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Abstract.
Deep learning (DL)-based profiled attack has been proved to be a powerful tool
in side-channel analysis. A variety of multi-layer perception (MLP) networks and
convolutional neural networks (CNN) are thereby applied to cryptographic algorithm
implementations for exploiting correct keys with a smaller number of traces and
a shorter time. However, these attacks merely focus on small datasets, in which
their points of interest are well-trimmed for attacks. Countermeasures applied in
embedded systems always result in high-dimensional side-channel traces, i.e., the
high-dimension of each input trace. Time jittering and random delay techniques
introduce desynchronization but increase SCA complexity as well. These traces
inevitably require complicated designs of neural networks and large sizes of trainable
parameters for exploiting the correct keys. Therefore, performing profiled attacks
(directly) on high-dimensional datasets is difficult.
To bridge this gap, we propose a dimension reduction tool for high-dimensional
traces by combining signal-to-noise ratio (SNR) analysis and autoencoder. With the
designed asymmetric undercomplete autoencoder (UAE) architecture, we extract
a small group of critical features from numerous time samples. The compression
rate by using our UAE method reaches 40x on synchronized datasets and 30x on
desynchronized datasets. This preprocessing step facilitates the profiled attacks by
extracting potential leakage features. To demonstrate its effectiveness, we evaluate
our proposed method on the raw ASCAD dataset with 100,000 samples in each trace.
We also derive desynchronized datasets from the raw ASCAD dataset and validate
our method under random delay effect. As current MLP and CNN structures cannot
exploit the S-box leakage either before or after autoencoder preprocessed traces, here,
we further propose a 2n-structure MLP network as the attack model. By applying
UAE and 2n-structure MLP network on these traces, experimental results show
that all correct subkeys on synchronized datasets (16 S-boxes) and desynchronized
datasets are successfully revealed within hundreds of seconds. This shows that our
autoencoder can significantly facilitate DL-based profiled attacks on high-dimensional
datasets.
Keywords: Side-channel Analysis · Deep Learning · Autoencoder · Multi-layer
Perceptron · Convolutional Neural Networks

1 Introduction
Side-channel analysis (SCA) exploits the weakness of cryptographic algorithm implemen-
tations from the view of physical information such as timing [Koc96], power consump-
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tion [KJJ99], and electromagnetic emanations [QS01]. When running a cryptographic
algorithm, intermediate states and operations that are closely dependent on secret keys may
cause leakage and be detected through SCA observation, severely threatening the security of
users. In SCA, attack methods can be categorized into profiled attacks and non-profiled at-
tacks. Profiled attacks indicate that a powerful adversary has access to an open clone crypto-
graphic device for secret keys, side-channel traces, and unlimited computational power. The
adversary firstly characterizes all types of secret information from a clone device (a.k.a., pro-
filing phase), and then recovers secret data from the target device by utilizing their learned
models (a.k.a., attack phase). Typical profiled attacks covers template attack [CRR02]
and machine learning-based attacks [HGM+11,BL12,HZ12,LMBM13,GHO15,MPP16].
Non-profiled attacks refer to attacks where an adversary can only collect physical informa-
tion from a target device. The abilities of adversaries in this type are weaker than those in
profiled attacks. The attacker uses statistical analysis to derive secret information from
side-channel traces. This line of attacks include simple power analysis (SPA), differential
power analysis (DPA) [KJJ99], correlation power analysis (CPA) [BCO04] and mutual
information analysis (MIA) [GBPV09] [BGP+11].

One of the most powerful side-channel attacks is proven to be the deep learning (DL)-
based profiled attacks. This type of attack outperforms other types of attacks in the context
of attack traces needed to recover keys [LPB+15] [MPP16]. Also, DL-based profiled attacks
have been explored on many datasets that cover both unprotected datasets and protected
datasets [MPP16,CDP17,PSB+18,CCC+19,ZBHV20,WP20,MDP20]. These datasets have
accurately located points of interest (POIs). However, in a practical secure implementation,
each trace includes tens of thousands of samples due to applied countermeasures. Directly
applying neural networks on high-dimensional datasets is impractical because the design
inevitably requires a very complicated network architecture and a large size of trainable
parameters to learn key information. To the best of our knowledge, deep learning-based
profiled attacks are absent of applications on high-dimensional datasets. To bridge this gap,
a preprocessing of locating leakage samples and extracting features becomes a necessity.

Preprocessing is mainly used for finding POIs in advance to accelerate the attacks. In
fact, preprocessing techniques for POI selection have been explored in profiled attacks in
many solutions. For instance, principal component analysis (PCA), linear discriminant
analysis (LDA), and kernel discriminant analysis (KDA) are investigated in template
attacks [APSQ06,CK13,CDP15,CDP17,EPW10] to improve the performance attacks.
Similarly, long short-term memory (LSTM) autoencoder in machine learning-based profiled
attacks [RAD20] has been applied on unprotected AES implementation to extract features.
Additionally, convolutional layers are also considered being a feature extraction tool
[ZBHV20]. However, all these solutions are applied on small datasets containing only
hundreds of samples, which is insufficient in practical scenarios that a trace set contains large
sizes of samples. An efficient tool to locate and extract critical features when performing
attacks is desperately needed. We thereby propose a new approach to preprocess high-
dimensional datasets.

Our approach utilizes the undercomplete autoencoder (UAE). UAE can learn a lower-
dimensional representation of the data by an encoder and correspondingly decodes it into
the original input space by a decoder. The structure of the encoder and decoder can be
designed as fully connected layers, convolutional layers, LSTM layers, etc. Our proposed
solution can outperform previous methods due to a specialized design. Specifically, our
method introduces an asymmetric structure into autoencoder design to reduce the training
complexity. This design differs from traditional autoencoder solutions which have symmetric
autoencoder structures as in [WP20, RAD20]. In our asymmetric model, the encoder
and decoder have different structures. This provides benefits with flexible parameter
settings and independent combinations of training models. Therefore, to accelerate deep
learning-based attacks on high-dimensional traces, we design a preprocessing and attack
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model suite, which consists of signal-to-noise ratio (SNR) analysis, autoencoder, and
multilayer perceptron (MLP). Our proposed model can extract key features from huge
numbers of samples. To demonstrate its effectiveness, we give experiments under our
model and several parallel models on the raw ASCAD datasets to compare attack results
before and after the feature extraction. Experimental results indicate that our method
has significantly improved the attack performance. In a nutshell, the contributions of this
work are listed as follows.

- We propose a novel trace preprocessing architecture to compress high-dimensional
datasets. The preprocessing tool is composed of SNR analysis and asymmetric
undercomplete autoencoder (UAE) that can extract critical trace features.

- We design a 2n-structure MLP structure to perform profiled attack. Experimental
results show that the MLP can perform successful attacks while existing attack models
cannot reveal all correct keys before and after the feature extraction. Meanwhile,
training a 2n-structure MLP takes only 1

42 ∼
1
3 the time compared with the state-of-

the-art models.

- The preprocessing and attack architecture is confirmed on both synchronized and
desynchronized traces. We introduce convolutional layers in UAE to confront desyn-
chronization effect and further exploit the secret key. The compression rate by using
UAE reaches 40x on synchronized datasets and 30x on desynchronized datasets.

The rest of this paper is organized as follows. In Section 2, we introduce the raw
ASCAD dataset for evaluation and provide dimension reduction techniques applied in
the context of SCA. The architectures of the asymmetric UAE and 2n-structure MLP
are presented in Section 3. Section 4 details the hyperparameter selection and shows
experimental results on synchronized and desynchronized datasets. Finally, Section 5
concludes this work.

2 Primitives and Components
In this section, we firstly introduce the high dimensional traces: raw ASCAD dataset.
ASCAD contains a large number of samples served for profiling attacks. Then, we provide
details of dimension reduction techniques in SCA, covering SNR and autoencoders. Finally,
we present neural networks used as attack models in profiled attacks. These techniques
are the basic components of our established scheme.

2.1 Raw ASCAD Dataset
The ASCAD dataset [PSB+18] provides power traces produced by a masked AES-128
implementation on ATMega8515 microcontroller. It is used as a benchmark to evaluate
machine learning techniques applied in the side-channel context. The ASCAD dataset
provides 4 subsets in 2 conditions: fixed key encryption (with random delay ND =
{0, 50, 100}) and random keys encryption. Each trace in fixed key version has 700 samples,
and in random key version 1400 samples. The leakage model in the ASCAD dataset is
chosen to be S-box output, which is defined as,

S-box(p[i]⊕ k[i]),

where i ∈ {1, ..., 16}, p represents plaintexts while k is secret keys (both are measured in
byte).

The ASCAD fixed key dataset is trimmed from the raw ASCAD dataset, in which it
contains the operation information of all 16 S-boxes in the first round of the AES. The raw
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ASCAD dataset consists of 60, 000 traces and each trace is composed of 100, 000 samples.
It is split into a training set with 50, 000 traces and a test set with 10, 000 traces. The raw
ASCAD dataset has no label for training. We thereby use each S-box output (16 in total)
to tag traces. Then, we obtain 16 subsets for further training and attacks.

Besides, desynchronized subsets in ASCAD are generated via random delay technique.
To check the jitter effect on machine learning techniques, Benadjila et al. [PSB+18]
introduced a jitter parameter to desynchronize trace. Specifically, assume window maximum
jitter is ND time samples and the point of interest interval on the raw ASCAD dataset
is [N,N + L]. Firstly, they set a maximum random delay value ND (50 or 100). Then
a random number r < ND is generated to trim an interval [N + r,N + L + r] for each
trace. Finally, they generated 2 desynchronized datasets, i.e., ASCAD_desync50 and
ASCAD_desync100. A similar desynchronization technique is applied in our work to
generate high-dimensional desynchronized datasets.

Figure 1: SNR of 16 S-boxes

2.2 Dimension Reduction Techniques in SCA
To find a possible leakage interval, SCA makes use of statistical tests (SNR, T-test) to
detect leakage points and dimensional reduction skills (PCA, LDA, KDA, autoencoders)
to reduce attack complexity. Our method combines SNR and autoencoder to address the
high-dimensionality issue in SCA trace preprocessing. We introduce them as follows.

2.2.1 Signal-to-Noise Ratio Analysis

SNR has been applied to find POIs in the raw ASCAD dataset. We introduce five
mainstream types of SNR defined in [PSB+18] (see Tab.1). We conduct the SNR analysis
on the raw ASCAD dataset for 16 S-boxes separately (see Fig.1: Subgraphs from upper
left to bottom right horizontally represent the 1st to the 16th S-box SNR analysis results.).
Different types of SNR analysis results on each S-box can be used to infer a rough calculation
period for further attacks. The value of snr1 (unmasked S-box output) is generally low
in most S-boxes, implying the first-order leakage is weak in tested traces. In contrast,
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snr2 (masked S-box output) and snr4 (masked S-box output in linear parts) have high
correlation value that shows the real intermediates in AES traces. snr3, as a common
mask constant, leads to high SNR peaks at the same position in 16 S-boxes. We can find
that snr3 is a misleading signal when selecting the proper S-box operation period. snr5
shows high peaks of each S-box mask r[i]. Specifically, to illustrate how we locate POIs
from original traces according to SNR analysis results, we use SNRs in the third S-box (see
Fig.2) as an example. Firstly, we zoom in SNR analysis result to observe the same position
SNR peaks excluding the misleading signal snr3. When n, (n > 1) SNR show peaks at the
same position (marked with a red square), we collect the highest values of each SNR type
at the point Pi, i = 1, ..., n. Next, we use Pmiddle, where Pmiddle =

∑
Pi

n , as the middle
point to trim an interval for further analysis. In the third S-box, Pmiddle = 45900 and the
trimmed interval (the number of samples denoted as L) is (45900− L

2 , 45900 + L
2 ).

Table 1: SNR Definitions
Name Type Target sensitive variables
snr1 unmasked S-box output S-box(p[3]⊕ k[3])
snr2 masked S-box output S-box(p[3]⊕ k[3])⊕ rout

snr3 common S-box output mask rout

snr4 masked S-box output in linear parts S-box(p[3]⊕ k[3])⊕ r[3]
snr5 S-box output mask in linear parts r[3]

Here, we consider the POI selection from two folds. Firstly, the selected POI interval
should be large enough to cover all operation information of one S-box. Secondly, a small
number of POIs will help to reduce the subsequent analysis complexity. Therefore, we
start attacks from a coarse sample number set L = {1000, 2000, 3000, 4000, 5000} on the
raw ASCAD dataset.

2.2.2 Autoencoders

The autoencoder is a type of neural network trained to represent the original information
from a code. An autoencoder consists of two parts, namely encoder and decoder. An
encoder z = f(x) maps an input to the code while a decoder x′ = g(z) generates the
reconstruction of original inputs. The autoencoder types that are widely adopted include
undercomplete autoencoder, denoising autoencoder, and contractive autoencoder.

- Undercomplete autoencoder (UAE). Undercomplete means the dimension of the code
is lower than the input. By using smaller-length vector representation, a UAE can
force the network to learn the most significant features from original data. The
training goal is to minimize the loss of L(x, g(f(x))).

- Denoising autoencoder (DAE). Denoising autoencoder introduces noise to original
data. It uses the corrupted data as input without corrupting the output. The
goal of DAE is to minimize the loss function L(x, g(f(x̃))), where x̃ = x+ ε is the
corrupted data. Noise ε is a type of regularization in autoencoder to maintain a robust
reconstruction of g(f(x̃)). DAE has been applied in trace preprocessing [WP20] to
reduce the impact of countermeasures when taking them as noises.

- Contractive autoencoder (CAE). Contractive autoencoder introduces a regularizer
to autoencoder so that the representation z = f(x) becomes robust as the training
samples have a minor change. The loss function is L(x, g(f(x))) +λ ‖Jh(x)‖2

F , where
the regularizer is the Frobenius norm of the jacobian matrix. The regularizer here
assists to contract a neighborhood of input points into a smaller neighborhood of
output points.
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In this work, we focus on dimension reduction for profiling attacks. We adopt the
UAE as our first choice to simplify attacks. This is because we have no extra noise on
original traces (as DAE required) and no limitations on the output (as in CAE). As we
noticed that implementing DAE [WP20] needs to generate extra corrupted data for robust
training, we decide to design UAE in an asymmetric manner as a penalty to reconstruct
a robust code. We would maximumly reduce hidden layers in the decoder part and use
original data directly to perform an attack. In this way, we can reduce the training model
complexity and shorten preprocessing time.

Figure 2: Same position SNR peaks of the third S-box

2.3 Neural Networks
A deep learning-based profiled attack is a task of classification that trains the neural
network model for precisely predicting the correct keys. A neural network contains an
input layer, hidden layer(s) and an output layer. The input layer in SCA receives the
one-dimensional side-channel traces. Output layer provides key classification results. The
number of nodes in the output layer is determined by the target space of keys, intermediates,
or hamming weights. Hidden layers are changeable and can utilize the fully connected layer,
convolutional layer, LSTM layer, etc. Multi-layer perceptron (MLP) and convolutional
neural network (CNN) are mostly investigated in the SCA context.

In a neural network, parameters refer to variables that are automatically learned during
the training process. And hyperparameters (model parameters and optimizer parameters)
refer to variables being set before training. A neural network structure is defined by
model hyperparameters. Model hyperparameters include the number of hidden layers, the
number of neurons in each layer, filter size, the number of filters and the number of CNN
blocks, etc. After set a model structure, we control the training process by specifying
optimizer hyperparameters such as activation functions, learning rate, batch size, number
of epochs, optimizer. Model hyperparameter and optimizer hyperparameters significantly
influence the network attack performance. Grid search optimization [BBBK11] is widely
used to select a better group of hyperparameters. Neural networks are trained by the
backpropagation algorithm [Hec88]. Backpropagation computes the gradient of the loss
function and then updates the weights to minimize loss. Next, we introduce MLP and
CNN separately.

2.3.1 Multilayer Perceptron (MLP)

A multilayer perceptron network can be generally formalized as

f̂ = P ◦An ◦ λn ◦ · · ·A2 ◦ λ2 ◦A1 ◦ λ1 ◦ I,
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where the input layer is represented as an identity function I. A hidden layer is expressed
as Ai ◦λi, where Ai is an activation function and λi is a linear function. Note that hidden
layers gain non-linearity from activation functions such as sigmoid, rectified linear unit
(ReLU), hyperbolic tangent (tanh). Hidden layers contain adjustable model hyperparame-
ters, i.e., the number of hidden layers and the number of nodes in each layer. An output
layer is defined as P to represent the prediction function used for classification.

In an MLP, all layers are fully connected and each connection has a weight value
(parameter) that gets updated during backpropagation. We adopt the widely used cate-
gorical cross-entropy loss in prediction layer for MLP classification in SCA. Categorical
cross-entropy is a combination of softmax activation and cross-entropy loss. Softmax is a
normalized exponential function defined as f(s)i = esi∑C

j
esj
. Cross-entropy, in general case,

is defined as

Loss(ŷ, y,W ) = −
C∑
i

yilog(ŷi),

where C represents the number of classes, y is the target output, ŷ means the estimated
output through the network, W is the weight matrix. The categorical cross-entropy function
calculates the probability of over C classes for each trace. In the end, the categorical
cross-entropy loss is updated by

Loss( ˆf(s), f(s),W ) = −
C∑
i

f(s)ilog( ˆf(s)i).

2.3.2 Convolutional Neural Networks (CNN)

A convolutional neural network is composed of three types of building blocks: convolutional
layers, pooling layers and fully connected layers. Convolution layers play a key role in CNN
to extract features. A CNN can be formalized as

f̂ = P ◦ [A ◦ λ]HF C ◦ [δ ◦ [A ◦ γ]Hconv ]HBlock ,

where a CNN has HBlock convolutional blocks. Each convolutional block contains Hconv

convolutional layers (denoted γ), an activation function (denoted A) and one pooling layer
(denoted δ). A fully connected layer is represented by A◦λ where A is an activation function
and λ represents a linear function. In the study of Zaid et al. [ZBHV20], they proposed to
build an efficient CNN for side-channel attack. Here we present the convolutional layer
and pooling layer that are useful to detect desynchronization. They assume that the
maximum random delay in the original trace is ND. In the convolutional block for feature
extraction, filter size is set to ND

2 . Pooling stride is the same as filter size (ND

2 ) to preserve
information related to desynchronization while also maximizing dimension reduction. It is
demonstrated that smaller filter sizes help to identify local features and larger filter sizes
can extract global features but inevitably cause spreading of relevant information. Besides,
they recommended a small number of filters {2, 4, 8} for fast training.

It is worth noticing that convolutional neural networks can be deconstructed into the
convolutional part for feature extraction and a fully connected part for classification. In
CNNs, fully connected layers are similar to MLP. As convolutional structures can be
applied to undercomplete autoencoder for feature extraction, in this work, only MLP is
used for classification.

3 Model Design
In this section, we propose our autoencoder-assisted model that combines SNR, UAE, and
MLP. The model provides efficient reduction of large-size datasets.
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3.1 Model Overview
The entire model (including feature selection and classification modules) consists of three
parts: SNR, UAE and MLP. Fig.3 shows the trace processing path. Firstly, SNR analysis
is performed on original traces. We use SNR middle position Pmiddle (see Sec.2.2.1) to trim
traces of length L. The goal of this SNR exploration is to find a proper interval that can
cover all possible leakage points and give good performance results. Then, the trimmed
traces are fed into an undercomplete autoencoder. The autoencoder will compress L-sample
traces by R times. SNR and UAE are the preprocessing part for feature extraction (POI
selection). Each code with L/R samples becomes the input of the MLP attack model.
MLP acts as the classification module and the attacking result is presented by the key
rank (guessing entropy) of correct subkeys.

SNR UAE

MLP

Feature  Extraction Classification

Figure 3: Preprocessing and Attack Model Structure

3.2 UAE Structure
Autoencoders are normally designed to be symmetric where the encoder and decoder have
the same structure. SCA attack solutions that utilize autoencoders [WP20] [RAD20] also
follow the standard symmetric structure. Heuristic thinking is that a symmetric structure
can help to retrieve the original data. However, the symmetric structure increases the
complexity of a UAE network. In this work, we introduce asymmetric UAE for feature
extraction with higher efficiency. Asymmetric means the structures of the encoder and
decoder are different and the encoder is more complicated than a decoder. Specifically, an
encoder has one or more hidden layers. Whereas a decoder has fewer hidden layers or no
hidden layer. The asymmetric structure can be viewed as a regularization that forces the
network to learn more robust features without relying on a corrupted input or a regularizer.
Formally, we define this asymmetric UAE model as

f̂ = I ′ ◦ [α]HD ◦ C ◦ [α]HE ◦ I,HE > HD,

where the input layer is represented as an identity function I, and the output layer I ′ means
a reconstruction of input. The code (bottleneck layer) is denoted as C. A hidden layer is
denoted as α. The number of hidden layers in encoder is HE and decoder HD. Here, the
restriction HE > HD shows asymmetric feature. A hidden layer α can apply structures
such as a fully connected layer, a convolutional block, or an LSTM layer. Specifically,
when α represents a fully connected layer, it is formalized as

A ◦ λ,

where A is an activation function and λ represents a linear function. When α represents a
convolutional block, it is

δ ◦ [A ◦ γ]Hconv ,
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where a convolutional block contains Hconv convolutional layers (denoted γ), an activation
function (denoted A) and one pooling layer (denoted δ).

In this work, we instantiate the asymmetric UAE model for synchronized traces and
desynchronized traces. We test our proposed architecture on both synchronized and
desynchronized high-dimensional datasets. As for synchronized traces, the hidden layers
in UAE are configured to be fully connected layers for fast training. As for desynchronized
traces, convolutional layers are introduced in UAE. Similar techniques applying CNN to
deal with desynchronized cases are also demonstrated in [MPP16,ZBHV20].

Input layer FC layer Code Output layer

1x Ni

1x NF

1x NC

1x Ni

Figure 4: UAE structure for synchronized traces

3.2.1 UAE for Synchronized Traces

An asymmetric UAE for synchronized traces is presented as

f̂sync = I ′ ◦ C ◦ [A ◦ λ]HE ◦ I,

where HD = 0 means that the decoder has no hidden layer. Notably, we remove the hidden
layer in the decoder to maximally simplify the structure and reduce the complexity. This
UAE structure is shown in Fig. 4. The input layer and output layer have NI nodes.
Each hidden layer has NF nodes. The bottleneck layer has NC nodes. In this way, an
NI -dimensional trace is compressed to a NC-dimensional code. We denote the compress
ratio from input dimension to a code dimension as R = NI

NC
.

Here we specify the trick we used to determine the number of nodes in each fully
connected layer. Let us assume N [j]

F is the number of neurons in the jth fully connected
layer. We define the number of nodes in j-th hidden layer is 2n. The number of nodes
in (j − 1)-th hidden layer is twice the number of j-th layer, i.e., N [j−1]

F = 2 ×N [j]
F . We

limit N [1]
F < NI to make the number of nodes in each hidden layer is fewer than the input

layer. We denote this structure as 2n-structure. In this way, to set an asymmetric UAE
structure, we only need to define the number of hidden layers HE and the number of nodes
N [HE ] in the last hidden layer. Based on 2n-structure, we perform grid search optimization
for UAE hyperparameters (see Tab.2) on the raw ASCAD dataset (synchronized traces).

3.2.2 UAE for Desynchronized Traces

Similarly, for desynchronized traces, a UAE is formalized as

f̂desync = I ′ ◦ [A ◦ λ] ◦ C ◦ [A ◦ λ] ◦ [δ ◦ [A ◦ γ]] ◦ I,
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Table 2: Grid search optimization for UAE hyperparameters on synchronized traces
Parameter Values

Activation function {sigmoid, tanh, ReLU, SeLU}
Learning Rate 0.001 (default value)
Batch size {128,256,512}
Epochs {10,20,30,40}
n◦ of neurons N [HE ] (last hidden layer) {64,128,256,512}
n◦ of hidden layers HE (encoder) {1,2,3}
Compress ratio R {5,10,20,30,40,50}

where HD = 1, HE = 2 and Hconv = 1. During the UAE model design, we still attempt to
design the most simplified UAE. As a flatten layer at the output layer of a convolutional
block is required, we add a fully connected layer in both encoder and decoder. Therefore, in
our UAE, the encoder consists of a convolutional block and a flatten layer (fully connected
layer). Similarly, the decoder only has a fully connected layer whose nodes number is same
as which in the encoder. The structure of the asymmetric UAE for desynchronized traces
is depicted in Fig.5.

Input layer Flatten Code Output layer

1x Ni

1x NF

1x NC

1x Ni

FC layer

Convolutional 

layer

Average 

plotting

Filter size K ={ND/2, ND, 2ND} 

Filter number {2, 4, 8} 

Pooling stride K

1x NF

Figure 5: UAE structure for desynchronized traces

The input layer and output layer have NI nodes. Regarding the method of building
efficient CNN architectures [ZBHV20], we apply filter size K = {ND

2 , ND, 2ND}. Note
that we extend the kernel size ND

2 recommended in [ZBHV20] to ND, 2ND. As smaller
kernels extract local features and larger kernels extract global features, we would like to
find out the kernel size influence in UAE feature extraction. The pooling stride is the same
as kernel size. We perform grid search on a small number of filters from {2, 4, 8}. After
average pooling, the flatten layer has NF nodes and the decoder hidden layer has the same
number of nodes. The compress ratio from input dimension to a code dimension is R = NI

NC
.

Based on CNN structure, we perform grid search optimization for UAE hyperparameters
(see Tab.3) on the desynchronized raw ASCAD dataset. One-cycle policy [Smi18] is applied
to update learning rate.

3.3 MLP Structure
As for the attacking model, 2n-structure is applied to build an MLP network. We denote
the number of nodes in jth hidden layer as N [j]. Here, N [j] = 2n and N [j+1] = 2×N [j],
i.e., the next hidden layer has twice the number of nodes than the previous layer. The
2n-structure in MLP is reverse to that in UAE because a UAE tries to compress a dataset.
We assume that there are H hidden layers. Then an MLP under 2n-structure is configured
by H and N [1]. The number of nodes in the input layer is denoted as NC (code length)
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Table 3: Grid search optimization for UAE hyperparameters on desynchronized traces
Parameter Values

Activation function {sigmoid, tanh, ReLU, SeLU}
Learning Rate One-cycle policy
Weight initialization He uniform
Batch size {128,256,512}
Epochs {10,20,30,40,50,60}
Filter size K {ND

2 , ND, 2ND}
n◦ of filter {2,4,8}
Compress ratio R {5,10,20,30,40,50}

while the output layer as NO. The architecture of a 2n-structure MLP is shown in Fig.6.

MLP

NC NON[1] 2 x N
[1]

2   x N
[1]H…

Figure 6: 2n-structure MLP structure

With this model, we apply hyperparameters in Tab.4 to find a simple architecture so
as to reveal S-box subkeys with fewer traces and shorter training time.

Table 4: Grid search optimization for the MLP hyperparameters
Parameter Values

Activation function {sigmoid, tanh, ReLU, SeLU}
Learning Rate One-Cycle policy
Batch size {50,100,200,300}
Epochs {10,20,25,50,75,100}
n◦ of neurons N [1] (first hidden layer) {64,128,256}
n◦ of hidden layers H {2,3,4,5,6}

4 Experimental Results
In the following section, we apply our preprocessing and attack model suite on high-
dimensional side-channel traces. The model suite is tested on synchronized and desyn-
chronized raw ASCAD datasets. Firstly, we show the experiment settings and datasets
preparation for profiled attacks. Then, we grid search proper UAE and MLP hyperparam-
eters for each dataset. For a good model evaluation, the first priority is to compare the
least number of traces for guessing entropy (GE) converge to 1. We also compared our
model with the state-of-the-art SCA attack models from the perspective of training time
and trainable parameters as in most SCA studies [PSB+18] [ZBHV20] [WP20].
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4.1 Settings
For environment settings, our implementation of machine learning techniques is based on
the Keras library and Tensorflow backend. We run training models on a laptop equipped
with 8GB of RAM and Intel(R) Core(TM) i7-8750H CPU. The target leakage model is
the S-box output S-box(p[i]⊕ k[i]). To validate our proposed processing and attack model,
we have three types of datasets: a synchronized dataset (raw ASCAD traces of 100, 000
samples) and desynchronized datasets (50 and 100 samples separately window maximum
jitter on raw ASCAD traces).

On synchronized raw ASCAD traces, we first select the third S-box as the preliminary
experimental target. We perform a coarse searching of applicable parameters for an efficient
attack. After finding the opportune parameters for this target S-box, further parameter
fine-tuning will be implemented on the rest 15 S-boxes to exploit the key byte.

Since there is no desynchronized dataset of raw ASCAD traces, we generate random
delay traces (samples window maximum of 50 and 100) in the same way as mentioned
in Sec.2.1. Based on SNR observation, a leakage interval [N,N + L] is selected for an
S-box. Desynchronization parameter ND is set to 50 and 100, respectively. Then a random
integer r < ND is generated to trim each interval [N + r,N + r+L] out as one item in the
desynchronized dataset. In this way, we obtain the ND = 50 and ND = 100 desynchronized
datasets.

Hyperparameters used in UAE and MLP are selected via a grid search optimization
with finite sets of values. The final chosen value is obtained based on the best attack
performances, namely, the least traces for the GE reaches 1. To perform a successful attack,
three steps are conducted. Firstly, we propose a naïve UAE and MLP to explore a proper
POI length based on SNR analysis. Then, we fix a non-optimized MLP to grid search UAE
hyperparameters on the POI dataset. Finally, optimize MLP on UAE extracted features.

4.2 SNR Parameter
Since the state-of-the-art attack models use the third S-box in ASCAD dataset as the
target of evaluation, we also aim at the same S-box for model training and comparison.
POI intervals are trimmed from the length set L = {1000, 2000, 3000, 4000, 5000} according
to the SNR peak central point (see Sec.2.2.1). The trimmed dataset DL

S-box3 is labeled by
sbox(p[3] ⊕ k[3]). Each DL

S-box3 is split into three subsets: 45, 000 traces as training set,
5, 000 traces as validation set and 10, 000 traces as test set for attacks. We use 2n-structure
for both asymmetric UAE and MLP. Since we limit the number of nodes in each UAE
hidden layer is fewer than input dimension (N [1]

F < NI), we set the initial UAE structure
(as in Fig.4) to have 2 hidden layers while the last hidden layer has N [2]

F = 256 nodes
(i.e., N [1]

F = 512 < NI). MLP is set to H = 3 and N [1] = 256 (3 hidden layers and the
first hidden layer has 256 nodes). Non-optimized hyperparameters in UAE and MLP are
provided in Tab.5.

Table 5: Hyperparameters for a naive UAE and MLP
Hyperparameter UAE Values MLP Values

Activation function ReLU ReLU
Learning Rate 0.001 One-Cycle policy
Batch size 512 200
Epochs 30 50
n◦ of neurons (N [HE ] for UAE) 256 -
n◦ of neurons (N [1] for MLP) - 256
n◦ of hidden layers 2 3
Compress ratio R 10 -
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The attack results on the third S-box (Fig.7) show that POI intervals L = {2000, 3000, 4000}
can help to perform a successful attack (GE=1). We use the same autoencoder and MLP
attack model to compare the number of traces needed in exploiting the third byte. The
interval with 3000 time samples requires the least traces. Thus, we fix the POI interval to
3000 time samples to investigate UAE and MLP architectures.

Figure 7: Comparison of different SNR intervals

For the third S-box, we obtain synchronized dataset D3000
S-box3 by trimming raw ASCAD

dataset at position (44400, 47400). We also derive desynchronization datasets (ND = 50
and ND = 100) based on this interval. We split each desynchronized dataset into 3 subsets:
45,000 traces as the training set, 5,000 as validation set and 10,000 for the attack.

To test the performance of a classical attack model MLPbest [PSB+18] and the state-
of-the-art models [ZBHV20] on ASCAD dataset, we perform a profiled attack using
these models on D3000

S-box3 directly. We also evaluate the model we proposed on D3000
S−box3.

Experimental results (Fig.8) show that none of these models can reveal the correct keys
before UAE feature extraction.

Figure 8: Guessing entropy result on 3000 time samples (synchronized dataset)

4.3 Grid Search on UAE Hyperparameters
For synchronized and desynchronized datasets, we use corresponding UAE structures
(Sec.3.2.1 and Sec. 3.2.2) to optimize asymmetric UAE hyperparameters. Mean squared
error is used to measure loss and Adam [KB15] to be optimizer.

4.3.1 Synchronized Traces

We apply hyperparameters in Tab.2 to explore the best hyperparameters on synchronized
dataset. Non-optimized MLP (right column in Tab.5) is used to evaluate UAE performance.
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Table 6: Hyperparameters for the best UAE on synchronized dataset
Hyperparameter Values

Activation function ReLU
Learning Rate 0.001
Batch size 512
Epochs 30
n◦ of neurons (last hidden layers) 256
n◦ of hidden layers (encoder) 1
Compress ratio 40

Among four activation functions, ReLU performs the best and takes less training time
compared with SeLU function. Optimization is completed on a batch size of 512 and 30
training epochs with a learning rate of 0.001. The compress ratio is 40. The best UAE
structure HE = 1 and N [HE ] = 256 (a UAE has one hidden layer and the last hidden layer
has 256 nodes) make guessing entropy converge to 1 within 200 traces. The number of
trainable parameters in this UAE is 787, 531 and it takes 104 seconds to reduce loss to
0.64 (Fig.9a).

Besides, according to our experimental results, we demonstrate that the number of
hidden layers in the encoder has little impact on reducing loss and guessing entropy. On
the contrary, the number of nodes in each layer can have a significant influence on attack
results.

According to the best experiment result, we set the compress ratio to 40 in the third
S-box. Equivalently, the code generated by UAE has 75 time samples. We apply this code
in the next step, i.e., MLP optimization. The best asymmetric UAE hyperparameters for
synchronized traces are summarized in Tab.6.

4.3.2 Desynchronized traces

Following our UAE architecture for desynchronized traces (Fig.5), we grid search an
efficient UAE to extract critical features for key revealing in the existence of random
delay effect. We evaluate our proposed architecture when ND = 50 and ND = 100. The
best hyperparameters for UAE are grid searched on ND = 50 and ND = 100 datasets
separately. By applying the UAE architecture in Sec.3.2.2, the filter size and pooling
stride in convolutional layer applies not only ND

2 in [ZBHV20], we extend the larger size
of {ND, 2ND} for each dataset. For both datasets, optimization is completed with SeLU
activation function and He uniform weight initialization. The one-cycle policy is applied to
update the learning rate for the convolutional autoencoder. For desynchronized traces, the
naïve MLP adds one hidden layer (i.e., H = 4), which is more powerful for classification
but can also cause overfitting.

(i). Random delay with ND = 50. In ND = 50 desynchronized dataset, the best
compress ratio is 20. The UAE with 8 filters and filter size of 2N = 100 requires the
least traces to recover the correct key on the third S-box. It takes 2,741 seconds to
run the training on a batch size of 512 within 50 epochs. Finally, the loss of UAE
reaches 0.49 (Fig.9b). The number of trainable parameters in this UAE is 1, 588, 438.
440 traces are needed for GE converge to 1.

The best UAE hyperparameters for ND = 50 dataset are listed in Tab.7. It should
be noted that in this experiment, the best filter size is 2N = 100 instead of ND

2
which uses the least number of traces. This indicates that global features extracted
by a larger kernel also help distinguish the correct key candidate.
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a. Experiment result of the best UAE on synchronized dataset 
( 3000 samples )

c. Experiment result of UAE on desynchronized dataset
 ( ND=100 )

b. Experiment result of UAE on desynchronized dataset
 ( ND = 50 )

Figure 9: UAE Evaluations

Table 7: Hyperparameters for the best UAE on desynchronized datasets (ND = 50 and
ND = 100 traces)

Hyperparameter Values (ND = 50) Values (ND = 100)
Activation function SeLU SeLU
Learning Rate Once-Cycle policy Once-Cycle policy
Batch size 512 512
Epochs 40 30
Filter size K 100 50
n◦ of filters 8 4
Compress ratio 20 30

(ii). Random delay with ND = 100. For a higher random delay dataset, it needs
a filter size of 50 and 4 filters to find the correct key. The ND = 100 dataset is
compressed by 30 times on a batch size of 512 within 50 epochs. The training takes
2428 seconds to reach a loss of 0.75 (Fig.9c). The number of trainable parameters in
this UAE is 771, 544. The best hyperparameters are summarized in Tab.7.
Here we discuss the selection of different UAE filter sizes and filter numbers in profiled
attacks. On ND = 50 dataset, filter length of {ND

2 , ND, 2ND} all can make GE
converge to 1. While on ND = 100 dataset, only ND

2 -kernel size can help exploit the
correct key. Based on our experiment on 2 desynchronized datasets, we demonstrate
that although ND

2 is not always the best parameter for filter size; it is more general
in datasets with different random delays. Besides, increasing the number of kernels
can provide more information about trace features.

4.4 Grid Search on MLP Hyperparameters
4.4.1 Results on Synchronized Traces

On synchronized datasets, we first present experimental results on the third byte. Then
we extend the best UAE and MLP for synchronized datasets to the other 15 S-boxes.

(i). The third S-box. Grid search optimization is conducted for MLP on parameter
set in Tab.4. We use categorical cross-entropy to evaluate guessing entropy. For fast
convergence, the optimization is conducted by using Adam within 50 epochs and a
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Table 8: Hyperparameters for the best MLP on synchronized dataset

Hyperparameter Values
Activation function ReLU
Learning Rate One-Cycle policy
Batch size 200
Epochs 50
n◦ of neurons (first hidden layer) 64
n◦ of hidden layers 2

Table 9: Comparison of performance on ASCAD 75 time samples (R=40) (synchronized
dataset)

MLP_best
[PSB+18]

State-of-the-art
[ZBHV20] Our method

Complexity (trainable parameters) 227,456 4,432 46,208
Number of traces - - 140
Learning time (seconds) 98 160 46

batch size of 200. We also apply the one-cycle policy to update the learning rate in
each epoch. ReLU is used as the activation function since it consumes less training
time. Under 2n-structure MLP, H = 2 and N [1] = 64 deliver the best performance.
The best hyperparameters of MLP are summarized in Tab.8.

We compare our network performance with MLPbest [PSB+18] and the state-of-the-
art model [ZBHV20] for ASCAD dataset (ND = 0) in Tab.9. The complexity of our
network (in terms of trainable parameters) performs 5 times less than the MLPbest

model. Training time is 3 times shorter than the convolutional network in [ZBHV20].
Guessing entropy reaches 1 within 120 traces in our MLP network while another
two models cannot reveal the correct subkey within 2000 traces. In conclusion, our
2n-structure MLP network has a good performance while all other models fail on
3000 time sample traces (as shown in Fig.11a). The least training time (autoencoder
together with MLP) only takes around 200 seconds without any professional GPUs,
which is proved to be satisfactorily efficient in a profiled attack.

(ii). All S-boxes. According to the grid search results of UAE and MLP on the third
S-box, we obtain a group of initial hyperparameters (Tab.6 for UAE and Tab.8 for
MLP) to perform an attack on the rest of 15 S-boxes. POI interval based on SNR
analysis is set to 3000 time samples as in the third S-box. We detail the 16 S-boxes
POI intervals on the raw ASCAD dataset in Appendix A. All these intervals are
trimmed by finding Pmiddle point. The structure of an asymmetric UAE is designed
to be HE = 1 and NHE

= 256, which means UAE has one hidden layer with 256
nodes in the encoder. In practice, we fine-tune UAE as HE = 1 and NHE

= 512 for
S-box 16 when NHE

= 256 cannot exploit the correct key. All other hyperparameters
of UAE stay the same as in Tab.6. At first, MLP applies 2n-structure with 2 hidden
layers and the first hidden layer has 64 nodes. When we apply the 2-hidden-layer
MLP to the other 15 S-boxes, profiled attacks fail on some S-boxes. Then, we add
one hidden layer in MLP where the first hidden layer still has 64 nodes. Correct
keys of 15 S-boxes (except S-box 1) can be revealed under the same MLP model,
which means 3 hidden layers (2n-structure) MLP performs well to most S-boxes. As
for S-box 1, we apply H = 3 and N1 = 256 MLP, namely the MLP has 3 hidden
layers and the first layer has 256 nodes. Successful attacking results on 16 S-boxes
are shown in Fig.10.



Qi Lei , Zijia Yang , Qin Wang, Yaoling Ding , Zhe Ma and An Wang 17

Figure 10: Guessing entropy result on 16 S-boxes

Table 10: Hyperparameters for the best MLP on desynchronized datasets

Parameter Values (ND = 50) Values (ND = 100)
Activation function ReLU ReLU
Learning Rate One-Cycle policy One-Cycle policy
Batch size 200 200
Epochs 20 30
n◦ of neurons (first hidden layer) L1M

128 256
n◦ of hidden layers (encoder) 3 2
R 30 20

4.4.2 Results on Desynchronized Traces

In this part, we conduct experiments based on random delay ND = 50 and ND = 100
traces, respectively. Same as synchronized dataset, hyperparameters in Tab.2 are used for
optimization.

(i). Random delay with ND = 50. Under 2n-structure MLP, optimization is done
on H = 3 and N [1] = 128 within 20 epochs. The best hyperparameters of MLP are
summarized in Tab.10.
We compare our network performance with the state-of-the-art model [ZBHV20]
for ASCAD dataset (ND = 50) in Tab.11. Since the input layer only has 150-time
samples, the dimension size becomes negative at the third convolutional block of
the existing CNNs [ZBHV20]. We update the third block pooling size and pooling
stride from 4 to 3 to make the attack applicable. The complexity of our network (in
terms of trainable parameters) is nearly 4 times more than the state-of-the-art model.
However, our model training time is over 42 times less than the network in [ZBHV20].
GE reaches 1 within 170 traces in our MLP network while the state-of-the-art model
requires 640 traces (shown in Fig.11b). Thus, our 2n-structure MLP model is highly
effective in profiled attacks.

(ii). Random delay with ND = 100. Under 2n-structure MLP, optimization is
done on H = 3 and N [1] = 256 MLP within 30 epochs. Similar to ND = 50

Table 11: Comparison of performance on random delay ND = 50 dataset
State-of-the-art [ZBHV20]

(ND = 50) Our method

Complexity (trainable parameters) 82,991 315,264
Number of traces 640 170
Learning time (seconds) 1309 31
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a. Guessing entropy result on 75 time samples
 (synchronized dataset)

b. Guessing entropy result with ND = 50

 (desynchronised datasets)
c. Guessing entropy result with ND = 100 

(desynchronised datasets)

Figure 11: Guessing Entropy Evaluations

Table 12: Comparison of performance on random delay ND = 100 dataset
State-of-the-art [ZBHV20]

(ND = 100) Our method

Complexity (trainable parameters) 136,476 945,152
Number of traces - 1150
Learning time (seconds) 1120 245

case, MLP hyperparameters are summarized in Tab.10. We also compare our
network performance with the state-of-the-art model [ZBHV20] for ASCAD dataset
(ND = 100) in Tab.12. Guessing entropy reaches 1 within 1150 traces in our MLP
network while the other model cannot reveal the correct subkey within 2000 traces
(as shown in Fig.11c). Although the trainable parameters of our network are 7 times
more than the state-of-the-art model, the training time is 4.5 times shorter than
the convolutional network in [ZBHV20]. On random delay ND = 50 and ND = 100
datasets, the short learning time (31 seconds and 245 seconds, respectively) shows an
adversary can efficiently perform an attack using UAE preprocessing. This tool saves
exploiting effort in terms of time-division by extracting key features from original
traces.

5 Conclusion
In this paper, we propose an efficient method to perform profiled attacks on high-
dimensional datasets. We introduce the asymmetric undercomplete autoencoder to extract
key features from high-dimensional leakage traces. To reduce the huge dimensionality, we
combine SNR and UAE to reduce 100, 000 samples down to 3, 000 samples (by SNR) and
further to 75 samples (by UAE) on the raw ASCAD dataset. We propose 2n-structure
UAE and MLP to perform the profiled attack and further investigate that our approach
can work with desynchronization cases. We also equip UAE with convolutional layers to
resolve the desynchronization problem as discussed in previous works.

To be noted, the state-of-the-art models are applied for profiled attacks on the raw
ASCAD dataset before and after UAE compression, while none of them can reduce GE
to 1. In contrast, by using our 2n-structure MLP, we find out all the correct keys of 16
S-boxes successfully and efficiently. Further, 2n-structure MLP can also function well
towards random delay datasets with 50 and 100 time samples. We demonstrate that
UAE is a necessary component in our approach to exploit leakage information. UAE can
be a powerful preprocessing tool for an attacker, especially in a practical scenario with
thousands of time samples. Although our experiments are conducted on laptops without
any professional GPUs, a successful attack only takes around 200 seconds in total for UAE
and MLP training. Experimental results indicate that our method is efficient in terms of
both setup cost and training time. In the future, it is fascinating to study the model on
secure implementations with complex countermeasures. Apart from high dimensional trace
datasets, higher jittering and other masking schemes can also be an interesting research
field full of opportunities.
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Appendix
5.1 POI selection of 16 S-boxes
Zooming in SNR analysis peaks where there are same position peaks shown in each S-box,
intervals marked in red (Fig.12) are possible leakage positions. After finding middle point
Pmiddle for 16 S-boxes, L = 3000 time samples are trimmed for each S-box. Specifically,
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Figure 12: Detailed SNR of 16 S-boxes

we trim L/2 to the left of Pmiddle and L/2 to the right to derive new trace set for attack.
Tab.13 is the trimmed 3000 time sample interval from the raw ASCAD dataset. Based on
the trimmed interval, successful attacks are performed combing UAE and MLP.

Table 13: 3000 POIs trimmed for 16 S-boxes
S-box1 S-box2 S-box3 S-box4

(28500,31500) (22500,25500) (44400,47400) (31930,34930)
S-box5 S-box6 S-box7 S-box8

(46450,49450) (40230,43230) (36080,39080) (34000,37000)
S-box9 S-box10 S-box11 S-box12

(25650,28650) (38170,41170) (27750,30750) (42330,45330)
S-box13 S-box14 S-box15 S-box16

(19430,22430) (21500,24500) (48580,51580) (16970,19970)
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