
Efficient Representation of Numerical Optimization Problems for SNARKs
Sebastian Angel⋆† Andrew J. Blumberg‡ Eleftherios Ioannidis⋆ Jess Woods⋆

⋆University of Pennsylvania †Microsoft Research ‡Columbia University

Abstract
This paper introduces Otti, a general-purpose compiler for
SNARKs that provides language-level support for numerical
optimization problems. Otti produces efficient arithmetiza-
tions of programs that contain optimization problems includ-
ing linear programming (LP), semi-definite programming
(SDP), and a broad class of stochastic gradient descent (SGD)
instances. Numerical optimization is a fundamental algorith-
mic building block: applications include scheduling and re-
source allocation tasks, approximations to NP-hard problems,
and training of neural networks. Otti takes as input arbitrary
programs written in a subset of C that contain optimization
problems specified via an easy-to-use API. Otti then auto-
matically produces rank-1 constraints satisfiability (R1CS)
instances that express a succinct transformation of those pro-
grams whose correct execution implies the optimality of the
solution to the original optimization problem. Our experimen-
tal evaluation on real numerical solver benchmarks used by
commercial LP, SDP, and SGD solvers shows that Otti, instan-
tiated with the Spartan proof system, can prove the optimality
of solutions in as little as 300 ms—over 4 orders of magnitude
faster than existing approaches.

1 Introduction
Optimization problems are pervasive in science, government,
business, and academia. Convex optimization in the form
of linear programming (LP) and semidefinite programming
(SDP) is widespread. The rise of deep learning has put partic-
ular emphasis on stochastic gradient descent (SGD). Example
applications include resource allocation problems, approxi-
mation of NP-hard problems, training of machine learning
models, and others. Efficiently producing solutions to these
problems is the subject of intensive study. However, there is
generally much less focus on providing transparency about the
nature of the solution process or the quality of the resulting an-
swer. Today, a solver (e.g., a government agency like FEMA)
publishes the purported optimal solution to an optimization
problem (e.g., the ideal allocation of medications to shelters
given a set of constraints) and asks clients (parties interested
or affected by the result) to trust the solution. While clients
could in principle rederive the optimal solution on their own,
in many applications the inputs to the optimization problem
are sensitive and cannot be shared (for example, due to secu-
rity clearances, personal identifiable information, or business
secrets). This complicates accountability and transparency.

Existing systems for zero-knowledge succinct non-
interactive arguments of knowledge (zkSNARKs) [8–10, 12,

13, 19–21, 30, 32, 38, 44, 49, 51, 56, 58, 60] offer an attrac-
tive way to bring accountability and transparency into an
otherwise opaque process. Assuming that the inputs can be
made available in the form of cryptographic commitments by
some trusted means, the solver can generate a cryptographic
proof that convinces clients that the solution is optimal with-
out revealing the sensitive inputs. Alternatively, the inputs
could be sunset: they could be given as commitments today,
and then decommited at a future time, either set a priori or on
demand in response to a legal challenge. In either case, de-
signing efficient zkSNARKs for optimization problems could
provide the needed technical mechanisms.

Unfortunately, existing general-purpose mechanisms for
expressing optimization problems in a format amenable for
zkSNARKs (e.g., arithmetic or boolean circuits, rank-1 con-
straint satisfiability systems) result in prohibitive costs. As a
concrete example, representing an LP instance with 3 vari-
ables and 3 linear equations using a state-of-the-art compiler
for SNARKs [42] results in over 1 million multiplication
gates. Worse yet, we are unable to compile much larger in-
stances due to the radical blow up in the number of constraints
and the high memory burden this places on the compiler. This
massive expressivity cost comes from a few sources: (1) the
need to support random memory accesses; (2) the need for
fixed point or double precision to approximate real numbers;
(3) the need to upper bound the number of loop iterations
required to find an optimal solution for any possible inputs;
and (4) the need to express the complex logic of the solver.

To address these issues, we introduce Otti, a compiler for
zkSNARKs that takes as input programs written in C that
include optimization instances and outputs rank-1 constraint
satisfiability instances (R1CS) for these programs that are suc-
cinct and efficient to prove and verify. Otti works as follows:
Exploit non-deterministic checkers. Otti uses the observa-
tion that for a prover to convince a verifier that it knows the
output of some program, the prover does not actually need to
run the program at all, much less prove that it ran the program
correctly. Instead, the prover just needs to prove that the out-
put of the program is correct. For example, the prover does not
need to prove that a list was sorted with Quicksort, but simply
that the list is in sorted order. Therefore, in such examples the
prover can prove to the verifier that a purported output of the
program is correct—this is equivalent to running the program
and obtaining the solution. A non-deterministic checker is a
special program that does exactly this: the non-deterministic
checker is derived from the original program and takes the
solution to the original program as a non-deterministic input
(how the prover gets this solution is irrelevant). The prover

1

then confirms that the solution is correct (i.e., passes the
checker) and proves this fact to the verifier, via a zkSNARK.

Build non-deterministic checkers from certificates. Otti
uses the certificates of optimality which are available for
many optimization problems [37] to build non-deterministic
checkers. Verifying these certificates are correct is equivalent
to verifying that the solution to the optimization problem is
optimal. Crucially, the non-deterministic checkers produced
by this approach are radically more efficient than the original
programs: they reduce (and often eliminate) the need for
random memory accesses, eliminate the need to upper bound
the number of loop iterations, and avoid representing the
complex logic of the solver itself.

Probabilistic certificates of optimality. Many important
classes of optimization problems (e.g., some instances where
SGD is applied) lack deterministic certificates of optimal-
ity. In these cases, Otti introduces the notion of probabilistic
certificates of optimality (PCO). PCOs have the same bene-
fits as standard certificates but have a small soundness error.
We show how to apply PCOs to some instances of SGD to
construct efficient non-deterministic checkers. Our approach
here is guided by a conjectural meta-theorem that asserts that
whenever there is a rapid convergence result for SGD, one can
extract a PCO and therefore also a non-deterministic checker.

Automatic generation of checkers. Otti takes as input C
programs extended with an API for optimization problems
similar to those of existing solvers (e.g., Otti’s API for LP is
inspired by Google’s Glop linear solver [3]). Otti then auto-
matically extracts and compiles the non-deterministic checker
for the optimization program defined with this API. This al-
lows developers to be oblivious to the notions of certificates
of optimality. Since the theory behind these certificates is
complicated for optimization problems beyond LP, this is
essential for Otti to be usable.

Leverage numerical optimization solvers. Otti leverages
existing fast numerical solvers (e.g., lpsolve [4]) to find the
solution to the underlying optimization problems in the pro-
vided C programs (and our API) and supply these solutions
to the non-deterministic checkers that Otti generates.

We have implemented a prototype of Otti on top of the
CirC SNARK compiler [42] and have compiled a variety of
real-world benchmarks typically used within the optimiza-
tion community to measure the performance of commercial
solvers. Otti can generate proofs for the R1CS correspond-
ing to these benchmarks using the Spartan zkSNARK [49]
in times ranging from 200 ms to 30 mins (for thousands to
around a quarter of a billion constraints). On average, proof
generation for LP and SDP is 30–40× more expensive than
finding the solutions themselves using existing solvers; it
is two orders of magnitude more expensive for SGD. This
constitutes a significant improvement over prior work which
produces R1CS statements that take over 4 orders of magni-

tude longer to prove for LP statements and cannot compile
any of the SDP or SGD problems.

2 Background
In this section we briefly review zero-knowledge succinct
non-interactive argument of knowledge (zkSNARKs), give
background on how computations in zkSNARKs are typically
represented, and then discuss the notion of non-deterministic
checkers. Note that this paper does not introduce a new zk-
SNARK, nor does it make any changes to existing ones. In-
stead, Otti’s contributions are on representing numerical opti-
mization problems in a way that is more efficient for existing
zkSNARKs. We therefore only discuss the properties of zk-
SNARKs rather than the details of how they work.

2.1 zkSNARKs

A zkSNARK is a cryptographic protocol that allows a Prover
to convince a Verifier that it has knowledge of a satisfying
witness to an NP statement by producing a proof that reveals
no information beyond what is implied by the validity of
the statement. A common choice for zkSNARKs is to target
the NP complete problem of rank-1 constraint satisfiability
(R1CS) since any non-deterministic random access machine
running in a fixed number of times steps can be transformed
into an R1CS instance. We discuss R1CS in the next section,
but informally, zkSNARKs for a given R1CS instance have
the following properties:
1. Succinct: The size of the proof and its verification should

be sublinear (ideally polylog) in the size of the statement.
2. Non-interactive: No interaction is required between the

Prover and Verifier besides the transferring of any
verifier inputs and the computation’s output and proof.

3. Argument of knowledge: The Prover must convince
the verifier that it has knowledge of a witness that satis-
fies the R1CS instance. This argument is complete and
computationally sound.
• Completeness: An honest Prover who knows a wit-

ness that satisfies the R1CS instance can always gen-
erate a proof that convinces the Verifier of this fact.

• Computational Soundness: A malicious Prover can
fool the Verifier into accepting an invalid proof
with negligible probability.

4. Zero-knowledge: The proof reveals no information to
the Verifier beyond the fact that the Prover knows a
witness that satisfies the R1CS instance.

2.2 Rank 1 constraint satisfiability

An R1CS instance is a tuple (F, A, B, C, io, m), where F is a
finite field, io is the public input and output of the instance,
A, B, C ∈ Fm×m are square matrices, and m ≥ |io|+ 1. This
instance is satisfiable if and only if there exists a witness
w ∈ Fm−|io|−1 that makes up a solution vector z = (io, 1, w)
such that (A · z⃗)◦ (B · z⃗) = (C · z⃗), where · is the matrix-vector

2

product and ◦ is the Hadamard product. The entry of z fixed
at 1 enables the encoding of constants.

Since matrix entries can be used to encode both addition
and multiplication gates over F, R1CS generalizes arithmetic
circuit satisfiability. As we show in the next section, one can
“compile” a program written in a high level language like C
into R1CS, such that the R1CS instance is satisfiable if and
only if the output of the R1CS instance (part of io) is the
result of correctly evaluating program on the public inputs.

2.3 Compiling programs to R1CS

Given a program written in a high-level language like
C, how does one convert it to R1CS? There are many
“frontend” arithmetizing compilers [10, 11, 18, 21, 26, 34–
36, 42, 50, 53, 55, 57] written to handle this conversion and
even optimize the generated satisfiability instance (i.e., mini-
mize the number of constraints). Over time, these compilers
have addded support for an increasing number of program-
ming language features like control flow, random-access mem-
ory (RAM), bounded loops, algebraic datatypes, and more.
Additionally, some compilers can optimize R1CS represen-
tations using classical compilation techniques like constant
folding or loop flattening and new methods like range proofs
and circuit minimization.

Let’s take for example the following C program:

i n t foo (i n t a) {
i n t p rod = 1 ;
i n t i ;
f o r (i = 0 ; i < 3 ; i ++) {

prod ∗= a ;
}
prod += i ;
i n t r = 30 / prod ;

}

This program, foo, takes an integer a as input. A compiler
may start by unrolling the bounded loop into a sequence of as-
signments. This operation introduces versioning for variables,
denoted by a subscript, a form otherwise known as single-
static assignment (SSA) [48]. SSA allows the expression of
mutable computations into immutable equations between ver-
sions of variables.

prod0 = 1, i0 = 0

prod1 = prod0 ∗ a, i1 = 1

prod2 = prod1 ∗ a, i2 = 2

prod3 = prod2 ∗ a, i3 = 3

prod4 = prod3 + i3

r = 30/prod4

For the sake of simplicity we will omit the transformation be-
tween the C int types and the finite-field numbers in R1CS.
In this particular example we will treat them the same, as
we can choose reasonable inputs that do not overflow for a
sufficiently large prime (∼300 bits) field Fp. We can see that
prod0, i0, i1, i2, i3 can be treated as constants, so R1CS com-
pilers can use standard techniques like constant propagation

and algebraic identities to eliminate unnecessary constraints.

prod2 = a ∗ a

prod3 = prod2 ∗ a

prod4 = prod3 + 3

r = 30/prod4

With the exception of r = 30/prod4, these equations can
be represented in the form of matrices (A · z⃗)◦ (B · z⃗) = (C · z⃗),
as we discuss in Section 2.5. To make r = 30/prod4 fit our
desired form, we can leverage Fermat’s little theorem. Since
xp−2 · x ≡ xp−1 ≡ 1 (mod p), we can give the expression:

invprod4 = xp−2

r = 30 ∗ invprod4

This represents invprod4 in log(p) R1CS constraints. How-
ever, there is a cheaper way to express the inverse if one
leverages the nondeterminism supported by R1CS.

2.4 The benefits of nondeterminism

We review the notion of a nondeterministic check, which we
will employ as a drop-in replacement for a computation that
is not efficiently represented in R1CS. Rather than expressing
the computation itself, we imagine we are given this result
and merely check it. This transformation makes sense when
the check is efficient compared to the computation.

Nondeterministic checkers sometimes appear in existing
compilers under the term exogenous computations and are
common for expressing things like bit decomposition (crucial
for performing bitwise operations) [52], RAM and remote
storage via hash functions [18], among many others. Otti
will make extensive use of this functionality, so we give a
formal definition for non-deterministic checkers. We start
with some preliminaries: a partial function from set X to set
Y is a function from a subset of X to Y . A total predicate is a
total function with a codomain of {0, 1}.

Now, the relation between a computation C and a nonde-
terministic check V can be represented as a partial function
C(X) 7→ Y and a total predicate V : X×Y → {0, 1}, such that
∀x ∈ X, y ∈ Y , C(x) 7→ y ⇔ V(x, y) = 1. Conversely, both
non-termination and termination with C(x) 7→ y correspond
to V(x, y) = 0. The equivalence above implies the existence
of a trivial V for any C which simply recomputes C.

V(x, y) :=

{
1, if C(x) 7→ y,
0, otherwise

The benefit of nondeterminism is that it is possible to get
a considerable improvement in resource use between com-
puting C versus V , either in asymptotic terms or in absolute
terms. Hence the trivial V is not practically useful.

We demonstrate the use of nondeterminism with the exam-
ple from the previous section. We take C(x) = 30/x and

V(x, y) :=

{
1, if x ∗ y = 30,
0, otherwise

3

We can test a few numbers x, y and see that C(x) 7→ y ⇔
V(x, y) = 1 holds for all of them, including the edge case
a = 0. We know V(0, y) can never be 1, as that would imply
there exists a y such that 0 ∗ y = 30, a contradiction.

We use this nondeterministic check to replace the equation
r = 30/prod4 from the last example with a free variable r
and a constraint r ∗ prod4 = 30. This single multiplication is
one constraint, a considerable improvement from the log(p)
constraints generated by Fermat’s little theorem.

2.5 Matrix representation
We now discuss how to turn our equations into the matrix
format described in Section 2.2, and which serves as the input
to many zkSNARKs. We first reformat the equations, so each
corresponds to one row of the matrices:

a ∗ a = prod2

prod2 ∗ a = prod3

r ∗ (prod3 + 3) = 30

We can see that prod4 = prod3 + 3 gets “wrapped into” a
multiplication constraint. In general, addition and multipli-
cation by a constant are basically free in R1CS constraints,
as they can be wrapped in like this. Multiplications of two
variables are a single constraint.

The solution vector z⃗ will be of the form (io, 1, w) =
(a, 1, prod2, prod3, r), where a is the public input, 1 is used to
encode constants, and the tuple (prod2, prod3, r) is the witness.
We create the corresponding R1CS matrices A, B, C:1 0 0 0 0

0 0 1 0 0
0 0 0 0 1

 · z⃗ ◦

1 0 0 0 0
1 0 0 0 0
0 3 0 1 0

 · z⃗ =

0 0 1 0 0
0 0 0 1 0
0 30 0 0 0

 · z⃗

A vector z⃗ = (3, 1, 9, 27, 1) satisfies these constraints.

3 Numerical optimization problems
Otti’s focus is on producing efficient R1CS for numerical op-
timization problems. Optimization problems aim to minimize
or maximize an objective function f : Rn → R by choosing
the best available inputs according to some set of constraints,
{gi} and {hi}. We are concerned primarily with convex opti-
mization problems, where the objective function is a convex
function and the feasible region of inputs is convex. Optimiza-
tion problems are described by a standard form:

minimize f (x)

subject to gi(x) ≤ 0
hi(x) = 0

Standard convex optimization problems that have efficient
solvers include problems where the objective and constraints
fit the frameworks of linear programming (LP) and semidef-
inite programming (SDP). More generally, a wide class of
convex problems can be efficiently solved using variants of

gradient descent; this is a generic framework that requires
smoothness hypotheses on the objective function but does
not make assumptions about the form of f , {gi}, and {hi}.
Gradient descent is very general and does not in fact require
convexity, only enough smoothness in the objective function
to calculate and numerically approximate gradient vectors.

3.1 Applications

Optimization problems are ubiquitous and there are many
applications critical to business, government, and academia.
Some real-world examples that Otti can handle are as follows.
• Product mix: Optimize the mix of different types of trans-

portation (e.g., bus, plane) to minimize travel time to some
destination. This can be phrased as an LP problem.

• Stocks or marketing: Determine the allocation of money to
stocks or ad campaigns to maximize return or clicks over
a 2 year period. This can be phrased as an LP problem.

• Scheduling: Find the optimal schedule to run tasks in a
real-time system subject to a variety of time and space
constraints. This can be phrased as an LP problem.

• Matrix completion: Suppose a 2D picture is given that
has a lot of missing pixels. A technique known as matrix
completion can be used to find values for these pixels that
minimizes an important metric (nuclear norm). This can
be phrased as an SDP problem.

• Circuit manufacturing: Find the minimum amount of area
needed in a resistor-capacitor (RC) circuit to support a
given signal propagation delay. Similarly, find the mini-
mum power dissipation of an RC circuit subject to a given
propagation delay. These can be phrased as SDP problems.

• Machine learning: Gradient descent is widely used to train
the parameters for machine learning procedures, including
deep learning/ neural networks, support vector machines,
and logistic regression.

3.2 Challenges

Expressing existing optimization problems in R1CS is diffi-
cult to do efficiently owing to the demanding features required
by optimization solvers. As a concrete example, consider the
Simplex algorithm for solving LP instances, which is by far
the simplest among the solvers we surveyed. Below we high-
light the major sources of complexity and overhead, which
materialize in some form in all existing optimization solvers.

Loops. Simplex uses unbounded while loops; exiting out of
some loops is dependent on a variable known only at run-
time. For example: while (lowest >= 0); where lowest
is either a public input or a value provided by the prover
exogenously (§2.4). To compile such data-dependent loops
into R1CS, a compiler must choose some large upper bound
and compile that many iterations, regardless of how many are
actually needed for a given instance.

RAM. Simplex performs random memory accesses. This
commonly occurs with arrays—in Simplex, the statement if

4

(tableau[pivot_row][pivot_col] > 0); has the vari-
ables pivot_row and pivot_col, which are not known until
runtime. A compiler must therefore have a way to express
random access memory. Prior compilers do this with the use
of Merkle hash trees [18], hash sets [50], accumulators [43],
or sorting networks [10, 55]. In all cases, these technique
increase the size of the R1CS instance by orders of magnitude
over computations that perform no random accesses.

Real numbers. Simplex uses real numbers. Since these num-
bers must be represented as field elements in R1CS, an appro-
priate encoding must be represented as well. This means extra
constraints for handling arithmetic operations, boolean opera-
tions, and casting. This can make a single variable assignment
like double a = b * c; into hundreds of constraints.

Missing features. All existing SNARK compilers support
only a subset of the functionality of traditional languages.
Meanwhile, existing implementations of solvers use vector-
ized instruction sets, GPU extensions, external libraries, and
other efficient modifications. A developer who wishes to use
SNARK compilers is currently forced to write their own im-
plementation in the accepted subset of the language, and lose
the efficiency of commercial solvers.

4 Overview of Otti
Otti responds to the aforementioned challenges with the fol-
lowing idea: instead of compiling an unoptimized solver that
lacks many features, Otti continues to use a state-of-the-art
optimization solver and instead compiles into R1CS a pro-
gram that checks the optimality of the solution produced by
the solver. Crucially, we show how to automatically derive
this checker program, and how to avoid RAM accesses and
unbounded loops so that it is efficient.

In the next sections we discuss Otti’s components. Fig-
ure 1 gives an overview of the high-level workflow. We start
with a numerical optimization instance that represents a real-
world problem. Otti asks developers to write the optimization
problem using a simple API. For example, Otti’s LP API
is similar to Google’s glop [3]. In addition, we have imple-
mented parsers for the most common file formats used to
specify these problems: for LP, Otti can parse MPS files [1];
for SDP, Otti can parse SDPA files [28]; for SGD, Otti can
parse PMLB files [41, 47]. Unlike the first two, SGD is so
general that there is no standard file format available but Otti
could easily be extended to support other formats. A key bene-
fit of supporting these file formats is that Otti can run existing
benchmarks without modification.

Once the optimization problem has been parsed or spec-
ified in C with our API, Otti exploits the notion of certifi-
cates of optimality and infeasibility (detailed in Section 5)
to automatically construct a non-deterministic checker. The
non-deterministic checker is a C program that verifies the
optimality of a purported solution to the problem instance.

Otti then compiles the non-deterministic checker to R1CS

Optimization
problem

Nondeterminstic
checker

R1CS for
checker

Foreign
solver

Witness for
checker’s

R1CS

Encode via certificates of
optimality

Compile
checker

Link

Use solver to find witness
for checker

FIGURE 1—High-level workflow of Otti.

using a heavily modified version of the CirC SNARK com-
piler [42]. Otti also compiles the original optimization in-
stance (given in the C code) to a format that is compatible
with an existing numerical solver. For example, for LP, Otti
compiles the original optimization instance so that it can be
consumed by lpsolve. In short, Otti produces 2 outputs: (i)
R1CS of the non-deterministic checker for the optimization
problem; (ii) a fully instantiated solver that the Prover can
use to solve the problem (once all inputs are known) and
obtain the witness for the R1CS instance. Note that if the pro-
gram has code besides the optimization instance (e.g., code
that generates inputs or consumes the outputs of the optimiza-
tion instance), Otti generates R1CS for those operations as
well and uses an SMT solver to find the satisfying assignment
for those constraints (similarly to CirC). The R1CS and wit-
ness can then be consumed by zkSNARK proof systems that
supports R1CS. We use Spartan [49].

5 Optimization certificates
We begin by explaining the certificates for the LP and SDP
convex optimization frameworks. These problems can be
transformed from the primal formulation (the standard form
shown in Section 3) to the dual formulation, which is also a
convex optimization problem. The dual’s optimal solution, de-
scribed by vector y⃗, is a lower bound on the optimal solution,
described by vector x⃗, of the primal problem. This is referred
to as weak duality: f (⃗x) ≤ f ′(⃗y), where f ′ is the bjective func-
tion for the dual problem. The difference between the optimal
primal and dual solutions, f (⃗x) and f ′(⃗y), is referred to as the
duality gap. Strong duality occurs when the duality gap is 0.

Strong duality is a powerful condition because it provides
a certificate of optimality: given a solution to the primal and a
solution to the dual, we can check to see if the duality gap is
0. If so, then the solution is optimal.

For SGD optimization problems, the certificates we use are
different. Instead of a duality gap, we exploit the fact that in
many cases of interest there are bounds on the behavior of the
stochastic estimates ∇fi of the gradient ∇f of the objective
function near the optimal point. Roughly speaking, at an

5

optimal point z the estimates satisfy ∇fi(z) = 0 with high
probability and for other points x, ||∇fi(z)|| > κ||x − z|| for
some constant κ with high probability.

Preview: How Otti exploits Certificates of Optimality.
Otti’s insight is to leverage certificates of optimality to avoid
representing the solver’s logic while still allowing the Prover
to prove that the solution to an optimization problem is opti-
mal. This is done as follows, for LP and SDP. The Prover
finds the primal and dual solutions to the optimization prob-
lem using existing numerical solvers. The Prover then proves
that the primal solution is a feasible solution to the primal
problem (that the point falls inside the feasible region), that
the dual solution is a feasible solution to the dual problem, and
that the duality gap is zero. For SGD, the Prover finds the
optimal point using a state-of-the-art solver and then proves
that at this point z the gradient estimates ∇fi(z) (or a repre-
sentative sampling of them) are close to zero.

Generating proofs of these facts is significantly cheaper
than proving the execution of the solver because they: (1) do
not require RAM, (2) do not require loops so there is no need
to upper bound loop bounds, and (3) do not require as many
expensive arithmetic operations over real values as the solver.

Below we discuss the theory behind this approach in more
detail and give examples with code snippets in Section 6.

5.1 Linear Programming

Linear programming (LP) is a class of convex optimization
problems where the objective and constraint functions are
linear. LP problems have a standard (primal) form:

minimize c⃗T · x⃗

subject to A · x⃗ ≥ b⃗

x⃗ ≥ 0

The corresponding dual is:

maximize y⃗T · b⃗

subject to AT · y⃗ ≤ c⃗

y⃗ ≥ 0

The certificate of optimality for an LP problem is as follows:

1. Primal feasibility A · x⃗ ≥ b⃗

x⃗ ≥ 0

2. Dual feasibility AT · y⃗ ≤ c⃗

y⃗ ≥ 0

3. Strong duality b⃗T · y⃗ = c⃗T · x⃗

There are many other representations, as it is easy to con-
vert between minimization and maximization problems by
multiplying the objective function by −1, or transforming
inequality constraints to equality constraints with slack vari-
ables. In any case, the duality theorems still apply.

What does Otti do? Given an instance of an LP problem
(specified in an MPS file or using our API), Otti automatically
derives the corresponding dual problem. Then, Otti derives
the checks for the certificate of optimality (primal feasibility,
dual correctness, strong duality). Finally, Otti compiles these
checks into R1CS. In our implementation, the Prover uses
lpsolve to find the optimal solution to the primal (⃗x) and
dual (⃗y) formulations, and then assigns x⃗ and y⃗ to nondetermin-
istic variables in the R1CS instance, proving its satisfiability.
By the strong duality theorem, satisfiability of these checks
implies that x⃗ is the optimal solution.

5.2 Semidefinite Programming

LP is only sufficient for problems where the objective func-
tion is linear and all of the constraints can be specified as
linear equalities or inequalities. When graphed visually, the
constraints of an LP program produce a feasible region in
the shape of a convex polytope; that is, the sides are flat.
Semidefinite programming (SDP) can be used to solve a more
general class of convex optimization problems. In fact, every
LP problem can be formulated as an SDP problem, although
this would be inefficient to do in practice. SDP can also ac-
commodate non-linear problems. The feasible region may be
described by the intersection of a convex cone and an affine
space (rather than only a polytope).

SDP problems can be written in standard form:

minimize C • X

subject to ∀i, Ai • X = bi

X ⪰ 0

The variables in these problems are semidefinite matrices,
rather than real numbers. We use “X ⪰ 0” to denote that X is
a symmetric and positive semidefinite matrix. We use “C • X”
to denote

∑n
i=1

∑n
j=1 Cij · Xij. We say the dimensions of the

matrices involved are n2. Such a primal problem could also
be viewed as a dual problem:

maximize
m∑

i=1

yi · bi

subject to
m∑

i=1

yi · Ai + S = C

S ⪰ 0

The certificate looks as follows:

6

1. Primal feasibility of X ∀i, Ai • X = bi

X ⪰ 0

2. Dual feasibility of (y, S)
m∑

i=1

yi · Ai + S = C

S ⪰ 0

3. Strong duality C • X −
m∑

i=1

yi · bi = S • X

Unlike LP, we cannot assert that the primal or dual problem
will always obtain their optima or that there will be no duality
gap. We additionally require strict feasibility: a common op-
timal value exists if both the primal and dual problems have
feasible solutions inside the semidefinite cone [27].

What does Otti do? Otti expects an SDP problem instance
specified in the SDPA format or using our API. Otti’s deriva-
tion of the check is more involved than in LP. We first describe
what Otti checks, then how an SDP instance is solved, and
finally what happens when the instance is not strictly feasible.

Otti starts by deriving the non-deterministic checker for
the certificate of optimality given above. One tricky part of
the check is making sure that X and S are positive semidefi-
nite. We use this fact to help us devise an efficient check: if
a matrix X factors as LLT , where L is a real lower triangular
matrix, with non-negative diagonal entries, then X is positive
semidefinite. This factoring is known as the Cholesky decom-
position [39]. Otti creates nondeterministic variables for the
lower triangular matrix part of both decompositions, XQ and
SQ, and the Prover supplies these values exogenously. The
non-deterministic checker that Otti derives then confirms that
these matrices are lower triangular and indeed make up a
Cholesky decomposition of each matrix (e.g., XQ ·XQT = X).
Non-negative diagonal entries of XQ and SQ are used to con-
firm that X ⪰ 0 and S ⪰ 0.

Solving SDP instances. To solve SDP, Otti uses the
CSDP [14] library, which implements the interior point al-
gorithm [33]. This does not require the separate derivation
of the dual problem by Otti, as CSDP derives that on its own.
A drawback of SDP is that it is usually not possible to solve
an SDP problem exactly. But CSDP terminates with a small
duality gap (near 0) and its termination criteria is configurable.
In our implementation, we configure CSDP so that the duality
gap is equal to the precision level of our fixed-point imple-
mentation, and therefore, effectively 0 in that representation.

In order to satisfy strict feasibility, Otti requires the Prover
to specify an initial positive definite feasible (though not
optimal) solution X0. This can be leveraged by Otti (during
solving) to obtain a feasible starting solution to the primal
and dual problems [27]. There are many ways the Prover
can find such a point: it may be obvious from the problem
instance, or it may be found with the short-step path-following

method, the infeasible-interior-point method (where you start
with any point), or by relaxing/modifying the SDP instance
in some way so that a feasible point is more obvious [46]. As
an example of an easy-to-derive initial point, imagine that
the optimization problem aims to minimize the amount of
time it takes to ship computer parts across the nation, given
constraints on what different suppliers can produce in a given
unit of time, where they can ship, and how fast they can ship
their products. The initial point could be that one supplier
produces and ships all products, and other suppliers produce
and ship none. This is not the optimal solution (since it does
not minimize the amount of time it takes to ship parts across
the nation), but it may be a feasible one.

What happens if the instance is not strictly feasible?
What can a Prover do in the case an SDP instance is not
strictly feasible to convince the Verifier of this fact? A
straightforward option is for the Prover to simply tell the
Verifier that the solution is not solvable (with no proof).
After all, this would mean that a malicious Prover can, at
worst, deny service by claiming an instance is not solvable,
but cannot violate soundness by convincing the Verifier
that a suboptimal solution is indeed optimal.

If the above is not acceptable, Otti also has a mechanism
for the Prover to generate a proof of infeasibility for the SDP
instance. This proof is as follows:

Infeasibility of SDP instance (∃i, Ai • X0 ̸= bi) ∨ X0 ⊁ 0

The above check proves infeasibility with respect to a par-
ticular starting point X0 [27]. This means that a solver will
not be able to derive an appropriate feasible solution to the
primal and dual problems from X0, and therefore, strict fea-
sibility is not satisfied. Of course, since the Prover is the
one who generates X0, a malicious Prover could once again
deny service by passing a bad X0. A workaround is for the
Verifier to specify a set of initial values for X0 as part of the
public inputs, and for the Prover to prove that the solution is
infeasible with respect to all of them. How the Verifier gets
these points is application-specific; this is easy in the context
of verifiable outsourced computation but more difficult in the
zero-knowledge case. We find that for several applications
we surveyed, knowing the general SDP constraints—even
without necessarily knowing all of the entries in all matrices—
could allow a verifier to craft various starting points.

Most of the infeasibility check is similar to the check for op-
timality. One of the conditions for infeasibility is that X0 ⊁ 0.
A single nonpositive eigenvalue is enough to confirm this
condition. The Prover calculates this eigenvalue and corre-
sponding eigenvector and assigns them to nondeterministic
variables in XQ and SQ. Otti then checks that this eigenval-
ue/eigenvector pair is valid for the provided X0.

Finally, Otti allows the developer to specify (and the
Prover to prove) the disjunction of the above two cases:
either the solution is optimal, in which case use the optimal
value in the rest of the program, or the instance is infeasible

7

in which case use some default value—without revealing to
the Verifier which branch was taken.

5.3 Stochastic gradient descent

For problems that do not necessarily fit the framework for
either linear or semidefinite programming, a general-purpose
approach is to use gradient descent. As long as the loss func-
tion f is adequately smooth, one can search for local optima
by following a path determined by the gradient ∇f . Specif-
ically, one starts at a point x0, sets x1 = x0 − ϵ∇f (x0) for
stepsize ϵ, and repeats. This is a very general procedure, but
there is no guarantee that for a given loss function the gra-
dient path will lead to a global optimum. Nonetheless, both
theoretical work and empirical validation have shown that for
examples of interest it is possible to find satisfactory optima.

Many loss functions of interest can be written as:

f (x) =
n∑

i=1

fi(x),

where fi is a smooth function. A wide variety of ML algo-
rithms have this form, where fi encodes the contribution to the
loss function for a particular training example. In this context,
it can be very expensive to compute the gradient of the loss,
and so instead it is often more feasible to try stochastic gra-
dient descent. Stochastic gradient descent (SGD) iteratively
takes steps in the direction of ∇fi; each such direction is a
subgradient that provides an unbiased estimate of the actual
gradient, i.e., regarding these choices as random we have:

E(∇fi) = ∇f

This is substantially more efficient than computing the full
gradient, although of course in general convergence may be
slower. Notwithstanding, a number of recent results show
that stochastic gradient descent rapidly converges, espe-
cially when used in connection with adaptive stepsize al-
gorithms [16, 17, 24, 40, 54, 59].

The hypotheses for these convergence results provide suf-
ficient control on the loss function to derive certificates. For
example, Vaswani-Bach-Schmidt [54] study growth condi-
tions on f that guarantee rapid convergence for SGD, even
in non-convex settings. Notably, the strong growth condition
stipulates that:

E(||∇fi||2) ≤ E(||∇f ||2).

We use || · || to refer to the norm. In this case, a local optimum
for the loss function f is a stationary point for ∇f and thus is a
stationary point for all of the fi. So a certificate that a point is
optimal can be obtained simply by checking that ||∇fi|| = 0
for each i. Examples of problems that satisfy this requirement
are perceptron classifiers (e.g., linear classifiers). More gen-
erally, overparametrized neural networks often satisfy this
requirement.

Other hypotheses (e.g., see [59]) are probabilistic; con-
vergence for SGD can be shown to be rapid if with high
probability

||∇fi(z)||2 ≥ αz||z − x∗||2

for a suitable constant αz; in these cases, Otti can extract a
probabilistic certificate of optimality in which there is sound-
ness error that depends on the constant αz. More generally,
we put forth the following conjecture:

Conjecture 1. From the hypotheses of any theorem that guar-
antees rapid convergence of stochastic gradient descent one
can extract a probabilistic certificate of optimality.

The above is synergistic, as it means that whenever we
expect SGD to converge quickly, Otti can produce a certificate.
In future work we plan to prove the above conjecture. In this
paper, we focus on the strong growth condition.

What does Otti do? As in the LP and SDP cases, the
Prover in Otti compiles a certificate of optimality for a given
SGD instance to R1CS. Under the strong growth condition
on the loss function f , the certificate for a purported optimal
point z looks as follows:

∀i,∇fi(z) = 0.

As discussed above, the strong growth condition guarantees
that if z is in fact a local optimum of f , i.e., that ∇f (z) = 0,
then the certificate is valid. On the other hand, the condition
that the stochastic gradients ∇fi(z) are unbiased estimators
of ∇f (z) implies that if z is not a local optimum and so
∇f (z) ̸= 0, then it cannot be the case that a certificate exists.

The size of the certificate is proportional to the number
of data points. However, the check of the certificate is sub-
stantially more efficient than actually performing stochastic
gradient descent: for a linear classifier example with 105 data
points, convergence requires roughly 50 descent iterations
each of which loops through the subgradients for all of the
points. In contrast, our certificate requires a single pass. In
larger examples and when the stepsize is not tuned properly,
the number of such iterations can easily be in the thousands.

Concrete loss functions. The procedure we have described
above is very general, but in our experiments we focus on
the particular case of loss-functions associated to perceptrons
(linear classifiers). Here Otti’s optimality check for SGD takes
advantage of the property of the "hinge" loss function

f (x) =
∑

i

max(0, 1 − yi ∗ ⟨w, xi⟩)

and the "square hinge" loss function

f (x) =
∑

i

max(0, 1 − yi ∗ ⟨w, xi⟩)2

where ⟨·, ·⟩ denotes inner product. These functions satisfy the
strong growth condition for separable data. These functions

8

i n c l u d e " f x p t . h "
i n t main () {

fp64 X0 = _ _ e x i s t () ,
X1 = _ _ e x i s t () ;

__LP_maximize (
3 . 0 ∗ X0 + 4 . 0 ∗ X1 , // objective
X0 + 2 . 0 ∗ X1 <= 1 4 . 0 ,
3 . 0 ∗ X0 − 1 . 0 ∗ X1 >= 0 . 0 ,
X0 − 1 . 0 ∗ X1 <= 2 . 0 ,
X0 >= 0 . 0 ,
X1 >= 0 . 0

) ;

}

FIGURE 2—Provided code for primal formulation of LP instance.
LP variables can either be constants, variables computed previously
in the program, or nondeterministic variables provided exogenously
by the Prover for values previously committed.

have subgradients that are most easily expressed piecewise,
with one part in the yi ∗ ⟨w, xi⟩ < 1 case and one which
is always 0 when yi ∗ ⟨w, xi⟩ >= 1. The second defines
a region where the derivative of the loss-function can be 0
simultaneously for all data-points; in other words w is optimal
when ∀i, 1 − yi ∗ ⟨w, xi⟩ = 0. This is precisely the optimality
check we encode in Otti’s proof of SGD training.

6 Otti’s transformations
This section gives an example of how Otti takes an opti-
mization problem, transforms it, and then compiles it into
R1CS. We use a toy LP example for simplicity, but a similar
process exists for SDP and SGD, which we elaborate on in
Appendix A. Below is the LP problem in its primal form.

find x⃗ that maximizes
(
3 4

)
· x⃗

subject to

 1 2
−3 1
1 −1

 · x⃗ ≤

14
0
2

x⃗ ≥ 0

This is what the developer formulates after it converts
some real-world problem into an optimization problem. The
developer then writes down this formulation using Otti’s C
API for LP or uses the MPS file format.

The resulting C program is given in Figure 2. It includes
fxpt.h which is our fixed point library. The __exist(·)
intrinsic tells Otti that this is a non-deterministic variable that
should be provided by the prover and is not known at compile
time or by the verifier. The __LP_maximize(·) intrinsic tells
Otti that this is an LP problem on non-determnistic variables
X0 and X1. What Otti does next is fully automated.

First, Otti computes the dual formulation of the problem.

fp64 Y0 = _ _ e x i s t () ,
Y1 = _ _ e x i s t () ,
Y2 = _ _ e x i s t () ;

__LP_minimize (
1 4 . 0 ∗ Y0 + 2 . 0 ∗ Y2 , // objective
Y0 + 3 . 0 ∗ Y1 + Y2 >= 3 . 0 ,
2 . 0 ∗ Y0 − 1 . 0 ∗ Y1 − 1 . 0 ∗ Y2 >= 4 . 0 ,
Y0 >= 0 . 0 ,
Y1 <= 0 . 0 ,
Y2 >= 0 . 0

) ;

FIGURE 3—Automatically generated code for dual formulation
corresponding to the LP instance given in Figure 2.

In mathematical notation, it is:

find y⃗ that minimizes y⃗T ·

14
0
2

subject to

(
1 −3 1
2 1 −1

)
· y⃗ ≤

(
3 4

)
y⃗ ≥ 0

Specifically, Otti generates the C code snippet given in
Figure 3. Then, Otti generates the condition for strong duality.
In mathematical terms, it is the following assertion:

Strong Duality
(
14 0 2

)
· y⃗ =

(
3 4

)
· x⃗

Given the primal, the dual, and the strong duality condition,
Otti generates a non-deterministic checker that verifies the
certificate of optimality for this problem instance. Recall
that the certificate of optimality asserts that: (1) the primal
solution is satisfiable, (2) the dual solution is satisfiable, and
(3) strong duality holds. Figure 4 gives the C code for the
non-deterministic checker generated by Otti.

The LP non-deterministic checker defined over non-
deterministic variables X0, X1, Y0, Y1, Y2 is the code that Otti
actually compiles to R1CS. Everything else is not compiled to
R1CS. Instead, the primal and dual code shown earlier is used
by Otti to find the values for these non-deterministic inputs by
invoking lpsolve with the corresponding parameters. This
helps the prover generate the witness it needs. Minimization
problems for LP are computed similarly.

7 Implementation
Otti is built on top of CirC [42], which is a system written in
Haskell that compiles a C subset to existentially quantified
circuits. It supports a few different output formats, including
the one we use, R1CS. CirC uses a typed version of SMT-
LIB [5] as its intermediate representation and the Z3 [23]
SMT solver for evaluating terms of the program, error check-
ing and optimizations, such as equation elimination. CirC is
more than a compiler; it is also a solver that a zkSNARK

9

i n t check = __check (
// primal is satisfied
X0 + 2 . 0 ∗ X1 <= 1 4 . 0 ,
3 . 0 ∗ X0 − 1 . 0 ∗ X1 >= 0 . 0 ,
X0 − 1 . 0 ∗ X1 <= 2 . 0 ,
X0 >= 0 . 0 ,
X1 >= 0 . 0 ,

// dual is satisfied
Y0 + 3 . 0 ∗ Y1 + Y2 >= 3 . 0 ,
2 . 0 ∗ Y0 − 1 . 0 ∗ Y1 − 1 . 0 ∗ Y2 >= 4 . 0 ,
Y0 >= 0 . 0 ,
Y1 <= 0 . 0 ,
Y2 >= 0 . 0 ,

// strong duality holds
3 . 0 ∗ X0 + 4 . 0 ∗ X1 == 1 4 . 0 ∗ Y0 + 2 . 0 ∗ Y2

) ;

FIGURE 4—Automatically generated non-deterministic checker for
LP instance given in Figure 2.

prover can call to obtain the satisfying assignment for a R1CS
instance. CirC takes in inputs to the program and evaluates
the compiled R1CS with those inputs using Z3. Otti uses CirC
as a compiler extended in a variety of ways, and also as a
solver extended with LP, SDP, and SGD solvers.

For output and proofs, Otti produces files in the zkinterface
binary format [7], which is a recent standard for specify-
ing R1CS in a portable manner. We also modified the open
source implementation of the Spartan zkSNARK library [6]
to support zkinterface files as input and to support arbitrary
R1CS instances (the original implementation supported only
instances with power-of-two-sized matrices).

Rational numbers. CirC does not have support for any sort
of rational number representation beyond integers. We add
support for rational numbers in the form of a fixed-point num-
ber representation. This type has 32 bits of precision before
and after the point. We write our fixed-point as a typedef in
C: typedef double fp64;. This type definition needs to
be declared and used in place of double or float inside
of any user program that deals with rational numbers. Users
can simply include fxpt.h, a header file which contains this
type definition and the function F_EQUAL, which compares
the equality of two fixed-points within a certain epsilon. This
epsilon can also be set within this file, if desired.

When Otti compiles C programs it treats fixed-point types
as a double that is cast as a new FixedPoint type. The double
behavior is true to the IEEE 754 standard. When being cast,
the number is truncated to fit into the 32 bit precision after
the point, as other C types are. For all other operations, this
FixedPoint type is treated as a large integer; the number x is
stored as 232·x. During multiplication and division, FixedPoint
types are cast up to a 96-bit number to avoid overflow. Users
should be aware that precision is inevitably lost after repeated
multiplications and divisions, as in any FixedPoint format.

8 Evaluation
This section answers our animating question: is the use of
non-deterministic checkers and numerical optimization certifi-
cates of optimality and infeasibility an effective technique at
reducing the cost of expressing these computations in R1CS.
Our results suggest this is indeed the case.

Test suites. For LP, we use a subset of the netlib LP/data
model library [2, 29]. These benchmarks are inspired by real-
world applications on resource allocation, finance, and gov-
ernment. They are standard in evaluating the correctness and
performance of LP solvers. Figure 5 lists these benchmarks,
the number of variables and linear constraints, and the result-
ing R1CS produced by Otti.

For SDP, we use SDPLIB [15], which is a set of problems
for benchmarking existing SDP solvers. These problems come
from applications like truss topology design, control systems
engineering, and combinatorial optimization problems. We
choose initial points for the feasible problems the same way
the CSDP solver does [14]. We evaluate infeasible instances
in Appendix B. Figure 8 lists these benchmarks, the number
of variables, the size of the semidefinite matrices, and the
resulting R1CS produced by Otti.

For SGD, we use binary classification problems from the
Penn ML Benchmarks (PMLB) dataset [41, 47]. This set of
benchmarks is curated specifically for evaluating supervised
ML algorithms, and comes from a variety of applications. The
datasets we use have binary classes and are linearly separable.
Figure 11 lists these benchmarks, the number of datapoints
and features in them, and the resulting R1CS produced by Otti
by leveraging non-deterministic checkers. Note that GE1000
is short for the GAMETES_Epistasis_2_Way_1000 dataset.

Experimental setup. We perform all of our measurements
on a server with 40 Intel Xeon E5-2660 v3 CPUs (2.60GHz)
and 200 GB DDR4 memory. Due to the extremely slow com-
pletion time of using existing compilers and proof systems
on our problem instances, it was impossible to run a baseline
for even small tests from the benchmark suites we chose. The
largest instance which we could run with prior work has 5
LP variables and for that, Otti is 5 orders of magnitude faster.
Our baselines are instead existing LP and SDP solvers which
provide no proofs. Our results are therefore overhead over
unverifiable solvers, rather than speedup over prior work.

Our experimental procedure follows a 4-step process: (1)
Compile: we compile each benchmark using Otti to get the
corresponding R1CS. (2) Solve: we supply the public and the
(prover’s) private inputs to Otti, which engages Otti’s numeri-
cal solver, and which produces the satisfying assignment to
the R1CS instance. (3) Export: we export the R1CS instance,
inputs, and witness in zkinterface’s binary format (§7). (4)
Prove and verify: the zkinterface files are then consumed by
Spartan. Finally, we measure the number of constraints for
the resulting R1CS, and the execution time of the Prover
and Verifier for each problem.

10

Dataset LP equations LP variables R1CS constraints

afiro 28 32 36,811
sc50a 51 48 54,066
sc50b 51 48 55,085
adlittle 57 97 180,747
sc105 106 103 113,282
scagr7 130 140 229,061
israel 175 142 511,156
agg 489 163 1,069,523
sc205 206 203 220,520
brandy 221 229 815,356
beaconfd 174 262 1,149,169
agg2 517 302 1,887,762
agg3 517 302 1,891,690
lotfi 154 308 326,102
scorpion 389 358 731,137
sctap1 301 408 414,101
scfxm1 331 457 965,504
bandm 306 472 1,093,340
scagr25 472 500 823,136
degen2 445 534 626,407
scsd1 78 760 1,034,359
fffff800 525 854 1,479,725
scfxm2 661 914 1,932,500
scrs8 491 1,169 1,601,971
bnl1 644 1,175 2,324,544
scsd6 148 1,350 1,845,814
modszk1 688 1,620 1,805,821
scsd8 398 2,750 3,607,188

FIGURE 5—Number of LP equations, variables, and number of
R1CS constraints generated for the LP benchmarks.

Prover and Verifier runtime. We measure the running time
of the following components and aggregate those for each
benchmark to get the end-to-end runtime. We exclude compi-
lation time, as this is done once for each problem instance.
• Solver runtime: time for the numerical solver to determine

the optimal solution to the optimization problem.
• Prover runtime: time it takes the Spartan prover to gener-

ate a zkSNARK proof given an R1CS instance and witness.
• Verifier runtime: time it takes the Spartan verifier to

check the proof for a given R1CS instance.
We omit commitments and proof sizes generated by the

underlying zKSNARK since they vary widely among schemes
and they are orthogonal to Otti.

8.1 Linear programming

In this section we evaluate the effectiveness of Otti’s auto-
mated certificates of optimality for LP problems in order to
produce smaller R1CS instances. We use lp_solve v5.5 to
solve the LP problems (both for the baseline and in Otti).

Instance sizes. Figure 5 reports the name of the different
benchmarks we consider, the number of LP variables and
linear equations, and the size of the R1CS instance produced
by Otti. We find that the number of R1CS constraints cannot
be predicted solely from the number of variables or equations;
it also depends on the complexity of each equation, as some
equations can be defined over tens or hundreds of variables,

FIGURE 6—Runtime attribution of LP benchmarks in Otti.

FIGURE 7—Overhead of Otti over baseline for LP benchmarks.

while others defined over a single variable. Otti is currently
able to compile instances with thousands of LP variables and
hundreds of equations. For comparison, CirC is unable to
compile instances with more than 5 variables and 4 equations
on our machine with 200 GB of RAM due to the excessive
amount of memory required to compile them. Even then, CirC
produces more R1CS constraints for that tiny instance than
Otti does for the largest instance in Figure 5.

Runtime. Figure 6 shows that Otti can solve and generate
proofs for optimization problems within hundreds of millisec-
onds for small problems like afiro (which is one of the 13
benchmark problems from the Systems Optimization Labo-
ratory at Stanford) to a few seconds for large problems like
modszk1 (which is a multi-sector economic planning model).
As we expect, the cost is dominated by Spartan’s prover gen-
erating a proof given the R1CS instance and witness—solving
the primal and dual optimization problems to get the witness
is only a fraction of the cost. Verifying the proof is relatively
cheap (in all cases less than 1 second), but not constant, since
Spartan’s verifier performs O(

√
n) operations, where n is the

size of the R1CS instance.
We now turn our attention to the relative overhead of Otti’s

prover over a baseline that generates no proofs and need not
solve both the primal and dual problems. Figure 7 depicts the
performance of Otti’s prover normalized by said baseline. In

11

Dataset SDP equations SDP matrix size R1CS constraints

truss1 6 13 3,007,933
hinf1 13 14 4,703,942
hinf2 13 16 6,536,398
hinf3 13 16 6,536,398
hinf4 13 16 6,536,398
hinf5 13 16 6,536,398
hinf6 13 16 6,536,398
hinf7 13 16 6,536,398
hinf8 13 16 6,536,398
hinf9 13 16 6,536,398
control1 21 15 6,968,254

FIGURE 8—Number of equations, size (n) of the SDP n × n matrix
variables, and number constraints generated for SDP benchmarks.

all cases, we find that Otti introduces significant costs; Otti’s
prover is on average 40× more expensive than the baseline.
Nevertheless, this constitutes a significant achievement, given
that for proof systems with succinct proofs and no trusted
setup, the applications that prior works evaluate are toy ex-
amples with overheads of at least 3 orders of magnitude. For
example, Hyrax [56] and Libra [58] evaluate the multiplica-
tion of two matrices, and observe 3 to 4 orders of magnitude
overhead for the prover compared to native execution (that
generates no proof). Similarly for the generation of Merkle
tree proofs. Aurora [9] and Fractal [20], operate on synthetic
R1CS instances but also report overheads of 3 orders of mag-
nitude. In contrast, Otti operates on real benchmarks used by
the optimization community with modest overhead.

8.2 Semidefinite programming

Similarly to the LP description above, we measure the ef-
fectiveness of Otti’s automated certificates of optimality, but
this time for SDP problems. We use CSDP v6.2.0 to solve
SDP problems in Otti and as a baseline. We talk about fea-
sible problems in this section; for a discussion of infeasible
instances, see Appendix B.

Instance sizes. Figure 8 gives the results of compiling the
SDP benchmarks with Otti. The number of R1CS constraints
is significantly larger than in LP for small SDP instances due
to (1) the higher complexity of the SDP non-deterministic
checker; (2) the fact that Otti compiles both the feasible and
infeasible branches; (3) each SDP “variable” is actually an n×
n matrix, making the instance size somewhat deceiving. For
example, an SDP matrix of size 16 actually has 256 variables
per matrix. When this number grows above 300, our current
prototype based on CirC is unable to compile SDP checks.
Nevertheless, this constitutes a significant improvement over
prior work since we are unable to compile any of the SDP
problems with any existing open sourced compiler.

Runtime. Otti uses CSDP to measure the solver runtimes
for feasible SDP instances. The nature of its interior point
algorithm means that the primal and dual problems are solved
in tandem and cannot be divided into two separate solving
times, as in LP. We also use CSDP’s initsoln method to find

FIGURE 9—Runtime attribution of SDP benchmarks in Otti.

FIGURE 10—Overhead of Otti over baseline for SDP benchmarks.

a good heuristic starting point.
Figure 9 shows the results. Otti takes more time on SDP

problems than LP, spending a few seconds to solve and gener-
ate each proof. However, the overhead relative to the baseline,
given in Figure 10, is similar to the LP experiments: Otti’s
prover is on average 30× more expensive than the baseline. In
any case, generating proofs dominates the runtime, while ver-
ification is cheap—less than a second. The set of hinf prob-
lems (from control systems engineering) demonstrates that
while equivalent instance size generally causes similar run-
time, this is not always the case. For example, hinf2’s prov-
ing time is 3 seconds longer than other problems of the same
size. This is due to Spartan’s implementation currently us-
ing a variable-time multiscalar multiplication function (from
curve25519-dalek), and hence time can vary depending on the
instance parameters and witness. Switching to a constant-time
implementation of multiscalar multiplication would avoid this
behavior (a potential side channel).

8.3 Stochastic Gradient Descent.

Finally we evaluate the effectiveness of Otti on SGD, with the
training of a linear binary classifier (i.e., a perceptron). We
generate certificates of optimality as described in Section 5.3.
We use scikit-learn [45], to train the SGD classifier and
get the optimal fitted plane which is then checked by Otti’s
checkers on all data points.

12

Dataset Data points Features R1CS constraints

clean1 476 168 10,605,356
clean2 6,598 168 146,819,367
diabetes 768 8 828,106
GE1000 1,600 1,000 211,918,394
haberman 306 3 135,974
labor 57 16 135,180

FIGURE 11—Number of data points, features (for each data point),
and R1CS constraints generated for the PMLB datasets.

(a) Runtime (b) Overheard relative to the baseline

FIGURE 12—Runtime cost of SGD training in Otti.

Instance sizes. Figure 11 reports the name of the different
classification datasets, as well as their sizes and the resulting
number of R1CS constraints produced by Otti. In contrast
to the LP and SDP datasets, since Otti generates a check for
every one of the input points, the resulting R1CS instances
are significantly larger. One possible tradeoff is to let the
Verifier provide a random seed, and check the subgradient
at only a pseudorandom subset of the points at the cost of in-
troducing additional soundness error. Such a relaxed protocol
could be used to bound the number of misclassified points;
under stronger hypotheses about the structure of the data, it
might be possible to obtain better soundness bounds.

Runtime. Figure 12a shows that Otti can solve and generate
proofs for training a binary classifier on real datasets, with
reasonable performance. As we expect, the cost is dominated
by Spartan’s proof generation given the large R1CS instances
and witnesses. Training on the dataset is particularly fast and
can take advantage of hardware acceleration. Verifying the
proof is relatively cheap, on the order of 1–2 seconds.

Now, let us consider the relative overhead of Otti’s prover
over a baseline that generates no proofs and only implements
the training. We find that Otti has quite variable overhead,
ranging from 1 to 4 orders of magnitude. Figure 12b depicts
the performance of Otti’s prover normalized by said baseline.
Despite this overhead, we believe this is the first work to
generate zkSNARK proofs for real classifier and datasets.

9 Related Work
The idea of using strong duality to verify the output of LP
programs has also been explored in the past [22, 31]. For

example, Goemans et al. [31] define doubly-efficient pseudo-
deterministic proofs, where a polynomial time prover solves
a problem and aids a polynomial time verifier in verifying
that the solution is correct. One of their examples includes
LP programs. Unlike Otti, their results are purely theoretical;
they prove that an efficient pseudo-deterministic interactive
proof exists for LP. Analogously to our LP certificate, they
use strong duality to verify that they find the optimal solution.

Hoogh et al. [22] similarly use LP certificates of duality to
achieve verifiable LP, but they do so in the context of semi-
honest MPC, and their evaluation tests smaller instances. For
example, their largest instance has around 200 variables and
equations and takes over 20 hours to complete. In contrast,
Otti uses LP certificates to produce small SNARK instances,
runs on real problems from the netlib library, and achieves
practical performance: an LP instance with 398 equations and
2,750 variables takes under 6 seconds.

Beyond the above, as far as we know Otti is the only system
to leverage certificates for SDP and SGD to generate fast
proofs, as well as automatically extracting these certificates
from standard problem formulations and file formats.

10 Discussion
Otti is the first compiler for zkSNARKs that supports opti-
mization problems of a realistic size. The overhead of Otti,
while still high, is in many cases sufficiently small so as to be
practical for actual usage. Moreover, the evaluation compar-
ison is a stringent one—we are comparing to native solvers
running highly optimized floating point algorithms.

Nonetheless, there are many avenues for improvement and
further work. For one thing, it would be extremely useful to
expand the universe of optimization problems for which Otti
applies. The SGD examples we considered required strong
hypotheses. While the strong growth condition applies to
many examples of interest, it is also too stringent to accomo-
date many natural examples. Notably, classification problems
that are not linearly separable do not satisfy it. Further work
to understand the weakest possible hypotheses that still re-
sult in usable certificates is needed. We believe that a deeper
understanding of our conjectured “meta-theorem” about the
connection between certificates and convergence results will
lead to improvements in this direction.

More generally, Otti’s approach of aggressively using non-
deterministic checkers to reduce proof size will be of broad ap-
plicability in the design of efficient compilers for zkSNARKS.
Nondeterministic checkers have been used before: prior com-
pilers [18, 21, 34–36, 50, 51, 53] apply them primarily for
avoiding certain arithmetic operations (as in the example of
Section 2.3), transformation between representations (e.g.,
boolean to arithmetic), expressing or transferring state across
proof instances [18, 21, 25, 34], or expressing threads and
concurrency [50]. However, one of the lessons of Otti is that
these techniques should be more widely used.

Finally, a pressing issue when using non-deterministic

13

checkers is the question of correctness. We assumed that a so-
lution was optimal if it passed the non-deterministic checker.
However, how does one know whether the non-deterministic
checker generated by Otti is itself correct (i.e., bug free)?
Developing a formal methods framework for proving the cor-
rectness of the program transformations is a crucial missing
piece in this ecosystem (along with formally verified compil-
ers, though some preliminary efforts exist [26]).

11 Conclusion
This paper introduces Otti, a compiler for SNARKs that na-
tively supports a wide class of optimization problems in-
cluding linear programming (LP), semidefinite programming
(SDP), and many problems amenable to stochastic gradient
descent (SGD). Otti allows the programmer to simply specify
the problem and derives a proof that a particular output is op-
timal. The key idea behind Otti is the use of non-deterministic
checkers and certificates of optimality to verify the purported
optimal point rather than verifying the correct execution of
the optimization algorithm. This results in a radical reduction
in the size of the R1CS encodings produced. Our experimen-
tal evaluation confirms that Otti provides the first zkSNARK
proofs that are practical for optimization and machine learn-
ing problems with real datasets.

Acknowledgments

We thank Fraser Brown, Patrick Cousot, Justin Thaler, Riad
Wahby, and Mike Walfish for helpful conversations related
to this work. We also thank Alex Ozdemir for his help with
the CirC SNARK compiler. This work was funded in part
by NSF grants CNS-2045861, CNS-2107147, CNS-2124184;
DARPA contract HR0011-17-C0047; AFOSR grant FA9550-
18-1-0415; and a JP Morgan Chase & Co Faculty Award. Any
views expressed herein are solely those of the authors listed.

References
[1] Mps file format.

http://plato.asu.edu/cplex_mps.pdf.
[2] Lp/data index.

https://ampl.com/netlib/lp/data/, 2013.
[3] The glop linear solver. https://developers.

google.com/optimization/lp/glop, 2021.
[4] lpsolve: Mixed integer linear programming (milp)

solver. http://lpsolve.sourceforge.net/5.5,
2021.

[5] SMT-LIB: The satisfiability modulo theories library.
http://smtlib.cs.uiowa.edu, 2021.

[6] Spartan: High-speed zksnarks without trusted setup.
https://github.com/microsoft/spartan/,
2021.

[7] zkinterface, a standard tool for zero-knowledge
interoperability.
https://github.com/QED-it/zkinterface/,
2021.

[8] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and
M. Virza. Snarks for c: Verifying program executions
succinctly and in zero knowledge. In Proceedings of the
International Cryptology Conference (CRYPTO), 2013.

[9] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner,
M. Virza, and N. P. Ward. Aurora: Transparent succinct
arguments for R1CS. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), 2019.

[10] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza.
Succinct non-interactive zero knowledge for a von
neumann architecture. In Proceedings of the USENIX
Security Symposium, 2014.

[11] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and
M. Maller. Arya: Nearly linear-time zero-knowledge
proofs for correct program execution. In International
Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT),
2018.

[12] J. Bootle, A. Chiesa, and J. Groth. Linear-time
arguments with sub-linear verification from tensor
codes. In Proceedings of the Theory of Cryptography
Conference (TCC), 2020.

[13] J. Bootle, A. Chiesa, and S. Liu. Zero-knowledge
succinct arguments with a linear-time prover.
Cryptology ePrint Archive, Report 2020/1527.

[14] B. Borchers. CSDP, a C library for semidefinite
programming. Optimization methods and Software,
11(1-4), 1999.

[15] B. Borchers. SDPLIB 1.2, a library of semidefinite
programming test problems. Optimization Methods and
Software, 11(1-4), 1999.

[16] L. Bottou. On-line learning and stochastic
approximations. In In On-line Learning in Neural
Networks, pages 9–42. Cambridge University Press,
1998.

[17] L. Bottou. Stochastic gradient descent tricks. In
G. Montavon, G. B. Orr, and K. Müller, editors, Neural
Networks: Tricks of the Trade - Second Edition, volume
7700 of Lecture Notes in Computer Science, pages
421–436. Springer, 2012.

[18] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J.
Blumberg, and M. Walfish. Verifying computations
with state. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2013.

[19] B. Bünz, B. Fisch, and A. Szepieniec. Transparent
SNARKs from DARK compilers. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), 2020.

[20] A. Chiesa, D. Ojha, and N. Spooner. Fractal:
Post-quantum and transparent recursive proofs from
holography. In Proceedings of the International

14

http://plato.asu.edu/cplex_mps.pdf
https://ampl.com/netlib/lp/data/
https://developers.google.com/optimization/lp/glop
https://developers.google.com/optimization/lp/glop
http://lpsolve.sourceforge.net/5.5
http://smtlib.cs.uiowa.edu
https://github.com/microsoft/spartan/
https://github.com/QED-it/zkinterface/

Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2020.

[21] C. Costello, C. Fournet, J. Howell, M. Kohlweiss,
B. Kreuter, M. Naehrig, B. Parno, and S. Zahur.
Geppetto: Versatile verifiable computation. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2015.

[22] S. de Hoogh, B. Schoenmakers, and M. Veeningen.
Certificate validation in secure computation and its use
in verifiable linear programming. In International
Conference on Cryptology in Africa, pages 265–284.
Springer, 2016.

[23] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, 2008.

[24] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[25] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss,
O. Ohrimenko, and B. Parno. Hash first, argue later:
Adaptive verifiable computations on outsourced data.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

[26] C. Fournet, C. Keller, and V. Laporte. A certified
compiler for verifiable computing. In Proceedings of
the IEEE Computer Security Foundations Symposium,
2016.

[27] R. M. Freund. Introduction to semidefinite
programming (sdp). Massachusetts Institute of
Technology, 2004.

[28] K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita.
Sdpa (semidefinite programming algorithm) user’s
manual—version 6.2. 0. Department of Mathematical
and Computing Sciences, Tokyo Institute of Technology.
Research Reports on Mathematical and Computing
Sciences Series B: Operations Research, 2002.

[29] D. M. Gay. Electronic mail distribution of linear
programming test problems. Mathematical
Programming Society COAL Newsletter, 13, 1985.

[30] R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic span programs and succinct nizks without
pcps. In Proceedings of the International Conference
on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT). Springer, 2013.

[31] M. Goemans, S. Goldwasser, and D. Holden.
Doubly-efficient pseudo-deterministic proofs. arXiv
preprint arXiv:1910.00994, 2019.

[32] J. Groth. On the size of pairing-based non-interactive
arguments. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2016.

[33] C. Helmberg, F. Rendl, R. J. Vanderbei, and

H. Wolkowicz. An interior-point method for
semidefinite programming. SIAM Journal on
optimization, 6(2):342–361, 1996.

[34] A. Kosba, A. Miller, E. Shi, Z. Wen, and
C. Papamanthou. Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2016.

[35] A. Kosba, C. Papamanthou, and E. Shi. xjsnark: A
framework for efficient verifiable computation. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2018.

[36] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan,
C. PAPAMAN-THOU, R. Pass, S. ABHI, and E. SHI.
C∅ c∅: a framework for building composable
zero-knowledge proofs. Cryptology ePrint Archive,
Report 2015/1093, 2015.

[37] Z.-Q. Luo and W. Yu. An introduction to convex
optimization for communications and signal processing.
IEEE Journal on selected areas in communications,
24(8), 2006.

[38] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn.
Sonic: Zero-knowledge snarks from linear-size
universal and updatable structured reference strings. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2019.

[39] C. B. Moler and G. W. Stewart. On the householder-fox
algorithm for decomposing a projection. Journal of
Computational Physics, 28(1):82–91, 1978.

[40] Y. E. Nesterov. Smooth minimization of non-smooth
functions. Math. Program., 103(1):127–152, 2005.

[41] R. S. Olson, W. La Cava, P. Orzechowski, R. J.
Urbanowicz, and J. H. Moore. Pmlb: a large benchmark
suite for machine learning evaluation and comparison.
BioData Mining, 10(36), Dec 2017.

[42] A. Ozdemir, F. Brown, and R. S. Wahby. Unifying
compilers for snarks, smt, and more. Cryptology ePrint
Archive, Report 2020/1586, 2020.

[43] A. Ozdemir, R. S. Wahby, B. Whitehat, and D. Boneh.
Scaling verifiable computation using efficient set
accumulators. In Proceedings of the USENIX Security
Symposium, 2020.

[44] B. Parno, J. Howell, C. Gentry, and M. Raykova.
Pinocchio: Nearly practical verifiable computation. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2013.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

[46] F. A. Potra and S. J. Wright. Interior-point methods.
Journal of computational and applied mathematics,
124(1-2):281–302, 2000.

15

[47] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J.
Goldberg, P. Chakraborty, N. L. Ray, D. Himmelstein,
W. Fu, and J. H. Moore. Pmlb v1.0: an open source
dataset collection for benchmarking machine learning
methods. arXiv preprint arXiv:2012.00058v2, 2021.

[48] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global
value numbers and redundant computations. In
Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL), 1988.

[49] S. Setty. Spartan: Efficient and general-purpose
zksnarks without trusted setup. In Proceedings of the
International Cryptology Conference (CRYPTO).
Springer, 2020.

[50] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the
correct execution of concurrent services in
zero-knowledge. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

[51] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality
and plausibility in verified computation. In Proceedings
of the ACM European Conference on Computer
Systems (EuroSys), 2013.

[52] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg,
and M. Walfish. Taking proof-based verified
computation a few steps closer to practicality. In
Proceedings of the USENIX Security Symposium, 2012.

[53] G. Stewart, S. Merten, and L. Leland. Snårkl:
Somewhat practical, pretty much declarative verifiable
computing in haskell. In International Symposium on
Practical Aspects of Declarative Languages, 2018.

[54] S. Vaswani, F. Bach, and M. Schmidt. Fast and faster
convergence of sgd for over-parameterized models and
an accelerated perceptron. In The 22nd International
Conference on Artificial Intelligence and Statistics,
pages 1195–1204. PMLR, 2019.

[55] R. S. Wahby, S. T. Setty, Z. Ren, A. J. Blumberg, and
M. Walfish. Efficient ram and control flow in verifiable
outsourced computation. In Proceedings of the Network
and Distributed System Security Symposium (NDSS),
2015.

[56] R. S. Wahby, I. Tzialla, abhi shelat, J. Thaler, and
M. Walfish. Doubly-efficient zkSNARKs without
trusted setup. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2018.

[57] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica.
Dizk: A distributed zero knowledge proof system. In
Proceedings of the USENIX Security Symposium, 2018.

[58] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and
D. Song. Libra: Succinct zero-knowledge proofs with
optimal prover computation. In Proceedings of the
International Cryptology Conference (CRYPTO), 2019.

[59] Y. Xie, X. Wu, and R. Ward. Linear convergence of

adaptive stochastic gradient descent. In International
Conference on Artificial Intelligence and Statistics,
pages 1475–1485. PMLR, 2020.

[60] J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent
polynomial delegation and its applications to zero
knowledge proof. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

16

Appendix A SDP and SGD transformations
A.1 Semidefinite programming

We now discuss Otti’s operation on SDP problems. Below is
an example given in its primal form.

minimize

−0.9915 0.6539 −0.6403
0.6539 0.9379 −0.1421
−0.6403 −0.1421 0.3080

 • X

subject to

 0.3518 −0.3833 0.3136
−0.3834 0.8570 −0.5891
0.3136 −0.5891 0.9714

 • X = 3.9889

−0.4945 −0.6208 0.2038
−0.6208 0.2158 −0.0972
0.2038 −0.0972 −0.4218

 • X = −1.0823

X ⪰ 0

initial X0 =

 1.7803 −0.0036 0.7281
−0.0036 1.2237 −0.0536
0.7281 −0.0536 1.8439

We use the __SDP(·) intrinsic to indicate that this is an

SDP problem and take input. We only need the primal for-
mulation in the SDP instance, as the solver we use solves the
dual problem at the same time.

The developer may get an SDP problem from an SDPA file,
or may generate it themselves. The developer should then use
the provided sdp_meta.py file to generate the C code for
the primal problem, as seen in Figure 13, and the check_sdp
function, as seen in Figure 14. This check will be different
for SDP instances for different size matrices (n) and different
numbers of optimality constraints (m).

The parameters to the checker include whether the instance
is feasible (a boolean), the original parts of the problem (C,
A, b), the primal and dual solutions (X0 or X, y), and the sup-
porting witness variables (XQ, SQ) described in Section 5.2.
As in LP, this non-deterministic checker is the only code Otti
actually compiles to R1CS.

A.2 Gradient Descent

We now give an example of a SGD problem formulation.

classification
(
−1 −1 1 −1 1

)

dataset

157.0 1.0 0.69
268.0 10.0 2.40
209.0 2.0 1.10
134.0 0.1 0.10
21.0 0.1 0.10

The above are a few data points from the PMLB lupus

dataset [41, 47]. Otti can take as input any file from the PMLB
dataset (including the Lupus one described above) and gener-
ate the required C code and non-deterministic checker. Otti
can of course be extended to parse any binary classification
dataset the user would like. The generated Otti input file and

i n c l u d e " f x p t . h "
i n t main () {

fp64 X0 = _ _ e x i s t () ,
. . .

X8 = _ _ e x i s t () ,
Y0 = _ _ e x i s t () ,
Y1 = _ _ e x i s t () ,
XQ0 = _ _ e x i s t () ,
. . .

XQ8 = _ _ e x i s t () ,
SQ0 = _ _ e x i s t () ,
. . .

SQ8 = _ _ e x i s t () ;
i n t f e a s i b l e = _ _ e x i s t () ;
__SDP (

3 , 2 , // n, m
// C
−0 . 9 9 1 5 , 0 . 6 5 3 9 , −0 . 6 4 0 3 ,
0 . 6 5 3 9 , 0 . 9 3 7 9 , −0 . 1 4 2 1 ,
−0 . 6 4 0 3 , −0 . 1 4 2 1 , 0 . 3 0 8 0 ,
// X^0
1 . 7 8 0 3 , −0 . 0 0 3 6 , 0 . 7 2 8 1 ,
−0 . 0 0 3 6 , 1 . 2 2 3 7 , −0 . 0 5 3 6 ,
0 . 7 2 8 1 , −0 . 0 5 3 6 , 1 .8439
// A_0
0 . 3 5 1 8 , −0 . 3 8 3 3 , 0 . 3 1 3 6 ,
−0 . 3 8 3 4 , 0 . 8 5 7 0 , −0 . 5 8 9 1 ,
0 . 3 1 3 6 , −0 . 5 8 9 1 , 0 . 9 7 1 4 ,
// A_1
−0 . 4 9 4 5 , −0 . 6 2 0 8 , 0 . 2 0 3 8 ,
−0 . 6 2 0 8 , 0 . 2 1 5 8 , −0 . 0 9 7 2 ,
0 . 2 0 3 8 , −0 . 0 9 7 2 , −0 . 4 2 1 8 ,
3 . 9 8 8 9 , −1 .0823 // b

) ;
r e t u r n __check (check_sdp (< p a r a m e t e r l i s t :

f e a s i b l e , C , A, b , X, y , XQ, SQ>)) ;
}

FIGURE 13—Automatically generated code for SDP instance.

non-deterministic checker for the above small example is
given Figure 15.

Appendix B SDP infeasibility evaluation
We can detect proofs of infeasibility for SDP instances, as
discussed in Section 5.2. Recall that Otti uses disjunction
proofs (either the Prover found the optimal solution or the
instance with provided starting points was infeasible), so
the R1CS representation (list in figure 8) remains the same
whether or not the instance is satisfiable since both sides of
the disjunction must be included anyway.

In addition to our “feasible” evaluation in the main paper,
we evaluate each problem instance on the opposite side of the
disjunction. To simulate infeasible instances, we pick a bad X0

at random from outside the feasible region. In Figure 16, we
show the SDP benchmarks for these infeasible instances (next
to our feasible data, for comparison). We denote a problem
instance with a feasible starting point by "<name>", and
it’s infeasible starting point counterpart by "<name>*". The
difference in timings are mostly attributed to two factors.

17

i n t check_sdp (< p a r a m e t e r l i s t >) {
i n t s o l v e d = f e a s i b l e ;
fp64 do t_b0 = (a0_0∗ x0) + (a0_1∗ x1) + . . . + (a0_8∗ x8) ;
fp64 do t_b1 = (a1_0∗ x0) + (a1_1∗ x1) + . . . + (a1_8∗ x8) ;
i f (f e a s i b l e) {
// satisfied constraints
s o l v e d = s o l v e d && F_EQUAL(dot_b0 , b0) ;
s o l v e d = s o l v e d && F_EQUAL(dot_b1 , b1) ;
// S
fp64 s0 = c0−((a0_0∗ y0) + (a1_0∗ y1)) ;
. . .
fp64 s8 = c8−((a0_8∗ y0) + (a1_8∗ y1)) ;
fp64 gap = (s0∗ x0) + (s1∗ x1) + . . . + (s8∗ x8) ;
// strong duality
s o l v e d = s o l v e d && (F_EQUAL(gap , 0 . 0)) ;
// lower triangular for XQ
s o l v e d = s o l v e d && (F_EQUAL(xq1 , 0 . 0)) ;
s o l v e d = s o l v e d && (F_EQUAL(xq2 , 0 . 0)) ;
s o l v e d = s o l v e d && (F_EQUAL(xq5 , 0 . 0)) ;
// lower triangular for SQ
s o l v e d = s o l v e d && (F_EQUAL(sq1 , 0 . 0)) ;
s o l v e d = s o l v e d && (F_EQUAL(sq2 , 0 . 0)) ;
s o l v e d = s o l v e d && (F_EQUAL(sq5 , 0 . 0)) ;
// Cholesky decomposition for X (XQ∗XQ^T=X)
fp64 xr0 = xq0 ; // XR = XQ^T
. . .
fp64 xr8 = xq8 ;
fp64 xm0 = (xq0∗ xr0) + (xq1∗ xr3) + (xq2∗ xr6) ;
. . .
fp64 xm8 = (xq6∗ xr2) + (xq7∗ xr5) + (xq8∗ xr8) ;
s o l v e d = s o l v e d && (F_EQUAL(x0 , xm0)) ;
. . .
s o l v e d = s o l v e d && (F_EQUAL(x8 , xm8)) ;
// Cholesky decomposition for S
fp64 s r 0 = sq0 ;
. . .
s o l v e d = s o l v e d && (F_EQUAL(s8 , sm8)) ;

} e l s e {
// unsatisfied constraints
s o l v e d = s o l v e d | | !F_EQUAL(dot_b0 , b0) ;
s o l v e d = s o l v e d | | !F_EQUAL(dot_b1 , b1) ;
// X^0 not positive definite
fp64 l0_0 = (sq0∗ xq0) ;
fp64 l0_1 = (sq0∗ xq3) ;
fp64 l0_2 = (sq0∗ xq6) ;
fp64 r0_0 = (x0∗ xq0) + (x1∗ xq3) + (x2∗ xq6) ;
fp64 r0_1 = (x3∗ xq0) + (x4∗ xq3) + (x5∗ xq6) ;
fp64 r0_2 = (x6∗ xq0) + (x7∗ xq3) + (x8∗ xq6) ;
s o l v e d = s o l v e d | | (F_EQUAL(l0_0 , r0_0) &&

F_EQUAL(l0_1 , r0_1) && F_EQUAL(l0_2 , r0_2)
&& (sq0 < 0 . 0 1)) ;

}
r e t u r n s o l v e d ;

}

FIGURE 14—Automatically generated check for SDP function for
size n = 3 and m = 2.

i n c l u d e " f x p t . h "

i n t g r a d _ c h e c k (
i n t i n t w0 , i n t w1 , i n t w2 ,
fp64 x0 , fp64 x1 , fp64 x2 ,
i n t y) {
r e t u r n y∗ (w0 ∗ x0 + w1 ∗ x1 + w2 ∗ x2) >= 1 ;

}

i n t main () {
i n t W0, W1, W2 = _ _ e x i s t () ;
__SGD_tra in (2 , 5 ,

1 5 7 . 0 , 1 . 0 , 0 . 6 9 , 2 6 8 . 0 , 1 0 . 0 ,
2 . 4 0 , 2 0 9 . 0 , 2 . 0 , 1 . 1 0 , 1 3 4 . 0 ,
0 . 1 , 0 . 1 , 2 1 . 0 , 0 . 1 , 0 . 1 ,
1 , −1 , 1 , −1 , 1) ;

r e t u r n __check (
// Check point 1
g r a d _ c h e c k (W0,W1,W2, 1 5 7 . 0 , 1 . 0 , 0 . 6 9 , 1) ,
// Check point 2
g r a d _ c h e c k (W0,W1,W2, 2 6 8 . 0 , 1 0 . 0 , 2 . 4 0 ,−1) ,
// Check point 3
g r a d _ c h e c k (W0,W1,W2, 2 0 9 . 0 , 2 . 0 , 1 . 1 0 , 1) ,
// Check point 4
g r a d _ c h e c k (W0,W1,W2, 1 3 4 . 0 , 0 . 1 , 0 . 1 ,−1) ,
// Check point 5
g r a d _ c h e c k (W0,W1,W2, 2 1 . 0 , 0 . 1 , 0 . 1 , 1)) ;

) ;

FIGURE 15—Automatically generated non-deterministic checker
for SGD instance

FIGURE 16—Runtime attribution of SDP benchmarks in Otti. La-
bels with an asterisk (*) represent infeasible instances.

First, the solving time for infeasible instances is near 0. This
is because before Otti runs the solver, it performs a quick
check that X0 is feasible. If this check doesn’t pass (as in the
case of our infeasible instances), then an infeasibility proof is
produced and CSDP never runs. Second, Spartan’s multi scalar
multiplication not being constant time and different witnesses
yield different proving times.

18

	1 Introduction
	2 Background
	2.1 zkSNARKs
	2.2 Rank 1 constraint satisfiability
	2.3 Compiling programs to R1CS
	2.4 The benefits of nondeterminism
	2.5 Matrix representation

	3 Numerical optimization problems
	3.1 Applications
	3.2 Challenges

	4 Overview of Otti
	5 Optimization certificates
	5.1 Linear Programming
	5.2 Semidefinite Programming
	5.3 Stochastic gradient descent

	6 Otti's transformations
	7 Implementation
	8 Evaluation
	8.1 Linear programming
	8.2 Semidefinite programming
	8.3 Stochastic Gradient Descent.

	9 Related Work
	10 Discussion
	11 Conclusion
	A SDP and SGD transformations
	A.1 Semidefinite programming
	A.2 Gradient Descent

	B SDP infeasibility evaluation

