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Abstract. Fast correlation attacks, pioneered by Meier and Staffelbach,
is an important cryptanalysis tool for LFSR-based stream cipher, which
exploits the correlation between the LFSR state and key stream and tar-
gets at recovering the initial state of LFSR via a decoding algorithm.
In this paper, we develop a vectorial decoding algorithm for fast cor-
relation attack, which is a natural generalization of original binary ap-
proach. Our approach benefits from the contributions of all correlations
in a subspace. We propose two novel criterions to improve the itera-
tive decoding algorithm. We also give some cryptographic properties of
the new FCA which allows us to estimate the efficiency and complexity
bounds. Furthermore, we apply this technique to well-analyzed stream
cipher Grain-128a. Based on a hypothesis, an interesting result for its se-
curity bound is deduced from the perspective of iterative decoding. Our
analysis reveals the potential vulnerability for LFSRs over generic linear
group and also for nonlinear functions with high SEI multidimensional
linear approximations such as Grain-128a.

Keywords: Linear Approximation · Fast Correlation Attack· Iterative
Decoding · Grain-128a.

1 Introduction

Stream ciphers are a widely used class of symmetric-key cryptosystem. A key
stream sequence is generated from the initial state derived from the key. The
plaintext is encrypted by XORing with the key stream in the same length.

Linear feedback shift register(LFSR) based stream ciphers form an important
class of stream-cipher system, in which one or more LFSRs are often used. LFSRs
could be defined over different algebraic structures, such as finite fields and
generic linear group. Besides for LFSR, these ciphers usually adopt a nonlinear
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filter function or a finite state automata(FSM) with nonlinear update function.
The history of these ciphers can be traced back to decades ago, e.g., LILI-128[11],
SNOW family [14, 15, 34, 16] and Grain family etc.

Grain family includes three well-known stream ciphers: Grain-128a[2], Grain-
128[20] and Grain-v1[21]. Grain-v1 is in the eSTREAM portfolio and Grain-
128a is standardized by ISO/IEC[1]. All Grain family members share a simi-
lar structure. Several lightweight ciphers proposed recently also adopt similar
structures[4, 5, 31]. An important attack for Grain-v1 is near collision attack[37],
which is improved in [38]. Since Grain-128 adopts quadratic function, the dy-
namic cube attack plays an important role in its cryptanalysis[13]. To avoid
the dynamic cube attack, Grain-128a adopts a nonlinear function with higher
degree. However, Grain family is reported to be vulnerable for fast correlation
attacks(FCA) in CRYPTO 18[33].

FCA is pioneered by Meier and Staffelbach in 1989[27]. Generally speaking,
FCA exploits the correlation between the key stream and the state or the outputs
of LFSR. The problem of recovering initial state of LFSR is transformed into
a decoding problem. The linear part of the stream cipher is treated as a linear
code, and the nonlinear part of the stream cipher is treated as noise.

According to the differences of decoding strategies, these FCA approaches
can be roughly divided into two classes. One class adopts one-pass decoding
algorithm. For example, Johansson et. al. proposed the FCA based on convolu-
tion codes and Viterbi decoding algorithm[24], and sooner improved it by turbo
codes[23]. Another FCA adopts maximum likelihood decoding on a reduced set
of information bits[8]. The parity checks are usually folded to eliminate partial
bits. List decoding and polynomial reconstruction can also be applied in FCA
[28, 25]. An important improvement is accelerating the parity check evaluations
by fast Walsh-Hadamard transform[10]. This technique is applied in cryptanalyz-
ing stream cipher E0[26]. It was then generalized to extension fields and applied
to stream cipher SNOW 2.0[39]. An recent improvement of FCA is based on
commutative property and applied to Grain family[33].

The other class adopts several pass decoding algorithm. After Meier and
Staffelbach’s original FCA, low-density parity-check code(LDPC) is introduced
into FCA to improve the iterative decoding algorithm[7]. There are many related
works in this area, such as [3, 7, ?,12, 18, 29, 30]. Intuitively, iterative decoding
algorithm seems to be more powerful, as their decoding abilities are closer to
Shannon’s bound. However, comparing with the FCA decoding by information
set, it is usually very hard to describe its cryptographic properties in mathe-
matical language, and also lack of a convenient approach to work on extension
fields. Thereby, its direct application to modern stream ciphers is very limited.

Our Contributions. In this paper, we propose a vectorial iterative decoding
algorithm for fast correlation attack, which generalizes Meier and Staffelbach’s
original FCA very naturally. Our approach benefits from the contributions of all
correlations in a subspace and thereby more powerful than the binary version.
We propose two novel criterions to improve the iterative decoding algorithm and
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perform a scaled experiments to verify its validity. We also give some crypto-
graphic properties for the first iteration, which allows us to estimate the efficiency
and complexity bound via probability distribution approximations.

Furthermore, we apply it to the well-analyzed stream cipher Grain-128a.
Based on a hypothesis that the initial probability distribution of noise is close to
symmetric probability distribution, and there exist parity checks with two taps
or with special form, we give a data complexity bound estimation in the sense
of correcting errors of the noisy sequence. The result shows its potential security
bound may be lower than we thought from the perspective of iterative decoding.
Our analysis reveals the potential vulnerability for LFSRs over generic linear
group and also for nonlinear functions with high SEI multidimensional linear
approximations such as Grain-128a.

Outline. The rest of the paper is organized as follows. Section 2 is preliminary.
The details of vectorial decoding algorithm are described in section 3. In section
4, we propose some cryptographic properties and perform an scaled experiment.
How to apply the new FCA to Grain-128a is explained in section 5. Section 6
consists of some further problems. Finally, we conclude the paper.

2 Preliminary

2.1 Notations and Definitions

Linear Approximation. Let F : Fm2 → Fn2 be a vectorial Boolean function.
A linear approximation of F with m-bit input mask u = (u1, u2, · · · , um) and
n-bit output mask pair v = (v1, v2, · · · , vn) can be represented by

uxT ⊕ vFT (x),

The input mask u and v are regarded as a 1 × m matrix and a 1 × n matrix
respectively. The multiplication denotes matrix multiplication, and T represents
matrix transposition.

Linear correlation is used to measure the bias of a linear approximation,
which can be efficiently calculated by FWHT.

c(u,v) = 2−m
(
|{x : uxT ⊕ vFT (x) = 0}| − |{x : uxT ⊕ vFT (x) = 1}

)
|

= 2−m
∑
x

(−1)ux
T⊕vFT (x).

With m linear independent mask pairs ui, we could construct a linear ap-
proximations with dimension m by matrix mask pair (U, V )[22].

UxT ⊕ V zT = e, (1)

where the i-th row of U and V are ui and vi respectively, FT (x) = z, e could
be treated as a noise vector.
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Walsh-Hadamard Transform. Walsh-Hadamard transform is a spectral tool
widely used in cryptanalysis of linear type. Let px = Pr[X = x], x ∈ F2m

be the probability density function of discrete probability distribution P . Let
X ∼ P denote a discrete random variable, the Walsh-Hadamard transform of X
is defined by

W(X)w = 2−m
∑
x∈F2m

px(−1)wx
T

.

Remark 1. Notice that finite field F2m is a vector space over F2 with dimension
m, then there is a natural bijection from an element w ∈ F2m to vector w ∈ Fm2 .
For convenience, we alternatively use them if there is no ambiguity in the context.

Another type of spectral analysis tool in dealing with Boolean functions is
circulant Walsh-Hadamard transform

W̃(f)w = 2−m
∑
x∈Fm2

(−1)f(x)⊕wxT ,

where f is a Boolean function. Obviously, c(u,v) = W̃(vFT )w.
Since Walsh-Hadamard transform is a linear operator for addition in F2n , let

random variable X = X1⊕X2⊕· · ·⊕Xk, we can efficiently compute probability
distribution of X with the help of the convolution property

px =W−1(W(X1)× · · · ×W(Xk))x

Square Euclid Imbalance. Relative entropy(also called Kullback–Leibler di-
vergence) is used to measure the difference between two probability distributions.

Definition 1. Let px and qx be probability density functions of two discrete
probability distributions P and Q, their relative entropy is defined by

D(p ‖ q) =
∑
x

px log
px
qx
.

If p is close to q, i.e. px = qx + ε(x), the relative entropy could be approximated
by

D(p ‖ q) ≈ 1

2

∑
x

(px − qx)2

q(x)
+O(ε3(x)).

The summation term
∑
x

(px−qx)2

q(x) is usually called capacity, and denoted by

C(p ‖ q). Square Euclid imbalance(SEI) is the capacity between a probability
distribution and uniform distribution, i.e.

Definition 2. Let px be the probability density function of probability distribu-
tion P , Its SEI is defined by

∆(p) = 2m
∑
x

(px −
1

2m
)2 (2)
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Particularly, let e = uxT ⊕ vFT (x) ∈ F2 denote a binary random noise
variable with density function px = 2−m|{x : e = x}|, then obviously the square
of correlation c(e)2 = ∆(p). For a non-binary random variable X ∈ F2m , we have
similar result. Let correlation

c(w) =
∑

x:wxT=0

Pr[X = x]−
∑

x:wxT=1

Pr[X = x],

The following theorem reveals the relationship between SEI and linear correla-
tion.

Theorem 1 ([6]). Let p(x) is probability density function as previous, then its
SEI

∆(p) =
∑
w

ε̂2(w) =
∑
w 6=0

c2(w),

where ε(x) = p(x)− 2−m, ε̂(w) denotes the Walsh-Hadamard transform of ε(x).

Parity Check and Characteristic Polynomial. Let Mm(F2) denote the
m×m matrix ring over F2. The generator polynomial of LFSR is denoted by

L(x) = E + C1x+ C2x
2 + · · ·+ Cdx

d ∈Mm(F2)[x],

where Cd is nonsingular and E is the identity matrix. The number of information
bits of L(x) are denoted by k. If L(x) ∈ F2m [x], it can also be mapped into
GLm(F2)[x].

A parity check corresponds to an equation which fulfills the LFSR output
sequence xt. For example, it is well known that any multiples of L(x) ∈ F2m [x]
is a parity check. Usually, only those very sparse parity checks with low degree
are exploited in FCA.

Let set Hτ+1,d denote all parity checks with τ + 1 taps and degree d, ab-
breviated by H without ambiguity. Its cardinality is denoted by |Hτ+1,d|. The
available parity checks at position n denoted by H(n) ⊆ H. Suppose a parity
check for sequence xt is denoted by

Gnxt + · · ·+G1xt+n−1 + Ext+n = 0, (3)

where Gn is nonsingular. Its characteristic polynomial is denoted by

Fn(x) = det(Ex+A) = det(

n∑
i=0

Gn−ix
i),

where T denotes the companion matrix

A =


0 E 0 0 · · · 0
0 0 E 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 E
Gn Gn−1 Gn−2 · · · G2 G1

 .
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Cyclotomic Cosets. Let a be a positive integer relatively prime to b. For i and
integer, the b-cyclotomic coset modulo a containing i is CSi = {i, ib, · · · , ibr−1}
mod a, where r is the smallest positive integer such that ibr ∼= i mod a. The
minimal integer in CSi is called coset header and denoted by ī. All coset headers
form a set Rb,a.

2.2 A Brief Description of Original Algorithm

Meier and Staffelbach’s original FCA includes a precomputation phase and a
decoding phase.

Precomputation Phase. Let LFSR’s generator polynomial L(x) ∈ F2[x].
The purpose of precomputation phase is finding sufficient very sparse parity
checks with low degree, which is a hard open problem. One way recommended
by Zeng[36] is evaluating logarithms in finite fields of characteristic 2. It is rather
efficient to find low weight multiples, but the degree is not promised to be low.
Another way is by extended K-tree algorithm based on general birthday colli-
sion[32]. The extended k-tree algorithm can be used to find low weight multiples
of polynomial with not so large degree with flexible parameters.

Decoding Phase. The decoding phase targets to recover the initial state of
LFSR from key stream. Suppose we have found sufficient suitable parity checks

xn ⊕ a(i)
n = 0 ∈ H,

where a
(i)
n is the sum of τ different taps a

(i)
n =

∑τ
k=1 xn−ik . The corresponding

check value is zn⊕b(i)n , where b
(i)
n is the sum of t different zn−ik corresponding to

xn−ik . The nonlinear part of a stream cipher is modeled as a binary symmetric
channel(BSC), the crossover probability is p1 = Pr[xn ⊕ zn = 1]. The critical
part of decoding phase is calculating a posteriori probability(APP) with priori
distribution symbol by symbol. Suppose that the check values are all 0 for a
subset H0 ⊆ H, then by Bayes’ formula,

p∗ =
p
∏
i∈H0

(1− si)
∏
i∈H\H0

si

p
∏
i∈H0

(1− si)
∏
i∈H\H0

si + (1− p)
∏
i∈H\H0

(1− si)
∏
i∈H0

si

where each si = s(pi1 , · · · , pit) = Pr[a
(i)
n = b

(i)
n ] depends on the probability of t

symbols involved in parity check i. Moreover, si can be calculated recursively in
the BSC Model

s(pi1 , · · · , pit) = pits(pi1 , · · · , pit−1) + (1− pit)(1− s(pi1 , · · · , pit−1))

The specific process is depicted in Algorithm 1. For more details we refer to the
original paper[27].
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Algorithm 1 Meier and Staffelbach’s Algorithm B

Input: A key stream sequence z of length N , and H.
1. Calculate the probability threshold pthr and quantity threshold Nthr.
2. For round r ∈ {1, 2, · · · }
3. For iteration i from 1 to a small integer
4. Calculate APP p∗ from priori probability p, assign p∗n = pn for all position n.
5. If Nw ≥ Nthr where Nw = |{n|pn > pthr}|, break;
6. Complement the bits of z with pn > pthr.
7. Reset all positions to initial probability p.
8. If z satisfies all parity checks, break.
9. Terminate with x = z.

3 Fast Correlation Attack Based on Vectorial Iterative
Decoding Algorithm

3.1 Channel Model

Our channel model is symmetric channel(SC) instead of discrete memoryless
channel(DMC). The received word is the transmitted word XOR noise, i.e., z =
x⊕ e. A symmetric channel model has a transition matrix

M =


p(z1|x1) p(z2|x1) · · · p(z2m |x1)
p(z1|x2) p(z2|x2) · · · p(z2m |x2)

...
...

...
...

p(z1|x2m) p(z2|x2m) · · · p(z2m |x2m)

 .

Each row is a permutation of another row, and so as to columns. Moreover,
the sum of each row equals 1 as the definition of SC. Particularly, the sum of
each column equals 1. Therefore, Our symmetric channel can be treated as an
extended BSC. Its channel capacity is certainly C = m−H(r), where r denotes
a row of M .

Suppose we have a linear approximation with dimension m, i.e.,

r⊕
i=1

Uix
T
i ⊕

s⊕
i=1

Viz
T
i = eT . (4)

Similarly as FCA based on BSC, the channel noise vector eT is XORed to⊕r
i=1 Ui · xTi , and the output is

⊕s
i=1 Vi · zTi , see Fig. 3.1.

3.2 Checking Parity with Vectorial Noise

Since the binary linear approximation is generalized to multidimensional linear
approximation, the check methods also need to be adjusted for FCA. Suppose
that we have |H(n)| = r check equations in Mm(F2)[x] for position n, and l ∈
H(n) denote a specific check equation

l : Exn ⊕G1xn−1 ⊕ · · · ⊕Gnxn−d = 0.
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Fig. 1. Channel Model for VFCA

In order to check parity over matrix ring, these Gk, 1 ≤ k ≤ n are restricted
by those coefficients matrices Uj linear approximation (4). More specifically,
we require that all Ui, 1 ≤ i ≤ r are nonsingular. For each Gk, all Ui satisfy
that UiGkU

−1
i = G′k, which implies that if Ui, Uj satisfies UiGkU

−1
i = G′k and

UjGkU
−1
j = G′k, then (U−1

j Ui)Gk(U−1
j Ui)

−1 = Gk, i.e., U−1
j Ui ∈ C(Gk), where

C(Gk) denotes the centralizer of Gk in GLm(F2).
For a parity check l we could multiply it with U1, U2, · · · , Ur respectively,

Ui(Exn+i ⊕G1xn−1+i ⊕ · · · ⊕Gdxn−d+i) = 0, i ∈ {1, 2, · · · , r}.

Thus we have

E(Uixn+i)⊕G′1(Uixn−1+i)⊕ · · · ⊕G′d(Uixn−d+i) = 0, i ∈ {1, 2, · · · , r}.

Summing them up, and we have

d⊕
i=0

G′i(

r⊕
j=1

Ujxn−i+j) =

d⊕
i=0

G′i(

s⊕
j=1

Vjz
T
n−i+j)⊕

d⊕
i=0

G′i(e
T
n−i)), (5)

where G′0 = E. This process can be done for all parity checks in H(n). The
purpose is to determine eTn−i of each position, when observing

⊕s
j=1 Vjz

T
n−i+j .

Notice that the approach here is generic. When the parity checks and linear
approximations have special form, more efficient checking approach is feasible,
see section 5.2.

Our FCA doesn’t require all Gi = E, 1 ≤ i ≤ n as in linear distinguishing
attack in large alphabets[35], which is expected to have very high degree. For
example, the degree of these special parity checks with weight 4 of SNOW 3G is
expected to be O(2172).

To describe the effect of these parity checks, we divide them into two sets.
Let HI include those parity checks with coefficients all E, while HII includes
the rest. We call them type I and type II parities respectively, and we will see
that they play different roles in the iterative decoding phase.

3.3 Vectorial Iterative Decoding Algorithm

In this subsection, we consider how to extract information from a noise sequence
by vectorial iterative decoding algorithm. Firstly, we try to generalize Meier’s
original Algorithm B, then improve the iterative criterions.
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Let e1e2 · · · eN denote the noise sequence, and
⊕s

j=1 Vjz
T
n−i+j denotes the

derived sequence from key stream z1z2 · · · zN , The initial priori distribution P

is the same for each en, which is derived by linear approximation. Let p
(n)
ζ =

Pr[en = ζ] denote its density function, then the APP p
∗(n)
ζ could be computed

by Bayes’s formula.

p
∗(n)
ζ = Pr [en = ζ|when observed check values (c1, c2, · · · , ch)]

=
p

(n)
ζ

∏h
l=1 Pr[

⊕t
i=1G

′
li
· eTn−li = cl ⊕ I · ζ]⊕

ζ p
(n)
ζ

∏h
l=1 Pr[

⊕t
i=1G

′
li
· eTn−li = cl ⊕ I · ζ]

,
(6)

where observed values cl corresponds to
⊕s

j=1 Vjz
T
n−i+j .

As ζ run over the alphabet, Pr[
∑t
i=1G

′
n−li · e

T
li

= cl + I · ζ], ζ ∈ E can be
calculate by convolution property and Fast Walsh-Hadamard Transform. Thus
the nominator and denominator can be computed by Algorithm 2.

Algorithm 2 Calculate the nominator

Input: priori p.d p
(n)
ζ

1. Let priori probability distribution p(n) = (p0, p1, · · · , p2m−1).
2. For each parity check l ∈ Ln
3. Calculate p.d pl of

∑t
i=1G

′
li
· eTli by FWHT and convolution property.

4. Permute plc ← plc⊕ζ .
5. Multiply corresponding coordinate together of all these vectors.

We always assume en−li are independent, and moreover, all parity checks
in Ln are required to be orthogonal. Now we describe the iterative decoding
algorithm as Algorithm 3. The notation Enext � E means that there is at least
one j ∈ {1, 2, · · · , 2m − 1} satisfying Enextj > Ej , while � has reverse meaning.

The criterions which are used to break up the iterative loop and trigger the
reset process are main factors influencing the convergence speed. For more details
we refer to [12, 29]. Therefore, we also optimize the criterions by experiments.

Some phenomena are observed in scaled experiments when parity checks
are not so many. Firstly, if a threshold is raised to break up loop and reset
as Algorithm B, it is easier to be triggered in the earlier rounds than in the
later rounds. Secondly, if a complement is performed very early without passing
through enough iterations, it will pull the algorithm into a self-combination
state too early and weaken the decoding efficiency. To improve this, two main
criterions are proposed to break the iterate loop and trigger the reset process.

Criterion 1. Passing through sufficient iterations before breaking up and re-
setting, which corresponding to line 7-11 and 14. More specifically, if new app
strengthen the empirical complement effect and iterations is less than maximal,
then continue iteration by Bayes’s rule. Otherwise, select the complement coin
which has potential largest empirical complement effect.
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Algorithm 3 Vectorial iterative decoding

Input: A sequence z′ of length N derived from key stream,
noise sequence e with initial p.d. p,
h different parity checks with weight t+ 1.

parameters: Maximal rounds R, maximal iterations T and minimal gap G to infuse new noise.
1. Initialize a priori p.d. sequence pri of length N all with the same initial p.d. p.
2. Initialize a global empirical vector Eglb = (Eglb1 , · · · , Eglb2m−1)← 0.
3. For round r = 1, 2, · · · , R do
4. Initialize a round empirical vector Ernd = (Ernd1 , · · · , Ernd2m−1)← 0.
5. Initialize complement coin c← 0.
6. For iteration i = 1, 2, · · · , T do
7. Initialize a iteration empirical vector Eitr = (Eiter1 , · · · , Eiter2m−1)← 0.
8. For position n = 1, 2, · · · , N do
9. Compute app from pri by equation (6).

10. If p
(n)
j > p

(n)
0 , then Eitrj ← Eitrj + 1/N, j ∈ {1, 2, · · · , 2m − 1}.

11. If Eitr � Ernd, then Ernd ← Eitr, pri← app.
12. If Eitr � Ernd or i = T , then
13. If Eitr = 0, then return failed.
14. Else if ||Ernd −Eglb|| < G, then choose an very biased noise sequence n

of length N , reset z′ ← z′ ⊕ n, break up current loop.
15. Else then Eglb ← Ernd, select c s.t Erndc + Eitrc , c ∈ 1, 2, · · · , 2m − 1 is

maximal, break up current loop.
16. If c 6= 0, then complement all positions of z′ such that pc > p0 with c.
17. If z′ satisfies all parity checks, then return success.
18. Reset a priori p.d. sequence pri initial p.d. p.
19. Terminate.
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Criterion 2. When the empirical complement effect is weak from the previous
round to current round, a very biased noise sequence is infused hoping to break
the tie caused by self-combination property of LFSR. the noise’s SEI is required
to be appropriate, neither too large to counteract the previous decoding work,
nor too small to break the tie.

criterion 1 is easy to understand. Regardless of the front and back rounds,
sufficiently iteration are needed to correct more positions before complements to
avoid converging to self-combination state too early. The idea behind criterion 2
is simple but novel. After many rounds, the complement would correct very few
positions because of the self-composition property of LFSR. Therefore, a slightly
noise are XORed to the indeterminate middle sequence Z ′ to get out of the trap.

The complement in algorithm 3 operates on derived sequence z′ =
⊕s

i=1 Vizi,
The n-th positionz′n is changed to z′n ⊕ en when the noise is determined to be
en and the complement is implemented. If z′ satisfies all parity checks at the
end, we just deduce that all eTi = 0. Then with the help of LFSR’s feedback
polynomial, the initial state of LFSR can be recovered.

4 Cryptographic Properties and Experimental Results

4.1 Statistical Model

Convergence Property. It is necessary to figure out the convergence property

when iteratively computing APP. Intuitively, we hope that APP p
∗(n)
ζ increases

when noise variable en = ζ and decreases when en 6= ζ. Its expected value is
computed as follows.

E0[p
∗(n)
ζ ] =E[p

∗(n)
ζ |en = ζ]

=
∑

(c1,c2,··· ,ch)

p
(n)
ζ

(∏h
l=1 Pr[

∑t
i=1G

′
li
· eTli = cl + I · ζ]

)2

∑
ζ p

(n)
ζ

∏h
l=1 Pr[

∑t
i=1G

′
li
· eTli = cl + I · ζ]

,

E1[p
∗(n)
ζ ] =E[p

∗(n)
ζ |en 6= ζ]

=
∑
ζ′ 6=ζ

∑
(c1,c2,··· ,ch)

p
(r)
ζ

∏h
l=1 Pr[

∑t
i=1G

′
li
· eTli = cl + I · ζ]∑

ζ p
(n)
ζ

∏h
l=1 Pr[

∑t
i=1G

′
li
· eTli = cl + I · ζ]

p
(r)
ζ′
∏h
l=1 Pr[

∑t
i=1G

′
li
· eTli = εl + I · ζ ′]

1− p(r)
ζ

.

And we conclude that E[p∗(n)] = pζE0[p∗(n)] + (1− pζ)E1[p∗(n)] = pζ .

Example 1. Exploiting 3 type I parity checks with 3 taps, we get the increas-
ing and decreasing ratios in Table 1. The second row is priori probability P .
E0[p∗]/[p∗] and E1[p∗]/[p∗] denote the increasing and decreasing ratio. Particu-
larly, E′0/p

∗ and E′1/p
∗ denote the case only considering the number of holding

parity checks. Both cases meet our expectation.
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Table 1. An example of increasing and decreasing ratio

x 0 1 2 3

px 0.4500 0.2500 0.2000 0.1000

E′0/p
∗ 1.02618712 1.00117564 1.02744428 1.10462318

E′1/p
∗ 0.97857418 0.99960812 0.99313893 0.98837520

E0/p
∗ 1.03907892 1.06836181 1.16004050 1.19334394

E1/p
∗ 0.96802634 0.97721273 0.95998988 0.97851734

Decoding Efficiency. In algorithm 1, a threshold Nthr is computed to pro-
mote the efficiency of complement. It is determined by the intersection point of
two shrunk normal distributions, and it reflects the correcting ability of the first
iteration. In the multidimensional case, the intersection point becomes a inter-
section curve(surface). Now we discuss how to estimate the correcting ability by
measuring the volume of the intersection area.

Let N thr
ζ denote this threshold corresponding to ζ ∈ {1, 2, · · · , 2m − 1}.

Without loss of generality, we assume that the priori probability distribution P
of noise sequence e1 · · · eN s.t.

p0 ≥ p1 ≥ · · · ≥ p2m−1 > 0. (7)

For two independent random variables X ∼ P and Y ∼ P , the probability
distribution Qβ1X⊕β2Y of their linear combination β1X ⊕ β2Y, β1, β2 ∈ F∗2m still
has 0 as maximal value point, which could be deduced from the convolution
property and Walsh-Hadamard transform. Particularly, if β1 = β2 = 1, QX⊕Y
preserves the order

q0 ≥ q1 ≥ · · · ≥ q2m−1 > 0.

The approach to calculate N thr
ζ is inspired by the fact p∗ζ is large when

more check values appear to be ζ. Let qc = Pr[
∑t
i=1G

′
li
· eTn−li = c] denotes

the probability that the t taps sum to be c for check equation l. Obviously,
qc depends on the individual parity check since their coefficients G′li may be
different. This phenomenon makes it very complicated to calculate the threshold
N thr
ζ . To simplify the calculation, we divide all parity checks into two sets HI

and HII according to its coefficients, then deal with them separately.
The set HI includes all parity checks with all identity coefficients. For this

class, qc is obviously independent of parity checks. Let |HI | = hI , the probability
the current noise e = ζ and xi check values equal i, i ∈ {0, · · · , 2m − 1} is as
follows.

pζq(x0, x1, · · · , x2m−1, ζ) = pζ
hI !

x0!x1! · · ·x2m−1!

2m−1∏
i=0

qxii⊕ζ , (8)

where x2m−1 = hI −
∑2m−2
i=0 xi.

Obviously, random vector x = (x0, x1, · · · , x2m−1) follows multinomial dis-
tribution Multi(hI , qζ) with parameter qζ = (qζ , q1⊕ζ , · · · , q2m−1⊕ζ). Its density
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function are denoted by q(x, ζ). For convenience, we introduce notations

qxζ =

2m−1∏
i=0

qxii⊕ζ ,

(
hI
x

)
=

hI !

x0!x1! · · ·x2m−1!
.

Let A be a subset of all possible random vector x. Once we complement
those noises corresponding to A in the iterative process, the number of correctly
changed noises and erroneously changed noises are respectively

NW (p,A, ζ) = N
∑
x∈A

pζq(x, ζ), NW (p,A, 0) = N
∑
x∈A

p0q(x, 0), (9)

where N denote the length of data. All the other cases of changing are neutral.
Thereby, the number of actual corrected positions is the difference

NI(p,A, ζ, 0) = NW (p,A, ζ)−NW (pA, 0). (10)

Given P and HI , if we can find a set A maximizing I(p,A, ζ, 0), then the
expected number of actual corrected positions of each complement should be
maximized. Firstly, we observe that the means of the two multinomial distribu-
tions are respectively

Ep(x,ζ)(x) = hIqζ , Ep(x,0)(x) = hIq0.

Therefore, similar as the binomial case, there is a set A of x in which I(p,A, ζ, 0)
takes non-negative value.

Since given x, I(p,A, ζ, 0) and p∗ζ − p∗0 have the same sign, it is equivalent to
find A such that p∗ζ − p∗0 > 0 for each x ∈ A , that is to determine the region A
such that

δ(ζ, 0) = pζq(x, ζ)− p0q(x, 0) > 0,x ∈ A. (11)

Example 2. Let initial probability distribution P be the same as in Example 1,
and hI = 15. The difference δ(ζ, 0) is illustrated in Fig. 2. The non-negative and
the negative area are separated. The size of circle represents the relative absolute
value of the difference δ(ζ, 0).

When h is small, it is feasible to evaluate N thr
ζ by exhaustively searching.

The threshold N thr
ζ can be determined by

N thr
ζ = N(

∑
x∈A

∑
c∈E

pcq(x, c)). (12)

The time complexity is about O(2m
(
h+2m

2m

)
).

When h is large and q is not near the boundary of the parameter space,
multivariate normal distribution approximation is suitable. Multi(hI , q) could
be approximated by N (µ,Σ) with density function

1√
(2π)2m−1|Σ|

exp

(
−1

2
(x− µ)Σ−1(x− µ)T

)
,
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Fig. 2. Example for the difference distribution

where mean vector µ and covariance matrix Σ are determined by Multi(hI , q).
Therefore, the area A maximizing the multiple integral

I(p,A, ζ, 0) ≈
∫
A

(pζN (µζ ,Σζ)− p0N (µ0,Σ0))dx (13)

should be part of a hypercube with dimension 2m − 2 that restricted by the
2m − 1 coordinate plane and two surfaces

Ω1 :

2m−2∑
i

xi = h,

Ω2 :
1

2
((x− µ0)Σ−1

0 (x− µ0)T )− 1

2
((x− µζ)Σ

−1
ζ (x− µζ)T )− ln

p0

pζ
= 0.

(14)

Notice that Ω2 is a quadratic form in the real field, the multiple integral (13)
can be computed by repeated integral. Once A is determined, the threshold can
be calculated by volume integral

N
∑
c∈E

∫
A
N (µc,Σc)dx. (15)

Example 3. Let the probability distribution P be the same as in Example 1.
To illustrate this multivariate normal approximation, The results of I(p,A, 1, 0)
computed by two methods id depicted in Table 2. In order to simplify the inte-
gral, we could even slightly adequate the boundary of A without fluctuating the
result much.
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Table 2. Direct computation and normal approximation for I(p,A, 1, 0)

number of equations h 40 80 200 400

direct computation 0.0686 0.1138 0.1835 0.2266
normal approximation 0.0707 0.1148 0.1841 0.2267

When the parity checks stem from HII = H\HI , qc depends on individual
parity check. To avoid this drawback, when the probability value peak is q0, we
introduce a symmetric multinomial probability distribution Q′ to simulate the
influences of type II parity checks, which parameter is

q′0 = q0, q
′
1 = · · · = q′2m−1 =

1− q′0
2m − 1

. (16)

Then the calculation is similar as for HI . According to the size of HI and HII ,
we could estimate N thr

ζ by combine HI and HII together. The multinomial
distribution is replaced by Multi(hI , qζ)Multi(hII , q

′
ζ) in this case.

Example 4. To verify the validity of these approximations, under the same P
as Example 1, we compute the theoretical ratio of N thr

ζ /N and the empirical
ratio by the ratio where p∗ζ > p∗0. Table 3 depicts that our estimations are rather
appropriate.

Table 3. Theoretical and empirical value of N thr
ζ /N

No. of parities theoretical empirical

(hI , hII) ζ N = 219 N = 220 N = 221

(36,0)
1 0.277133 0.227242 0.250517 0.264012
2 0.253926 0.242359 0.246835 0.249339
3 0.200412 0.164480 0.181245 0.190250

(18,18)
1 0.297959 0.251286 0.270056 0.279394
2 0.260769 0.220915 0.238914 0.248543
3 0.167968 0.125576 0.144096 0.154273

(0,138)
1 0.376058 0.360392 0.364783 0.368026
2 0.325561 0.321800 0.332389 0.338674
3 0.221771 0.198662 0.213513 0.221388

4.2 Information Theory Properties

In this subsection, we discuss some properties from the point view of information
theory. Suppose the noises are independent and the parity checks are linear
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independent, the relative entropy between Multi(h, q0) with density function
q(x) and Multi(h, (2−m, · · · , 2−m)) with density function u(x) is

D(q ‖ u) = H(q, u)−H(q) = h

2m−1∑
i=0

qi log
qi

2−m
= h(m−H(q0)).

That is the relative entropy is the number of parity checks times the SEI of
probability distribution Q.

Secondly, we hope that the right corrected positions are as many as possible
in the complement process. Now we think about the sum of relative entropy
between Multi(h, qc) and Multi(h, q0) for all c 6= 0, and we have

Proposition 1. Let qc(x) and q0(x) be density functions of Multi(h, qc) and
Multi(h, qc) respectively, then

∑
c 6=0

D(qc(x) ‖ q0(x)) = −h log

2m−1∏
i=0

qi − h2mH(q0).

Proof. By equation (4.2),

∑
c6=0

D(qc(x) ‖ q0(x)) =
∑
c6=0

h(

2m−1∑
i=0

qi⊕c log qi⊕c −
2m−1∑
i=0

qi⊕c log qi)

=− h(2m − 1)H(q0)− h
2m−1∑
i=0

∑
c 6=0

qi⊕c log qi

=− h(2m − 1)H(q0)− h
2m−1∑
i=0

(1− qi) log qi

=− h log

2m−1∏
i=0

qi − h2mH(q0).

This tells us when the probability distribution of noise approaches uniform dis-
tribution, the total relative entropy converges to 0.

4.3 Complexity Analysis

Firstly, given the SEI ∆(p), To transmit k bits information through an SC chan-
nel, the code rate k/N < ∆(p)/(2 ln(2)) by Shannon’s Theorem. On the other
hand, the number of parity checks h influences the decoding complexity. We
focus on the property of the first iteration in the first round, which seems to be
the critical part by previous section, and discuss how to deduce some theoretical
bounds for h as well as key stream length N .
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A Bound from Decoding Codes. Similarly as Proposition 1 in [9], In order
to perform an error corrected iterative decoding, the lower bounds of h should
satisfy that there exists at least a ζ such that p∗ζ > p∗0. It is summarized as
follows.

Proposition 2. If iterative decoding is feasible, then there is at least one ζ ∈
{1, 2, · · · , 2m − 1} such that pζq(x, ζ)/(p0q(x, 0)) > 1. Particularly, when P , Q
and Q′ are multinomial probability distributions as before, then ζ = 2m − 1 and

pζ
p0

>

(
qζ
q0

)hI (q′ζ
q′0

)hII
. (17)

Proof. Since if pζq(x, ζ)/(p0q(x, 0)) ≤ 1 holds for all ζ, then p∗i converges to 0
or becomes ambiguous during the iterations, i.e. p∗0 = p∗i is one of the largest.
The decoding algorithm won’t work.

Particularly, when the probability values of P and Q(or Q′) are in order as
stated before, and all values of parity checks are ζ, obviously we have

pζq
x
ζ

p0qx0
≤
pζq

hI
ζ qhIIζ

p0q
hI
0 qhII0

.

Therefore, the result follows.

Remark 2. Though the ratio η(ζ, 0) has large value when all check values are ζ,
The lower bound for h given in Proposition 2 may be loose, as the probability
that all check values are ζ is small.

A lower bound for N could be derived through Proposition 2. For example,
when generator polynomial L(x) ∈ F2m [x], the number of parity checks h and
the key stream length N shall satisfy that(

N

τ

)
(2m − 1)τ ≈ h2k.

As an application of Proposition 2, we give two formulas of h for two im-
portant probability distributions. Since when ∆(e) = 2−γ , it is expected that

there is a probability value around 2−m ± 2−
m+γ

2 in practice[35], the distribu-
tions P and P ′ in Table 4 is very likely to appear, where ε denotes (1− 2−m −
2−

m+γ
2 )/(2m − 1)− 2−m.

Table 4. Two probability distributions P and P ′

x 0 1 · · · i− 1 i i+ 1 · · · 2m − 1

px − 2−m 2−
m+γ+1

2 0 · · · 0 −2−
m+γ+1

2 0 · · · 0

p′x − 2−m 2−
m+γ

2 ε · · · ε ε ε · · · ε
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By Taylor’s formula, we have

pi
p0

=
1− 2

m−γ−1
2

1 + 2
m−γ−1

2

≈ 1− 2
m−γ+1

2 ,
p′i
p′0

=
1 + ε2m

1 + 2
m−γ

2

≈ 1− 2m + 1

2m − 1
2
m−γ

2 .

Furthermore, by the convolution property, when each parity check has τ+1, t ≥ 2
taps, we have

qi
q0

=
1− 2−

(t−2)m+t(γ−1)+2
2

1 + 2−
(t−2)m+t(γ−1)+2

2

≈ 1− 2−
(t−2)m+t(γ−1)

2 .

Hence, by Proposition 2, the number of type I and II parity checks for P are

1− 2
m−γ+1

2 ≥ (1− 2−
(t−2)m+t(γ−1)

2 )hI ⇒ hI ≥ 2
(t−1)(m+γ−1)

2

1− 2
m−γ+1

2 ≥ (1− (
2m

2m − 1
)2−

(t−2)m+t(γ−1)+2
2 )hII ⇒ hII ≥ 2

(t−1)(m+γ−1)+2
2 ,

(18)

where 2m

2m−1 ≈ 1.
For the case of P ′, the general term formula of distributions convolution

could be deduced by its recursion formula, i.e.

p′0 = 2−m +
2m(t−1)

(2m − 1)t−1
2−

m+γ
2 t, q′i = 2−m − 2m(t−1)

(2m − 1)t
2−

m+γ
2 t.

Thus we have

q′i
q′0
≈ 1− 2m(t+1)

(2m − 1)t
2−

m+γ
2 t,

p′i
p′0
≈ 1− 22m

2m − 1
2−

m+γ
2 ,

which means

1− 22m

2m − 1
2−

m+γ
2 ≥

(
1− 2m(t+1)

(2m − 1)t
2−

m+γ
2 t

)h
⇒ h ≥

(
2m − 1

2m

)t−1

2
m+γ

2 (t−1).

(19)

Notice that type I and II parities are not distinguished in the case of P ′.
We expected that the practical bound is between those deduced by P and P ′.

The FCA mainly benefits from the increased SEI. More specifically, according
to Theorem 1, there are 2m−1 binary linear approximations contributing to the
SEI of linear approximation with dimension m.

A Bound from the Practical Corrected Errors. In this part, we discuss
how to deduce a bound from the number of expected positions with p∗ζ > p∗0, ζ 6=
0.
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Let us consider the sets A(i), i ∈ {1, 2, · · · , 2m− 1} for multinomial distribu-
tions. Since A(i) may intersect with each other, the way of computing threshold
in section 4.1 can’t be directly applied. Thereby, we introduce some new sets

A′(i) = A(i)−A(i) ∩
i−1⋃
j=1

A(i),

That is A(i) excluding all elements that are included in previous sets A(i), i ∈
{1, 2, · · · , i}. Let M ′i denote the summation of probability values over set A′(i),
more specifically,

2m−1∑
ζ=1

M ′ζ =

2m−1∑
ζ=1

pζ
∑

x∈A′(ζ)

q(x, ζ). (20)

It is reasonable to require that
∑2m−1
ζ=1 M ′ζ > 1 after the first iteration. Then the

succeeding iterations may trigger more positions with p∗ζ > p∗0. This phenomenon
may be the main advantage that soft decision decoding algorithms have.

Summing up the probability values in multinomial distributions is incon-
venient. Though multivariate normal distribution approximation could also be
used as before when h is large, the integral may not be easy to evaluate in prac-
tice, as the integral area A′(ζ) is very complicated. Since symmetric distribution
Q′ simulates the iterative process very well, we could deduce boundaries for A′ζ
using Multi(h, q′). The following results shows how to estimate M ′ζ in this case.

Proposition 3. For multinomial probability distribution Multi(h, q′), we have

M ′ζ =

h∑
l=hb

(
h

l

)
(1−

ζ∑
i=0

q′i⊕ζ)
h−l

∑
(x0,··· ,xζ)∈B(ζ)

(
l

x0, · · · , xζ

) ζ∏
i=0

q′xii⊕ζ , 1 ≤ ζ < 2m,

where Bζ is constrained by
∑ζ
i=1 xi = l, xζ−x0 ≥ hb and xi−x0 ≤ hb, 1 ≤ i < ζ.

Particularly, when
∑ζ
i=0 q

′
i⊕ζ is small and hq′i ≤ hb, the expected number of

positions with p∗ζ > p∗0 in the first iteration are dominated by when l is small.

Proof. Since q′1 = · · · = q′2m−1, we have

M ′ζ =
∑
x∈A′ζ

(
h

x

)
q′xζ

=

h∑
l=hb

(
h

l

)
(1−

ζ∑
i=0

q′i⊕ζ)
h−l

∑
(x0,··· ,xζ)∈B(ζ)

(
l

x0, · · · , xζ

) ζ∏
i=1

q′xii⊕ζ .

By Proposition 2, we deduce that there is a minimal positive integer hb such
that δ(ζ, 0) > 0 when xζ − x0 ≤ hb. Furthermore, xi − x0 < hb should holds
to exclude the points in A′(i) for all 0 < i < ζ. Therefore, when p∗ζ > p∗0,



20 Zhou. Author et al.

(x0, · · · , xζ) ∈ A′(ζ) must satisfy that
xi ≥ 0, 0 ≤ i ≤ ζ,
xi − x0 < hb, 0 < i < ζ,
xζ − x0 ≥ hb,
x0 + · · ·+ xζ < h .

When h is not small and
∑ζ
i=0 q

′
i⊕ζ is not high, multidimensional distribution

Multi(h, q′ζ) could be approximated by ζ + 1 independent Poisson distributions
with means λi⊕ζ = hq′i⊕ζ , i.e.

Pr(X = x) ≈
∑
A′(ζ)

ζ∏
i=0

λxii⊕ζ
xi!

e−λi⊕ζ =
λ
xζ
0

xζ !
e−λ0

λ
x0+···+xζ−1

ζ

x0! · · ·xζ−1!
e−ζλζ . (21)

As λi ≤ hb, the maximal value of Pr(X = x) is when
∑ζ
i=0 xi is small, i.e. when

l is small. Therefore, the result follows.

Proposition 3 gives us a hint that the value corresponding small l domi-
nate M ′i . When ζ is not very large, M ′ζ could be approximated by partial sum-
mation for small l close to the boundary. Obviously, M ′i , 0 < i are monotone
non-increasing sequence.

When ζ = 1, there is another elegant way to estimate M ′1 by Skellam dis-
tribution. Let Y0 ∼ Pois(λ1) and Y1 ∼ Pois(λ0), we know that their difference
K = Y1 − Y0 follows Skellam distribution with following probability density
function.

p(k, λζ , λ0) = e−λζ−λ0

(
λζ
λ0

)k/2
I|k|(2

√
λ1λ0),

where I|k| is the modified Bessel function of the first kind. Obviously, M ′1 =
Npζ Pr(K > hb) since a boundary line is x1 ≥ x0 + hb by Proposition 3.

On Sparse Check Equations. Since sparse parity checks have large advan-
tages while checking parity, we are interested in these parity checks with τ = 1
or 2. In this section, we give some miscellaneous observations about them.

Let xt = (xt+c1 , xt+c2 , · · · , xt+cm), c1 < · · · < cm denotes the output at
time t of LFSR with generator polynomial L(x) ∈ Mm(F2)[x]. Each coordinate
sequence is a m-sequence (x1x2 · · · ) left shifting ci times, and its minimal poly-
nomial f(x) ∈ F2[x] has degree k. Particularly, when (c1, c2, · · · , cm) satisfies
special condition, it becomes an LFSR over extension field F2m [19].

Though parity checks with two taps have very large advantages, unfortu-
nately, the existence of them is a problem by the following direct observations.

Proposition 4. Let xt = (xt+c1 , xt+c2 , · · · , xt+cm) be as stated above, we have

– If cm − c1 +m− 1 < k, then there is no parity check with τ = 1.
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– Given two parity checks with τ = 1,

Gxt + Ext+d1 = 0, G′xt + Ext+d2 = 0,

if d1 = d2 and xt run over all values in {1, · · · , 2m − 1}, then G = G′. If
d1 6= d2, then gcd(d1, d2) > k −m.

Proof. 1. Let Gxt + Ext+d = 0 be a parity check. Since i-th row of A and E
forms an check polynomial fi with nonzero constant for xt, then f |fi. As G is
nonsingular, there must be two different check polynomials fi(x) and fj(x). That
means fi + fj also forms a check polynomial, but cm − c1 +m− 1 < k means a
polynomial with degree less than k could be deduced, which is impossible.

2. When d1 = d2, it is deduced that (G+G′)xt = 0 for all xt, When xt run
over all values in {1, · · · , 2m − 1}, then we have G = G′.

When di < dj , we could deduce a linear dependent parity check,

Gn,i(Ext +G−1
n,iGn,jxt+i−j) = 0.

Therefore, according to Euclid long division algorithm, we finally have

Ext +Gxt+gcd(i,j) = 0.

Since there are k information bit of LFSR, then gcd(i, j) ≥ k −m. Therefore,
the result follows.

This observation means parity checks with τ = 1 may be rare, but it doesn’t
mean none, even though the key stream length needed may be large. For example,
(xt+c1 , xt+c2 , · · · , xt+cm) may be only in a subspace of Fm2 , and cm− c1 +m− 1
may be large. Once a parity check is found, more could be constructed by sliding
and adding together. For example,

Gxt + Ext+d = 0⇒ G2xt−d + Ext+d = 0.

Moreover, if a parity check satisfies sequence xt, then its characteristic poly-
nomial Fn(x) ∈ F2[x] has f(x) as a factor. Since Gn = G,G1 = · · · = Gn−1 = 0,
then Fn(x) = det(Exn + G), the choices for matrix G and n are (N/m −
1)|GLm(F2)|. Let S = {Fn(x) : 1 ≤ nm ≤ N} denote all possible character-
istic polynomials. For convenience, we introduce a map sending Fn(x) ∈ SG to
F2[x].

φ : SG → F2[x]

Fn(x) = det(Exn +G)→ F (x) = det(Ex+G).

Since F (x) is the characteristic polynomial of invertible matrix G, the number of
different F (x) is 2m−1. Suppose that F (x) = fn1

1 · · · fnvv , where the fi are distinct
irreducible polynomials of degree di, it has been proved that the number of G
with given F (x) is η(F (x))[17], i.e.

η(F (x)) =
2m

2−m∏m
i=1(1− 2−i)∏v

i=1

∏ni
j=1(1− 2−jdi)

.
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We also know that Fn1
(x) = Fn2

(x)2i for some i > 0 when n1 and n2 are in
the same 2-cyclotomic coset CSn̄ modulo ord(f) = 2k − 1. And the size of set
F = {Fn̄(x) : 1 < nm < N} is bounded by

N/(km) < |F| ≤
∑
d|k

µ(d)

k/d∑
i=1

2i,

where µ(·) is Möbius function.

For the case τ ≥ 2, there are (N/m − 1)|GLm(F2)|(2m2 − 1) choices for the
two coefficients and n. An upper bound of |S| is the number of conjugacy classes

of T in GLnm(F2), which is roughly about 2nm −
∑b(nm−1)/2c
i=bnm/3c 2i. We believe it

is much more than (2m − 1)2 when L(x) ∈ F2m .

The Case of m = 1. Regardless of the differences in criterions, the origi-
nal FCA proposed by Meier et. al. can be treated as our FCA with dimension
m = 1. The coefficient matrices of LFSR degenerates to scalar elements in F2.
Therefore, the commutative condition for check parity is no need to be consid-
ered. The multidimensional linear approximations degenerates to binary linear
approximation. Since the multinomial distribution degenerates to binomial dis-
tribution, ζ must be 1. The bound derived from Proposition 2 is the same as in
[9]. estimating M ′1 is also simple.

Small Scale Experiments In this section we perform a scaled experiment to
verify the vectorial iterative decoding algorithm. The experiment settings are as
follows. The generator polynomial of LFSR is

f(x) = x16 + x15 + x+ a ∈ F22 [x].

The output of LFSR at time t is the rank cell xt. The noise stems from a
SC channel instead of nonlinear part of a stream cipher. The target is re-
covering LFSR output sequence x1x2 · · ·xN from noisy sequence z1z2 · · · zN =
(x1x2 · · ·xN )⊕ (e1e2 · · · eN ).

We tweak the parameters such as channel capacity, the number of parity
checks and the noise introduced to verify the word-error ratio(WER) after it-
erating a number of rounds. More specifically, priori probability distributions
are P1 = {0.45, 0.25, 0.2, 0.1} or P2 = {0.33, 0.25, 0.22, 0.20}. The key stream
length is N = 219 or 221 words. The number of parity checks with τ = 2 are
h = 9, hI = 36 or hII = 36. For example, curve (1, 1, 2, 9, 19) denotes the ex-
periment result derived by parameters P1, h = 9, N = 219 with criterions 1 and
2. Curve (2, thr,−, 36II, 19) denotes the experiment result derived by parame-
ters P2, hII = 36, N = 219 with threshold criterion. The experiment result is
depicted in the following picture.

Some observations could be induced from Figure 3. Firstly, comparing the
curve (1, 1, 2, 9, 19) with (1, 1, 2, 36I, 19), we know that the convergence speed
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Fig. 3. Several vectorial iterative decoding curves of scaled experiment

increases with the number of parity checks and fixed channel capacity. Secondly,
infusing new noise indeed increases the convergence speed. Thirdly, criterion 1
increases the convergence speed. Noticing that curve (2, 1, 2, 36I, 19) seems bad
than (2, 1, 2, 36II, 19). The reason is that key stream length N = 219 is not large
enough comparing with the degrees. Therefore, the average feasible parity checks
for both the head and tail segments of the key stream words in (2, 1, 2, 36I, 19)
are less than (2, 1, 2, 36II, 19).

5 Application to Grain-128a

In this section, we apply our new techniques to stream cipher Grain-128a. We
assume the cryptanalysis is under the known-plaintext scenario. Since the output
is directly used as key stream and the plaintext never participates in updating
internal states, this assumption is reasonable for Grain-128a.

5.1 A Brief Description of Grain-128a

Grain-128a includes a 128-bit LFSR cascaded with a 128-bit NFSR. Let s(t) =
(st, st+1, · · · , st+127) and b(t) = (bt, bt+1, · · · , bt+127) denote their internal states
at time t. The output yt of the pre-output function at time t is represented by

yt = h(s(t), b(t))⊕ st+93 ⊕ bt+2 ⊕ bt+15 ⊕ bt+36 ⊕ bt+45 ⊕ bt+64 ⊕ bt+73 ⊕ bt+89,

where h(s(t), b(t)) is defined as

h(s(t), b(t)) =h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)

=bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+40st+79 ⊕ bt+12bt+95st+94.
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The feedback bits of LFSR and NFSR are computed by

st+128 =st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96,

bt+128 =st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96⊕
bt+3bt+67 ⊕ bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59⊕
bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84⊕
bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82 ⊕ bt+88bt+92bt+93bt+95.

Key stream bit zt = yt in the stream cipher mode, while zt = y2w+2t in the
authenticated mode, where w is the tag size. The overall structure of Grain-
128a is depicted in Fig. 4.

tb +127tb ts +127ts

h
7 2 17

6524

g f

ty

Fig. 4. Overall schematic of Grain-128a

5.2 Constructing Multidimensional Linear Approximations and
Checking Parity

In [33], the authors proposed a family of linear approximations of Grain-128a
by pilling up different clocks to eliminate the linear terms of the NFSR, which
forms are

⊕i∈Tzyt+i ≈ ⊕i∈Tzst+i+93 ⊕⊕j∈Ast+j ⊕i∈Tz 〈Λi[1− 3], (st+i+8, st+i+13, st+i+20)〉
⊕ 〈Λi[5− 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉,

(22)

where A = {2, 15, 36, 45, 64, 73, 89},Tz = {0, 26, 56, 91, 96, 128}, Λi is a 9-bit
binary linear mask, Λi[0, 4] is fixed.

According to [33], an assignment of Λi[1 − 3] and Λi[5 − 8] will completely
determine the correlation of h function, when Λi[0, 4] is fixed. For a specific
i ∈ Tz, there are only 64 possible Λi[0, 4], i ∈ A such that the correlation of
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Eq. (22) is nonzero. Hence, the linear correlation value of (22) can be deduced
by summing up all these 64 Λi[0, 4], i ∈ Tz. Meanwhile, there are 26 values of
Λi[1− 3, 5− 8] of a specific i ∈ Tz with the correlation of h function is nonzero.
For example, when Λi[1 − 3, 5 − 8] = 0000000,∀i ∈ Tz, the correlation of (22)
is about ±2−57.0454. For more details of these linear approximations, we refer to
[33].

In this paper, we reuse these linear approximations but in a new way by
bundling them up. Firstly, we choose 42 linear approximations which Λi[1 −
3, 5− 8], i ∈ Tz has form

(Λ0[1− 3, 5− 8], Λ26[1− 3, 5− 8], · · · , Λ128[1− 3, 5− 8]) = (0, · · · , 0, 1, 0, · · · , 0),

i.e., Λi[1− 3, 5− 8], i ∈ Tz as a group of standard basis. Then a linear approxi-
mation with dimension 9 ≤ m ≤ 42 can be established as follows.

E(xt + ut) + Eyt = et, (23)

where E is an m×m identity matrix in F2. et is noise vector, and

xt = (· · · , st+i+8, st+i+13, st+i+20, st+i+42, st+i+60, st+i+79, st+i+94, · · · ) ,

ut =

 ∑
i∈A

⋃
Tz

st+i,
∑

i∈A
⋃

Tz

st+i, · · · ,
∑

i∈A
⋃

Tz

st+i

 ,

yt =

(∑
i∈Tz

yt+i,
∑
i∈Tz

yt+i, · · · ,
∑
i∈Tz

yt+i

)
,

et = (et, et+1, · · · , et+m−1) .

Any even Hamming weight linear combination of Eq. (23) will generate a
linear approximation without

∑
i∈A

⋃
Tz st+i and

∑
i∈Tz yt+i, which correlation

would be treated as 0. As for odd linear combinations, it is still required that
any of Λi[1 − 3, 5 − 8], i ∈ Tz will not deduce a zero correlation for h function.
Therefore, we can construct a multidimensional linear approximation with di-
mension 9 ≤ m ≤ 42, which consisting of 2m−1−6 = 2m−7 linear approximations
with correlation ±2−57.0454. By Theorem 1, its SEI ∆(et) = 2m−121.0908.

As st is a m-sequence, shifting and summation sequence s′t+c′j
= st+cj +∑

i∈A
⋃

Tz st+i is also a a m-sequence with same generator polynomial as st. Let

vectorial sequence x′t = (s′t+c′1
, · · · , s′t+c′m), since shift offsets c′j , 1 ≤ j ≤ m have

large difference, the parity checks with τ = 1 are not all ruled out.

Since x′t runs over {1, · · · , 2m − 1}, there is at most one parity check with
τ = 1 for each 0 < n ≤ N/m. In order to increase the occurrence possibility for
parity check with t = 1, several redundant binary linear approximations with
nonzero correlation could be added into the subspace. The dimension increases
but SEI is almost unchanged. Therefore, the maximal probability value should
decrease.
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Another way is exploiting a kind of special parity checks with τ > 1. In
order to avoid the great loss of SEI while implementing convolution, we play a
trade-off trick when special parity checks are feasible.

For example, suppose we have h special parity checks as follows.

Gn,1x
′
t−dn,1 +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0,

· · ·,

Gn,hx
′
t−dn,h +

a∑
i=1

Gn−i,hx
′
t−di + Ex′t = 0.

Notice that all of them involve vector variables x′t,x
′
t−d1 , · · · ,x

′
t−da except for

the last variable x′t−dn,j
1. Let Dn−i,j = Gn−i,j+Gn−i,1, 1 ≤ i ≤ a, denote the co-

efficient difference between the j-th and the 1-st equation. Let
∑a
i=1Dn−i,jx

′
t−di =

δj denote the difference value. Moreover, we require that δj satisfies some re-
strictions.

Since we have h−1 linear equation groups with coefficients (Dn−1,j , · · · , Dn−a,j),
we require that those linear equation groups have the same solution subspace S
with large dimension, for example, am−1 or am−2, which implies that the rank
of (Dn−1,j , · · · , Dn−a,j) may be 1 or 2. Thus when (x′t,x

′
t−d1 , · · · ,x

′
t−da) ∈ S,

all δj = 0. Otherwise, δj 6= 0 are likely to different. Thus we have

Gn,1x
′
t−dn,1 + 0 +

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = 0,

Gn,1x
′
t−dn,2 + δ2 +

a∑
i=1

Gn−i,2x
′
t−di + Ex′t = 0,

· · ·,

Gn,rx
′
t−dn,h + δh +

a∑
i=1

Gn−i,hx
′
t−di + Ex′t = 0.

Then the APP for
∑a
i=1Gn−i,jet−di + Eet could be evaluated by total proba-

bility theorem according to whether all of δj are 0. The initial state is recovered
from observed values zt of the error-corrected positions, i.e.

a∑
i=1

Gn−i,1(x′t−di + et−di) + E(x′t + et) =

a∑
i=1

Gn−i,1x
′
t−di + Ex′t = zt.

The dimension of linear approximation is not changed but the APP converges
slower. Thus the decoding ability decreases when dimension of S decreasing.
However, the constraints for parity checks is relaxed.

With these techniques, the fast correlation attack could be performed with
these special parit checks and and multidimensional linear approximations in
(23).

1 Some of Gn−i,j may be zero matrix.



Title Suppressed Due to Excessive Length 27

5.3 Complexity Estimation

In this section, we estimate some theoretical bounds for Grain-128a, which would
bring us a new perspective for its security margin.

Let the SEI ∆(et) = 2−γ , dimension m = 42, and p0 = 2−m + 2−
γ+m

2 be the
maximal probability value. To simplify the process of estimating the expected
number of positions with p∗ζ > p∗0 , we need the following hypothesis.

Hypothesis 1 – The probability distribution P stemming from SEI is close
to symmetric distribution.

– There are at least 2 parity checks with two taps, or there are more special
parity checks as stated in previous section.

Suppose we have h special parity checks corresponding to a solution subspace
of dimension am − 1 as stated above. Let v1, · · · ,vh denote the check values,
γ = (γ0, · · · , γ2m−1) and γ′ = (γ′0, · · · , γ′2m−1) denote the frequency of values in
v1, · · · ,vh and v1,v2⊕δ2, · · · ,vh⊕δh respectively. There exist two events that
may deduce p∗ζ > p∗0: event A denotes that γ ∈ A′ζ , while event B denotes that
γ′ ∈ A′ζ . For simplicity, we only consider that when A occurs, then we have

M ′ζ =2−1pζ

 ∑
γ∈A′(ζ)

(
h

γ

)∏
i

pγii⊕ζ +
∑

γ∈A′(ζ)

(
h

γ′

)∏
i

p
γ′i
i⊕ζ

 ,

M ′0 =2−1p0

 ∑
γ∈A′(ζ)

(
h

γ

)∏
i

pγii +
∑

γ∈A′(ζ)

(
h

γ′

)∏
i

p
γ′i
i

 .

The first term denotes the probability that current noise symbol is ζ or 0, when
the frequency vector γ ∈ A′(ζ) and all δj = 0. The second term corresponds
to when the frequency vector γ ∈ A′(ζ) but many δj 6= 0, 2 ≤ j ≤ h. Thus
the observed vector is γ′. Since γ′i are likely different, It is reasonable to assume
that the second terms of M ′ζ and M ′0 are close. To simplify the evaluation, we
only consider the first term.

Table 5 in Appendix A depicts the approximation of M ′ζ(2
−1 is neglected).

M ′1 is estimated by two methods: Skellam distribution and summation for small
l. The two estimations are very close to each other. Let Di = M ′i −M ′0 denote

the difference. We also compute the summation
∑236

i=1M
′
i and the difference

summation
∑236

i=1D
′
i. For example, when h = hb = 2, the expected key stream

length N > 248+42+1 = 291. As P is symmetric, it seems no need to evaluate
every probability value of APP distribution. Therefore, we use the key stream
length N multiplying with the number of parity checks h as time complexity.

For the other case when there are at least 2 parity checks with two taps, there
is no probability loss caused by trade-off. The complexity estimation is similar.

6 Further Problems

The analysis of vectorial iterative decoding algorithm is very complicated, there
are several problems needed further study.
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Firstly, the time complexity is estimated by the key stream length multiply-
ing with the number of parity checks. There are lots of redundant computations.
However, we have no idea whether FWHT acceleration technique could be ap-
plied in this case. Secondly, we don’t know the number of suitable parity checks.
Thus the estimation for M ′i and D′i of Grain-128a is based on a hypothesis.
Thirdly, in this paper, we didn’t study whether there is also K-tree like method
to generate these parity checks in matrix ring. Therefore, the complexity of the
precomputation phase is skipped over.

7 Conclusion

In this paper, a vectorial iterative decoding algorithm for FCA is proposed. Two
novel criterions are given to break tie and improve the decoding efficiency. The
original binary FCA proposed by Meier and Staffelbach is a special case of our
FCA with dimension 1. We describe some cryptographic properties about its
statistical model, decoding efficiency etc. Based on the statistical property of
the first iteration, we estimate the bound of expected key stream length from
the perspective of iterative decoding. We also perform a scaled experiment to
verify the validity of the vectorial iterative decoding algorithm.

Moreover, we apply it to stream cipher Grain-128a. We construct a multi-
dimensional linear approximation with large SEI by bundling up those binary
linear approximations proposed in CRYPTO 18. We also give an trade-off ap-
proach to use special parity checks with t > 1. Consequently, we give an estima-
tion of data complexity for Grain-128a from the point view of vectorial iterative
decoding, which is a novel result to evaluate the potential security margin of a
real world cipher.
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A Estimation of M ′
i

Table 5. Estimation of some M ′i with m = 42

log2(h) log2(D1) log2(M ′1) log2(
∑236

i=1M
′
i) log2(

∑236

i=1D
′
i)

summation Skellam

1 -101.5454 -84.0004 -83.0000 -47.9999 -65.5417
2 -98.9604 -81.4150 -81.0000 -45.4151 -62.9717
3 -96.7380 -79.1926 -79.0000 -43.1943 -60.7722
4 -94.6385 -77.0931 -77.0000 -41.1209 -58.7914
5 -92.5912 -75.0458 -75.0000 -39.0876 -56.7683
6 -90.5681 -73.0227 -73.0000 -37.1719 -54.9443
7 -88.5567 -71.0113 -71.0000 -35.4574 -53.3305
8 -86.5510 -69.0056 -69.0000 -34.0809 -52.0229
9 -84.5482 -67.0028 -67.0000 -33.0023 -50.9621
10 -82.5468 -65.0014 -65.0000 -32.0000 -49.9604
11 -80.5461 -63.0007 -63.0000 -31.0000 -48.9604
12 -78.5458 -61.0003 -61.0000 -30.0000 -47.9604
13 -76.5456 -59.0002 -59.0000 -29.0000 -46.9604
14 -74.5455 -57.0001 -57.0000 -28.0000 -45.9604


