which provides secure communication between an honest sender or
receiver and an honest wire-party over a single round. Looking ahead, this functionality is very similar to
the functionality that we will use to capture secure channels between every pair of nodes connected by an

edge in a sparse graph. In FS,R, ~Wsc (and all of our functionalities), l(·) refers to the length of its input, and
Infl is short for “influence” (see, e.g., [GKZ10]).

Functionality FS,R, ~Wsc

The secure channel functionality Fsc is parameterized by the identities of the sender S, the receiver R, and the n
wire-parties ~W = (W1, . . . ,Wn), and it proceeds as follows. At the first activation, verify that sid = (Pi, Pj , sid

′),
where one of Pi and Pj is either S or R, and the other is some wire-party Wi; else halt. Initialize variable m to a
default value ⊥.

– Upon receiving input (Send, sid, v) from Pi in round ρ, record m ← v. If Pi or Pj are marked as corrupted,
then send (SendLeak, sid,m) to the adversary; otherwise send (SendLeak, sid, l(m)).

– Upon receiving (InflSend, sid,m′) from the adversary: If Pi or Pj is corrupted, and (Sent, sid,m) has not
yet been sent to Pj , then update m← m′; otherwise, ignore the command.

– Upon receiving (Fetch, sid) from Pj in round ρ+ 1, output (Sent, sid,m) to Pj if it has not yet been sent.
– Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Pi, Pj}, mark P as corrupted and send

(SendLeak, sid,m) to the adversary.

Fig. 3. Secure channel functionality for the wire-party model
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For convenience, we use FS,R, ~Wsc to realize the wire channel functionality FS,R, ~Wwc in Fig. 4 , which abstracts
the process of sending a message to a wire-party, who then forwards it to S or R. The functionality actually
allows sending a potentially different message through each wire-party in parallel, and it provides security for
a given message as long as S, R, and the wire-party in question are all honest. In addition to simplifying our
RMT and SMT protocols, this functionality also has a very intuitive interpretation: it models the sending of
messages in a single “phase,” in the terminology of the PSMT literature. Note that since we are considering
virtual wires that consist of just one intermediate node, the functionality requires two rounds to generate
output.

Functionality FS,R, ~Wwc

The wire channel functionality Fwc is parameterized by the identities of the sender S, the receiver R, and the n
wire-parties ~W = (W1, . . . ,Wn), and it proceeds as follows. At the first activation, verify that sid = (Ps, Pr, sid

′),
where either Ps = S and Pr = R, or Ps = R and Pr = S; else halt. Initialize variables m1, . . . ,mn to a default
value ⊥.

– Upon receiving input (Send, sid,Wi, vi) from Ps in round ρ (which is the same for all Wi), record mi ← vi. If
any P ∈ {Ps, Pr,Wi} is marked as corrupted, then send (SendLeak, sid,Wi,mi) to the adversary; otherwise
send (SendLeak, sid,Wi, l(mi)).

– Upon receiving (InflSend, sid,Wi,m
′
i) from the adversary: If any P ∈ {Ps, Pr,Wi} is corrupted, and

(Sent, sid,Wi,mi) has not yet been sent to Pr, then update mi ← m′i; otherwise, ignore the command.
– Upon receiving (Fetch, sid,Wi) from Pr in round ρ′: If Pr is corrupted, then send (FetchLeak, sid,Wi) to

the adversary; otherwise, if ρ′ = ρ+ 2, then output (Sent, sid,Wi,mi) to Pr if it has not yet been sent.
– Upon receiving (Output, sid,Wi) from the adversary: If Pr is corrupted, then output (Sent, sid,Wi,mi) to
Pr if it has not yet been sent; otherwise, ignore the command.

– Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Ps, Pr,W1, . . . ,Wn}, mark P as cor-
rupted. If P is some wire-party Wi, then send (SendLeak, sid,mi) to the adversary; otherwise, send
(SendLeak, sid,m1, . . . ,mn). If P = Pr, then additionally leak any previous fetch requests made by Pr.

Fig. 4. Wire communication functionality

We can use the simple protocol ΠWC(S,R, ~W ) in Fig. 17 (Appendix B) to realize FS,R, ~Wwc :

Theorem 1. Protocol Πwc(S,R, ~W ) UC-realizes FS,R, ~Wwc , in the FS,R, ~Wsc -hybrid model.

3.1 Universally Composable RMT and SMT

We model the task of RMT in UC with the authenticated channel functionality FP,rndauth in Fig. 5 , which
is essentially Canetti’s Fauth [Can05] with synchrony (the rnd parameter). There is also a parameter P
representing the set of possible senders and receivers (the functionality itself is single-use). This parameter
allows the functionality to verify that the actual sender and receiver can be identified as specific nodes in
the network topology over which it is being realized, which is necessary because the realizing protocol will
need to perform the same verification.

To realize Fauth in the wire-party model under the assumption that only a minority of the wire-parties
get corrupted, we can simply duplicate the message through all wire-parties and have the receiver (which

may actually be S) take majority. We give a formal description of protocol ΠAUTH(S,R, ~W ) in Fig. 18 (Ap-
pendix B)3.

Theorem 2. Protocol Πauth(S,R, ~W ) UC-realizes F{S,R},rndauth for rnd = 2, in the FS,R, ~Wwc -hybrid model
against an adversary corrupting up to a minority of the wire-parties.

Next, we consider SMT in UC. We model the task with the secure channel functionality FP,rndsmt in Fig. 6 ,
which is essentially Canetti’s Fsmt [Can05] with synchrony. To realize Fsmt in the wire-party model under

3 All of our protocols for RMT only require reliable edges. However, to reduce the number of aiding functionalities
(for simplicity) we present all of our RMT protocols in the secure channel hybrid model because eventually we
need secure channels for SMT and MPC.
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Functionality FP,rndauth

The authenticated channel functionality Fauth is parameterized by a set P of possible senders and receivers as well
as an integer rnd indicating the number of rounds that will be used to realize it, and it proceeds as follows. At the
first activation, verify that sid = (S,R, sid′), where S,R ∈ P; else halt. Initialize variable m to a default value ⊥.

– Upon receiving input (Send, sid, v) from S in round ρ, record m ← v and send (SendLeak, sid,m) to the
adversary.

– Upon receiving (InflSend, sid,m′) from the adversary: If S or R is marked as corrupted, and (Sent, sid,m)
has not yet been sent to R, then update m← m′; otherwise, ignore the command.

– Upon receiving input (Fetch, sid) from R in round ρ′: If R is corrupted, then send (FetchLeak, sid) to the
adversary; otherwise, if ρ′ = ρ+ rnd, then output (Sent, sid,m) to R if it has not yet been sent.

– Upon receiving (Output, sid) from the adversary: If R is corrupted, then output (Sent, sid,m) to R if it has
not yet been sent; otherwise, ignore the command.

– Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {S,R}, mark P as corrupted. If P = R, then
leak any previous fetch requests made by R to the adversary.

Fig. 5. Authenticated communication functionality

Functionality FP,rndsmt

The secure channel functionality Fsmt is parameterized by a set P of possible senders and receivers as well as an
integer rnd indicating the number of rounds that will be used to realize it, and it proceeds as follows. At the first
activation, verify that sid = (S,R, sid′), where S,R ∈ P; else halt. Initialize variable m to a default value ⊥.

– Upon receiving input (Send, sid, v) from S in round ρ, record m← v. If S or R is marked as corrupted, then
send (SendLeak, sid,m) to the adversary; otherwise, send (SendLeak, sid, l(m)).

– Upon receiving (InflSend, sid,m′) from the adversary: If S or R is corrupted, and (Sent, sid,m) has not yet
been sent to R, then update m← m′; otherwise, ignore the command.

– Upon receiving input (Fetch, sid) from R in round ρ′: If R is corrupted, then send (FetchLeak, sid) to the
adversary; otherwise, if ρ′ = ρ+ rnd, then output (Sent, sid,m) to R if it has not yet been sent.

– Upon receiving (Output, sid) from the adversary: If R is corrupted, then output (Sent, sid,m) to R if it has
not yet been sent; otherwise, ignore the command.

– Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {S,R}, mark P as corrupted and send
(SendLeak, sid,m) to the adversary. If P = R, then additionally leak any previous fetch requests made
by R.

Fig. 6. Secure message transmission functionality
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the assumption that only a minority of the wire-parties get corrupted, we can run protocol ΠSMT(S,R, ~W )
(Fig. 7), which is essentially the FastSMT protocol from [DDWY90] in our model.

Protocol ΠSMT(S,R, ~W )

Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (Ps, Pr, sid
′) for either Ps = S and Pr = R or

Ps = R and Pr = S, party Ps executes protocol Πddwy(~γ, τ, v) with party Pr, where the wires γ1, . . . , γn in ~γ are
taken to be the virtual wires corresponding to the wire-parties W1, . . . ,Wn:

1. In the first phase, Ps uses a single instance of FS,R, ~Wwc with sid1 = (sid, 1) to send all the messages instead
of using wires in ~γ. Next, in the second and third phase, Pr and Ps substitute the authenticated channel
with separate instances of F{S,R},rndauth with rnd = 2 and sid2 = (Pr, Ps, sid

′, 2) and sid3 = (Ps, Pr, sid
′, 3),

respectively. To receive output from the aiding functionalities, Ps and Pr have to send Fetch messages to the
functionalities using the correct session IDs as generated above. Note that Ps and Pr execute the protocol in

rounds, with two rounds per flow of communication as both FS,R, ~Wwc and F{S,R},rndauth with rnd = 2 are two-round
functionalities.

2. Upon receiving input (Fetch, sid) from Z in round ρ′ = ρ + 6, Pr outputs (Sent, sid,m′) to Z if it receives
m′ as the output of this protocol.

Fig. 7. Secure message transmission protocol

Theorem 3. Protocol Πsmt(S,R, ~W ) UC-realizes F{S,R},rndsmt for rnd = 6, in the (F{S,R},rnd
′

auth ,FS,R, ~Wwc )-hybrid
model where rnd′ = 2, against an adversary corrupting a minority of the wire-parties.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that

no environment can distinguish whether it is interacting with Πsmt(S,R, ~W ) and A, or with F{S,R},rndsmt and

S. The simulator internally runs a copy of A, and plays the roles of F{S,R},rndauth , FS,R, ~Wwc , and the parties in
a simulated execution of the protocol. All inputs from Z are forwarded to A, and all outputs from A are
forwarded to Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party in

the ideal world by interacting with F{S,R},rndsmt (except if the party is a wire-party), and if the corruption
was direct (i.e., not via one of the aiding functionalities), then S sends A the party’s state and follows A’s
instructions thereafter for that party.

The simulated execution starts upon S receiving (SendLeak, sid, m̂) from F{S,R},rndsmt in round ρ for
sid = (Ps, Pr, sid

′), where m̂ ∈ {m, l(m)} and m is the message to be sent. Now, S executes the first and
second phase of the DDWY protocol honestly, by simulating sending random strong pads (shares hi(·) and

checking pieces ~Ci = (c1i, . . . , cni)) from Ps to Pr through the n wire-parties (i.e., by simulating leakage from

FS,R, ~Wwc to A, and responding to corruption and influence requests directed from A to that functionality)
and by simulating sending the response from Pr to Ps over the authenticated channel (i.e., by appropriately

playing the role of F{S,R},rndauth for A). For the third phase of the DDWY protocol (i.e., once Ps receives Pr’s
response), S simulates as per the DDWY protocol except for choosing z when Ps and Pr are both honest in

which S simulates sending a random value z from Ps to Pr over F{S,R},rndauth instead of z = m⊕Pad. It should

be noted that when Ps or Pr is corrupted by A, S learns m from F{S,R},rndsmt and thus can send z = m⊕Pad
just like the protocol. Note that the simulated Ps may need to abort, and that if the simulated Pr aborts by

outputting ⊥, then S can simply send an InflSend message to F{S,R},rndsmt , since this can only happen if A
corrupts Ps or Pr.

Next, we describe how S simulates Pr’s response to a Fetch input from Z in the real world. If Pr
is corrupted by A, then S can wait to receive (FetchLeak, sid) from F{S,R},rndsmt , upon which it possibly

leaks the fetch to A and then sends InflSend and Output messages to F{S,R},rndsmt as appropriate (this
case involves S behaving as the simulator for the AUTH protocol does, except that here we are in the third
phase of the protocol, and Fetch inputs that come too early are ignored). If Ps is corrupted by A, then

S needs to constantly influence F{S,R},rndsmt during the second phase of the protocol, so that the dummy Pr
fetches the most up-to-date value when instructed by Z. This case is also handled in a similar fashion to the
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corresponding case in the proof of the AUTH protocol; however, it is worth noting that even if Ps behaves
honestly in the third phase of the protocol, previous misbehavior in the first phase may cause S to have to

immediately influence F{S,R},rndsmt . If neither Ps nor Pr is corrupted, then S can simply let the dummy Pr
fetch from F{S,R},rndsmt when instructed by Z. The case that needs more contemplation happens when both
Ps and Pr are honest in the beginning of the third phase (at the time S is deciding about the value of z)
and then at least one of them gets corrupted before the protocol ends (before the output is fetched). It is

important because in that case, A receives enough leakage from FS,R, ~Wwc to interpolate the pad and compute
the value of the message from z. Since z is chosen randomly by S, the message learnt by A deviates from
what is sent by Ps which causes Z distinguish the two worlds. In such a situation, also S learns the actual

value of m from F{S,R},rndsmt hence it can cheat by calculating a fake pad′ satisfying z = m ⊕ pad′ and then

simulate leaking from FS,R, ~Wwc such that it results in pad′. This way A learns the message m correctly.
It is easy to see that this simulation is perfect. In particular, when A does not corrupt Ps or Pr, for

each strong pad at most τ shares and their associated checking pieces are revealed to A in the real world
because of our assumption that only a minority of wire-parties are corrupted. Assume that I is the set of
indices for corrupted wire-parties, so for each strong pad A learns hj(·), (c1j , c2j , . . . , cnj) for all j ∈ I where
cij = hi(j) for all i, j ∈ [n]. Since all hi(·) are random polynomials of degree τ , Pr[hi(0) = a | {cij}j∈I ] =
Pr[hi(0) = a] and since hi(·)’s are chosen independently Pr[hi(0) = a | {ckj}k∈[n],j∈I ] = Pr[hi(0) = a].
Therefore, by corrupting all the wires with indices in I|I|≤τ , no information about hi(0) for i /∈ I leaks to
A. Moreover, we know that hi(0) = f(i) and since f(·) is also a random polynomial of degree τ we have
Pr[f(0) = a | {hi(0)}i∈I ] = Pr[f(0) = a] (f(0) is the value of the pad). The last probability implies that
whichever strong pad is chosen by the protocol, it looks uniformly random to A and alternatively Z. It means
that regardless of which distribution m is chosen from, z = m⊕pad looks uniformly random to A and Z if no
more that τ wire-parties are corrupted and Ps and Pr are both honest. Therefore, choosing a random value

z by S looks perfectly indistinguishable from the real protocol execution to Z. At the same time, F{S,R},rndauth

provides genuine authentication of messages intended to be sent on the authenticated channel in the DDWY
protocol, and hence in the real world Pr outputs the sender’s input. ut

3.2 Corrupted Majorities of Wire-Parties

In the wire-party model, Fauth and Fsmt can only be realized when the adversary is restricted to corrupting
only a minority of wire-parties. When corrupted majorities are allowed, the sender and receiver may essen-
tially become doomed. To allow the simulator to handle such cases, we introduce an AE wrapper functionality
(Fig. 8) that allows parties to be marked as doomed according to the current set of corruptions. The wrapper
accepts “doom” requests according to an adversary structure, and it processes them by simply having the
underlying functionality treat doomed parties as fully corrupted. Recall that an adversary structure is a
set of c-vectors of subsets of a participant set P, where each component of a vector represents corruptions
of a certain type. We consider adversary structures that consist of doubles of subsets, corresponding to a
corrupted set and a doomed set, respectively, although the two may intersect4. We call such structures doom
structures.

In the model with sender S and receiver R connected by wire-parties W1, . . . ,Wn, we can realize

wrapped F{S,R},rndauth and F{S,R},rndsmt with doom structure Dpsmt, defined as follows using participant set
P = {S,R,W1, . . . ,Wn}:

– (Ti, Di) ∈ Dpsmt if and only if either
∣∣Ti \ {S,R}∣∣ < n

2 and Di = ∅ or
∣∣Ti \ {S,R}∣∣ ≥ n

2 and Di ⊆ {S,R}

Theorem 4. Protocol Πauth(S,R, ~W ) UC-realizes WDpsmt
ae (F{S,R},rndauth ) for rnd = 2, in the FS,R, ~Wwc -hybrid

model, even against corrupted majorities of wire-parties.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that no

environment can distinguish whether it is interacting with Πauth(S,R, ~W ) and A, or withWDpsmt
ae (F{S,R},rndauth )

4 This is a technicality, which simplifies some of our definitions and results. For example, the definition of AE-
monotonicity (Section 5.1) would not be quite as short and intuitive otherwise. We could define things differently,
but that would require small changes elsewhere.
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Wrapper Functionality WD
ae(F)

The wrapper functionality Wae is parameterized by a doom structure D = {(T1, D1), . . . , (Tm, Dm)}, where each
class (Ti, Di) ∈ 2P × 2P . The underlying functionality is F. Let T be the set of currently corrupted parties and let
D be the set of currently doomed parties, both initialized to ∅.
– Upon receiving (Corrupt, sid, Pi) from the adversary for some Pi ∈ P: If (T ∪ {Pi}, D) ∈ D , then update
T ← T ∪ {Pi}, relay the message to F, and relay F’s response to the adversary.

– Upon receiving (Doom, sid, Pi) from the adversary for some Pi ∈ P: If (T,D ∪ {Pi}) ∈ D , then update
D ← D ∪ {Pi}, send (Corrupt, sid, Pi) to F, and relay F’s response to the adversary.

– Any other request from any party or the adversary is simply relayed to F without any further action and the
output is relayed to the destination specified by F.

Fig. 8. AE wrapper functionality

and S. The simulator S is very similar to the simulator that was constructed in the proof of Theorem 2.
However, S now interacts with a wrapped functionality, and corruption messages for wire-parties are indeed
sent because they can now be processed by the wrapper. The other difference is that the case in which Ps
and Pr are not corrupted by A becomes more complicated. If A corrupts only a minority of the wire-parties,
then S can simply let the dummy Pr fetch its output as before, albeit from the wrapper. Otherwise, as soon
as enough wire-parties are corrupted, S sends a Doom message for Ps to the wrapper, which will be accepted
by definition of Dpsmt. Now, S can influence the wrapper every time the value that the real-world Pr would
have output changes (note that these influence messages will in fact be accepted, because the wrapper will
have sent a corruption message for Ps to the underlying auth functionality). Once again, the simulation is
perfect. ut

Since we can only realizeWDpsmt
ae (F{S,R},rndauth ) against an unrestricted adversary, we modifyΠsmt to the protocol

in Fig. 9 that works in WDpsmt
ae (F{S,R},rndauth )-hybrid model.

Protocol Π ′smt(S,R, ~W )

This protocol is defined as follows:

1. Replace invocations to F{S,R},rndauth in protocol Πsmt(S,R, ~W ) with invocations to WDpsmt
ae (F{S,R},rndauth ).

Fig. 9. Secure message transmission protocol in the wrapped Fauth hybrid model

Theorem 5. Protocol Π ′smt(S,R, ~W ) UC-realizes WDpsmt
ae (F{S,R},rndsmt ) for rnd = 6, in the

(WDpsmt
ae (F{S,R},rndauth ),FS,R, ~Wwc )-hybrid model, even against corrupted majorities of wire-parties.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that no

environment can distinguish whether it is interacting with Π ′smt(S,R, ~W ) and A, or with WDpsmt
ae (F{S,R},rndsmt )

and S. The simulator S is very similar to the simulator that was constructed in the proof of Theorem 3.
However, S now interacts with a wrapped functionality, and corruption messages for wire-parties are indeed
sent because they can now be processed by the wrapper. Another difference is that the case in which Ps and
Pr are not corrupted by A becomes more complicated. If A corrupts only a minority of the wire-parties,
then S can simply use a random value of z in the third phase of the protocol, and let the dummy Pr fetch
its output as before, albeit from the wrapper.

Otherwise, as soon as enough wire-parties are corrupted, S sends a Doom message for Ps to the wrapper,
which will be accepted by definition of Dpsmt, and obtains m as leakage because the wrapper will send a
corruption message for Ps to the underlying smt functionality. Now, S can use z = m ⊕ pad in the third
phase, and can influence the wrapper every time the value that the real-world Pr would have output changes
(note that these influence messages will in fact be accepted). An additional issue that comes up in the case
that Ps and Pr remain honest is that A might exceed a minority of wire-party corruptions only after S has
already chosen a random z. However, S can handle this by cheating and computing a fake pad consistent
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Protocol ΠSMT-PD(S,R, ~W, l)

Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (Ps, Pr, sid
′) for either Ps = S and Pr = R or

Ps = R and Pr = S, party Ps executes protocol Πpub-smt(~γ, Pub, v, l) with party Pr, where the wires γ1, . . . , γn in
~γ are taken to be the virtual wires corresponding to the wire-parties W1, . . . ,Wn:

1. In the first phase, Ps uses a single instance of FS,R, ~Wwc with sid1 = (sid, 1) to send all the random bit strings
instead of using wires in ~γ. Next in the second, third, and fourth phases, Ps and Pr substitute the public

channel Pub with separate instances of F{S,R},rnd
′

auth using sid2 = (Ps, Pr, sid
′, 2), sid3 = (Pr, Ps, sid

′, 3), and
sid4 = (Ps, Pr, sid

′, 4), respectively. To receive output from the aiding functionalities, Ps and Pr have to send
Fetch messages to the functionalities using the correct session IDs as generated above. Note that Ps and Pr

execute the protocol in rounds, with two and rnd′ rounds per invocation of FS,R, ~Wwc and F{S,R},rnd
′

auth , respectively.
2. Upon receiving input (Fetch, sid) from Z in round ρ′ = ρ+ 2 + 3 · rnd′, Pr outputs (Sent, sid,m′) to Z if it

receives m′ as the output of this protocol.
3. There are also several situations in which Ps or Pr has to abort. If Pr receives an invalid message or no message

at all from F{S,R},rnd
′

auth then Pr aborts by outputting ⊥.

Fig. 10. Secure message transmission by public discussion protocol

with m, like the simulator in the proof of Theorem 3 does when Ps or Pr becomes corrupted only after
S chooses a z. Finally, S may need to simulate sender or receiver aborts when A corrupts a majority of
wire-parties but not Ps or Pr; this too can be done since influencing the wrapper will have an effect. Once
again, the simulation is perfect. ut

Next, we turn to SMT-PD (Section 2.2), which offers an alternative way to achieve SMT against a
corrupted majority of wires, in the presence of a public channel.

3.3 Universally Composable SMT-PD

To capture SMT-PD in UC, we use our wire-party model from above, with the public channel modeled by

assuming access to F{S,R},rnd
′

auth , for some rnd′. The protocol is outlined in Fig. 10.

Theorem 6. Protocol Πsmt-pd(S,R, ~W, l) statistically UC-realizes F{S,R},rndsmt for rnd = 2 + 3 · rnd′ in the

(FS,R, ~Wwc ,F{S,R},rnd
′

auth )-hybrid model, against an adversary corrupting all but one of the wire-parties.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that
no unbounded environment Z can distinguish whether it is interacting with Πsmt-pd(S,R, ~W, l) and A in

the (FS,R, ~Wwc ,F{S,R},rnd
′

auth )-hybrid world, or with F{S,R},rndsmt and S in the ideal world. The simulator internally

runs a copy of A, and plays the roles of FS,R, ~Wwc , F{S,R},rnd
′

auth , and the parties in a simulated execution of
the protocol. All inputs from Z are forwarded to A, and all outputs from A are forwarded to Z. Moreover,
whenever A corrupts a party in the simulation, S corrupts the same party in the ideal world by interacting

with F{S,R},rndsmt (except if the party is a wire-party), and if the corruption was direct (i.e., not via either of
the aiding functionalities), then S sends A the party’s state and thereafter follows A’s instructions for that
party.

The simulated execution starts upon S receiving (SendLeak, sid, m̂) from F{S,R},rndsmt in round ρ for
sid = (Ps, Pr, sid

′), where m̂ ∈ {m, l(m)} and m is the message to be sent. Now, S simulates the first three
phases of the SMT-PD protocol honestly, by simulating sending random bitstrings from Ps to Pr through

the n wire-parties (i.e., by simulating leakage from FS,R, ~Wwc to A, and responding to corruption and influence
requests directed from A to that functionality) and by simulating sending a message from Ps to Pr or vice

versa over the public channel (i.e., by appropriately playing the role of F{S,R},rnd
′

auth for A). In the fourth phase,
S chooses random mi’s to be encoded (rather than mi’s such that m = m1 ⊕ · · · ⊕ms) if Ps and Pr are still

honest; if Ps or Pr is corrupted by A, then S learns m from F{S,R},rndsmt and thus does not need to cheat.
Next, we describe how S simulates Pr’s response to a Fetch input from Z in the real world. If Pr is

corrupted by A, then S can wait to receive (FetchLeak, sid) from F{S,R},rndsmt , upon which it possibly leaks
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the fetch to A and then sends InflSend and Output messages to F{S,R},rndsmt as appropriate. Otherwise,

if Ps is corrupted by A, then S needs to constantly influence F{S,R},rndsmt so that the dummy Pr fetches the
most up-to-date value when instructed by Z. Finally, if neither Ps nor Pr is corrupted, then S can simply let

the dummy Pr fetch from F{S,R},rndsmt when instructed by Z. In this case, the real-world Pr outputs m except
with the error probability.

An important issue is that when Ps or Pr is corrupted only after S has already decided on the random
mi’s to be encoded in the fourth phase, A may be able to recover some m′ from its view of the bitstrings
sent in the first phase, but m′ may not equal m and this could allow Z to distinguish between the real and
ideal worlds. However, S can handle this case by faking what was sent in the first phase. In particular, at
least one bitstring (corresponding to an uncorrupted wire-party) sent in the first phase is not visible to A,

so S can redefine it to be consistent with m (which S learns from leakage from F{S,R},rndsmt ).
We now claim that the simulation is valid. Although it is not perfect as there is an error probability, Z

still cannot distinguish between the hybrid and ideal worlds. In particular, when Ps and Pr are not corrupted
by A, the assumption that A only corrupts all but one of the wire-parties implies that the random bitstring
sent on at least one of the wires in the first phase of the protocol will mask the value of m from A. ut

4 Almost-Everywhere Remote RMT and SMT

In this section, we consider remote—i.e. over a sparse graph Gn—RMT and SMT. As in Section 3, we model
the network topology using the parameterized secure channel functionality FGn

sc in Fig. 11 , that provides
secure channels between parties that are connected in Gn.

Functionality FGn
sc

The secure channel functionality Fsc is parameterized by a graph Gn = (V,E) of party identities and communication
edges, and it proceeds as follows. At the first activation, verify that sid = (Pi, Pj , sid

′), where (Pi, Pj) ∈ E; else
halt. Initialize variable m to a default value ⊥.

– Upon receiving input (Send, sid, v) from Pi in round ρ, record m← v. If Pi or Pj is marked as corrupted, then
send (SendLeak, sid,m) to the adversary; otherwise send (SendLeak, sid, l(m)).

– Upon receiving (InflSend, sid,m′) from the adversary: If Pi or Pj is corrupted, and (Sent, sid,m) has not
yet been sent to Pj , then update m← m′; otherwise, ignore the command.

– Upon receiving (Fetch, sid) from Pj in round ρ+ 1, output (Sent, sid,m) to Pj if it has not yet been sent.
– Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Pi, Pj}, mark P as corrupted and send

(SendLeak, sid,m) to the adversary.

Fig. 11. Secure channel functionality for incomplete graph Gn

For convenience, instead of working directly in the FGn
sc -hybrid model, we use FGn

sc to realize the remote

secure channel functionality FGn
r-sc in Fig. 12 , the counterpart to FS,R, ~Wwc from Section 3. This functionality

provides secure communication over a single path, as long as no node on the path is corrupted.
Using protocol ΠR-SC in Fig. 19 (Appendix B) we realize FGn

r-sc by simply forwarding the message along
the path, which leads to the following statement (proof omitted).

Theorem 7. Protocol Πr-sc(Gn) UC-realizes FGn
r-sc in the FGn

sc -hybrid model.

4.1 AE Remote RMT

Graphs of constant degree. We start off by considering the graphs considered in [DPPU86].

DPPU. We describe a transmission scheme due to Dwork et al. [DPPU86] which guarantees reliable com-
munication (i.e., no privacy) for large sets of privileged nodes in various classes of graphs (see below). At a
high level, the scheme associates with every node in the graph a fan-in set and a fan-out set of a fixed (but
not necessarily constant) size. In addition, (not necessarily vertex-disjoint) paths from a node to its sets are
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Functionality FGn
r-sc

The remote secure channel functionality Fr-sc is parameterized by a graph Gn = (V,E) of party identities and
communication edges, and it proceeds as follows. At the first activation, verify that sid = (S, P1, . . . , Pk−1, R, sid

′),
where γ := (S, P1, . . . , Pk−1, R) is a path in Gn; else halt. Initialize variable m to a default value ⊥.

– Upon receiving input (Send, sid, v) from S in round ρ, record m ← v. If any P ∈ γ is marked as corrupted,
then send (SendLeak, sid,m) to the adversary; otherwise send (SendLeak, sid, l(m)).

– Upon receiving (InflSend, sid,m′) from the adversary: If any P ∈ γ is corrupted, and (Sent, sid,m) has not
yet been sent to R, then update m← m′; otherwise, ignore the command.

– Upon receiving (Fetch, sid) from R in round ρ′: If R is corrupted, then send (FetchLeak, sid) to the adver-
sary; otherwise, if ρ′ = ρ+ k, then output (Sent, sid,m) to R if it has not yet been sent.

– Upon receiving (Output, sid) from the adversary: If R is corrupted, then output (Sent, sid,m) to R if it has
not yet been sent; otherwise, ignore the command.

– Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ γ, mark P as corrupted and send
(SendLeak, sid,m) to the adversary; if P = R, then additionally leak any previous fetch requests made
by R.

Fig. 12. Remote secure channel functionality for single path communication

specified, as well as (vertex-disjoint) paths for all ordered pairs of one node’s fan-out set to any other node’s
fan-in set. When node u wants to send a message to node v, they run the following three-phase protocol,
Πdppu: first u sends the message to all members of its fan-out set; each member then sends the message to its
connected (via a path) pair in v’s fan-in set; and finally each member in v’s fan-in set forwards the message
to v, who accepts the value resulting from the majority of received values.

In more detail, let T denote the set of adversarial nodes, and t its maximal size, and for every node u ∈ V ,
let Γin(u) and Γout(u) denote u’s fan-in and fan-out set, respectively, such that |Γin(u)| = |Γout(u)| = s > 4t.
Given a set of adversarial nodes T , it is shown in [DPPU86] that if less than a 1

8 fraction of the paths
from a node u to Γout(u) are corrupted (the path includes the end point in Γout(u)), less than a 1

4 fraction
of the paths from Γout(u) to Γin(v) are corrupted, and less than a 1

8 fraction from Γout(v) to node v are
corrupted, then u and v can communicate reliably. Further, it is shown in [DPPU86] how to construct such a
transmission scheme for several classes of graphs. Using the terminology from Section 1, the set of privileged
nodes W (T ) in this case are the nodes u such that less than a 1

8 fraction of the paths from u to both Γin(u)
and Γout(u) are corrupted.

Now let x be the maximal size of D(T ) for all T of size at most t. Dwork et al. constructed different
graphs on which the above three-phase transmission scheme achieves reliable communication between any
two privileged nodes. In this setting, one would like to obtain as low a value of x as possible, while tolerating
a large value of t (a constant fraction of n is the best possible). While [DPPU86] construct several classes
of graphs in the context of Byzantine agreement, we present the parameters for only the graphs that use
the above described three-phase transmission scheme (the other graphs use an appended or a different
transmission scheme). The parameters achieved are as follows:

For the butterfly network on n nodes: t = O( n
logn ) and x = O(t log t);

for almost every r-regular graph (r ≥ 5): t = O(n1−ε) and x = O(t1+δ log t), for some 0 < δ < ε < 1.

The protocol for remote reliable message transmission, Πdppu
r-auth, based on the dppu (three-phase) trans-

mission scheme in the FGdppu
r-sc -hybrid model is outlined in Fig. 20 (Appendix B).

Let Gdppu = (Vdppu, Edppu) be a graph with |Vdppu| = n that allows a dppu transmission scheme with

fan-in and fan-out sets of size s. To realize wrapped FVdppu,rnd
auth over Gdppu with Πdppu

r-auth, we define the doom
structure Ddppu as follows:

First let Ddppu(Ti) be a subset of participants P such that P ∈ Ti or at least 1
8 of the paths from P to

Γout(P ) or at least 1
8 of the paths from Γin(P ) to P are corrupted. Basically, Ddppu(Ti) is the set of all

possible doomed participants associated with the set of corruptions Ti based on the dppu transmission
scheme. (Ti, Di) ∈ Ddppu if and only if Ti ⊂ P, |Ti| < s/4, and Di ⊂ Ddppu(Ti).

Now we can use Πdppu
r-auth to realize WDdppu

ae (FVdppu,rnd
auth ):
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Theorem 8. Protocol Πdppu
r-auth UC-realizes WDdppu

ae (FVdppu,rnd
auth ) for some rnd ∈ O(log n), where n = |Vdppu|,

in the FGdppu
r-sc -hybrid model against an adversary corrupting less than s/4 nodes where s is the number of

specified paths between pairs of nodes by the dppu transmission scheme.

We can also formulate the above result in threshold (as opposed to doom-structure) terms (cf. [DPPU86]):

Corollary 1. Over a butterfly network of n = m2m nodes and in the presence of an adversary corrupting
up to t < 2m/4 nodes, Πdppu

r-auth guarantees (perfect) reliable message transmission among all but at most
32t log 16t nodes.

Upfal. Building on [DPPU86], Upfal [Upf92] proposed an alternative transmission scheme for constant-degree
graphs, which works over any graph; however, his optimal result is achieved only on constant-degree expander
graphs with specific parameters. The main limitation of the scheme is that it is computationally inefficient
(exponential). Upfal’s protocol, Πupfal, for reliable message transmission over any graph works as follows.
To transmit a message m from a sender S to a receiver R, S sends m to R through all the simple paths
connecting them. As the message travels along the paths to R, each node on the path appends the ID of the
previous node to the message. This way each message received from a corrupted path will contain at least
one ID of a corrupted node. (See [Upf92] for details.)

Protocol Πupfal
r-auth for remote RMT based on upfal transmission scheme in the FGupfal

sc -hybrid model is
described in Fig. 21 (Appendix B).

Let Gupfal
n = (Vupfal, Eupfal) be a d-regular expander graph with |Vupfal| = n. To realize wrapped

FVupfal,rnd
auth , we define the doom structure Dupfal as follows:

Let D(Ti) be the set defined by the following iterative process: Starting with the set S = Ti, repeatedly
add all participants Q /∈ S such that at least 1

5 of Q’s neighbors (according to Gupfal
n ) are in the set S.

(Ti, Di) ∈ Dupfal if and only if Ti ⊂ P, |Ti| < t < 1/72n and Di ⊂ D(Ti).

We can now use Πupfal
r-auth to realize WDupfal

ae (FVupfal,rnd
auth ):

Theorem 9. Protocol Πupfal
r-auth UC-realizes WDupfal

ae (FVupfal,rnd
auth ) for some rnd ∈ O(log n), where n is the num-

ber of nodes, in the FG
upfal
n

sc -hybrid model against an adversary corrupting less than 1/72n nodes.

Note that the above simulator needs to run the potentially exponential-time process that R does at the
end of the protocol to determine the output for the case that at least one of S and R is doomed. However,
that seems reasonable since the protocol itself runs in exponential time.

As before, in threshold terms (cf. [Upf92]), we obtain:

Corollary 2. Over any d-regular graph G with λ(G) ≤ 2
√
d− 1 and in the presence of an adversary cor-

rupting up to t < 1/72n nodes, Πupfal
r-auth guarantees (perfect) reliable message transmission among all but at

most 6t nodes.

We note that explicit constructions of d-regular graphs exist, with λ(G) ≤ 2
√
d− 1, for any d = p + 1, p a

prime [LPS86].

Graphs of poly-logarithmic degree. Chandran et al. [CGO10] proposed a randomly constructed graph,
Gcgo
n , of poly-logarithmic degree and an almost-everywhere reliable message transmission scheme over it.

A very high level idea of their construction is to transmit a message via multiple paths and also perform
some sort of error correction along the way. To construct their graph, Gcgo

n , over n vertices, they first form
n logk n overlapping committees of size O(log log n) via walks on expander graphs. Then they make each
committee a clique by putting all the edges inside each committee. They also connect committees by “super-
edges” using dppu butterfly network. A super-edge connection between two committees means that every
two corresponding nodes in those committees are connected (i.e. ith node of one committee is connected to
ith node of the other one). In the end, each node is assigned an connected to a poly-logarithmic number
of committees chosen by an expander graph. Committees connected to a node are called the node’s helper
committees. Chandran et al. proved that each node in the above graph has a poly-logarithmic degree.

The proposed protocol Πcgo for reliable message transmission over Gcgo
n is as follows. To transmit a

message m from a sender S to a receiver R, S sends m to all its helper committees. S’s helper committees
are nodes of a dppu graph so they can send the message they have received to R’s helper committees using

18



the dppu transmission scheme. Then all the R’s helper committees forward the message to R. In the end,
R takes a simple majority and outputs the value as the value received. We should mention that to send a
message from one committee to another using a super-edge, each node sends the message to its corresponding
node in the other committee and then all the nodes in the destination committee run a differential agreement
protocol [FG03] over the values they have received.5 (See [CGO10] for details.) Protocol Πcgo

r-auth for remote

reliable message transmission based on the cgo transmission scheme in the FG
cgo
n

sc -hybrid model is outlined
in Fig. 22 (Appendix B).

Let Gcgo
n = (Vcgo, Ecgo) be a graph with |Vcgo| = n constructed as above. To realize wrapped FVcgo,rnd

auth

over Gcgo
n with Πcgo

r-auth, we define the doom structure Dcgo as follows:

Let Dcgo(Ti) be the set of all participants P such that P ∈ Ti or at most 5
6 th fraction of P ’s helper

committees are privileged. A committee is honest if at most 1
4 th fraction of its members are cor-

rupted. Committees are categorized as privileged and unprivileged based on the Ddppu(·) function de-
fined over sets of committees (considering committees as super-nodes). (Ti, Di) ∈ Dcgo if and only

if Ti ∈ {S ⊂ Vcgo|at most n logk n
4 log(n logk n)

number of committees are not honest} (i.e, dppu works at the

committee level) and Di ⊂ Dcgo(Ti).

Chandran et al. proved that there exists constants αcgo, βcgo such that for any adversary corrupting a

set T of size less than αcgon, at most n logk n
4 log(n logk n)

committees are not honest and |Dcgo(T )| < βcgo
|T |
logn . For

those constants we have the following statement.

Theorem 10. Protocol Πcgo
r-auth UC-realizes WDcgo

ae (FVcgo,rnd
auth ) for some rnd ∈ O(log n log log n), where n is

the number of nodes, in the FG
cgo
n

sc -hybrid model against an adversary corrupting less than αcgon nodes.

As before, we can also formulate the above result in terms of thresholds over the number of corrupted
and doomed nodes, as stated in [CGO10] in the property-based setting:

Corollary 3. There exists constants αcgo, βcgo such that over Gcgo
n = (Vcgo, Ecgo) with |Vcgo| = n and in

the presence of an adversary corrupting up to t < αcgon nodes, Πcgo
r-auth guarantees perfect reliable message

transmission among all but βcgo
t

logn nodes.

Graphs of logarithmic degree. An optimal transmission scheme over logarithmic-degree graphs has re-
cently been proposed by Jayanti et al. in [JRV20]. Their graph construction is also randomized. Their graphs
consist of z = k log n layers where k is a constant and n is the number of nodes. All layers are constructed
using the same method but over a randomly permuted set of nodes. To form a layer, they arbitrarily par-
tition the nodes into n/s committees of size s = c log log n where c is a constant. Within each committee,
they instantiate an upfal expander graph and then connect committees with dppu butterfly graph using
“super-edges.” A super-edge is a perfect matching between set of nodes of two different committees. Let Gjrv
be the family of graphs constructed as above.

The protocol they proposed, Πjrv, for reliable message transmission over graphs in Gjrv goes as follows:
To transmit a message from node S to node R, S sends the message through each layer separately and then
R takes a simple majority over all the values received from all the layers. In each layer, if S and R are in
the same committee they send the message by simply invoking upfal within the committee. Otherwise (i.e.,
S and R are located in different committees), S sends the message to all the nodes in its committee using
upfal. Then S’s committee sends the message to R’s committee using dppu over super-edges. Every node
in R’s committee (except R) sends the message to R using upfal. Finally, R takes the majority over all the
incoming messages and considers it as the message received through that specific layer. We should note that
to send a message over a super-edge, each node sends the message to its matched node and then every node
in the destination committee sends the message to all the other nodes using upfal and finally each node
locally takes the majority of received messages. (See [JRV20] for details.) Protocol Πjrv

r-auth based on the jrv

transmission scheme in the FG
jrv
n

sc -hybrid model is outlined in Fig. 23 (Appendix B).
Let Gjrv

n = (Vjrv, Ejrv) ∈ Gjrv be a graph with |Vjrv| = n. In each layer of Gjrv
n , if a committee contains

more than 1
72s corruptions (i.e., upfal does not work), they call it bad and if the total number of bad

5 At a high level, differential agreement is a kind of agreement that guarantees that if many (not all) of the honest
parties begin with the same value, all of the honest parties will output that value.
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committees in the layer exceeds n/s
4 log(n/s) (i.e., dppu does not work) they call the layer bad. To realize

wrapped FVjrv,rnd
auth over Gjrv

n with Πjrv
r-auth, we define the doom structure Djrv as follows:

Let Djrv(Ti) be the set of all participants P such that P ∈ Ti or P is doomed in more than 1
10z layers

among all the good layers. A node is considered doomed in a layer if it is located in a doomed committee
(wrt Ddppu(·)) or is doomed itself within its committee (wrt Dupfal(·)). (Ti, Di) ∈ Djrv if and only if
Ti ∈ {S ⊂ Vjrv|at most 1

5 th of the layers are bad} and Di ⊂ Djrv(Ti).

Jayanti et al. proved that there exists a graph Gjrv
n ∈ Gjrv and constants αjrv, βjrv such that for any

adversary corrupting the set T of size less than αjrvn nodes, at most 1
5 th of its layers are bad and |Djrv(T )| <

βjrv
|T |
logn . For such a graph and constants we have the following statement.

Theorem 11. Protocol Πjrv
r-auth UC-realizes WDjrv

ae (FVjrv,rnd
auth ) for some rnd ∈ O(log n · log log log n), where n

is the number of nodes, in the FG
jrv
n

sc -hybrid model against an adversary corrupting less than αjrvn nodes.

Again, in threshold terms, we obtain (cf [JRV20]):

Corollary 4. There exists a graph Gjrv
n with n nodes and constants αjrv, βjrv such that in the presence of an

adversary corrupting up to t < αjrvn nodes, Πjrv
r-auth guarantees perfect reliable message transmission among

all but βjrv
t

logn nodes.

4.2 AE Remote SMT

Similarly to Section 3, we can use a perfect smt protocol [DDWY90] over the set of paths provided by the
dppu transmission scheme to achieve secure communication. We stress, however, that the s paths from S to
R are not necessarily the same (except reversed) as the s paths from R to S.

The protocol for remote SMT in the (WDdppu
ae (FVdppu,rnd

auth ),FGdppu
r-sc )-hybrid model is outlined in Fig 13.

Protocol Πdppu
r-smt

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vdppu, the sender S
executes protocol ΠDDWY(~γ, τ, v) with R, where the wires γ1, . . . , γs in ~γ for communication from S to R are
taken to be the s paths λ1, . . . , λs from S to R (as specified by the DPPU transmission scheme), respectively.
More precisely, in the first phase S and R use s different instances of FGdppu

r-sc with SID’s sidi = (λi, P ) to
send all the messages instead of using the wires in ~γ. Next, in the second and third phases, the authenticated
channel is substituted with separate instances of WDdppu

ae (FVdppu,rnd
auth ) with SID’s sidAUTH1 = (R,S, 1, sid′) and

sidAUTH2 = (S,R, 2, sid′), respectively, where rnd is the maximum length of any three-step path specified by the
DPPU transmission scheme. To receive output from the aiding functionalities, S and R have to send Fetch
messages to the functionalities using the correct session IDs as generated above and in the correct rounds. In
particular, the first-phase messages are fetched in rounds ρ+ li where li is the length of the i’th path from S
to R, the second-phase message is sent in round ρ+ ` (` is the maximum value of li’s), and the second-phase
and third-phase messages are respectively fetched in rounds ρ+ rnd + ` and ρ+ 2 · rnd + `.

2. Upon receiving input (Fetch, sid) from Z in round ρ+ 2 · rnd+ `, R outputs (Sent, sid,m′) to Z if it receives
m′ as the output of this protocol.

Fig. 13. Perfect remote SMT protocol over Gdppu

To realize wrapped FVdppu,rnd
′

smt for some rnd′ over Gdppu with Πdppu
r-smt, we use the same doom structure Ddppu

from Section 4.1. This result is formally stated in the following theorem.

Theorem 12. Protocol Πdppu
r-smt UC-realizes WDdppu

ae (FVdppu,2·rnd+`
smt ) in the (WDdppu

ae (FVdppu,rnd
auth ),FGdppu

r-sc )-hybrid
model against an adversary corrupting less than s/4 nodes where ` and s are the maximum length and the
number of specified paths between pairs of nodes by dppu transmission scheme, respectively.
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Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such that
no environment can distinguish whether it is interacting with Πdppu

r-smt and A, or with WDdppu
ae (FVdppu,2·rnd+`

smt )
and S. The simulator S has similar structure as the simulator in the proof of Theorem 5. However, S needs
to simulate different aiding functionalities for which the structure of the internal simulation is the same.
Moreover, now S can doom S or R under a slightly different condition according to Ddppu. More specifically,
the simulator in the proof of Theorem 5 needs to doom at least one of S and R when a majority of wires
between them are corrupted (which is allowed by Dpsmt) but S here can do that if at least 1

8 of paths to
Γout or from Γin are corrupted for one of S and R. As it is discussed in [DPPU86], whenever a majority of
wires between S and R are corrupted at least 1

8 of paths to Γout or from Γin are corrupted for one of S and
R. Therefore, difference in the doom structures also does not affect correctness of the simulation.

Πdppu
r-smt is based on ΠDDWY which has exactly 3 rounds of communication. In the first round of communi-

cation, Πdppu
r-smt sends values using FGdppu

r-sc over specified paths of length at most `. Each of the remaining two

rounds of communication consists of an invocation of WDdppu
ae (FVdppu,rnd

auth ) which takes rnd rounds. Therefore,
Πdppu

r-smt takes 2 · rnd + ` rounds to terminate. ut

Corollary 5. Over a butterfly network of n = m2m nodes and in the presence of an adversary corrupting up
to t < 2m/4 nodes, Πdppu

r-smt guarantees (perfect) secure message transmission among all but at most 32t log 16t
nodes.

Although the above technique helped us make the dppu transmission scheme secure, it cannot in general
be extended to other transmission schemes. In the above approach we need a majority of honest paths
between any pair of privileged nodes to realize a secure link between them. Many transmission schemes such
as upfal do not guarantee such a property for privileged nodes. To realize the SMT functionality using other
transmission schemes, one approach is to use SMT-PD (Section 3.3) since having access to an authenticated
channel, it only requires a single honest path between sender and receiver to establish a secure channel. This
approach can be used to make any reliable message transmission scheme secure since these schemes realize
authenticated channel and guarantee at least an honest path between any pair of privileged nodes. The only
downside of using smt-pd compared to the technique from [DDWY90] is that it only provides statistical
security rather than perfect security.

The protocol for SMT-PD in the (FGn
r-sc,WDsmt-pd

ae (FV,rndauth ))-hybrid model is presented in Fig. 14, using the
following notation.

Protocol Πsmt-pd

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ V , the sender S
executes protocol Πpub-smt(S,R, v, C) with the receiver R, where C is taken to be the set of specified paths
γ1, . . . , γs from S to R. More precisely, in the first phase, S uses s different instances of FGn

r-sc with SIDs
sidi = (γi, sid

′) to send all the random bit strings instead of using channels in C. Next, in the second, third,
and fourth phases, S and R substitute the public channel with separate instances ofWDsmt-pd

ae (FV,rndauth ) with SIDs
sid2 = (S,R, 2, sid′), sid3 = (R,S, 3, sid′), and sid4 = (S,R, 4, sid′), respectively. To receive output from the
aiding functionalities, S and R have to send Fetch messages to the functionalities using the correct session
IDs as generated above and in the correct rounds. In particular, the first-phase messages are fetched in rounds
ρ + li where li is the length of γi, the second-phase message is sent in round ρ + ` (` is maximum length of
specified paths) and fetched in round ρ + ` + rnd, the third-phase message is sent in round ρ + ` + rnd and
fetched in round ρ + ` + 2 · rnd, and the fourth-phase message is sent in round ρ + ` + 2 · rnd and fetched in
round ρ+ `+ 3 · rnd.

2. Upon receiving input (Fetch, sid) from Z in round ρ+ `+ 3 · rnd, R outputs (Sent, sid,m′) to Z if it receives
m′ as the output of this protocol.

Fig. 14. Remote SMT protocol with public discussion

Let Gn = (V,E) be a graph with polynomially many paths of length at most ` specified between every

pair of nodes. To realize wrapped FV,rnd
′

smt over Gn for some rnd′ using Πsmt-pd, we define the doom structure
Dsmt-pd as follows:
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(Ti, Di) ∈ Dsmt-pd if and only if Ti, Di ⊂ P and at least one of the specified paths between any pair of
nodes in P \Di is completely contained by P \ Ti.

Theorem 13. Define t = max
(Ti,Di)∈Dsmt-pd

|Ti|, then protocol Πsmt-pd statistically UC-realizes WDsmt-pd
ae

(FV,`+3·rnd
smt ) in the (FGn

r-sc,WDsmt-pd
ae (FV,rndauth ))-hybrid model against an adversary corrupting less than t nodes,

where ` is the maximum length of specified paths between any pair of nodes.

Proof. Let A be an adversary in the real world. We construct a simulator S in the ideal world, such
that no unbounded environment can distinguish whether it is interacting with Πsmt-pd and A in the
(FGn

r-sc,WDsmt-pd
ae (FV,rndauth ))-hybrid world, or with WDsmt-pd

ae (FV,`+3·rnd
smt ) and S in the ideal world. The simulator

S is very similar to the simulator that was constructed in the proof for Πsmt-pd(S,R, ~W, l) from Section 3.3.
However, S now interacts with a wrapped SMT functionality, and corruption messages for all parties are
sent. Moreover, S needs to simulate different aiding functionalities, although the general structure of the
internal simulation is the same. The other difference is that the case in which S and R (which were denoted
Ps and Pr in Section 3.3) are not corrupted by A becomes more complicated, because we are now working
with access to a wrapped AUTH functionality rather than an ideal authenticated channel. If either S or R
becomes doomed according to the doom structure Dsmt-pd before the fourth phase, then S does not need to
cheat in the fourth phase because s/he learns m and can simulate based on that, however, it does need to
constantly influence the wrapper. The case that needs more contemplation happens when both S or R are
privileged in the beginning of the fourth phase (when S is deciding about values Si’s) and then at least one
of them becomes doomed (before the output is fetched). It is important because in this case A can learn the
message by getting enough control over wrapped AUTH functionality to remove all the honest paths and to
force the sender to send all the messages through corrupted paths. Since S has already chosen random Si’s,
the message learnt by A may deviate from what is sent by S which causes Z distinguish the two worlds.
In such a situation S also learns the correct message from the wrapper hence s/he can cheat by calculating
fake pads (R′i’s) resulting in the right message and then simulate leaking fake pads from FGn

r-sc. This way, A
learns the message m correctly.

Πsmt-pd is based on Πpub-smt which has exactly 4 rounds of communication. In the first round of communi-
cation, Πsmt-pd sends values using FGn

r-sc over specified paths of length at most `. Each of the remaining three
rounds of communication consists of an invocation of WDsmt-pd

ae (FV,rndauth ) which takes rnd rounds. Therefore,
Πsmt-pd takes 3 · rnd + ` rounds to terminate. ut

According to [DPPU86], all the realizable doom structures for AE remote RMT satisfy the condition in
Dsmt-pd. Basically, existence of at least one completely honest path between any pair of privileged nodes
is guaranteed by the fact that corrupted nodes cannot disconnect any pair of privileged nodes. Therefore,
Πsmt-pd can be used with any of the reliable transmission schemes in Section 4.1 to statistically realize
wrapped SMT functionality over their graphs.

5 Almost-Everywhere Secure Computation

In this section, we consider general UC-secure computation in the almost-everywhere setting. We start by
proving a composition theorem that shows how to compile a protocol Π realizing some functionality F with
the help of several hybrids into an almost-everywhere version of Π, by wrapping each hybrid with a potentially
different doom structure Di. These structures can be arbitrary, subject only to a certain monotonicity
property, although they must correspond to the same participant set (indeed, composition would not make
much sense otherwise); the compiled protocol is then shown to realize a wrapped version of F, using a new
doom structure D ′. In its full generality, our composition theorem is not restricted to security against only
threshold adversaries, and the original protocol Π may itself realize a wrapped functionality associated with
some doom structure D . This latter fact, along with the fact that the monotonicity property carries over
to the new doom structure D ′, make the compiled protocol readily amenable to further composition. We
conclude by applying a special case of the composition theorem to obtain AE-MPC over the sparse graphs
that were considered in Section 4. Rather than constructing protocols from scratch, we simply apply our
generic AE compiler to replace the secure channels that are used in standard MPC protocols with AE-SMT,
which we have already shown how to realize over these sparse graphs.
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5.1 A General Composition Theorem

Let us first introduce some notation. Viewing a doom structure D (with participant set P) as a binary
relation over 2P and 2P , denote by Dom(D) the set of values that appear as a first component in D (in other
words, the set of all corruption sets allowed by D). Say that D is AE-monotone if whenever (Ti, Di) ∈ D and
Ti ⊆ Tj for Tj ∈ Dom(D), it holds that (Tj , Di) ∈ D . Different from the standard notion of monotonicity
in the general adversary literature, AE-monotonicity captures the intuitive property that when additional
parties are corrupted, parties that were previously doomed are still doomed (or newly corrupted). In fact,
the work of [GO08] included a similar assumption: that the function mapping the set of corrupted parties
to the corresponding set of unprivileged parties is monotonically increasing. It seems that AE-monotonicity
is important for simulatability, since for example the simulator may want to make a doom request for a
newly doomed party only after some additional parties are corrupted in the meantime, and in such a case
the doom structure needs to admit that request. Fortunately, all of the doom structures that we consider
are AE-monotone.

The AE compiler is shown in Fig. 15. It takes as input a protocol Π realizing some wrapped func-
tionality WD

ae(F) in the (F1, . . . ,Fm)-hybrid model and turns it into a protocol that works in the
(WD1

ae (F1), . . . ,WDm
ae (Fm))-hybrid model.

Compiler CD1,...,Dm(Π)

Apply the following modifications to protocol Π (which uses F1, . . . ,Fm as hybrids):

1. For each i ∈ [m], instead of using Fi, parties use WDi
ae (Fi) (which has the same input/output format to the

parties).

Fig. 15. The AE compiler

Of course, the compiled protocol will not in general realize wrapped F with the same doom structure D .
In the following theorem, we construct a new doom structure D ′ representing the level of AE-security that
is retained. Since we consider general adversaries, the compiled protocol can tolerate a set T ′ of corruptions
only if T ′ can be tolerated by all of the assumed doom structures (i.e., D as well as D1, . . . ,Dm). Furthermore,
the set of parties in the compiled protocol that are considered doomed (relative to the corruptions in T ′)
can consist of, roughly speaking, parties that are doomed with respect to any of the wrapped hybrids (such
parties are collected in D(T ′) below) or that would have been doomed in the original protocol Π (the parties
denoted by A). In fact, since Π may already carry some level of AE-security, as captured by D , we must
expand the latter set to include parties that only become doomed when some or all of the parties in the
former set are actually corrupted. This is crucial for our simulation strategy to work, and it explains why
we require that T ′ ∪D(T ′) is also tolerated by D .

Theorem 14. Let D ,D1, . . . ,Dm be AE-monotone doom structures over the same participant set P. Define
T := dom(D), and T ′ := (

⋂m
i=1 dom(Di)) ∩ T . For any T ′ ∈ T ′, define

D(T ′) :=

m⋃
i=1

 ⋃
(T ′,Dj)∈Di

Dj

 .

Suppose that for all T ′ ∈ T ′, it holds that T ′ ∪ D(T ′) ∈ T . If protocol Π UC-realizes WD
ae(F) in

the (F1, . . . ,Fm)-hybrid model against a T -adversary, then CD1,...,Dm(Π) UC-realizes WD′

ae (F) in the
(WD1

ae (F1), . . . ,WDm
ae (Fm))-hybrid model against a T ′-adversary, where D ′ is defined as follows: For all

T ′ ∈ T ′, we have (T ′, D ∪A) ∈ D ′ if D ⊆ D(T ′) and (T ′ ∪D(T ′), A) ∈ D . Moreover, D ′ is AE-monotone.

Proof. We first prove that D ′ is AE-monotone. Suppose that (Ti, Di) ∈ D ′ and Ti ⊆ Tj for Tj ∈ T ′. This
means that Di = D ∪ A for some D,A such that D ⊆ D(Ti) and (Ti ∪ D(Ti), A) ∈ D . We want to show
that (Tj , Di) ∈ D ′, and it suffices to show that D ⊆ D(Tj) and (Tj ∪D(Tj), A) ∈ D . Since D(Ti) ⊆ D(Tj)
(using the fact that D1, . . . ,Dm are all AE-monotone ), it follows that D ⊆ D(Tj). On the other hand, since
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Ti ∪ D(Ti) ⊆ Tj ∪ D(Tj), it follows that (Tj ∪ D(Tj), A) ∈ D (using the fact that D is AE-monotone and
that Tj ∪D(Tj) ∈ T ). We now prove the security of the compiled protocol.

Let S be a simulator (guaranteed to exist by the security of Π) such that no unbounded environment
Z can distinguish whether it is interacting with Π and the dummy adversary D in the (F1, . . . ,Fm)-
hybrid world, or with WD

ae(F) and S in the ideal world. We use S to construct a simulator S ′ such that
no unbounded environment Z ′ can distinguish whether it is interacting with CD1,...,Dm(Π) and D in the
(WD1

ae (F1), . . . ,WDm
ae (Fm))-hybrid world, or with WD′

ae (F) and S ′ in the ideal world.

S ′ internally runs S and plays the role of the environment andWD
ae(F) for it. Inputs from Z ′ are forwarded

to S, with some additional processing. When Z ′ sends a corruption request directed to a party (i.e., telling
D to corrupt a party directly), this is forwarded without modification. However, when Z ′ sends message
delivery requests directed to an instance of WDi

ae (Fi) for some i ∈ [m] (e.g., telling D to send a Corrupt or
Influence message to that functionality), S ′ sends message delivery requests directed to a corresponding
instance of Fi, with the following exception: a request to deliver a Doom message is replaced by a request
to deliver a Corrupt message if the doom structure Di would accept it and is dropped otherwise.

Similarly, outputs from S are forwarded to Z ′, with some additional processing. Assuming that Π uses
instances of F1, . . . ,Fm to handle all inter-party communication, note that these outputs should take the
form of reports of incoming messages directed from either a party or an instance of an aiding functionality Fi
to the dummy adversary for Π; thus, the processing done by S ′ is that reported messages from an instance of
Fi are replaced by reported messages from an instance of WDi

ae (Fi). Finally, S ′ plays the role of WD
ae(F) by

simply forwarding messages fromWD′

ae (F) to S as if coming fromWD
ae(F), and forwarding messages directed

toWD
ae(F) (from S) toWD′

ae (F), except that Corrupt messages for doomed parties (i.e., parties that Z ′ did
not request to corrupt) are replaced by Doom messages. We emphasize in particular that Doom requests
from S are forwarded without modification, which works because of the definition of D ′. It remains to reduce
to the security of Π.

Assume for the sake of a contradiction that there is an environment Z ′ such that idealWD′
ae (F),S′,Z′ 6≡

execCD1,...,Dm (Π),D,Z′ . Then, we construct an environment Z such that idealWD
ae(F),S,Z 6≡ execΠ,D,Z . The

environment Z will simulate an interaction between Z ′ and D, and output whatever Z ′ outputs, as well as
do some additional processing that mimics the processing done by S ′. First, Z ′ is “activated” with Z’s input
z. Whenever Z ′ instructs its dummy adversary to deliver a message to an instance of an aiding functionality
WDi

ae (Fi), this is translated by Z into a delivery request for a corresponding instance of Fi and forwarded
to the external adversary (either S or D), except that a request to deliver a Doom message is converted
into a request to deliver a Corrupt message if allowed by Di and dropped otherwise. Corruption requests
directed to parties are forwarded to the external adversary unmodified.

Next, whenever Z receives subroutine output from the external adversary, this is forwarded to Z ′, except
that reported messages from instances ofWDi

ae (Fi) are translated into reported messages from corresponding
instances of Fi. Finally, Z simply relays inputs and outputs between Z ′ and parties. We now claim that
idealWD′

ae (F),S′,Z′ ≡ idealWD
ae(F),S,Z and execCD1,...,Dm (Π),D,Z′ ≡ execΠ,D,Z . If Z interacts with WD

ae(F)

and S, then the view of the simulated Z ′ within Z is identical to the view of Z ′ when interacting with
WD′

ae (F) and S ′, and similarly if Z interacts with Π and D, then the view of the simulated Z ′ within Z is
identical to the view of Z ′ when interacting with CD1,...,Dm(Π) and D. That concludes the proof. ut

In the specific case that Π realizes an unwrapped functionality F (indeed, one can always apply our
AE wrapper to F with a doom structure of the form {(Ti, ∅)}i, which is trivially AE-monotone, in order
to obtain an equivalent functionality) in the G-hybrid model against a threshold adversary, we obtain the
following corollary, which requires some additional notation. Say that a doom structure D (with participant
set P) is t-complete if max

(Ti,Di)∈D
|Ti| = t, and T ∈ Dom(D) for all T ⊆ P with |T | ≤ t (in other words, if all

possible sets of corruptions of size at most t are allowed by D). Moreover, say that a doom structure D is
D-monotone if whenever (Tj , Dj) ∈ D and Di ⊆ Dj , it holds that (Tj , Di) ∈ D .

Corollary 6. Let D be a t′-complete, D-monotone, and AE-monotone doom structure. Define t :=

max
|T ′|=t′

∣∣∣∣∣
( ⋃

(T ′,Di)∈D

Di

)
∪ T ′

∣∣∣∣∣. If protocol Π UC-realizes F in the G-hybrid model against a t-adversary, then

CD(Π) UC-realizes WD
ae(F) in the WD

ae(G)-hybrid model against a t′-adversary.
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Observe that t′-completeness enables the simulator to handle a threshold adversary that can corrupt any
t′ parties, and D-monotonicity enables the doom structure D that is used to wrap G to be preserved when
wrapping F. By construction, all of our doom structures satisfy these two properties. We remark that t has
a very natural interpretation, namely the maximum number of parties that can become unprivileged (with
respect to D) when t′ parties are corrupted.

5.2 AE-MPC

We now present our main result: how to achieve almost-everywhere MPC over several classes of sparse graphs
in a composable manner. We assume a protocol that achieves “regular” MPC on a fully connected network of
point-to-point secure channels, and show how to transform it into a protocol that achieves AE-MPC (with a
lower corruption threshold) over a sparse graph with secure channels only between connected parties, using

our AE compiler. To capture the MPC task, we use the functionality Ff,P,rndmpc in Fig. 16, which is essentially
Canetti’s Fsfe [Can05] with synchrony.

Functionality Ff,P,rndmpc

The MPC functionality Fmpc is parameterized by a function f : ({0, 1}∗∪{⊥})n×R→ ({0, 1}∗)n, a participant set
P, and an integer rnd indicating the number of rounds that will be used to realize it, and it proceeds as follows. At
the first activation, verify that sid = (V, sid′), where V is an ordered set of n identities from P, denoted P1, . . . , Pn;
else halt. Initialize variables x1, . . . , xn and y1, . . . , yn to a default value ⊥.

– Upon receiving input (InputF, sid, vi) from some Pi ∈ V in round ρ (which is the same for all Pi), set
xi ← vi. If Pi is marked as corrupted, then send (InputLeakF, sid, Pi, xi) to the adversary; otherwise send
(InputP, sid, Pi).

– Upon receiving (InflInputF, sid, Pi, x
′
i) from the adversary for some Pi ∈ V: If Pi is corrupted, and

(OutputF, sid, yj) has not yet been sent to any Pj ∈ V, then update xi ← x′i; otherwise, ignore the command.
– Upon receiving (InflOutputF, sid, Pi, y

′
i) from the adversary for some Pi ∈ V, store y′i.

– Upon receiving (Fetch, sid) from some Pi ∈ V in round ρ′: If Pi is corrupted, then send (FetchLeak, sid, Pi)
to the adversary; otherwise, if ρ′ = ρ+ rnd, do the following:
• If xj has been set for all uncorrupted Pj ∈ V, and no yj has been set for any uncorrupted Pj ∈ V, then

choose r ← R and set (y1, . . . , yn) = f(x1, . . . , xn; r).
• Output (OutputF, sid, yi) to Pi if it has not yet been sent.

– Upon receiving (Output, sid, Pi) from the adversary for some Pi ∈ V: If Pi is corrupted, then output
(OutputF, sid, y′i) to Pi if it has not yet been sent.

– Upon receiving (Corrupt, sid, Pi) from the adversary for some Pi ∈ V, mark Pi as corrupted and send
(LeakF, sid, Pi, xi, yi) to the adversary. Additionally leak any previous fetch requests made by Pi.

Fig. 16. Standard MPC functionality with synchrony

Although standard information-theoretic MPC protocols tolerating t < n
3 corruptions are known

[BGW88,CCD88], they assume access to a broadcast channel, noting that broadcast can be achieved when
t < n

3 . However, [HZ10] showed that classical broadcast protocols are not adaptively secure in a simulation-
based setting, and gave a VSS-based protocol that does in fact realize adaptively secure broadcast with
perfect security for t < n

3 , assuming only secure channels. Therefore, there exists a protocol that UC-realizes

Ff,P,rndmpc for any n-ary function f and some rnd in the FP,1smt -hybrid model, against an adversary corrupting
less than n

3 parties. It is clear that this holds even in the FP,`smt-hybrid model, for arbitrary `. Now, by invoking
Corollary 6 (which of course also offers statistical security) and then applying the (regular) UC composition
theorem in tandem with our results in Theorems 12 and 13 showing how to achieve AE-SMT over several
classes of sparse graphs with either perfect or statistical security, we obtain the following corollaries showing
how to achieve AE-MPC over those classes of graphs, with different combinations of parameters (recall that
the maximum number of doomed nodes is encoded into each doom structure).

Corollary 7. For any n-ary function f , there exists a protocol that UC-realizes WDdppu
ae (Ff,Vdppu,rnd

mpc ) in the

FG
dppu
n

sc -hybrid model against a t-adversary, for some rnd and t ∈ O( n
logn ).
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Corollary 8. Let x ∈ {upfal,cgo, jrv}. For any n-ary function f , there exists a protocol that statistically

UC-realizes WDx
ae (Ff,Vx,rnd

mpc ) in the FG
x
n

sc -hybrid model against a t-adversary, for some rnd and t ∈ O(n).
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A Further Related Work

History of SMT. The (perfectly) secure message transmission (SMT) problem was first studied by Dwork et
al. [DDWY90], and we already introduced it in Section 1.1. Dwork et al. showed that 1-way SMT is possible if
and only if t < n/3, and that 2-way SMT is possible if and only if t < n/2. (An SMT protocol is called 1-way
if information flows only from the sender S to the receiver R, and 2-way if S and R are allowed to converse.)
They gave both 2-phase and 3-phase protocols for 2-way SMT, where a phase is a flow of communication
from S to R or vice versa, although their 2-phase solution is not efficient (polynomial-time). With foresight,
we will be using their 3-phase protocol in our constructions. A rich line of follow-up works improving the
efficiency of 2-phase SMT ensued, including work by Sayeed and Abu-Amara [SAA96], who gave a solution
with transmission rate (total number of bits transmitted to the bit-size of the secret) O(n3), communication
complexity O(n3 log n), and polynomial computational costs; Srinathan et al. [SNR04] demonstrated a lower
bound of O(n) on the transmission rate; Agarwal et al. [ACd06] constructed a protocol with the optimal
transmission rate, but the computational costs are exponential; while Kurosawa and Suzuki [KS08] gave a
breakthrough result achieving an optimal transmission rate of 25n + o(n) with polynomial computational
costs, while maintaining a communication complexity of O(n3 log n) (a polynomial-time 2-phase SMT proto-
col). Griggio [Gri12] was able to reduce the transmission rate to 6n+ o(n). Finally, Spini and Zémor [SZ16]
further reduced the transmission rate to 5n + o(n), while also improving the communication complexity to
O(n2 log n).

Related models. We start with hybrid failure models (e.g., [GP92,FHM98]), which allow the adversary to
maliciously corrupt some parties as well as cause another form of failure (e.g., passive or fail-stop corruption)
to some other parties. Another relevant failure model is the one explored by Alon et al. [AOPC20], which
technically considered two independent adversaries, one corrupting maliciously and the other one only pas-
sively. Their model is a special case of the adaptive model such that the malicious adversary can only corrupt
statically before the protocol starts while the passive corruptions can be done at the end of the execution.
In the AE setting, adversarial corruptions also have the effect of indirectly influencing the behavior of some
of the honest parties (those who become “doomed”). The difference is that in our model, this other type of
failure is defined structurally, based on the graph and the set of corruptions.

Also related is the work by King and Saia [KS09] (and follow-ups) who considered randomized Byzantine
agreement over complete networks, but without all-to-all communication in order to improve the communi-
cation complexity. Their aim, however, is to still obtain full (not AE) agreement. The same approach is also
explored by Boyle et al. [BCDH18] to reduce the communication cost of MPC over complete graphs. They
investigated special characteristics (expansion) of the communication graph which is dynamically determined
as a part of the protocol. In a recent follow-up, Boyle et al. [BCG21] defined an “almost-everywhere commu-
nication functionality” and used it as a hybrid in their low-communication Byzantine agreement protocols.
However, this functionality is used to model a very specific communication tree, in which parties assigned
to the root node can use the tree to send messages to all but a small fraction of the honest parties (called
“isolated”), while the underlying model is still a complete network of point-to-point authenticated channels.

B Functionalities and Protocols

Protocol ΠR-SC(Gn)

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S, P1, . . . , Pk−1, R, sid
′) and

(S, P1, . . . , Pk−1, R) is a path in Gn, the sender S sends (Send, sid1, v) to an instance of FGn
sc with SID

sid1 = (S, P1, 1, sid
′).

2. For each i ∈ [k− 1]: Upon activation in round ρ+ i, party Pi sends (Fetch, sidi) to FGn
sc . Upon receiving back

(Sent, sidi,m), Pi sends (Send, sidi+1,m) to an instance of FGn
sc with SID sidi+1 = (Pi, Pj , i+ 1, sid′), where

Pj = Pi+1 if i < k − 1 and Pj = R if i = k − 1.
3. Upon receiving input (Fetch, sid) from Z in round ρ+ k, the receiver R sends (Fetch, sidk) to FGn

sc . Upon
receiving back (Sent, sidk,m), R outputs (Sent, sid,m) to Z.

Fig. 19. Remote secure channel protocol for realizing FGn
r-sc
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Protocol ΠWC(S,R, ~W )

1. Upon receiving input (Send, sid,Wi, vi) from Z in round ρ (which is the same for all Wi), where sid =
(Ps, Pr, sid

′) for either Ps = S and Pr = R or Ps = R and Pr = S, party Ps sends (Send, sid1i , vi) to an

instance of FS,R, ~Wsc with sid1i = (Ps,Wi, sid).

2. Upon activation in round ρ + 1, each wire-party Wi sends (Fetch, sid1i ) to FS,R, ~Wsc . Upon receiving back

(Sent, sid1i ,mi), Wi sends (Send, sid2i ,mi) to an instance of FS,R, ~Wsc with sid2i = (Wi, Pr, sid).

3. Upon receiving input (Fetch, sid,Wi) from Z in round ρ+ 2, party Pr sends (Fetch, sid2i ) to FS,R, ~Wsc . Upon
receiving back (Sent, sid2i ,m

′
i), Pr outputs (Sent, sid,Wi,m

′
i) to Z.

Fig. 17. Wire communication protocol

Protocol ΠAUTH(S,R, ~W )

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (Ps, Pr, sid
′) for either Ps = S and Pr = R

or Ps = R and Pr = S, party Ps sends (Send, sidauth,Wi, v) for each wire-party Wi to a single instance of

FS,R, ~Wwc with SID sidauth = (sid,auth).
2. Upon receiving input (Fetch, sid) from Z in round ρ + 2, party Pr sends (Fetch, sidAUTH,Wi) for each Wi

to FS,R, ~Wwc . Upon receiving back (Sent, sidAUTH,Wi,mi) for each Wi, Pr takes a simple majority of the mi’s.
More precisely, after receiving at least bn

2
c + 1 copies of some message m′ corresponding to different wire-

parties, Pr outputs (Sent, sid,m′) to Z. (If not enough copies were received, e.g. because Ps was corrupted,
then Pr outputs ⊥.)

Fig. 18. Reliable message transmission protocol in the wire-party model

Protocol Πdppu
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vdppu, the sender S
sends (Send, sidi, v) to an instance of FGdppu

r-sc with SID sidi = (γi, sid
′) for each of the paths γ1, . . . , γs from S

to R as specified by the dppu transmission scheme.
2. For each i ∈ [s]: Upon activation in round ρ + li, where li is the length of path γi, the receiver R sends

(Fetch, sidi) to FGdppu
r-sc . Upon receiving back (Sent, sidi,mi), R stores mi as the value received on path γi.

3. Upon receiving input (Fetch, sid) from Z in round ρ + rnd, where rnd is the maximum length of any three-
step path (i.e., not necessarily one from S to R) specified by the DPPU transmission scheme, R takes a simple
majority of the stored mi’s. More precisely, after receiving at least b s

2
c+ 1 copies of the same message m′, R

outputs (Sent, sid,m′) to Z. (If not enough copies were received, then R outputs ⊥.)

Fig. 20. Remote RMT protocol based on dppu transmission scheme

Protocol Πupfal
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vupfal, the sender S
executes protocol Πupfal(S,R, v) with the receiver R, where sending a message from node to node is replaced

by separate invocations to FG
upfal
n

sc (note that we do not use FG
upfal
n

r-sc here, because Πupfal actually requires

appending to the message as it travels along a path to R). To receive output from the instances of FG
upfal
n

sc , all
nodes involved have to send Fetch messages in the correct rounds.

2. Upon receiving input (Fetch, sid) from Z in round ρ + rnd, where rnd is the maximum length of any path
used in the protocol, R outputs (Sent, sid,m′) if it receives m′ as the output of this protocol.

Fig. 21. Remote RMT protocol based on upfal transmission scheme
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Protocol Πcgo
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vcgo, the sender S
executes protocol Πcgo(S,R, v) with the receiver R, where sending a message from node to node is replaced by

separate invocations to FG
cgo
n

sc . To receive output from the instances of FG
cgo
n

sc , all nodes involved have to send
Fetch messages in the correct rounds.

2. Upon receiving input (Fetch, sid) from Z in round ρ + rnd, where rnd is the maximum number of rounds
required by dppu transmission scheme over committees multiplied by the maximum number of rounds required
by differential agreement inside the committees, R outputs (Sent, sid,m′) if it receives m′ as the output of
this protocol.

Fig. 22. Remote RMT protocol based on cgo transmission scheme

Protocol Πjrv
r-auth

1. Upon receiving input (Send, sid, v) from Z in round ρ, where sid = (S,R, sid′) for S,R ∈ Vjrv, the sender S
executes protocol Πjrv(S,R, v) with the receiver R, where sending a message from node to node is replaced by

separate invocations to FG
jrv
n

sc . To receive output from the instances of FG
jrv
n

sc , all nodes involved have to send
Fetch messages in the correct rounds.

2. Upon receiving input (Fetch, sid) from Z in round ρ + rnd, where rnd is the maximum number of rounds
required by dppu transmission scheme over committees multiplied by the maximum number of rounds required
by upfal transmission scheme inside the committees, R outputs (Sent, sid,m′) if it receives m′ as the output
of this protocol.

Fig. 23. Remote RMT protocol based on jrv transmission scheme

C Proofs

Proof of Theorem 1. Let A be an adversary in the real world. We construct a simulator S in the ideal world,

such that no environment can distinguish whether it is interacting with Πwc(S,R, ~W ) and A, or with FS,R, ~Wwc

and S. The simulator internally runs a copy of A, and plays the roles of FS,R, ~Wsc and the parties in a simulated
execution of the protocol. All inputs from Z are forwarded to A, and all outputs from A are forwarded to
Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party in the ideal world

by interacting with FS,R, ~Wwc , and if the corruption was direct (i.e., not via FS,R, ~Wsc ), then S sends A the
party’s state and thereafter follows A’s instructions for that party. The simulated execution starts upon S
receiving (SendLeak, sid,Wi, m̂i) from FS,R, ~Wwc in round ρ for sid = (Ps, Pr, sid

′), where m̂i ∈ {mi, l(mi)}
and mi is the message to be sent through wire-party Wi, and it involves simulating Ps sending mi to Wi

through an instance of FS,R, ~Wsc (i.e., by simulating leakage from FS,R, ~Wsc to A, and responding to corruption
and influence requests directed from A to that functionality). Note that while S does not know mi when Ps,
Pr, and Wi are all honest, this is not a problem because in this case the real-world adversary only obtains

l(mi) from FS,R, ~Wsc . Messages to be sent by Ps through other wire-parties in round ρ are simulated in the

same way. Next, in round ρ + 1, S simulates Wi fetching from FS,R, ~Wsc and then forwarding the obtained

value to Pr, by once again playing the role of FS,R, ~Wsc for A.
Finally, we describe how S simulates Pr’s response to a Fetch input from Z in round ρ + 2. If Pr is

corrupted by A, then S can wait to receive (FetchLeak, sid,Wi) from FS,R, ~Wwc , upon which it leaks the
fetch to A if Pr was corrupted directly, and then sends InflSend and Output messages (for wire-party

Wi) to FS,R, ~Wwc as appropriate. Otherwise, if Ps or Wi is corrupted by A, then S influences FS,R, ~Wwc (for

wire-party Wi) every time the value that would be fetched from FS,R, ~Wsc by the simulated Pr changes, e.g.

due to A’s influencing of FS,R, ~Wsc (note that this might occur in round ρ). If none of Ps, Pr, and Wi are
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corrupted by A, then S can simply let the dummy Pr fetch from FS,R, ~Wwc when instructed by Z, because in
this case the real-world adversary cannot prevent Pr from fetching the actual message to be sent through
Wi. It is easy to see that this simulation is perfect. �

Proof of Theorem 2. Let A be an adversary in the real world. We construct a simulator S in the ideal
world, such that no environment can distinguish whether it is interacting with Πauth(S,R, ~W ) and A, or

with F{S,R},rndauth and S. The simulator internally runs a copy of A, and plays the roles of FS,R, ~Wwc and the
parties in a simulated execution of the protocol. All inputs from Z are forwarded to A, and all outputs from
A are forwarded to Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party

in the ideal world by interacting with F{S,R},rndauth (except if the party is a wire-party), and if the corruption

was direct (i.e., not via FS,R, ~Wwc ), then S sends A the party’s state and thereafter follows A’s instructions for

that party. The simulated execution starts upon S receiving (SendLeak, sid,m) from F{S,R},rndauth in round
ρ for sid = (Ps, Pr, sid

′), and it involves simulating Ps sending m to Pr through the n wire-parties via a

single instance of FS,R, ~Wwc (i.e., by simulating leakage from FS,R, ~Wwc to A, and responding to corruption and
influence requests directed from A to that functionality).

Next, we describe how S simulates Pr’s response to a Fetch input from Z in round ρ + 2. If Pr is

corrupted by A, then S can wait to receive (FetchLeak, sid) from F{S,R},rndauth , upon which it does the

following. If the corruption was not direct, then S sends an InflSend message to F{S,R},rndauth with the value

that the real-world Pr would have output after fetching n values from FS,R, ~Wwc (in particular, S takes into

account any InflSend messages sent by A to the simulated instance of FS,R, ~Wwc ), before sending an Output
message; if the corruption was in fact direct, then S simulates Pr reporting to A that a Fetch input from

Z was received, and then sends appropriate InflSend and Output messages to F{S,R},rndauth once A instructs
Pr to output something to Z (recall that in this case, the simulated Pr follows the instructions of A each

time it is activated). If Pr is not corrupted by A, but Ps is, then S influences F{S,R},rndauth every time the
value that the real-world Pr would have output changes (this might happen after A influences the simulated

instance of FS,R, ~Wwc , or, in the case that Ps was corrupted directly, after A instructs the simulated Ps to send

a different message via the instance of FS,R, ~Wwc ). Finally, if neither Ps nor Pr is corrupted, then S can simply

let the dummy Pr fetch from F{S,R},rndauth when instructed by Z, because the assumption that A corrupts only
a minority of the wire-parties implies that the real-world Pr receives enough copies of Ps’s input m = v.
Note that in this case, the dummy Pr immediately outputs the fetched value to Z, which is fine because the
real-world Pr cannot be corrupted in the time between receiving a Fetch input from Z and outputting to Z,

since the activations alternate between Pr and the instance of FS,R, ~Wwc . It is easy to see that this simulation
is perfect. �

Proof of Theorem 8 Let A be an adversary in the real world. We construct a simulator S in the ideal world,
such that no environment can distinguish whether it is interacting with Πdppu

r-auth and A in the FGdppu
r-sc -hybrid

world, or with WDdppu
ae (FVdppu,rnd

auth ) and S in the ideal world. The simulator internally runs a copy of A, and
plays the roles of FGdppu

r-sc and the parties in a simulated execution of the protocol, which starts when S
receives (SendLeak, sid,m) from the wrapper. Whenever A corrupts a party in the simulated execution,
S corrupts the same party in the ideal world, and as a result S is able to influence the wrapper with the
appropriate value when S or R is corrupted by A. If S and R are not corrupted by A, but at least one of
S and R has more than 1

8 th fraction of paths to Γout or from Γin corrupted, then S can still influence the
wrapper because in this case S can doom at least one of S and R according to Ddppu. The only case in which
S cannot influence is when both S and R are privileged which means they have less than 1

8 of paths to Γout

and from Γin corrupted. However, it follows from the results in [DPPU86] that A also cannot influence the
value recovered by R in this case, so S can simply let the dummy R fetch from the wrapper when instructed
by Z.

All the paths specified by dppu transmission scheme over the butterfly network have length of O(log n).
Since Πdppu

r-auth transmits the message form S to R by sending it through the specified paths, its execution
requires only rnd ∈ O(log n) rounds. �

Proof of Theorem 9 Let A be an adversary in the real world. We construct a simulator S in the ideal world,

such that no environment can distinguish whether it is interacting with Πupfal
r-auth and A in the FG

upfal
n

sc -hybrid
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world, or with WDupfal
ae (FVupfal,rnd

auth ) and S in the ideal world. The simulator internally runs a copy of A, and

plays the roles of FG
upfal
n

sc and the parties in a simulated execution of the protocol, which starts when S
receives (SendLeak, sid,m) from the wrapper. Whenever A corrupts a party in the simulated execution,
S corrupts the same party in the ideal world, and as a result S is able to influence the wrapper with the
appropriate value when S or R is corrupted by A. If S and R are not corrupted by A, but at least one of S
and R is returned by Dupfal(T ), then S can still influence the wrapper because in this case S can doom at
least one of S and R according to Dupfal. The only case in which S cannot influence is when both S and R
are privileged which means that they are not returned by Dupfal(T ). However, it follows from the results in
[Upf92] that A also cannot influence the value recovered by R in this case, so S can simply let the dummy
R fetch from the wrapper when instructed by Z.

Diameter of an expander graph is of O(log n). Since we are working on expander graphs and upfal
transmission scheme uses only simple paths between S and R, all the messages are received by the receiver
in O(log n) rounds. Therefore, Πupfal

r-auth requires rnd ∈ O(log n) rounds to terminate. �

Proof of Theorem 10 Let A be an adversary in the real world. We construct a simulator S in the ideal
world, such that no environment can distinguish whether it is interacting with Πcgo

r-auth and A, or with

WDcgo
ae (FVcgo,rnd

auth ) and S. The simulator internally runs a copy of A, and plays the roles of FG
cgo
n

sc and the
parties in a simulated execution of the protocol, which starts when S receives (SendLeak, sid,m) from the
wrapper. Whenever A corrupts a party in the simulated execution, S corrupts the same party in the ideal
world, and as a result S is able to influence the wrapper with the appropriate value when S or R is corrupted
by A. If S and R are not corrupted by A, but at most 5

6 th fraction of helpers of S or R are privileged, then
S can still influence the wrapper because in this case S can doom at least one of S and R according to doom
structure Dcgo. The only case that S cannot influence is when both S and R are privileged which means
more than 5

6 th fraction of their helpers are privileged. As it is shown in [CGO10], A also cannot influence
the communication when both S and R are privileged so S does not need to influence in the ideal world in
that situation and can simply let the dummy R fetch from the wrapper.

Each transmission over super-edges consists of some parallel instances of FG
cgo
n

sc (between correspond-
ing nodes) followed by an execution of differential agreement inside the destination committee. According
to [FG03], deterministic differential agreement requires at most linear number of rounds. Since in cgo
transmission scheme committees are of size O(log log n), the number of rounds required by each super-edge
transmission is O(log log n). We know in cgo transmission scheme, there are n logk n committees communi-
cating through dppu transmission scheme over super-edges. We also discussed earlier that dppu transmission
scheme requires logarithmic number of rounds. therefore, the total number of rounds required by Πcgo

r-auth is

O
(

log
(
n logk n

)
log log n

)
= O(log n · log log n). �

Proof of Theorem 11 Let A be an adversary in the real world. We construct a simulator S in the ideal
world, such that no environment can distinguish whether it is interacting with Πjrv

r-auth and A, or with

WDjrv
ae (FVjrv,rnd

auth ) and S. The simulator internally runs a copy of A, and plays the roles of FG
jrv
n

sc and the
parties in a simulated execution of the protocol, which starts when S receives (SendLeak, sid,m) from the
wrapper. Whenever A corrupts a party in the simulated execution, S corrupts the same party in the ideal
world, and as a result S is able to influence the wrapper with the appropriate value when S or R is corrupted
by A. If S and R are not corrupted by A, but S or R are doomed in at least 1

10z number of good layers,
then S can still influence the wrapper because in this case S can doom at least one of S and R according to
doom structure Djrv. The only case S cannot influence is when both S and R are privileged which means
they are honest and doomed in at most 1

10z number of good layers. As it is shown in [JRV20], A also cannot
influence the communication when both S and R are privileged, so S does not need to influence in the ideal
world in that situation and can let the dummy R fetch from the wrapper.

Each transmission over super-edges consists of some parallel instances of FG
jrv
n

sc (between correspond-
ing nodes) followed by some parallel executions of upfal transmission scheme inside the destination com-
mittee. As discussed earlier, upfal transmission scheme requires logarithmic number of rounds. Since in
jrv transmission scheme each committee has size of s = O(log log n), each super-edge transmission takes
O(log log log n) rounds. We know in jrv transmission scheme, there are n/s committees communicating
through dppu transmission scheme over super-edges. We also discussed earlier that dppu transmission
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scheme requires logarithmic number of rounds. Therefore, the total number of rounds required by Πjrv
r-auth is

O (log(n/s) log log log n) = O(log n · log log log n). �
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