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Abstract. Proxy re-encryption (PRE) schemes, which nicely solve the
problem of delegating decryption rights, enable a semi-trusted proxy to
transform a ciphertext encrypted under one key into a ciphertext of the
same message under another arbitrary key. For a long time, the seman-
tic security of PREs is quite similar to that of public key encryption
(PKE) schemes. Cohen first pointed out the insufficiency of the security
under chosen-plaintext attacks (CPA) of PREs in PKC 2019, and pro-
posed a strictly stronger security notion, named security under honest
re-encryption attacks (HRA), of PREs. Surprisingly, a few PREs sat-
isfy the stronger HRA security and almost all of them are paring-based
till now. To the best of our knowledge, we present the first detailed
construction of HRA secure single-hop PREs based on standard LWE
problems with comparably small and polynomially-bounded parameters in
this paper. Combing known reductions, the HRA security of our PREs
could also be guaranteed by the worst-case basic lattice problems (e.g.
SIVPγ). Meanwhile, our single-hop PRE schemes are also key-private,
which means that the implicit identities of a re-encryption key will not
be revealed even in the case of a proxy colluding with some corrupted
users. Some discussions about key-privacy of multi-hop PREs are also
proposed, which indicates that several constructions of multi-hop PREs
do not satisfy their key-privacy definitions.

Keywords: Lattice-based Cryptography · Proxy Re-Encryption · Key
Privacy · HRA Security · LWE

1 Introduction

A (public key, unidirectional) PRE scheme enables a semi-trusted proxy to
transform ciphertexts under Alice’s public key into ciphertexts which are de-
cryptable by Bob’s secret key with the help of a re-encryption key generated
by Alice. Ever since it was initiated in [20] and formally constructed by Blaze,
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Bleumer and Strauss in [7], PRE has become a powerful cryptographic primi-
tive with various applications, including email forwarding and publish/subscribe
systems [5, 7, 8, 26], securing cloud storage and distributed file systems with fine-
grained access control [6, 18, 23, 29], internet of things [1, 2], and so on.

Comparing with traditional PKEs, there are two additional probabilistic
polynomial-time (PPT) algorithms of PRE schemes. One is a re-encryption key
generation algorithm, which could be used to generate a re-encryption key from
a user Alice to any other user Bob with the help of Alice’s secret key 4. The other
is a re-encryption algorithm used to covert ciphertexts of Alice to ciphertexts
of Bob. However, the semantic securities (namely, the CPA security [3, 5, 6, 26]
and the CCA security (security under chosen-ciphertext attacks) [8, 12, 17]) of
PREs are very similar to those of PKEs for a long time. Theoretically, a thought-
out game-based security definition of PREs should take all possible situations
into account after removing all the cases in which an adversary could win the
corresponding security game trivially. The definition of CPA (and CCA) secu-
rity of PREs is out of such an ideal range, since both the re-encryption oracle
and the re-encryption key generation oracle from an honest user (including the
challenge user) to any corrupted user are forbidden in the CPA (and CCA)
security game. Constraints on querying the re-encryption oracle from the chal-
lenge user to corrupted users is not so reasonable. In applications, an adversary
could, of course, get some re-encrypted ciphertexts from an honest user (say
Alice) to some corrupted users without drawing Alice’s attention. So, we may
hope that the semantic security of other ciphertexts of Alice still holds under
this situation. Moreover, the CPA security of PREs is inadequate even for an
honest-but-curious delegatee (say Bob) [10]. As observed in [10], the CPA secure
PRE scheme proposed in [26] does not prevent Bob from learning the secret key
of a delegator (say Alice) with non-negligible probability after receiving a single
honestly re-encrypted ciphertext of Alice. Bob could do this even without know-
ing the corresponding re-encryption key. Essentially, the definition of the CPA
security of PREs captures less security guarantees against the delegatee (Bob).
Therefore, both in theory and in practical applications, the CPA security seems
to be not suitable and provides scant guarantees.

The HRA security of PREs, which is strictly stronger than the CPA security,
is formally proposed by Cohen [10] in PKC 2019. The HRA security captures the
goals of PREs better, and is sufficient for many applications, such as encrypted
email forwarding [6], key escrow [15], single-writer many-reader encrypted stor-
age [6, 26], key rotation for encrypted cloud storage [11]. But so far, it seems that
a few constructions of PREs focus on the HRA security, and almost all known
constructions are pairing-based. To the best of our knowledge, the only lattice-
based PRE scheme with HRA security is constructed in [13] with exponential-
sized parameters. With the rapid development of quantum computer, it’s urgent
to design quantum-immune PRE schemes with stronger security properties. We

4 Such a PRE scheme is called non-interactive [6]. I.e., no trusted third party or
interaction is required in the re-encryption key generation process.
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mainly focus on PREs based on lattice in this paper, and aiming to design PREs
with HRA security.

1.1 Our Contributions and Technique Overview

In this paper, we present the first HRA secure single-hop PRE scheme with
comparably small and polynomially-bounded parameters in the standard model.

Our single-hop PRE schemes also satisfy the key-privacy property [5], a no-
tion stating that it is impossible for the proxy and a set of colluding users to
derive either the sender or the receiver’s identities from a re-encryption key even
when given the public keys and flexible interaction abilities within PREs. Both
the key privacy and the HRA security of our schemes are based on standard LWE
problems. Therefore, combing known reductions, we could show that our PRE
schemes satisfy the HRA security and the key privacy for modulus q = Õ(n3), as
long as the corresponding worst-case SIVPγ problem with γ = Õ(n3.5) is hard.

Meanwhile, our single-hop PRE scheme could also be modified to a PRE+
scheme in which the re-encryption key of a ciphertext could be generated by its
creator. Moreover, our single-hop PREs with polynomially-bounded parameters
are also adaptive secure for some directed acyclic graph, since our single-hop
constructions satisfy the requirements proposed in [13]. Some discussions about
key-privacy of multi-hop PREs are also proposed, which indicates that several
constructions of multi-hop PREs [3, 19, 25] do not satisfy their key-privacy defi-
nitions.

Technique Overview: Roughly speaking, there are two types of techniques
for generating re-encryption keys in lattice-based PREs. We take the dual cryp-
tosystem [14] as an example. The form of ciphertexts of a user i for a mes-
sage µ ∈ {0, 1}m is (ci,1 = BTi · s + e1, ci,2 = DT

i · s + e2 + b q2e · µ), where
Bi, Di ∈ Zn×mq are the public key of i, s ∈ Znq , e1, e2 ∈ Zmq are some short vec-
tors. The secret key of i is either a short matrix Ri satisfying Bi ·Ri = Di mod q
(the case 1), or a trapdoor TBi of Bi for pre-image sampling (the case 2). For the
case 1, the re-encryption key from i to a user j could be designed as rki 7→j :=(
STi,j ·Bj+Ei,j,1 S

T
i,j ·Dj+Ei,j,2+Ri

0m×m Im×m

)
∈ Z2m×2m

q , where Si,j , Ei,j,1, Ei,j,2 are matri-

ces with small elements. Then, the re-encryption of (ci,1, ci,2) is (cj,1, cj,2) =
(cTi,1, c

T
i,2) · rki 7→j . Notice that rki 7→j · (−RTj , Im×m)T ≈ (−RTi , Im×m)T , the user

j could decrypt (cj,1, cj,2) successfully 5. For the case 2, the re-encryption key
could be designed as rki7→j := (Ri,j,1;Ri,j,2), where Ri,j,1 and Ri,j,2 are matrices
with short elements which are sampled by using the trapdoor TBi of Bi, and sat-
isfy Bi ·Ri,j,1 = Bj , Bi ·Ri,j,2 = Dj −Di. Then, the re-encryption of (ci,1, ci,2)
is (cj,1, cj,2) = (RTi,j,1 · ci,1, RTi,j,2 · ci,1 + ci,2).

The biggest difficulty to achieve HRA security for the above two types of
constructions is how to answer re-encryption queries from the challenge user i∗

5 This is a simplified version. In order to control the growth of errors, bit decomposition
technique is needed both in the re-encryption key generation algorithm and in the
re-encryption algorithm [9, 25].
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to other corrupted users. Since in the security proof, the public key of i∗ is usually
changed to be uniform and independent (in order to embed corresponding LWE
instances). Therefore, the challenger could not answer re-encryption queries in
both cases. To handle this dilemma, we combine together the above two types of
constructions. Let’s take the single-hop construction as an example. Ciphertexts
of a user i in our constructions are of the form ci,1 = BTi · s + ei,1, ci,2 =
DT
i ·s+ei,2 +b q2e·µ and ci,3 = ATi,1 ·s+ei,3. Here, Ai,1 = Ai+[0|H ·G|H ′ ·G] =

[Ā|Ā ·Ri,1 +H ·G|Ā ·Ri,2 +H ′ ·G] with H ′ a random tag, the public key of i
is (Bi, Di, Ai) with Bi ·Ri = Di mod q, and the secret key of i is (Ri, Ri,1, Ri,2)
whose elements are all short. Notice that, (ci,1, ci,2) and Ri are sufficient for
decryption. To create a re-encryption key from i to another user j, we could
use [Ā|Ā ·Ri,1 +H ·G] to execute pre-image sampling for invertible H [21], and
generate rki 7→j = (Ri,j,1;Ri,j,2) satisfying [Ā|Ā·Ri,1+H ·G]·Ri,j,1 = Bj−Bi and
[Ā|Ā · Ri,1 + H ·G] · Ri,j,2 = Dj −Di. Then, a re-encryption of (ci,1, ci,2, ci,3)

is (cj,1, cj,2) = (R
(1)
i,j · ci,3 + ci,1, R

(2)
i,j · ci,3 + ci,2), where R

(1)
i,j and R

(2)
i,j could

be constructed from Ri,j,1 and Ri,j,2 easily. Notice that, though the forms of
different level ciphertexts are different, they could be decrypted by using the
same decryption algorithm. Meanwhile, for lattice-based PREs, it seems that
different forms of ciphertexts are necessary. For more details, please refer to
discussions above Definition 4 and Remark 5.

In the security proof, we will change Ai∗ of the challenge use i∗ to be the form
[Ā|Ā·Ri,1|Ā·Ri,2−H∗ ·G]. Here, H∗ is a random tag of the challenge ciphertext.
In order to answer re-encryption queries of ciphertexts with tags H 6= H∗ from
i∗ to corrupted users, the challenger could use trapdoor Ri∗,2 and ci∗,3 (more
precisely, the parts of ci∗,3 corresponding to [Ā|Ā ·Ri∗,2 +(H−H∗) ·G]) to solve
corresponding LWE-like problems and recover s (hence, ei,1, ei,2, ei,3 and µ) by
using a LWE inversion algorithm [21]. Then, if we design the corresponding re-
encryption algorithm carefully (please refer to the construction for more details),
the challenger could generate a ciphertext that is distributed statistically close
to a real re-encrypted ciphertext with the help of ei,1, ei,2, ei,3, s and µ 6.

To achieve the key-privacy, a key observation is that we could replace Bj and
Dj with random elements and re-randomize them by LWE problems. Since in our
constructions, the re-encryption key generation algorithm does not use Aj . After
replacing Bj and Dj , the user j still has the ability to generate re-encryption
keys from himself to other users. That is to say, we could replace Bj , Dj to be
Si,j ·Bj+Ei,j,1 and Si,j ·Dj+Ei,j,2. Then, under corresponding LWE assumptions
and by the properties of Gaussian distributions, the distribution of Ri,j,1 and
Ri,j,2 is (computationally) closed to some discrete Gaussian distribution that
contains no information about identities i and j. Our constructions are not tag-
based CCA secure [12], since in our constructions, the challenger has no ability
to answer the decryption query of re-encrypted ciphertexts of the challenge user
i∗.

6 Notice that, we could only decrypt a fresh ciphertext by using this trapdoor in
our design. A re-encrypted ciphertext does not contain information about matrix A
anymore.
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Organization: In Section 2, we will recall some notations and fundamental
facts we need. Definitions of PRE schemes, detailed constructions and security
analyses are put in Section 3.

2 Preliminaries

In this section, we introduce some notations and background results. Symbol
[n] denotes the set {1, 2, · · · , n}. When we write X ←↩ ξ, we mean that the
random variable X follows the distribution ξ. If S is a finite set, then |S| is its
cardinality and U(S) is the uniform distribution over S. Symbols Z+ and R+

stand for the sets of positive integers and positive reals. We use log x to represent
log2 x for x ∈ R+. We also denote [·|·] as the horizontal concatenation of vectors
or matrices.

2.1 Lattices and Gaussian Distributions

A (full-rank) n-dimensional integer lattice Λ ⊆ Zn is a discrete additive group
whose R-span is Rn. The basis (which is not unique) of a lattice Λ is a linearly
independent set of lattice vectors B := {b1, · · · , bn}, whose Z-span is Λ. In this
case, we will denote it by Λ = L(B). For a matrix A ∈ Zn×m and any vector
u ∈ Zn admitting an integral solution x ∈ Zmq s.t. A · x = u mod q, we define

the “q-ary” integer lattices (or cosets) as Λ⊥(A) = {z ∈ Zm : A · z = 0 mod q},
Λ⊥u (A) = {z ∈ Zm : A·z = u mod q} and Λ(AT ) = {z ∈ Zm : ∃ s ∈ Znq s.t. z =
A · s mod q}.

The Gaussian distributions are defined as follows. For any s > 0, c ∈ H,
which is taken to be s = 1 or c = 0 when omitted, we define the (spherical)

Gaussian function ρs,c : Rn → (0, 1] as ρs,c(x) = e−π
||x−c||2

s2 . By normalizing
this function, we obtain the continuous Gaussian probability distribution Ds,c

of parameter s, whose density function is given by s−n ·ρs,c(x). Applying a linear
transformation given by a nonsingular matrix B to a spherical Gaussian with
s = 1 yields the Gaussian function

ρB(x) := ρ(B−1 · x) = e−π·x
T ·Σ−1·x,

where Σ = B · BT is a positive definite matrix (written Σ > 0) 7. Since ρB is
distributed only up to Σ, we’ll denote it by ρ√Σ in the following. Normalizing

ρ√Σ by its total measure
∫
Rn ρ

√
Σ(x)dx =

√
detΣ over Rn, we could obtain the

probability distribution function of the continuous Gaussian distribution D√Σ .
Functions are extended to sets in the usual way, e.g. ρs,c(A) =

∑
x∈A ρs,c(x).

Recall that, for an n-dimensional lattice Λ and a positive real ε, the smooth
parameter ηε(Λ) of Λ is defined as the smallest s such that ρ 1

s
(Λ∗\{0}) ≤ ε 8.

For our applications, we need the following lemmata [14, 16, 21, 22, 24, 27].

7 Recall that for every positive definite matrix Σ, there exists a unique positive definite
matrix

√
Σ such that (

√
Σ)2 = Σ.

8 Here, Λ∗ = {x ∈ Rn :< x, Λ >⊆ Z}.
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Lemma 1. Let n, q be positive integers with q prime, and let m ≥ 2n log q.

– For all but q−n fraction of A ∈ Zn×mq and any ω(
√

logm) function, there is

a negligible function ε(m), such that ηε(Λ
⊥(A)) ≤ ω(

√
logm).

– For any s ≥ ω(
√

logm), the distribution of u = A ·e mod q with e←↩ DZm,s
is within statistical distance 2ε of U(Znq ) for some negligible function ε =
ε(m). Furthermore, fix u ∈ Znq and let t ∈ Zm be an arbitrary solution
of A · t = u mod q, then the conditional distribution of e ←↩ DZm,s given
A · e = u mod q is exactly DΛ⊥u (A),s = t+DΛ⊥(A),s,−t.

– ηε(Zm) ≤ ω(
√

logm) for some negligible ε = ε(m). For any s ≥ ω(
√

logm),
there is an efficient sampling algorithm to output samples with distribution
that is statistically close to DZm,s.

Lemma 2. The following facts hold:

1. Let Λ be an n-dimensional lattice and u ∈ Rn be any vector. Assume r, s > 0
are two reals, and t =

√
r2 + s2. If r·s

t ≥ ηε(Λ) for some ε ≤ 1
2 , then the

distribution Y , obtained by sampling from DΛ+u,r and then adding a noise
vector taken from Ds, is within statistical distance 4ε from Dt.

2. Let Σ1, Σ2 > 0 be positive definite matrices with Σ = Σ1 + Σ2 > 0, Λ1, Λ2

be lattices such that
√
Σ1 ≥ ηε(Λ1) for some positive ε ≤ 1

2 . For arbitrary
vectors c1, c2 ∈ Rn, consider the following probabilistic experiments:

Samples x2 ←↩ DΛ2+c2,
√
Σ2
, then set x1 = x2 +DΛ1+c1−x2,

√
Σ1
.

We have that the marginal distribution of x1 is within statistical distance 8ε
of DΛ1+c1,

√
Σ. Moreover, if x2 is instead chosen from D√Σ2

, the marginal
distribution of x1 is also as above.

Lemma 3. Let q,m,m′ be positive integers and r be a positive real satisfying
r > max{ω(

√
logm), ω(

√
logm′)}. Let b ∈ Zmq be arbitrary and x chosen from

DZm,r. Then for any V ∈ Zm×m′ and positive real s > s1(V ) 9, there exists a
PPT algorithm ReRand(V, b+x, r, s) that outputs c such that cT = bT ·V +x′,
where x′ is distributed statistically close to DZm′ ,2rs.

Lemma 4. Let F ←↩ Dn×m
Z,γ , assume for convenience that m ≥ n. Then, with

all but 2−m probability it holds that s1(F ) ≤ γ · C ·
√
m, where C (≈ 1√

2π
) is a

universal constant.

Lemma 5. Let Λ ⊆ Rn be any lattice, c ∈ SpanR(Λ), and σ ≥ ηε(Λ) for some
ε ∈ (0, 1). We have Pr[||DΛ+c,σ|| ≥ σ ·

√
n] ≤ 2−n · 1+ε

1−ε . Moreover, if c = 0, then
the bound holds for any σ > 0 with ε = 0.

Lemma 6. For any n-dimensional lattice Λ, vector c ∈ Rn, positive ε > 0,
σ ≥ 2ηε(Λ) and c ∈ Λ, we have DΛ,σ,c(x) ≤ 1+ε

1−ε · 2
−n. In particular, for ε ≤ 1

3 ,
the min-entropy of DΛ,σ,c is at least n− 1.

9 For any matrix A, symbol s1(A) represents its largest singular value.
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For a modulus q ≥ 2, we set k = dlog qe, and let G ∈ Zn×nk be the “gadget”
matrix defined in [21]. The lattice Λ⊥(G) has a basis B with ||B||GS ≤

√
5 10.

Lemma 7. Let n be a integer, k = dlog qe with q ≥ 2 a modulus, and m̄ ≥ 2nk.
For any invertible matrix H ∈ Zn×nq , Ā ←↩ U(Zn×m̄q ) and R ←↩ DZm̄×nk,s for
some s = ω(log m̄) ≥ ηε(Zm̄), we have:

– The matrix A = [Ā|Ā · R − H · G] ∈ Zm̄+nk
q is within statistical distance

negl(n) of U(Zn×(m̄+nk)
q ).

– For bT = sT ·A+eT , where s ∈ Znq is arbitrary and either ||e|| < q
CT
√
n·log q

with CT a universal constant or e←↩ DZm,αq with 1
α ≥
√
n · log q ·ω(

√
log n),

there is a deterministic algorithm Invert(R,A, b) outputs s and e.
– For any u ∈ Znq and large enough γ = O(

√
n · log q), there is a randomized

algorithm SampleD(R;A;u; γ) samples from a distribution within negl(n)
statistical distance of DΛ⊥u (A),γ·ω(

√
logn).

We note that for any fixed matrix A, algorithm SampleD in Lemma 7
could output samples from a distribution within negl(n) statistical distance of
DΛ⊥u (A),γ1·ω(

√
logn) for any γ1 ≥ γ. Also, Lemmata 1 and 2 (together with the

fact that 1−ε
1+ε · ρs(Λ) ≤ ρs(Λ+ u) ≤ ρs(Λ) for any ε ∈ (0, 1), s ≥ εε(Λ) and any

vector u, which is implied by Lemmata 2.9 and 4.4 of [22]) imply the following
result: for m ≥ 2n log q, A←↩ U(Zn×mq ) and γ ≥ ω(

√
logm), the distribution of

e obtained by first choosing a vector u←↩ U(Znq ), then choose e←↩ DΛ⊥u (A),γ is
statistically closed to DZm,γ .

In our constructions, we need a large set S ⊆ Zn×nq with the “unit differ-
ences” property: for any matrices X 6= Y ∈ S, the matrix X −Y is invertible in
Zn×nq . Such a set could be constructed efficiently, and for q = pe with p a prime,
we have |S| = pn [21].

2.2 The LWE Problems

Even since introduced by Regev [27], the LWE problems have become a
fundamental building block of many cryptographic primitives over lattices. The
formal definition of (normal form) decision LWE problems is proposed as follows.

Definition 1. For positive integers n,m, q and a noise distribution χ over Z, the
decision LWE problems with m samples, denoted by LWEn,q,m,χ is to distinguish
the following two distributions:

(A,AT · s+ e) and (A,u)

where A ←↩ U(Zn×mq ), s ←↩ χn, e ←↩ χm, and u ←↩ U(Zmq ) are sampled inde-
pendently.

10 For a matrix R ∈ Zn×n, denote ||R||GS as the longest column of the Gram-Schmidt
orthogonalization of R.
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There are quantum reductions from worst-case lattice problems to decision
LWE problems for suitable χ [4, 27]. By using standard hybrid argument, it is
possible to show that decision LWE problems with multiple secrets are also hard.
Namely, it is hard to distinguish the following two distributions:

(A,AT · S + E) and (A,U)

where A←↩ U(Zn×mq ), S ←↩ χn×k, E ←↩ χm×k and U ←↩ U(Zm×kq ) are sampled

independently. We will denote the corresponding problem by Multi-LWEkn,q,m,χ.

3 The PRE Schemes Based on LWE

In this section, we shall give formal definitions and security models of PRE
schemes, present some simple discussions, and propose our PRE schemes based
on standard LWE problems with different properties.

3.1 Definitions and Security Models

Let’s first recall the definitions of (single-hop) PRE schemes [5, 10].

Definition 2. Let λ be the security parameter. A single-hop proxy re-encryption
scheme contains the following six PPT algorithms.

– Setup(1λ) : The key management center runs this algorithm with input λ,
and generates the public parameters pp.

– KeyGen(pp) : To generate a public/secret key pair of a user i, the key man-
agement center runs this algorithm with input pp, and generates (pki, ski).

– Enc(pp, pki,m) : The encryption algorithm, takes as input the public pa-
rameters pp, a message m and the public key pki of a user i, generates a
ciphertext (Ci; 1) 11 associated with m and i.

– ReKeyGen(pp, ski, pkj) : This algorithm, which is executed by a user i,
takes as input the public parameters pp, the secret key ski of the user i and
the public key pkj of a user j, outputs a re-encryption key rki7→j which could
be used to re-encrypt any level 1 ciphertext of the user i to a corresponding
level 2 ciphertext of the user j.

– ReEnc(pp, (Ci; 1), rki 7→j) : This algorithm is executed by the proxy, and
takes as input the public parameters pp, a level 1 ciphertext Ci of a user
i, a re-encryption key rki 7→j, and outputs a level 2 ciphertext Cj of j.

– Dec(pp, (Ci;κ), ski) : For any κ ∈ [2], this algorithm could decrypt any level-
κ ciphertext Ci of a user i to a message m with the secret ski and the public
parameters pp.

11 Throughout this paper, we call such a ciphertext a fresh (level 1) ciphertext. In our
constructions, every ciphertext Ci contains its corresponding level information.
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Notice that in our definition, one could decrypt his ciphertexts with his secret
key by using the same decryption algorithm, regardless of the level of ciphertexts.
So, our definitions and constructions satisfy the so-called proxy invisibility [23].
As usual, the correctness is required that for any pp← Setup(1λ), any key pair
(pkij , skij ) ← KeyGen(pp) with j ∈ [2], (Ci1 ; 1) = Enc(pp, pki1 ,m) with any
plaintext m, any re-encryption key rki1 7→i2 = ReKeyGen(pp, ski1 , pki2), and
(Ci2 ; 2) = ReEnc(pp, Ci1 , rki1 7→i2), we have

Pr[Dec(pp, Cij , skij ) 6= m] ≤ negl(λ)

for all j ∈ [2].

The HRA security, proposed in [10], is strictly stronger than the CPA secu-
rity [3, 5]. In the definition of the HRA security, re-encryptions even from the
challenge identity i∗ to corrupted users are also allowed, as long as the queried
ciphertext does not equal to the challenge ciphertext (or some derivations of
it). In our constructions, every (fresh) ciphertext is labeled by some randomly
chosen tag as [12]. The formal definition of the HRA security of (our tag-based)
single-hop PRE schemes could be modified as follows.

Definition 3. Consider the following interactions between a PPT adversary A
and a challenger C:

– Phase 1:

1. The challenger C generates the public parameters pp and sends them to
an adversary A. It also maintains a counter numCt which is initialized
to be 0, two databases DK ,DC which are initialized to be empty, and a
value Value which is also initialized to be 0.

2. The adversary A first decides the sizes of two sets UH and UC , and could
adaptively query the following two oracles.

• Corrupted key generation oracle, in which C would return (pk, sk) =
KeyGen(pp) to A and record (pk, sk), together with corresponding
user index, to the set UC .
• Uncorrupted key generation oracle, in which C would first generate

(pk, sk) = KeyGen(pp), then return pk to A and record (pk, sk),
together with corresponding user index, to the set UH .

– Phase 2: In this phase, A could adaptively query the following oracles. We
require that the queried users’ indexes must have been appeared in Phase 1,
and user indexes i 6= j if exist.

1. Encryption oracle: On input an index i and a message m, the challenger
C computes Ci = Enc(pp, pki,m), increments numCt, then adds the
item (⊥, i;⊥, cti := (Ci;HCi ; 1); numCt) 12 to DC and returns it to the
adversary A.

12 Here, HCi is a random tag which could be regarded as a part of Ci. We emphasize its
role by giving it explicitly in this definition. In our constructions, the tag of different
ciphertexts could be the same (which do not affect securities).
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2. Re-encryption key generation oracle: Upon receiving indexes (i, j), C gen-
erates a re-encryption key rki7→j = ReKeyGen(pp, ski, pkj), records the
tuple (i, j, rki 7→j) to the database DK , and returns rki 7→j to A. If this or-
acle is queried after the challenge oracle, we require i 6= i∗ when j ∈ UC .

3. Re-encryption oracle: A submits query (i, j, k) for some k ≤ numCt, the
challenger C will first retrieve DC to recover an item (⊥, i;⊥, cti; k). If
no such item exists, output ⊥. If k = Value and j ∈ UC , output ⊥. Oth-
erwise, generate a re-encryption key rki 7→j = ReKeyGen(pp, ski, pkj)
and parse cti = (Ci;HCi ; 1). Then, the challenger will compute Cj =
ReEnc(pp, Ci, rki 7→j), increment numCt, record (i, j; cti, ctj := (Cj ;⊥
; 2); numCt) 13 to DC , and return it to A.

4. Challenge oracle: This oracle could only be queried once. After A submits
a challenge (i∗,m∗0,m

∗
1) with i∗ ∈ UH and m∗0 6= m∗1, C will first judge

whether the adversary has queried a re-encryption key from i∗ to some
corrupted users by using DK . If such re-encryption keys exist, return
⊥. Otherwise, he chooses a random bit b ←↩ U({0, 1}), and computes
C∗b = Enc(pp, pki∗ ,m

∗
b). Then, C increments numCt, records the corre-

sponding item (⊥, i∗;⊥, ct∗ := (C∗b ;H∗; 1); numCt) to DC and returns
it to A. Meanwhile, set Value = numCt.

– Phase 3: A outputs a bit b′, and wins if and only if b′ = b.

We say a single-hop PRE scheme is HRA secure, if for any PPT adversary A,
its advantage Pr[A wins] := |Pr[b′ = b]− 1

2 | in the above game is negligible.

Remark 1. In the above definition (as well as that proposed in [10]), only in-
distinguishability of fresh ciphertexts is considered. It’s possible to modify the
encryption algorithm of Definition 2 to be level-based as [12]. The corresponding
encryption algorithm is proposed as following:

– Enc(pp, pki,m, κ) : The encryption algorithm, takes as input the public
parameters pp, a message m, the public key pki of a user i and a level
κ ∈ [2], generates a ciphertext (Ci;κ) associated with m and the user i.

We use Definition 2 mainly because we only consider the HRA security proposed
in [10]. One could also define the indistinguishability of level 2 ciphertexts, either
by generating corresponding ciphertexts via encryption algorithms, or by gen-
erating corresponding ciphertexts via re-encryption algorithms. For some con-
structions (e.g. those are source hiding [13], or re-encryption simulatable [10]
14), these definitions are equivalent. Most importantly, for challenge users all
belonged to UH , the (fresh ciphertexts, κ = 1) HRA security defined in Defini-
tion 2 implies the HRA security of level-2 ciphertexts (defined via re-encryption
algorithms) 15.

13 Here, ⊥ could also be changed to a randomly selected tag HCj .
14 Source hiding requires corresponding ciphertexts to be computationally indistinguish-

able, while re-encryption simulatable requires the distributions of corresponding ci-
phertexts to be statistically close to each other.

15 For those constructions with high level (κ ≥ 2) ciphertexts having different forms
or distributions (when generating from encryption algorithms or re-encryption algo-
rithms), things seem to be more complicated.
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Our definition of the HRA security is different from that proposed in [10].
More precisely, we allow the adversary to query re-encryption keys from non-
challenge honest users to corrupted users as [12]. As explained in [10], we need to
use the encryption oracle to track derivations of the challenge ciphertext. Another
important reason which has not been mentioned in [10] is that for a single-hop
PRE scheme, the correctness only guarantees that we could decrypt successfully
for both fresh and re-encrypted ciphertexts. However, for a ciphertext which is
re-encrypted by 2 times, we do not know the probability that we could decrypt
it successfully. If some of the re-encryption processes are malformed, this proba-
bility may be very high, especially in some lattice-based PRE schemes [3, 12, 17].
Most importantly, the encryptions of the challenge user i∗ must be recorded in
the definition the HRA security, since adding a small error to the challenge ci-
phertext may do not affect its decryption in latticed-based constructions. Similar
concerns also exist in multi-hop lattice-based PRE schemes. Definitions given in
[12] did not use the encryption oracle, and only required the queried ciphertext
to be well-formed in the sense that it was an encryption of a message under the
claimed public key. This requirement is not enough in general.

The key privacy of a single-hop PRE scheme is defined as follows [3, 5].

Definition 4. Consider the following interactions between a PPT adversary A
and a challenger C, in which Phase 1 is almost the same as that in Definition
3 with the differences that the challenger does not need to maintain DC and
numCt.

– Phase 2: In this phase, A could adaptively query the following oracle. We
require that the queried users’ indexes must have been appeared in Phase 1.
1. Re-encryption key generation oracle: Upon receiving indexes (i, j) with

i 6= j, the challenger C will generate rki7→j = ReKeyGen(pp, ski, pkj),
record (i, j, rki 7→j) to DK and return rki7→j to A. If this oracle is queried
after the Challenge oracle and (i, j) = (i∗, j∗), we require the generated
re-encryption key does not equal to rk∗.

2. Re-encryption oracle: A submits query (i, j, cti) with i 6= j, the challenger
C will first create rki 7→j = ReKeyGen(pp, ski, pkj), and return ctj =
ReEnc(pp, cti, rki 7→j) to A.

3. Challenge oracle: This oracle could only be accessed once. On input
(i∗, j∗), the challenger C creates rki∗ 7→j∗ = ReKeyGen(pp, ski∗ , pkj∗)
until (i∗, j∗, rki∗ 7→j∗) /∈ DK , if no such key exists, return ⊥. Then, he
samples a random b ←↩ U({0, 1}), and returns rk∗ := rki∗ 7→j∗ to A if
b = 1, or returns a random key rk∗ (which may obey to some distri-
butions with large enough entropy) in the key space to A if b = 0. The
constraints are i∗ 6= j∗ and j∗ ∈ ΓH .

– Phase 3: A outputs a bit b′, and wins if and only if b′ = b.

We say a single-hop PRE scheme is key-private, if for any PPT adversary A,
its advantage Pr[A wins] := |Pr[b′ = b]− 1

2 | in the above game is negligible.

Remark 2. Note that there is no constraint on i∗ as in [3], which means that hon-
est delegatees are enough to provide key privacy. This definition seems stronger,
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since key-privacy definition proposed in [5] requires i∗ ∈ UH . However, in many
applications, if user i∗ is corrupted, there may be no point to discuss the privacy
of re-encryption key rki∗ 7→j∗ , since the re-encryption key from i∗ to j∗ is usually
produced by the user i∗.

Remark 3. In the key privacy definition proposed in [5], the re-encryption key
rki7→j generated for each pair of users i, j is unique. Under this constraint, the
re-encryption algorithm can’t be deterministic. However, in Definition 4, even
many different re-encryption keys from challenger user i∗ to j∗ could be exposed
to the adversary, as long as the re-encryption key sampled in the challenge
oracle never appears before. Our sing-hop constructions satisfy this stronger
key-privacy definition, however schemes constructed in [5] do not remain key-
private if multiple keys per pair are released.

The key-privacy defined in Definition 4 is very strong in the sense that we do
not constrain the ability of an adversary to query re-encryption key generation
oracle and re-encryption oracle from challenge user i∗ and j∗ to corrupted users.
Next, we give a simple impossible result, which shows that the key privacy
defined in Definition 4 could not be applied to multi-hop PRE schemes directly.
This result also means that the multi-hop PRE schemes proposed in [3, 19] do
not satisfy their key-privacy definitions.

Lemma 8. The key privacy defined in Definition 4 could not be applied to multi-
hop PRE scheme which satisfies correctness and CPA security.

Proof. We give an attack for the multi-hop case. Consider the case both i∗

and j∗ in the challenge phase belonging to UH . Adversary A could choose
an arbitrary message m, encrypt it under user i∗’s public key and get Ci∗ .
Notice that A could do this both before and after the challenge phase. As-
sume rki∗ 7→j∗ is the re-encryption key obtained from C, A then compute Cj∗ =
ReEnc(pp, Ci∗ , rki∗ 7→j∗), and query the re-encryption oracle with input j∗, k, Cj∗

to get corresponding ciphertext Ck. Here, k is an arbitrary user in UC . Finally,
A computes m′ = Dec(pp, Ck, skk) and judges whether m′ = m.

If rki∗ 7→j∗ is a valid re-encryption key from user i∗ to j∗, then m′ = m with
overwhelming probability by the correctness of multi-hop PRE schemes. While
if rki∗ 7→j∗ is a random key, then the probability that m′ = m is negligible since
the PRE scheme is CPA secure.

Remark 4. The key-privacy definition proposed in [3] adds an additional con-
straint in the challenge phase that there should be no chain of re-encryption
keys from j∗ to any k ∈ UC . However, attack showed in Lemma 8 means that
this constraint is not enough, i.e. the key privacy definition of multi-hop PRE
re-encryption schemes proposed in [3] is not well-defined.

To define the key-privacy of multi-hop PRE schemes, a key point is to pro-
hibit the adversary from winning the distinguishing game via attack proposed
in Lemma 8 trivially. So, we also need to record the ciphertext generated in the
security game as Definition 3. The details are omitted.
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3.2 Single-Hop Key-Private PRE Schemes with HRA Security

In this subsection, we propose our sing-hop PRE schemes, and use the fol-
lowing parameters.

– The modulus q is a prime, S ⊆ Zn×nq is a set with the unit differences
property [21].

– Integers k = dlog qe, m̄ ≥ 2nk, m = m̄+ 2nk.
– s = ω(

√
logm) ≥ ηε(Zm) is some fixed function, which is used for sampling

Gaussian distributions over Zm 16.
– β = C ·s ·

√
m̄+1 (which is used in the ReRand algorithm of Lemma 3) with

C the global constant appeared in Lemma 4; γ = O(
√
n · log q) · ω(logm)

(which is used for pre-image sampling) with the O function appeared in
Lemma 7.

– χ = DZ,α is the error distribution of corresponding (single-secret/multi-
secrets) LWE problems with α ≥ 2

√
n ≥ 2 · ω(

√
logm) (which is used for

ensuring worst-case to average-case reductions of LWE problems).

In the following constructions, G ∈ Zn×nk is the gadget matrix [21]. To
ensure correctness of decryptions, we require

q ≥ 10 · ω(logm) ·
√
m · (1 +

√
n · α+

√
5 ·
√
m̄+ nk · β · γ) · α

in general. If α ≤ β · γ and ω(
√

logm) ≥ 1 +
√

5, we get q ≥ 10 · ω(log
3
2 m) ·√

m · (m̄+ nk) · γ · α · β is sufficient. Notice that k = O(log q) = Õ(1), if we

set m̄ = 2nk, then q = Õ(n2 · α2) is sufficient. To ensure worst-case to average-
case reductions of LWE problems, we set α = α′ · q (according to our definition
of LWE problems), and have a (quantum) reduction from worst-case SIVPγ
problem to LWE problem with γ = Õ( nα′ ), as long as α′ · q ≥ 2

√
n [27]. So, a

possible parameter setting is α′ = Õ(n−2.5) and q = Õ(n3). Meanwhile, we could
conclude that our PRE schemes satisfy HRA security and key privacy assuming
the worst-case SIVPÕ(n3.5) problem is hard (by Theorems 1 and 2).

Our single-hop key-private PRE scheme with HRA security is proposed as
follows.

– Setup(1λ) : This algorithm uses large enough integer n (e.g. n ≥ 512) and
parameters satisfying the above relations. It also samples Ā ←↩ U(Zn×m̄q ),
H1 ←↩ U(S) and outputs the public parameters

pp = (n, q, m̄, χ,DZ,s, h,G; Ā;H1).

– KeyGen(pp) : To generate a public/secret key pair of a user i, this al-
gorithm, implemented by the key management center, samples matrices
Bi ←↩ U(Zn×mq ), Ri ←↩ Dm×m

Z,s and Ri,1, Ri,2 ←↩ Dm̄×nk
Z,s . Then, it computes

Ai = [Ā|Ā ·Ri,1|Ā ·Ri,2] ∈ Zn×mq , Di = Bi ·Ri ∈ Zn×mq and returns

(pki, ski) = ((Ai, Bi, Di), (Ri, Ri,1, Ri,2)).
16 Note that Dm

Z,s = DZm,s.
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– Enc(pp, pki,µ) : To encrypt a message µ ∈ {0, 1}m under the public key pki
of a user i, this algorithm first samples s ←↩ χn and errors ei,1, ei,2 ←↩ χm.
It also samples error ei,3 ←↩ DZm,2·β·α and Hci ←↩ U(S). Then, it sets the
level matrix

Ai,1 = Ai + [0|H1 ·G|Hci ·G]

= [Ā|Ā ·Ri,1 +H1 ·G|Ā ·Ri,2 +Hci ·G] ∈ Zn×mq ,

and computes ci,1 = BTi ·s+ei,1 mod q, ci,2 = DT
i ·s+ei,2 + b q2e ·µ mod q,

ci,3 = ATi,1 · s+ ei,3 mod q. Finally, it outputs cti = (ci,1, ci,2, ci,3;Hci , 1) ∈
Zmq × Zmq × Zmq × Zn×nq × [2].

– ReKeyGen(pp, ski, pkj) : The user i samples X1,1 ∈ Zm̄×m̄, X1,2, X1,3 ∈
Zm̄×nk, X2,1 ∈ Znk×m̄, and X2,2, X2,3 ∈ Znk×nk by using algorithm Sam-
pleD (of Lemma 7) with Ri,1 and γ, such that

Ai,1 ·

 X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

0nk×m̄ 0nk×nk 0nk×nk

 = Si,j ·Bj + Ei,j,1 −Bi mod q 17,

where Si,j ←↩ χn×n and Ei,j,1 ←↩ χn×m. Similarly, he also samples matrices
X ′1,1 ∈ Zm̄×m̄, X ′1,2, X ′1,3 ∈ Zm̄×nk, X ′2,1 ∈ Znk×m̄, and X ′2,2, X

′
2,3 ∈ Znk×nk

by using algorithm SampleD with Ri,1 and γ, such that

Ai,1 ·

 X ′1,1 X ′1,2 X ′1,3
X ′2,1 X ′2,2 X ′2,3

0nk×m̄ 0nk×nk 0nk×nk

 = Si,j ·Dj + Ei,j,2 −Di mod q,

where Ei,j,2 ←↩ χn×m. In the end, he returns the corresponding re-encryption
key

rki 7→j = ({Xi′,j′ ;X
′
i′,j′}i′∈{1,2},j′∈{1,2,3}).

– ReEnc(pp, cti, rki 7→j) : The proxy parses cti = (ci,1, ci,2, ci,3;h(µ), 1). If
cti does not follow to this form, return ⊥. Otherwise, it sets

R
(1)
i,j =

 X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

0nk×m̄ 0nk×nk 0nk×nk

T

, R
(2)
i,j =

 X ′1,1 X ′1,2 X ′1,3
X ′2,1 X ′2,2 X ′2,3

0nk×m̄ 0nk×nk 0nk×nk

T

.

He first computes

c′j,1 := R
(1)
i,j · ci,3 + ci,1 +R

(1)
i,j · e

′
1 mod q

and

c′j,2 := R
(2)
i,j · ci,3 + ci,2 +R

(2)
i,j · e

′
2 mod q.

17 In fact, Si,j ·Bj + Ei,j,1 is sufficient.
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Here, e′k′ = ((e′k′,1)T , (e′k′,2)T ,0Tnk)T ∈ Rm with e′k′,1 ←↩ Dm̄
α and e′k′,2 ←↩

Dnk
α for k′ ∈ {1, 2}. Then, he computes cj,1 = c′j,1 + e′′1 mod q and cj,2 =

c′j,2 + e′′2 mod q. Here, e′′1 ←↩ DZm−c′j,1,r with

rk′ =

√
((m̄+ nk) · γ2 − ||R(1)

i,j,k′ ||2) · (4β2 + 1) · α2 + ω(
√

logm)

for k′ ∈ [m], where {R(1)
i,j,k′}’s are the row vectors of R

(1)
i,j . Similarly, e′′2 ←↩

DZm−c′j,2,r′ with

r′k′ =

√
((m̄+ nk) · γ2 − ||R(2)

i,j,k′ ||2) · (4β2 + 1) · α2 + ω(
√

logm)

for k′ ∈ [m], where {R(2)
i,j,k′}’s are the row vectors of R

(2)
i,j . Finally, he returns

ctj = (cj,1, cj,2,⊥;⊥, 2) 18.
– Dec(pp, cti, ski) : To decrypt a ciphertext of user i, we first parse cti =

(ci,1, ci,2, ci,3 or ⊥;Hci or ⊥, l) with l ∈ {1, 2}, compute µ′ = −RTi · ci,1 +
ci,2 mod q, and return µ with µi = b 2

q · µ
′
ie for i ∈ [m].

To show the correctness, we first notice that for a fresh (i.e. level 1) ciphertext
(ci,1, ci,2, ci,3;Hci , 1) of a user i, we have

−RTi · ci,1 + ci,2 mod q = −RTi · ei,1 + ei,2 + bq
2
e · µ mod q.

Since ei,1, ei,2 ←↩ χm, the absolute value of each of the coefficients of −RTi ·ei,1 +
ei,2 is bounded by N1 := (

√
m + 1) · α · ω(

√
logm). Then, for any j ∈ [m], we

get µ′j = err1 + b q2e · µj for err1 ∈ (−N1, N1) with overwhelming probability.

Therefore, our choice of q ensures that for any j ∈ [m], µj = b 2
q ·(err1+b q2e·µj)e,

since ||err1||∞ ≤ q
5 .

For a re-encrypted (i.e. level 2) ciphertext (cj,1, cj,2,⊥;⊥, 2), we first analyze
the distributions of c′j,1 and c′j,2 in the re-encryption algorithm. Notice that

R
(1)
i,j · ci,3 + ci,1 +R

(1)
i,j · e

′
1 mod q

= R
(1)
i,j · ei,3 +R

(1)
i,j · e

′
1 + ei,1 +BTj · STi,j · s+ ETi,j,1 · s mod q,

by Lemma 2 and the property of Gaussian distribution, we get R
(1)
i,j ·ei,3 +R

(1)
i,j ·

e′1 ←↩ Ds with sk′ = ||R(1)
i,j,k′ || ·

√
4β2 + 1 · α for k′ ∈ [m]. Therefore, by using

Lemma 2 again, we get that the distribution of R
(1)
i,j ·(ei,3+e′1)+e′′1 is statistically

close to DZm,
√

(m̄+nk)·γ2·(4β2+1)·α2+ω(
√

logm)
by noticing that Zm + c′j,1 = Zm +

R
(1)
i,j · ei,3 +R

(1)
i,j · e′1. Therefore, we have

c′j,1 + e′′1 = R
(1)
i,j · ei,3 +R

(1)
i,j · e

′
1 + e′′1 + ei,1 +BTj · STi,j · s+ ETi,j,1 · s mod q

s
≈ e′′′1 + ei,1 +BTj · STi,j · s+ ETi,j,1 · s mod q

18 We could also put a random tag here. But this tag is irrelevant to ciphertexts.
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for some e′′′1 ←↩ DZm,
√

(m̄+nk)·γ2·(4β2+1)·α2+ω(
√

logm)
. Similarly,

c′j,2 + e′′2
s
≈ e′′′2 + ei,2 +DT

j · STi,j · s+ ETi,j,2 · s+ bq
2
e · µ mod q

for some e′′′2 ←↩ DZm,
√

(m̄+nk)·γ2·(4β2+1)·α2+ω(
√

logm)
. So, we could deduce that

−RTj · cj,1 + cj,2 mod q = b q2e · µ+ err2, where

err2
s
≈ −RTj · (ETi,j,1 · s+ ei,1 + e′′′1 ) + ETi,j,2 · s+ ei,2 + e′′′2 ∈ Zm.

By Lemma 5, it is easy to bound

||err2||∞ ≤ 2 · ω(logm) ·
√
m · (1 +

√
n · α+

√
5 ·
√
m̄+ nk · β · γ) · α

with overwhelming probability. For our choice of q, we also ||err||∞ ≤ q
5 and we

could recover µ successfully. Overall, we could deduce the following lemma.

Lemma 9. For q ≥ 10 · ω(logm) ·
√
m · (1 +

√
n · α+

√
5 ·
√
m̄+ nk · β · γ) · α,

our single-hop PRE scheme satisfies correctness.

Next, let’s show the key-privacy and HRA security of our sing-hop PRE
scheme. The key point of our design to achieve key-privacy is that for the chal-
lenge identity j∗, the re-encryption key generation algorithm does not use Aj∗,1
which offers the ability to generate re-encryption keys from j∗ to other users.
Therefore, it’s enough to change Bj∗ and Dj∗ to be uniform, and maintain Aj∗

unchanged.

Theorem 1. Under the Multi-LWEnn,q,2m,DZ,α
assumption for q ≥ 10·ω(logm)·

√
m · (1 +

√
n · α+

√
5 ·
√
m̄+ nk · β · γ) · α, our single-hop PRE scheme is key

private in the standard model.

Proof. Assume that there is an adversary A who could break the key-privacy of
our single-hop PRE scheme with advantage δ = |Pr[A wins]− 1

2 |. We consider the
following sequence of games. Assume the sizes of UH and UC are N1 = poly(n)
and N2 = poly(n). Notice that by Lemma 6, for any users i and j, after we

sample Q = poly(n) re-encryption keys rk
(k′)
i7→j with k′ ∈ [Q], the new sampled

re-encryption key satisfies rki 7→j 6= rk
(k′)
i 7→j for any k′ ∈ [Q] with overwhelming

probability.

– Game 0: This is the original key-privacy game. Notice that, in the challenge
query, when b = 0, the re-encryption key

rki∗ 7→j∗ = ({Xi′,j′ ;X
′
i′,j′}i′∈{1,2},j′∈{1,2,3})

of challenge users i∗ and j∗ are sampled as (R
(1)

i∗,j̄∗
)T , (R

(2)

i∗,j̄∗
)T ←↩ Dm

Zm̄+nk,γ ,

where R
(1)
i,j , R

(2)
i,j are defined as those in the ReEnc algorithm.
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– Game 1: This game is almost identical to Game 0, with the differences
that the challenger C will select a random user j̄∗ ∈ UH after the adversary
decided the sizes of UH and UC in Phase 1, and if the users (i∗, j∗) queried
in the challenge oracle query satisfiy j∗ 6= j̄∗, C aborts.

– Game 2: This game is almost identical to Game 1, with the differences
that after the challenger C decides j̄∗, he chooses Bj̄∗ , Dj̄∗ ←↩ U(Zn×mq ).

– Game 3: This game is almost identical to Game 2, with the differences
that in the challenge oracle query, the syndromes in the generation of re-
encryption key rki∗ 7→j∗ when b = 1 are changed to uniform elements.

– Game 4: This game is almost identical to Game 4, with the differences
that in the challenge oracle query, C outputs

rki∗ 7→j̄∗ = ({Xi′,j′ ;X
′
i′,j′}i′∈{1,2},j′∈{1,2,3})

with (R
(1)

i∗,j̄∗
)T , (R

(2)

i∗,j̄∗
)T ←↩ Dm

Zm̄+nk,γ , regardless of the value of b.

If no abort occurs, Game 0 and Game 1 are identical. So, the advantage
of A is δ

N1
in Game 1. In the following, assume that no abort occurs. We also

notice that in the following games, we do not change the generation of Aj̄∗ of the
challenge user j̄∗, so both re-encryption key generation queries and re-encryption
queries from j̄∗ to any user k ∈ UH ∪ UC could be answered correctly. We will
use Advi(A) to denote the advantage of A in Game i for i ∈ {1, 2, 3, 4}.

Recall that we choose m̄ ≥ 2nk for k = dlog qe, so m = m̄+ 2nk ≥ 4ndlog qe
and with overwhelming probability of Bj̄∗ ←↩ U(Zn×mq ), the distribution of

(Bj̄∗ , Bj̄∗ · Rj̄∗) with Rj̄∗ ←↩ Dm×m
Z,s is within statistical distance negl(n) of

U(Zn×mq ×Zn×mq ) due to Lemma 1. So, we have |Adv1(A)−Adv2(A)| ≤ negl(n).
In Game 2, the re-encryption key rki∗ 7→j̄∗ = ({Xi′,j′ ;X

′
i′,j′}i′∈{1,2},j′∈{1,2,3})

is generated satisfying

A′i∗,1 ·
(
X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

)
= Si∗,j̄∗ ·Bj̄∗ + Ei∗,j̄∗,1 −Bi∗ mod q

and

A′i∗,1 ·
(
X ′1,1 X

′
1,2 X

′
1,3

X ′2,1 X
′
2,2 X

′
2,3

)
= Si∗,j̄∗ ·Dj̄∗ + Ei∗,j̄∗,2 −Di∗ mod q

for some Si∗,j̄∗ ←↩ Dn×n
Z,α and Ei∗,j̄∗,1, Ei∗,j̄∗,2 ←↩ Dn×m

Z,α when b = 1. Here,

A′i∗,1 = [Ā|Ā · Rī∗,1 + H1 · G]. Therefore, under the Multi-LWEnn,q,2m,DZ,α
as-

sumption, if we change Si∗,j̄∗ ·Bj̄∗+Ei∗,j̄∗,1−Bi∗ and Si∗,j̄∗ ·Dj̄∗+Ei∗,j̄∗,2−Di∗

to be U1, U2 ←↩ U(Zmq ), the adversary could not distinguish the re-encryption
keys generated from the above two cases. Hence, we get |Adv2(A)−Adv3(A)| ≤
AdvA(Multi-LWEnn,q,2m,DZ,α

).
Discussions after Lemma 7 shows that the distribution of the re-encryption

key rki∗ 7→j∗ in Game 4 is statistically closed to that in Game 3 when b = 1.
So, |Adv3(A) − Adv4(A)| ≤ negl(n). Moreover, in Game 4, the distribution of
re-encryption rki∗ 7→j∗ is identical, regardless of the value of b. So, the advantage
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of A in Game 4 is 1
2 . Overall, we deduce that

| δ
N1
− 1

2
| ≤ AdvA(Multi-LWEnn,q,2m,DZ,α

) + negl(n),

and conclude the desired result.

It is a little more complicated to show the HRA security. The biggest ob-
stacle is how to answer re-encryption queries from i∗ to other users (including
those corrupted) after we change the generation of Ai∗ . To do so, we add some
“back door” (i.e. the [Ā ·Ri∗,2 +h(µ) ·G]-part of Ai∗,1) to decrypt-then-encrypt
corresponding ciphertexts.

Theorem 2. Our single-hop PRE scheme satisfies HRA security under the
Multi-LWEnn,q,2m,DZ,α

assumption and the LWEn,q,2m+m̄,DZ,α assumption in the
standard model.

Proof. In the following, we shall show that any PPT adversary could not dis-
tinguish the ciphertext of an arbitrary message (the case b = 1) and a random
element chosen from the ciphertext space (the case b = 0). This implies our
desired result. Assume that there is an adversary A who could break the HRA
security of our single-hop PRE scheme with advantage δ = |Pr[A wins]− 1

2 |. We
consider the following sequence of games. Assume the sizes of UH and UC are
N1 = poly(n) and N2 = poly(n).

– Game 0: This is the original HRA security game.
– Game 1: This game is almost identical to Game 0, with the differences

that the challenger C will select a random user ī∗ ∈ UH after the adversary
decided the sizes of UH and UC in Phase 1, and if the challenge users (i∗, j∗)
queried in challenge oracle query satisfies i∗ 6= ī∗, C aborts.

We will also use Advi(A) to denote the advantage of adversary A in Game i
for i ∈ [8], then we have Adv1(A) = δ

N1
. Assume that in the following games no

abort occurs.

– Game 2: This game is almost identical to Game 1, with the differences
that after the challenger C decides ī∗, he changes all the {Bi, Di}’s of honest
users i ∈ UH to be uniformly random elements of Zn×mq .

We note that the {Ai}’s of every user i ∈ UH is unchanged now, so re-encryption
key generation queries, hence re-encryption queries, from user i ∈ UH to any
user j ∈ UH ∪UC could be answered correctly. By Lemma 1, we have |Adv1(A)−
Adv2(A)| ≤ N1 · negl(n).

– Game 3: This game is almost identical to Game 2, with the differences
that when generating re-encryption keys rkī∗ 7→j with j ∈ UH , we changes
the syndromes to be uniformly random elements as in Game 3 of the proof
of Theorem 1.
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Since there are at most N1−1 such queries, under Multi-LWEnn,q,2m,DZ,α
assump-

tion, we get |Adv2(A)−Adv3(A)| ≤ (N1 − 1) ·AdvA(Multi-LWEnn,q,2m,DZ,α
).

– Game 4: This game is almost identical to Game 3, with the differences that
when generating re-encryption keys rkī∗ 7→j with j ∈ UH , we just generate
the re-encryption key

rkī∗ 7→j = ({Xi′,j′ ;X
′
i′,j′}i′∈{1,2},j′∈{1,2,3})

by sampling (R
(1)
i,j )T , (R

(2)
i,j )T ←↩ Dm

Zm̄+nk,γ , where R
(1)
i,j , R

(2)
i,j are defined as

those in the ReEnc algorithm.

Similar to discussion in Theorem 1, we have |Adv3(A)− Adv4(A)| ≤ (N1 − 1) ·
negl(n). Notice that, from now on, we do not need to use the trapdoor embedded
in Aī∗ to generate re-encryption keys from ī∗ to honest users.

– Game 5: This game is almost identical to Game 4, with the differences
that after the challenger C decides ī∗, he chooses a H∗ ←↩ U(S) which will
be used as the tag of the encryption of the challenge message µ∗, and set
Aī∗ = [Ā|Ā · Rī∗,1 − H1 · G|Ā · Rī∗,2 − H∗ · G]. Notice that, the public
key of ī∗ is (Aī∗ , Bī∗ , Dī∗) with Bī∗ , Dī∗ ←↩ U(Zn×mq ) now. Meanwhile, the
re-encryption queries from ī∗ to j ∈ UC will be replaced as follows.
• When receiving query (̄i∗, j ∈ UC , (c1, c2, c3;Hc, 1)), C will abort if Hc =
H∗. Otherwise, we have Aī∗,1 = [Ā|Ā ·Rī∗,1|Ā ·Rī∗,2 + (h(µ)−H∗) ·G].
By Lemma 7, the challenge C could recover s used in the encryption
algorithm from ci,3 and [Ā|Ā ·Rī∗,2 +(Hc−H∗) ·G] with trapdoor Rī∗,2,
since q

α >
√
n · log q · ω(

√
log n). With the recovered s, C could recover

errors ei,1, ei,2, ei,3, as well as µ, by our choices of parameters. Therefore,
the challenger C could sample Sī∗,j ←↩ χn×n, Eī∗,j,1, Eī∗,j,2 ←↩ χn×m
and e′′′1 , e

′′′
2 ←↩ DZm,

√
(m̄+nk)·(4β2+1)·γ2·α2+ω(

√
logm)

. Then, he returns

(cj,1, cj,2,⊥;µ, 2) to A, where

cj,1 = e′′′1 + ei,1 +BTj · STī∗,j · s+ ETī∗,j,1 · s mod q

and

cj,2 = e′′′2 + ei,2 +DT
j · STī∗,j · s+ ETī∗,j,2 · s+ bq

2
e · µ mod q.

Assume that there is at most Q = poly(n) queries of the encryption oracle,
then the probability that C aborts in the above modified re-encryption query
oracle is less than Q

|S| = negl(n). Since in our security game, encryptions are

guaranteed to be honest-generated. As long as no abort occurs, the outputted
re-encryptions are distributed statistically closed to a real re-encrypted cipher-
text according to our analysis in the correctness (above Lemma 9). So, we have
|Adv4(A)−Adv5(A)| ≤ negl(n).

– Game 6: This game is almost identical to Game 5, with the differences that
we change the generation of the challenge ciphertext when b = 1 as follows.
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• To encrypt the a message µ∗, C first samples s←↩ χn, eī∗,1, eī∗,2 ←↩ χm
and eī∗,3,1 ←↩ χm̄. Then, he computes cī∗,1 = BT

ī∗
· s + eī∗,1 mod q,

cī∗,2 = DT
ī∗
· s+ eī∗,2 + b q2e · µ

∗ mod q and c∗ = ĀT · s+ eī∗,3,1 mod q.
Finally, he computes

cī∗,3 = ReRand([Im̄×m̄|Rī∗,1|Rī∗,2], c∗, α, β)

by using Lemma 3, and returns (cī∗,1, cī∗,2, cī∗,3;H∗, 1) to A.

Recall that the challenge ciphertext is of the form cī∗,1 = BT
ī∗
· s+ eī∗,1 mod q,

cī∗,2 = DT
ī∗
· s+ eī∗,2 + b q2e · µ

∗ mod q, and

cī∗,3 = [Ā|Ā ·Rī∗,1|Ā ·Rī∗,2]T · s+ eī∗,3 mod q

for the case b = 1 in Game 5. Here, s ←↩ χn, ei,1, ei,2 ←↩ χm and ei,3 ←↩
DZm,2·β·α. According to our choice of parameters and Lemma 4, we have β ≥
1 + s1([Rī∗,1|Rī∗,2]) ≥ s1([Im̄×m̄|Rī∗,1|Rī∗,2]) with overwhelming probability. So,
Lemma 3 implies that the distribution of cī∗,3 in Game 5 is statistically closed
to the distribution of cī∗,3 generated in the above modified encryption algorithm
in Game 6. Therefore, we have |Adv5(A)−Adv6(A)| ≤ negl(n).

– Game 7: This game is almost identical to Game 6, with the differences
that we change the generation of challenge ciphertext when b = 1 as follows.
To encrypt the challenged message µ∗, C sets cī∗,1 = u1 ←↩ U(Zmq ), cī∗,2 =
u2 + b q2e · µ

∗ with u2 ←↩ U(Zmq ) and c∗ = u3 + eī∗,3,1 with u3 ←↩ U(Zm̄q )
and eī∗,3,1 ←↩ χm̄. He computes cī∗,3 = ReRand([Im̄×m̄|Rī∗,1|Rī∗,2], c∗, α, β)
and returns (cī∗,1, cī∗,2, cī∗,3;H∗, 1) to A in the end.

The main difference between Game 7 and Game 6 is the distributions of
cī∗,1, cī∗,2 and c∗, that differ by some LWE samples. Hence, it is easy to verify
that |Adv6(A)−Adv7(A)| ≤ AdvA(LWEn,q,2m+m̄,DZ,α).

– Game 8: This game is almost identical to Game 7, with the differences
that we change the generation of challenge ciphertext when b = 1 as follows.
To encrypt the challenged message µ∗, C sets cī∗,1, cī∗,2, cī∗,3 ←↩ U(Zmq ).

Notice that we have that cī∗,3 = [Im̄×m̄|Rī∗,1|Rī∗,2]T · u3 + e′ for some e′
s←↩

DZm,2β·α in Game 7 by Lemma 3. Meanwhile, the entire view of (Ā,u; Ā ·
Rī∗,k′ ,u

T · Rī∗,k′)
s
≈ (Ā,u;U ′, (u′)T )

s
≈ (Ā,u; Ā · Rī∗,k′ , (u′)T ) for k′ ∈ [2],

U ′ ←↩ U(Zn×nkq ), u ←↩ U(Zm̄q ) and u′ ←↩ U(Znkq ) by Lemma 1. Therefore, we
have |Adv7(A)−Adv8(A)| ≤ negl(n).

Finally, notice that we have |Adv8(A)| = 1
2 . We could deduce that

| δ
N1
− 1

2
| ≤negl(n) + (N1 − 1) ·AdvA(Multi-LWEnn,q,2m,DZ,α

)

+ AdvA(LWEn,q,2m+m̄,DZ,α).

The proof is finished.
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Remark 5. We note that for our constructions of single-hop PRE schemes, the
encryption oracle only needs to record encryptions of the challenge user i∗ in the
security game. I.e. we only need to make sure that ciphertexts of the user i∗ are
not malformed. This is because by our constructions, the adversary could not
re-encrypt a level 2 ciphertext of an honest user to any other corrupted users,
since the form of level 2 ciphertext is different from those of fresh ciphertexts.

Remark 6. Since our constructions satisfy the requirements ((weakly) key pri-
vacy, source hiding, indistinguishability) proposed in [13], our single-hop PRE
schemes are also adaptive secure for some directed acyclic graphs with polyno-
mially bounded parameters by Theorem 6 of [13].

Remark 7. As [28], our single-hop PRE scheme could be easily modified to a
PRE+ scheme, in which the re-encryption keys of a ciphertext of any message
could be generated by its encrypter. For LWE-based constructions, the intuition
is quite easy. Any encrypter of a message m knows the ephemeral secrets s
and e’s. So, the corresponding re-encryption key generation algorithm and the
re-encryption algorithm could be designed as follows.

– ReKeyGen(pp, pki, pkj , cti; eph): Sample ei,j,1, ei,j,2 ←↩ χm, then return
rki 7→j(cti) = ((Bj −Bi) · s+ ei,j,1; (Dj −Di) · s+ ei,j,2).

– ReEnc(pp, cti, rki 7→j(cti)): Parse rki 7→j(cti) = (rk1; rk2), then return cj,1 =
ci,1 + rk1 and cj,2 = ci,2 + rk1.

Here, eph represents the ephemeral secret s.

Recall that as discussed in Remark 1, our sing-hop PRE schemes also satisfies
the second-level security of ciphertexts [12]. In the above security proof, the chal-
lenger has no ability to answer re-encryption queries of non-challenge ciphertexts
with tag H∗ from i∗ to corrupted users. By our definition of security, cipher-
texts of i∗ are generated in the encryption oracle. So, this case will happen with
negligible-probability. While in [12], this case is avoided by adding an additional
not-derivative requirement [12, Definition 3.2]. Meanwhile, we note that in the
secure proof of [12, Theorem 4.2], the distributions of re-encryption keys between
(i∗, j) with j ∈ UH and (i, j) with i ∈ UH\{i∗} and j ∈ UH ∪ UC are different
from each other (due to the quality of trapdoors used for sampling pre-images),
which may result in that the norms of re-encryption keys of the later case would
be larger than the desired (Gaussian) bound as in the real schemes. This means
that the statistical distance of Hybrid H0 and Hybrid H1 in the security proof of
[12] is not negligible, so the adversary may output ⊥ indicating that he detects
the scheme is different from the real scheme. The somewhat trivial extensions of
our single-hop constructions to multi-hop cases suffer similar problem.
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