
Encryption to the Future

A Paradigm for Sending Secret Messages to Future
(Anonymous) Committees

Matteo Campanelli1, Bernardo David2, Hamidreza Khoshakhlagh1, Anders
Konring2, and Jesper Buus Nielsen1

1 Aarhus University, Denmark
{matteo,hamidreza,jbn}@cs.au.dk

2 IT University of Copenhagen, Denmark
{beda,konr}@itu.dk

Abstract. A number of recent works have constructed cryptographic
protocols with flavors of adaptive security by having a randomly-chosen
anonymous committee run at each round. Since most of these protocols
are stateful, transferring secret states from past committees to future,
but still unknown, committees is a crucial challenge. Previous works
have tackled this problem with approaches tailor-made for their specific
setting, which mostly rely on using a blockchain to orchestrate auxiliary
committees that aid in state hand-over process. In this work, we look at
this challenge as an important problem on its own and initiate the study
of Encryption to the Future (EtF) as a cryptographic primitive. First,
we define a notion of a non-interactive EtF scheme where time is de-
termined with respect to an underlying blockchain and a lottery selects
parties to receive a secret message at some point in the future. While
this notion seems overly restrictive, we establish two important facts: 1.
if used to encrypt towards parties selected in the “far future”, EtF im-
plies witness encryption for NP over a blockchain; 2. if used to encrypt
only towards parties selected in the “near future”, EtF is not only suf-
ficient for transferring state among committees as required by previous
works but also captures previous tailor-made solutions. Inspired by these
results, we provide a novel construction of EtF based on witness encryp-
tion over commitments (cWE), which we instantiate from a number of
standard assumptions via a construction based on generic cryptographic
primitives. Finally, we show how to lift “near future” EtF to “far future”
EtF with a protocol based on an auxiliary committee whose communi-
cation complexity is independent from the length of plaintext messages
being sent to the future.

1 Introduction

Most cryptographic protocols assume that parties’ identities are publicly known.
This is a natural requirement, since standard secure channels are identified by a
sender and a receiver. However, this status quo also makes it easy for adaptive (or
proactive) adversaries to readily identify which parties are executing a protocol

and decide on an optimal corruption strategy. In more practical terms, a party
with a known identity (e.g. IP address) is at risk of being attacked.

A recent line of work [2,15,17] has investigated means for avoiding adaptive
(or proactive) corruptions by having different randomly chosen committees of
anonymous parties execute each round of a protocol. The rationale is that parties
whose identities are unknown cannot be purposefully corrupted. Hence, having
each round of a protocol executed by a fresh anonymous committee makes the
protocol resilient to such powerful adversaries. However, this raises a new issue:

How to transfer secret states from past committees to new anonymous
committees freshly chosen in the future?

1.1 Motivation: Role Assignment

The task of sending secret messages to a committee member that will be elected
in the future can be abstracted as role assignment, a notion first introduced
in [2] and further developed in [15]. This task consists of sending a message to an
abstract role R at a given point in the future. A role is just a bit-string describing
an abstract role, such as R =“party number j in round sl of the protocol Γ”.
Behind the scenes, there is a mechanism that samples the identity of a random
party Pi and associates this machine to the role R. Such a mechanism allows
anyone to send a message m to R and have m arrive at Pi chosen at some point
in the future to act as R. A crucial point is that no one should know the identity
of Pi even though Pi learns that it is chosen to act as R.

The approaches to role assignment proposed in [2,15,17] all use an underlying
Proof-of-Stake (PoS) blockchain (e.g. [10]). On a blockchain, a concrete way to
implement role assignment is to sample a fresh key pair (skR, pkR) for a public
key encryption scheme, post (R, pkR) on the blockchain and somehow send skR to
a random Pi without leaking the identity of this party to anyone. Once (R, pkR) is
known, every party has a target-anonymous channel to Pi and is able to encrypt
under pkR and post the ciphertext on the blockchain. Notice that using time-lock
puzzles (or time-locked commitments/encryption) is not sufficient for achieving
this notion, since only the party(ies) elected for a role should receive a secret
message encrypted for that role, while time-lock puzzles allow every party who
invests enough computing time to recover the message.

A shortcoming of the approaches of [2,15,17] is that, besides an underlying
blockchain, they require an auxiliary committee to aid in generating (skR, pkR)
and selecting Pi. In the case of [2], the auxiliary committee performs cheap
operations but can adversarially influence the probability distribution with which
Pi is chosen. In the case of [15,17], the auxiliary committee cannot bias this
probability distribution but must perform very expensive operations. Moreover,
these approaches have another big caveat; they can only be used to select Pi to
act as R according to a probability distribution known at the time the auxiliary
committee outputs (R, pkR). Hence, they only allow for sending messages to
future committees that have been recently elected.

2

Note that there are two distinct aspects to such a protocol. One aspect is
role assignment (RA) which deals with the sending of messages to future roles
of a protocol while hiding the physical machine executing the role. The other
aspect is the role execution (RX) aspect which focuses on the execution of the
specific protocol that runs on top of the RA mechanism, i.e., what messages are
sent to which roles and what specification the protocol implements. In [15] the
so-called You Only Speak Once (YOSO) model is introduced for studying RX.
In the YOSO model the protocol execution is between abstract roles which can
each speak only once. Later these can then be mapped to physical machines
using an RA mechanism. It was shown in [15] that once you can do RA in a
synchronous model, then any well-formed ideal functionality can be implemented
in the YOSO model with security against malicious, adaptive corruption of a
minority of machines. Concretely, [15] gives an ideal functionality for RA and
shows that a YOSO protocol for abstract roles can be compiled into the RA-
hybrid model to give a protocol secure against adaptive attacks.

In this paper we further investigate the RA aspect. Taking a step back from
specific solutions for role assignment, we will focus on how to non-interactively
encrypt to a future role with IND-CPA security without the aid of an auxiliary
committee. We will also discuss how to extend our approach to IND-CCA2
security and how to allow winners of a role to authenticate themselves when
sending a message. In particular, once our main schemes are in place, these
other aspects can be added using standard techniques.

1.2 Our Contributions

We look at the issue of sending messages to future roles as a problem on its own
and introduce the Encryption to the Future (EtF) primitive as a central tool to
solve it. Apart from defining this primitive and showing constructions based on
previous works, we propose constructions based on new insights and investigate
limits of EtF in different scenarios. Before describing them in more detail, we
summarize our contributions as follows:

– A definition for the notion of non-interactive Encryption to the Future (EtF)
in terms of an underlying blockchain and an associated lottery scheme that
selects parties in the future to receive messages for a role.

– A proof that an EtF scheme, which allows for encryption towards parties se-
lected at arbitrary points in the future, implies a flavor of witness encryption
for NP.

– A novel construction of Encryption to the Current Winner (ECW), i.e. EtF
where the receiver of a message is determined by the current state of the
blockchain, which can be instantiated without auxiliary committees from
standard assumptions via a construction based on generic primitives.

– A transformation from ECW to EtF that requires an auxiliary committee
but enjoys a limited amount of communication complexity independent from
plaintext message length.

3

– An application of ECW as a central primitive for realizing role assignment
in protocols that require it (e.g. [2,15,17]).

Our EtF notion provides an arguably useful abstraction for the problem of
transferring secret states to secret committees. In particular, our ECW con-
struction is the first primitive to realize role assignment without the need for an
auxiliary committee. Moreover, building on new insights from our EtF notion
and constructions, we show the first protocol for obtaining role assignment with
no constraints on when parties are chosen to act as the role. The protocol uses
auxiliary committee’s but with communication complexity which is independent
of the plaintext length. We now elaborate on our results, discussing the intuition
behind the notion of EtF, its constructions and its fundamental limits.

Encryption to the Future (EtF) - Section 3. As in previous works [2,15,17], an
EtF scheme is defined with respect to an underlying PoS blockchain. Notice that
the vast majority of PoS blockchains (e.g. [10]) associate a slot number to each
block and have an intrinsic lottery that selects parties to generate a block accord-
ing to a stake distribution (i.e. the probability a party is selected is proportional
to the stake the party controls). These natural features are leveraged to define
EtF in such a way that a message is encrypted towards a party that is selected
by the underlying blockchain’s lottery scheme at a given future slot. More gen-
erally, we can leverage this lottery mechanism to select parties for multiple roles
associated to each slot (so that committees consisting of multiple parties can be
elected for a single point in time). An important point of our EtF definition is
that it does not impose any constraints on the underlying blockchain’s lottery
scheme (e.g. it is not required to be anonymous) or on the slot when a party
is supposed to be chosen to receive a message sent to a given role (i.e. party
selection for a given role may happen w.r.t. a future stake distribution).

Relation to Blockchain Witness Encryption (BWE) EtF - Section 8. We show
that EtF implies a version of witness encryption [14] over a blockchain (similar
to that of [19]). The crux of our proof is being able to encrypt a message towards
a role for which a party will only be chosen at an arbitrary point in the future.
If this is possible, we show how to construct a witness encryption scheme relying
on an EtF scheme and a smart contract on the EtF’s underlying blockchain. We
also show that BWE implies EtF. This shows that at the level of feasibility the
notions are similar. It also shows that if we want to implement non-interactive
EtF, we would have to use strong assumptions.

Encryption to the Current Winner (ECW) - Section 3. Given that our general
notion of EtF would require very strong assumptions to achieve without interac-
tion (use of auxilliary committees), we look towards efficient ways to construct
EtF under standard assumptions while minimizing interaction. As a first step
towards such a constrcution, we define the notion of Encryption to a Current
Winner (ECW), which is a restricted version of EtF where messages can only
be encrypted towards parties selected for a role w.r.t. the lottery parameters

4

available at the current slot when encryption is performed (as in previous re-
sults [2,15,17]).

Constructing ECW (non-interactively) - Section 5. We show that it is possible
to construct a non-interactive ECW scheme (i.e. without using auxiliary com-
mittees which was required in previous results [2,15,17]) with security under
standard assumptions. Our construction relies on a restricted flavor of witness
encryption which we formalize as Witness Encryption over Commitments (cWE)
in Section 4. We show in Section 3 that ECW can be constructed in a black-box
manner from cWE, which in turn can be constructed from oblivious transfer and
garbled circuits (as shown in Appendix C). This construction improves over pre-
vious results [2,15,17] in the sense that it does not rely on auxiliary committees.

Instantiating YOSO MPC using ECW- Section 6. We show an application of
our ECW notion as a building block for the YOSO MPC protocol of [15]. In this
protocol, each round of an MPC protocol is executed by a different committee of
parties, who transfer secret state to a future committee that remains anonymous
until it transfers its own secret state to the next committee. This application has
the following main specific requirements: 1. ECW ciphertexts must be non-mal-
leable, i.e. we need an IND-CCA secure ECW scheme; 2. Only one party is
selected for each role; 3. A party is selected for a role at random with probabil-
ity proportional to its relative stake on the underlying PoS blockchain; 4. Parties
selected for roles remain anonymous until they choose to reveal themselves; 5. A
party selected for a role must be able to authenticate messages on behalf of the
role, i.e. publicly proving that it was selected for a certain role and that it is
the author of a message; We show that all of these properties can be obtained
departing from an IND-CPA secure ECW scheme instantiated over a natural
PoS blockchain (e.g. [10]). First, we observe that VRF-based lottery schemes
implemented in many PoS blockchains are sufficient to achieve properties 1, 2
and 3. We then observe that natural block authentication mechanisms used in
such PoS blockchains can be used to obtain property 4. Finally, we show that
standard techniques can be used to obtain an IND-CCA secure ECW scheme
from an IND-CPA secure ECW scheme.

Constructing EtF from ECW (interactively) - Section 7. Given the implausibil-
ity of constructing EtF non-interactively from standard assumptions, we show
that we can transform an ECW scheme into an unrestricted EtF scheme when
given limited access to an auxiliary committee. Namely, our solution requires
communication complexity independent from plaintext length. Notice that pre-
vious works [2,15,17] require successive committees to store and reshare secret
shares of every message to be sent to a party selected in the future, i.e. commu-
nication complexity is dependent on both the amount and length of plaintext
messages. In our transformation from ECW to EtF, each role in the future is
associated to a unique identity of an Identity Based Encryption scheme (IBE)
and messages towards this role are encrypted using IBE. The secret key corre-
sponding to a given role is later generated and given to the party who is selected

5

for that role at any point in the future. In order to generate such secret keys,
we use YOSO MPC instantiated from ECW as shown in Section 6. In contrast
to previous schemes, the auxiliary committee executing this instance of YOSO
MPC only needs to hold shares of the IBE’s master secret key and perform com-
munication/computation dependent on the security parameter but not on the
length/amount of messages encrypted to the future.

1.3 Previous Works

We compare previous works related to our notions of EtF (future winner) and
ECW (current winner) in Fig. 1.

Type Scheme Communication Committee? Interactive?

ECW

CABKAS O(1) yes yes
RPIR O(1) yes yes

cWE (MS-NISC) O(N) no no*
cWE (GC+OT) O(N) no no*

EtF
IBE O(1) yes yes

Full-fledged WE O(1) no no

Fig. 1. The column “Committee?” indicates whether a committee is required. The col-
umn “Communication” refers to whether the communication complexity grows or not
with N , the number of all parties. We denote by an asterisk non-interactive solutions
that require sending a first reusable message during the initial step.

Constructions of ECW. In ECW, both the stake distribution and the random-
ness extracted from the blockchain are static and known at the time of encryp-
tion and thus the encryption algorithm has all the parameters known except the
secret key of the lottery winner. This determinism of the lottery predicate (al-
though with unknown parameter sk) at the time of encryption makes it possible
to realize ECW with several constructions.

– CABKAS [2]: In this work, they propose a scalable evolving-committee
proactive secret-sharing (ECPSS) scheme that allows committees to main-
tain a secret over a public blockchain. This committee is dynamically chang-
ing and thus needs to reshare its secret shares to the next committee. The
main challenge is how to select a small committee from a large population
of parties such that everyone can send secure messages to the committee
members without knowing who they are. The solution of [2] is to select
the committee by having another committee called “nominating committee”
who nominate members of the new committee. Using ECW, we can get rid
of the nominating committee and ask the current committee to ECW en-
crypt their secret shares to the roles of the next committee. One can also
see the nominating committee as a tool which provides ECW functionality.
I.e., the main challenge in encryption to future is how to encrypt without
knowing the recipient and this is exactly what the nominating committee is

6

providing. A major caveat is that in order to guarantee an honest majority
in the committees, [2] can tolerate up to a fraction of 1/4 corruption only.
This is because corrupted nominators can always select corrupted parties,
whereas honest nominators may select corrupted parties by chance.

– RPIR [17]: the main contribution of this paper is to solve the above chal-
lenge of selecting committees with supporting a better fraction of corrupted
parties, that is < 1/2. To this end, the authors define a new flavour of Pri-
vate Information Retrieval (PIR) called Random-index PIR (or RPIR) that
allows each committee to do the nomination task by themselves and select
the next committee without requiring any nominating committee. Differ-
ently from [2], we don’t need a nominating committee here, but the main
disadvantage of RPIR is that the constructions are quite inefficient. More
specifically, it is either based on Mix-Nets or Fully Homomorphic Encryption
(FHE). The construction based on Mix-Nets uses k shufflers, where k is the
security parameter and has a huge communication complexity of O(nk2),
where n is the number of public keys that each shuffler broadcasts. The
FHE-based construction gives a total communication complexity of O(k3)
with the O(k) being the length of an FHE decryption share.

– MrNISC [3]: [3] defines a non-generic version of witness encryption, called
“Witness Encryption for NIZK of Commitments”. In their setting, parties
first commit to their private inputs once and for all and, later, different play-
ers acting as the encryptor can send the ciphertext in one flow such that any
party with a committed input that satisfies the relation can decrypt. The
authors show how to construct this primitive based on standard assumptions
in asymmetric bilinear groups. We generalize and formalize this notion as
cWE and show how it can be used to construct ECW. While the original
construction of MrNISC fits the definition of cWE (through which we build
ECW), we observe it is an overkill for our application. We instead give more
efficient instantiations based on two-party Multi-Sender Non-Interactive Se-
cure Computation (MS-NISC) protocols and Oblivious Transfer plus Gar-
bled Circuits.

Constructions of EtF . As indicated by our results, the general notion of EtF
is significantly harder to realize. Here we discuss natural ideas for realizing EtF
that illustrate two extremes where our approach lies in the middle:

– Non-Interactive—Using Witness Encryption [14]: One trivial approach to re-
alize EtF is to use Witness Encryption [14] (WE) for the arithmetic relation
R being the lottery predicate such that the party who possess a winning se-
cret key sk can decrypt the ciphertext. However, existing witness encryption
schemes [14] are impractical. In particular, all existing constructions rely on
very strong assumptions such as multilinear maps and indistinguishability
obfuscation. Hence, this “trivial” solution comes with a heavy cost, which is
not surprising given our result showing that EtF implies a flavor of WE.

– Interactive—Multiple Committees and Successive Rounds of
RPIR/CABKAS/ECW: A simple way to achieve an interactive ver-
sion of EtF is to first encrypt secret shares of a message towards members

7

of a committee that then reshare their shares towards members of a future
anonymous committee via an invocation of RPIR/CABKAS/ECW. This is
essentially the solution proposed in CABKAS [2] where committees interact
in order to carry a secret (on the blockchain) into the future. Notice that,
for a fixed security parameter and corruption ratio, the communication
complexity of the protocol executed by the committee in this solution
depends on the plaintext message length. On the other hand, for a fixed
security parameter and corruption ratio, the communication complexity of
our committee based transformation from ECW to EtF is constant.

Using blockchains in order to construct non-interactive primitives with game-
based security has been previously considered in [18]. Other approaches for trans-
ferring secret state to future committees have been proposed in [19], although
anonymity is not a concern in this setting. On the other hand, using anonymity
as a means for overcoming corruption have been proposed in [12], although this
work considers anonymous channels among a fixed set of parties.

2 Preliminaries

PPT stands for probabilistic polynomial time and we use λ to denote the security

parameter. We write a
$←− A to denote that a is sampled uniformly from a set A.

2.1 Proof-of-Stake (PoS) Blockchains

In this work we rely on PoS-based blockchain protocols. In such a protocol, each
participant is associated with some stake in the system. A process called leader
election encapsulates a lottery mechanism that ensures (of all eligible parties)
each party succeeds in generating the next block with probability proportional
to its stake in the system. In order to formally argue about executions of such
protocols, we depart from the framework presented in [18] which, in turn, builds
on the analysis done in [13] and [23]. We invite the reader to re-visit the ab-
straction used in [18]. We present a summary of the framework in Appendix A.1
and discuss below the main properties we will use in the remainder of this pa-
per. Moreover, we note that in [18] it is proven that there exist PoS blockchain
protocols with the properties described below, e.g. Ouroboros Praos [10].

Blockchain Structure A genesis block B0 =
(Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux associates each party
Pi to a signature scheme public key Sig.pki, an amount of stake stakei and
auxiliary information auxi (i.e. any other relevant information required by
the blockchain protocol, such as verifiable random function public keys). A
blockchain B relative to a genesis block B0 is a sequence of blocks B1, . . . , Bn

associated with a strictly increasing sequence of slots sl1, . . . , slm such that
Bi = (slj , H(Bi−1), d, aux)). Here, slj indicates the time slot that Bi occupies,
H(Bi−1) is a collision resistant hash of the previous block, d is data and aux is

8

auxiliary information required by the blockchain protocol (e.g. a proof that the
block is valid for slot slj). We denote by B⌈ℓ be the chain (sequence of blocks)
B where the last ℓ blocks have been removed and if ℓ ≤ |B| then B⌈ℓ = ϵ.
Also, if B1 is a prefix of B2 we write B1 ⪯ B2. Each party participating in the
protocol has public identity Pi and most messages will be a transaction of the
following form: m = (Pi, Pj , q, aux) where Pi transfers q coins to Pj along with
some optional, auxiliary information aux.

Blockchain Setup and Key Knowledge As in [10], we assume that the gen-
esis block is generated by an initialization functionality FINIT that registers all
parties’ keys. Moreover, we assume that primitives specified in separate function-
alities in [10] as incorporated into FINIT . FINIT is executed by the environment
Z as defined below and is parameterized by a stake distribution associating each
party Pi to an initial stake stakei. Upon being activated by Pi for the first time,
FINIT generates a signature key pair Sig.ski,Sig.pki, auxiliary information auxi
and a lottery witness skL,i, which will be defined as part of the lottery predicate
in Section 2.1, sending (Sig.ski,Sig.pki, auxi, skL,i, stakei) to Pi as response. After
all parties have activated FINIT , it responds to requests for a genesis block by
providing B0 = (Sig.pk0, aux0, stake0), . . . , (Sig.pkn, auxn, staken), aux, where aux
is generated according to the underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even
corrupted parties have registered public keys and auxiliary information such that
they know the corresponding secret keys. Moreover, when our EtF constructions
are used as part of more complex protocols, a simulator executing the EtF
and its underlying blockchain with the adversary will be able to predict which
ciphertexts can be decrypted by the adversary by simulating FINIT and learning
these keys. This fact will be important when arguing the security of protocols
that use our notion of EtF.

Evolving Blockchains In order to define an EtF scheme, some concept of fu-
ture needs to be established. In particular we want to make sure that the initial
chain B has “correctly” evolved into the final chain B̃. Otherwise, the adversary
can easily simulate a blockchain where it wins a future lottery and finds itself
with the ability to decrypt. Fortunately, the Distinguishable Forking property
provides just that (see Appendix A.1 and [18] for more details). A sufficiently
long chain in an honest execution can be distinguished from a fork generated by
the adversary by looking at the combined amount of stake proven in such a se-
quence of blocks.We encapsulate this property in a predicate called evolved(·, ·).
First, let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain proto-
col with validity predicate V and where the (α, β, ℓ1, ℓ2)-distinguishable forking
property holds. And let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t).

Definition 1 (Evolved Predicate). An evolved predicate is a polynomial time
function evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}

9

It outputs 1 if and only if B = B̃ or the following holds (i) V (B) = V (B̃) = 1;
(ii) B and B̃ are consistent i.e. B⌈κ ⪯ B̃ where κ is the common pre-
fix parameter; (iii) Let ℓ′ = |B̃| − |B| then it holds that ℓ′ ≥ ℓ1 + ℓ2 and
u-stakefrac(B̃, ℓ′ − ℓ1) > β.

Blockchain Lotteries Earlier we mentioned the concept of leader election in
PoS-based blockchain protocols. In this kind of lottery any party can win the
right to become a slot leader with a probability proportional to its relative stake
in the system. Usually, the lottery winner wins the right to propose a new block
for the chain, introduce new randomness to the system or become a part of a
committee that carries out some computation. In our encryption scheme we take
advantage of this inherent lottery mechanism.

Independent Lotteries In some applications it is useful to conduct multiple inde-
pendent lotteries for the same slot sl. Therefore we associate each slot with a set
of roles R1, . . . ,Rn. Depending on the lottery mechanism, each (sl,Ri)-pair may
yield zero, one or multiple winners. In most cases, a party can locally compute if
it, in fact, is the lottery winner for a given role and the evaluation procedure may
equip the party with a proof for others to verify. The below definition details
what it means for a party to win a lottery.

Definition 2 (Lottery Predicate). A lottery predicate is a polynomial time
function lottery that takes as input a blockchain B, a slot sl, a role R and a
lottery witness skL,i and outputs 1 if and only if the party owning skL,i won the
lottery for the role R in slot sl with respect to the blockchain B.
Formally, we write

lottery(B, sl,R, skL,i) ∈ {0, 1}

It is natural to establish the set of lottery winners W for a given role (sl,R).
This is the set of lottery witnesses satisfying the lottery predicate. Therefore, we
write the shorthand {skL,i}Pi∈W ← winners(B, sl,R).

2.2 Commitment Scheme

We recall the syntax we require for a commitment scheme C = (Setup,Commit)
below:

– Setup(1λ)→ ck outputs a commitment key.
– Commit(ck,m; ρ) → cm outputs a commitment given as input a message m

and randomness ρ.

We require a commitment scheme to satisfy the standard properties of binding
and hiding. It is (computationally) binding if it is not possible for an efficient
adversary to come up with two pairs (m, ρ), (m′, ρ′) such that m ̸= m′ and
such that Commit(ck,m; ρ) = cm = Commit(ck,m′; ρ′) for ck ← Setup(1λ). The
scheme is hiding if for any two m,m′ an efficient adversary cannot distinguish
between a commitment of m and one of m′.

10

Extractability In our construction we require our commitments to satisfy an
additional property which allows to extract message and randomness of a com-
mitment. In particular we assume that our setup outputs both a commitment
key and a trapdoor td and that there exists an algorithm E such that E(td, cm)
outputs (m, ρ) such that cm = Commit(ck,m; ρ). We remark we can generically
obtain this property by attaching to the commitment a non-interactive zero-
knowledge argument of knowledge that shows knowledge of opening, i.e., for the
relation Ropn(cmi; (m, ρ)) ⇐⇒ cmi = Commit(ck,m; ρ).

2.3 (Threshold) Identity Based Encryption

In an IBE scheme, users can encrypt simply with respect to an identity (rather
than a public key). Given a master secret key, an IBE can generate secret keys
that allows to open to specific identities. In our construction of EtF (Section 7.1)
we rely on a threshold variant of IBE (TIBE) where no single party in the system
holds the master secret key. Instead parties in a committee hold a partial master
secret key mski. Like other threshold protocols, threshold IBE can be generi-
cally obtained by “lifting” an IBE through a secret sharing with homomorphic
properties (see for example [22]).

Threshold IBE This is a threshold variant of IBE with the following syntax:

ΠTIBE.Setup(1
λ, n, k)→ (sp, vk, m⃗sk) : It outputs some public system parame-

ters sp (including mpk), verification key vk, and vector of master secret key

shares m⃗sk = (msk1, . . . ,mskn) for n with threshold k. We assume that all
algorithms takes sp as input implicitly.

ΠTIBE.ShareKG(i,mski, ID)→ θ = (i, θ̂) : It outputs a private key share θ = (i, θ̂)
for ID given a share of the master secret key.

ΠTIBE.Combine(vk, ID, θ⃗)→ skID : It combines the shares θ⃗ = (θ1, . . . , θk) to pro-
duce a private key skID or ⊥.

ΠTIBE.Enc(ID,m)→ ct : It encrypts message m for identity ID and outputs a
ciphertext ct.

ΠTIBE.Dec(ID, skID, ct)→ m : It decrypts the ciphertext ct given a private key
skID for identity ID.

Correctness A TIBE scheme ΠTIBE should satisfy two correctness properties:

1. For any identity ID, if θ = ΠTIBE.ShareKG(i,mski, ID) for mski ∈ m⃗sk, then
ΠTIBE.ShareVerify(vk, ID, θ) = 1.

2. For any ID, if θ⃗ = {θ1, . . . , θk} where θi = ΠTIBE.ShareKG(i,mski, ID),

and skID = ΠTIBE.Combine(vk, ID, θ⃗), then for any m ∈ M and ct =
ΠTIBE.Enc(ID,m) we have ΠTIBE.Dec(ID, skID, ct) = m.

11

Structural Property: TIBE as IBE + Secret Sharing Wemodel threshold IBE in a
modular manner from IBE and assume it to have a certain structural property:
that it can be described as an IBE “lifted” through a homomorphic secret-
sharing [6,4,22]. TIBE constructions can often be described as such. We assume
this structural property to present our proofs for EtF modularly, but we remark
our results do not depend on it and they hold for an arbitrary TIBE. For lack
of space we defer the reader to Appendix A.2 for details.

Assume a secure IBE (the non-threshold variant of TIBE). We can trans-
form it into a threshold IBE using homomorphic secret sharing algorithms
(Share,EvalShare,Combine). A homomorphic secret sharing scheme is a secret
sharing scheme with an extra property: given a shared secret, it allows to com-
pute a share of a function of the secret on it. The correctness of the homomorphic
scheme requires that running yi ← EvalShare(mski, f) on mski output of Share
and then running Combine on (a large enough set of) the yi-s produces the same
output as f(msk). We also require that Combine can reconstruct msk from a large
enough set of the mski-s. For security we assume we can simulate the shares not
available to the adversaries (if the adversary holds at most T = k shares). For
the resulting TIBE’s security we assume that, for an adversary holding at most
T shares, we can simulate: master secret key shares not held by the adversary
(msk shares simulation) and shares of the id-specific keys (key-generation simu-
lation) for the same shares. We finally assume where we can verify that each of
the id-specific key shares are authenticated (robustness) and that shares of the
master secret key can be reshared (proactive resharing).

3 Modelling EtF

In this section, we present a model for encryption to the future winner of a
lottery. In order to argue about a notion of future, we use the blocks of an
underlying blockchain ledger and their relative positions in the chain to specify
points in time. Intuitively, our notion allows for creating ciphertexts that can
only be decrypted by a party that is selected to perform a certain role R at a
future slot sl according to a lottery scheme associated with a blockchain protocol.
The winner of the lottery at a point in the future with respect to a blockchain
state B̃ is determined by the lottery predicate defined in Section 2.1, i.e. the
winner is the holder of a lottery secret key sk such that lottery(B̃, sl,R, sk) =
1. However, notice that the winner might only be determined by a blockchain
state produced in the future as a result of the blockchain protocol execution.
This makes it necessary for the ciphertext to encode an initial state B of the
blockchain that allows for verifying that a future state B̃ (presented at the time of
decryption) has indeed been produced as a result of correct protocol execution.
This requirement is captured by the evolving blockchain predicate defined in
Section 2.1, i.e. evolved(B, B̃) = 1 iff B̃ is obtained as a future state of executing
the blockchain protocol departing from B.

12

Definition 3 (Encryption to the Future). A pair of PPT algorithms E =
(Enc,Dec) in the the context of a blockchain ΓV is an EtF-scheme with evolved
predicate evolved and a lottery predicate lottery. The algorithms work as follows

Encryption. ct← Enc(B, sl,R,m) takes as input an initial blockchain B, a slot
sl, a role R and a message m. It outputs a ciphertext ct - an encryption to
the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ci-
phertext ct and a secret key sk and outputs the original message m or ⊥.

Correctness An EtF-scheme is said to be correct if for honest parties i and j,
there exists a negligible function µ such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr

view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
ct← Enc(B, sl,R,m)

evolved(B, B̃) = 1

lottery(B̃, sl,R, sk) = 1

: Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Security We establish a game between a challenger C and an adversary A. In
Section 2.1 we described howA and Z execute a blockchain protocol. In addition,
we now let the adversary interact with the challenger in a game GameIND-CPAΓ,A,Z,E
described in Algorithm 1. The game can be summarized as follows:

1. A executes the blockchain protocol Γ together with Z and at some round r
chooses a blockchain B, a role R for the slot sl and two messages m0 and m1

and sends it all to C.
2. C chooses a random bit b and encrypts the message mb with the parameters

it received and sends ct to A.
3. A continues to execute the blockchain until some round r̃ where the

blockchain B̃ is obtained and A outputs a bit b′.

If the adversary is a lottery winner for the challenge role R in slot sl, the game
outputs a random bit. If the adversary is not a lottery winner for the challenge
role R in slot sl, the game outputs b ⊕ b′. The reason for outputting a random
guess in the game when the challenge role is corrupted is as follows. Normally the
output of the IND-CPA game is b⊕ b′ and we require it to be 1 with probability
1/2. This models that the guess b′ is independent of b. This, of course, cannot
be the case when the challenge role is corrupted. We therefore output a random
guess in these cases. After this, any bias of the output away from 1/2 still comes
form b′ being dependent on b.

Definition 4 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the
context of a blockchain protocol Γ executed by PPT machines A and Z is said
to be IND-CPA secure if, for any A and Z, there exists a negligible function µ
such that for λ ∈ N: ∣∣∣2 · Pr [GameIND-CPAΓ,A,Z,E = 1

]
− 1

∣∣∣ ≤ µ(λ)

13

Algorithm 1 GameIND-CPAΓ,A,Z,E

viewr ← EXECΓ
r (A,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,R,m0,m1)← A(viewr
A) ▷ A outputs challenge parameters

b
$←− {0, 1}

ct← Enc(B, sl,R,mb)
st← A(viewr

A, ct) ▷ A receives challenge ct

viewr̃ ← EXECΓ,viewr

r̃ (A,Z, 1λ) ▷ Execute from viewr until round r̃
(B̃, b′)← A(viewr̃

A, st)
if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B

if {skAL,0, . . . , sk
A
L,j} ∩ winners(B̃, sl,R) = ∅ then ▷ A does not win role R

return b⊕ b′

end if
end if
return b̂

$←− {0, 1}

3.1 ECW as a Special Case of EtF

In this section we focus on a special class of EtF. We call schemes in this class
ECW schemes. ECW is particularly interesting since the underlying lottery is
always conducted with respect to the current blockchain state. This has the
following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.
2. The winner of role R in slot sl is already defined in B.

It is easy to see that this kind of EtF scheme is simpler to realize since there
is no need for checking if the blockchain has ’correctly’ evolved. Furthermore,
all lottery parameters like stake distribution and randomness extracted from the
blockchain are static. Thus, an adversary has no way to move stake between
accounts in order to increase its chance of winning the lottery.
Note that, when using an ECW scheme, the lottery winner is already decided at
encryption time. In other words, there is no delay and the moment a ciphertext
is produced the receiver is chosen.

4 Witness Encryption over Commitments (cWE)

Here, we describe witness encryption over committed inputs. This is a relaxed
notion of witness encryption. In witness encryption we allow to encrypt to a
public input for some NP statement. In cWE we have two phases: first parties
provide a (honestly generated) commitment cm of their private input w. Later,
anybody can encrypt to a public input for an NP statement which also guaran-
tees correct opening of the commitment. Importantly, in applications, the first
message in our model can be reused for many different invocations.

We observe that this type of WE is morally weaker than standard WE be-
cause of its deterministic flavor. In cWE we require to encrypt with respect to a

14

commitment, which intuitively binds to a witness; in standard WE we encrypt
without having any “pointer” to an alleged witness.

More formally, the type of relations we consider are of the following form: a
statement x = (cm, C, y) and a witness w are in the relation (i.e., (x, w) ∈ R) iff
“cm commits to some secret value w and C(w) = y”. Here, C is a circuit in some
circuit class C and y is the expected output of the function.
We now define witness encryption over commitments as follows:

Definition 5 (Witness encryption over commitments). Let C =
(Setup,Commit) be a non-interactive commitment scheme. A witness encryption
over commitments cWE for circuit class C over commitment scheme C consists
of a pair of algorithms cWE = (Enc,Dec):

Encryption phase. ct ← Enc(x,m) on input a statement x = (ck, cm, C, y)
such that C ∈ C and a message m ∈ {0, 1}∗, it generates a ciphertext ct.

Decryption phase. m/⊥ ← Dec(ct, w, d) on input a ciphertext ct, a witness w,
and a decommitment d, returns a message m or ⊥.

A cWE should satisfy completeness and semantic security as defined below:

(Perfect) Completeness. An honest prover with a statement x =
(ck, cm, C, y) and witness w such that cm = Commit(ck, w) and C(w) = y
can always decrypt with overwhelming probability. More precisely, a cWE
has perfect completeness if for all λ ∈ N, for all C ∈ C, and for all
ck ∈ Range(C.Setup), strings ρ, y, w and bit messages m ∈ {0, 1}∗ it holds
that

Pr
[
ct← Enc(x = (ck, cm, C, y),m);m′ ← Dec(ct, w, ρ) : m = m′] = 1

where cm = C.Commit(ck, w; ρ) and C(w) = y.
Semantic Security Intuitively, encrypting with respect to a false statement

(with honest commitment) produces indistinguishable ciphertexts. Formally,
there exists a negligible function µ such that for all λ ∈ N, all auxiliary strings
aux and all PPT adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 · Pr

ck← C.Setup(1λ)

(st, w, ρ, C, y,m0,m1)← AOenc(·)(ck, aux)

cm← C.Commit(ck, w; ρ)

b
$←− {0, 1}

ct← Enc(x = (ck, cm, C, y),mb)

ct := ⊥ if C(w) = y or C ̸∈ C

: A(st, ct) = b

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where Oenc(·) is an encryption oracle defined as follows. On in-
put (w, ρ, C, y,m), it computes cm ← C.Commit(ck, w; ρ) and returns
ct← Enc(x = (ck, cm, C, y),m)3.

3 While such oracle is not necessary for the model (the adversary is obtaining informa-
tion it could compute by itself), we explicitly model it to clarify that the adversary
can have access to additional ciphertexts in the experiment.

15

Instantiations of cWE

From Multi-Sender 2P-NISC [1]. A cWE scheme can be constructed from pro-
tocols for Multi-Sender (reusable) Non-Interactive Secure Computation (MS-
NISC) [1]. In such protocols, there is a receiver R who first broadcasts an encod-
ing of its input x̂, and then later every sender Si with input yi can send a single
message to R that conveys only f(x, yi). This is done while preserving privacy
of inputs and correctness of output.

In Section C.1 we provide a detailed explanation of how to construct cWE
using MS-NISC as in [1]. We here state the main points of the construction.
Let f be the function that on input y = (x, k) and x = w outputs k if and only if
(x, w) ∈ R. This will be the underlying function for the MS-NISC protocol. We
then obtain a cWE scheme over the relation R in the following way:

1. First, the receiver commits to its witness w by providing an encoding of it
as its first message in the MS-NISC protocol.

2. Secondly, to encrypt m under statement x, a sender samples a key k of size
|m| and provides an encoding of (x, k) as the second message in the MS-NISC
protocol and sends the ciphertext ct = m⊕ k to the receiver.

3. Finally, the receiver obtains the key as the output of f(x = w, y = (x, k)) = k
iff w is a valid witness for the statement x encoded in the second message.
And it decrypts the ciphertext m = ct⊕ k.

We observe that the above construction actually yields a stronger notion of cWE
where the statement x is private which is not a requirement in our setting. This
asymmetry between sender and receiver privacy was also observed by others [21]
and it opens the door for efficient constructions using oblivious transfer (OT)
and privacy-free garbled circuits as described in [24]. More details on the more
efficient construction of cWE using OT and garbled circuits are provided in C.2.

5 Construction of ECW

Here we show a novel construction of ECW from cWE (Section 5.1). We then
show alternative constructions through instantiations from previous work.

5.1 ECW from cWE

In this section we realize the notion of ECW from cWE. We define our scheme
with respect to a set of parties P = {P1, . . . , Pn} executing a blockchain protocol
Γ as described in Section 2.1, i.e. each party Pi has access to the blockchain
ledger and is associated to a tuple (Sig.pki, auxi, sti) registered in the genesis
block for which it has corresponding secret keys (Sig.ski, skL,i). Our construction
uses as a main building block a witness encryption scheme over commitments
cWE = (EnccWE,DeccWE); we assume the commitments to be extractable. The
class of circuits C of cWE includes the lottery predicate lottery(B, sl,R, skL,i).
We let each party publish an initial commitment of its witness. This way we can

16

do without any interaction for encryption/decryption through a one-time setup
where parties publish the commitments over which all following encryptions are
done. We construct our ECW scheme ΠECW as follows:

System Parameters: We assume that a commitment key Setup(1λ) → ck is
contained in the genesis block B0 of the underlying blockchain.

Setup Phase: All parties Pi ∈ P proceed as follows: 1. Compute a commitment
cmi ← Commit(ck, skL,i; ρ) to skL,i using randomness ρ; 2. Compute a signa-
ture σi ← SigSig.ski(cmi). 3. Publish (cmi, σi) on the blockchain by executing

Broadcast(1λ, (cmi, σi)).
Encryption Enc(B, sl,R,m): Construct a circuit C that encodes the predicate
lottery(B, sl,R, skL,i), where B, sl and R are hardcoded and skL,i is the witness.
Let PSetup be the set of parties with non-zero relative stake and a valid setup
message (cmi, σi) published in the common prefix B⌈κ (if Pi has published
more than one valid (cmi, σi), only the latest one is considered). For every
Pi ∈ PSetup, compute cti ← ΠcWE.EnccWE(xi = (ck, cmi, C, 1),m). Output
ct =

(
B, sl,R, {cti}Pi∈PSetup

)
.

Decryption Dec(B, ct, sk): If Pi has skL,i such that lottery(B, sl,R, skL,i) = 1
for parameters B, sl,R from ct, output m ← ΠcWE.DeccWE(cti, skL,i, ρi).
Otherwise, output ⊥.

Theorem 1. Let C = (Setup,Commit) be a non-interactive extractable commit-
ment scheme and cWE = (EnccWE,DeccWE) be a witness encryption scheme over
C for a circuit class C encoding the lottery predicate lottery(B, sl,R, skL,i) as
defined in Section 4. Let Γ be a blockchain protocol as defined in Section 2.1.
ΠECW is an IND-CPA-secure ECW scheme as per Definition 4.

Proof. Assume by contradiction that there exists an adversary AECW with non-
negligible advantage in GameIND-CPA

Γ,A,Z,E in the ECW setting as described in Section
3.1. We construct an adversary AcWE with black-box access to AECW that has
non-negligible advantage in breaking the semantic security of cWE as defined in
Section 4. We assume (w.l.o.g.) that AECW only corrupts one party Pa and that
there exists only one honest party Ph

4. AcWE proceeds as follows:

1. Upon receiving the commitment key ck from the challenge, AcWE proceeds
as follows:
(a) AcWE acts as the environment Z orchestrating the execution of the

blockchain protocol Γ towards AECW, placing the commitment key ck
in the genesis block. AcWE acts exactly as Z in GameIND-CPA

Γ,A,Z,E .
(b) AcWE simulates honest party Ph executing the setup phase and publish-

ing a valid (cmh, σh) on the blockchain and saving skL,h, ρh.
(c) At some point, AECW outputs challenge parameters B, sl,R,m0,m1 from

its view of the blockchain. AcWE constructs a circuit C that encodes the
predicate lottery(B, sl,R, skL,i), where B, sl and R are hardcoded and
skL,i is the witness.

4 In reality there will be more than one corrupted party and one honest party; the
main argument underlying our proof holds regardless.

17

(d) Finally, if there exists a valid setup message (cma, σa) published in the
common prefix B⌈κ by Pa (i.e. the corrupted party Pa is in PSetup),
AcWE extracts skL,a, ρa from cma using the extractability of the commit-
ment scheme C and outputs (st, skL,a, ρa, C, 1,m0,m1) to the challenger.
Otherwise, AcWE outputs (st, skL,h, ρh, C, 1,m0,m1) to the challenger,
where skL,h, ρh were used to generate the commitment by the simulated
honest party Ph.

2. Upon receiving ciphertext cti from the challenger, if Pa ∈ PSetup, then
cti = cta was computed w.r.t. Pa’s commitment cma and AcWE computes
a cWE ciphertext cth ← ΠcWE.EnccWE(xh = (ck, cmh, C, 1),m0) w.r.t.
the honest party’s commitment cmh (which is possible since AcWE knows
cmh, skLh

, ρh). Otherwise, only Ph is in PSetup and cti = cth. AECW creates
the ECW ciphertext ct =

(
B, sl,R, {cti}Pi∈PSetup

)
and forwards it to AECW.

AcWE continues the execution of Γ with AECW from the round where it
stopped when AECW outputted challenge parameters B, sl,R,m0,m1.

3. Upon receiving a guess b′ from AECW, AcWE forwards b′ to the challenger.

First, notice thatAECW has the same access to the underlying blockchain pro-
tocol Γ (and to the system parameters in the genesis block) as in GameIND-CPA

Γ,A,Z,E .

In case AECW provided a valid setup message, it receives ct containing a
cWE ciphertext cta generated with respect to its commitment cma and the
circuit encoding the lottery predicate lottery(B, sl,R, skL,i), where B, sl and R
provided by AECW are hardwired. Moreover, ct contains a ciphertext cth con-
taining the same mb as in cta with probability 1/2. Hence, ct is distributed
exactly as in GameIND-CPA

Γ,A,Z,E with probability 1/2. If AECW has non-negligible

advantage in GameIND-CPA
Γ,A,Z,E , it is able to distinguish whether cta contains m0

or m1 with non-negligible advantage even though it does not have skL,a and
cma ← Commit(ck, skL,a; ρa) such that lottery(B, sl,R, skL,a) = 1, i.e. it does not
have skL,a such that C(skL,a) = 1. This means that, by forwarding guess b′ from
AECW, AcWE in the cWE semantic security game has the same advantage as
AECW in GameIND-CPA

Γ,A,Z,E as long as ct was distributed as in GameIND-CPA
Γ,A,Z,E , which

happens with probability 1/2. Hence, in the cWE semantic security game, AcWE

has half of the advantage of AECW in GameIND-CPA
Γ,A,Z,E .

In case it did not provide a valid setup message, AECW only sees ct with
cth containing mb(in this case with probability 1) generated with respect to
commitment cmh for which it does not know the opening (and the same circuit
C). Hence, ct is distributed exactly as in GameIND-CPA

Γ,A,Z,E with probability 1. In this
case, by an analogous argument as before, the advantage of the adversary AcWE

must be the same as the advantage of the adversary AECW in GameIND-CPA
Γ,A,Z,E .

Since we assume that AECW has a non-negligible advantage and AcWE has
a constant fraction of AECW’s advantage, it will also obtain a non-negligible
advantage and thus break the cWE scheme we assume is secure. Hence, ΠECW

is an IND-CPA-secure ECW scheme.

18

5.2 Other Instantiations

ECW from target anonymous channels [17,2] As mentioned before, another ap-
proach to construct ECW can be based on a recent line of work that aims to
design secure-MPC protocols where parties should remain anonymous until they
speak [17,2,16]. The baseline of these results is to establish a communication
channel to random parties, while preserving their anonymity. It is quite clear
that such anonymous channels can be used to realize our definition of ECW for
the underlying lottery predicate that defines to whom the anonymous channel
is established. Namely, to encrypt m to a role R at a slot sl with respect to a
blockchain state B, create a target anonymous channel to (R, sl) over B by us-
ing the above approaches and send m via this channel. Depending on the lottery
predicate that specifies which random party the channel is created for, a recipient
with the secret key who wins this lottery can retrievem. To include some concrete
examples, the work of Benhamouda et al. [2] proposed the idea of using a “nom-
ination” process, where a nominating committee chooses a number of random
parties P, look up their public keys, and publish a re-randomization of their key.
This allows everyone to send messages to P while keeping their anonymity. The
work of [2] answered this question differently by delegating the nomination task
to the previous committees without requiring a nominating committee. That is,
the previous committee runs a secure-MPC protocol to choose a random sub-
set of public keys, and broadcasts the rerandomization of the keys. To have a
MPC protocol that scales well with the total number of parties, they define a
new flavour of private information retrieval (PIR) called random-index PIR (or
RPIR) and show how each committee—playing the role of the RPIR client—can
select the next committee with the complexity only proportional to the size of
the committee. There are two constructions of RPIR proposed in [17], one based
on Mix-Nets and the other based on FHE. Since the purpose of the constructions
described is to establish a target-anonymous channel to a random party, one can
consider them as examples of a stronger notion of ECW with anonymity and
a specific lottery predicate that selects a single random party from the entire
population as the winner.

ECW from WE of NIZK proofs [11]. Derler and Slamanig [11] (DS) constructed
a variant of WE for a restricted class of algebraic languages. In particular, a
user can conduct a Groth-Sahai (GS) proof for the satisfiability of some pairing-
product equations (PPEs). Such a proof contains commitments to the witness
using randomness only known by this user. The proof can be used by anyone to
encrypt a message resulting in a ciphertext which can only be decrypted by know-
ing this randomness. More formally, they consider a type of WE associated with
a proof system Π = (Setup,Prove,Verify) consisting of two rounds. In the first
round, a recipient computes and broadcasts π ← Prove(crs, x, w). Later, a user
can verify the proof and encrypt a message m under (x, π) if Verify(crs, x, π) = 1.
We note that the proof π does not betray the user conducting the proof and
therefore it can use an anonymous broadcast channel to communicate the proof
to the encrypting party in order to obtain anonymous ECW. Moreover, although
GS proofs may look to support only a restricted class of statements based on

19

PPEs, they are expressive enough to cover all the statements arising in pairing-
based cryptography. This indicates the applicability of this construction for any
VRF-based lottery where the VRF is algebraic and encodable as a set of PPEs.
Further details are provided in Appendix B. This interactive ECW just described
yields an improvement in communication complexity at the cost of having an
extra round of interaction.

From Signatures of Knowledge. Besides the above instantiations, we point out
a (potentially more inefficient) abstract construction from zero-knowledge sig-
natures of knowledge (SoK) [7] (roughly, a non-malleable non-interactive zero-
knowledge proof). This is similar in spirit to the previous instantiation and can
be seen as a generalization. Assume each party has a (potentially ephemeral)
public key. At the time the lottery winner has been decided, the winners can
post a SoK showing knowledge of the secret key corresponding to their pk and
that their key is a winner of the lottery. To encrypt, one would first verify the sig-
nature of knowledge and then encrypt with respect to the corresponding public
key.

6 YOSO Multiparty Computation from ECW

In this section we show how ECW can be used as the crucial ingredient in setting
up a YOSO MPC model. So far we have only focused on encryption to the future
and we focused on the least meaningful notion of secrecy, namely IND-CPA. This
falls short of role assignment in the sense of [16], where a message can also be
authenticated to come from a given role in the past and where multiple parties
can send messages to the same role, for which we in most applications need
IND-CCA. We here note that these properties can be added using standard
techniques. This is one of several advantages of having a game-based definition
where we have white-box access to cryptographic objects like ciphertexts and
lottery predicates. We also look at some extensions of the lottery, allowing to set
the hardness adaptively and allowing to restrict which accounts can win a given
role.

6.1 Extended Lotteries

We first discuss how to extend the lottery with additional features. So far the
probability of winning a role can depend on the sl, the role R, and the account
sk. The dependence can be arbitrarily complex. We sometimes need to assume
that the lottery shows some level of structure to be able to ensure that a given
set of roles has enough honest machine winning them.

Smooth Lotteries First we define that a lottery has individual winning prob-
abilities if for a given sl and a given account sk there exist a probability p such
that it holds for all R that Pr[lottery(B, sl,R, sk) = 1] ≈ p. This is the case for
most PoS lotteries as the probability of winning depends only on the stake that
sk has in a given slot.

20

We will also need to assume independence of winning events. It is useless
for the sake of using, e.g., the law of large numbers if in a given slot either all
honest parties win a role or none win a role. We typically needed that except
with negligible probability some large enough fraction wins roles.

We require that for all sl and all (R, sk) and (R′, sk′) ̸= (R, sk) it holds that
Pr[lottery(B, sl,R, sk) = 1 | lottery(B, sl,R′, sk′)] ≈ Pr[lottery(B, sl,R, sk) = 1]. We
extend this to n-independence where the probability of an account winning a role
does not depend on the outcome of n− 1 other lotteries in the same slot.

We call a lottery with individual winning probabilities and n-independence
an n-smooth lottery. For an n-smooth lottery we can compute the probability
that a set of up to n roles are won by honest parties directly from the individual
winning probabilities of the slot. We use this below.

Hardness Adjustment We will sometimes need to assume that the hardness
of the lottery can be adjusted. This can in principle be captured in the current
formalism lottery(B, sl,R, sk) as we could have some roles be harder to win. This
would however ruin individual winning probabilities so we prefer an explicit
notation for it. We assume a new parameter hard ∈ [0, 1] which can be used
to control hardness of the lottery. For simplicity assume that hard ∈ [0, 1]. We
require that

Pr[∃sk (lottery(B, sl,R, sk, hard) = 1)] ≈ hard .

A more realistic model would have to assume that the probability can be con-
trolled to be in some interval, e.g., [hard/2, 2hard], but nothing essential is lost
in assuming the simplistic model in this work where the focus is on EtF and
not intricacies of the lotteries themselves. Scaling of hardness is typically easy
to construct as most PoS lotteries give each party a pseudo-random number and
say that the party won if the number is below some threshold. One can use
hard to adjust the threshold. We assume that adjusting the hardness maintains
n-smoothness.

Filtering Another possible extension is having an extra parameter filter which
is a PPT predicate filtering the lottery. Given an account sk we assume it can be
computed in PPT from the information on B and the public key pk associated
to sk. In particular, filter does not need sk to be efficiently computable. We
require that filter(B, sk) outputs ⊤ or ⊥. We require from the lottery that if
filter(B, sk) = ⊥ then lottery(B, sl,R, sk, filter) = 0. If filter(B, sk) = ⊤, then we
require that lottery(B, sl,R, sk, filter) = lottery(B, sl,R, sk). Since the filter can be
computed in PPT given the blockchain it is typically trivial to augment existing
lotteries with a filter. We can simply let the lottery predicate include a check
of the filter. We could again capture this in the existing formalism simply by
letting lottery(B, sl,R, sk) ignore the filtered winners, but this would again ruin
individual winning probabilities of the underlying mechanism.

21

6.2 IND-CCA ECW

We sometimes require that the EtF is IND-CCA secure. We define this as usual.
We establish a game between a challenger C and an adversary A. The game
proceeds as the IND-CPA game except that we give the adversary the usual
decryption oracles. Let O be an oracle which on input (pk, c) finds the secret
key sk corresponding to pk and return the decryption of c. Let Oct be the same
oracle but which ignores the input ct. We give the adversary access to the first
oracle before giving the challenge ciphertext ct and access to the second oracle
afterwards.

Algorithm 2 GameIND-CCA2
Γ,A,Z,E

viewr ← EXECΓ
r (A

O,Z, 1λ) ▷ A executes Γ with Z until round r
(B, sl,R,m0,m1)← AO(viewr

A) ▷ A outputs challenge parameters

b
$←− {0, 1}

ct← Enc(B, sl,R,mb)
st← AOct(viewr

A, ct) ▷ A receives challenge ct

viewr̃ ← EXECΓ,viewr

r̃ (AOct ,Z, 1λ) ▷ Execute from viewr until round r̃
(B̃, b′)← AOct(viewr̃

A, st)
if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B

if {skAL,0, . . . , sk
A
L,j} ∩ winners(B̃, sl,R) = ∅ then ▷ A does not win role R

return b⊕ b′

end if
end if
return g

$←− {0, 1}

Definition 6 (IND-CCA2 Secure EtF). Formally, an EtF-scheme E is said to
be IND-CCA2 secure in the context of a blockchain protocol Γ executed by PPT
machines A and Z if there exists a negligible function µ such that for λ ∈ N:

2 ·
∣∣∣Pr [GameIND-CCA2

Γ,A,Z,E = 1
]
− 1

∣∣∣ ≤ µ(λ)

In the following we will assume that we have an IND-CCA2 ECW. To add
IND-CCA2 security to an EtF which already has IND-CPA security we could add
to the setup of the network a CRS for a simulation-sound extractable NIZK [20].
When encrypting m to a role S the sender will send along a proof of knowledge
of the plaintext m. We get the challenge ciphertext from the IND-CPA game
and use the ZK property to simulate the NIZK proof. We can use the extrac-
tion trapdoor of the proof system to simulate the CCA decryption oracles by
simulation soundness. When the IND-CCA2 adversary makes a guess, we make
the same guess. The details of the construction and proof follow using standard
techniques and are omitted. We leave to future work to construct concretely
efficient IND-CCA2 EtF.

22

6.3 Authentication from the Past (AFP)

When the winner of a role S sends a message m to a future role R then it
is typically also needed that R can be sure that the message m came from a
party P which won the role S. Most PoS blockchains deployed in practice have
a lottery where a certificate can be released proving that P won the role S. At
the same time parties, identified by their accounts on the blockchain, are able to
sign in the name of the account. They each have a public key for an EUF-CMA
signature scheme as part of the account and they know the secret key. This
is used to sign transactions to ensure that only the owner of the account can
transfer funds out of the account. For a blockchain with the above properties
AFP can be implemented as follows: the winning certificate can be released to
prove that P won the role S and then P can sign the message m.

In general we can add authentication as follows. Recall that P wins S if
lottery(B, sl,S, skP) = 1. Here R(x = (B, sl,S), w) = lottery(x, w) is a PPT func-
tion and all parties know x and (only) the winner knows a witness w such that
R(x, w) = 1. We can therefore use a signature of knowledge [8] to sign m under
the knowledge of skP such that lottery(B, sl,S, skP) = 1. This will exactly attest
that the message m was sent by a winner of the lottery for S. The details of the
construction and proof follow using standard techniques and are omitted.

In the following we will assume that we have authentication from the past.
We assume that the AFP mechanism is EUF-CMA in the following sense. Parties
can send messages via the blockchain. When receiving a message a party outputs
(S,m) to indicate that the role S sent the message. Correctness says that if you
won a role you can send messages on behalf of that role. We define an EUF-
CMA game as follows. The adversary participates as adversary in an execution
of the blockchain. At some point it outputs (S,m,P), where S is a role which was
not won by a corrupted party, P is an honest party, and where m is a message
never sent by the honest party winning S. The adversary wins the game if P
at some point outputted (S,m). We require that any efficient adversary playing
the blockchain game wins the game with negligible probability. The definition
and construction from EUF-CMA signatures or signatures of knowledge follows
using standard techniques and we omit them here.

6.4 Round and Committee Based YOSO Protocols

Having IND-CCA ECW and AFP we can establish a round-based YOSO model,
where there is a number of rounds r = 1, 2, . . . and where for each round there
are n roles Rr,i. We call the role Rr,i “party i in round r”. We fix a round length L
and associate role Rr,i to slot sl = L ·r. This L has to be long enough that in each
round the machines executing the roles can perform the required decryptions of
ciphertexts sent to them, compute the code of the role, compute encryptions to
the roles in the next round, have time to post these to the blockchain and be
available to the committee of round r+1 before slot (r+1) ·L. Picking such an
L depends crucially on the underlying blockchain and network, and we will here
simply assume that it can be done for the blockchain at hand.

23

With this setup in place, the roles Rr,i of round r can use IND-CCA2 secure
ECW and AFP to send secret authenticated messages to the roles Rr+1,i in round
r + 1. They pick up their own messages from the blockchain before slot r · L,
authenticate using AFP, decrypt using ECW, compute their outgoing messages,
encrypt using ECW and post the ciphertexts on the blockchain.

Honest Majority In round based YOSO MPC it is critical that we can assume
some fraction of honesty in each committee Rr,1, . . . ,Rr,n. We discuss here the
assumptions needed on the lottery for this to hold and some details of how to
guarantee it.

Assume an adversary which can corrupt parties, identified by sk, and a lottery
assigning parties to roles Rr,i. We first discuss how to map the corruption status
of parties to roles.

1. If a role Rr,i is won by a corrupted party, call the role Malicious.
2. If a role Rr,i is won by several parties, call the role Malicious. This is even

if it is won only by honest parties. If Rr,i is won by two honest parties they
will both execute the role and send outgoing messages. This might violate
the security of the role.

3. If a role Rr,i is won by exactly one honest party, call it Honest.
4. If a role Rr,i is not won by any party, call it Crashed. These roles will not

be executed and are therefore equivalent to a crashed party.

Note that because we have assumed the corrupted parties know their secret
keys sk in our model, the security experiment can compute in poly-time the
corruption status of roles. We can also use these statuses in security reductions,
which we will do crucially later. Contrast this to the situation where the security
experiment, and thus the reduction, would not known sk of corrupted parties.
In that case it could be that a role was won by an honest party but also by
a corrupted party which stays completely silent. It sends no messages, it only
decrypt messages sent to the role. If the reduction is not aware of the corrupted
party winning the role it might send a simulated ciphertext to the apparently
honest role. The corrupted party also having won the role would be able to detect
this. Since any role won by an honest party could in principle also be corrupted
by a silent malicious party, simulation would become impossible.

We return to the discussion of obtaining honest majority among roles. For
simplicity of the discussion we assume an n-smooth lottery, where we can control
the hardness. Assume that we set the hardness such that a given role is won with
probability ϕ. It is easy to see that when we have n-smoothness then if there
is probability ϕ that a role is won, then there is about probability ϕ2 that it is
won twice, giving a Malicious role. Clearly there is probability 1− ϕ that it is
not won, giving a Crashed role. The expression ϕ2 + 1 − ϕ has a minimum of
75%, so 75% of all roles will be malicious or crashed even if we start with perfect
honesty. We can therefore never expect to get honest majority. The trick is to
design protocols which can tolerate many crashed parties as long as there are
more honest parties than corrupted parties among the non-crashed parties.

24

Assume a lottery where a unique winner is honest with probability 1
2 + ϵ. In

that case the probability that a role is won by a single honest winner is ϕ(12 + ϵ).
The probability that the role is won more than once is about ϕ/(1 − ϕ) by
an application of a geometric series. The probability that it is won by a single
corrupted party is ϕ(12 − ϵ). To have more honest parties than corrupted parties
in expectation we therefore need that ϕ(12 + ϵ) > ϕ/(1 − ϕ) + ϕ(12 − ϵ), which
solves to ϕ > 1−2ϵ. By picking ϕ = 1−2ϵ+δ for a positive constant we get that
the expected number of honest parties is h = ϕ(12 + ϵ)n and that the expected
number of corrupted parties is t = (ϕ/(1−ϕ)+ϕ(12 − ϵ))n and that h− t > 2γn
for a positive constant γ.

By setting H = h−γn and using a Chernoff bound and n-smoothness we can
pick n large enough to ensure that there are more than H honest parties except
with negligible probability. By setting T = t + γn and picking n large enough
we can similarly ensure that there are less that T corrupted parties except with
negligible probability. Note that H > T .

Definition 7 (honest committee friendly). We call a blockchain ΓV honest
committee friendly if there exists n and H and T such that H > T s.t. we can de-
fine a sequence of roles Rr,i for r = 1, . . . and i = 1, . . . , n such that Rr,1, . . . ,Rr,n

are associated to the same slot slr and such that for all r it holds that except with
negligible probability there are at least H honest roles in Rr,1, . . . ,Rr,n and at
most T malicious roles. Furthermore, honest parties in Rr,1, . . . ,Rr,n can if they
begin when the blockchain is at slr send EtF encrypted and AFP authenticated
messages which appears on the blockchain before slot slr+1.

We capture the above discussion using a definition.

Definition 8 (YOSO MPC friendly). Let ΓV = (UpdateStateV , GetRecords,
Broadcast) be a blockchain and let E = (Enc,Dec) be an EtF scheme. We call
(ΓV ,E) YOSO MPC friendly if the following holds. The EtF scheme is IND-
CCA2 secure. The blockchain ΓV is EUF-CMA AFP secure and honest com-
mittee friendly.

We will later assume a YOSO friendly blockchain, and we argued above that
the existence of a YOSO friendly blockchain is a plausible assumption without
having given formal proofs of this. It is interesting future work to prove that
a concrete blockchain is a YOSO friendly blockchain in a given communication
model. We omit this as our focus is on constructing flavours of EtF.

7 Construction of EtF from ECW and Threshold-IBE

The key intuition about our construction is as follows: we use IBE to encrypt
messages to an arbitrary future (R, slfut) pair. When the winners of the role in
slot slfut are assigned, we let them obtain an ID-specific key for (R, slfut) from
the IBE key-generation algorithm using ECW as a channel. Notice that this key-
generation happens in the present while the encryption could happened at any

25

earlier time. We generate the key for (R, slfut) in a threshold manner by assuming
that, throughout the blockchain execution, a set of committee members each
holds a share of the master secret key mski.

7.1 Construction

We now describe our construction. We assume an encryption to the current
winner ΠECW and a threshold IBE scheme ΠTIBE. In the setup stage we assume
a dealer acting honestly by which we can assign master secret key shares of the
TIBE.

Parameters: We assume that the genesis block B0 of the underlying blockchain
contains all the parameters for ΠECW.

Setup Phase: Parties run the setup stage for the ΠECW. The dealer produces
(mpk, m⃗sk = (msk1, . . . ,mskn)) from TIBE setup with threshold k. Then it
chooses n random parties and gives a distinct mski to each. All learn mpk.

Blockchain Execution: The blockchain execution we assume is as in Sec-
tion 3. We additionally require that party i holding a master secret key
share mski broadcasts ctsk,i(sl,R) ← ΠECW.Enc(B, sl,R, ski(sl,R)), whenever the

winner of role R in slot sl is defined in the blockchain B, where ski(sl,R) ←
ΠTIBE.IDKeygen(mski, (sl,R)).

Encryption Enc(B, sl,R,m): Each party generates cti ← ΠTIBE.Enc(mpk, ID =
(sl,R),m). Output ct = (B, sl,R, {cti}Pi

).
Decryption Dec(B, ct, sk): Party i outputs ⊥ if it does not have skL,i such
that lottery(B, sl,R, skL,i) = 1 for parameters B, sl,R from ct. Otherwise, it

retrieves enough (above threshold) valid ciphertexts ctsk,j(sl,R) from the current

state of the blockchain and decrypts each through ΠECW obtaining skj(sl,R).

It then computes sk(sl,R) ← ΠTIBE.Combine(mpk, (skj(sl,R))j). It finally outputs

m← ΠTIBE.Dec(sk(sl,R), ct).

Resharing. We can ensure that the master secret key is proactively reshared
by modifying each party so that mski-s are reshared and reconstructed in the
evolution of the blockchain.

Correctness Correctness of the construction follows from the correctness of the
underlying IBE and the fact that a winning role will be able to decrypt the
id-specific key by the correctness of the ECW scheme.

7.2 Security and Proof Intuition

In the following we assume some of the extensions discussed in Section 6.

Theorem 2 (informal). Let ΓV be a YOSO MPC friendly blockchain. Let
ΠTIBE be a robust secure threshold IBE as in Section 2.3 with threshold n/2, and
let ΠECW be a secure IND-CCA2 ECW, then the construction in Section 7.1 is
a secure EtF.

26

We describe our proof in Appendix D. At the high level we show security
in two steps. We first show the security of our construction for a simplified
non-threshold setting with a standard IBE instead of a threshold one with key-
sharing. In other words we do not temporarily consider the real case where
there is a committee of parties holding a share of the master secret key, but we
assume the execution uses a “key provider” oracle holding the master secret key
of the IBE scheme. In particular, we define the behavior of oracle Ok-provider

msk as
follows: given in input a blockchain B and a slot sl (such that the latest slot
of B is sl), it broadcasts a ciphertext for the winner5 of the slot computed as
ctsksl ← ECW.Enc(B, sl, ,R, sksl) where sksl ← IBE.Keygen(msk, (sl,R)).

As a second step in the proof we show that, in the threshold-setting (where
the master secret key is actually shared), one can obtain an adversary with a
comparable advantage in the threshold-setting from an adversary in the non-
threshold setting. Intuitively, we can do this because of the low amount of stake
the adversary is controlling and the security of threshold-IBE.

Finally, our proof considers the case of an adversary with static corruptions,
but we point out it can be straightforwardly compiled to a full round and com-
mittee YOSO setting as described in Section 6.

8 Blockchain WE versus EtF

In this section we show that an account-based PoS blockchain with sufficiently
expressive smart contracts and an EtF scheme for this blockchain implies a
notion of witness encryption on blockchains, and vice versa. The construction of
EtF from BWE is completely straightforward and natural: encrypt to the witness
which is the secret key winning the lottery. The construction of BWE from EtF
is also straightforward but slightly contrived: it requires that we can restrict the
lottery such that only some accounts can win a given role and that the decryptor
has access to a constant fraction of the stake on the blockchain and are willing
to bind them for the decryption operation. The reason why we still prove the
result is that it establishes a connection at the feasibility level. For sufficiently
expressive blockchains the techniques allowing to construct EtF and BWE are
the same. To get EtF from simpler techniques than those we need for BWE we
need to do it in the context of very simple blockchains. In addition, the techniques
allowing to get EtF without getting BWE should be such that they prevent the
blockchain from having an expressive smart contract layer added. This seems like
a very small loophole, so we believe that the result shows that there is essentially
no assumptions or techniques which allow to construct EtF which do not also
allow to construct BWE. Since BWE superficially looks stronger than EtF the
equivalence helps better justify the strong assumptions for constructing EtF.

Definition 9 (Blockchain Witness Encryption). Consider PPT algorithms
(Gen,Enc,Dec) in the context of a blockchain ΓV is an BWE-scheme with evolved
predicate evolved and a lottery predicate lottery working as follows:

5 This is actually a vector, one for each winner in the slot. For clarity of discussion we
just consider the case for one winner. The general case follows straightforwardly.

27

Setup. (pv, td)← Gen() generates a public value pv and an extraction trapdoor
td. Initially pv is put on B.

Encryption. ct ← Enc(B,W,m) takes as input a blockchain B, including the
public value, a PPT function W , the witness recogniser, and a message m.
It outputs a ciphertext ct, a blockchain witness encryption.

Decryption. m/⊥ ← Dec(B̃, ct, w) in input a blockchain state B̃, including the
a public value pv, a ciphertext ct a witness w, it outputs a message m or ⊥.

Correctness An BWE-scheme is correct if for honest parties i and j, PPT func-
tion W , and witness w such that W (w) = 1 the following holds with overwhelm-
ing probability: if party i runs ct ← Enc(B,W,m) and party j starts running
Dec(B̃, ct, w) in B̃ evolved from B, then eventually Dec(B̃, ct, w) outputs m.

Security We establish a game between a challenger C and an adversary A. In
section 2.1 we described how A and Z execute a blockchain protocol. In addition,
we now let the adversary interact with the challenger in a game GameIND-CPA

Γ,A,Z,E
which can be summarized as follows.

1. (pv, td)← Gen() and put pv on the blockchain.
2. A executes the blockchain protocol Γ together with Z and at some round

r chooses a blockchain B, a function W and two messages m0 and m1 and
sends it all to C.

3. C chooses a random bit b and encrypts the message mb with the parameters
it received and sends ct to A.

4. A continues to execute the blockchain until some round r̃ where the
blockchain B̃ is obtained and the A outputs a bit b′.

The adversary wins the game if it succeeds in guessing b with probability notably
greater than one half without W (Extract(td, B̃, ct,W)) = 1.

EtF from BWE. We first show the trivial direction of getting EtF from BWE.
Let (BWE.Gen,BWE.Enc,BWE.Dec) be an BWE scheme. Recall that one wins
the lottery if lottery(B, sl,R) = 1. We construct a EtF scheme. To encrypt, let W
be the function W (w) = lottery(B, sl,R, w) and output Enc(B,W,m). If winning
the lottery for (sl,R) then let w be the secret key winning the lottery and output
Dec(B̃, ct, w). The proof is straightforward.

BWE from EtF. We now show how to construct BWE from EtF. Let
(EtF.Enc, EtF.Dec) be an EtF scheme. Assume a blockchain with Turing com-
plete smart contracts which can be programmed to send, receive, and reject
stake. Assume furthermore that if a constant fraction of the stake is moved to
an account then within a polynomial number of slots it will begin winning the
lottery with constant probability.

We assume that the contract C of an account is hardcoded into the account
when created and cannot be changed. We also need to assume that the blockchain
reaches all slot numbers such that there is an independent chance to win at

28

all slot numbers. We also need that only polynomially many slot numbers are
reached in polynomial time. We need that the lottery can be filtered such that
only certain accounts can win a given role. We need that the filtering can depend
on the smart contract put on the account when the account was created.

The construction needs a notion of labelled simulation-sound NIZK proof of
knowledge. For such a scheme there is a label connected to a proof and a proof
of instance x and label L cannot be mauled into a proof of instance x and label
L′ ̸= L. This can generically be constructed from an unlabelled scheme simply
by letting the label be part of the instance. Let pv of the BWE scheme be the
CRS of the NIZK and let td be the extraction trapdoor of the BWE scheme.

To encrypt proceed as follows.

1. Create a fresh account vk with a smart contract E and with no stake on it.
Program E with W hard-coded and such that E is willing to receive calls of
the form (Transfer, π, f, F) from any other smart contract D. If D has f
stake available and π is a proof of knowledge of w such that W (w) = 1 and
with label F , then accept a transfer of f stake from D and send them to F .

2. Let filter be the filter which only accepts accounts which have no stake ini-
tially and which have smart contracts C of the form that it will only accept
stake from the account vk created by the encryptor above.

3. Use EtF to encrypt to roles E at slots 2i+j for i = 1, . . . , κ and j = 1, . . . , κ.
Use the filter filter.

To decrypt create a new account F with a contract accepted by filter. Then
use w to transfer stake to F via E. Note that F is allowed to win the lotteries
used in the EtF encryptions. No matter when the decryption is performed, the
slots of the blockchain will eventually reach the next slot of the form 2i as at
most polynomially many slots were reached already. After this comes κ slots in
a row to which the encryptor encrypted using EtF. Each of these is won with a
constant probability. Therefore the probability of not decrypting is negligible.

References

1. A. Afshar, P. Mohassel, B. Pinkas, and B. Riva. Non-interactive secure computa-
tion based on cut-and-choose. In P. Q. Nguyen and E. Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg, May
2014.

2. F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Ra-
bin, and L. Reyzin. Can a public blockchain keep a secret? In R. Pass and
K. Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 260–290.
Springer, Heidelberg, Nov. 2020.

3. F. Benhamouda and H. Lin. Mr NISC: Multiparty reusable non-interactive secure
computation. In R. Pass and K. Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 349–378. Springer, Heidelberg, Nov. 2020.

4. D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key threshold
encryption without random oracles. In D. Pointcheval, editor, CT-RSA 2006,
volume 3860 of LNCS, pages 226–243. Springer, Heidelberg, Feb. 2006.

29

5. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer,
Heidelberg, Aug. 2001.

6. E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. Foundations of homomorphic
secret sharing. In A. R. Karlin, editor, ITCS 2018, volume 94, pages 21:1–21:21.
LIPIcs, Jan. 2018.

7. M. Chase and A. Lysyanskaya. On signatures of knowledge. In C. Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, Heidelberg, Aug.
2006.

8. M. Chase and A. Lysyanskaya. On signatures of knowledge. In C. Dwork, editor,
Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings,
volume 4117 of Lecture Notes in Computer Science, pages 78–96. Springer, 2006.

9. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In L. R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg,
Apr. / May 2002.

10. B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In J. B. Nielsen and V. Rij-
men, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98.
Springer, Heidelberg, Apr. / May 2018.

11. D. Derler and D. Slamanig. Practical witness encryption for algebraic languages
and how to reply an unknown whistleblower. Cryptology ePrint Archive, Report
2015/1073, 2015. https://eprint.iacr.org/2015/1073.

12. J. A. Garay, R. Gelles, D. S. Johnson, A. Kiayias, and M. Yung. A little honesty
goes a long way - the two-tier model for secure multiparty computation. In Y. Dodis
and J. B. Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 134–158.
Springer, Heidelberg, Mar. 2015.

13. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, Apr. 2015.

14. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its appli-
cations. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM
STOC, pages 467–476. ACM Press, June 2013.

15. C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yak-
oubov. YOSO: You only speak once - secure MPC with stateless ephemeral roles.
In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part II, volume 12826 of
LNCS, pages 64–93, Virtual Event, Aug. 2021. Springer, Heidelberg.

16. C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yak-
oubov. YOSO: you only speak once / secure MPC with stateless ephemeral roles.
IACR Cryptol. ePrint Arch., 2021:210, 2021.

17. C. Gentry, S. Halevi, B. Magri, J. B. Nielsen, and S. Yakoubov. Random-index PIR
with applications to large-scale secure MPC. Cryptology ePrint Archive, Report
2020/1248, 2020. https://eprint.iacr.org/2020/1248.

18. R. Goyal and V. Goyal. Overcoming cryptographic impossibility results using
blockchains. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I, volume 10677
of LNCS, pages 529–561. Springer, Heidelberg, Nov. 2017.

19. V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song. Storing and retriev-
ing secrets on a blockchain. Cryptology ePrint Archive, Report 2020/504, 2020.
https://eprint.iacr.org/2020/504.

30

https://eprint.iacr.org/2015/1073
https://eprint.iacr.org/2020/1248
https://eprint.iacr.org/2020/504

20. J. Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In X. Lai and K. Chen, editors, Advances in Cryptology -
ASIACRYPT 2006, 12th International Conference on the Theory and Application
of Cryptology and Information Security, Shanghai, China, December 3-7, 2006,
Proceedings, volume 4284 of Lecture Notes in Computer Science, pages 444–459.
Springer, 2006.

21. M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In A.-R. Sadeghi, V. D.
Gligor, and M. Yung, editors, ACM CCS 2013, pages 955–966. ACM Press, Nov.
2013.

22. J. B. Nielsen. On protocol security in the cryptographic model. Citeseer, 2003.
23. R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol in asyn-

chronous networks. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, Apr. / May
2017.

24. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer,
Heidelberg, Apr. 2015.

31

Supplementary Material

A Further Preliminaries

In this appendix, we introduce extra definitions and concepts used in the paper.

A.1 Proof-of-Stake (PoS) Blockchains

In this section, we give an overview of the framework from [18] for arguing about
PoS blockchain protocol security.

Blockchain Protocol Execution Let the blockchain protocol ΓV =
(UpdateStateV ,GetRecords,Broadcast) be guarded by a validity predicate V . The
algorithms can be described as follows:

– UpdateState(1λ) → bst where bst is the local state of the blockchain along
with metadata.

– GetRecords(1λ, st)→ B outputs the longest sequence B of valid blocks (wrt.
V).

– Broadcast(1λ,m) Broadcast the message m over the network to all parties
executing the blockchain protocol.

An execution of a blockchain protocol ΓV proceeds by participants running
the algorithm UpdateStateV to get the latest blockchain state, GetRecords to ex-
tract the ledger data structure from a state and Broadcast to distribute messages
which are added to the blockchain if accepted by V . An execution is orchestrated
by an environment Z which classifies parties as either honest or corrupt. All hon-
est parties executes ΓV (1λ) with empty local state st and all corrupted parties
are controlled by the adversary A who also controls network including delivery
of messages between all parties.

– In each round all honest parties receives a message m from Z and potentially
receives incoming network messages delivered by A. The honest parties may
do computation, broadcast messages and/or update their local states.

– A is responsible for delivering all messages sent by parties to all other parties.
A cannot modify messages from honest parties but may delay and reorder
messages on the network.

– At any point Z can communicate with adversary A or use GetRecords to
retrieve a view of the local state of any party participating in the protocol.

The result is a random variable EXECΓV

(A,Z, 1λ) denoting the joint view
of all parties (i.e. all inputs, random coins and messages received) in the above
execution. Note that the joint view of all parties fully determines the execution.

We define the view of the adversary as viewA(EXEC
ΓV

(A,Z, 1λ)) and the view of

the party Pi as viewPi
(EXECΓV

(A,Z, 1λ)). We assume that it is possible to take

32

a snapshot i.e. a view of the protocol after the first r rounds have been executed.

We denote that by viewr ← EXECΓV

r (A,Z, 1λ). Furthermore, we can resume the
execution departing from this view and continue until round r̃ resulting the the

full view including round r̃ denoted by viewr̃ ← EXECΓV

view,r̃(A,Z, 1λ).
We let the function stakei = stake(B, i) take as input a local blockchain B

and a party Pi and output a number representing the stake of party Pi wrt. to
blockchain B. Let the sum of stake controlled by the adversary be stakeA(B),
the total stake held by all parties staketotal(B) and the adversaries relative stake
is stake-ratioA(B). We also consider the PoS-fraction u-stakefrac(B, ℓ) as the
amount of unique stake whose proof is provided in the last ℓ mined blocks. More
precisely, let M be the index i corresponding to miners Pi of the last ℓ blocks
in B then

u-stakefrac(B, ℓ) =

∑
i∈M stake(B, i)

staketotal

A note on corruption For simplicity in the above execution we restrict the en-
vironment to only allow static corruption while the execution described in [23]
supports adaptive corruption with erasures.

A note on admissible environments [23] specifies a set of restrictions on A and
Z such that only compliant executions are considered and argues that certain
security properties holds with overwhelming probability for these executions. An
example of such a restriction is that A should deliver network messages to honest
parties within ∆ rounds.

Blockchain Properties In coming sections we will define what it means to
encrypt to a future state of the blockchain. First, we need to ensure what it
means for a blockchain execution to have evolved from one state to another.
We recall that running a protocol ΓV with appropriate restrictions on A and

Z will yield certain compliant executions EXECΓV

(A,Z, 1λ) where some secu-
rity properties will hold with overwhelming probability. An array of prior works,
including [13,23], have converged towards a few security properties that char-
acterizes blockchain protocols. These include Common Prefix or Chain Consis-
tency, Chain Quality and Chain Growth. From these basic properties, a number
of stronger properties were derived in [18]. Among them, is the Distinguishable
Forking property which will be the main requirement when introducing the EtF
scheme.

Definition 10 (Common Prefix). Let κ ∈ N be the common prefix parameter.
The chains B1, B2 possessed by two honest parties P1 and P2 in slots sl1 < sl2
satisfy B

⌈κ
1 ⪯ B2.

Definition 11 (Chain Growth). Let τ ∈ (0, 1], s ∈ N and let B1, B2 be as
above with the additional restriction that sl1+ s ≤ sl2. Then len(B2)− len(B1) ≥
τs where τ is the speed coefficient.

33

Definition 12 (Chain Quality). Let µ ∈ (0, 1] and κ ∈ N. Consider any set
of consecutive blocks of length at least κ from an honest party’s chain B1. The
ratio of adversarial blocks in the set is 1− µ where µ is the quality coefficient.

Definition 13 (Distinguishable Forking). A blockchain protocol Γ satisfies
(α(·), β(·), ℓ1(·), ℓ2(·))-distinguishable forking property with adversary A in envi-
ronment Z, if there exists negligible functions, negl(·), δ(·) such that for every
λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ) it holds that

Pr

 α(λ) + δ(λ) < β(λ) ∧
suf-stake-contrℓ̃(view, β(λ)) = 1 ∧

bd-stake-fork(ℓ,ℓ̃)(view, α(λ) + δ(λ)) = 1

∣∣∣∣∣∣∣ view← EXECΓ (A,Z, 1λ)

 ≥ 1−negl(λ)

A.2 (Threshold) Identity Based Encryption

We recall the definition of an identity-based encryption (IBE) scheme [5].

IBE An IBE scheme ΠIBE consists of the following algorithms:

Setup(1λ). The setup algorithm takes as input a security parameter λ and re-
turns a master key msk together with some publicly known system parame-
ters sp including a master public key mpk, message spaceM and ciphertext
space C. We assume that all algorithms takes sp as input implicitly.

IDKeygen(msk, ID). The identity key-generation algorithm takes as input msk
and an identity ID ∈ {0, 1}∗, and returns a decryption key skID for ID.

Enc(ID,m). The encryption algorithm takes as input an identity string ID ∈
{0, 1}∗ and m ∈M. It returns a ciphertext ct ∈ C.

Dec(ct, skID). The decryption algorithm takes as input ct ∈ C and a decryption
key skID. It returns m ∈M.

Correctness. An IBE scheme ΠIBE should satisfy the standard correctness prop-
erty, namely for skID ← IDKeygen(msk, ID) and for any m ∈M, we must have:

Dec(Enc(ID,m), skID) = m.

where (mpk,msk)← Setup(1λ)

Security. We use adaptive-identity security [5]. After the challenger runs the
setup algorithm, the adversary has access to an oracle Omsk that on input any
id, returns skid. A may query the oracle on arbitrary identities of its choice
even before selecting the messages m0,m1. More formally, we say that ΠIBE is
secure if any PPT adversary A has only negligibly greater than 1/2 probability
of correctly guessing the bit b in the following game:

1. The challenger runs Setup and outputs sp to A.
2. A may query the oracle Omsk that on any input id returns skid.

34

3. A outputs a target identity id∗ and two equal-size messages m0,m1 ∈M.

4. The challenger selects a random bit b and outputs c∗ ← Enc(id∗,mb) to A.
5. A may continue to query Omsk on any input id ̸= id∗.

6. A outputs b′.

where Omsk(ID) outputs IDKeygen(msk, ID).

Constructing TIBE from IBE and Homomorphic Secret Sharing
Assume a secure IBE IBE = (Setup, IDKeygen,Enc,Dec). We can trans-
form it into a threshold IBE using homomorphic secret sharing algorithms
(Share,EvalShare,Combine). A homomorphic secret sharing scheme is a secret
sharing scheme with an extra property: given a shared secret, it allows to com-
pute a share of a function of the secret on it. It has the following syntax (which
we specialize for the IBE setting):

– Share(msk, k, n)→ (msk1, . . . ,mskn) shares the secret.

– EvalShare(mski, f)→ yi obtains a share for f(msk) where f is a function.

– Combine((yi)i∈T)→ y∗ where T is a set with size above threshold.

We assume all the algorithms above take as input the master public-key for
simplicity. The correctness of the homomorphic scheme requires that running
yi ← EvalShare(mski, f) on mski output of Share and then running Combine on
(a large enough set of) the yi-s produces the same output as f(msk). We also
require that Combine can reconstruct msk from a large enough set of the mski-s.

The construction for threshold IBE is now straightforward:

– at setup time, we produce shares msk1, . . . ,mskn of the master secret key
using the Share algorithm on the master secret key output of Setup.

– encryption is syntactically and functionally the same in both cases.

– to produce a partial secret-key for a certain id, we just run skIDi ←
EvalShare(mski, IBE.IDKeygen(mpk, ·, ID)).

– for decryption, given enough shares for an ID ID, we run on them algorithm
Combine to obtain skID; we then simply run IBE.Dec.

Threshold IBE security. If the homomorphic secret sharing supports up to a
threshold k, then we obtain analogous properties for the threshold IBE construc-
tion. In particular the threshold IBE satisfies the following simulation properties
for any n and threshold k supported by the homomorphic secret sharing scheme6.

Master secret-key share simulation For any PPT adversary A there exists a
simulator Smsk such that the following two distributions are indistinguishable.

6 The security of this type of construction is proven for example in [22] to which we
defer the reader for details.

35

{(mpk, (mski)i∈Scorr
) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k)} ≈
{(mpk, (mski)i∈Scorr

) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈Scorr
← Smsk(mpk, Scorr, n, k)}

Key-generation simulation. For any PPT adversary there exists a simulator Skg
such that the following two distributions are indistinguishable.

{(mpk, (skIDi)i∈[n]) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k);

ID← A(mpk, (mski)i∈Scorr);

skIDi ← EvalShare(mski, ID) for i ∈ [n]} ≈
{(mpk, (skIDi)i∈[n]) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k);

ID← A(mpk, (mski)i∈Scorr
);

(skIDi)i∈[n] ← Skg(mpk, (mski)i∈Scorr
, ID)}

Robustness of TIBE. We assume a robust threshold IBE scheme, where we can
verify that each of the ID-specific shares are authenticated, i.e. they have been
produced by a party with the related master secret key share. This property
can be obtained by assuming an underlying secret sharing scheme which is itself
robust. This in turn can be obtained by attaching a NIZK or a homomorphic
signature to the share.

TIBE with Proactive Secret Sharing We assume our TIBE to allow for the shares
of the master secret keys to be reshared among the committee members which
evolve through time. With this goal in mind we can consider a proactive secret
sharing scheme which includes a handover (each committee member can reshare
its share) and reconstruction stage (committee members in a new epoch can
reconstruct their secret from the output of the handover). We can directly ex-
tend a TIBE with such syntax. The resulting scheme should provide the same
simulation properties as the ones described above for the non proactive case.

B ECW from [11]

Witness Encryption (WE) was introduced by Garg et al. [14] with a candidate
construction based on multilinear maps to create WE for any NP language.
Realizing that establishing this kind of WE requires some heavy machinery,
others have started looking at more practical ways to realize a similar notion
but for restricted languages. A recurring strategy to achieve this is using Smooth
Projective Hash Functions (SPHF) which we know how to construct for a specific

36

class of languages called algebraic. Using this approach, [11] puts forward a notion
inspired by the standard definition of WE, but weakened by having one extra
round. While a standard WE scheme consists of two algorithms Enc and Dec
(ignoring the setup phase), wherein a user, in a single flow, can encrypt a message
m under a specific statement x and produce a ciphertext ct. A recipient of ct is
then able to recover the message if they know a witness w which certifies that x
is in the language. [11] considered a new type of WE that is associated with a
proof system Π = (Setup,Prove,Verify) and consists of two rounds. In the first
round, a recipient computes and broadcasts π ← Prove(crs, x, w). Later, a user
can verify the proof and encrypts a messagem under (x, π) if Verify(crs, x, π) = 1.

In this section, we show how to realize ECW from [11] and provide additional
details on their constructions for sake of completeness.

Construction of ECW. We encode the lottery statement into vectors of com-
mitments satisfying pairing-product equations (PPEs). Subsequently, as shown
in [11], one can extend the construction we detail below into the more gen-
eral case of PPEs. Such an extension directly implies a SPHF construction for
statements in the GS proof framework. Equipped with this construction, one
can now construct an ECW as follows: All receivers who have skL,i such that
lottery(B, sl,R, skL,i) = 1 publish a GS proof πi that they have such secret key
skL,i. The encrypting party encodes the lottery predicate into a set of pairing-
product equations (PPEs) and encrypts the message under each of these GS
proofs using the SPHF scheme described above. We note that this construction
can be used for any type of algebraic lottery that can be represented as a set of
pairing product equation (e.g., algebraic VRF-based lotteries). Moreover, while
this can be seen as a weaker variant of ECW where the (claimed) winners are
required to send a proof of winning the lottery in advance and thus requires
an extra round of communication, it results in a construction with significant
improvement on the ciphertext size published by the encrypting party, i.e., only
linear in the number of winners receiving the message. We now provide details
underlying the construction in [11].

Groth-Sahai NIZK Proofs Groth-Sahai proofs work by using commitments
that are homomorphic both with respect to group operations and a bilinear map.
The protocol aims at convincing a verifier that a set of equations are satisfied
by the values inside the commitments. The prover gives to the verifier commit-
ments to each element of the witness and some additional information, the proof.
Commitments and proof satisfy some related set of equations computable by the
verifier because of their algebraic properties and will be a convincing proof.

Pairing product equations (PPEs) in the Groth-Sahai (GS) framework can be
written as

N∏
q=1

e(aq

m∏
i=1

x
αqi

i , bq

n∏
j=1

y
βqj

j) = t

37

where aq ∈ G1, bq ∈ G2, αqi, βqj ∈ R and t ∈ GT are constants, while xi ∈ G1

and yj ∈ G2 are variables that we wish to prove they satisfy the equation. In the
GS framework we commit to values x and y by cmx = Commit(x) and cmy =
Commit(y) and subsequently prove that the openings to these commitments
satisfy the equations.

Smooth Projective Hash Function (SPHF) Let Llpar be a NP language,
parametrized by a language parameter lpar, and Rlpar ⊆ Xlpar be its corre-
sponding relation. A Smooth projective hash functions (SPHFs, [9]) for Llpar is
a cryptographic primitive with this property that given lpar and a statement x,
one can compute a hash of x in two different ways: either by using a projection
key hp and (x, w) ∈ Rlpar as pH← projhash(lpar; hp, x, w), or by using a hashing
key hk and x ∈ Xlpar as H ← hash(lpar; hk, x). The formal definition of SPHF
follows.

Definition 14. A SPHF for {Llpar}lpar is a tuple of PPT algorithms
(setup, hashkg, projkg, hash, projhash), which are defined as follows:

setup(1λ): Takes in a security parameter λ and generates the global parameters
pp together with the language parameters lpar. We assume that all algo-
rithms have access to pp.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key
hk.

projkg(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and
outputs a projection key hp, possibly depending on x.

hash(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and out-
puts a hash value H.

projhash(lpar; hp, x, w): Takes in a projection key hp, lpar, a statement x, and
a witness w for x ∈ L and outputs a hash value pH.

A SPHF needs to satisfy the following properties:

Correctness. It is required that hash(lpar; hk, x) = projhash(lpar; hp, x, w) for
all x ∈ L and their corresponding witnesses w.

Smoothness. It is required that for any lpar and any x ̸∈ L, the following
distributions are statistically indistinguishable:

{(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H← hash(lpar; hk, x)}{
(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H

$←− Ω
}

.

where Ω is the set of hash values.
Pseudo-randomness. This property states that the hash value

H(lpar; hk, x) for a randomly chosen statement x
$←− Llpar should look com-

putationally random (i.e., indistinguishable from H
$←− Ω).

38

SPHF for Linear Groth-Sahai Commitments We recall the construction
of SPHF for Groth-Sahai (GS) commitments from [11]. A GS commitment is a
dual-mode commitment consisting of two setup algorithms. If the commitment
parameters are generated by the first algorithm, one obtains perfectly binding
commitments. In contrast, the second algorithm generates the parameters in
a way that leads to perfectly hiding commitments. Here we only focus on the
perfectly binding mode. This is due to the computationally indistinguishability of
the two setups (under the DLIN assumption) and all the following explanations
can also be applied to the perfectly hiding mode in a straightforward manner.

The commitment parameters in the perfectly binding mode are group ele-
ments [U1], [U2], [U3] ∈ G3 ×G3 ×G3 defined as follows:

[U1] = ([τ1], [0], [1])

[U2] = ([0], [τ2], [1])

[U3] = τ3 · [U1] + τ4 · [U2] = ([τ1τ3], [τ2τ4], [τ3 + τ4])

where τ1, τ2, τ3, τ4
$←− Zq. Setting these parameters, a commitment to a message

m ∈ G is by choosing r1, r2, r3
$←− Zq and computing

cmm = ([0], [0], [m])+r1U1+r2U2+r3U3 = ([τ1(r1+τ3r3)], [τ2(r2+τ4r3)], [m+r1+r2+r3(τ3+τ4)]).

Note that cmm can be seen as an encryption of [m] with respect to randomness
(r1 + τ3r3, r2 + τ4r3).

Now let lpar = ([U1], [U2], [U3]) and define

Llpar = {x = ([m], cmm)|∃w = (r1, r2, r3) ∈ Z3
q : cmm = ([0], [0], [m])+r1U1+r2U2+r3U3}

A SPHF for such linear language Llpar can be constructed as follows:

setup(1λ): Run the bilinear group generation algorithm and let pp be the bilinear
group description. Also, set the language parameters lpar = ([U1], [U2], [U3])
as defined above.

hashkg(lpar): Choose α1, α2, α3
$←− Z3

q and return hk = (α1, α2, α3).
projkg(lpar; hk, x): Parse lpar as ([U1], [U2], [U3]) and hk as (α1, α2, α3). Return

hp = (γ1, γ2, γ3) ∈ G3, where

γ1 = α1[τ1] + [α3]

γ2 = α2[τ2] + [α3]

γ3 = α1[τ1τ3] + α2[τ2τ4] + α3[τ3 + τ4]

hash(lpar; hk, x): Parse the statement x as ([m], cmm = ([u], [v], [e])), and hk as
(α1, α2, α3). Return H computed as

H = [u] · α1 + [v] · α2 + ([e] − [m]) · α3

projhash(lpar; hp, x, w): Parse hp as (γ1, γ2, γ3) and w as (r1, r2, r3). Return pH
computed as

pH = γ1r1 + γ2r2 + γ3r3

We refer the reader to [11] for the security proof of the above SPHF.

39

Assume f(⊥, ·) = f(·,⊥) = ⊥.

– Initialize a list, L, of pairs of strings.
– Upon receiving a message (input, x) from P1, store x and continue

1. Upon receiving message (input, y) from Pi, insert the pair (Pi, y) into
L. If P1 is corrupted send (Pi, f(x, y)) to the adversary. Otherwise, send
(messageReceived, Pi) to P1.

2. Upon receiving a message getOutputs from P1, send
{(Pi, f(x, y))}(Pi,y)∈L to P1.

Fig. 2. MS-NISC Functionality FMS-NISC

C Alternative Constructions of cWE

C.1 cWE from MS-NISC

Two-Party Non-Interactive Secure Computation (2P-NISC) is a type of protocol
where a sender S (with input y) and a receiver R (with input x) want to jointly
compute a function f(x, y). In this setting, R first publishes a first message.
Then, any sender S holding an input y can send a message to the receiver
revealing only f(x, y) to R. As usual in secure computation, the protocol must
provide privacy of the inputs and correctness of the output.

Afshar et al. [1] introduced another flavour of NISC calledMulti-Sender NISC
(MS-NISC) where the first message can be reused to run secure computation
with many different senders. That is, R, with input x, publishes a first message
as before, but now any party who wants to participate in secure computation
with R can send back a message to S who can then output the result of the
computation. The ideal functionality of MS-NISC as presented in [1] is depicted
in Fig. 2.

In Fig. 3, we show how to construct cWE by having black-box access to
FMS-NISC. The main idea is that a party acts as a receiver and sends the first
message in MS-NISC containing its witness w in order to provide a “commit-
ment” to that witness. Later on, any other party can use this “commitment” to
create a cWE ciphertext by sending an encryption of the message and acting as
the sender of the MS-NISC to provide a second message that allows for evaluat-
ing a function f(w, y) that outputs a decryption key iff the witness w satisfies a
given relation.

Note, the ideal functionalities used in the construction are stated for clar-
ity and is not compatible with our game-based notion of security for cWE. By
assuming a concrete secure realization of the above functionalities, one can ar-
gue about security using the corresponding simulator and use that to extract
witnesses from commitments and make the proof go through.

40

Initialization: Initialize FMS-NISC by instantiating a list L of pairs of strings.
Commit: P1 proceeds as follows:
– Commits to its witness w by calling FMS-NISC on input (input, w).

Encryption: P2 proceeds as follows:
– Generates a key k of length |m| and encrypts the messagem as ct← k⊕m.
– Calls FMS-NISC on input (x, k) and sends ct directly to P1.

Decryption: P1 receives (messageReceived, P2) from FMS-NISC and ct from
P2 and proceeds as follows:
– Calls FMS-NISC on input getOutputs.
– Upon receiving k from FMS-NISC, outputs m← k ⊕ ct.

Fig. 3. Construction of cWE based on MS-NISC

C.2 cWE using Garbled Circuits and Oblivious Transfer

Instead of relying on the full MS-NISC functionality in a black-box way, we now
do a careful analysis resulting in a protocol which uses only the properties of
MS-NISC needed to obtain a protocol that satisfies the definition of cWE.

We observe that the correctness property in the definition of cWE only re-
quires that a correctly generated ciphertext can be decrypted by the decryption
algorithm. Thus, we expect the second message of MS-NISC functionality to be
generated correctly. In particular, when looking into the internals of the protocol
in [1], we observe that we can construct cWE from a MS-NISC protocol without
the precautions against a malicious sender P2. However, we still want to make
sure that we preserve authenticity of the underlying garbled circuit scheme. This
property guarantees that no garbled output can be constructed different from
what is dictated by the function and its inputs. In other words, the only thing
a malicious receiver can do with the garbled circuit is evaluate it on the com-
mitted input. Finally, we observe that privacy of input is not a requirement for
the sender. Thus, we can consider variants of garbled circuit schemes without
privacy guarantees.

Privacy-free Garbled Circuits One of the most efficient GC schemes in terms of
communication is the scheme by [24] based on a technique called half-gates. Using
their technique in the privacy-free setting results in garbles circuits containing
one ciphertext for each AND gate and no ciphertexts for XOR gates.

cWE from privacy-free GC and OT We conclude this section by presenting
an efficient construction of cWE using only a privacy-free garbled circuit and
oblivious transfer. The protocol is shown in Fig. 4.

41

Initialization: We let COT1() and COT2() be first and second message of a
committed-OT (as in [1]).
Let Cx be the circuit that encodes the statement x such that on input a witness
w it will output Cx(w) = 1 iff (x, w) ∈ R.
We use the simple notation Garble to represent an algorithm that on input a
circuit C will output a garbled version of that circuit gc← Garble(C).
Commit: P1 proceeds as follows:
– commits to its witness w by inputting the witness as the first message in

a committed-OT COT1(w)
Encryption: P2 does the following:
– generates a key k of length |m| and computes the ciphertext ct← k⊕m.
– creates a circuit Cx as described and garbles the circuit according to above

by gc← Garble(Cx). Furthermore, P2 construct the output label of gc such
that K1

out = k.
– sends ct and gc and corresponding input labels COT2({K0

l ,K
1
l }l∈[0,..,|w|])

to P1

Decryption: Upon receiving ct, gc and input labels, P1 proceeds as follows:
– evaluates the circuit gc on the input labels corresponding to w, obtain the

output label k (assuming (x, w) ∈ R) and decrypt by m← ct⊕ k.

Fig. 4. Construction of cWE based on GC and OT

D Proof of Security for Our EtF Construction

Here we prove security of Theorem 2. Recall we proceed in two steps: first we
consider an idealized case where there is no threshold committee; we then show
we can prove security of our threshold construction from this setting.

CCA and resharing. Our proof below ignores decryption oracles for the IBE
scheme and considers the case where the master secret key is shared only at the
beginning (instead of at each slot). We observe these can be accounted for with
additional hybrids in our proof below in a straightforward manner and we defer
these details to the full version of the paper.

1. The non-threshold case. The simplified setting we will now show security
for is in Fig. 5.

A point on the view of the adversary: we recall that, at any given point
in time, a valid blockchain execution contains ciphertexts ctsksl , encrypting slot-
specific secret keys for the winner of the slot sl in the chain. In the non-threshold
setting, they correspond to the output of the key-provider oracle (in the actual
construction, there are more ciphertexts, each containing a share of the key).

Now assume an adversary Ano-thresh
EtF for the EtF security experiment control-

ling at most an α fraction of the stake with non-negligible success probability in

42

The non-threshold setting we consider is the same as that in Section 7.1 with the
following exceptions:

– At the beginning of the run of the blockchain, there is no sharing of the master
secret key of the IBE scheme.

– We let the honest parties run exactly as in the other construction, with the
exception that they validate and messages related to the shares of the master
secret keys, as well as of the secret keys for specific slots.

– We change the way we encapsulate the secret-key for a certain slot. While
in Section 7.1 we require committee members to each broadcast a ciphertext
containing a share of the secret-key for slot sl, here we instead replace that
stage with the execution of the following oracle Ok-provider

msk .

Ok-provider
msk (B, sl) :

• sksl ← IBE.Keygen(msk, (sl,R))
• ctsksl ← ECW.Enc(B, sl,R, sksl)
• Broadcast ctsksl

Fig. 5. Hybrid non-threshold setting for proof of security

the EtF security experiment. We first to construct an adversary AIBE for IBE
security using Ano-thresh

EtF . Adversary AIBE works as follows:

– On receiving the IBE public parameters from the IBE challenger, it in-
jects into blockchain genesis block the IBE’s master public. The adversary
Ano-thresh

EtF declares a corrupted set of parties Scorr and then AIBE runs an
execution of the blockchain with Ano-thresh

EtF where AIBE simulates the honest
parties. In this execution AIBE acts as key-provider oracle, which it emulates
as follows. We distinguish two cases depending on whether the winner of the
slot is a corrupted party or an honest one7. On query (B, sl):
• if a corrupted party has won the role for slot sl (i.e. winners(B, sl,R) ∩
Scorr ̸= ∅) then invoke the IBE challenger oracle on identity sl obtaining
sksl and broadcast ctsksl ← ECW.Enc(B, sl,R, sksl).

• if a corrupted party has not won the role for slot sl then broadcast the
encryption of a dummy plaintext ctsksl ← ECW.Enc(B, sl,R, 0⃗) where 0⃗ is
a string of zeros of the appropriate length.

The intuitive reason for separating the two cases is that we want to query
the same slots that Ano-thresh

EtF wins and no more. In particular we do not
want to query the challenge slot sl∗ (defined next). Notice, in fact, that
only the slots for which the adversary has a corrupted winner will be asked
to the IBE key-generation oracle. At the end of this stage, Ano-thresh

EtF will
return (B, sl∗,R,m0,m1) and AIBE will forward ((sl∗,R),m0,m1) to the IBE
challenger.

7 Notice that we can check this for both types of parties as discussed in Section 2.1.

43

– After receiving a ciphertext ct∗ from the IBE challenger, AIBE forwards it to
Ano-thresh

EtF . Then AIBE simulates the execution of the blockchain as described
above. At the end of the execution Ano-thresh

EtF outputs a guessing bit b∗ which
AIBE forwards to the IBE challenger.

We claim that the advantage of AIBE in the IBE experiment is negligibly
close to that of Ano-thresh

EtF in the EtF non-threshold experiment (the one without
threshold sharing). With that goal in mind, we first show that the inputs we
feed to Ano-thresh

EtF and the blockchain execution emulated by AIBE is indistin-
guishable from that in the EtF experiment. Notice that the only difference in
the distributions is in the ciphertexts for the non-corrupted winners. If we could
distinguish between the two cases, then we could break security of the ECW
scheme. Therefore the views of Ano-thresh

EtF in the two cases is indistinguishable.
Finally, we lower-bound the success probability of AIBE. Intuitively, we can ob-
serve that two adversaries return the same experiment bit. The only aspect that
could impair AIBE’s success probability compared to Ano-thresh

EtF ’s is the possibil-
ity of having asked the IBE key-generation oracle for the challenge slot sl∗. We
observe this does not affect the success probability of AIBE. Formal details are
in Appendix D.1.

2. Security of threshold construction from non-threshold case. The ar-
gument above had a simplified setting where we abstracted out all the threshold
aspects of the protocol. This includes the committee holding shares of the mas-
ter secret key and dealing shares of the slot-specific secret key. We now prove
security for the actual threshold scenario (Section 7.1) building an adversary for
our actual (threshold) construction using the adversary for the non-threshold
construction (Fig. 5).

The threshold adversary Athresh
EtF needs to emulate the setting for the other

adversary where there is a single ciphertexts containing the slot-specific secret
key (instead of several containing their shares). It works as follows. First, it
corrupts the same parties as Ano-thresh

EtF and executes a blockchain as Ano-thresh
EtF

does and broadcasting the same messages it does, with one exception which
we now describe. The views of two adversaries (threshold vs non-threshold)
differ in only one respect—and so do the two respective blockchains execu-
tions. The view of the threshold execution contains ciphertexts of this type
for each winning slot sl (we use bracket notation for shares for readability):((

cthonsl [j]
)
j ̸∈Scorr

, (ctcorsl [j])j∈Scorr

)
These contain the shares for the slot-specific

slot sl. The view for the non-threshold execution instead contains a single cipher-
text with slot-specific secret key. For a honest slot not corrupted by the adversary,

we denote it by ĉt
hon
sl , otherwise we denote it by ĉt

cor
sl . During the blockchain ex-

ecution Ano-thresh
EtF will expect to see some ciphertext (ĉt

hon
sl /ĉt

cor
sl) whenever a

slot is won, which corresponds to a query of Ok-provider
msk . The threshold adversary

Athresh
EtF can emulate this as follows. For every query to Ok-provider

msk :

44

– if the slot is won by a honest party, then broadcast ĉt
hon
sl ←

ECW.Enc(B, sl, 0⃗) for a vector of zeros of the appropriate length.

– if the slot is won by a corrupted party, then its view will contain (ctcorsl [j])j∈[n].

It can then decrypt them, combine the obtained shares into a slot key sksl
and broadcast ĉt

cor
sl ← ECW.Enc(B, sl, sksl)

After receiving challenge messages from Ano-thresh
EtF , adversary Athresh

EtF simply
forwards them to its challenger, then continues the execution as above. Finally
it outputs the same output guess as Ano-thresh

EtF .

We now claim that a successful non-threshold adversary Ano-thresh
EtF for the

construction in Fig. 5 would allow Athresh
EtF to have a similar advantage (up to

negligible additive factors). We proceed by a standard hybrid argument. We
define the first hybrid H0 as the output of running the Athresh

EtF adversary as just
described. The “terminal” hybrid H6 is defined as the output of running the
Ano-thresh

EtF adversary. The intermediate hybrids are as follows.

– H1: like H0 except that we change one step in how Athresh
EtF emulates

Ok-provider
msk . Specifically, for the case of the honest parties, we now run

(skIDi)i∈[n] ← Skg(mpk, (mski)i∈Scorr
, sl) to simulate the shares of the honest

parties. This simulator exists by key-generation simulation of the threshold
IBE scheme. We can then combine all shares to obtain a slot-specific key,

encrypt it through ECW and then broadcast the encryption ĉt
hon
sl . We have

that H0 ≈ H1 because of the security of ECW, since otherwise we would be
able to distinguish encryptions of zeros from encryptions of the (combination
of) the simulated slot-specific key shares.

– H2: as previous item but now, instead of the actual secret shares, we give
Athresh

EtF produced by Smsk, the simulator from master secret key shares simu-
lation of the threshold IBE scheme. H1 ≈ H2 follows by the same property.

– H3: like the previous hybrid, but now we replace the blockchain execution

from H2 with one where we do not use the shares to produce ĉt
hon
sl and ĉt

cor
sl .

Instead we move to a blockchain execution as in Fig. 5 with the difference
that Ok-provider

msk has a master secret key computed as follows. Let msk be the
master secret key obtained by combining the (simulated) shares mski. Then

we just run Ok-provider
msk with this master secret key every time we need to

provide a ciphertext for a new winning slot. We have H2 ≈ H3 by definition
of Ok-provider

msk , by correctness of the underlying homomorphic secret sharing
scheme and the simulation of key-generation evaluations of IBE.

– H4: as before but we now define msk not as the combination of the shares,
but as the output of Smsk on the master public key and the corruption set.
H3 ≈ H4 follows by simulation of the master secret-key property of the
threshold IBE.

– H5: Like previous item but now we do not use the key-generation simu-
lator and instead apply the key-generation of the IBE before providing a
ciphertext. H4 ≈ H5 again follows by the key-generation simulation of the
threshold IBE scheme. Also this is the same as H6 by construction.

45

D.1 Bounding the Advantage of AIBE in Proof of Theorem 2

Here we formally claim that the advantage of AIBE in the IBE experiment is
negligibly close to that of Ano-thresh

EtF in the EtF non-threshold experiment:

Pr [WinIBE] ≥Pr [¬QryClgSlot ∧ WinEtFHyb]

= (1− Pr [QryClgSlot |WinEtFHyb]) · Pr [WinEtFHyb]

≈ (1− Pr [Scorr ∩ winners(sl∗) ̸= ∅ |WinEtFHyb]) · Pr [WinEtFHyb]

=Pr [WinEtFHyb]

Above the QryClgSlot is the event where AIBE queries the challenge slot in the
IBE experiment; WinIBE is the event where AIBE wins in the IBE experiment;
WinEtFHyb is the event where Ano-thresh

EtF wins in the EtF experiment against the
non-threshold hybrid model (Fig. 5). The first inequality follows by construction
of AIBE. The following ones follow from elementary probability theory and from
observing that AIBE could query the challenge slot only if that was among the
corrupted set (but this does not occur condition on the success of Ano-thresh

EtF by
the definition of EtF security).

46

	Encryption to the Future

