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Abstract

We consider a setting of two-party computation between a server and a client where every message
received by the server is encrypted by a fully homomorphic encryption (FHE) scheme and its decryption
key is held by the client only. Akavia and Vald (IACR ePrint Archive, 2021) revisited the privacy problem
in such protocols against malicious servers and revealed (as opposed to a naive expectation) that under
certain condition, a malicious server can recover the client’s input even if the underlying FHE scheme is
IND-CPA secure. They also gave some sufficient conditions for the FHE scheme to ensure the privacy
against malicious servers. However, their argument did not consider the possibility that a query from a
malicious server to a client involves an invalid ciphertext. In this paper, we show, by giving a concrete
example, that if such an invalid query is just rejected by the client, then the sufficient conditions in
Akavia and Vald’s result do not in general ensure the privacy against malicious servers. We also propose
another option to handle an invalid query in a way that the client returns a random ciphertext (without
explicitly rejecting the query), and show that such a protocol is private against malicious servers if the
underlying FHE scheme is IND-CPA secure, sanitizable (in the sense of Ducas and Stehlé, EUROCRYPT
2016), and circular secure.

1 Introduction

Secure multiparty computation (MPC) is currently one of the most active research areas in cryptography.
In MPC, a number of parties have their individual inputs, and by executing a protocol, each party will
obtain the own desired output while keeping the own input secret against other parties. (We note that some
party may have empty input and may obtain no individual output.) Among various settings and underlying
cryptographic tools for MPC, in this paper we focus on secure two-party computation based on homomorphic
encryption (HE) in a so-called client-server model. In the model, a party called client is supposed to send
encrypted input as well as the underlying public key to the other party called server, where the public key
and the corresponding secret key are generated by the client. Then the server performs some computation
using the homomorphic functionality of the encryption scheme and may interact with the client. Finally, the
server sends resulting ciphertexts to the client, and the client decrypts them to obtain the output.

In MPC, a semi-honest adversary is supposed to completely follow the protocol specification, while a
malicious adversary may deviate from the protocol specification in an arbitrary manner. In the study of
HE-based MPC on the client-server model, usually much attention is paid to the security of a protocol
against the (either semi-honest or malicious) client who has the secret key, while less attention seems to be
paid to the security against the server. The reason is that in the client-server model every message received
by the server is encrypted by the client’s key; in such a case, it is naively expected that the IND-CPA
security of the underlying HE scheme ensures at least privacy of the client’s input against the server (though
it seems not easy to ensure the correctness of the output against malicious servers). The naive expectation
is basically correct when the server has no intermediate interaction with the client. However, protocols in
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the client-server model may require intermediate interaction between the server and the client in order to,
e.g., realize advanced functionality beyond the power of the underlying additively-HE scheme itself [7] or
improve the efficiency of a protocol based on fully homomorphic encryption (FHE) [8]. A recent work by
Akavia and Vald [2] revisited this naive expectation for privacy of HE-based protocols against servers with
interaction, and revealed that this expectation may fail typically for the case of malicious servers and even
for some significantly restricted situation with semi-honest servers. They also gave some sufficient conditions
for such protocols to have privacy against (semi-honest or malicious) servers, one of which is based on the
notion of sanitization for ciphertexts of FHE schemes [4] (that is, an operation to make the original FHE
scheme circuit-private).

In more detail, the work in [2] focused on the situation that a server can make a query of the form (c, f)
(or its multi-input and/or multi-output version) to the client where c is a ciphertext and f is a function on
the plaintext space, and the server then obtains a ciphertext for plaintext f(m) as the client’s reply where
m is the decryption result of c. Such a protocol is called an (E ,G)-aided protocol in [2]. Then in [2], a
concrete example of an (E ,G)-aided protocol was given in which the reply to a kind of query of the form
above enables the server to fully recover the client’s input. Moreover, as a part of the affirmative results in
[2], the authors introduced an enhanced variant of IND-CPA security called funcCPA-security, and showed
that an (E ,G)-aided protocol ensures privacy against malicious servers if the underlying HE scheme satisfies
funcCPA-security. They also showed that funcCPA-secure schemes can be constructed based on sanitizable
FHE schemes in [4].

However, here we point out that the formulation of funcCPA-security as well as the proof of privacy
based on funcCPA-security in [2] did not consider the possibility that a query made by the server involves an
invalid ciphertext. As a malicious server may deviate from the protocol specification in an arbitrary manner,
such a possibility of invalid queries must be taken into account when the privacy against malicious servers
is discussed. The aim of the present paper is to investigate what happens for the results in [2] when invalid
queries are considered.

1.1 Our Contributions

In this paper, we first consider a seemingly natural option of handling an invalid query (a query involving
invalid ciphertext) in an (E ,G)-aided protocol; the client rejects an invalid query and then even aborts the
protocol after such an invalid query (for prohibiting a malicious server from obtaining further information
during the protocol). For this option, we show (in Section 4) that an (E ,G)-aided protocol is not always
private against malicious servers even if the underlying HE scheme is funcCPA-secure in the sense of [2]. In
fact, the “sanitized” version of the FHE scheme FHEW [3] proposed in [4] is funcCPA-secure as shown in
[2], but our malicious server in Section 4 violates the privacy of an (E ,G)-aided protocol that rejects invalid
queries. Roughly speaking, this is because a certain “shift” of a ciphertext for plaintext 0 in FHEW is still
a valid ciphertext (for plaintext 1), while the same shift of a ciphertext for plaintext 1 becomes an invalid
ciphertext, therefore those two cases can be distinguished by querying the shifted ciphertext to the client
and then observing whether the query is rejected or not.

In more detail, recall that an adversary for funcCPA-security defined in [2] is allowed to make some query
corresponding to a query in an (E ,G)-aided protocol. First we extend funcCPA-security proposed in [2] in
two ways by clarifying how a query involving an invalid ciphertext is handled. In the first option, which
we also call funcCPA-security, an invalid query is completely prohibited; more precisely, if an invalid query
is made by an adversary then the adversary is immediately regarded as losing the security game. In the
second option, which we call funcCPA†-security, if an invalid query is made by an adversary then the query
is rejected and the adversary loses the access to the oracle in the sequel. Then we prove (in Theorem 1)
that funcCPA†-security implies funcCPA-security, and (in Theorem 3) that any (E ,G)-aided protocol based
on a funcCPA†-secure HE scheme is private against malicious servers. On the other hand, funcCPA-security
in the sense of [2] immediately implies funcCPA-security in our sense, but the funcCPA-security does not in
general imply the privacy of the protocol as the aforementioned counterexample in Section 4 shows.

We note that an essential reason behind the aforementioned counterexample and the non-implication
of privacy from funcCPA-security is that in an HE scheme, especially for noise-based FHE schemes such
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as FHEW, it is not always possible to efficiently distinguish invalid ciphertexts from valid ciphertexts by
using public information only. In fact, if invalid ciphertexts can be efficiently distinguished by using public
information, then funcCPA-security implies funcCPA†-security (see Theorem 2) and hence implies privacy of
the protocol. Therefore, an important problem is how to ensure the privacy when invalid ciphertexts cannot
be efficiently distinguished. To resolve the problem in this case, we introduce another option of handling
an invalid query in an (E ,G)-aided protocol; when the query is invalid, instead of rejecting the query, the
client returns a random ciphertext for plaintext 0 to the server (and does not abort the protocol). We call
this option silent abort. Intuitively, the silent abort is expected to prohibit, owing to the security of the
underlying HE scheme, a malicious server from obtaining information using replies to invalid queries.

Towards proving privacy for (E ,G)-aided protocols with silent abort based on FHE schemes (as the proof
of privacy in [2] based on FHE), an obstacle is that handing invalid ciphertexts directly is beyond the
functionality of FHE schemes (where the behavior of homomorphic evaluation is guaranteed only for valid
ciphertexts). To resolve the issue, we utilize the idea of bootstrapping in FHE schemes [5]. Roughly speaking,
given a valid or an invalid ciphertext c as a query, a simulator encrypts each bit of c to obtain a sequence
of ciphertexts c̃1, . . . , c̃`. Then the simulator applies to c̃1, . . . , c̃` homomorphic evaluation corresponding to
a circuit that distinguishes invalid ciphertexts (by using a secret key), which results in a ciphertext whose
plaintext represents whether c is invalid or not. Such an argument enables us to prove the privacy for
(E ,G)-aided protocols with silent abort based on sanitized FHE schemes, by assuming (as in the circular
security) that a public key of the FHE scheme involves encryption of a secret key. More precisely, first we
introduce another variant of funcCPA-security corresponding to the case of silent abort, called funcCPA††-
security, and show (in Theorem 5) that funcCPA††-security implies privacy of (E ,G)-aided protocols with
silent abort. Then we prove (in Theorem 6) that a sanitized FHE scheme under the assumption above is
funcCPA††-secure, hence implying the privacy. It is an open problem to extend the last result above to the
case of FHE schemes without circular security, and also to obtain some similar affirmative result in the case
of less powerful HE schemes such as additive HE schemes [6] and two-level HE schemes [1].

2 Preliminaries

We write a
$← S to mean that an element a is chosen from a set S uniformly at random. We let “PPT” stand

for “probabilistic polynomial-time”, and consider (unless otherwise noticed) the notion of “polynomial-time”
with respect to a security parameter λ. We say that a non-negative function f(λ) in a security parameter λ
is negligible if for each integer k > 0, there exists an integer N > 0 satisfying that for any λ ≥ N we have
f(λ) ≤ 1/λk. We let {0, 1}∗ =

⋃
n≥0{0, 1}n. For two probability distributions X,Y over a finite set S, their

statistical distance ∆(X,Y ) is defined by

∆(X,Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| .

2.1 Public Key Encryption

We clarify the notion of public key encryption (PKE) adopted in this paper. In order to concern later whether
or not the set of ciphertexts is efficiently recognizable, here we suppose that any ciphertext is encoded as a
bit sequence.

Definition 1 (Public Key Encryption). We say that a tuple of PPT algorithms Gen, Enc and a deterministic
(i.e., non-probabilistic) polynomial-time algorithm Dec is a public key encryption (PKE ) scheme if it follows
the syntax below and satisfies the correctness condition below, where PT is the plaintext space (implicitly
depending on the security parameter, the public key, and the secret key), CTm for m ∈ PT are disjoint
subsets of {0, 1}∗ (implicitly depending on the security parameter, the public key, and the secret key),
CT =

⋃
m∈PT CTm is the ciphertext space, and negl is some negligible function:

• The key generation algorithm Gen is given a security parameter λ as input and outputs a pair of a
public key pk and a secret key sk; (pk, sk)← Gen(1λ).
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• The encryption algorithm Enc is given a public key pk and a plaintext m ∈ PT as input and outputs
an encryption result c; c← Enc(pk,m).

• The decryption algorithm Dec is given a secret key sk and c ∈ {0, 1}∗ as input and outputs a decryption
result m′; m′ ← Dec(sk, c). This Dec is supposed to satisfy that Dec(sk, c) = m for any (pk, sk) ←
Gen(1λ), m ∈ PT, and c ∈ CTm.

• (Correctness for Enc) With probability at least 1− negl(λ) for the choice of (pk, sk)← Gen(1λ) the
following holds: For any m ∈ PT, we have

Pr[Enc(pk,m) ∈ CTm] ≥ 1− negl(λ) ,

where the latter probability is taken over the internal randomness for Enc.

We say that a PKE scheme as above is

• with privately recognizable ciphertexts if there exists a deterministic polynomial-time algorithm R
satisfying that for any (pk, sk) ← Gen(1λ) and c ∈ {0, 1}∗, we have R(pk, sk, c) = 1 if c ∈ CT and
R(pk, sk, c) = 0 if c 6∈ CT;

• with publicly recognizable ciphertexts if there exists a deterministic polynomial-time algorithm R satis-
fying that for any (pk, sk)← Gen(1λ) and c ∈ {0, 1}∗, we have R(pk, c) = 1 if c ∈ CT and R(pk, c) = 0
if c 6∈ CT.

For simplifying our argument, we suppose for any PKE scheme that every element of PT has the same
bit length.

2.2 Homomorphic Encryption

We clarify the notion of homomorphic encryption (HE) adopted in this paper, where the plaintext space is
fixed to be {0, 1} for simplifying the argument.

Definition 2 (Homomorphic Encryption). Let C = (Cλ)λ≥1 be a family of sets of circuits where, for each
circuit in each set Cλ, its input is a bit sequence and its output is a single bit. We say that (Gen,Enc,Dec,Eval)
is a C-homomorphic encryption (C-HE ) scheme (with plaintext space {0, 1}) if (Gen,Enc,Dec) is a PKE
scheme with PT = {0, 1}, Eval is a PPT algorithm, and it also follows the syntax below and satisfies the
correctness and compactness conditions below, where negl is some negligible function and ρ is some positive
polynomial:

• Let C ∈ Cλ and let ` be the input length of the circuit C. Then the evaluation algorithm Eval is given
a public key pk, the circuit C, and c1, . . . , c` ∈ {0, 1}∗ as input and outputs an evaluation result c′;
c′ ← Eval(pk, C, c1, . . . , c`).

• (Correctness for Eval) With probability at least 1− negl(λ) for the choice of (pk, sk)← Gen(1λ) the
following holds. Let C ∈ Cλ and let ` be the input length of the circuit C. Then for any mi ∈ {0, 1}
(i = 1, . . . , `) and ci ∈ CTmi (i = 1, . . . , `), we have

Pr[Eval(pk, C, c1, . . . , c`) ∈ CTC(m1,...,m`)] ≥ 1− negl(λ) ,

where the latter probability is taken over the internal randomness for Eval.

• (Compactness) Any ciphertext in CT has bit length at most ρ(λ).

In the context above, a fully homomorphic encryption (FHE) scheme may mean a C-HE scheme with the
set Cλ containing any practically feasible circuits. But here we do not formalize the meaning of “practically
feasible” circuits, as our result below is formulated without using the notion of FHE schemes.
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2.3 Sanitization and Sanitized HE Schemes

The following notion was introduced in [4] (with only slight differences).

Definition 3 (Sanitization Algorithm). Let (Gen,Enc,Dec) be a PKE scheme. We say that a PPT algorithm
Sanitize is a (statistical) sanitization algorithm if the following conditions hold, where negl is some negligible
function:

• (Message-Preserving) With probability at least 1− negl(λ) for the choice of (pk, sk)← Gen(1λ) the
following holds: For any m ∈ PT and c ∈ CTm, we have

Pr[Sanitize(pk, c) ∈ CTm] ≥ 1− negl(λ) .

• (Sanitizing) With probability at least 1−2−λ for the choice of (pk, sk)← Gen(1λ) the following holds:
For any m ∈ PT and c1, c2 ∈ CTm, we have

∆(Sanitize(pk, c1),Sanitize(pk, c2)) ≤ 2−λ .

Based on the notion of sanitization, a “sanitized” version of HE schemes was introduced in [2]. We
explain the construction as follows.

Definition 4 (Sanitized HE Scheme). Let E = (Gen,Enc,Dec,Eval) be a C-HE scheme having a sanitization
algorithm Sanitize. Then we define the sanitized scheme E santz = (Gen,Encsantz,Dec,Evalsantz) as follows,
where Gen and Dec are the same as E :

• Encsantz(pk,m) outputs Sanitize(pk,Enc(pk,m)).

• Evalsantz(pk, C, c1, . . . , c`) computes c′i ← Sanitize(pk, ci) for i = 1, . . . , ` and then outputs

Sanitize(pk,Eval(pk, C, c′1, . . . , c
′
`)) .

It is mentioned in [2] that if E is a C-HE scheme, then E santz is also a C-HE scheme.
We recall the following example of sanitization algorithms proposed in [4].

Example 1. We consider a sanitization algorithm proposed in Section 4.3 of [4], which is applied to an FHE
scheme FHEW given in [3]. Let q > 0 be an integer modulus, and let n be a parameter for dimension. For
a secret key ~s ∈ (Z/qZ)n, a plaintext µ ∈ {0, 1}, and some parameters η and t, we define

LWEt:q~s (µ, η) = {(~a, 〈~a,~s〉+ µ · bq/tc+ e) ∈ (Z/qZ)n+1 : |e| < ηq} ,

where ~a ∈ (Z/qZ)n and an element of Z/qZ is identified with an integer in interval [−q/2, q/2). The
ciphertext space for plaintext µ is set to CTµ = LWE4:q

~s (µ, 1/16); see [3] and Section 4.3 of [4] for concrete
choices of parameters n and q. An outline of the homomorphic operation is as follows. Given two ciphertexts
c1 ∈ CTµ1

and c2 ∈ CTµ2
, the computation part of the operation yields an element of LWE2:q

~s (µ, 1/4) with
µ = NAND(µ1, µ2), and then the refreshing part converts it back into a ciphertext in CTµ:

NAND : LWE4:q
~s (µ1, 1/16)× LWE4:q

~s (µ2, 1/16)

→ LWE2:q
~s (µ, 1/4)

Refresh→ LWE4:q
~s (µ, 1/16) .

On the other hand, a “washing cycle” for elements of LWE2:q
~s (µ, 1/4) was introduced in [4]. An outline is as

follows (see Section 4.3 of [4] for the details). It begins with a procedure called homomorphic accumulator

to obtain an element of LWE2:Q
~z (µ, η) for another key ~z and certain parameters Q and η. After this, a

rerandomization is performed, by adding to it a random sum of ciphertexts for plaintext 0 and a random
noise term. This rerandomization realizes that given two input distributions, the two output distributions
have statistical distance that is reduced by a certain factor in comparison to the input distributions. Then
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the element in LWE2:Q
~z (µ, η) is converted back into an element of LWE2:q

~s (µ, 1/4) by a successive application
of key switching and modulus switching. This is the process of a single washing cycle:

Wash : LWE2:q
~s (µ, 1/4)→ LWE2:Q

~z (µ, η)→ LWE2:q
~s (µ, 1/4) .

Based on this, the sanitization algorithm for ciphertexts in CTµ is constructed by inserting a sufficient

number of washing cycles into the cycle LWE4:q
~s (µ, 1/16) → LWE2:q

~s (µ, 1/4) → LWE4:q
~s (µ1, 1/16) where the

first map is given by (~a, b) 7→ (2~a, 2b) and the second map is the refreshing procedure used in the construction
of NAND:

Sanitize : LWE4:q
~s (µ, 1/16)

×2→ LWE2:q
~s (µ, 1/4)

Wash→ LWE2:q
~s (µ, 1/4)

Wash→ · · ·

· · · Wash→ LWE2:q
~s (µ, 1/4)

Refresh→ LWE4:q
~s (µ, 1/16) .

2.4 Two-Party Protocols

In this paper, we consider two-party protocols π between a client Clnt and a server Srv where the server has
no output, and focus on privacy against the server only. Given input x for the client Clnt and input y for a
possibly malicious server Srv∗, let viewπSrv∗(x, y) denote the random variable of the view (consisting of input,
randomness, and received messages during the protocol) for Srv∗ during the protocol π executed with those
inputs. Then the privacy of π against possibly malicious servers is defined as follows:

Definition 5 (Privacy against Malicious Servers). In the setting above, we say that π is private against
malicious servers if for any PPT (possibly malicious) server Srv∗, there exists a PPT simulator S∗ satisfying
the following: for any PPT non-uniform distinguisher D, there exists a negligible function negl satisfying
that ∣∣Pr[D(viewπSrv∗(x, y)) = 1]− Pr[D(S∗(1λ, y)) = 1]

∣∣ ≤ negl(λ)

for any inputs x and y.

3 Function-Chosen-Plaintext Attack Security, Revisited

In [2], a strengthened variant of CPA security for PKE schemes, called security against function-chosen-
plaintext attack (funcCPA-security, in short), was introduced. Let E = (Gen,Enc,Dec) be a PKE scheme,
and let G be a family of functions whose input is a number of plaintexts and whose output is a single
plaintext. (We note that here we slightly extend the original definition in [2] to allow a multi-input function,
though the essence of the definition is not changed.) In order to define the security game, the following
decrypt-function-encrypt oracle Encpk(G(Decsk(·))) was introduced:

• A query to the oracle Encpk(G(Decsk(·))) consists of a function g ∈ G and ciphertexts c1, . . . , c` ∈ CT,
where ` is the number of input plaintexts for g. Then the oracle computes mi ← Dec(sk, ci) for
i = 1, . . . , `, m′ ← g(m1, . . . ,m`), and c′ ← Enc(pk,m′), and return c′.

Roughly speaking, E is defined to be funcCPA-secure with respect to G if E is CPA-secure even when the
adversary is given access to the oracle above.

Regarding the definition of funcCPA-security in [2], here we emphasize that the definition in [2] does not
clearly state what happens if an invalid ciphertext is queried to the oracle. By focusing on this point, we
introduce the following two variants of funcCPA-security with seemingly natural treatment of invalid queries.
Intuitively, the first option is that the adversary is simply not allowed to make a query with invalid ciphertext
(the adversary loses the security game immediately when such a query is made). The second option is that
when a query with invalid ciphertext is made, the oracle aborts and becomes not available in the sequel.
Concretely, our security experiment EXPfCPA

A,E,G(λ) with an adversary A is defined as follows:

1. The challenger generates a key pair (pk, sk)← Gen(1λ) and sets abort = no.
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2. The adversary A is given pk and access to the oracle Encpk(G(Decsk(·))). Here, when at least one
ciphertext queried to the oracle is not in CT,

• (Case 1) the challenger sets abort = yes and the oracle returns ⊥;

• (Case 2) the oracle returns ⊥, and after this, A is not allowed to access to the oracle.

3. A chooses challenge plaintexts m0,m1 ∈ PT and sends them to the challenger.

4. The challenger chooses a challenge bit b∗
$← {0, 1}, generates a challenge ciphertext c∗ ← Enc(pk,mb∗),

and sends c∗ to A.

5. A still has access to the oracle Encpk(G(Decsk(·))) (unless the oracle access is lost as described above),
and finally outputs a bit b. The output of the experiment is defined to be 1 if b = b∗ and abort = no,
and 0 otherwise.

Definition 6 (funcCPA-security). In the setting above, we say that E is funcCPA-secure (respectively,
funcCPA†-secure) with respect to G if for any PPT non-uniform adversary A, there exists a negligible function
negl satisfying

Pr[EXPfCPA
A,E,G(λ) = 1] ≤ 1

2
+ negl(λ) ,

where Case 1 (respectively, Case 2) for the behavior with invalid query is adopted.

We note that the funcCPA-security and funcCPA†-security become the same as the CPA-security against
non-uniform adversaries when G = ∅.

From now on, we let EXPfCPA†
A,E,G(λ) denote the experiment above with Case 2, while EXPfCPA

A,E,G(λ) denotes
the experiment with Case 1. We have the following relation for the two versions of security (the converse
does not hold in general, as discussed later).

Theorem 1. In the setting above, if E is funcCPA†-secure with respect to G, then E is funcCPA-secure with
respect to G.

Roughly speaking, this theorem holds because if an adversary wins the security game for funcCPA, then
an invalid query is not made during the game, in which case the games for funcCPA and funcCPA† are
equivalent. A formal proof is given below.

Proof of Theorem 1. Let A be any PPT (non-uniform) adversary for funcCPA experiment. We define an
adversary A† for funcCPA† experiment as follows: A† internally executes A. Here, when A generates
challenge plaintexts, A† also use them as challenge plaintexts. When A produces the final output bit,
A† also use it as the output bit. Moreover, when A makes an oracle query (in funcCPA experiment), A†
forwards the query to the oracle (in funcCPA† experiment) and obtains the reply. If this reply is not ⊥, then
A† forwards it to A. On the other hand, if this reply is ⊥, then A† stops the execution of A, sends any two
challenge plaintexts to the challenger if A† has not done it, and then outputs a random bit b.

By definition, A† (as well as A) is PPT and we have

Pr[EXPfCPA†
A†,E,G(λ) = 1] ≥ Pr[EXPfCPA

A,E,G(λ) = 1] .

As E is funcCPA†-secure, there exists a negligible function negl(λ) satisfying

Pr[EXPfCPA
A,E,G(λ) = 1] ≤ Pr[EXPfCPA†

A†,E,G(λ) = 1] ≤ 1

2
+ negl(λ) .

This implies that E is funcCPA-secure, as desired.

The converse of Theorem 1 holds under an additional condition:
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Theorem 2. In the setting above, if E is funcCPA-secure with respect to G and is with publicly recognizable
ciphertexts, then E is funcCPA†-secure with respect to G.

Roughly speaking, this theorem holds because if E is with publicly recognizable ciphertexts, then an
adversary can avoid making an invalid query to the oracle, in which case the games for funcCPA and funcCPA†

are equivalent. A formal proof is given below.

Proof of Theorem 2. Let R be the algorithm implied by the “publicly recognizable ciphertexts” property
for E . Let A† be any PPT (non-uniform) adversary for funcCPA† experiment. We define an adversary A
for funcCPA experiment as follows: A internally executes A†, where the challenge plaintexts and the output
bits are common for A and A†. Here, when A† makes a query (g, c1, . . . , c`) to the oracle (in funcCPA†

experiment), A first checks if all ci are in CT by using the algorithm R(pk, ·). If all ci are in CT, then A
forwards the query to the oracle in funcCPA experiment, and sends the reply back to A†. On the other hand,
if at least one ci is not in CT, then A sends ⊥ back to A† and in the sequel, rejects any oracle query from
A†.

By definition, A (as well as A†) is PPT and we have

Pr[EXPfCPA
A,E,G(λ) = 1] = Pr[EXPfCPA†

A†,E,G(λ) = 1] .

As E is funcCPA-secure, there exists a negligible function negl(λ) satisfying

Pr[EXPfCPA
A,E,G(λ) = 1] = Pr[EXPfCPA†

A†,E,G(λ) = 1] ≤ 1

2
+ negl(λ) .

This implies that E is funcCPA†-secure, as desired.

3.1 Relation to Two-Party Protocols with Evaluation Queries

Let E = (Gen,Enc,Dec) and G be as above. We consider the class of two-party protocols between a client
Clnt and a server Srv as follows, called (E ,G)-aided protocols. Here we emphasize that the definition below is
almost the same as the one in [2], but in [2], it was not clearly stated how the client should respond when a
server’s query involves an invalid ciphertext, which should be clarified as now we are considering malicious
servers deviating from the protocol specification. Below we adopt a seemingly natural way of handling such
invalid queries, that is to abort the protocol once the client receives an invalid query (to do this efficiently,
we assume that the PKE scheme is with privately recognizable ciphertexts in the sense of Definition 1). We
also note that the definition in [2] considered only such protocols without server’s input. A protocol in this
class is described as follows:

1. (Client’s input outsourcing phase) Given client’s input ~x = (x1, . . . , xη(λ)), the client generates

(pk, sk)← Gen(1λ) and ei ← Enc(pk, xi) for i = 1, . . . , η(λ), and sends pk and ~e = (e1, . . . , eη(λ)) to the
server. (We suppose that the number η(λ) of inputs is polynomial-time computable.)

2. (Server’s computation phase) The server may interact with the client by sending a query of the
form (g,~c), where g ∈ G is an `-input function and ~c = (c1, . . . , c`). For such a query,

• if c1, . . . , c` ∈ CT, then the client computes

Enc(pk, g(Dec(sk, c1), . . . ,Dec(sk, c`)))

and sends it back to the server;

• otherwise, the client aborts the protocol (the server receives an aborting signal).

Finally, the server sends a message to the client.

3. (Client’s output phase) The client generates an output.
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Now basically the same argument as Theorem 7 of [2] implies the following:

Theorem 3. Let π be a PPT (E ,G)-aided protocol as above. If E is with privately recognizable ciphertexts
and is funcCPA†-secure with respect to G, then π is private against malicious servers.

Proof. Let R be the algorithm in the definition of “with privately recognizable ciphertexts” property for E .
Let Srv∗ be any PPT malicious server. Then we define a simulator S∗ with server’s input y as follows:

1. S∗ generates (pk, sk)← Gen(1λ), chooses x0i
$← PT and generates e0i ← Enc(pk, x0i ) for i = 1, . . . , η(λ),

and sets ~e 0 = (e01, . . . , e
0
η(λ)).

2. S∗ internally executes Srv∗ with input y and randomness r chosen randomly by S∗, where the list msg
is initialized to be empty. Here S∗ sends the pk and ~e 0 to Srv∗ in Step 1 of the protocol π. When a
query (g,~c) is made by Srv∗ in Step 2 of π, S∗ checks if all c1, . . . , c` are in CT by using the algorithm
R(pk, sk, ·). If c1, . . . , c` ∈ CT, then S∗ computes c′ ← Enc(pk, g(Dec(sk, c1), . . . ,Dec(sk, c`))), sends c′

to Srv∗, and adds c′ to the list msg. On the other hand, if some ci is not in CT, then S∗ stops the
execution of Srv∗ and adds the aborting signal to the list msg.

3. Finally, S∗ outputs (y, r,msg) as the simulated view for Srv∗.

We note that S∗ is a PPT algorithm by the construction.
We assume for the contrary that this simulator does not satisfy the privacy condition. That is, there

exists a PPT non-uniform distinguisher D(zλ) with advice zλ satisfying that for any negligible function negl,
we have ∣∣∣Pr[D(zλ)(viewπSrv∗(~x, y)) = 1]− Pr[D(zλ)(S∗(1λ, y)) = 1]

∣∣∣ > negl(λ)

for some λ and some input pair (~x, y). In particular, by letting (~xλ, yλ) be the pair maximizing the left-hand
side above for a fixed λ, it follows that the quantity∣∣∣Pr[D(zλ)(viewπSrv∗(~x

λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]
∣∣∣ (1)

is non-negligible.
Now we define a non-uniform adversary A+ against funcCPA†-security for E with respect to G as follows.

The advice for A+ is (zλ, ~x
λ, yλ). Given a public key pk, A+ chooses I

$← {1, . . . , η(λ)} and sets the challenge

plaintexts to be m0 = xλI and m1
$← PT. Given a challenge ciphertext c∗, A+ internally executes Srv∗ with

input yλ and randomness r chosen randomly by A+, where msg is initialized to be empty. Here A+ sends

pk and ~e = (e1, . . . , eη(λ)) to Srv∗ in Step 1 of π, where x0i
$← PT and ei ← Enc(pk, x0i ) for i = 1, . . . , I − 1,

eI = c∗, and ei ← Enc(pk, xλi ) for i = I + 1, . . . , η(λ). When a query (g,~c) is made by Srv∗ in Step 2 of π,
A+ forwards it to the oracle in the funcCPA† game. If the reply is not ⊥, then A+ adds the reply to msg and
sends the reply back to Srv∗. If the reply is ⊥, then A+ stops the execution of Srv∗ and adds the aborting
signal to msg. Finally, A+ executes D(zλ)(yλ, r,msg) and outputs the output bit b of the D(zλ). We note
that A+ is PPT.

Let b∗ denote the challenge bit in the funcCPA† game. Then the distribution of interaction between
A+ and Srv∗ conditioned on index I = 1 and b∗ = 0 (respectively, I = η(λ) and b∗ = 1) is identical to the
protocol π with malicious server Srv∗ and input pair (~xλ, yλ) (respectively, interaction between the simulator
S∗ and Srv∗ with input yλ). Hence we have

Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1] = Pr[b = 1 | (I, b∗) = (1, 0)] ,

Pr[D(zλ)(S∗(1λ, yλ)) = 1] = Pr[b = 1 | (I, b∗) = (η(λ), 1)] .

On the other hand, for each 2 ≤ I0 ≤ η(λ), the distribution of interaction between A+ and Srv∗ conditioned
on I = I0 and b∗ = 0 is identical to that conditioned on I = I0 − 1 and b∗ = 1. Hence we have

Pr[b = 1 | (I, b∗) = (I0, 0)] = Pr[b = 1 | (I, b∗) = (I0 − 1, 1)] .
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Therefore, we have

Pr[b = 1 | b∗ = 0]− Pr[b = 1 | b∗ = 1]

=

η(λ)∑
I0=1

1

η(λ)
Pr[b = 1 | (I, b∗) = (I0, 0)]−

η(λ)∑
I0=1

1

η(λ)
Pr[b = 1 | (I, b∗) = (I0, 1)]

=
1

η(λ)
(Pr[b = 1 | (I, b∗) = (1, 0)]− Pr[b = 1 | (I, b∗) = (η(λ), 1)])

=
1

η(λ)

(
Pr[D(zλ)(viewπSrv∗(~x

λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]
)

and

Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]

= η(λ) (Pr[b = 1 | b∗ = 0]− Pr[b = 1 | b∗ = 1])

= η(λ) (1− Pr[b = 0 | b∗ = 0]− Pr[b = 1 | b∗ = 1])

= η(λ) (1− 2 Pr[b = 0 ∧ b∗ = 0]− 2 Pr[b = 1 ∧ b∗ = 1])

= 2η(λ)

(
1

2
− Pr[EXPfCPA†

A+,E,G(λ) = 1]

)
.

As η(λ) is polynomially bounded (because the client is PPT) and E is funcCPA†-secure, it follows that there
exists a negligible function negl1 satisfying that the quantity above is at least −negl1(λ).

We also define a PPT adversary A− for E in a way that it outputs b′ = 1− b when A+ outputs b. Then
by the argument above, we have

Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]

= η(λ) (Pr[b′ = 0 | b∗ = 0]− Pr[b′ = 0 | b∗ = 1])

= η(λ) (Pr[b′ = 0 | b∗ = 0]− (1− Pr[b′ = 1 | b∗ = 1]))

= η(λ) (2 Pr[b′ = 0 ∧ b∗ = 0] + 2 Pr[b′ = 1 ∧ b∗ = 1]− 1)

= 2η(λ)

(
Pr[EXPfCPA†

A−,E,G(λ) = 1]− 1

2

)
.

Again, as E is funcCPA†-secure, there exists a negligible function negl2 satisfying that the quantity above is
at most negl2(λ). Summarizing, we have

−negl1(λ) ≤ Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1] ≤ negl2(λ)

and the quantity in Eq.(1) is at most the negligible value max{negl1(λ), negl2(λ)}, a contradiction. Hence
the simulator S∗ satisfies the condition showing that the protocol π is private against malicious servers,
concluding the proof of Theorem 3.

In contrast to Theorem 3, the funcCPA-security of E does in general not imply privacy against malicious
servers. Intuitively, this is because funcCPA-security completely prohibits an adversary from gaining infor-
mation by using a query with invalid ciphertexts, while an (E ,G)-aided protocol as formulated above allows
the server to make an invalid query at most once, getting the information that some queried ciphertext is
invalid. We provide a concrete example in Section 4.

3.2 Relation with Sanitized Schemes

It was shown in Theorem 8 of [2] that if E is a CPA-secure C-HE scheme with a sanitization algorithm, then
the sanitized scheme E santz is funcCPA-secure with respect to any function family G satisfying that G ⊆ Cλ
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for any λ (where we identify each circuit in Cλ with the function that determines). Here we note that the
definition of funcCPA-security in [2] did not consider the possibility that an invalid ciphertext is queried to
the oracle. This point becomes not a problem by choosing an option of not allowing invalid queries, i.e.,
funcCPA-security (rather than funcCPA†-security) in our sense. Summarizing, we have the following result
in terms of our terminology:

Theorem 4. Let E be a CPA-secure C-HE scheme with a sanitization algorithm. Let G be a function family
satisfying that G ⊆ Cλ for any λ. Then the sanitized scheme E santz is funcCPA-secure with respect to G.

We note that, by combining Theorem 4 with Theorem 2, it follows that if the scheme E in Theorem 4
is moreover with publicly recognizable ciphertexts, then E santz is funcCPA†-secure. But in general, E santz in
Theorem 4 is not funcCPA†-secure, as shown in Section 4.

4 funcCPA-Security Does Not Imply Privacy

In this section, we give a concrete example showing that for an (E ,G)-aided protocol π as in Section 3.1, the
assumption for E being (with privately recognizable ciphertexts and) funcCPA-secure with respect to G does
in general not imply that π is private against malicious servers.

We consider an FHE scheme E with sanitization algorithm described in Example 1 of Section 2.3. Its
ciphertext space for plaintext µ ∈ {0, 1} is CTµ = LWE4:q

~s (µ, 1/16) as defined in Section 2.3. This scheme is
with privately recognizable ciphertexts; indeed, given an element c = (~a, b) ∈ (Z/qZ)n+1 and a candidate of
plaintext µ, it is efficient to compute (by using the secret key ~s) the term e satisfying b = 〈~a,~s〉+µ · bq/tc+e
and then check if |e| < q/16 or not.

Let the function family G be consisting of the identity function id only: G = {id}. Then by Theorem
4, the sanitized scheme E santz is funcCPA-secure with respect to G. Now we consider any (E santz,G)-aided
protocol π in which the server is allowed (by the protocol specification) to make at least one query of the
form (id, ∗). For the protocol π and the underlying scheme E santz, we consider a malicious server Srv∗ that
behaves as follows:

• Given a public key and a ciphertext c of (a part of) the client’s input x, Srv∗ computes c′ = c +
(0n, bq/4c) ∈ (Z/qZ)n+1 where 0n = (0, . . . , 0)T ∈ (Z/qZ)n and then makes a query (id, c′) to the
client.

In the situation above, if c ∈ CT0, i.e., c = (~a, b) and b = 〈~a,~s〉 + e with |e| < q/16, then c′ = (~a, b′) with
b′ = 〈~a,~s〉 + bq/4c + e, therefore c′ ∈ CT1. In this case, the client on receiving the query above does not
abort the protocol. On the other hand, if c ∈ CT1, i.e., c = (~a, b) and b = 〈~a,~s〉+ bq/4c+ e with |e| < q/16,
then c′ = (~a, b′) with b′ = 〈~a,~s〉+ 2 · bq/4c+ e. This c′ is not an element of CT = CT0∪CT1, therefore in this
case, the client on receiving the query above aborts the protocol. Hence the malicious server can distinguish
these two cases, i.e., can know (a part of) the client’s input x, by observing whether the client aborts the
protocol or not. This breaks the privacy of π against malicious servers, despite that E santz is (with privately
recognizable ciphertexts and) funcCPA-secure with respect to G.

We also note that in this example, the sanitized scheme E santz is not funcCPA†-secure (as otherwise
Theorem 3 would imply that π is private against malicious servers). This also gives a counterexample
mentioned at the end of Section 3.2.

5 Achieving Privacy against Malicious Servers

We have seen above that in the seemingly natural style of aborting the protocol when receiving an invalid
query, the privacy of an (E ,G)-aided protocol against malicious servers is not always achieved even if the
underlying scheme E is funcCPA-secure and with privately recognizable ciphertexts. In this section, we
propose a countermeasure to achieve the privacy against malicious servers with such an underlying scheme
E . The countermeasure here is to change the client’s behavior when receiving an invalid query as explained
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below. Concretely, we consider a class of protocols described as follows, which we call an (E ,G)-aided protocol
with silent abort :

1. (Client’s input outsourcing phase) Given client’s input ~x = (x1, . . . , xη(λ)), the client generates

(pk, sk)← Gen(1λ) and ei ← Enc(pk, xi) for i = 1, . . . , η(λ), and sends pk and ~e = (e1, . . . , eη(λ)) to the
server. (We suppose that the number η(λ) of inputs is polynomial-time computable.)

2. (Server’s computation phase) The server may interact with the client by sending a query of the
form (g,~c), where g ∈ G is an `-input function and ~c = (c1, . . . , c`). For such a query,

• if c1, . . . , c` ∈ CT, then the client computes

Enc(pk, g(Dec(sk, c1), . . . ,Dec(sk, c`)))

and sends it back to the server;

• otherwise, the client computes Enc(pk, 0) (where 0 denotes a fixed and polynomial-time com-
putable element of PT) and sends it back to the server.

Finally, the server sends a message to the client.

3. (Client’s output phase) The client generates an output.

In order to study the privacy of such a protocol, we introduce yet another variant of funcCPA-security
by also modifying the behavior of the security game when a query is invalid. Let E and G be as in Section
3. Our security experiment EXPfCPA††

A,E,G (λ) with an adversary A is defined as follows:

1. The challenger generates a key pair (pk, sk)← Gen(1λ).

2. The adversary A is given pk and access to the oracle Encpk(G(Decsk(·))). Here, when at least one
ciphertext queried to the oracle is not in CT, the oracle returns Enc(pk, 0) to the adversary (where 0
denotes a fixed and polynomial-time computable element of PT).

3. A chooses challenge plaintexts m0,m1 ∈ PT and sends them to the challenger.

4. The challenger chooses a challenge bit b∗
$← {0, 1}, generates a challenge ciphertext c∗ ← Enc(pk,mb∗),

and sends c∗ to A.

5. A still has access to the oracle Encpk(G(Decsk(·))), and finally outputs a bit b. The output of the
experiment is defined to be 1 if b = b∗, and 0 otherwise.

Definition 7 (funcCPA††-security). In the setting above, we say that E is funcCPA††-secure with respect to
G if for any PPT non-uniform adversary A, there exists a negligible function negl satisfying

Pr[EXPfCPA††
A,E,G (λ) = 1] ≤ 1

2
+ negl(λ) .

Then we give a result analogous to Theorem 3, as follows:

Theorem 5. Let π be a PPT (E ,G)-aided protocol with silent abort as above. If E is with privately recog-
nizable ciphertexts and is funcCPA††-secure with respect to G, then π is private against malicious servers.

Proof. Let R be the algorithm in the definition of “with privately recognizable ciphertexts” property for E .
Let Srv∗ be any PPT malicious server. Then we define a simulator S∗ with server’s input y as follows:

1. S∗ generates (pk, sk)← Gen(1λ), chooses x0i
$← PT and generates e0i ← Enc(pk, x0i ) for i = 1, . . . , η(λ),

and sets ~e 0 = (e01, . . . , e
0
η(λ)).
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2. S∗ internally executes Srv∗ with input y and randomness r chosen randomly by S∗, where the list msg
is initialized to be empty. Here S∗ sends the pk and ~e 0 to Srv∗ in Step 1 of the protocol π. When a
query (g,~c) is made by Srv∗ in Step 2 of π, S∗ checks if all c1, . . . , c` are in CT by using the algorithm
R(pk, sk, ·). If c1, . . . , c` ∈ CT, then S∗ computes c′ ← Enc(pk, g(Dec(sk, c1), . . . ,Dec(sk, c`))), sends c′

to Srv∗, and adds c′ to the list msg. On the other hand, if some ci is not in CT, then S∗ computes
c′ ← Enc(pk, 0), sends c′ to Srv∗, and adds c′ to the list msg.

3. Finally, S∗ outputs (y, r,msg) as the simulated view for Srv∗.

We note that S∗ is a PPT algorithm by the construction.
We assume for the contrary that this simulator does not satisfy the privacy condition. That is, there

exists a PPT non-uniform distinguisher D(zλ) with advice zλ satisfying that for any negligible function negl,
we have ∣∣∣Pr[D(zλ)(viewπSrv∗(~x, y)) = 1]− Pr[D(zλ)(S∗(1λ, y)) = 1]

∣∣∣ > negl(λ)

for some λ and some input pair (~x, y). In particular, by letting (~xλ, yλ) be the pair maximizing the left-hand
side above for a fixed λ, it follows that the quantity∣∣∣Pr[D(zλ)(viewπSrv∗(~x

λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]
∣∣∣ (2)

is non-negligible.
Now we define a non-uniform adversary A+ against funcCPA††-security for E with respect to G as follows.

The advice for A+ is (zλ, ~x
λ, yλ). Given a public key pk, A+ chooses I

$← {1, . . . , η(λ)} and sets the challenge

plaintexts to be m0 = xλI and m1
$← PT. Given a challenge ciphertext c∗, A+ internally executes Srv∗ with

input yλ and randomness r chosen randomly by A+, where msg is initialized to be empty. Here A+ sends

pk and ~e = (e1, . . . , eη(λ)) to Srv∗ in Step 1 of π, where x0i
$← PT and ei ← Enc(pk, x0i ) for i = 1, . . . , I − 1,

eI = c∗, and ei ← Enc(pk, xλi ) for i = I + 1, . . . , η(λ). When a query (g,~c) is made by Srv∗ in Step 2 of π,
A+ forwards it to the oracle in the funcCPA†† game, adds the oracle’s reply to msg, and sends the reply back
to Srv∗. Finally, A+ executes D(zλ)(yλ, r,msg) and outputs the output bit b of the D(zλ). We note that A+

is PPT.
Let b∗ denote the challenge bit in the funcCPA†† game. Then the distribution of interaction between

A+ and Srv∗ conditioned on index I = 1 and b∗ = 0 (respectively, I = η(λ) and b∗ = 1) is identical to the
protocol π with malicious server Srv∗ and input pair (~xλ, yλ) (respectively, interaction between the simulator
S∗ and Srv∗ with input yλ). Hence we have

Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1] = Pr[b = 1 | (I, b∗) = (1, 0)] ,

Pr[D(zλ)(S∗(1λ, yλ)) = 1] = Pr[b = 1 | (I, b∗) = (η(λ), 1)] .

On the other hand, for each 2 ≤ I0 ≤ η(λ), the distribution of interaction between A+ and Srv∗ conditioned
on I = I0 and b∗ = 0 is identical to that conditioned on I = I0 − 1 and b∗ = 1. Hence we have

Pr[b = 1 | (I, b∗) = (I0, 0)] = Pr[b = 1 | (I, b∗) = (I0 − 1, 1)] .

Therefore, we have

Pr[b = 1 | b∗ = 0]− Pr[b = 1 | b∗ = 1]

=

η(λ)∑
I0=1

1

η(λ)
Pr[b = 1 | (I, b∗) = (I0, 0)]−

η(λ)∑
I0=1

1

η(λ)
Pr[b = 1 | (I, b∗) = (I0, 1)]

=
1

η(λ)
(Pr[b = 1 | (I, b∗) = (1, 0)]− Pr[b = 1 | (I, b∗) = (η(λ), 1)])

=
1

η(λ)

(
Pr[D(zλ)(viewπSrv∗(~x

λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]
)
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and

Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]

= η(λ) (Pr[b = 1 | b∗ = 0]− Pr[b = 1 | b∗ = 1])

= η(λ) (1− Pr[b = 0 | b∗ = 0]− Pr[b = 1 | b∗ = 1])

= η(λ) (1− 2 Pr[b = 0 ∧ b∗ = 0]− 2 Pr[b = 1 ∧ b∗ = 1])

= 2η(λ)

(
1

2
− Pr[EXPfCPA††

A+,E,G(λ) = 1]

)
.

As η(λ) is polynomially bounded (because the client is PPT) and E is funcCPA††-secure, it follows that there
exists a negligible function negl1 satisfying that the quantity above is at least −negl1(λ).

We also define a PPT adversary A− for E in a way that it outputs b′ = 1− b when A+ outputs b. Then
by the argument above, we have

Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1]

= η(λ) (Pr[b′ = 0 | b∗ = 0]− Pr[b′ = 0 | b∗ = 1])

= η(λ) (Pr[b′ = 0 | b∗ = 0]− (1− Pr[b′ = 1 | b∗ = 1]))

= η(λ) (2 Pr[b′ = 0 ∧ b∗ = 0] + 2 Pr[b′ = 1 ∧ b∗ = 1]− 1)

= 2η(λ)

(
Pr[EXPfCPA††

A−,E,G(λ) = 1]− 1

2

)
.

Again, as E is funcCPA††-secure, there exists a negligible function negl2 satisfying that the quantity above is
at most negl2(λ). Summarizing, we have

−negl1(λ) ≤ Pr[D(zλ)(viewπSrv∗(~x
λ, yλ)) = 1]− Pr[D(zλ)(S∗(1λ, yλ)) = 1] ≤ negl2(λ)

and the quantity in Eq.(2) is at most the negligible value max{negl1(λ), negl2(λ)}, a contradiction. Hence
the simulator S∗ satisfies the condition showing that the protocol π is private against malicious servers,
concluding the proof of Theorem 5.

From now, we aim at extending Theorem 4 to the case of funcCPA††-security (and hence implying the
privacy against malicious servers for the protocols), by putting some additional assumptions on the underlying
scheme E . Let E be a C-HE scheme with plaintext space PT = {0, 1}. For simplifying the argument, we
suppose that for each fixed security parameter λ, any secret key sk has a fixed bit length ν(λ), and any
ciphertext in CT has a fixed bit length ρ(λ). Then for each function g in function family G that has ` inputs
from PT and has output in PT, we consider the function g̃λ with (ν(λ)+` ·ρ(λ))-bit input and one-bit output
as follows:

• Given input (s̃, c̃1, . . . , c̃`) with s̃ ∈ {0, 1}ν(λ) and c̃i ∈ {0, 1}ρ(λ), the function g̃λ first checks, by using
s̃ regarded as a secret key, if each c̃i belongs to CT or not;

– if c̃1, . . . , c̃` ∈ CT, then g̃λ decrypts each c̃i by using s̃ as a secret key to obtain plaintext m̃i, and
finally outputs g(m̃1, . . . , m̃`);

– otherwise, g̃λ outputs 0.

Let G̃λ = {g̃λ | g ∈ G}. Based on these definitions, we have the following result:

Theorem 6. Let E be a CPA-secure C-HE scheme as above with a sanitization algorithm. Let G be a function
family. Suppose that for each 1 ≤ i ≤ ν(λ), any public key pk for E involves an element of CTsk[i], where

sk[i] denotes the i-th bit of the secret key sk. Suppose moreover that G̃λ ⊆ Cλ for any λ. Then the sanitized
scheme E santz is funcCPA††-secure with respect to G.
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Proof. Let Ã be any PPT adversary for the funcCPA††-security game of E santz. Then we define an adversary

A for the CPA-security game of E as follows, where s̃ki denotes the element of CTsk[i] involved in a public
key:

• Given a public key pk for E , A internally executes Ã with input pk.

• When Ã makes a query (g,~c) with ~c = (c1, . . . , c`) in the funcCPA††-security game,

– if some ci is not a ρ(λ)-bit sequence, A sends Sanitize(pk,Enc(pk, 0)) back to Ã;

– otherwise, A generates c̃i,j ← Enc(pk, ci[j]) for each 1 ≤ i ≤ ` and 1 ≤ j ≤ ρ(λ) where ci[j]
denotes the j-th bit of ci; and A computes

Sanitize(pk,Eval(pk, g̃λ, s̃k1, . . . , s̃kν(λ), c̃1,1, . . . , c̃1,ρ(λ), . . . , c̃`,1, . . . , c̃`,ρ(λ)))

and sends it back to Ã.

• When Ã generates two challenge plaintexts m0,m1, A sends them to the challenger in the CPA-security
game and receives a challenge ciphertext c∗; and A computes Sanitize(pk, c∗) and sends it back to Ã.

• Finally, when Ã outputs a bit, A also outputs the same bit.

Note that A is PPT as well as Ã.
For each query (g,~c) made by Ã, we compare the distribution of the object returned by A with the

distribution of the reply by the oracle in the true funcCPA††-security game. Let E denote the event that the
key pair (pk, sk) chosen in the CPA-security game for E does not satisfy one of the “Sanitizing” condition of
Definition 3, the “Correctness” condition for Enc of Definition 1, and the “Correctness” condition for Eval
of Definition 2; note that E occurs with probability at most 2−λ + negl1(λ) + negl2(λ) where negl1 and negl2
are negligible functions implied by the correctness of Enc and Eval, respectively. From now, we suppose that
the event E has not occurred. If some ci is not a ρ(λ)-bit sequence, then ci 6∈ CT and the query is invalid.

In this case, Ã in the true funcCPA††-security game receives Encsantz(pk, 0) = Sanitize(pk,Enc(pk, 0)), which
is identical to the case of the game simulated by A.

From now, we focus on the other case where all c1, . . . , c` are ρ(λ)-bit sequences. We also focus on
the case that c̃i,j ∈ CTci[j] for every 1 ≤ i ≤ ` and 1 ≤ j ≤ ρ(λ), which occurs with probability at least

1 − ` · ρ(λ) · negl1(λ) due to the correctness of Enc. Now suppose that the oracle returns Encsantz(pk, µ) in
the true funcCPA††-security game. We divide the situation into the two cases below:

• If all c1, . . . , c` are elements of CT, then µ = g(Dec(sk, c1), . . . ,Dec(sk, c`)), which is also the same as
g̃λ(sk, c1, . . . , c`) in this case.

• Otherwise, µ = 0, which is also the same as g̃λ(sk, c1, . . . , c`) in this case.

In any case, both Enc(pk, µ) and

Eval(pk, g̃λ, s̃k1, . . . , s̃kν(λ), c̃1,1, . . . , c̃1,ρ(λ), . . . , c̃`,1, . . . , c̃`,ρ(λ))

belong to CTµ with probability at least 1 − negl1(λ) − negl2(λ); conditioned on this case, the distributions
of Sanitize(pk,Enc(pk, µ)) = Encsantz(pk, µ) and

Sanitize(pk,Eval(pk, g̃λ, s̃k1, . . . , s̃kν(λ), c̃1,1, . . . , c̃1,ρ(λ), . . . , c̃`,1, . . . , c̃`,ρ(λ)))

have statistical distance at most 2−λ.
Summarizing, for each query, the distributions of the objects received by Ã in the true and the simulated

games have statistical distance at most

(2−λ + negl1(λ) + negl2(λ)) + ` · ρ(λ) · negl1(λ) + (negl1(λ) + negl2(λ)) + 2−λ
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which is negligible; we write it as negl3(λ). Moreover, note that A wins the CPA-security game if and only if

Ã wins the funcCPA††-security game simulated by A. Now by putting the (polynomially bounded) number

of queries made by Ã as Q(λ), it follows that the output distributions of Ã in the true and the simulated
games have statistical distance at most Q(λ) · negl3(λ). Hence we have

Pr[EXPfCPA††
Ã,Esantz,G

(λ) = 1] ≤ Pr[EXPCPA
A,E (λ) = 1] +Q(λ) · negl3(λ)

where EXPCPA
A,E denotes the CPA-security experiment for E with adversary A. As E is CPA-secure, we have

Pr[EXPCPA
A,E (λ) = 1] ≤ 1

2
+ negl4(λ)

for some negligible function negl4. Hence

Pr[EXPfCPA††
Ã,Esantz,G

(λ) = 1] ≤ 1

2
+ negl4(λ) +Q(λ) · negl3(λ)

and negl4(λ) +Q(λ) ·negl3(λ) is negligible. This implies that E santz is funcCPA††-secure, concluding the proof
of Theorem 6.
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