
Efficient Adaptively-Secure Byzantine Agreement for Long
Messages

Amey Bhangale1 and Chen-Da Liu-Zhang2, Julian Loss3, and Kartik Nayak4

1 amey.bhangale@ucr.edu, UC Riverside
2 cliuzhan@andrew.cmu.edu, CMU

3 lossjulian@gmail.com, CISPA Helmholtz Center
4 kartik@cs.duke.edu, Duke University

Abstract. We investigate the communication complexity of Byzantine agreement protocols for
long messages against an adaptive adversary. In this setting, prior results either achieved a com-
munication complexity of O(nl ·poly(κ)) or O(nl+n2 ·poly(κ)) for l-bit long messages. We improve
the state of the art by presenting protocols with communication complexity O(nl + n · poly(κ)) in
both the synchronous and asynchronous communication models. The synchronous protocol toler-
ates t ≤ (1− ε)n

2
corruptions and assumes a VRF setup, while the asynchronous protocol tolerates

t ≤ (1− ε)n
3

corruptions under further cryptographic assumptions. Our protocols are very simple
and combine subcommittee election with the recent approach of Nayak et al. (DISC ‘20). Surpris-
ingly, the analysis of our protocols is all but simple and involves an interesting new application of
Mc Diarmid’s inequality to obtain optimal corruption thresholds.

1 Introduction

Byzantine agreement (BA) is a fundamental problem in distributed computing. In a Byzantine
agreement protocol consisting of n parties, each party starts with an input value, and at the end
of the protocol, all honest (non-faulty) parties output a value. Byzantine agreement protocols
guarantee that if all honest parties input the same value v, then they must output v; otherwise,
they output any agreed upon value. Moreover, this holds even if some threshold t out of n
parties are Byzantine (arbitrarily malicious).

Byzantine agreement forms a core abstraction for many blockchains where consensus is
required on large values among a large number of parties. Moreover, due to the value of the
transactions contained in these blockchains, they need to tolerate strong adaptive adversaries
who are capable of corrupting any party based on the state of the protocols subject to the
Byzantine threshold constraint. These requirements lead to the following natural question: What
is the lowest communication complexity possible for Byzantine agreement protocols on large
values tolerating an adaptive adversary?

This question has been partially answered in the literature. For instance, it has been shown
that BA can be solved with o(n2) communication complexity against an adaptive adversary [11,
1, 6]. At a high level, these protocols take the approach of electing committees of size κ (where
κ is a security parameter) and only the committee members send messages to all parties. This
allows achieving a communication complexity of O(n · poly(κ)). However, this computation
implicitly assumes inputs with a constant number of bits. If the inputs are of size l bits, the
communication complexity is O(nl · poly(κ)).

A different line of work seeks to achieve the optimal communication complexity of O(nl) for
long messages, i.e., where l� n [17, 9, 16, 19, 10]. More precisely, the best known protocols in
this area achieve a communication complexity of O(nl + κn2) [17] and the main goal of these
works is to further reduce the latter term as much as possible. At a high level, these protocols
take the approach of agreeing on the hash of an input value with O(κn2) communication (κ is
the size of a hash) assuming appropriate BA protocols for κ-sized inputs and then use erasure
coding techniques to distribute the l-bit long blocks with communication O(nl). In this work,
we ask whether we can achieve the best of both approaches. In particular,

Does there exist a Byzantine agreement protocol for l bit values tolerating an adaptive ad-
versary with O(nl + n · poly(κ)) communication complexity?

We answer this question positively. Surprisingly, the techniques from the two lines of work
do not compose in a straightforward manner to achieve the desired communication complexity.
In fact, Nayak et al. [17] present a lower bound of Ω(nl + A(κ) + n2) where A(κ) is the com-
munication complexity of Byzantine agreement on κ bit inputs. However, the bound holds only
for deterministic protocols. For the first time, we use randomization in the extension part (as
well as the underlying protocol) to circumvent the lower bound and achieve O(nl+ n · poly(κ))
complexity. We present two protocols one assuming synchronous network and another assuming
asynchronous network, that achieve these guarantees.

1.1 Simple Adaptively Secure BA Protocols for Long Messages

Our first result is a synchronous, adaptively secure BA protocol tolerating t ≤ (1 − ε) · n2
Byzantine parties, for some arbitrary constant ε > 0. The second result is asynchronous and
tolerates t ≤ (1− ε) · n3 corruptions.

Theorem 1. For all constants ε > 0, assuming appropriate cryptographic setup assumptions,
there exists an adaptively secure synchronous Byzantine agreement protocol achieving a commu-
nication complexity of O(nl + poly(κ)n) for l-bit values for

1. t ≤ (1− ε) · n2 Byzantine parties under a synchronous network, and

2. t ≤ (1− ε) · n3 Byzantine parties under an asynchronous network.

We describe the intuition behind the synchronous protocol. Using an adaptively-secure sub-
quadratic 1-bit BA protocol from [1], all parties can agree on the κ-bit accumulator value with
a communication of O(κ3n). Thus the key challenge is to distribute the l-bit value to all par-
ties with linear communication while tolerating an adaptive adversary. Typically, distributing
a large value to n parties using erasure codes is performed in two steps. First, create n encoded
shares of the value, one for each party, of size O(ln), and send the shares to the respective
parties. Then, each party sends its own share to all other parties. If every party receives suf-
ficiently many shares (Byzantine parties may not send shares), they can reconstruct the l-bit
value. Observe that the latter step incurs Ω(n2) communication, thus dominating the n ·poly(κ)
term of the desired communication complexity. To make this approach efficient, we have to find
the right amount of shares to create and the right parties to share them with. If we näıvely
create one share per party, we will need all parties to speak so that we can reconstruct the long
message. Clearly, this results in poor communication complexity. On the other hand, if we share
the messages with only a small committee C, an adaptive adversary can corrupt all the parties
in C and prevent reconstruction of the long message.

To address these concerns, our solution relies on a public partition of parties into one of κ
buckets such that each bucket holds n/κ parties. We then elect κ-sized committees at random
(using the standard VRF approach for cryptographic sortition) to perform each of the two steps
described earlier. In the first step, the value is encoded into κ shares of size O(lκ) and the j-th
share is sent to parties in bucket j. In the second step, the elected committee members from
each of the κ buckets send their share to all parties. This incurs an O(κn · lκ) = O(ln) bits of
communication. The crux of our argument lies in showing that when t ≤ (1−ε) · n2 , a majority of
buckets contains an honest party who is also elected as a committee member. Thus, the shares
that these honest parties send are sufficient to reconstruct the initial value. There are several
subtleties involved in correlating the committee members chosen to agree via 1-bit BA with the
committee chosen to distribute the l bit message. If we elect parties to the committee C using
the common approach of verifiable random functions, it is not possible to argue via standard
Chernoff-type bounds that sufficiently many of the buckets will be covered by members of C.

This is because the number of committee members across buckets are correlated and a rushing
adaptive adversary can observe the number of committee members for any subset of the buckets
before corrupting others. Instead, our argument relies on a subtle application of Mc Diarmid’s
inequality, which, to the best of our knowledge, has not been explored in this type of protocol.

Using our insights from the synchronous setting, we also obtain a protocol for the asyn-
chronous setting by substituting the 1-bit agreement protocol with the recent (asynchronous)
BA construction of Blum et al. [3].

1.2 Related Work

Work related to extension protocols. In the following, we denote as A(1),A(κ) the commu-
nication complexity of a BA protocol with input domain of size 1 and κ bits, respectively. The
problem of extending the domain of Byzantine agreement protocols is a well-studied one in the
literature. To the best of our knowledge, the first work that considered this problem is that of
Turpin and Coan [19] who showed how to reach agreement on messages from arbitrary domains
given agreement on binary values in the corruption regime t < n/3 with synchrony. The prob-
lem has also been considered for other related primitives such as Byzantine broadcast [12, 7] or
reliable broadcast [4, 17]. Previous works that focus on this problem are the works by Fitzi and
Hirt [9], and that of Liang and Vaidya [16]. In the synchronous setting with t < n/3 and error-
freeness, the protocol of Ganesh and Patra [10] previously provided the best known protocol
which achieves O(nl+n2 ·A(1)) communication complexity. For the computational setting with
t < n/2, the protocols of Ganesh and Patra [10] previously provided the best known solution
achieving O(nl+ nA(κ) + κn3). These complexities were recently further improved by the pro-
tocols of Nayak et al. [17] who gave protocols that achieve O(nl+A(κ) + n2κ) communication
complexity for the computational setting when t < n/3 or t < n/2. Nayak et al. also improved
on error-free protocols in the t < n/3 setting, giving a protocol that achieves O(nl+nA(1)+n3)
communication complexity.

Work related to adaptively secure sub-quadratic communication protocols. Dolev and
Reischuk [8] first showed that deterministic Byzantine agreement protocols incur Ω(t2) commu-
nication complexity when tolerating t < n Byzantine faults. King et al. [15, 13, 14] presented the
first Byzantine agreement protocols that can be solved with subquadratic communication com-
plexity under inverse polynomial in n error probability. More recently, Algorand [11, 6] showed
constructions with O(n · poly(κ)) communication complexity for adaptively secure Byzantine
agreement tolerating t < (1 − ε)n/3 Byzantine parties in the synchronous setting assuming
memory erasures. This was further improved by Abraham et al. [1] in the synchronous and
partially synchronous network setting tolerating t < (1− ε)n/2 and t < (1− ε)n/3 respectively
without assuming memory erasures. Finally, Blum et al. [3] presented a subquadratic commu-
nication protocol in the asynchronous setting tolerating t < (1 − ε)n/3 faults. As discussed
above, these protocols achieve subquadratic communication complexity, but fail to provide the
asymptotically optimal complexity O(nl) when l grows beyond n. Nonetheless, these protocols
do serve as important building blocks in extension protocols such as the ones presented here
(i.e., to agree efficiently on the short message shares).

2 Model and Preliminaries

We consider a setting with n parties P1, . . . , Pn that have access to a complete network or
pairwise authenticated channels. The adversary is adaptive, and can corrupt up to t parties at
any point of the protocol execution in an arbitrary manner. However, we make two standard
assumptions on the capability of the adversary (see, e.g., [5, 3]. First, parties can perform an
atomic send operation, i.e., they can send a message to any number of parties simultaneously
and without the adversary corrupting them in between (different) sends. Second, the adversary

cannot perform after-the-fact removal, i.e., cannot take back messages sent by parties while they
were still honest. We consider protocols in the synchronous and asynchronous network settings.
In a synchronous network, we assume communication in lock-step rounds where messages sent
by a party at the start of a round arrives at its destination by the end of that round. On the
other hand, in an asynchronous network, messages are assumed to arrive at their destination
eventually.

2.1 Definitions

Let us recap the definition of Byzantine agreement.

Definition 1 (Byzantine Agreement). Let Π be a protocol executed by parties P1, . . . , Pn,
where each party Pi starts with an input xi and parties terminate upon generating output. We
say that Π is an t-secure Byzantine agreement protocol if the following properties hold when up
to t parties are corrupted:

– Validity: If all honest parties start with the same input x, then every honest party outputs
x.

– Consistency: All honest parties output the same value.

2.2 Primitives

Our protocols will make use of standard linear error correcting codes and cryptographic accu-
mulators.

Linear error correcting code. We use standard Reed-Solomon (RS) codes with parameters
(κ, b). The codewords are elements in a Galois Field GF (2a) with κ ≤ 2a − 1. There are two
algorithms:

– Encoding. Given inputs m1, . . . ,mb, the encoding function outputs κ codewords (a.k.a.
shares) (s1, . . . , sκ) of length κ, such that any b codewords uniquely determine the input
message and the other codewords.

– Decoding. Given κ codewords (s1, . . . , sκ), one can reconstruct the original message (m1, . . . ,mb)
even when κ− b values are erased.

Looking ahead in our protocols, we will choose random committee subsets of κ parties out
of the n parties, and we will set the parameter to b = tκ, which will correspond to a lower bound
on the number of honest parties in a committee.

Cryptographic accumulators. We recall the definition of cryptographic accumulators [2].
Given a set of values, the primitive can produce an accumulated value and a witness for each
element in the set. Then, given the accumulated value and a witness, one can verify that a
particular element is in the set.

Definition 2. A cryptographic accumulator consists of algorithms (Gen,Eval,CreateWit,Verify),
where:

– Gen(1κ, T): It takes a parameter κ and an accumulation threshold T and returns an accu-
mulator key ak.

– Eval(ak,D): It takes an accumulator key ak and a set of values to accumulate D and returns
an accumulated value z for D.

– CreateWit(ak, z, di): It takes an accumulator key ak, an accumulated value z for D and a
value di, and returns ⊥ if di /∈ D or a witness wi otherwise.

– Verify(ak, z, wi, di): It takes an accumulator key, accumulated value z for D, witness wi,
value di, and returns 1 if wi is a witness for di ∈ D and 0 otherwise.

We require our accumulator to satisfy standard collision-free properties [18].

2.3 Concentration Bounds I

We recall the Chernoff concentration bound.

Lemma 1 (Homogenous Chernoff Bound). Let X1, ..., Xn be i.i.d. Bernoulli random vari-
ables with parameter p. Let X :=

∑
iXi, so µ := E[X] = p · n. Then, for δ ∈ [0, 1],

Pr[X ≥ (1 + δ) · µ] ≤ e−δ2µ/(2+δ) and Pr[X ≤ (1− δ) · µ] ≤ e−δ2µ/2.

Let χs,n denote the distribution that samples a subset of the n parties, where each party is
included independently with probability s/n. The following lemma will be useful in our analysis.

Corollary 1. Fix κ ≤ s ≤ n and 0 < ε < 1
4 , and let t = (1 − 3ε)n/2 be the number of

corrupted parties. If C ← χs,n, then C contains less than (1 − 2ε)s/2 corrupted parties except
with negligible probability.

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli random variable
indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z :=

∑
j 6∈H Xj . Then, since E[Z] = t · s/n =

(1− 3ε)s/2, setting δ = ε
1−3ε in Lemma 1 yields

Pr [Z ≥ (1− 2ε)s/2] ≤ neg(κ).

(Almost) the same proof yields:

Corollary 2. Fix κ ≤ s ≤ n and 0 < ε < 1
4 , and let t = (1 − 3ε)n/3 be the number of

corrupted parties. If C ← χs,n, then C contains less than (1 − 2ε)s/3 corrupted parties except
with negligible probability.

Corollary 3. Fix s ≤ n and 0 < ε < 1. If C ← χs,n, then C contains more than (1 − ε) · s
many parties except with probability at most O(e−ε

2s).

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli random variable
indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z :=

∑
j 6∈H Xj . Then, since E[Z] = s, setting

δ = ε in Lemma 1 yields

Pr [Z ≤ (1− ε) · s] ≤ eε2·s/2.

3 Balls and Buckets Analysis for Throwing ck Balls in k Buckets

In this section, we present the technical inequality that will be used in our protocols in subse-
quent sections. We will start with the following concentration bound:

Theorem 2. (McDiarmid’s Inequality) Let X1, X2, . . . , Xn be independent random variables
such that Xj ∈ Kj, for some measurable set Kj. Suppose f :

∏n
i=1Kj → R is ’Lipschitz’ in the

following sense: for each k ≤ n and any two input sequence x, x ∈
∏
j Kj, that differ only in the

kth coordinate,

|f(x)− f(x′)| ≤ σk.

Let Y = f(X1, X2, . . . , Xn). Then for any α > 0,

Pr[|Y −E[Y]| ≥ α] ≤ 2 · exp

(
− 2α2∑n

j=1 σ
2
j

)
.

The binomial distribution with parameters n and p is the discrete probability distribution
of the number of successes in a sequence of n independent experiments, each asking a yes-no
question, and each with its own Boolean-valued outcome: success (with probability p) or failure
(with probability 1− p).

Let c ≥ 1 and k ≥ 1 be the parameters where k is the number of buckets and ck is the
number of balls (committee members). Consider the following random experiment: We throw
ck balls in k buckets independently and uniformly at random. Let bi be the expected number
of buckets with exactly i balls.

Let Xi
j be the indicator random variable that the jth bucket has exactly i balls. Thus, we

can write bi as:

bi =

k∑
j=1

E[Xi
j].

We also have,

E[Xi
j] =

(
ck

i

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i
.

By linearity of expectation,

bi =

k∑
j=1

(
ck

i

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i
= k ·

(
ck

i

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i
.

The following lemma shows that the number of buckets with exactly i balls is concentrated
around bi.

Lemma 2. For 0 ≤ i ≤ c, Pr
[∣∣∣number of buckets

with exactly i balls − bi
∣∣∣ ≥ ε · bi] ≤ 2 exp(− ε2

e3c
· k).

Proof. Let m = ck and define a function f : [k]ck → R as follows. f(a1, a2, . . . , am) is the
number of j such that aj = i. We are interested in the random variable Y = f(x1, x2, . . . , xm)
where each xi is independent and uniform in [k]. It is clear that f is Lipschitz with a Lipschitz
constant of 1, i.e, if you change only one input coordinate, then the function value changes by
at most 1. Towards applying Theorem 2, we have σj = 1 for all j ∈ [m] and hence

∑
j σ

2
j = m.

Using McDiarmid’s inequality 2 and using a loose bound of bi ≥ ci

iiec
k.

Pr[|Y − bi| ≥ ε · bi] ≤ 2 exp

(
−2ε2b2i

m

)
≤ 2 exp

(
−2ε2b2i

ck

)
≤ 2 exp

(
− 2ε2c2i

i2ie2c · c
· k
)

≤ 2 exp

(
− ε

2

e3c
· k
)
.

We only need concentration for = 0, 1, . . . , c− 1 for the overall argument that follows next.
Since each holds with probability 1−exp(−ε2k/eO(c)), by union bound, we have that the number
of buckets with i balls is concentrated around it’s expectation for i = 0, 1, . . . , c − 1 happens
with probability at least 1− c · exp(−ε2k/eO(c)).

Claim. Let τ ∈ (0, 1/2] be any constant. There exists a constant 0 ≤ cτ ≤ c such that the
following two inequalities hold simultaneously. We have,

1.
∑cτ

i=0 bi ≤ τk.
2.
∑cτ

i=1 i · bi ≥ (τ − ok(1)) · ck.

Proof. Let cτ be the largest constant such that (1) holds. The sum
∑cτ

i=0 bi/k is the cumulative
density of the binomial distribution with parameters ck and 1

k at cτ . As the median of the
binomial distribution with parameters ck and 1

k is c, we have cτ ≤ c for τ ∈ (0, 1/2]. We will
show that, for this constant cτ , the inequality (2) holds.

cτ∑
i=1

i · bi =

cτ∑
i=0

i · k
(
ck

i

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i
= k ·

cτ∑
i=0

i ·
(
ck

i

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i
= k ·

cτ∑
i=1

ck ·
(
ck − 1

i− 1

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i (
k
(
n
k

)
= n

(
n−1
k−1
))

= k · ck · 1

k
·
cτ∑
i=1

(
ck − 1

i− 1

)
·
(

1

k

)i−1
·
(

1− 1

k

)(ck−1)−(i−1)

= ck ·
cτ−1∑
i=0

(
ck − 1

i

)
·
(

1

k

)i
·
(

1− 1

k

)(ck−1)−i
. (Setting i← i− 1)

Now, the summation is precisely the cumulative density of the binomial distribution with
parameters ck − 1 and 1

k at cτ − 1. We now rearrange the terms to get the cumulative density
of the binomial distribution with parameters ck and 1

k at cτ + 1 in the summation. This way
we can relate it to the constant τ .

cτ∑
i=1

i · bi = ck ·
cτ−1∑
i=0

(
ck − 1

i

)
·
(

1

k

)i
·
(

1− 1

k

)(ck−1)−i

= ck ·
cτ−1∑
i=0

ck−1−i
ck−1

(1− 1/k)

(
ck

i

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i
≥ (1− ok(1)) · ck ·

cτ−1∑
i=0

(
ck

i

)
·
(

1

k

)i
·
(

1− 1

k

)ck−i
= (1− ok(1)) · ck ·

cτ−1∑
i=0

bi
k

= (1− ok(1)) · ck ·

((
cτ+1∑
i=0

bi
k

)
− bcτ

k
− bcτ+1

k

)

≥ (1− ok(1)) · ck ·
(
τ − bcτ

k
− bcτ+1

k

)
= ck (τ − ok(1)) .

Here, in the first inequality, we used the fact that cτ is at most c. The second inequality uses
the fact that the constant cτ is the largest constant that satisfies inequality (1). Therefore,∑cτ+1

i=0
bi
k ≥ τ .

Now, cτ ≤ c for every τ ∈ (0, 1/2]. Using this, we combine Lemma 2 and Claim 3 along with
a simple application of union bound and the fact that the sums are natural numbers, to get the
following Corollary.

Corollary 4. For every τ ∈ (0, 1/2] there exists a constant cτ such that the following holds.
Suppose we throw ck balls in k buckets, each uniformly and independently at random. Let b′i
be the number of buckets with exactly i balls. Then the following two inequalities hold with
probability at least 1− 2 · c · exp(− ε2

e3c
· k).

1.
∑cτ

i=0 b
′
i ≤ b(1 + ε)τkc.

2.
∑cτ

i=1 i · b′i ≥ (1− ε) (τ − ok(1)) · ck.

4 Adaptively Secure Synchronous Communication-Efficient Protocol for
Long Messages

4.1 Protocol Description

We begin by recalling the adaptively-secure sub-quadratic BA protocol of Abraham et al. [1]. In
this protocol, the step of each round i is performed by a randomly chosen committee Cbi (each
committee is tied to a value b ∈ {0, 1}), who reveals itself only when it is their turn to speak
in the protocol. We assume that parties have available via a trusted setup efficient algorithms
ComProve and ComVer that allow them to prove and verify membership of a committee, and we
do not make this explicit in our protocol (this can typically be achieves via a VRF setup). Once
members of the committee send their messages for round i, it is too late for the adversary to
corrupt them, as they can not take back messages that were previously sent by honest parties5.
We run two versions of the protocol, the first is for κ-valued messages and denoted as BA(κ),
the other for binary-valued messages, and denoted as BA(1). Since the protocol in [1] is binary,
we simply run it κ many times in parallel to agree on a κ bit message.

We assume that our protocol specifies a (arbitrary) partition of the n parties into κ buckets
B1, . . . , Bκ of n/κ parties each. We begin by explaining the setup of our protocol. The setup
consists of an honest dealer that honestly chooses/distributes the accumulator keys.

Protocol Setup for ΠsprBA

Accumulators

Generate the accumulator key ak = Gen(1κ, κ) and give it to all parties.

We now describe the protocol. In our description, we refer to Cbi as the committee for the
i-th round of an execution of BA(1) for the bit b. We denote as C∗ a special committee (also
selected at random ComProve) whose members are designated to perform the forwarding step
in our protocol.

In the following description, we will use two sub-protocols, Encode and Rec, which are based
on RS codes. We specify them relative to tκ which in our protocol is set as tκ = (1 + ε)κ2 .

– Encode(m). Given a message of size l, it divides the message into b blocks, and computes n
codewords (s1, . . . , sn) using RS codes, such that even when tκ values are erased, one can
recover the original message.

– Rec(Si, ak, z, tκ) removes incorrect values sj in Si that cannot be verified by the witness wj
and accumulation value z. And then reconstructs the message using RS code, where at most
tκ values are removed.

5 This is a somewhat simplified discussion; the adversary may still equivocate a message on behalf of the newly
corrupted party. The protocol in [1] introduces a special technique to get around this issue.

Protocol ΠsprBA

Let tκ = b(1 + ε)κ
2
c. The protocol is described from the point of view of party Pi who holds an l-bit input

message mi.

1: Compute Di := (s1, . . . , sκ) = Encode(mi), the accumulation value zi = Eval(ak,Di). Input zi to BA(κ).
2: When the above BA outputs z, if z = zi and Pi ∈ C1

1 , input 1 to BA(1). Moreover, distribute the long
block as follows. Compute a witness wj = CreateWit(ak, z, sj) for each share sj in Step 1 and send the
tuple (sj , wj) to each party Pk ∈ Bj . Otherwise, if z 6= zi and Pi ∈ C0

1 , input 0 to BA(1).
3: If the output of the above BA is 0, output ⊥ and abort. Otherwise, if Pi ∈ C∗ ∩ Bj : For the set of

tuples {(sj , wj)} received in the previous step from parties in C1
1 , if there exists an (sj , wj) such that

Verify(ak, z, wj , sj) = 1, then send (sj , wj) to all parties.
4: Let Si := {(sj , wj)} be the set of messages received from the previous step from parties in C∗. If there

are messages from parties belonging to at least (1 − ε)κ
2

different buckets, output the reconstructed
value Reconstruct(Si, ak, z, tκ). Otherwise, output ⊥.

The following theorem will be proven in a sequence of lemmas.

Theorem 3. Let 0 < ε < 1/4. Assuming a setup for VRFs, ΠsprBA is a synchronous Byzantine
agreement protocol secure up to t ≤ (1 − 3ε)n/2 adaptive corruptions. The communication
complexity is O(nl + κ3n) for l-bit values.

In the proofs, we will need that the sub-protocol BA(1) satisfies the following somewhat
stronger committee-based notion of validity described in the lemma below.

Lemma 3. If all honest parties in Cb1 input b to BA(1), and no honest party in C1−b
1 inputs

1− b to BA(1), then the output of BA(1) is b.

Proof. This follows from the fact that in protocol BA(1) only parties in the committee for the
first round, which is Cb1 or C1−b

1 , speak and send their input to all other parties. Hence, if only
honest parties in Cb1 input to BA(1) and no honest party from C1−b

1 inputs to BA(1), then it
follows immediately from the validity proof given in [1] that the protocol should output b.

Lemma 4. ΠsprBA satisfies validity.

Proof. If all honest parties have the same input message mi = m, then all honest parties input
the same accumulated value z = zi to BA(κ) in Step 1. By validity of BA(κ), all honest parties
receive z as output. Hence, all honest parties in C1

1 input 1 to BA(1) in Step 2 and distribute
the shares of m. By Lemma 3, they receive 1 as output from BA(1).

Each honest party Pj ∈ C∗ ∩ Bj receives a valid share sij from each honest party Pi ∈ C1
1 ,

and forwards one of these shares to all parties. Parties are added to C∗ uniformly at random,
each with probability cκ/n. Denote E0 the event that fewer than cκ parties are in C∗.

Whenever E0 does not occur, we can map the process of adding parties to C∗ to the process
of throwing cκ or more balls at κ buckets. By Corollary 3, we have that Pr[E0] is negligible.
Moreover, the optimal strategy for the adversary to minimize the number of buckets in which
an honest party sends a share is clearly to corrupt the buckets that contain smaller amount of
parties from C∗.

Let us denote E1 the event that cκ
2 (1−2ε) or more parties in C∗ are corrupted. By Corollary 1,

Pr[E1] is negligible. Therefore, by a union bound, Pr[E0 ∪ E1] is also negligible.

In the following, we condition on the event ¬E0 ∧ ¬E1 (which by the above occurs with
overwhelming probability).

By Corollary 4, and choosing τ = 1/2, there is a constant c1/2 such that
∑c1/2

i=1 i · bi ≥
(1− ε) (1/2− oκ(1)) · cκ ≥ cκ

2 (1− 2ε), where the last inequality holds as long as oκ(1) ≤ ε
2(1−ε) .

Therefore, the adversary can not corrupt all committee members in the buckets that contain up
to c1/2 or less committee members. These amounts of buckets correspond to at most b(1+ε)κ/2c
buckets, by Corollary 4.

Putting things together, at Step 4, at least κ − tκ ≥ (1 − ε)κ2 honest parties in C∗ send a
share, and thus every honest party receives at least that many valid shares. This way, all honest
parties can reconstruct and output the long message m.

Lemma 5. ΠsprBA satisfies consistency.

Proof. If BA(1) outputs 0, all honest parties output ⊥. If BA(1) outputs 1, then by Lemma 3,
there must exist an honest party Pi ∈ C1

1 that input 1 to BA(1). First, this party Pi distributes
its long messages mi. Second, by Step 2 of the protocol, it must be the case that this honest
party has received z = zi. Using the consistency property of BA(κ), all honest parties must
have delivered z = zi. Thus, every honest party Pj ∈ C∗ obtains a valid tuple (sj , wj) from Pi
and can verify its correctness using the accumulator value z and forward it. Hence, in Step 4,
we can use the same argumentation as in the previous lemma to establish that at least κ − tκ
honest parties in C∗ send a share and every honest party can subsequently reconstruct mi. Note
that no other value can be reconstructed, because security of the accumulator and consistency
of BA(κ) ensures that all honest parties share the same long message, and dishonest parties
cannot compute valid pairs of share-witness different from those received by honest parties.

Communication complexity. The most expensive steps in the protocol are the run of BA(κ)
in Step 1 (which itself consists of κ parallel runs of BA(1)) and the distribution of the long
blocks in Step 2. The costs for Step 1 are bounded as O(κ3 · n) since every run of BA(1) costs
O(κ2 · n). The costs for Step 2 are bounded by O(l · n). Overall, we obtain a complexity of
O(n · l + κ3 · n).

5 Adaptively Secure Asynchronous Communication-Efficient Protocol for
Long Messages

We briefly recall the asynchronous adaptively-secure BA protocol of Blum et al. [3]. As for the
previous protocol, the step of each round i is performed by a randomly chosen committee Ci,
who reveals itself only when it is their turn to speak in the protocol. Again, we assume that
parties are endowed (via some trusted setup) with efficient routines ComProve and ComVer that
allow to prove and verify committee membership. The remaining accumulator setup is as for
ΠsprABA and we also reuse the routines Encode and Rec introduced in the previous section.

Again, we run two versions of the protocol, the first is for κ-valued messages and denoted as
ABA(κ), the other for binary-valued messages, and denoted as ABA(1). Since the protocol in [3]
is binary, we simply run it κ many times in parallel to agree on a κ bit message. As before, we
choose the committees with expected size cκ.

Protocol ΠsprABA

Let tκ = b(1 + ε) · κ
3
c. The protocol is described from the point of view of party Pi who holds an l-bit input

message mi.

1: Compute Di := (s1, . . . , sκ) = Encode(mi), the accumulation value zi = Eval(ak,Di). Input zi to
ABA(κ).

2: When the above BA outputs z, if z = zi and Pi ∈ C1, input 1 to ABA(1). Moreover, distribute the long
block as follows. Compute a witness wj = CreateWit(ak, z, sj) for each share sj in Step 1 and send the
tuple (sj , wj) to each party Pk ∈ Bj . Otherwise, if z 6= zi and Pi ∈ C1, input 0 to ABA(1).

3: If the output of the above BA is 0, output ⊥ and abort. Otherwise, if Pi ∈ C∗ ∩ Bj : For the set of
tuples {(sj , wj)} received in the previous step from parties in C1, if there exists an (sj , wj) such that
Verify(ak, z, wj , sj) = 1, then send (sj , wj) to all parties.

4: Let Si := {(sj , wj)} be the set of messages received from the previous step from parties in C∗. If there
are messages from parties belonging to at least 2κ

3
· (1− ε) different buckets, output the reconstructed

value Reconstruct(Si, ak, z, tκ). Otherwise, output ⊥.

We follow a very similar strategy as in the previous section. In our main theorem statement,
we include the cryptographic setup required to run the protocol of Blum et al. [3] without going

in to much details as to how they work. Roughly speaking, their protocol starts from an initial
setup provided by a trusted dealer. This initial setup allows parties to run a fixed number of
multi-party computations (MPCs) and BAs with subquadratic communication complexity. The
parties use these cheap (in terms of communication) MPCs to emulate the trusted dealer and
refresh the setup for future cheap MPCs and BAs for any number of times. To run MPC with
these complexities, their protocol requires strong setup assumptions including threshold fully
homomorphic encryption, non-interactive zero knowledge, and anonymous public key encryption
(where a ciphertext can not be linked to a public key without knowing the secret key).

Theorem 4. Let 0 < ε < 1/4. Assuming a setup for non-interactive zero-knowledge, threshold
fully homomorphic encryption, and anonymous public key encryptions, ΠsprABA is an asyn-
chronous Byzantine agreement protocol secure up to t ≤ (1− 3ε)n/3 adaptive corruptions. The
communication complexity is O(nl + κ6n) for l-bit values.

The proof of the following lemma is almost identical to that of Lemma 3.

Lemma 6. If all honest parties in C1 input b to ABA(1) then the output of ABA(1) is b.

Lemma 7. ΠsprABA satisfies validity if t ≤ (1− 3ε)n/3 parties are corrupted.

Proof. If all honest parties have the same input message mi = m, then all honest parties input
the same accumulated value z = zi to ABA(κ) in Step 1. By validity of ABA(κ), all honest
parties receive z as output. Hence, all honest parties in C1 input 1 to ABA(1) in Step 2 and
distribute the shares of m. By Lemma 6, they receive 1 as output from ABA(1).

Each honest party Pj ∈ C∗ ∩ Bj receives a valid share sij from each honest party Pi ∈ C1,
and forwards one of these shares to all parties. Parties are added to C∗ uniformly at random
via ComProve with probability cκ/n. Denote E0 the event that fewer than cκ parties are in C∗.

Whenever E0 does not occur, we can map the process of adding parties to C∗ (via ComProve)
to the process of throwing cκ or more balls at κ buckets. By Corollary 3, we have that Pr[E0] is
negligible. Moreover, the optimal strategy for the adversary to minimize the number of buckets
in which an honest party sends a share is clearly to corrupt the buckets that contain smaller
amount of parties from C∗.

Let us denote E1 the event that cκ
3 (1−2ε) or more parties in C∗ are corrupted. By Corollary 2,

Pr[E1] is negligible. Therefore, by a union bound, Pr[E0 ∪ E1] is also negligible.
In the following, we condition on the event ¬E0 ∧ ¬E1 (which by the above occurs with

overwhelming probability).
By Corollary 4, and choosing τ = 1/3, there is a constant c1/3 such that

∑c1/3
i=1 i · bi ≥

(1−ε) · (1/3− oκ(1)) · cκ ≥ cκ
3 (1−2ε), where the last inequality holds as long as oκ(1) ≤ ε

3(1−ε) .
Therefore, the adversary can not corrupt all committee members in the buckets that contain up
to c1/3 many committee members. These amounts of buckets correspond to at most b(1+ε)κ/3c
buckets, by Corollary 4.

Putting things together, at Step 4, at least κ − tκ ≥ (1 − ε)2κ3 honest parties in C∗ send a
share, and thus every honest party receives at least that many valid shares. This way, all honest
parties can reconstruct and output the long message m.

The proof of the following lemma is identical as for the synchronous case.

Lemma 8. ΠsprABA satisfies consistency.

Communication complexity. The most expensive steps in the protocol are the run of BA(κ)
in Step 1 (which itself consists of κ parallel runs of BA(1)) and the distribution of the long
blocks in Step 2. The costs for Step 1 are bounded as O(κ6 · n) since every run of BA(1) costs
O(κ5 · n). The costs for Step 2 are bounded by O(l · n). Overall, we obtain a complexity of
O(n · l + κ6 · n).

Bibliography

[1] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren,
and Elaine Shi. Communication complexity of byzantine agreement, revisited. In 38th
ACM PODC, pages 317–326. ACM, 2019.

[2] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In International conference on the theory and applications of cryp-
tographic techniques, pages 480–494. Springer, 1997.

[3] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. In TCC 2020, Part I, LNCS, pages 353–380.
Springer, Heidelberg, March 2020.

[4] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In
IEEE Symposium on Reliable Distributed Systems (SRDS’05), pages 191–201. IEEE, 2005.

[5] T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Sublinear-round byzantine agreement
under corrupt majority. LNCS, pages 246–265. Springer, Heidelberg, 2020.

[6] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. ALGORAND AGREE-
MENT: Super fast and partition resilient byzantine agreement. Cryptology ePrint Archive,
Report 2018/377, 2018. https://eprint.iacr.org/2018/377.

[7] Wutichai Chongchitmate and Rafail Ostrovsky. Information-theoretic broadcast with dis-
honest majority for long messages. In TCC 2018, Part I, LNCS, pages 370–388. Springer,
Heidelberg, March 2018.

[8] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agree-
ment. In Robert L. Probert, Michael J. Fischer, and Nicola Santoro, editors, 1st ACM
PODC, pages 132–140. ACM, August 1982.

[9] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued Byzantine agreement. In
Eric Ruppert and Dahlia Malkhi, editors, 25th ACM PODC, pages 163–168. ACM, July
2006.

[10] Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication and
round complexity. In George Giakkoupis, editor, 35th ACM PODC, pages 371–380. ACM,
July 2016.

[11] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling byzantine agreements for cryptocurrencies. Cryptology ePrint Archive,
Report 2017/454, 2017. http://eprint.iacr.org/2017/454.

[12] Martin Hirt and Pavel Raykov. Multi-valued byzantine broadcast: The t < n case. In Palash
Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
448–465. Springer, Heidelberg, December 2014.

[13] Valerie King and Jared Saia. From almost everywhere to everywhere. In DISC, 2009.

[14] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. In Andréa W. Richa and Rachid Guerraoui, editors, 29th ACM
PODC, pages 420–429. ACM, July 2010.

[15] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In 17th
SODA, pages 990–999. ACM-SIAM, January 2006.

[16] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with byzantine fail-
ures. In In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Princi-
ples of distributed computing.

[17] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved
extension protocols for byzantine broadcast and agreement. In DISC, 2020.

[18] Lan Nguyen. Accumulators from bilinear pairings and applications. In Cryptographers’
track at the RSA conference, pages 275–292. Springer, 2005.

https://eprint.iacr.org/2018/377
http://eprint.iacr.org/2017/454

[19] Russell Turpin and Brian A. Coan. Extending binary byzantine agreement to multivalued
byzantine agreement. Inf. Process. Lett., 18(2):73–76, 1984.

	Efficient Adaptively-Secure Byzantine Agreement for Long Messages
	Introduction
	Simple Adaptively Secure BA Protocols for Long Messages
	Related Work

	Model and Preliminaries
	Definitions
	Primitives
	Concentration Bounds I

	Balls and Buckets Analysis for Throwing ck Balls in k Buckets
	Adaptively Secure Synchronous Communication-Efficient Protocol for Long Messages
	Protocol Description

	Adaptively Secure Asynchronous Communication-Efficient Protocol for Long Messages

