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Abstract. This work focuses on concrete cryptanalysis of the isogeny-based cryptosys-
tems SIDH/SIKE under realistic memory/storage constraints. More precisely, we are
solving the problem of finding an isogeny of a given smooth degree between two given
supersingular elliptic curves. Recent works by Adj et al. (SAC 2018), Costello et al.
(PKC 2020), Longa et al. (CRYPTO 2021) suggest that parallel “memoryless” golden
collision search by van Oorschot-Wiener (JoC 1999) is the best realistic approach
for the problem. We show instead that the classic meet-in-the-middle attack is still
competitive due to its very low computational overhead, at least on small parameters.
As a concrete application, we apply the meet-in-the-middle attack with optimizations
to the $IKEp182 challenge posed by Microsoft Research. The attack was executed on
a cluster and required less than 10 core-years and 256TiB of high-performance network
storage (GPFS). Different trade-offs allow execution of the attack with similar time
complexity and reduced storage requirements of only about 70TiB.
Keywords: Isogenies · Cryptanalysis · SIDH · SIKE · Meet-in-the-Middle · Set
Intersection

1 Introduction
Under the threat of quantum computers appearing in the near future, public-key cryp-
tography has to evolve to keep modern communication protocols secure. To foster the
evolution, NIST organizes a competition for Post-Quantum Cryptography Standardization
(PQC) [Nat22]. SIKE [JAC+20] (Supersingular Isogeny Key Encapsulation) is one of the
alternate candidates of the ongoing 3rd round. It is based on the SIDH protocol (Supersin-
gular Isogeny Diffie-Hellman) developed by De Feo and Jao [JD11] (and Plût [FJP14]),
following and improving the ideas of the constructions proposed by Rostovtsev and Stol-
bunov [RS06, Sto10]. Isogeny-based cryptography only recently gained attention and
started to develop rapidly.

In particular, for a specially shaped prime p, the security of SIKE relies on the hardness
of finding (or, equivalently, computing) an isogeny between two given supersingular
elliptic curves defined over the finite field Fp2 (the so-called computational supersingular
isogeny problem, CSSI). The classic meet-in-the-middle attack (MitM, also known as
bidirectional search), applied in the isogeny setting by Galbraith [Gal99], requires O(p1/4)
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time and memory/storage in the SIKE setting. Adj, Cervantes-Vazquez, Chi-Domínguez,
Menezes and Rodríguez-Henríquez [ACC+19] observed that large amounts of storage
are likely impossible to be achieved in practice due to fundamental physical constraints.
They thus applied the classic low-memory van Oorschot-Wiener (vOW) golden collision
search [vW99] to the isogeny setting by using less memory at the expense of more time,
and conjectured that this attack represents the main threat to SIKE. Improved analysis
of the application of van Oorschot-Wiener to SIKE with further optimizations was given
by Costello, Longa, Naehrig, Renes and Virdia [CLN+20]. Based on this analyses, Longa,
Wang and Szefer [LWS21] estimated the real costs of mounting such attack at various
security levels, concluded that previous security estimates were conservative, and proposed
to revise parameters in order to improve efficiency. For example, they propose to replace
SIKEp434 with SIKEp377, which is 40% faster, while still targeting to satisfy NIST Level
1 security requirements.

In order to motivate security analysis of SIKE, Microsoft recently published two
challenges [Mic21b] with reduced-size instances of SIKE: $IKEp182 and $IKEp217. The
classic security of the instances via the meet-in-the-middle attack is only about 45 and 55
bits respectively. However, such amount of memory (245 storage units ≥ 256 TiB) is not
trivial to manage efficiently.

In this work, we revisit the application of the classic MitM attack to the isogeny search
problem. While it requires efficient usage of large amounts of memory/storage, it has
much lower computational overhead than the vOW method, where, for example, a single
step requires computing expensive isogenies (which can instead be amortized in MitM),
and large penalties are paid to reduce the memory usage. We focus on optimizing the
application of MitM to the SIKE cryptosystem and show how to efficiently use disk-based
high-performance storage which is more practical than RAM memory. As a concrete
application, we solve the $IKEp182 on a high-performance cluster. We estimate that
the attack can in principle be executed in at most 9.5 core-years using about 70 TiB of
high-performance storage. Our implementation is mainly written in SageMath [The21]
and C++, using parts of the SIDH library by Microsoft Research [Mic21a].

1.1 Our Approach
At the high level, we used the classic meet-in-the-middle approach for solving the isogeny
path problem, in which the hardness of SIKE lies. We applied and improved several
existing optimizations from both MitM and vOW settings in the literature, namely:

(2-bit leak from the knowledge of the final curve) In [CLN+20], it was noted that
the final curve (i.e., the image of the initial curve through a secret 2e-isogeny) fully leaks
the last 4-isogeny. This effectively reduces by a factor of 4 the set of j-invariants reachable
from the final curve that need to be considered.

In addition, we show how to express this reduced set in the same form as the set
of j-invariants reached from the initial curve. This simplifies conceptually the MitM
application to SIKE, by unifying the representation of sets arising from the initial and the
final curves.

(1-bit conjugation-based reduction) In SIKE, the initial Montgomery curve is
y2 = x3 + 6x2 + x, and by being defined over Fp, almost all the curves ℓ-isogenous over
Fp2 to it (through SIKE isogenies), have j-invariants which can be grouped in conjugate
pairs. It is thus sufficient to search for a collision of e.g. the real part of the j-invariants in
the middle, to effectively halve the size of the set arising from the initial curve. Recovering
the full colliding j-invariant from such partial collision is easy due to the fact that paths
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to conjugate elements are element-wise conjugates. This technique was discovered and
applied in the vOW setting in [CLN+20].

(Depth-first tree exploration) A direct application of meet-in-the-middle with the
(optimized) arithmetic from SIKE, would recompute a lot of intermediate steps repeatedly
(simply speaking, computing each entry in the middle would require following a full
path from the root of a full binary tree to its leaf). It was shown in [ACC+19] how to
perform depth-first tree exploration (denoted MITM-DFS) by maintaining a basis allowing
to generate full current subtree. This idea was also partially used in the vOW attack
in [CLN+20] for precomputing first levels of the tree.

In addition, we developed the following new optimizations:

(Efficient arithmetic for MITM-DFS) Whereas the work [ACC+19] relied on generic
Vélu’s formulas for computing isogenies on Weierstrass elliptic curves, we show how to
adapt the MITM-DFS tree exploration method to the highly optimized x-only isogeny
arithmetic on Montgomery elliptic curves used in SIKE.

(Optimal strategy for the tree variant of the isogeny/multiplication trade-off)
In the work proposing SIDH [FJP14], the authors showed how to compute an optimal
strategic trade-off between the number of ℓ-isogeny evaluations and point multiplications
during an ℓe-isogeny computation. We show how an analogue of this strategy can be applied
to explore the search tree more efficiently. This is an optimization of the MITM-DFS
technique.

(Disk-based storage and sorting) It is much more feasible to obtain and use a large
amount of disk-based storage, than a similar amount of RAM memory. However, the
classic meet-in-the-middle formulation uses a (hash-)table where the majority of queries
follow a random access pattern, most suitable for RAM. When disk storage is used, latency
represents the bottleneck of using hash-tables, and limits the application of parallelization.
To counter this, we follow an alternative approach to implement the MitM attack: we
generate the two large j-invariants sets arising from the starting and the final curves, and
we intersect them using sorting and merging algorithms, which, instead, mostly perform
local or sequential access patterns.

A similar idea was suggested by Bernstein [Ber09] for searching collisions of hash
functions using a 2-dimensional grid of devices (mesh sorting using an optimal algorithm
by Schnorr and Shamir [SS86]); the authors of [ACC+19] also estimated performance
of mesh sorting applied to the isogeny path problem, but considered only p ≥ 2448 and
concluded that it is not competitive.

(Storage-collision trade-off and compression) Truncating intermediate entries (j-
invariants representations) permits to reduce storage requirements at the cost of allowing
false-positive collisions. By omitting all the auxiliary information (e.g. the path in the set
to an entry), we can reduce the storage further at the cost of an extra recomputation step,
where the two sets are recomputed (fully memoryless and in parallel) in order to retrieve the
relevant auxiliary information for collisions found in the previous step. Furthermore, the
resulting sets become dense due to the truncation of entries, and can be compressed (when
sorted) by storing the differences between successive elements. In the case of $IKEp182,
we used 64-bit entries, which already at 32 GiB of sorted data (232 truncated entries) have
the expected difference of about 32 bits. This reduces the total storage requirements down
to approximately 244 × 2× 4 bytes = 128 TiB.
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2 Preliminaries
2.1 Isogenies between Supersingular Elliptic Curves
An isogeny of elliptic curves ϕ : E → E′ defined over Fq is a surjective morphism of curves
that induces a group homomorphism E(Fq)→ E′(Fq). When such map is defined over Fq,
E and E′ are said to be isogenous over Fq. By Tate’s Isogeny theorem [Tat66], two curves
are isogenous over Fq if and only if they have the same number of points in Fq.

In this work, we only consider separable isogenies, whose kernel has size equal to the
degree of the respective rational map. We call an isogeny of degree ℓ an ℓ-isogeny. Separable
isogenies ϕ : E(Fq)→ E′(Fq) (up to isomorphism) are in bijections with subgroups G of
E(Fq) so that ker(ϕ) = G and ϕ is a |G|-isogeny: in such case, the curve E′ is isomorphic
to the group quotient E/G. When p ∤ ℓ, the ℓ-torsion E[ℓ] of an elliptic curve E defined
over a characteristic p has structure isomorphic to Zℓ × Zℓ and ℓ + 1 cyclic subgroups of
order ℓ.

For every separable degree-d isogeny ϕ : E → E′, there exists a dual degree-d isogeny
ϕ̂ : E′ → E so that the maps ϕ ◦ ϕ̂ = [d]E and ϕ̂ ◦ ϕ = [d]E′ are the multiplication-by-d
endomorphisms on E and E′, respectively.

If ℓ is composite, it is possible to decompose a ℓ-isogeny into a composition of isogenies
of prime orders. This property allows, in practice, to compute efficiently high (smooth)
degree isogenies. More precisely, if ℓ = pe0

0 · . . . · pen
n and ϕ is a ℓ-isogeny, then there exists

pi-isogenies ϕpi

j for i ∈ [0, n], j ∈ [1, ei], so that

ϕ = ϕp0
1 ◦ . . . ◦ ϕp0

e0
◦ . . . ◦ ϕpn

1 ◦ . . . ◦ ϕpn
en

In the following, we will only consider separable isogenies over Montgomery elliptic
curves, which are parametrized1 by A ∈ Fq, A ̸= 4 and are defined by the equation

EA : y2 = x3 + Ax2 + x

Two elliptic curves are Fq-isomorphic if they have the same j-invariant. The j-invariant
of a Montgomery elliptic curve EA is equal to j(EA) = 256(A2−3)3

A2−4 . It is easy to see that in
the Fp2-isomorphism class of a supersingular j-invariant j0, we have (at most) 6 distinct
Montgomery curves: if ±A satisfy the equation j0 = 256(x2−3)3

x2−4 , then also

±B = 3x̃ + A√
x̃2 − 1

± C = 3z̃ + A√
z̃2 − 1

do, where x̃, z̃ = 1/x̃ are the roots of x2 + Ax + 1 = 0.
The trace t of an elliptic curve E defined over Fq is the integer satisfying #E(Fq) =

q +1− t. An elliptic curve is called supersingular if it is defined over a field of characteristic
p and has trace t congruent to 0 mod p. The j-invariant of a supersingular elliptic curve
belongs to Fp2 (see [Sil09, V.3 - Theorem 3.1.a]). In fact, any supersingular curve is
isomorphic to an elliptic curve defined over Fp2 . From Tate’s Isogeny theorem it follows
that the set of supersingular elliptic curves is closed under isogenies. We conclude that the
property of being supersingular is induced by curves’ j-invariants: if there is a supersingular
curve with j-invariant equal to j, then j is said to be a supersingular j-invariant and
all curves having j as j-invariant are supersingular too. For any prime p, there exist
approximately

⌊
p+1
12

⌋
supersingular j-invariants [Sch87, Theorem 4.6].

For any fixed j-invariant and a positive integer ℓ, p ∤ ℓ, any curve E with j(E) = j has
the same set of ℓ + 1 ℓ-isogenous curves (up to isomorphism), with the isogenies being
defined by the distinct order-ℓ subgroups of the torsion Zℓ × Zℓ. An order-ℓe kernel on

1More general Montgomery curves are given by EA,B = By2 = x3 + Ax2 + x, however the values of B
are not relevant for our work.
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a supersingular elliptic curve defines a decomposition of the respective ℓe-isogeny into e
ℓ-isogenies, which we shall call a walk.

Definition 1 (Walk). Let E0 be a supersingular elliptic curve over Fp2 , ℓ a prime
distinct from p and let (P0, Q0) be two independent generators of E0[ℓe] = Zℓe × Zℓe .
Two values a, b ∈ Zℓe not simultaneously divisible by ℓ, define a separable ℓe-isogeny
ϕ = ϕe−1 ◦ . . . ◦ ϕ0 : E0 → Ee over Fp2 , where, for i ∈ [0, e − 1], ϕi : Ei → Ei+1 is an
ℓ-isogeny with ker(ϕi) = ⟨[ℓe−1−i] · ([a]Pi + [b]Qi)⟩ and (Pi+1, Qi+1) = ( ϕi(Pi), ϕi(Qi) ).
We will often refer to such ϕ as the isogeny arising from [a]P + [b]Q.

Remark 1. If ℓ ∤ a, then ⟨[a]P + [b]Q⟩ = ⟨P + [s]Q⟩, with s = a−1b ∈ Zℓe , and such
subgroups give rise to ℓe distinct isogenies. If instead a = ℓ · c, kernels can be written as
⟨[sℓ]P + Q⟩, with s = b−1c ∈ Zℓe and there exists at most ℓe−1 such distinct subgroups.
This brings the total number of walks that can be traversed from a starting curve E0 to
ℓe−1(ℓ + 1), which in turn correspond to all walks obtained by iteratively exploring all ℓ + 1
neighbours of E0 up to depth e (with no backtracking). Kernels of the form ⟨P + [s]Q⟩,
with s ∈ Zℓe , are the ones employed by SIKE (Subsection 2.2): we note that this choice
restricts the possible isogeny-paths that can be walked, since only ℓ out of ℓ + 1 neighbours
of E0 are explored.

Problem 1 (CSSI). Given two elliptic curves E and E′ and integers ℓ, e such that there
exists a separable isogeny ϕ : E → E′ of degree ℓ, compute ϕ or, equivalently, find (a
generator of) the subgroup G of E[ℓe] such that E′ = E/G.

In practice, it suffices to find a composition of e ℓ-isogenies between the two curves, i.e.,
a length-e walk from E to E′. Then, a solution to Problem 1 can be efficiently recovered
from the composition in a digit-by-digit (in base ℓ) manner, or by computing the orthogonal
complement of ϕ(G).

2.2 SIDH and SIKE
Supersingular Isogeny Key Encapsulation (SIKE) [JAC+20] is a post-quantum key en-
capsulation mechanism (KEM) based on the difficulty of computing/finding an isogeny
between two ℓe-isogenous elliptic curves (Problem 1). It is based on the Supersingular
Isogeny Diffie-Hellman (SIDH) [JD11] key exchange. The public-key encryption and key
encapsulation mechanisms in SIKE are derived from the basic key exchange protocol
(SIDH), which we focus on.

In SIDH/SIKE, the prime p has the form p = 2eA3eB − 1 with 2eA ≈ 3eB and the
working field is set to be Fp2 = Fp[i]/(i2 + 1). The parameters eA and eB are chosen so
that the Montgomery curve E = E6 over Fp2 is supersingular with (p + 1)2 rational points
and torsions E[ℓeA

A ] = Zℓ
eA
A
× Zℓ

eA
A

= ⟨PA, QA⟩ and E[ℓeB

B ] = Zℓ
eB
B
× Zℓ

eB
B

= ⟨PB , QB⟩.
Once the public parameters (p, E(Fp2), PA, QA, PB , QB) are generated, two parties,

Alice and Bob, can agree on a common secret as follows:

• Alice picks secret sA
$←− Z2eA and computes the 2eA-isogeny ϕA : E → EA with

ker ϕA = ⟨PA +[sA]QA⟩. She then sends to Bob EA and the points ϕA(PB), ϕA(QB).

• Bob picks secret sB
$←− Z3eB and computes the 3eB -isogeny ϕB : E → EB with

ker ϕB = ⟨PB + [sb]QB⟩. He then sends to Alice EB and the points ϕB(PA), ϕB(QA).

• Alice computes the 2eA -isogeny ϕÃ : EB → EBA with ker ϕÃ = ⟨ϕB(PA)+[sA]ϕB(QA)⟩
and sets the common secret to j(EBA).

• Bob computes the 3eB -isogeny ϕB̃ : EA → EAB with ϕB̃ = ⟨ϕA(PB) + [sB ]ϕA(QB)⟩
and sets the common secret to j(EAB).
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It easy to see that, since separable isogenies correspond to curve quotients, in this
setting they commute, and so j(EBA) = j(EAB). For more details and proof of correctness
of the above protocol we refer to [JD11,JAC+20].

The original version of SIDH [FJP14] proposed to choose the kernel of the shape
⟨[s]P + [s′]Q⟩ instead of ⟨P + [s]Q⟩. The latter version, adopted in SIKE and in the
implementation of SIDH by Microsoft [Mic21a], reduces the number of possible kernels
from ℓe−1(ℓ + 1) to ℓe. In SIKE, it also avoids some technicalities introduced by adopting
efficient 2-isogeny computation formulas: the order-2 point (0, 0) is not allowed to belong to
the isogeny kernel ⟨PA+[s]QA⟩ with s ∈ Z2eA . Thanks to a result of Renes [Ren18, Corollary
2], this is guaranteed by choosing the generators PA, QA of the torsion E[2eA ] so that
[2eA−1]QA = (0, 0).

2.3 Efficient Isogeny Computation
In this section we provide an overview of how isogenies, and thus walks in the isogeny
graph, can be practically and efficiently computed. We will focus on 2-isogenies, relevant
for SIKE and for our attacks. Proofs that the following formulas define isogenies can be
found, for example, in [CH17,Ren18]. We shall distinguish isogenies based on these specific
formulas as “SIKE 2-isogenies”.

Proposition 1 (SIKE 2-isogeny). Let EA,B be a Montgomery supersingular elliptic curve
over Fp2 with p ̸= 2 and let R = (xR, yR) ∈ E(Fp2) be an order 2 point not equal to (0, 0).
Then,

ϕ : EA −→ EA′

(x, y) 7−→ (f(x), yf ′(x))

with
f(x) = x

x · xR − 1
x− xR

is a separable 2-isogeny between Montgomery elliptic curves with ker(ϕ) = ⟨R⟩ and A′ =
2− 4x2

R.

Remark 2. The 2-isogeny defined in Proposition 1 fixes the point (0, 0), and thus cannot
belong to its kernel.

An illustration of how the 6 possible curves in a given isomorphism class interact by
SIKE 2-isogenies is given in Appendix D.

3 Meet-in-the-Middle Attack on SIKE
In this section we will provide an overview of the meet-in-the-middle attack to solve the
CSSI problem and optimizations specific to isogeny arithmetic used in SIKE.

A high level description is as follows. In order to find a path of length e between two
curves EA and EB in the supersingular isogeny graph (i.e., an ℓe-isogeny between EA and
EB), an attacker can explore all length-⌊e/2⌋ paths starting from EA and all length-⌈e/2⌉
paths starting from EB looking for a non-trivial intersection: since isogenies are defined up
to isomorphisms, we can identify the matching curve(s) in-the-middle by computing their
j-invariants. The correctness of this approach follows from the fact that the last ⌈e/2⌉
steps of the actual walk from EA to EB can be reversed due to existence of dual isogenies.
Thus, the j-invariant in-the-middle is the one visited by the original walk after ⌊e/2⌋ steps
from EA.

In SIDH/SIKE, MitM can be applied to attack either Alice’s or Bob’s public key:
indeed, from Alice’s public key we can easily recompute the curve EA that is 2eA -isogenous
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to the starting curve E, and, similarly, Bob’s public key reveals the curve EB that is
3eB -isogenous to the starting curve E. Explicitly finding the secret isogeny ϕA : E → EA

or ϕB : E → EB, allows the attacker to reapply it to the other party’s public key to
ultimately obtain the shared secret key.

In SIKE, not all (ℓ+1)ℓe−1 isogenies are possible, because isogeny kernels are restricted
to the shape ⟨P + [s]Q⟩, which excludes in the first ℓ-isogeny step the kernel

〈
[ℓe−1]Q

〉
,

leaving only ℓe isogenies in total. Furthermore, in Section 3, we show that the isogeny
formulas of Subsection 2.3 can be used to walk from the curve EA towards the starting
curve E, by moving to an isomorphic curve EA′ and finding appropriate torsion basis
⟨P ′, Q′⟩ = EA′ [ℓe] with [ℓe−1]Q′ = (0, 0).

This refines the meet-in-the-middle into generating and intersecting the leaves of
the two “trees” of j-invariants spanned by walks from the bases P, Q ∈ E(Fp2) and
P ′, Q′ ∈ EA′(Fp2). The meet-in-the-middle trees structure for ℓ = 2 is illustrated in
Appendix A.

Definition 2 (SIKE-tree). Given a curve E defined over Fp2 and a basis (P, Q) for its
torsion E[ℓe], the tree spanned by (P, Q) of depth d ≤ e is the directed graph consisting of
all length-d walks from E arising from [ℓe−d] · (P + [s]Q) with s ∈ Zℓe .

Remark 3. Since two different kernels may lead to the same image curve, the graph spanned
by the ℓe-torsion generators (P, Q) may not always correspond to a tree. However, this
can be solved by distinguishing nodes arising from different paths (even if the respective
curves are the same).
Remark 4. In SIKE, a party computes a full ℓe-isogeny using an ℓe-torsion basis (P, Q).
In other circumstances, like in the tree computation or in the meet-in-the-middle attack,
we need to compute only the initial part of such full walks: thus, to keep Definition 1
consistent, such full torsion basis needs to be re-scaled, so that the path length matches
the desired one. For a walk of length i, the re-scaling is done as

(P ′, Q′) = ([ℓe−i]P, [ℓe−i]Q).

so that all length-i walks arising from P ′ + [t]Q′ with t ∈ [0, ℓi − 1] will match the first i
steps of length-e walks arising from P + [s]Q with s ∈ [0, ℓe − 1]. This can also be seen as
an optimization, since computing ℓi-isogenies is much cheaper than computing the first i
steps of ℓe-isogenies.

It follows that, to succeed in a meet-in-the-middle attack, it is crucial to be able to
generate trees (more precisely, their leaves) from curves.

Problem 2 (Tree generation). Given a supersingular curve E defined over Fp2 and an
ℓe-torsion basis (P, Q) for it, compute the set of j-invariants of curves appearing as leaves
in the depth d ≤ e tree spanned by (P, Q).

Final Curve 2-bit Leak In SIKE, the shared secret key is (computed from) the j-invariant
of the image curve EAB of the isogeny resulting from composing Alice’s and Bob’s walks
in their respective torsions. To allow this, each party publishes the intermediate image
curves2 EA and EB. As was further noticed in [CLN+20], the final value A leaks the
j-invariant of the curve visited two 2-isogeny steps before reaching the final curve during
her walk: more concretely, it can be shown that the order-4 points Q̃ = (1,±

√
A + 2) lie

in the kernel of the dual of the isogeny ϕ : E6 → EA, and we can thus easily obtain the
j-invariant j′ = j(EA′) of the curve EA′ = EA/⟨Q̃⟩ visited two steps before the end.

We note however that the exact curve visited two steps before the end remains
undetermined (i.e., the j-invariant is known but the A-coefficient is not). On the other

2Even though the curves are not explicitly given, the torsion points needed by the other party are
given, implicitly defining the concrete curve.
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hand, we can choose one of the 6 curves with the given j-invariant based on the following
condition: the kernel ⟨(0, 0)⟩ must define an isogeny towards the penultimate j-invariant
on the original path. Then, such a curve would span a SIKE-tree including a walk through
the same j-invariants as the original path (excluding the last two steps). This allows to
represent the meet-in-the-middle problem for SIKE (with the 2-bit leak incorporated) in
terms of intersecting two SIKE-trees, as described before.

As an interesting observation, we note that such a curve EA′ can be directly computed
using the following simple formula3 (the full statement with a proof is given in Appendix C):

A′ = 2− 16
A + 2 (the case of two last 2-isogenies).

Storing Conjugation Representatives In SIKE, the starting curve is chosen to be E6(Fp2),
and since A = 6 ∈ Fp, the Frobenius map π : (x, y) 7→ (xp, yp) defines an automorphism
for E6(Fp2). As already noticed in [CLN+20], this implies that for any kernel ⟨R⟩ ⊂ E6,
j(E6/ ⟨R⟩)p = j(E6/π(⟨R⟩)), that is pairs of conjugate kernels give rise to paths to
curves having conjugate j-invariants. By considering the intermediate A-coefficients and
j-invariants modulo the conjugation (e.g., using the norm or the real part suffices), this
property effectively allows to halve the size of the initial SIKE-tree. Once an intersection
between the SIKE-trees is found, it is left to check both conjugate candidates, which
can be done easily due to the respective paths being element-wise conjugate. We refer
to [CLN+20] for theoretical and graphical description of this phenomenon.

4 Efficient Tree Generation
In this section, we focus on optimized generation of the leaves of the tree spanned by
given torsion generators. We focus on the case of 2-isogenies but the discussion can be
generalized to other values of ℓ as well.

A straightforward approach for generating a tree, is to enumerate all possible s ∈
[0, 2e − 1] and compute the respective isogeny’s image curve, similarly as done in SIKE for
a given private key s. In fact, such walk computation is performed (up to a precomputation
of a fixed number of the first steps) as a single step in the low-memory van Oorschot-Wiener
collision search applied to SIKE [ACC+19,CLN+20,LWS21]. However, many intermediate
curves will be visited multiple times for different values s in the kernel ⟨P +[s]Q⟩. To avoid
the extra work, the authors of [ACC+19] developed a recursive method (called MITM-DFS)
for computing the full tree in a depth-first traversal order, by efficiently maintaining a
2e−i-torsion basis on each new visited curve at depth i.

In this section, we improve the MITM-DFS method in two ways. First, we show how
to maintain the torsion basis in the case of SIKE isogenies, which allows to use the highly
effective arithmetic of SIKE (including the available optimized implementation [Mic21a]).
This requires careful choice of new generators so as to avoid the possibility of hitting
the kernel (0, 0). Second, we show how to adapt the strategic trade-off between isogeny
evaluations and scalar multiplications described in SIDH [FJP14] to the tree generation.

4.1 Maintaining Torsion Basis for Efficient Isogeny Computations
We now describe a method which allows to maintain, during path traversals, a basis suitable
for the efficient arithmetic formulas used by SIKE, i.e., the ones detailed in Subsection 2.3.
This extends a similar method for generic isogenies from [ACC+19]. The proof follows
from the fact that the 2-isogeny formulas in SIKE (see Proposition 1) fix the point (0, 0)

3In SIKE, if the last two steps were performed as a single 4-isogeny, then the sign of A has to be flipped
due to specifics of the arithmetic.
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(see Remark 2). The idea is to base the DFS tree exploration on the parity of the possible
value s defining the kernel ⟨Pi + [s]Qi⟩ at the depth i. Indeed, this parity defines the two
possible 2-isogeny choices, and the following proposition shows how to compute the right
torsion basis for the codomains of each of the two isogenies. This allows to recursively run
the exploration in each of the curves. Full proof is given in Appendix B and a pseudocode
illustrating the use of this proposition is given in Appendix A.

Proposition 2. Let A ∈ Fp2 and e ≥ 2. Let P, Q ∈ EA(Fp2) be a basis of EA[2e] with
[2e−1]Q = (0, 0). Then, for a 2-isogeny ϕ : EA → EA′ arising from [2e−1](P + [s]Q) with
s ∈ [0, 2e − 1], the pair P ′, Q′ ∈ EA′(Fp2) is a basis of EA′ [2e−1] with [2e−2]Q′ = (0, 0),
where

P ′ = ϕ(P ), Q′ = ϕ([2]Q), if ker ϕ =
〈
[2e−1]P

〉
(i.e., s is even);

P ′ = ϕ(P + Q), Q′ = ϕ([2]P ), if ker ϕ =
〈
[2e−1](P + Q)

〉
(i.e., s is odd).

4.2 Optimal Strategies for the Doubling/Isogeny Evaluation Trade-off
During evaluation of the isogeny walk arising from P + [s]Q, the order-ℓ kernel for the
next step can be obtained through scalar multiplication as [ℓe−1](P + [s]Q). To compute
such kernels more efficiently, we can store some intermediate values [ℓe0−1](P + [s]Q) with
e0 < e, and later push all such points through isogenies, to aid scalar multiplications on
the consequent curves arising in the walk. Indeed, this allows to compute the kernel of the
next-step ℓ-isogeny with just e−1−e0 point multiplications by ℓ using the maximum e0 for
which [ℓe0−1](P + [s]Q) is stored, while storing and pushing smaller multiples is also useful
for the later steps. It is then clear the relevance of finding good trade-offs between the
number of multiplications by ℓ and the number of isogeny evaluations needed to traverse
a walk: indeed, depending on the implementation adopted, these two operations have
different costs.

In [FJP14], De Feo, Jao and Plût describe how to derive an optimal evaluation strategy
for the best trade-off between scalar multiplications and isogeny evaluations, using a
dynamic programming-based algorithm. We now provide a brief overview of how optimal
evaluation strategies are found in [FJP14]. Let K0 ∈ EA[ℓe], ϕi : EAi

→ EAi+1 , i ∈ [0, e−1]
be the sequence of isogenies on the length-e walk defined by K0 and Ki = ϕi−1(Ki−1)
for i ∈ [1, e − 1]. The goal is to compute ker ϕi =

〈
[ℓe−1−i]Ki

〉
for all i ∈ [0, e − 1] in a

minimum overall cost in terms of scalar multiplications and isogeny evaluations.
Aiming at this, we construct a directed graph with nodes{

[ℓi]Kj | j ∈ [0, e− 1], i ∈ [0, e− 1− j]
}

,

connected by two types of edges, namely:

• “multiplication by [ℓ]” edges of cost Cmult, connecting [ℓi]Kj to [ℓi+1]Kj , for i+j+1 ≤
e− 1;

• “isogeny evaluation” edges of cost Ceval, connecting [ℓi]Kj to [ℓi]Kj+1 (through an
ℓ-isogeny ϕj), for i + j + 1 ≤ e− 1.

A strategy for evaluating all the kernels ker ϕi =
〈
[ℓe−1−i]Ki

〉
can then be described

by a tree subgraph in this graph, rooted in K0 and consisting of directed paths towards
the goal leaf nodes [ℓe−1−i]Ki for i ∈ [0, e− 1]. The cost of a strategy is then the sum of
the costs of the edges in it, counting only once edges traversed by multiple paths. It is
then clear that best strategies are those ones in which paths to leaves overlap as much
as possible. An example of such graph along with an optimal strategy is illustrated in
Figure 1.
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Figure 1: An example of evaluation strategy graph. Multiplication by [ℓ] edges ( −→) and
isogeny evaluation edges (−→ ) transform K0 ∈ E[ℓ6] to the leaf values {[ℓ6−i−1]Ki}i∈[0,5].
In bold, an optimal evaluation strategy assuming Ceval = 1.5 · Cmult.

In [FJP14], it was shown that there exist minimal-cost strategies with recursive
structures. The problem is decomposed into two subproblems, where the costs of the
subgraph induced after following i multiplication edges (height e−1− i), and the subgraph
induced after following e− i isogeny evaluation edges (height i− 1) are taken into account.
For e ≥ 2, the minimal cost Ce for evaluating trees of height e− 1 is given by

Ce = min
1≤i≤e−1

(i · Cmult + (e− i) · Ceval + Ce−i + Ci)

This is possible due to the fact that, in paths towards leaves, the order of any two consequent
edges can be swapped (if it does not break strategy consistency), since multiplication
commutes with isogenies and such swaps do not change the overall strategy cost. An
optimal strategy can thus be obtained by evaluating all possible choices of i and solving
recursively the induced subproblems. Since the subproblems are fully characterized by
their size (and are independent from the root kernel chosen), their solutions can be cached
and reused (dynamic programming).

Application to tree generation We are interested in using best strategies during tree
generation to make path computations faster.

The difference between the tree generation and a simple isogeny evaluation is that each
isogeny evaluation edge creates ℓ new exploration nodes deeper in the tree. However, all
the ℓ induced sub-trees differ only by curves and generators, and so all can follow the
same sub-strategy. Effectively, an isogeny evaluation edge multiplies the number of nodes
and edges being explored in the isogeny tree by ℓ (including the isogeny edge itself). To
account this, we can then set the weight of an isogeny evaluation edge ϕj to ℓj+1, while
we assign to multiplication edges [ℓi]Kj → [ℓi+1]Kj a weight of ℓj , since in this case the
overall number of nodes being explored doesn’t change.

Once weights are assigned, the dynamic programming approach can be applied in
order to find best strategies on these new graphs. However, in contrast to best strategies
for single paths, sub-problems are not fully characterized by their size: edge weights
depend, indeed, on where we currently are in the strategy graph. On the other hand, all
weights at isogeny depth i are simply multiplied by a factor ℓi. Therefore, it is sufficient
to find best strategies for trees of heights 1, . . . , e− 1 rooted at K0. This leads to a simple
1-dimensional dynamic programming algorithm with complexity O(e2), based on the new
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recursive expression:

Ce = min
1≤i≤e−1

 i · Cmult︸ ︷︷ ︸
i mult. edges

+

e−i∑
j=1

ℓj

 · Ceval︸ ︷︷ ︸
e−i isog. edges

+ Ce−i︸︷︷︸
left subtree

+ ℓe−i · Ci︸ ︷︷ ︸
right subtree


5 Set Intersection using Sort and Merge
5.1 Hash-tables or Sort and Merge?
A standard way to implement the final stage of a meet-in-the-middle attack, i.e., intersecting
the two sets of values in-the-middle, is by using hash-tables: we fill one of such tables with
entries from the first dataset, and we then lookup every element in the second one. In
theory, the amortized cost of a hash-table lookup would be O(1), but in practice, random
memory accesses get slower and slower as the table size grows and memory latency starts
affecting the execution time.

An alternative approach is to sort the two datasets and perform a linear-time merge
operation by keeping common elements only, an operation requiring sequential memory
accesses. The drawback of this approach is that (in theory) the sorting step has quasi-
linear complexity O(n log n) in the (biggest) dataset size n, and to complete it we need
memory/storage access patterns which are not necessarily sequential.

The comparison of in-RAM set intersection using hash-tables and sort-and-merge is
given in Appendix E. While even the toy $IKEp182 challenge requires out-of-RAM-scale
data, this comparison illustrates the ideas on the small scale.

Sorting Big-data Sorting large amounts of data that cannot fit the main memory is known
as external sorting. A well-known approach for external sorting is a hybrid sort-and-merge.
First, the data is split into relatively small chunks that fit memory of the used machine
and that are sorted in parallel using any standard algorithm (e.g., radix sort). Sorted
chunks are written to the disk-based storage. The second stage is merging the sorted
chunks into bigger sorted chunks. If the number of initial chunks is too large, this process
can be performed in several layers, each merging every t sorted chunks into one bigger
sorted chunk. This requires (parallel) sequential reading of the t chunks and a size-t heap
(which exhibits random memory accesses but in a small memory range). For the purpose
of set intersection, the last layer may merge chunks from both sets and compare elements
on the fly, removing the need to write the full sorted dataset (which requires costly I/O
operations).

Parallelization When dataset sizes are large, efficient parallelization techniques are a
requirement. The most straightforward approach for parallelizing intersection finding,
consists in splitting the input datasets A and B in k (equally sized) chunks (A0, . . . , Ak)
and (B0, . . . , Bk), and then intersect all k2 distinct pairs Ai ∩ Bj independently in par-
allel. Clearly, this parallelization comes at the cost of k times more work than standard
lookups/merges, but can be acceptable if k is small.

An advantage of this approach, is that each chunk can be preprocessed independently,
so that each of the k2 chunk pairs intersection takes preprocessed data as input. In our in-
RAM experiments (see Appendix E) we observed that already for k = 2, SortMerge (which
requires a total number of 2 sort calls and k merges/intersections per chunk) outperforms
the FastHash hash-set approach (which requires 1 chunk insertion and k chunks lookups
per chunk).
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5.2 Storage-Collisions Trade-off and Compression
The large problem scale requires to reduce storage requirements as much as possible. We
describe three techniques for this purpose.

Omitting path information. Basic MitM would store the paths associated to j-invariants
in each tree in order to quickly reconstruct the isogeny path. This information can be
omitted at the cost of an extra iteration of tree exploration, required to recover full
j-invariants associated to colliding representations and the respective paths in the trees.
This extra exploration can be considered memoryless, if the expected number of collisions
is sufficiently small (for example, if it fits the local memory of a computing node).

Truncating j-invariants representations. Storage reduction can be made by reducing the
number of bits we use to represent j-invariants (modulo the conjugation), while allowing
only a reasonable amount of false positive collisions. Since each tree has only approximately
2eA/2 ≈ p1/4 leaves, using n bits to represent j-invariants leads to approximately c =
(p1/4)2/2n collisions.

Sorted set compression. If the n-bit j-invariant representations are uniformly distributed,
we can compress sorted chunks of 2m such elements by noticing that any two consecutive
elements are expected to differ, on average, by 2n−m (as integers). We can then store
only such reduced differences, reserving 1 flag bit for distinguishing a small difference
from a full n-bit representation (in case two elements differ by more than 2n−m). This, in
fact, reduces memory requirements from n2m bits to ≈ (n−m + 1)2m bits, with different
implementation-specific word size trade-offs in the middle.

We note that by requiring the chunks to be sorted, this compression technique goes
towards the SortMerge intersection finding approach we detailed in Section 5. Since the
chunks can be decompressed on the fly without any overhead, the merge steps can be
performed as usual.

6 Cryptanalysis of the $IKEp182 Challenge
In this section we will detail how all the above ideas can be used to concretely break the
$IKEp182 challenge [Mic21b], a small-parameters specification-compliant SIKE instance
generated by Microsoft in a live event during the 3rd NIST PQC Standardization conference.

In $IKEp182, the field characteristic is equal to p = 291357 − 1. According to spec-
ification, we have Fp2 = Fp[i]/(i2 + 1), #E6(Fp2) = (p + 1)2 and E6[291] = ⟨PA, QA⟩,
E6[357] = ⟨PB , QB⟩. The coordinates of the points PA, QA, PB , QB as well as all other
values related to the attack in this section are reported in Appendix F due to page
limitations.

Our meet-in-the-middle attack will target the 291-torsion and will recover Alice’s full
91-steps walk, followed by the private key recovery. After a quick Setup, the full attack
will consist of 5 main stages: Trees Traversal, k-way Merge, Compression, Sieving and
Final Trees Traversal.

Setup. In the first step of the SIKE protocol (Subsection 2.2), Alice sends to Bob a
compressed representation of the points ϕA(PB), ϕA(QB), consisting of the 3 x-coordinates
xϕA(PB), xϕA(QB), xϕA(QB)−ϕA(PB). Such compressed representation is justified by use of
efficient implementations which exploits x-only arithmetic: we refer to [JAC+20] for more
details.

If we denote the tuple (xϕA(PB), xϕA(QB), xϕA(QB)−ϕA(PB)) as (xP , xQ, xQ−P ) we obtain
[CLN16, Section 6] the A coefficient of the Montgomery curve EA on which the points



Aleksei Udovenko and Giuseppe Vitto 13

ϕA(PB), ϕA(QB) lie, as

A = (1− xP xQ − xP xQ−P − xQxQ−P )2

4xP xQxQ−P
− xP − xQ − xQ−P

To take advantage of the final 2-bit leak described in Section 3, we computed the
coefficient A′ such that j(EA′) lies on the (secret) traversed path 2 steps before the final
curve, and the SIKE-tree arising from A′ does not go towards the final curve EA. This
can be achieved by using (1) to obtain the coefficient A′ = 2 + 16/(A− 2).

The Setup phase was implemented in SageMath [The21].
Trees Traversal. We proceed by attacking the 89-steps path in the 2-isogeny graph

between j(E6) and j(EA′). Note that there may be no path in the SIKE-tree (Definition 2)
between the exact curves, as we might chose a different representative curve, but there
must exist a path in the 2-isogeny graph between j(E6) and j(EA′), and the SIKE-trees
arising from E6 and EA′ must contain paths following this path by j-invariants (from the
opposite endpoints). In order to meet in the middle, we generate in a depth-first manner
the SIKE-tree arising from E6 (up to the depth 45) and the SIKE-tree arising from EA′

(up to the depth 44), employing the optimal strategies detailed in Subsection 4.2.
We note that, as discussed in Section 3, it suffices to explore only half of conjugate

sub-branches of the tree expanded from E6: this results in an almost equal number of
leaves in-the-middle generated from both trees, with a total of 244 + 1 leaves for the tree
expanded from E6, and 244 leaves for the one expanded from EA′ .

Once the depth-first generation reaches a leaf, we compute the corresponding j-invariant
and we store the least significant 64 bits of its real part. In our implementation, multiple
jobs explore in parallel distinct branches of each tree: when a job collects 2 GiB of 64-bit
j-invariant representations (which correspond to 228 j-invariants visited), this chunk is
sorted in-memory, written to disk, and then the job terminates. On the cluster we used,
each of these job took approximately 17 minutes to complete on a single core of an Intel®
Xeon® E5-2680v4 clocked at 2.4GHz with 4 GiB of RAM reserved. This sums up to a
total of approximately 4.2 core-years and 256 TiB of disk space needed to explore both
trees and store the truncated j-invariants.
Remark 5. By utilizing the Merge and Compression earlier, on the fly after a sufficient
amount of chunks is generated, the storage requirement could be reduced to close to
128 TiB.

k-way Merge. We employed our custom k-way merge implementation optimized for
64-bit unsigned integers, to merge the 2 GiB sorted chunks generated from each tree:
on a single core with 4 GiB of RAM, we needed approximately 2.5 core hours to merge
256 2 GiB chunks into a single 512 GiB sorted chunk. We note that, to keep memory
requirements close to the ones needed to store all j-invariants representations, chunks can
be merged at the same time with the depth-first traversal, as soon as enough new 2 GiB
chunks from a certain tree are generated. Practicality of running multiple such merges in
parallel depends, however, on storage architecture, cluster load and maximum disks I/O
throughput: on our cluster we were able to run 4 nodes in parallel, running 28 merge jobs
each, without degrading too much I/O performances. This merging stage took, overall,
approximately 54 core days.

Compression. Since 512 GiB chunks contain already 236 64-bit elements each, at this
point we ran single-core jobs to merge 4 chunks directly in compressed form (Subsection 5.2),
using 32 bits (including 1 flag bit) to encode elements differences. This resulted in a
compression factor very close to 1

2 . In the same configuration as above (and under the same
limitations), we needed roughly 5 core hours to complete one of such merge-to-compressed
job (we ran only 2-3 nodes concurrently, each executing 28 such jobs), for a total of 27
core-days to complete all jobs.
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We then finally obtained 64 1 TiB compressed chunks from each tree, for a total of
128 TiB disk space used (all previous sub-chunks were deleted).

Sieving. At this point we proceed with finding elements shared by chunks from different
trees. Since chunks are sorted already, we can use the parallel version of SortMerge with
parameter k = 64 detailed at the end of Subsection 5.1. This stage consists in merging
tuples of (compressed) 1 TiB chunks and storing only the common elements. If ran in a
single thread on the full data, this stage only requires sequential read of the 128 TiB of
data. However, the heap operations in k-way merge dominate the performance and can
not be parallelized. In our implementation, a sieving job consisted in merging at the same
time 4 chunks from the first tree with 4 chunks from the second tree, by decompressing
elements and storing only collisions: on a single core, it took approximately 1.1 core days
to complete, for a total of 280 core-days for 256 such jobs. This trade-off results in 2 PiB
of data read, which is acceptable to allow sufficient parallelization.

We expected and we actually found 16 777 119 ≈ 244·2/264 = 224 = 16 777 216 64-bit
collisions among the two trees: once such collisions were safely stored, we deleted all the
128 1 TiB chunks from previous stages.

Final Trees Traversal. With the collisions just found, we run the tree explorations
again, similarly as in the first stage of the attack, but this time we store only full j-invariants
in the middle that have the least 64 bits of their real part matching any of the collisions
found, and their paths in the respective trees.

After the full collision is found, we reconstruct Alice’s full walk from E6 to EA (and
thus her secret) using the paths associated to the matching j-invariants, including the
check for the conjugate path arising from E6 (see Section 3). In our case, the colliding
j-invariants in-the-middle obtained by expanding the trees from E6 and EA′ were, indeed,
conjugate pairs. The respective values, j0 and j1, are reported in Appendix F.

Using the (implementation-dependent) path information we stored, we then reconstruct,
in linear time, the Alice’s private key as

sA = 0x59d64d476da9487be414734

which allows us to easily compute Alice’s and Bob’s shared secret from Bob’s public key
exchanged, as

j(EAB) = 0x7a470546a24124f06f49bcbb855a6e3c1402ba1004bfc +

0x1a88f02557168dd75b64f8407a368aa4ff2bc03121fbaf · i

whose value is a correct pre-image for the publicly released SHA512 hash of the challenge
shared secret [Mic21b].

We found the solution to the challenge after exploring approximately 44% of the tree
expanded from E6 (only conjugate-unique sub-branches) and 63% of the tree expanded from
EA′ (success probability of ≈ 28%). We remark that these percentages only correspond to
the final tree regeneration step, the previous stages were fully completed.

This brings the total cost of our attack to approximately 4.2 + (54 + 27 + 280)/365 +
4.2 · (0.63 + 0.44)/2 ≤ 9.5 core years and 256 TiB of disk memory.

We note however that we decided to employ compression only during the execution of
the above attack, in order to reduce the amount of not fully parallelizable disk reads needed
for the parallel SortMerge. Thus, in fact, the whole attack can be executed in 9.5 core years
with just slightly more than 128 TiB of disk memory available. The storage requirement
can be reduced further by sacrificing parallelization and performing the main steps for a
single group of the second tree at a time. In our case, we used 4-chunk groups (4 TiB) on
each side and so only 64 + 4 = 68 TiB of storage is sufficient for the (less-parallel) attack.
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7 Discussion on Scalability
In this work, we showed how the $IKEp182 challenge can be broken in practice. A natural
question is whether the $IKEp217 challenge is reachable for attacking using our method.
More generally, on instances up to which size can the meet-in-the-middle attack compete
with the van Oorschot-Wiener method?

($IKEp217) In $IKEp217, the prime p is equal to 2110367 − 1, so that eA = 110, leading
to 192 PiB storage requirement if our attack on $IKEp182 is applied directly and 64-bit
j-invariant representations are stored (which may produce a large but still manageable
number of collisions, namely 2107−64 = 243).

The computational cost should scale linearly with the sizes of the trees, resulting in
2(110−91)/2 · 9.5 ≈ 6900 core-years. We remark though, that, on the cluster we used, the
main limitation is the I/O performance upper bounded by about 20 GiB/s. Even if an
infinite storage is available, this maximum throughput limits the time needed to solve the
instance, since full data must be read/written at least once. To read the 192 PiB of data
on such a cluster, one would need at least 116 days. Since full attack performs several I/O
rounds, the attack would likely take more than a year.

Towards the other side of the memory-time trade-off, we could reuse the current attack
setup on $IKEp182 with ẽA = 91, by guessing eA− ẽA = 19 final steps on the path, leading
to the estimation of 219 · 9.5 ≈ 5 million core-years for computations. This is a very “clean”
upper-bound estimation in that it is based on a real experiment and it parallelizes perfectly
(with the number of involved clusters similar to the one we used).

We can conclude that, depending on the physical feasibility of high-speed access to
192 PiB of storage, our attack on $IKEp217 may take between 6.9k and 5M core-years.
We remark that we did not take into account possibilities of further optimization of the
implementation or, more low-level implementations (GPU/FPGA/ASIC).

(SIKEp377) SIKEp377 is the smallest instance proposed in [LWS21] based on detailed
hardware-cost analysis of matching the NIST Security Level 1 (roughly equal to security
of the block cipher AES). The respective prime p is equal to 21913117 − 1.

As it is already unrealistic to consider 2(eA−3)/2 = 294 units of storage, we resort to the
approach of [ACC+19,CLN+20] of bounding the memory units by 280, in order to obtain
our attacker-optimistic estimation. Here, a unit may be, for example, a 128-bit integer (or
a 64-bit integer after the difference-based compression). Then, after guessing 28 2-isogeny
steps, the adversary would run the MitM attack on SIKE-trees of size 2(eA−28−3)/2 = 280

(we assume that the second tree is checked on-the-fly in chunks of negligible size; for
example, using 280 + 277 = 280.17 units results in slowdown of 23). The basic meet-in-
the-middle analysis predicts the cost of 228 · 2 · 280 = 2119 tree-element (i.e., j-invariants)
generations. On the other hand, for the storage of 280 units, a realistic implementation of
the sort-and-merge approach (repeated 229 times) would clearly blow up the complexity
beyond 2128 operations or even AES encryptions.

Similarly to $IKEp217, we could also reuse the attack on $IKEp182 to get an estimate
for SIKEp377. Here, the multiplicative complexity factor is 2100. In order to provide a
comparison with the financial cost estimation given in [LWS21] (based on the hardware
implementation of the vOW method), we (optimistically) assume that our attack can be
reproduced in 1 day on a device costing $1000. Therefore, with a $1 billion budget, we
could use 1M such devices in parallel, leading to an estimate of 271 years, compared to
about 240 years given in [LWS21]. Even with an unlimited budget, we could use about
235 such devices to fit the 280 memory limit, leading to an estimate of 2100−35/365 = 256

years.
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Conclusions As we could see, the advantage of the Meet-in-the-middle attack over the
van-Oorschot-Wiener method against SIKE decreases with the growth of the involved
prime p. However, precise comparison of two methods is complicated by unclear physical
limits of the set intersection problem. The estimation based on mesh sorting in [ACC+19]
is too pessimistic at least for the toy instances $IKEp182/$IKEp217, where the required
amount of memory is manageable and physical limitations do not yet have an effect. Our
implementation of the attack on $IKEp182 is relatively straightforward and only uses an
existing computational architecture. According to our analysis, it has high potential to be
applied to $IKEp217 with sufficient amount of resources. However, already for the smallest
non-toy instance SIKEp377, our implementation does not allow to straightforwardly beat
the vOW-based estimation of [LWS21] and it does not seem to threaten the claimed 128-bit
security. On the other hand, we could not discard the possibility that a well-thought
hardware-based architecture for the MitM attack could still compete with the vOW method
on SIKEp377.
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A Meet-in-the-Middle Illustration and Pseudocode
The high-level scheme of the MitM attack applied to the CSSI problem is illustrated in
Figure 2. A more-detailed pseudocode is given in Algorithm 1.

Algorithm 1 Tree generation (ℓ = 2)
Input: A0 ∈ Fp2 , (P0, Q0) a basis of EA0 [2e] with [2e−1]Q0 = (0, 0)
Output: j-invariants of curves 2e-isogenous to EA0 through isogenies with kernel
⟨P0 + [s]Q0⟩ for some s ∈ [0, 2e − 1]
Remark: x-coordinate only arithmetic may be directly implemented (details omitted).

1: function recurse(d, path, Ad, L)
2: if d = e then
3: output (path, j(EAd

))
4: return
5: (P, Q, i)← arg max(P,Q,i)∈L i

6: (P ′, Q′)← ([2e−1−i]P, [2e−1−i]Q); add tuples ([2i′−i]P, [2i′−i]Q, i′)
7: to L according to the optimal strategy (depends on d, i′)
8: for b ∈ {0, 1} do
9: K ← (P ′ + [b]Q′) ∈ EAd

10: (ϕ, Ad+1)← ϕ : EAd
→ EAd+1 is a 2-isogeny with ker ϕ = ⟨K⟩

11: L′ ← ∅
12: for (P, Q, i) ∈ L, i ≤ e− 1 do
13: if b = 0 then
14: (P, Q)← (ϕ(P ), ϕ([2]Q)) ▷ Proposition 2
15: else
16: (P, Q)← (ϕ(P + Q), ϕ([2]P )) ▷ Proposition 2
17: L′ ← L′ ∪ {(P, Q, i + 1)}
18: recurse(d + 1, path||b, Ad+1, L′)

19: recurse(0, (), A0, {(P0, Q0, 0)})

B Proof for Maintaining Torsion Basis for Efficient Formu-
las

Proposition 3. Let A ∈ Fp2 and e ≥ 2. Let P, Q ∈ EA(Fp2) be a basis of EA[2e] with
[2e−1]Q = (0, 0). Then, for a 2-isogeny ϕ : EA → EA′ arising from [2e−1](P + [s]Q) with
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Figure 2: Example of 2-isogeny trees starting from the two 2e-isogenous curves E and EA.
Red nodes in the middle denote curves with same j-invariant, whose respective path in the
tree (in red) connect EA to EB. Edge labels are assigned arbitrarily in order to identify
the paths.

s ∈ [0, 2e − 1], the pair P ′, Q′ ∈ EA′(Fp2) is a basis of EA′ [2e−1] with [2e−2]Q′ = (0, 0),
where

1. P ′ = ϕ(P ), Q′ = ϕ([2]Q) if ker ϕ =
〈
[2e−1]P

〉
(i.e., s is even);

2. P ′ = ϕ(P + Q), Q′ = ϕ([2]P ) if ker ϕ =
〈
[2e−1](P + Q)

〉
(i.e., s is odd).

Proof. Since P, Q are distinct generators and both have order 2e, it follows that the 3
order 2 points [2e−1]P, [2e−1]Q, [2e−1](P + Q) generates the 2 + 1 distinct subgroups of
E[2] = Z2 × Z2. Since [2e−1]Q = (0, 0), the order-2 point [2e−1](P + [s]Q) appearing as a
kernel for ϕ can only be equal to either [2e−1]P or [2e−1](P + Q). If ker ϕ =

〈
[2e−1]P

〉
we

immediately have ϕ([2e−1]P ) = OEA′ = [2e−1]P ′ and since ϕ([2e−2]P ) ̸= OEA′ , P ′ = ϕ(P )
must then be a generator of E[2e−2]. Since 2-isogenies formulas arising from P + [s]Q have
the property to fix the point (0, 0) (see Remark 2), we then have ϕ([2]Q) has order 2e−1

and is such that [2e−2]ϕ([2]Q) = ϕ((0, 0)) = (0, 0).
Similarly, if ker ϕ =

〈
[2e−1](P + Q)

〉
, then P ′ = ϕ(P + Q) has order 2e−1. It follows

that ϕ([2e−1]P ) + ϕ([2e−1]Q) = OEA′ , i.e.,[2e−2]Q′ = ϕ([2e−1]P ) = −ϕ([2e−1]Q) = (0, 0).
For P ′ and Q′ to form a basis, we further need to show that ⟨P ′⟩∩ ⟨Q′⟩ = OEA′ . Let us

assume, by contradiction, that there exists a non-trivial R ∈ ⟨P ′⟩ ∩ ⟨Q′⟩: we then have, for
certain s, t ̸= 0, that R = [s]P ′ = [t]Q′ and thus [s]P ′− [t]Q′ = OEA′ . If ker ϕ =

〈
[2e−1]P

〉
,

we then have that [s]P − [t]Q is in ker ϕ and thus [2e−1]P = [s]P − [2t]Q. Since P, Q form
a basis for EA[2e], this in turn implies s = t = 0, a contradiction. A similar contradiction
is reached also for the case ker ϕ =

〈
[2e−1](P + Q)

〉
.

C Alternative Expression for the Final 2-step Leak
Interestingly, by taking into consideration the walk structure induced by SIKE 2-isogenies,
the relation between such A′ and the final curve coefficient A is very easy to express.
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Lemma 1. Let EB be a Montgomery supersingular elliptic curve over Fp2 with p ̸= 2, and
let K0, K1 ∈ EB(Fp2) be two order 2 points distinct from (0, 0). By applying the 2-isogeny
formulas from Proposition 1 to the groups generated by K0 and K1, we obtain, respectively,
two isogenies ϕ1 : EB → EA, ϕ2 : EB → EA′ such that

(A− 2)(A′ − 2) = 16.

Proof. Let x̃, z̃ = 1/x̃ be the roots of x2 + Bx + 1 = 0. Then x̃, z̃ are the x-coordinates
of K0 and K1. By applying the 2-isogeny formulas from Proposition 1 on these two
points, we then obtain A = 2− 4x̃2 and A′ = 2− 4z̃2. It then immediately follows that
(A− 2)(A′ − 2) = (−4)2 · x̃2z̃2 = 16.

Let us now consider the last 3 traversed nodes in Alice’s walk, i.e.,the j-invariant of
EA′ , followed by a middle node j′, and the final j(EA). Then there exists a B ∈ Fp2 so
that j(EB) = j′, which is pushed, depending on the kernel chosen, through 2-isogenies to
−A and A′ (cf. Figure 3). Note that we use −A instead of A, since otherwise we would
select the ±B from the original path which only has a backwards edge towards j(EA′)
(i.e., an isogeny with the kernel ⟨(0, 0⟩). From Lemma 1, we then conclude that

A′ = 2− 16
A + 2 (two final 2-isogenies)

This equation assumes that the last two steps consist of a sequence of two 2-isogenies. If a
4-isogeny is used instead (as in the case of SIKE challenges), this decomposes, according
to specification [JAC+20], into a sequence of two 2-isogenies followed by a sign flip of the
pushed curve coefficient. We then need to flip the sign of the coefficient of the final curve
to match the assumptions of Lemma 1, thus obtaining

A′ = 2 + 16
A− 2 (one final 4-isogeny) (1)

D Structure of SIKE 2-isogenies in the Supersingular Isogeny
Graph

We recall that in the Fp2 -isomorphism class of a supersingular j-invariant j0, we have (at
most) 6 distinct Montgomery curves: if ±A satisfy the equation j0 = 256(x2−3)3

x2−4 , then also

±B = 3x̃ + A√
x̃2 − 1

± C = 3z̃ + A√
z̃2 − 1

do, where x̃, z̃ = 1/x̃ are the roots of x2 + Ax + 1 = 0.
When these 6 coefficients are all distinct, a 2-isogeny as in Proposition 1 can walk in

the supersingular isogeny graph to only 2 of the possible 3 neighbour j-invariants j1, j2, j3,
and whose values depend on the A-coefficient of the curve to which we are applying the
isogeny.

As already noted in Remark 2, by using SIKE 2-isogenies, we cannot have ⟨(0, 0)⟩
as kernel. Since these formulas fix the point (0, 0), it follows that a SIKE 2-isogeny
ϕ : EB → EA′ never has a dual SIKE 2-isogeny ϕ̂ : EA′ → EB .

In the Fp2 -isomorphism class of EA′ , however, there will be 4 curves E±B′ , E±C′ which
can be pushed back to a curve in the isomorphism class of EB (i.e., j0), but not to the
curve EB itself, because, otherwise, there will be a 2-isogeny that will move EB back to
EA′ , a circumstance prevented by not allowing ⟨(0, 0)⟩ to be an isogeny kernel.
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Figure 3: The different j-invariants reached by 2-isogenies defined by Proposition 1. Here
±A,±B,±C are the 6 values of X satisfying j(EX) = j0 (resp. ±A′,±B′,±C ′ and j1),
and define 6 Montgomery curves isomorphic over Fp2 . The two edges associated to a
certain coefficient represent isogenies with kernels order-2 subgroups not equal to ⟨(0, 0)⟩.
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Figure 4: Performance comparison between FastHash and SortMerge over 64-bit integer
arrays of total size 2L.

It follows that each of the 4 curves E±B′ , E±C′ can be pushed to only one of the two
isomorphic curves E±A, 5, which will eventually be pushed further to nodes j3, j2 distinct
from j(EA′) = j(E±B′) = j(E±C′) = j1.

This example is illustrated (with same notation) in Figure 3.

E Comparison of in-RAM Hash-tables and Sort-and-Merge
In order to compare these two approaches, we implemented a simple hash-set for 64-bit
integers with linear scanning and double-sized buffer (i.e., to store n elements, the structure
allocates memory for 2n elements). In the following, we will refer to such custom hash-set
with the name FastHash. In our experiments, it outperforms the default C++ unordered_-
set (compiled on g++ 9.3.0) more than a few times. We then implemented the sort and
merge approach (denoted SortMerge).

In Figure 4, we provide different benchmarks for both FastHash and SortMerge at
different array sizes 2L.

5Since, in SIKE, Fp2 = Fp(i), the map (x, y) 7→ (−x, iy) defines an isomorphism between E∗ and E−∗.
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Figure 5: Performance comparison between FastHash and SortMerge running on parallel
over k 64-bit integers chunks, each of size 230 (extrapolated using timings from Figure 4b).

More precisely, in Figure 4a we compare the time to intersect two unsorted 64-bit
integers arrays, assuming no preprocessing of the input datasets. Here, the FastHash-based
approach first inserts all 2L elements of the first dataset, and then performs lookups of
the 2L elements of the second dataset. In SortMerge, instead, the two datasets are first
sorted (using C++ sort()) and then merged using a two-pointers linear scan. Although
FastHash outperforms the sorting approach on up to 230 ≈ 109 entries, the advantage ratio
decreases quickly from an initial value of 4 (for L = 8) to a ratio close to 1 for L = 30. In
particular, a sharp advantage drop is visible after L = 18, which is likely related to the
dataset not fitting the CPU cache (Intel® Core™ i5 10210U 1.6-4.2 GHz).

In Figure 4b, we compare the two methods under some allowed precomputations. For
FastHash this means that only lookups are counted (insertions are excluded from time
computation), while for SortMerge we consider two cases: i) the first dataset is pre-sorted,
that is the timings include sorting the second dataset only and merging (in green); ii) both
datasets are pre-sorted, that is the timings include only merging (in blue). We can see
that the pure merging cost remains constant for any array size, and is negligible compared
to both FastHash lookups and sorting.

F Intermediate Values from the Attack on $IKEp182
In Figure 6, we report the concrete values of the relevant quantities computed while
performing the attack outlined in Section 6.
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PA = (0x05a324935a4d7b75024fdc3601fe8b5888cea9f88212b2 +

0x02357bdd576772bf2a93e3d680ed7306e16eafc6aff904 · i,

0x242a9e09aa8e6995e4fdce9f68e8c2c902154c332de68a +

0x011b23646f8884b7a9faa5159ef13842880ed0f9f43dcd · i)
QA = (0x27b8def415bae0506a9607fff7704832151cdcbc93cb22 +

0x085c86f386b94b8c413f5e49736f26de95103a9b65f31a · i,

0x16af6790fb0f5cfd0e124033bb7619e2f75a25cae5f42b +

0x172567b99058dd9d5b99ce5ea4bacd685f57c8326011a3 · i)
PB = (0x02ca3bc7e98f88b3ca3239c276eb7a224c51f61bc8c5ed,

0x262a38701d1b61dd8875909ff268a50d912f620db980a1)
QB = (0x02dcff7123e2380f552f5bff91da77ae62e9556b866d8f,

0x06aeb7c764aa40913b3fc784d569833d4226cc4a53432f · i)
xϕA(PB) = 0x17d02d323c815eee1ec75f1c675609b0bea78064cb8cc1 +

0x12fa80de8027f68c3f780b5bcd519e8205606ac249025d · i

xϕA(QB) = 0x272c54d49af950b0829072753e3525091aaf87085bd7b2 +

0x23efe3c087965a49fcc5161e6453dbe632d7dec90bab12 · i

xϕA(QB)−ϕA(PB) = 0x22c38abb1427245de1e049408dab87ed9ba54efeb4a4e4 +

0x0c5d768e87a762b6a460b941bcc5537ba0f73ce8b9f955 · i

A = 0xc0cbda5ef968048cd2c1b125774f1417125b9b02b6f91 +

0x1e8121a2a60fd266d321bb9db8d9e3111e3095c08e0bc6 · i

A′ = 0x164db610b03a9b3c38e59bf29485a60462d1cd9f22d95e +

0x1a8d75d6d0285807042e900df3c2cf74b4eb160d50a92e · i

j(EA′) = 0xe48a8271ea06ec4193db09970a23bea55c777ef2fb5be +

0x56910191b4835901ef45e4b857817391ad1213080afa9 · i

j0 = 0x0008132653e4d53cb9cc0defb36a0141d900adbb128a24f0 +

0x0001049f06c78aaed22786dfcff5b202ce3a50429f369b86 · i

j1 = 0x0008132653e4d53cb9cc0defb36a0141d900adbb128a24f0 +

0x0027910d1a0d795d077f40d1480a4dfd31c5afbd60c96479 · i

Figure 6: Concrete coefficients recovered in the attack of $IKEp182
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