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Abstract. Recent private information retrieval (PIR)
schemes preprocess the database with a query-independent
offline phase in order to achieve sublinear computation during
a query-specific online phase. These offline/online protocols
expand the set of applications that can profitably use PIR,
but they make a critical assumption: that the database is
immutable. In the presence of changes such as additions,
deletions, or updates, existing schemes must preprocess the
database from scratch, wasting prior effort. To address this,
we introduce incremental preprocessing for offline/online
PIR schemes, allowing the original preprocessing to continue
to be used after database changes, while incurring an update
cost proportional to the number of changes rather than
the size of the database. We adapt two offline/online PIR
schemes to use incremental preprocessing and show how it
significantly improves the throughput and reduces the latency
of applications where the database changes over time.

1 Introduction
Private information retrieval (PIR) [22] is an incredibly useful
cryptographic building block that allows a client to download
an object from a database without revealing which object
was fetched. PIR has many applications, including privacy-
preserving video streaming [3, 35], password checking [4],
blocklists [40], ad delivery [34], friend discovery [12], sub-
scriptions [20], and anonymous messaging [6, 42, 47]. While
powerful, PIR is expensive: PIR imposes a computational
linear lower bound since the database must operate on all
objects in order to answer a query. After all, if even a single
object is omitted when answering a query this would leak that
this object is of no interest to the client.

The existence of this computational lower bound is unfor-
tunate, as it limits the scale of applications that can profitably
use PIR. But there is still hope! There is an active line of
work [5, 8, 15, 18, 23, 45, 50, 51] that pursues the idea of
preprocessing the database to generate auxiliary information
or hints (which could be stored at the server or clients depend-
ing on the proposal) during an offline phase, and then use the
hints during an online phase to answer one or more queries
with sublinear computation and communication. This is an
exciting proposition, as it enables applications that require
quick answers for (online) queries to large databases, but that
can afford an expensive query-independent preprocessing.

⋆This is the full version of our paper [46]. It includes additional details,
experiments, and another PIR protocol (Appendices B–E).

A major implicit assumption in all of the above works is
that the PIR database is immutable. That is, once it has been
preprocessed, no new items will be added, deleted, or updated.
Should the database change, under all existing schemes, it is
necessary to redo the expensive offline phase—defeating in
many cases the benefits of preprocessing. Meanwhile, many
of the proposed applications that use PIR naturally experi-
ence at least some moderate content churn. For example, Pop-
corn [35], which implements a private video service where
clients stream movies using PIR, must deal with movies being
added, deleted, or modified (e.g., to change codec) occasion-
ally. Similarly, anonymous messaging systems like Pung [6]
and Talek [20] have databases where new elements (messages)
are added every few minutes, while contact discovery services
like DP5 [12] have users creating and deleting accounts.

This paper extends offline/online PIR schemes to support
mutable databases where the content can change at any time
by introducing the notion of incremental preprocessing. The
result is an incremental offline/online PIR scheme where ad-
ditions, deletions, and edits to the database do not require a
complete preprocessing after every change. Instead, the hints
are updated at a cost that is proportional to the number of
changes. To demonstrate the feasibility and benefits of incre-
mental preprocessing, we extend two recent two-server of-
fline/online PIR protocols: (1) the Corrigan-Gibbs and Kogan
scheme (CK) [23], and (2) the Shi, Aqeel, Chandrasekaran,
and Maggs scheme (SACM) [51]. Our experimental evalua-
tion confirms that the savings of our approach are consider-
able. In a database with 1 million items, the computational
cost of updating the hints in our incremental CK scheme (iCK)
for a batch of 10,000 updates (additions, deletions, edits) is
56× cheaper than preprocessing from scratch; the savings are
even more pronounced when there are fewer updates. Fur-
thermore, an implementation of PIR-Tor [47] that uses our
iCK construction improves the throughput achieved by Tor
directory nodes by roughly 7× over an implementation of
PIR-Tor that uses a state-of-the-art 2-server PIR scheme [13].

Our extensions to make these schemes incremental, how-
ever, come at a modest cost. For iCK, the cost is a small
increase in storage at the client to keep additional auxiliary
material needed for the client to construct the right query
during the online phase, and a larger (though still sublinear
and concretely very efficient) queries during the online phase.
For our incremental version of SACM, called iSACM, the
cost is higher online communication (though still sublinear
in the size of the updated database), since our construction is
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not compatible with a specific cryptographic primitive used
in SACM (a private puncturable PRF [51]).

Limitations. Our incremental preprocessing schemes work
best when the database changes slowly (e.g., a few percent of
entries are added, deleted, or updated at a given time). When
the database changes significantly (e.g., doubles or triples in
size), maintaining multiple preprocessed databases and query-
ing all of them might be a better choice [40]. We also note
that there is an interesting complication that occurs when one
wishes to use PIR by keywords [21] with offline/onlne PIR
protocols that support mutations. In PIR by keywords, clients
can fetch an object from the database by using a meaningful
label or “keyword” rather than an index. Prior works [4, 6, 21]
accomplish this by structuring the database in a search data
structure (e.g., binary search tree) and performing the search
obliviously over this data structure using a PIR scheme as a
black box. However, when the database mutates, this triggers
a series of changes to the underlying search data structure
(e.g., BST tree rotations) that negate the validity and useful-
ness of the hints generated during the offline preprocessing
phase of existing offline/online PIR schemes. Finding a satis-
fying solution remains an open question.

2 Background and related work
This section surveys existing offline/online PIR constructions,
and the issues that arise when the database is updated due to
objects being deleted, edited, or inserted.

Private Information Retrieval (PIR) Chor et al. [22] intro-
duce private information retrieval to allow a client to retrieve
an object from a database managed by an untrusted server
(or set of servers) without the server(s) learning which ob-
ject was retrieved by the client and with total communication
costs that are sublinear in the size of the database. There are
two general deployment models for PIR: multi-server and
single-server. In multi-server PIR [7, 13, 22, 24, 25, 31, 48]
the database is replicated across two or more non-colluding
servers, and the client issues a query to each server and lo-
cally combines all responses. On the other hand, single-server
PIR protocols [3–5, 16, 17, 19, 27, 29, 38, 41, 43, 44, 52] are
significantly more (computationally) expensive and require
making cryptographic hardness assumptions. In exchange,
they avoid making non-collusion assumptions.

The allure of preprocessing. Beimel et al. [8, §4] prove that
if the database has no redundancies (i.e., neither the servers
nor the client store any redundant bits to serve as auxiliary
values), PIR requires Ω(n) total server-side computation to
answer a single client query, where n is the number of ele-
ments in the database. To circumvent this unfortunate lower
bound, they introduce the notion of preprocessing: by push-
ing the inevitable linear computation to a query-independent
offline phase and generating auxiliary data or hints along the
way, the computational cost of answering a query during an
online phase with the help of the hints can be sublinear in n.

Given the above, a natural question is where the hints
should be stored? Several works [8, 15, 18] propose that
they be stored at the servers. For example, Beimel et al.[8]
give a two-server PIR protocol that uses O(n1+ϵ) extra bits
at the servers in exchange for online queries that require
O(n/ϵ2 log2 n) server computation. On the other hand, re-
cent proposals [23, 50, 51] push the hints to the clients. For
instance, Corrigan-Gibbs and Kogan [23] give a two-server
PIR construction that stores O(

√
n) bits at the client and

obtain O(
√
n) server computation for online queries.

The challenge of mutability. Regardless of who stores the
hints, all of the above works have preprocessing schemes
where the hints depend on all items in the database. As a
result, if a single items changes, is deleted, or a new item
is added, the hints are no longer useful to generate online
PIR queries; it becomes necessary to update the hints. To
our knowledge, none of the existing works propose a way to
update these hints in an efficient fashion that avoids redoing
the preprocessing from scratch.

In independent work, Checklist [40] explores the idea of an
offline/online PIR database that supports additions. Despite
the similar objectives, our approaches are fundamentally dif-
ferent. Checklist leverages ideas from ORAM [33], dividing
the database into “buckets” whose capacity grows exponen-
tially, where the initial data is held on the last (largest) bucket,
and new objects are added to the earliest (smallest) bucket—
overflowing to larger buckets if necessary. To fetch an object,
the client queries all of the roughly log n buckets (as other-
wise the client would leak which bucket contains the desired
item). The key idea behind this scheme is that while updates
to a bucket require redoing the preprocessing for that bucket
from scratch to obtain the new hints, most updates impact
smaller buckets and larger buckets change less frequently—
hence the savings. In contrast, our work aims to make the
preprocessing itself incremental; our techniques could help
Checklist ensure that larger buckets need not be preprocessed
from scratch. Furthermore, our technique does not require the
online server to maintain log n buckets and does not increase
the number of objects fetched by the client per query—which
could be significant when objects are large.

3 Overview
In this work we consider a setting in which a PIR server
(or servers) holds a large database consisting of n fixed-sized
objects. The server preprocesses the database during an offline
phase to generate hints (auxiliary information that speeds up
the online phase) and either stores these hints or gives them to
clients (depending on the scheme). Clients can then query this
preprocessed database during an online phase and retrieve
an item privately with both computation and communication
costs sublinear in n. Over time, the database mutates: new
objects are added and existing objects are modified or deleted.
We will assume that the number of mutations at a given time,

2



m, is much smaller than n (otherwise one might as well rerun
the preprocessing on the modified database from scratch). Our
goal is to construct preprocessing schemes that (1) enable
efficient online queries; and (2) are incremental, in the sense
that updating the hints comes at a cost to the servers that is
proportional to m rather than n+m.

In the rest of this section we give a formal definition of
offline/online PIR, discuss the additional functionality that
we seek to support mutable databases, and then give con-
crete incremental preprocessing schemes for two existing
offline/online PIR constructions.

3.1 Offline/Online PIR (OO-PIR)

We build on the definitions of the offline/online PIR (OO-
PIR) model given by Corrigan-Gibbs and Kogan [23]. In
particular, we restrict our focus to two-server PIR (we discuss
the single server case in Section 9). In this setting there are
two servers: the offline and the online server. The servers are
semi-honest: they do not collude but are interested in learning
which objects the client is fetching from the database. Below
we give the definition for the single-query case; we discuss
multiple queries in Section 4.1.

Notation. We consider a database D, which is replicated
across both the offline and online servers and consists of n
items of size b bits. We view D as an array; D[i] represents
the i-th item in D. We use [x, y] to denote the set consisting of
consecutive integers {x, . . . , y} where x ≤ y. For simplicity,
when x = 1, we use [y] to denote the set {1, . . . , y}. For a set
S and an integer c, we use S+c to denote a set {x+c|x ∈ S}.
In addition, we assume + has the highest precedence among
all set operations.

Definition 1 (Offline/Online PIR [23]). An OO-PIR proto-
col consists of four algorithms (Prep,Query,Resp,Recov)
defined over a database D of n items as follows:

• Prep(D)→ h, a randomized algorithm executed by the
offline server for each client that takes a database D and
outputs a hint h.

• Query(h, i) → qi, a randomized algorithm executed by
the client that takes in h and the desired index i, and out-
puts a query qi.

• Resp(D, qi)→ ri, a deterministic algorithm executed by
the online server that takes in a query qi from the client,
and outputs a response ri.

• Recov(h, ri) → di, a deterministic algorithm executed
by the client that takes in a hint h (previously received
from the offline server) and a response ri from the online
server, and outputs the client’s desired data object di.

An OO-PIR scheme should satisfy the following properties:

Correctness. For every λ, n ∈ N, i ∈ [n], we require that

Pr

 di = D[i]:

h← Prep(D)
qi ← Query(h, i)
ri ← Resp(D, qi)
di ← Recov(h, ri)

 ≥ 1− negl(λ)

where the probability is over the randomness of all algorithms.

Security. For λ, n ∈ N, and i ∈ [n], define the distribution

P(i) :=
{

qi :
h← Prep(D)
qi ← Query(h, i)

}
An OO-PIR scheme is secure if for all PPT adversaries A,

max
i,j∈[n]

{Pr[A(P(i)) = 1]− Pr[A(P(j)) = 1]} ≤ negl(λ)

Non-triviality. The combined size of the hint h, online query
qi, and response ri should be sublinear in the size of D.

Informally, correctness means that a client can get its de-
sired item with high probability; security means that any two
queries are computationally indistinguishable to the online
server; and non-triviality means that the protocol is actually
cheaper than downloading and storing the whole database.

3.2 Incremental offline/online PIR

In this work we propose OO-PIR schemes that are incremen-
tal, in the sense that if the database mutates (new items are
added, or existing items are modified or deleted) it is not nec-
essary for the client and the offline server to rerun Prep. To
that end, the OO-PIR scheme supports four new algorithms
that incrementally modify the existing hint h so that it is com-
patible with the new database. Crucially, the cost of these
algorithms depends on the number of mutations and not on
the size of the original database.

Definition 2 (Incremental offline/online PIR). An incremen-
tal OO-PIR protocol consists of eight algorithms, four of
which are inherited from an OO-PIR scheme (Definition 1)
and four new algorithms defined as follows:

• DBUpd(D, op)→ (D′, δ), a deterministic algorithm ex-
ecuted by offline server that takes in the original database
D, and a set of operations op (additions, deletions, and
in-place edits at certain positions), outputs a new database
D′ with size n′ and a summary of the changes, δ. We dis-
cuss δ in detail in Section 6, but it is small and does not
include the objects themselves. Note that the online server
also updates D with op, but does not produce δ or interact
with clients during offline phase.

• HintReq(h, δ) → uq, a randomized algorithm executed
by the client that takes as input the hint that the client had
previously obtained from the offline server and the update
summary δ, and outputs an update query uq .

• HintRes(D′, uq) → ur, a deterministic algorithm exe-
cuted by the offline server that takes in the new database
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D′ and an update query uq from the client, and outputs an
update response ur. The cost of this algorithm should be
proportional to the number of changes between D and D′.

• HintUpd(h, ur) → h′, a deterministic algorithm exe-
cuted by the client that takes in a hint h and a update
response ur from the offline server, and outputs a new hint
h′ that is valid with respect to the new database D′.

An incremental OO-PIR scheme should satisfy the following
correctness, security, and non-triviality properties.

Correctness. For every λ ∈ N, i ∈ [n′], we require that

Pr


di = D′[i]:

h← Prep(D)

(D′, δ)← DBUpd(D, op)

uq ← HintReq(h, δ)

ur ← HintRes(D′, uq)

h′ ← HintUpd(h, ur)

qi ← Query(h′, i)

ri ← Resp(D′, qi)

di ← Recov(h′, ri)


≥ 1−negl(λ)

where the probability is over the randomness of all algorithms.
The gray boxes show the new incremental operations.

For simplicity, we will use the notation

h′ ← IncPrep(D, op, h)

for the four hint update algorithms when there is no ambiguity.

Security. For λ ∈ N, and i ∈ [n′], define the distribution

P ′(i) :=

 qi :

h← Prep(D)

h′ ← IncPrep(D, op, h)

qi ← Query(h′, i)


An incremental OO-PIR scheme is secure if for all PPT

adversaries A,

max
i,j∈[n′]

{Pr[A(P ′(i)) = 1]− Pr[A(P ′(j)) = 1]} ≤ negl(λ)

Non-triviality. The size of the initial hint h should be sub-
linear in n (the size of D), and the size of the online query qi,
response ri, update summary δ, update query uq , and update
response ur should be sublinear in n′ (the size of D′). Finally,
for a list of updates op, the computational cost of IncPrep to
the servers should be in expectation proportional to |op|.

3.3 Types of updates considered

We consider three types of mutations: addition of new objects,
deletion of existing objects, and in-place edits that change the
database’s content but does not alter its size.

Additions. We aim to support databases where new items
are appended to the end: if the initial database is of size
n, then after m additions the database has size n + m and
the last m items are new. We make this restriction because
supporting insertions at arbitrary locations is difficult without
preprocessing the database from scratch as a single insertion
changes the indexing of all subsequent objects.

In-place edits. After m in-place edits, the updated database
is still of size n, and up to m of the n items have changed.

Deletions. Unlike the prior two operations, defining what
it means for a database object to be deleted in an OO-PIR
scheme is actually more subtle. We start by stating a trivial
fact: if a client fetches an object from the database before the
object is deleted, it is impossible to prevent the client from
accessing this object again since the client could have saved a
copy. Given this framing, we ask whether OO-PIR schemes
can guarantee two more nuanced definitions of deletion:

• Strong deletion. Assuming that a client has not explicitly
fetched a particular object in the past, an OO-PIR scheme
provides strong deletion if it can guarantee that once this
object is deleted from the server(s), the client will be un-
able to retrieve it. This is a desirable property in practice.
For example, if the database operator learns that some of
its objects are illegal or contain classified information, the
operator may wish to delete them and prevent all clients
who have not yet accessed these objects from doing so.

• Weak deletion. We relax the above definition to require
only that new clients do not learn any deleted items.
We show that in OO-PIR schemes where the hint is

stored at the client, strong deletion is very difficult to
achieve (§4.2.3). The intuition is that the hint itself implicitly
encodes information about all objects. Even if the client has
not queried the deleted object explicitly in the past, the client
can still recover it by querying other objects and reconstruct-
ing it with the existing hint. On the other hand, weak deletion
is possible; we discuss our approach in the following sections.

3.4 Are Simple Solutions Good Enough?

Before discussing our design, we first consider a few simple
approaches and describe their shortcomings. Suppose the
servers add a few items to the database. The simplest approach
is to merely let the client download and store all of the added
items. This actually works relatively well in some settings,
but when items are large this is problematic and in some
applications it could leak information. For example, the server
could infer whether the client is interested in the new items
or not by observing changes in the client’s query frequency.
Another approach is to set up a new PIR database for the
added items, preprocess that database, and give the client the
new hints. When a client issues a query, it sends queries to
both the old and the new databases, separately. This is roughly
the approach taken by Checklist [40], with the caveat that
Checklist carefully selects the sizes of the multiple databases.
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However, this multi-database approach increases the online
communication, since the client must send a query and receive
a response from each of the databases.

In contrast, our solution does not require the client to store
full items locally or to download multiple objects. However,
our approach is not black-box. Instead, it requires exploiting
the structure of the underlying OO-PIR protocol.

4 Incremental PIR: background and intuition
Our first solution builds on the two-server offline/online PIR
scheme of Corrigan-Gibbs and Kogan (CK) [23]. We start by
describing the CK protocol and then we describe our approach
to make its preprocessing incremental.

4.1 Background: the CK protocol

We discuss the “toy protocol” given in CK [23] that conveys
the key ideas of the scheme, but has high costs and violates
PIR’s non-triviality requirement. We later discuss how CK
addresses these issues. The CK protocol has two phases.

Offline phase. This phase is independent of the index that
the client wishes to query and includes the Prep step (§3.1).

• Prep(D) → h. The offline server generates
√
n ran-

dom subsets of indices in [n], S1, . . . , S√
n, each of size√

n, with the constraint that S1 ∪ · · · ∪ S√
n = [n].

For each Sj , the offline server uses the entries in Sj as
database indices to compute

√
n parities, p1, . . . , p√n,

where pj =
⊕

e∈Sj
D[e] for j = 1, . . . ,

√
n. Each par-

ity is b bits, which is the size of a database item. In short,
a parity pj for set Sj is the XOR of all objects in D refer-
enced by the indices in Sj . The server sends back the hint
h = {(S1, p1), . . . , (S√

n, p
√
n)} to the client.

Online phase. This phase depends on the specific index of
the item that the client wishes to fetch and is performed with
the online server who has no information about the subsets
chosen by the offline server.

• Query(h, i) → qi: The client generates a query for the
item at index i in D (i.e., D[i]) by finding a set S (included
in h) such that i ∈ S (we denote the corresponding par-
ity as pS). Then, the client probabilistically removes an
element from S: with probability 1 −

√
n−1
n , it removes

i; else it removes an element in S\{i} chosen uniformly
at random. The query qi is the resulting set S∗, which has
size
√
n− 1. This query is sent to the online server.

• Resp(D, qi) → ri: The online server computes the PIR
response as ri =

⊕
e∈S∗ D[e], and sends ri to the client.

• Recov(h, ri)→ di: Using the parity pS (from the Query
step), the client recovers D[i] by computing di = pS ⊕ ri.

The correctness of this scheme is probabilistic and follows
from the fact that pS =

⊕
e∈S D[e] and ri =

⊕
e∈S∗ D[e].

With probability 1 − O( 1√
n
), the set S∗ is identical to S

except that it is missing index i. In such case, the scheme is
correct and di (the XOR of pS and ri) is D[i]. This scheme

is secure against the offline server since the offline phase is
independent of i. It is secure against the online server because
qi is a uniformly random subset of [n] of size

√
n− 1.

In summary, this offline/online model pushes the expensive
linear computation to the offline phase, while the online server
only needs to do O(

√
n) computation.

Supporting multiple queries. To guarantee security against
the online server, a set cannot be used more than once—if
the online server sees two queries containing sets S\{i} and
S\{j}, computing the set difference results in the queried
indices. Therefore, the client and the server have to redo the
offline phase after the client issues a query. CK avoids this
expense with two ideas. First, the use of independent random
sets. Instead of the client generating and storing a hint h that
consists of

√
n sets and parities, where the sets have

√
n

elements with the restriction that S1 ∪ · · · ∪ Sn = [n], the
client represents h as

√
n log n independent random sets and

their parities, where each set contains
√
n indices sampled

uniformly at random. As a result, with high probability, each
index appears in at least one of the

√
n log n sets. Second,

CK introduces a refresh operation that is performed between
the client and the offline server after the client issues a query
to the online server. This refresh operation is cheap: the cost
to the offline server is simply O(

√
n). It consists of the client

generating a new set with
√
n− 1 random indices and getting

the corresponding parity from the server1. The client can then
add the index of the item it had previously queried (i) to this
set and update the parity (XOR with the queried item).

With the above two modifications, the client and the offline
server can perform a single expensive offline phase, followed
by refresh operations after every query. In this way, the ex-
pensive offline phase is amortized across multiple queries.

Reducing costs. In the above protocol, the client has to store
and download from the offline server n log2 n + b

√
n log n

bits:
√
n log n sets, each containing

√
n indices, where each

index is log n bits, and the corresponding
√
n log n parities,

each of which is b bits. To ensure the scheme is non-trivial
(i.e., has sublinear communication in n), CK uses a punc-
turable pseudorandom set (PPRS) [23] and assumes a compu-
tationally bounded adversary. With a PPRS, the client can use
a cryptographic key k to represent (and generate) a pseudoran-
dom subset S of [n]. The client can then puncture k to obtain
k∗, which is a key that generates all but one element of S and
which the client can send to the online server to generate S∗.
This means that in the offline phase, the client needs only store
(and upload to the offline server)

√
n log n cryptographic keys

(one for each set), in addition to downloading and storing the
parities. Consequently, the total communication and storage
costs are O(b

√
n log n).

1With small probability, the client sends a set that contains i, in which case
the refresh operation fails. Checklist [40] proposes a way to avoid this.
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4.2 Intuition: making CK’s preprocessing incremental

Consider a client that has already performed the offline phase
and holds

√
n log n parities and set keys. Suppose that m

items are then added to the database, so that it consists of
n+m objects with indices in [n+m]. To support the updated
database the client must obtain new parities and sets.

Strawman solution (not secure). The client could keep the
original parities and sets. Then for new items, sample a few
new sets from [n +m], and acquire parities for those via a
process similar to refreshing—proceeding with the online
phase as before. This appears reasonable at first glance, but it
is not secure. Observe that all of the original sets of indices
were sampled uniformly from [n]. However, in an incremental
OO-PIR scheme, security requires that every set be sampled
uniformly from all indices in the database (see Definition 2),
which is the set [n +m]. Otherwise, the distribution of the
client’s queries will be biased towards sets from [n], and
the online server will be able to make inferences about the
likelihood of certain queries being for new or old items. We
give details in Appendix B.

4.2.1 Introducing insertions to CK

In the previous section, we discuss how creating new sets that
include the added indices is problematic since the original
sets will not be uniformly sampled from [n+m], and hence
leaks information about the client’s queries. We therefore ask
whether instead of creating new sets and acquiring parities
for those new sets, the client can modify the existing sets and
parities it already has. That is, can we ensure that after the
update process is complete, all the sets that the client holds
are uniformly random subsets of [n+m].

Proposed protocol (simplified). Consider the simple ver-
sion of CK where the client stores, as a result of the offline
phase, the actual random sets of indices rather than their com-
pressed representation (which relies on set keys to generate
each set) in addition to the hints. Suppose that at a later point
in time, the database operator appends a single item to the ex-
isting n-item database D. The new item will have index n+1
(the database is indexed from 1). Observe that a randomly
sampled subset of [n + 1] of size

√
n should contain index

n+1 with probability
√
n

n+1 . A straightforward approach to ac-
complish this is for the client to add index n+1 to a given set
Sj probabilistically: with probability

√
n

n+1 , the client replaces
a random index in Sj with n + 1; with the remaining prob-
ability, the client does nothing with set Sj . This guarantees
that Sj is a random subset of [n+ 1]. Note that

√
n

n+1 is small,
so with high probability the index will not actually be added
to Sj . However, recall that in CK the client has

√
n log n sets;

the client performs the above probabilistic addition for each
one of them. This ensures that with high probability the index
n+ 1 is added to at least one of the sets.

The above achieves our desired incremental property: when

a new object is appended, the client and the offline server do
not need to preprocess the database from scratch. Instead, the
client—for each set for which there is a replacement (e.g., n+
1 replaces some existing index e in the set)—asks the offline
server for the parity difference (D[e]⊕D[n+ 1]). The client
then XORs D[e]⊕D[n+1] with the original parity of the set,
which cancels out the contribution of D[e] and adds D[n+1]
to the set. Note that we keep the size of each set at

√
n to

preserve the structure and simplicity of the CK scheme and its
security proof. In addition, we show that this has negligible
effect on query correctness (§6). Nevertheless, one could
allow sets to diverge and have different sizes, but the original
preprocessing would need to randomize the sizes of each set
to begin with. We show an example of this in Appendix E
where we discuss the SACM OO-PIR scheme [51].

We can generalize this scheme to a batch of appends as
follows. To add m items in a batch, the client samples a
number w from the hypergeometric distribution2 HG(n +
m,m,

√
n) for each set Sj , and replaces w random indices

in Sj with w random indices in {n + 1, . . . , n + m}. The
client then tells the offline server about the changes to any set
for which w > 0, so that the offline server can compute the
parity difference and allow the client to update its hints. In
Appendix A.1 we prove that this procedure ensures that the
resulting

√
n log n sets, each of size

√
n, are uniform random

subsets of [n+m] and the client’s hints are valid.
The protocol described here is too costly and does not meet

OO-PIR’s non-triviality since the client must explicitly store
the indices of each of the sets. We address this in Section 5.

4.2.2 Supporting in-place edits

In-place edits occur when the operator of the database changes
part of an object or replaces the object entirely. Such edits
are easier to handle than insertions because the size of the
database does not change, and therefore the existing sets that
a client has remain valid. The client only needs to update the
parities of all of the sets that contain the index of the object
that has changed. Specifically, suppose that the database oper-
ator edits D[e] to D′[e] (this change must happen in both the
offline and online servers). Then it is enough for the offline
server to send e and ∆ = D[e] ⊕D′[e] to the client. Given
this information, the client can determine all of the sets that
contain e and update their corresponding parity as p← p⊕∆.

4.2.3 Supporting deletions

There are many situations where a database operator may
wish to delete items from the database so that clients can no
longer fetch them. For instance, the database may contain
an illegal object (e.g., a confidential government document).
In such cases, we ask to what extent we can modify CK to
support deletion. We consider two cases: deletion against
honest clients who follow the protocol, and deletion against

2We use HG(N,M,K) to denote the distribution where the numbers of
total items, good items, and quantity drawn are N,M,K.
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malicious clients who may deviate arbitrarily. In either case,
we assume that the client has not previously fetched the object
that the operator wishes to delete.

Deletion against honest clients. Suppose the operator
wishes to delete the item at index e. To ensure correctness in
later retrievals, the client needs to update the parities of the
sets that contain this index e. A trivial way to achieve this is
for the offline server to send the item to the client and let the
client do an XOR to cancel out the parity of that item for all
of the relevant sets. However, this defeats the purpose as the
server is deleting an item that it does not want the client to
query by sending the item to the client. Instead, we handle
deletions by replacing the data with a uniform random object
r and using the in-place edit protocol of Section 4.2.2: the
server sends D[e]⊕ r to the client, who uses this information
to update its hints without obtaining D[e].

Deletion against malicious clients. The above scheme does
not work against a malicious client since the client could
keep a copy of the original parity p for set S or keep a copy
of the update (r ⊕D[e]) sent by the server during deletion.
In either case, the client can query the online server for the
item at index e and either use p to recover D[e] directly, or
use the new parity to recover r and then compute D[e] =
r ⊕ (r ⊕D[e]).

Indeed, secure deletion against malicious clients is impos-
sible in CK: when the client obtains the parities for its sets it
has in effect an encoding of all of the items in the database
and there is no way for the servers to remove the contribution
of the deleted item. To see why, consider the following attack.
The client holds a set S that includes the index e and other
indices. It uses the online server as an oracle to obtain each
and every item at indices in S except for e. Then, using the
original parity of set S it computes the element at index e.
This attack requires fetching only

√
n− 1 elements.

Our approach for honest clients does work with malicious
clients that join the system after the element is deleted since
they will not have a copy of the parity for the deleted object.

Reusing deleted slots. Since the server replaces the deleted
item with a random mask, it is possible to utilize this empty
slot when a new item is added by performing an in-place
edit of the random mask with the new element. In some
applications the server may even wish to batch a few deletions
and insertions and replace them with in-place edits.

5 Incremental pseudorandom sets
In the previous section we discussed a protocol that extends
CK to support insertions, deletions, and edits. However, it
requires the client to explicitly store the indices for each set,
which defeats non-triviality (§3.1) since the client storage
would be O(n log2 n):

√
n log n sets, each consisting of

√
n

indices in [n+m]. We therefore ask whether one can support
an updatable compressed representation of sets.

To answer this question, recall that CK gets storage and

communication efficiency with a pseudorandom set (PRS),
which we define next. We denote the set size as s(n), which
is a function of n, and write s(n) as s for simplicity.

Definition 3 (Pseudorandom set (PRS) [23]). A pseudoran-
dom set with size s consists of key space K, and algorithms:

• Gen(1λ, n) → k: a randomized algorithm that takes as
inputs a security parameter λ and the size of the set’s range
n, and outputs a set key k ∈ K.

• Eval(k) → S, a deterministic algorithm that takes as
input a set key k ∈ K and outputs a set S.
A formal correctness and security definition for PRS ap-

pears in CK [23], but briefly, correctness means: given k,
Eval(k) will output a set S ⊆ [n] with size s; and security
means: a PPT adversary cannot distinguish between S and a
random size-s subset of [n].

CK gives a simple PRS construction from a pseudorandom
function (PRF) f : K × [n]→ [n]. Gen generates a key k for
the PRF, and Eval produces the elements in the set by the eval-
uating the PRF at s points, i.e., S = {f(k, 1), . . . , f(k, s)}.3
CK shows that S satisfies correctness and security [23, Ap-
pendix B.1]. As a result, with a PRS the client stores

√
n log n

keys, which is a major reduction.
CK additionally requires the PRS to be puncturable,

which they obtain with a puncturable pseudorandom func-
tion [11, 14, 36, 39]. This helps CK achieve logarithmic com-
munication during the online phase (§4.1).

For clarity, what follows uses the notation Set[n](k, x, y)
to mean the set that results from evaluating a PRF with range
[n] using key k at consecutive points x, . . . , y for some x ≤ y.
When x = 1, we use the shorter notation Set[n](k, y).

5.1 Incremental PRS

The above approach produces indices on the original database
range, but we need to produce indices on an extended range.
We thus propose a definition for an incremental PRS. The
main change is the inclusion of auxiliary information aux
that changes how indices are derived from the set key.

Definition 4. An incremental PRS with set size s consists of
the following three algorithms:

• Gen(1λ, n) → (k, aux): a randomized algorithm that
takes a security parameter λ and a range size n, and outputs
a set key k ∈ K, and auxiliary information aux.

• Add(aux,m)→ aux′, a randomized algorithm that takes
in auxiliary information aux and the size of the added
range, m = o(n) (which is equal to the number of addi-
tions), and outputs new auxiliary information aux′.

• Eval(k, aux) → S: a deterministic algorithm that takes
as input a set key k ∈ K and (potentially updated) auxiliary
information aux and outputs a set S.

3Note that with small probability a client might generate a key k for which
there are collisions within the evaluations (e.g., f(k, 1) = f(k, 2)); in such
cases, the client samples a different key.
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There are two notes. First, while the range of the set changes,
the set size s is kept the same (§4.2.1). Second, the range
size from which Eval chooses the elements is encoded in aux.
The correctness, security, and non-triviality definitions are:

Correctness. Eval(k, aux) outputs a set S ⊆ [n] of size s,
for a uniformly sampled k, and Add modifies aux correctly:
given (k, aux) ← Gen(1λ, n) and aux′ ← Add(aux,m),
the output of Eval(k, aux′) is a set S′ ⊆ [n+m] of size s.

Security. The set S should be a pseudorandom subset of [n],
and the set S′ should be a pseudorandom subset of [n+m].

Non-triviality. We denote the symmetric difference of two
sets S1 and S2 as S1 ⊖ S2 = (S1 ∪ S2) \ (S1 ∩ S2). We
define a function g(n) to be the expected number of elements
in U ⊖ U ′ where U is a randomly sampled size-s set from
[n] and U ′ is a randomly sampled size-s set from [n + m],
and m = o(n). That is, E[|U ⊖ U ′|] = g(n). Let S and S′

be as defined above. We say that an incremental PRS scheme
is non-trivial if E[|S ⊖ S′|] = o(g(n)).

Note that the correctness and security property can be in-
ductively defined for multiple additions. The non-triviality
definition means that the intersection of the new set S′ with
the old set S should be in expectation large. Without this re-
quirement, one could trivially satisfy correctness and security
by sampling a new set S′ ⊆ [n+m] from scratch.

5.2 High-level idea of incremental PRS construction

Suppose for a moment that we do not care about compression
(i.e., we do not require that the PRS be concisely captured by
a set key). Then, one could just represent the PRS explicitly
as the subset S ⊆ [n]. Our goal is then to devise a procedure
to extend the range of the PRS; in other words, to obtain
S′ ⊆ [n+m] by modifying, in expectation, only a handful
of elements in S. We can achieve this by recalling the prob-
abilistic procedure from Section 4.2.1: (1) sample w from a
hypergeometric distribution HG(n +m, m, s); and (2) re-
move w random elements from S and add w random elements
in [n + 1, n +m] to S, thereby creating S′. This strawman
constructions guarantees all PRS properties (Appendix A.1).

We now discuss how to achieve the compressed represen-
tation. Given a set key k for a (non-incremental) PRS with
range [n], one solution to modify the range of the PRS while
preserving the usefulness of the key k is to perform the above
probabilistic replacement procedure and explicitly store the
added elements from [n+1, n+m] and the removed elements
from [n] as aux. In this way, Eval could generate the initial
set S using k, and then use the explicit elements from aux to
turn S into S′. This may work fine when m is tiny (since each
element can be represented using log(n +m) bits), but for
larger m, the storage for the elements being added/removed
could be much larger than a PRF key.

Our construction improves on the above by keeping side
information that is smaller than storing elements in the clear.
Observe that since the w elements in [n + 1, n + m] are

randomly chosen, we can actually use a PRF to generate
them—similarly to how CK uses a PRF to generate the origi-
nal subset S. Our first attempt is to use the same key that CK
uses to generate S with an additional PRF that has a different
range, which will capture the added elements. That is, we
build the updated set S as S1 ∪ S2 using a PRF key k, where:

S1 := Set[n](k, s− w), S2 := Set[m](k,w) + n.

In this way, the s− w elements in the original set have not
changed because the key is the same, and using the same key
to evaluate w points in the new range produces w pseudoran-
dom elements to be added. In other words, the first set S1

removes w random elements from the original set S, and the
second set S2 adds w random elements from [n+ 1, n+m]
to S—which is what we want. Intuitively, this construction
satisfies PRS security: S is a uniformly sampled subset of
[n +m] (each elements in [n +m] has probability s

n+m of
being included in S). Appendix A.3 gives the full analysis.

Complications. There are two complications with the above
approach. The first complication is that using a PRF to instan-
tiate the PRS can result in collisions. This means that there is
no guarantee that exactly w elements in the original set are
removed. For this reason, we use a PRP instead.

The second complication is that if we use the same key
to pick two pseudorandom permutations (or functions) from
two pseudorandom permutation (or function) families with
different ranges, the two could be related.4 This defeats the
security property in Definition 4. To avoid this, we use a
different key for each of the PRPs. Specifically, for each set
S, the original set key k becomes a master key used to derive
keys k1 and k2 by a key derivation function KDF. The set S
is then S = Set[n](k1, s− w) ∪ Set[m](k2, w) + n.

Extending a set multiple times. The above approach sup-
ports multiple range extensions. Suppose a client holds the
following information after increasing the range from [n] to
[n + m]: a PRS key k, auxiliary information t1 = s − w
and t2 = w. Together, they represent S = S1 ∪ S2, where
S1 = Set[n](k1, t1) and S2 = Set[m](k2, t2)+n, and k1, k2
are derived from k. Now, say we want to incrementally modify
S to be a random subset of [n+2m] (without loss of general-
ity). As before, we sample t3 fromHG(n+2m,m, s) and suc-
cinctly represent the added elements from [n+m+1, n+2m]
as Set[m](k3, t3) + n+m, where k3 can be derived from k.

Dealing with the removed elements requires a little more
work. We randomly select t3 elements in [s], and denote the
number of elements in [1, t1] as t1, and that in [t1+1, s] as t2
(remember that t1 + t2 = s). The client updates the auxiliary
information: tℓ ← tℓ − tℓ for ℓ = 1, 2. The resulting set
Set[n](k1, t1) ∪ Set[m](k2, t2) is then a set with t3 random
indices removed.
4Imagine if one PRF is AES and the other PRF (which needs a smaller range)
simply uses half of the output bits of AES. While individually each PRF is
secure, when used together with the same key the PRFs are related.
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1: procedure Gen(1λ, n)→ (k, aux)
2: Sample k ← K, and set aux← [(n, s)].
3: Output (k, aux).
4: procedure Add(aux,m)→ aux′

5: Parse aux as [(rℓ, tℓ)]ℓ∈[L].
6: Compute r ←

∑
ℓ∈[L] rℓ.

7: Sample w ←HG(r +m,m, s).
8: Sample w points uniformly in [s].
9: Set t0 ← 0.

10: for ℓ ∈ [L] do
11: Set tℓ ← number of points in (

∑ℓ−1
z=0 tz ,

∑ℓ
z=0 tz ].

12: Update tℓ ← tℓ − tℓ
13: Set rL+1 = m, tL+1 = w.
14: Output aux′ ← [(rℓ, tℓ)]ℓ∈[L+1].

15: procedure Eval(k, aux)→ S
16: Parse aux as [(rℓ, tℓ)]ℓ∈[L].
17: for ℓ ∈ [L] do
18: Derive keys kℓ ← KDF(k, ℓ)
19: Compute set Sℓ ← Set[rℓ](kℓ, tℓ) +

∑
z<ℓ rz

20: Output S ←
⋃

ℓ∈[L] S
ℓ

FIGURE 1—Construction of incremental PRS Ψ.

Therefore, after extending the range twice (each time by
m), S can be represented with k, t1, t2, t3, and written as:

Set[n](k1, t1) ∪ Set[m](k2, t2)+n ∪ Set[m](k3, t3)+m+n,

where k1, k2, k3 are derived from k, and t1 + t2 + t3 = s.

5.3 Incremental PRS construction

The previous section gives the definition of incremental PRS
that we seek, and the high level overview of our construction.
We formalize that procedure in Figure 1.

A set is represented using a set key k and some short
auxiliary information aux. The latter is a list of tuples
[(rℓ, tℓ)]ℓ∈[L], where L is the number of subranges of a set
(the number of times the PRS’s range has been extended from
the initial range is hence L− 1). Each tuple (rℓ, tℓ) denotes
the number of elements, tℓ, chosen from the subrange rℓ. For
instance, the aux value of the example in Section 5.2 (which
extends the range twice) is [(n, t1), (m, t2), (m, t3)], and the
full range is [n+ 2m].

Theorem 1. Assuming a set of secure PRPs, PRS construc-
tion Ψ satisfies PRS correctness, security, and non-triviality.

Appendix A.3 gives a proof of this theorem.

Can we puncture our incremental PRS? Unfortunately
our construction does not preserve the puncturable property
since we use a PRP instead of a PRF to instantiate our in-
cremental PRS and there does not exist puncturable PRP
constructions [10]. For our incremental CK, this results in
less succinct online communication (O(

√
n)), but in practice

it works well (§8). Designing a puncturable incremental PRS
is an interesting open question.

1: procedure Prep(D)→ h
2: for j ∈ [J ] do
3: Client samples (kj , auxj)← Ψ.Gen(1λ, n)

4: for j ∈ [J ] do
5: Server computes Sj ← Ψ.Eval(kj , auxj)
6: and pj ←

⊕
e∈Sj

D[e]

7: Output h← {(kj , auxj , pj)}j∈[J]

FIGURE 2—Offline preprocessing between offline server and client.
The client stores h and uses it during online queries.

6 Adding incremental PRS into OO-PIR
In order to incorporate our PRS into CK, we adapt two helper
functions from CK [23].

Membership testing. Let Member(i, (k, aux)) be an algo-
rithm that uses a single PRP call to determine whether index
i is in the set specified by (k, aux). Recall that aux is a list
[(rℓ, tℓ)]ℓ∈[L]. We first identify which subrange i is in, say rℓ.
Then we check if the corresponding tℓ is 0. If so, then the set
does not contain any elements in subrange rℓ, and Member
outputs 0. Otherwise, we compute the inverse permutation
keyed by kℓ (derived from k) on i. If the result is in [tℓ], then
Member outputs 1, otherwise it outputs 0.

Shifting PRS. During a set refresh (§4.1), the client needs
to generate a set under the restriction that a certain index i
is in the set. If the client simply generates a random PRP
key k, which defines a set S = Set[n

′](k, s) where n′ is the
updated database size, the probability that i ∈ S is very low.
We instead randomly choose an element x ∈ S, define a shift
sh = x− i mod n′, and let S′ = S + sh mod n′. In this
way, k together with a shift sh, succinctly represents a set
S′ that contains i with all other s− 1 indices being random.
For simplicity, in the next section we omit sh and just use
(k, aux) ← GenWith(i, n′) to denote the above procedure;
we assume Eval takes the shift into account when computing
the set. We give the details in Appendix A.4.

6.1 Updating hints with incremental PRS

We now discuss how to make the CK protocol incremental
with the use of incremental PRS Ψ. We assume the client
holds J sets; to ensure OO-PIR’s non-triviality, J must be
sublinear in n so we let J = (n/s) log n as in Section 4.1.

The offline preprocessing (Figure 2) is the same as in Sec-
tion 4.1, except that the hints now include auxiliary infor-
mation for each set. After preprocessing, if the database D
changes due to a batch of operations op, the client and the
offline server run IncPrep(D, op, h) to get a new hint h′. We
describe each step in IncPrep below.

First, the offline server runs DBUpd to group the list of
changes specified by op (e.g., add index 101, edit index 2, del
index 7) and produces a short summary δ, which we define in
Figure 3. The server sends δ to the client.

Upon receiving δ, the client runs HintReq to generate uq

(Figure 4). uq consists of succinct representations for all the
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1: procedure DBUpd(D, op)→ (D′, δ)
2: Use op to operate on D, produce D′.
3: Group operations in op by additions, edits, and deletions:
4: if op contains madd additions then
5: Set δadd ← (“add”,madd)

6: Set D∗ be the database after the madd additions.
7: if op contains edits at x1, . . . , xmedit then
8: Set δedit ← (“edit”, [x1, . . . , xmedit ])
9: Set (X1, . . . , Xmedit )← (D∗[x1], . . . , D∗[xmedit ])

10: Set (X′
1, . . . , X

′
medit

)← (D′[x1], . . . , D′[xmedit ])

11: if op contains deletions at y1, . . . , ymdel then
12: Set δdel ← (“del”, [y1, . . . , ymdel ])
13: Set (Y1, . . . , Ymdel )← (D∗[y1], . . . , D∗[ymdel ])
14: Set (Y ′

1 , . . . , Y
′
mdel

)← (r1, . . . , rmdel ),

15: where rz
R←− {0, 1}b for all z ∈ [mdel]

16: Set δ ← (δadd, δedit, δdel), output (D′, δ)

FIGURE 3—Algorithm for producing summary δ. The offline server
keeps the parity difference for edits (the X-array) and for deletions
(the Y -array) generated in DBUpd, which are used for HintRes.

1: procedure HintReq(h, δ)→ uq

2: Parse δ as (δadd, δedit, δdel)
3: Initialize an empty set Q
4: Initialize each entry in (aux′

1, . . . , aux
′
J ) as ⊥

5: Initialize each entry in (aux∗
1, . . . , aux

∗
J ) as ⊥

6: for j ∈ [J ] do
7: if δadd = (“add”,madd) then
8: Set aux′

j ← Ψ.Add(auxj ,madd) // see Fig. 1, line 4
9: Parse aux′

j as [(rℓ, tℓ)]ℓ∈[L]

10: if tL ̸= 0 then add j into set Q, set aux∗
j ← aux′

j

11: if δedit = (“edit”, [x1, . . . , xmedit ]) then
12: if ∃z ∈ [medit] s.t. Member(xz , (kj , aux

′
j)) = 1 then

13: Add j into Q

14: if δdel = (“del”, [y1, . . . , ymdel ]) then
15: if ∃z ∈ [mdel] s.t. Member(yz , (kj , aux′

j)) = 1 then
16: Add j into Q

17: Output uq ← {(kj , auxj , aux
∗
j )}j∈Q

FIGURE 4—Client algorithm for generating update request. It keeps
a set Q for all changed sets. aux′ indicates the updated auxiliary
information, and aux∗ encodes the information needed for the server
to do incremental updates (⊥ or aux′).

sets whose elements changed. In some cases, the number of
changes will be large enough that with high probability all of
the client’s sets will be impacted. In Appendix C, we describe
optimized algorithms for this case.

The offline server, upon receiving uq, runs HintRes (Fig-
ure 5) to generate the parity of data blocks that the client
needs to update its hints. For the three types of changes, the
server’s computation is different. For additions, the server
uses the helper function EvalDiff (Figure 5) to generate the in-
dices that are added into or removed from a set. This function
takes in a set key k, the original aux, and the updated aux′

for one batch of additions (aux and aux′ should have the
same subranges). This helper function efficiently computes
S ⊖ S′, where S ← Eval(k, aux) and S′ ← Eval(k, aux′),
without materializing either set. The server then computes the
parity of data blocks indexed by elements in S ⊖ S′.

1: procedure HintRes(D′, uq)→ ur

2: Parse uq as {(kj , auxj , aux
∗
j )}j∈Q.

3: Initialize a tuple (p′1, . . . , p
′
|Q|) and set them all to 0b.

4: Initialize each entry in (aux′
1, . . . , aux

′
|Q|) as ⊥.

5: for j ∈ Q do // process additions first
6: if aux∗

j ̸=⊥ then
7: Set aux′

j ← aux∗
j

8: Compute S ← EvalDiff(kj , auxj , aux
′
j)

9: Compute p′j ←
⊕

e∈S D′[e]

10: else Set aux′
j ← auxj

11: for j ∈ Q do // process edits and deletions
12: Update p′j ← p′j

⊕
(Xz ⊕X′

z), ∀z ∈ [medit]

13: such that Member(xz , (kj , aux
′
j)) = 1

14: Update p′j ← p′j
⊕

(Yz ⊕ Y ′
z ), ∀z ∈ [mdel]

15: such that Member(yz , (kj , aux′
j)) = 1

16: Output ur ← (p′1, . . . , p
′
|Q|)

17: // compute symmetric difference between two sets
18: procedure EvalDiff(k, aux, aux′)→ S
19: Parse aux as [(rℓ, tℓ)]ℓ∈[L]

20: Parse aux′ as [(rℓ, t′ℓ)]ℓ∈[L+1]

21: for ℓ ∈ [L] do
22: Derive keys kℓ ← KDF(k, j)
23: Compute Sℓ ← Set[rℓ](kℓ, t

′
ℓ + 1, tℓ), ∀t′ℓ < tℓ

24: Compute S∗ ← ∪ℓ∈[L]S
ℓ

25: Output S ← S∗ ∪ Set[rL+1](kL+1, t
′
L+1)

FIGURE 5—Offline server responds to an update request by com-
puting the parity difference for each set that has changed.

1: procedure HintUpd(h, ur)→ h′

2: Parse h as {(kj , auxj , pj)}j∈[J]

3: for j ∈ [J ] do Update auxj ← aux′
j // see Fig. 4, Line 8

4: Parse ur as (p′1, . . . , p
′
|Q|)

5: for j ∈ Q do
6: Update pj ← pj ⊕ p′j .

7: Output h′ ← {(kj , auxj , pj)}j∈[J]

FIGURE 6—Client algorithm for updating local hints.

For deletions and edits, the offline server uses the client’s
set keys to find in which of the client’s sets the changed
indices fall, and then computes the parity difference. Finally,
the server sends the hint response to the client, who then uses
it in HintUpd (Figure 6) to update its hints.

6.2 Online query and refresh

The client’s online query for some index i works as follows.
First, the client identifies which set contains i using Ψ’s
Member function (§6). Then, the client uses Eval to derive the
set’s indices, and then removes i from the set with probability
(s− 1)/n′ (or another index with the remaining probability),
where s is the set size and n′ is the newest database size.
This is in effect a trivial way of doing puncturing. Finally, the
client sends the remaining indices in the clear to the online
server as the query. We give the details in Figures 7 and 8.

Although the above approach leads to online communica-
tion of O(

√
n) bits (we have n ≤ n′), which is asymptotically

worse than the polylog communication in CK, we show in our
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1: Client keeps state = (n′, j∗), where n′ is the current database size,
and j∗ indicates which set is currently used for query.

2: procedure Query(h, i)→ qonline
3: Parse state = (n′, j∗)
4: for j ∈ [J ] do // find a set containing i
5: Compute α← Ψ.Member(i, (kj , auxj))
6: if α = 1 then set j∗ ← j and break
7: if for all j ∈ [J ], α = 0 then output fail
8: // generate query
9: Compute Sonline ← Ψ.Eval(kj∗ , auxj∗ )

10: Sample βonline ← Bernoulli( s−1
n′ )

11: if βonline = 0 then S′
online ← Sonline\{i}

12: if βonline = 1 then
13: yonline

R←− Sonline\{i}, S′
online ← Sonline\{yonline}

14: Output qonline ← S′
online

15: procedure Refresh(h, i)→ qoffline
16: Parse state = (n′, j∗)
17: Set (knew, auxnew)← Ψ.GenWith(i, n′)
18: Compute Soffline ← Ψ.Eval(knew, auxnew)
19: Compute βoffline ← Bernoulli( s−1

n′ )
20: if βoffline = 0 then S′

offline ← Soffline\{i}
21: if βoffline = 1 then
22: yoffline

R←− Soffline\{i}, S′
offline ← Soffline\{yoffline}

23: Update kj∗ ← knew, auxj∗ ← auxnew.
24: Output qoffline ← S′

offline

25: procedure QueryRecov(ronline, h)→ di
26: Parse state = (n′, j∗)
27: Parse h as {(kj , auxj , pj)}j∈[J]

28: Output di ← pj∗ ⊕ ronline

29: procedure RefreshRecov(roffline, h)
30: Parse state = (n′, j∗)
31: Parse h as {(kj , auxj , pj)}j∈[J]

32: Update pj∗ ← roffline ⊕ di

FIGURE 7—Client algorithms for online query. Client fetches an
item using Query and QueryRecov. To refresh a used set, the client
samples a new set (Refresh) and gets its parity (RefreshRecov).

evaluation that the communication cost is reasonable given
that element sizes in real databases are larger than one bit (§8).

To refresh a set, the client generates a new key, and updates
the hint. After the refresh is complete, the refreshed set’s
auxiliary information will simply consist of one tuple, (n′, s).
Notice that refreshing a set has the nice side effect of reducing
the size of the auxiliary information since we no longer need
to maintain all the subranges of the incremental PRS (since
a refreshed set is basically a set generated from scratch). As
a result, when the number of queries following a database
update is such that the client has used every set at least once,
the client’s auxiliary information will be in a state that is
comparable to preprocessing the new database from scratch.

Failure probability. The proposed online phase does not
meet our correctness definition (§3.2) because the client fails
to puncture the set at index i with probability O(1/

√
n) where

n is the original database size, rather than negl(λ). However,
we can employ the refinement to CK given in Checklist [40]
to reduce this error to negl(λ). For simplicity, we give the
former in Figure 7 and discuss the latter in Appendix A.4.2.

Besides the aforementioned puncturing failure, another

1: procedure Resp(q,D)→ r
2: Parse q as a set S
3: Output r ←

⊕
e∈S D[e]

FIGURE 8—Server algorithm during the online phase.

source of failure is when an index is not in any of the sets for
which the client has hints. As we mention in Section 4, we
chose to allow the database to grow while keeping the size of
the sets held by the client the same (Appendix E discusses an
incremental OO-PIR protocol which supports sets of different
sizes). As a result, the probability that an index is not in any
of the sets will necessarily increase. We analyze this both in
theory and concretely, and argue that this probability is quite
small.

Suppose each set has size s, is a random subset of [n], and
the client holds n/s such sets. The probability of failing to
find a desired index i in any of the sets is (1−s/n)n/s, which
is close to 1/e when s = n1/2 and n is large. Considering that
we (and CK) use a factor of log n more sets, the probability
of failing to find i in any of the

√
n log n sets is roughly 1/n.

When the size of the database grows to n + m where
m = o(n), the probability of failing to find i in any of
n/s sets is (1 − s/(n + m))n/s, which is asymptotically
(1/e)1−o(1). With a factor of log n more sets, this probability
is O(1/n1−o(1)). Concretely, suppose the database is of size
220, and the client holds 214 sets, where each set has size 210.
The failure probability in this case is 10−7. If the server adds
210 more items, the failure probability is still in the magni-
tude of 10−7. When the number of additions reaches 218, the
failure probability increases to the magnitude of 10−6.

Theorem 2. Assuming an incremental PRS Ψ that satisfies
correctness, security, and non-triviality (Definition 4), then the
incremental OO-PIR defined in Figures 3–8 (with the online
query improvement in Appendix A.4) satisfies correctness,
security, and non-triviality (Definition 2).

We give the proof in Appendix A. In particular for non-
triviality, we show in Appendix A.4.2 that the computational
cost to the offline server for IncPrep with m operations (speci-
fied by op) on a size-n database is in expectation O(bm log n),
with data item size b, set size s, and J = (n/s) log n. In
contrast, preprocessing from scratch for the entire updated
database requires O(b(m+ n) log n) server computation.

Nevertheless, communication costs for hint updates are
similar to preprocessing from scratch since that operation
is already sublinear in the database size in order to achieve
non-triviality (Definition 1).

6.3 Other PIR Schemes

Due to space limitations, we only discuss our incremental CK
protocol in the main paper. However, Appendix E discusses
how to make the SACM OO-PIR scheme [51] incremental
with similar high-level ideas as those presented here, but with
vastly different concrete mechanisms.
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7 PIR-Tor with incremental OO-PIR
While there are many applications that could benefit from
our incremental OO-PIR constructions, we pick PIR-Tor [47]
as a representative example. PIR-Tor is a good fit since the
underlying database mutates slightly over time, and users
query this database periodically. We review PIR-Tor below.

Tor [26] provides a simplified view of the network by main-
taining directory servers that track the Tor relays that are
currently available. To build an onion routing circuit, users
download a description of the entire network from the direc-
tory servers every 10–15 minutes. PIR-Tor [47] proposes the
use of PIR in the context of these directory servers so that
clients can retrieve the description of the desired relays with-
out revealing to the directory servers which relays were being
requested. This approach has the benefit of lowering commu-
nication cost and improving scalability since communication
costs were often the bottleneck for the directory servers. An
obvious drawback is that the server’s computation becomes
linear in the number of Tor relays currently available, which
ultimately places a hard limit on the number of concurrent
queries that a directory server can process. Hence, using a
PIR scheme that achieves sublinear computation, such as our
incremental CK construction (§4), can improve scalability
and gracefully handle updates to the directory server database.

Assigning roles to directory servers. Since Tor has multi-
ple directory servers and a large number of clients, a natural
question is how to assign the roles of offline and online servers
to directory servers and how the clients should choose which
servers to contact in a way that load balances the work (since
offline servers perform the expensive preprocessing step). We
make a simple observation: a server can act as an offline
server for one client and an online server for another. Based
on this, the Tor trusted authority propagates up-to-date relay
descriptions to all the directory servers. When a client reg-
isters, the client can then decide on two random directory
servers to use as an offline and online server, respectively.

Moreover, each online server has no idea of which offline
server the client chooses. In order to figure out the exact index
that the client queries, the online server needs to collude with
the exact directory servers that is communicating with the
client. Suppose there are p directory servers and an adver-
sary controls q of them. Then, for each client, the security is
compromised with probability roughly ( qp )

2.

8 Evaluation
Our evaluation aims to answer the following questions:

• What are the concrete computational and communication
costs of our incremental OO-PIR constructions?

• What is the throughput and latency of incremental prepro-
cessing compared to preprocessing from scratch?

• What is the cost to the client to maintain the hints?
• What are the benefits of incremental OO-PIR in PIR-Tor?

To answer these questions, we implement and evaluate our
incremental CK. We also have a construction for incremental
SACM (Appendix E) but find that both the original [51] and
our incremental version are not yet useful in practice (for a
database with 220 items, the size of the hints in both schemes
is as large as the database).

Baselines. We use two state-of-the-art baselines: (1) CK OO-
PIR [23], which we implement; and (2) the two-server DPF-
based PIR scheme of Gilboa and Ishai [30], implemented by
Kales et al. [1, 37]. The latter has no offline phase.

Implementation. Our incremental CK implementation is
~2,000 lines of C++. Implementing our PRP requires care
since the range (and domain) can be very small because the
database operator could add just a handful of elements; typi-
cal PRP constructions are not secure when the range is small.
We use AES to implement a PRF for small range, and then
apply Patarin’s proposal [49] to the PRF to build a secure
PRP that has a small power-of-two range. Finally, we use the
technique by Black and Rogaway [9] for turning a PRP with
a power-of-two range into a PRP with an arbitrary range.

We generate the hypergeometric sampling for hint updates
using multiple Bernoulli samplings. For the CK baseline, we
use the GGM construction [32] to instantiate the puncturable
PRF out of a PRG. When evaluating the puncturable PRF at
continuous points 1, 2, . . . , s, we apply breadth-first expan-
sion in the PRG tree to reduce costs. In our experiments, we
choose the number of sets J such that the failure probability
of finding an index in one of the sets is around 10−6.

Evaluation testbed. We run all of our experiments on Cloud-
Lab [28] m510 machines (8-core 2 GHz Intel Xeon D-1548
processor and 64 GB RAM) running Ubuntu 20.04. The net-
work latency between machines is 20 ms and the throughput
is around 1.1 Gbps. For results, we give the average over ten
trials; we find that in all cases standard deviations are less
than 10% of the mean.

8.1 Microbenchmarks for incremental PIR

We run a series of microbenchmarks to measure the time
required for the initial preprocessing, online query processing,
and updating hints. Figure 9 shows the results under three
different database sizes, where each data object is 32-bytes.

Online costs. A client’s online query consists of two parts: a
query for an item to the online server and, in parallel, a refresh
of the used set to the offline server. Both servers’ logic is the
same: they perform a number of XORs that is sublinear in the
database size (in our case roughly square-root). As a result,
the costs are low; for a database with a million records, each
server spends less than 0.1 ms. In terms of communication,
even though clients send indices in the clear, it is still practical:
for one million elements, the combined cost to query an item
and refresh the used set is under 16.4 KB.
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Database size 216 218 220

Client CPU costs
Prep (ms) 0.36 0.74 1.28
Query (ms) 3.93 6.48 7.87
Refresh (ms) 1.35 2.07 4.90
IncPrep (sec) 0.06 0.50 3.96

Server CPU costs
Prep (sec) 3.64 14.52 58.67
Resp (ms) 0.02 0.04 0.06
IncPrep (sec) 0.07 0.25 1.03

Communication costs
Prep (MB) 0.18 0.37 0.74
Query (KB) 2.04 4.09 8.18
Refresh (KB) 2.04 4.09 8.18
IncPrep (MB) 0.19 0.38 0.76

FIGURE 9—Microbenchmarks for the operations in incremental CK
when adding a batch of new elements (1% of the original database).

Update costs. For hint updates, we measure the cost of a
batch of operations that increases the database size by 1%.
Figure 9 shows that the computational cost of incremental
preprocessing (IncPrep) is about two orders of magnitude
lower than preprocessing from scratch (Prep). Note that the
incremental preprocessing computation is not strictly linear in
the number of additions since evaluating a PRP for non-power-
of-two ranges is more expensive due to cycle walking [9].

0 1000 2000 3000 4000
throughput (queries/sec)

0

50

100

150

200

250

m
ea

n 
la

te
nc

y 
(m

se
c)

DPF-PIR CK incremental CK

(a) Online phase.

0 100 200 300
throughput (queries/min)

0

1

2

3

m
ea

n 
la

te
nc

y 
(s

ec
)

Prep (1%)
Prep (5%)

IncPrep (1%)
IncPrep (5%)

(b) Preprocessing and hint updates.

FIGURE 10—Mean latency and server throughput as a function of
increasing load (independent variable not depicted) during online
phase and incremental preprocessing phase. Each data point repre-
sents the latency and the throughput achieved at a given load (low
and to the right is better). A vertical spike indicates that the system
has reached saturation: throughput is consistent but mean latency
goes up since requests must spend time in queues waiting for service.

8.2 Online performance and costs

The previous microbenchmark shows the savings that OO-PIR
servers can expect when there are additions to the database
(edits and deletes are cheaper). In real applications, we also
consider end-to-end metrics: (1) the latency of issuing online
queries (fetching the desired item and refreshing the used set)
and updating hints; (2) the cost to the servers to update the
database; and (3) the client’s storage cost over time.

We measure these metrics with parameters inspired by
Tor: database items are 2KB (size of a Tor relay descriptor),
and the initial database consists of 7,000 items (number of

Tor relays [2]). For database updates, we compile and use
historical traces of Tor relay updates from February to May
2021, and use 3 days worth of changes for each batch. We also
give experiments for a larger deployment of a hypothetical
Tor network with 70K relays in Appendix D.

Performance. We measure the latency experienced by a
client and throughput achieved by the servers when issuing
online queries as we increase the load on the system under our
incremental CK (§4) and the baselines. Figure 10a depicts our
results. Compared to DPF-PIR, incremental CK improves the
throughput achieved by roughly 6×. Since incremental CK
performs no cryptography (the indices are sent in the clear),
it achieves a higher throughput and lower latency than both
baselines which derive the indices from a key.

Online communication. Figure 11a shows the online com-
munication for two baselines (DPF and CK) and incremental
CK. We show the combined size of the queries sent to the two
servers and the corresponding response. Queries in the DPF
baseline are smaller than incremental CK since they send
cryptographic keys rather than indices in the clear. 5 The size
of each server’s reply is optimal for all three schemes and
consists of the size of a data element (2KB). This optimal
response size is a benefit of our approach over Checklist [40],
which supports additions by storing them in different buckets
but requires fetching an element from every bucket.

8.3 Offline performance and costs

We then measure the latency experienced by the client and
the throughput achieved by the server when updating hints as
a result of a database change. The baseline lets the client and
the offline server re-do the preprocessing from scratch.

Figure 10b depicts the results for preprocessing and hint
updates for incremental CK. We find that it achieves 2–4×
speedup (depending on batch size) compared to preprocessing
from scratch. This results in both lower latency experienced
by the client and higher throughput for the offline server. The
benefit of our incremental preprocessing is more prominent
when there are only a small number of data objects added, or
if edits and deletions are performed.

Communication costs. Incremental CK incurs higher of-
fline communication (initial preprocessing and hint updates)
than CK because the client needs to also send auxiliary infor-
mation to the server. This is depicted in Figure 11b.

Computation and storage costs. We measure the costs in-
curred by the offline server and the client during a database
update by relying on the traces we collected for Tor relays.
Specifically, the offline server sets up a database with 7K
relays, and the client and the server preprocess it. Then, the
server adds relays over time with both client and the offline
server engaging exclusively in incremental preprocessing.

5For small databases (e.g., 7K elements) the indices are smaller than the
punctured key, but this is not the case for larger databases (Appendix D).
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FIGURE 11—Online communication costs for DPF-PIR, CK, and
incremental CK, and offline communication costs for CK and incre-
mental CK for our experiment with 7K Tor relays.

0 25 50 75
days

0

2

4

6

re
la

y 
nu

m
be

rs
 (k

) added relay numbers

0.0

0.5

1.0

1.5

tim
e 

(s
ec

)server cost (per change)
server cost (amortized)

(a) Server computation costs.

0 25 50 75
days

0

2

4

6

8

10

pe
rc

en
ta

ge
 o

f g
ro

w
th #Queries between updates

100
200
500

(b) Client local storage changes.

FIGURE 12—Offline server computation costs and client storage
over time based on a 3-month Tor relay update trace.

Figure 12a shows the results. The computation for the
server is proportional to the number of changes, and is signif-
icantly lower than preprocessing the updated database from
scratch. The downside for the client is that it must store more
data over time. In particular, as shown in Figure 12b, the
client storage over a period of 90 days grows based on the
client’s query and server’s update frequency. The reason that
the client’s query frequency matters is that every time the
client uses a set it refreshes the set, thereby eliminating the
need to keep auxiliary information for that set (§6.2). As a
result, the more queries that a client issues between database
updates, the lower its storage overhead. Among all frequen-
cies shown, the percentage of client storage growth is less
than 8%. Furthermore, the client can preprocess the database
from scratch when the local storage becomes too high.

9 Discussion
This work introduces the idea of incremental preprocessing
for offline/online PIR with the hope of supporting real-world
applications which often have mutable databases. Our eval-
uation shows that our changes to the CK OO-PIR scheme
are affordable in terms of communication and storage costs
and effective at reducing the impact of updates. However, our
approach is not a panacea and open questions remain.

If the database items are large, OO-PIR schemes where
the hints are stored at the client (e.g., CK and SACM) are
a poor fit. Since our incremental preprocessing is not black-
box, it remains to be seen how to apply it to schemes where
the hints are kept at the servers [8]. Furthermore, this work

investigates only two-server PIR schemes; designing efficient
preprocesing for single-server PIR remains an open question
(existing schemes rely on obfuscation [15, 18, 23]), and en-
suring that the preprocessing is incremental is an exciting
direction. Finally, it is unclear how to support incremental
preprocessing and PIR-by-keywords [21] given that muta-
tions that changes the keywords of existing items or add new
keywords would impact the underlying search data structure.

Nevertheless, we are excited by the prospect of continuing
to extend the class of applications that can profitably use PIR
to build services that safeguard users’ privacy.
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A Proofs and analysis for incremental CK
A.1 Proofs for strawman proposal

Theorem 3 (Batched addition). For a random subset S ⊆ [n] of
size s, construct S′ as follows:

• sample a number w fromHG(n+m,m, s),
• randomly choose w elements from [n+ 1, n+m],
• replace w random elements in S with the above w elements.

Then S′ is a random subset of size s of [n+m].
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Proof. We show that any index i ∈ [n + m] is contained in the
resulting set S′ with the same probability s/(n+m).

We examine the following two cases.
Case 1. For a fixed i ∈ [n+ 1, n+m], S′ contains i if and only

if i is in the sampled w elements. That is,

Pr[i ∈ S′] =

m∑
z=1

Pr[w = z] · z
m

if s ≥ m, and

Pr[i ∈ S′] =

s∑
z=1

Pr[z = 1] · z
m

if s < m.

By the hypergeometric distribution formula, if s ≥ m the RHS:

1

Cs
n+m

· (C0
m−1C

s−1
n + C1

m−1C
s−2
n + ...+ Cm−1

m−1C
s−m
n )

and if s < m the RHS is:
1

Cs
n+m

· (C0
m−1C

s−1
n + C1

m−1C
s−2
n + ...+ Cs−1

m−1C
0
n)

Both terms equal Cs−1
n+m−1/C

s
n+m = s/(n+m).

Case 2. For a fixed i ∈ [n], S′ contains i if and only if i is sampled
into S and i has not been kicked out by the replacement with the w
sampled elements. Therefore we have

Pr[i ∈ S′] =
s

n
· (

m∑
z=0

Pr[w = z] · (1− z

s
)) if s ≥ m, and

Pr[i ∈ S′] =
s

n
· (

s∑
z=0

Pr[w = z] · (1− z

s
)) if s < m,

where the leading factor s/n captures i being selected into the set
initially, and the rest stands for the probability that i remains in the
set. Using the result from the previous case, we have

Pr[i ∈ S′] =
s

n
(1−

m∑
z=1

Pr[w = z] · z
s
)

=
s

n
(1− m

s
(

m∑
z=1

Pr[w = z] · z
m

))

=
s

n
· (1− m

s
· s

m+ n
) =

s

n+m
for s ≥ m,

Pr[i ∈ S′] =
s

n
(1−

s∑
z=1

Pr[w = z] · z
s
)

=
s

n
(1− m

s
(

s∑
z=1

Pr[w = z] · z
m

))

=
s

n
· (1− m

s
· s

m+ n
) =

s

n+m
for s < m.

A.2 Secure puncturable PRS from partially secure PRP

In this section, we show that in order to ensure security for punc-
turable PRS, having a partially secure PRP suffices. In order to use
prior proofs from CK [23], we view our construction of incremental
PRS as a puncturable PRS with trivial puncturing.

Definition 5 (Puncturable PRS security [23]). For λ, n ∈ N, and
a puncturable PRS Φ = (Gen,Punc,Eval) with size s, define the
following game, played between a challenger and an adversary.

The challenger executes the following steps:

• k ← Φ.Gen(1λ, n)

• S ← Φ.Eval(k)

• x∗ R←− S; kp ← Φ.Punc(k, x∗)

and sends 1λ and kp to the adversary. The adversary outputs an
integer x′ ∈ [n] and “wins” if x∗ = x′. The advantage is defined as

AdvPPRS(λ) = Pr[x∗ = x]− 1

n− s+ 1
.

We call a PPRS ϵ-secure if the above advantage is less than ϵ,
where ϵ is a negligible function on the security parameter λ.

Lemma 1. Given a PRP = (Gen,Eval) : [n] → [n] that is ϵ-
secure (where ϵ is a negligible function on λ) over s(n) queries, the
following puncturable PRS Φ with linear-sized puncturable keys is
ϵ-secure.

Proof. We modify Construction 4 in CK [23] as follows:

• Φ.Gen(1λ, n)→ k:
Sample k ← PRP.Gen(1λ, n).

• Φ.Eval(k)→ S:
Compute S ← {PRP.Eval(k, 1), . . . ,PRP.Eval(k, s(n))}.

• Φ.Punc(k, i)→ kp:
Define kp as the elements in Φ.Eval(k)\{i}.

Suppose we have an adversary A that breaks puncturable PRS
security of Φ, then we can construct an adversary B that breaks the
security of PRP. We denote the challenger in the PRP game as C,
where it responds to queries either using random permutation F or a
pseudorandom permutation PRP.Eval(k, ·). The construction of B
is as follows.

• B sends to C s inputs x1, . . . , xs, and gets s distinct response
values. Denote the set formed by these values as S.

• B removes a random element y in S and sends the resulting s−1
elements to A.

• A outputs y′.
• B outputs 1 if y′ = y, and 0 otherwise.
The advantage of B in PRP game is

AdvPRP(λ) = |Pr[B(PRP.Eval(k, ·)) = 1]−Pr[B(F (·)) = 1]|.

Since F is a truly random permutation, Pr[B(F (·)) = 1] = 1/(n−
s+ 1), i.e., A randomly guesses an element that is not in the s− 1
received elements. And due to the construction of B, we have that
Pr[B(PRP.Eval(k, ·)) = 1] = Pr[y′ = y]. In other words,

AdvPRP(λ) = Pr[x∗ = x]− 1

n− s+ 1
= AdvPPRS(λ),

i.e., B breaks the security of PRP. Contradiction.

The above theorem implies that we only need a PRP (with range
[n]) that is secure against s(n) queries. This is crucial for efficiency,
since for small range size, fully secure PRPs are more inefficient
than partially secure PRPs.

A.3 Properties of incremental PRS

A.3.1 Non-triviality definition

Recall from Section 5 the definition of g(n): the expected size of
U ⊖U ′, where U,U ′ are sets (both of size s(n)) uniformly sampled
from [n] and [n+ o(n)] respectively.
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Theorem 4. For uniformly sampled size-s set U from [n] and set
U ′ from [n+ o(n)], g(n) = E[|U ⊖ U ′|] = s2/(n2 + o(n2)).

Proof. We call the sampling of U as trial 1 and the sampling of U ′

as trial 2. We define a random variable Xi to indicate whether i is
sampled in both trials. That is, Xi = 1 if and only if i is sampled
into both U and U ′. Note that |U ∩ U ′| =

∑
i∈[n+o(n)] Xi.

Now we examine two cases for the random variable Xi:
For 1 ≤ i ≤ n, a uniform size-s subset of [n] contains i with

probability Cs−1
n−1/C

s
n = s/n. Similarly, a uniform size-s subset of

[n+o(n)] contains i with probability s/(n+o(n)). Hence E[Xi] =
Pr[Xi = 1] = (s/n) · (s/(n+ o(n))) = s2/(n2 + o(n2)).

For n+ 1 ≤ i ≤ n+ o(n), E[Xi] = Pr[Xi = 1] = 0 because
it is impossible for i to appear in U .

Therefore we have E|U ∩ U ′| = E[
∑

i∈[n+o(n)] Xi] =∑
i∈[n+o(n)] E[Xi] =

∑
i∈[n] E[Xi] = s2/(n+ o(n)).

For the proofs in the following sections, we will use the above
theorem for s(n) =

√
n. Under this case, E[|U ∩ U ′|] ≤ 1, which

means E|U ⊖U ′| ≥ 2(
√
n−1). On the other hand, E[|U ⊖U ′|] ≤

2
√
n, then we have E|U ⊖ U ′| = Θ(

√
n).

A.3.2 Proof of Theorem 1

We use
(
[n]
s

)
to denote the set of all subsets of [n] with size s. We use

{dist} to denote a distribution ensemble, ≈c for computationally
indistinguishability between two distribution ensembles.

Lemma 2 (Puncturable security implies pseudorandomness of a
set [23]). Let Φ = (Gen,Punc,Eval) be an ϵ-secure PPRS with
set size s(n). For λ, n ∈ N, define the two distributions

Ppseudo := {Φ.Eval(Φ.Gen(1λ, n))};Ptrue :=

{
S

R←−

(
[n]

s

)}
.

Then for every PPT adversary A, the two distributions are computa-
tionally indistinguishable.

The proof is in Appendix B.1 of CK [23].

We will now introduce a series of helper lemmas before proving
properties for incremental PRS. For notation simplicity, we use a
superscript to denote the number n in Ppseudo or Ptrue.

Lemma 3 (Proposed protocol in Section 4.2.1). Define

Psingle =


S

R←−
(
[n]
s

)
b← Bernoulli(s/(n+ 1))

S′ : if b = 0, do nothing
if b = 1, i

R←− S,
S′ ← (S\{i}) ∪ {n+ 1},


Then Psingle = P [n+1]

true .

Proof. Rewrite P [n+1]
true as
S

R←−
(
[n+1]

s

)
S′ : if n+ 1 ̸∈ S, S′ ← S

if n+ 1 ∈ S, S′ ← S\{n+ 1},
S′ ← S′ ∪ {n+ 1}



Define P∗
true as

S
R←−
(
[n+1]

s

)
S′ : if n+ 1 ̸∈ S, S′ R←−

(
[n]
s

)
if n+ 1 ∈ S, S′ R←−

(
[n]
s−1

)
,

S′ ← S′ ∪ {n+ 1}


and P ′

true as
b← Bernoulli(s/(n+ 1))

S : if b = 0, S
R←−
(
[n]
s

)
if b = 1, S

R←−
(

[n]
s−1

)
, S ← S ∪ {n+ 1}


On one hand, P [n+1]

true = P∗
true because when n + 1 ̸∈ S, the s

elements of S are uniformly at random distributed over [n] (this is
by definition of randomly sampling s elements). Similarly, the same
argument applies when n+ 1 ∈ S.

On the other hand, P∗
true = P ′

true, because in the former, the the
only role of S is to decide which case out of the two cases (since S′

is freshly generated anyway), so it can be captured by a Bernoulli
distribution. Hence P [n+1]

true = P ′
true.

Now we look at Psingle. Since Bernoulli sampling is independent
of sampling S, we can swap the first two steps in Psingle and get

P ′
single =


b← Bernoulli(s/(n+ 1))

S′ : if b = 0, S
R←−
(
[n]
s

)
if b = 1, S

R←−
(
[n]
s

)
, i

R←− S,
S′ ← (S\{i}) ∪ {n+ 1}


Simplifying the b = 1 case in P ′

single, we have
b← Bernoulli(s/(n+ 1))

S : if b = 0, S
R←−
(
[n]
s

)
if b = 1, S

R←−
(

[n]
s−1

)
, S ← S ∪ {n+ 1}

 ,

which is exactly P ′
true.

Lemma 4 (Batched version in Section 4.2.1). Define

Pmulti :=


w ← HG(n+m,m, s)

S1 ∪ S2 : S1 R←−
(

[n]
s−w

)
S2 R←−

(
[n+1,n+m]

w

)


Then P [n+m]
true = Pmulti.

Proof. Define P ′
true as

S
R←−
(
[n+m]

s

)
Let w be the number of elements

S1 ∪ S2 : of S in [n+ 1, n+m]

S1 R←−
(

[n]
s−w

)
S2 R←−

(
[n+1,n+m]

w

)


On the one hand, we have P ′

true = P
[n+m]
true by applying a similar

approach to Lemma 3. On the other hand, by the definition of the
hypergeometric distribution, P ′

true = Pmulti.

Theorem 5 (Correctness). Let Ψ = (Gen,Eval,Add) be the incre-
mental PRS in Section 5.3. Then Ψ satisfies correctness.
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Proof. First, given aux = [(n, s)], Ψ.Eval will output a set in
(
[n]
s

)
by construction. Second, after m indices are added, the new set will
be Set[n](sk, t1) ∪ Set[m](k2, t2) for some t1, t2 and t1 + t2 = s.
Therefore the output set is a subset of [n+m] of size s.

Theorem 6 (Security). Let Ψ = (Gen,Eval,Add) be the incremen-
tal PRS in Section 5.3. Then Ψ satisfies security.

Proof. The distribution generated by Ψ can be written as

Pprs :=

 (k, aux)← Ψ.Gen(1λ, n)
S : aux′ ← Ψ.Add(k,m)

S ← Ψ.Eval(k, aux′)


By construction of Ψ, we rewrite Pprs as

w ← HG(n+m,m, s)

S1 ∪ S2 : S1 R←− Set[n](k1, s− w)

S2 R←− Set[m](k2, w) + n


Suppose we randomly sample k1, k2 from a PRP key space K.

By Lemma 2 and 4, we have {Pprs}λ ≈c {P [n+m]
true }λ.

Theorem 7 (Non-triviality). Let Ψ = (Gen,Eval,Add) be the
incremental PRS in Section 5.3. Then Ψ satisfies non-triviality.

Proof. Let S and S′ be the sets defined in Section 5.3. We know
that |S ⊖ S′| = 2w, where w ← HG(n +m,m, s), and E[w] =

m
m+n

· s. Since s =
√
n, and m = o(n), E[|S ⊖ S′|] = 2E[w] =

2 · o(1)·
√
n

1+o(1)
= o(
√
n). Therefore, E[w] = o(g(n)).

A.4 Properties of incremental CK construction

A.4.1 Eval with shifts

We modified Eval to take shifts into account. Eval(k, aux, sh) takes
in a secret key k, aux and a shift sh, parses aux as [(rℓ, tℓ)]ℓ∈[L],
derives keys from k as k1, . . . , kL, and computes the first subset
S1 = {PRP[r1](k1, 1), . . . ,PRP

[r1](k1, t1)} + sh mod r1 and
the subsequent subsets as S2, . . . , SL as in Section 5.3. Then it
outputs ∪ℓ∈[L]Sℓ.

A.4.2 Proof of Theorem 2

We first summarize a modification to CK in Checklist [40, §4.2] that
doubles the size of the online query and refresh, but that reduces
the correctness error of the online phase from (s− 1)/n to negl(λ),
where s is the set size and n is the size of the database. Then we
prove that our construction with this improvement incorporated
satisfies correctness in Definition 2.

Checklist’s proposal ensures that the client can always get the
desired item at index i regardless of the result of the Bernoulli
sampling (Figure 7, line 10 and 19). It works as follows.

The client samples β ← Bernoulli(2(s − 1)/n). If β = 0, the
client generates Soffline and finds Sonline (both containing i) as in
Figure 7. Additionally, it picks two random indices, γoffline from
Soffline \ {i} and γonline from Sonline \ {i}. It sends to each server
a set, along with an index: to the offline server it sends (Soffline \
{i}, γoffline); to the online server it sends (Sonline \ {i}, γonline). Each
server sends back the parity for the set (b bits) and the data item for
the index (b bits). The client will only use the parity for Sonline \ {i}
to recover the desired item at index i (Query), and use the parity for
Soffline \ {i} and block i to replace the used set (Refresh). The two

random indices γoffline and γonline are not used for query nor refresh;
they are used for security reasons (see the β = 1 case below).

If β = 1, the client does not use any of its locally stored
√
n logn

sets (hints). Instead, it generates a new set Snew that contains i. It
randomly samples γ from Snew \{i} and γ′ from Snew \{γ}. Unlike
in the original protocol where only the online server processed
queries during the online phase, in this refined version the offline
server is also asked to help with online queries. Now the client picks
one of the two servers at random (it does so to hide which server
helps to compute the parity for Snew \ {i}), and sends the chosen
server (Snew \ {i}, γ), and sends (Snew \ {γ}, γ′) to the other server.
Each server sends back the parity for the provided set and the data
item for the provided index (γ or γ′) to the client. The client then
uses three things: the parity for Snew \ {i}, the parity for Snew \ {γ},
and the data item at index γ, to recover the item at index i. The
random index γ′ is not used for recovering the data item; it is used to
hide which server plays the role of computing Snew \ {i}. After the
client recovers data block i, it discards Snew and never uses it again
for future queries. In this case, the

√
n logn sets and their parities

remain unchanged so there is no need to refresh any sets.

Theorem 8 (Correctness). Let Π = (Prep, IncPrep, Query,
Refresh, Resp, QueryRecov, RefreshRecov) be the scheme in Sec-
tion 6, and suppose the underlying construction of incremental PRS
Ψ satisfies correctness. Then Π with the above improvement satisfies
correctness in Definition 2.

Proof. Correctness contains two parts: the hint should be updated
correctly, and the client should fetch its desired item during the
online phase. The former follows directly from Algorithms 4 and 5.
For the latter, since Algorithm 7 is compatible with Checklist’s
improvement (proved correct in Checklists’s Lemma B.1 [40]), we
can reduce the correctness error to negl(λ).

Theorem 9 (Security). Let Π = (Prep, IncPrep, Query, Refresh,
Resp, QueryRecov, RefreshRecov) be the scheme in Section 6, and
suppose the incremental PRS Ψ satisfies correctness and security.
Then Π satisfies security in Definition 2.

Proof. Security contains two parts: the hint update should not reveal
any information of queried index and the queries during online
phase should look indistinguishable (since Refresh is symmetric
with Query, hence we only consider the latter here). The former
is independent of the query index, hence security holds. For the
latter, we show that, for databases D and D′ where |D| = n and
|D′| = n+ o(n), the following two distributions,

Ponline =


h← Prep(D)

qonline : h′ ← IncPrep(D, δ, h)
qonline ← Query(h′, i)


and

P ′
online =

{
qonline : h′ ← Prep(D′)

qonline ← Query(h′, i)

}
are computationally indistinguishable ( {Ponline}λ ≈c {P ′

online}λ).
We define P̃online to be the distribution of outputting the set be-

fore removing an element in Query. From Lemma 6, we know
{P̃online}λ ≈c {P̃ ′

online}λ. And by Lemma 45 in CK [23], the conclu-
sion holds. Furthermore, Lemma B.2 in Checklist [40] shows that
the aforementioned improvement maintains security.
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Theorem 10 (Non-triviality). Let Π = (Prep, IncPrep, Query,
Refresh, Resp, QueryRecov, RefreshRecov) be the scheme in Sec-
tion 6, and suppose the underlying incremental PRS Ψ satisfies
non-triviality. Then Π satisfies non-triviality in Definition 2.

Proof. For additions, the non-triviality for incremental CK directly
follows from PRS non-triviality (Appendix A.3). We give concrete
formula for IncPrep’s cost here.

Suppose the database is of size n, and there is m = o(n) number
of elements added. For each set Sj where j ∈ [J ], the client samples
wj from the distributionHG(m,m+ n, s). The cost of evaluating
the PRPs and computing parities for data objects is O(b

∑
j∈[J] wj).

Since J = (n/s) logn, we have
∑(n/s) logn

j=1 E[wj ] = m·s
n+m

·
(n/s) logn ≤ m logn. Therefore, the total computation to the
offline server is in expectation O(bm logn).

For edits and deletions, non-triviality holds when m|Q| (Sec-
tion 6.1) is sublinear in n. We additionally discuss an optimization
for incremental updates when m|Q| is linear or even super linear in
n in Appendix C.

B Insecure strawman
Recall the strawman from Section 4.2: the client keeps the original√
n logn parities and sets, then for m new items, samples a few new

sets from [n+m]. For instance, m = 2
√
n and the client samples

c new sets from [n+m]. We require c to be meaningfully smaller
than
√
n logn (say c = o(

√
n)), otherwise, sampling new sets is

as expensive as preprocessing from scratch. We informally show
that the online server can distinguish between the two cases: the
client repeatedly queries for indices in [n] and repeatedly queries
for indices in [n+ 1, n+m]. In either case, we assume the client
issues

√
n queries.

In the former case, most of the sets the client uses will be the old
sets (even considering that the client does refresh and the fraction of
random sets from [n +m] gradually increases). The upper bound
of the fraction of the old sets, (

√
n logn −

√
n)/(
√
n logn + c),

is noticeably larger than 2/3, given n is large and c is small. This
implies that with probability larger than 2/3, the server will not see
any of the new indices in all these

√
n online queries.

In the latter case, the client will always use the new sets for
query. Note that for a sufficient number of size-

√
n sets from [n+

2
√
n], at least one of them contains two new indices with noticeable

probability. Concretely, when the number of sets equals
√
n, the

above probability is larger than 2/3. Therefore, at least 2/3 chance,
the server will see a new index (or indices) in these

√
n online

queries.

C Optimization and corner cases
In Section 6.1 we mention that the database updates could trigger
elements changed in every set of the client (this happens when madd

is relatively large). In such cases, we let the client send the key and
aux for each set to the server (Figure 14). The server computes
parity difference for all the sets (Figure 13) and the client uses the
responses to update the hints for every set.

A caveat for edits (or deletions) is that, the server computation is
medit|Q| (Figure 4) or medit|J | (Figure 13), and this could be linear
(or even superlinear) in the database size when medit is large. In
such a case, the offline server can directly send the parity bits for
edits (or deletions) to the client, and the client updates the hints and

1: procedure HintRes(D′, uq)→ ur

2: Initialize (p′1, . . . , p
′
J ) all to 0b

3: Parse uq as {(kj , auxj , aux
′
j)}j∈[J]

4: for j ∈ [J ] do
5: // process additions
6: Compute S ← Ψ.EvalDiff(kj , auxj , aux

′
j)

7: Update p′j ←
⊕

e∈S D[e]
8: // process edits
9: Update p′j ← p′j

⊕
(Xz ⊕X′

z), ∀z ∈ [medit]

10: such that Member(xz , (kj , aux
′
j)) = 1

11: // process deletions
12: Update p′j ← p′j

⊕
(Yz ⊕ Y ′

z ), ∀z ∈ [mdel]

13: such that Member(yz , (kj , aux′
j)) = 1

14: Output ur ← (p′1, . . . , p
′
J )

FIGURE 13—Offline server responds to an update request when
each set has changed. The X,Y arrays and medit,mdel are defined
as in Figure 3.

1: procedure HintReq(h, δ)
2: Parse h as {(kj , auxj , pj)}j∈[J]

3: Initialize each entry in (aux′
1, . . . , aux

′
J ) as ⊥

4: for j ∈ [J ] do
5: Compute aux′

j ← Ψ.Add(auxj ,m)

6: Output uq ← {(kj , auxj , aux
′
j)}j∈[J]

FIGURE 14—Client algorithms for hint request.

discards the parity bits. This keeps both communication and server
computation O(medit) (or O(mdel)), while the client does more work
for finding which sets should be updated (i.e., the client does line
9–14 in Figure 13 instead of the server).

D Additional evaluations
We additionally evaluate PIR-Tor for a hypothetical network with
70K relays.

Figure 15a shows the throughput results for online queries. Simi-
lar to the 7K setting, incremental CK (owing to its lack of crypto-
graphic operations performed by the online server) achieves higher
throughput. For online communication (Figure 16a), ours incurs the
highest costs. This suggests that when databases are large, send-
ing (punctured) keys as online queries is much more efficient than
sending explicit indices.

For preprocessing and hint updates, the throughput (Figure 15b)
and communication (Figure 16b) shows similar patterns as in 7K
setting. This is because the benefit of incremental updates over
preprocessing from scratch depends on the fraction of changes but
not the absolute value of database size.
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FIGURE 15—Mean latency and server throughput under varying
load during online phase for DPF, CK, and incremental CK.
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FIGURE 16—Communication cost for DPF-PIR, CK, and incremen-
tal CK.

1: Given PRF f : K× {0, 1}∗ → {0, 1}
2: Given i ∈ [n], k ∈ K
3: procedure Member(i, k)
4: Set α = 1
5: Set Z = ⌈logn⌉ − ⌈1/2 logn⌉
6: for z ∈ [Z] do
7: if f(k, suffix(i, z)) = 0 then set α = 0 and break
8: Output α

FIGURE 17—Membership testing in SACM (strawman). The suffix
of i starting from position z of i is denoted as suffix(x, z).

E Incremental OO-PIR from SACM
One of the most unusual features of our incremental CK scheme
is that a client needs to kick out existing indices from their sets in
order to add new indices. Part of the reason for this is that the initial
sets in CK all have the same size, and we wish to maintain this
invariant to ensure that the online server cannot make any inferences
from set sizes. A natural question is then whether one can relax
this restriction and build an incremental PRS that does not require
replacement.

Indeed, having initial sets of the same size is not necessary: one
can instead have an offline phase where Prep (§4.1) adds each
element in [n] to each of set with probability p. In expectation, each
set will be of size np after the initial preprocessing is done.

This same observation is made by Shi et al. [51]. The key con-
tribution in their work, which we call SACM, is a construction of
a compressed representation of a PRS with the property that sets
can be of different sizes. Given such a compressed representation
(effectively a PPRS), one can use the same offline/online PIR frame-
work as CK (§4.1). We therefore show how to adapt the PPRS in
SACM to support our notion of incrementality, and obtain our second
construction of an incremental offline/online PIR scheme.6

E.1 Overview of SACM

Pseudorandom set in SACM. In SACM, each index i is viewed
as a binary string. We abuse the notation and use i to denote both
the index value and its binary representation string. A set is still
succinctly represented by a key as in CK, but the elements in the
set are determined differently from CK. Specifically, given a PRF:
{0, 1}∗ → {0, 1}, and a key k from the PRF key space, an element
i ∈ [n] is defined to be in the set if and only if evaluating the
PRF using key k on ⌈1/2 logn⌉ suffixes of i results in 1 for all
evaluations (Figure 17).

6Even though SACM is concretely inefficient, we still provide the incremen-
tal construction based on it as an extension in theory.

Intuitively, we can view this process as tossing a random coin
⌈1/2 logn⌉ times to determine if i is in the set. Therefore, the
probability that i is sampled into the set is p(n) = (1/2)⌈1/2 logn⌉,
which is roughly 1/

√
n, and since the initial database is of size n,

each set has size in expectation of
√
n elements.

Given a set key k, to enumerate all the elements in the set spec-
ified by k, naively the client needs to call Member on every ele-
ment in [n]. SACM [51] uses a dynamic programming approach,
where enumerating all the elements in a single set specified by k
costs O(

√
n polylogn) in expectation. Specifically, it starts from an

empty set I⌈1/2 logn⌉, and calls the PRF on every binary string
with length ⌈1/2 logn⌉. If the result is 1, it adds the string to
I⌈1/2 logn⌉. Then it initialize an empty set I⌈1/2 logn⌉+1. For each
string ω ∈ I⌈1/2 logn⌉, call PRF on 1∥ω and 0∥ω. If the result is 1,
add the string to I⌈1/2 logn⌉+1. Proceed until it gets a set consisting
of binary strings of length ⌈logn⌉.

To summarize, the above PRS gives two algorithms, Member
and Eval. For the former, given an index i, and given a set key k,
one can efficiently determine whether i is in the set specified by k.
For the latter, given a set key k, one can efficiently compute all the
elements in the set specified by k.

Strawman—problems and solutions. A strawman offline/on-
line PIR construction that uses the above PRS is as follows. During
the offline phase, the offline server gets

√
n set keys from the client.

It calls Eval on each set key, gets explicit indices for each set, and
computes parity bits specified by these sets as in Section 4.1. The
cost is O(n polylogn) in expectation—

√
n set keys, calling Eval

on each set key requires O(
√
n polylogn) computation. During the

online phase, to find a desired index i, the client calls Member for
each set key, and finds a set (specified by k) that contains i. Then,
the client calls Eval on k and outputs all the indices in the clear. It
removes i with probability 1−p(n). (This is a simplified description
of what SACM does.)

However, this strawman is not secure. The reason is that since the
membership of an element in a set is determined by calling the PRF
on the suffixes of the element, then some of the elements in a set
could be related. For example, suppose that i1 and i2 differ only in
the most significant bit. If the evaluation of the PRF on i1 outputs 1
for all ⌈1/2 logn⌉ PRF calls on suffixes of i1, then given i1 is in the
set, the probability that i2 is also in the set is 1/2 instead of 1/

√
n.

To ensure security, the set that the online server sees in the clear
must contain no related elements. In other words, to remove a desired
index i, the client must also remove all the indices in the set that
relate to i (an index is related to i if and only if the longest common
suffix no less than ⌈1/2 logn⌉).

Although the above solves the security problem, this, in turn,
brings a correctness challenge since the client might fail to recover
the desired index if it has to remove other indices besides i. To ad-
dress this problem, SACM prepends H = 2⌈log logn⌉ zeros to the
binary string representation of every element i ∈ [n], to bring down
the probability that the number of related elements in a set is larger
than one. Specifically, instead of calling the PRF for ⌈1/2 logn⌉
times on suffixes of i, they call the PRF for B + ⌈1/2 logn⌉ times,
starting from suffix(0B∥i, 1), until suffix(0B∥i, B + ⌈1/2 logn⌉).
Under this tweak, for each set, an index i ∈ [n] is sampled with
probability 1/(

√
n log2 n). As a result, any two related strings are

both sampled into a set with lower probability, and they proved that,
under this tweak, the number of related elements in a set is in ex-

20



pectation 1/ logn, and with probability 1− o(1), a set contains no
related elements. This means the online query fails with small prob-
ability o(1), though not negl(λ). In SACM, this is called occasional
correctness [51, §4.3].

A final complication is that, since each set has size in expectation√
n/ log2 n due to the above tweak (recall that each element in [n]

is sampled with probability 1/
√
n log2 n), to ensure the client can

find a set that contains the desired index with high probability, they
use J =

√
n log3 n sets.

E.2 Offline Phase with Mutable Preprocessing

As in Section 4, we consider how to update a set (specified by key
k) at the client when one element is appended to the database with
size n. As before, we view the new index n+1 as a binary string. If
n+ 1 can still be represented in ⌈logn⌉ bits, we prepend B zeros
to it. If the binary representation of n+ 1 needs at least ⌈logn⌉+ 1
bits, we prepend B − 1 zeros to it. In either case, we denote the
resulting string with length B + ⌈logn⌉ as ω.

For Member, we call the PRF using key k on suffixes of ω for
B + 1/2⌈logn⌉ times. Note that it is the same number of PRF calls
as in Section E.1, therefore the probability that n + 1 is sampled
into the set (specified by k) is still p(n). That is, each index in the
database is sampled to the set with probability p(n), regardless of
old or new indices.

For Eval, it works the same as before: it first enumerates all the
strings with length ⌈1/2 logn⌉ such that the results of calling PRF
on these strings are all 1. Then it proceeds dynamic programming
exactly as described in Appendix E.1. For simplicity, we denote the
above procedure as Eval(k, n), which takes in a secret key k and
outputs all the set elements in [n].

A subtle complication is that the above approach will affect
correctness error (recall that the correctness error comes from re-
moving all the elements related to the query index i from a set).
With our above tweak, the number of related elements to i is no
longer 1/ logn in expectation. Fortunately, this is still in expecta-
tion bounded by 2/ logn—see Lemma 5.

Hint updates. The DBUpd algorithm runs the same as in Fig-
ure 3, it sends the positions (indices) where the data items are
changed. For notation clarity, the server also sends indices for addi-
tions to the client (see δ in line 3, Figure 18).

The client determines the changed elements for each set (Fig-
ure 18, line 4–10). Unlike incremental CK, no element is re-
moved from the sets. For a number of m changes (additions, dele-
tions, or in-place edits), the overall size of uq is in expectation
m · p(n) ·

√
n log3 n (each set has in expectation m · p(n) changes),

which is m logn. Then the client sends those indices in the clear
to the offline server. The offline server computes parity for each set
(Figure 19), and the overall cost is O(m logn). Finally, the client
updates the local hints for each set.

Unfortunately, the client cost for generating the hint request uq is
sublinear in the database size only when m = o(

√
n). Otherwise,

the client cost is linear (or superlinear when m is large), though
the benefit is that the server will only do O(m logn) computation.
Considering that a server will serve many clients, it is reasonable to
sacrifice client-side computation to reduce server-side computation.

E.3 Online Phase

To generate an online query with a desired index i, the client should
first find a set containing i. It does so by calling Member on each set

1: procedure HintReq(h, δ)→ uq

2: Parse h as {(kj , pj)}j∈[J]

3: Parse δ as δadd = [a1, . . . , amadd ], δedit = [x1, . . . , xmedit ],
4: and δdel = [y1, . . . , ymdel ]
5: Set {Sadd

j }j∈[J], {Sedit
j }j∈[J], {Sdel

j }j∈[J] all as empty sets
6: for j ∈ [J ] do
7: for e ∈ [a1, . . . , amadd ] do
8: if Member(e, kj) outputs 1 then add e to Sadd

j

9: for e ∈ [x1, . . . , xmedit ] do
10: if Member(e, kj) outputs 1 then add e to Sdel

j

11: for e ∈ [y1, . . . , ymdel ] do
12: if Member(e, kj) outputs 1 then add e to Sdel

j

13: Output uq ← ({Sadd
j }j∈[J], {Sedit

j }j∈[J], {Sdel
j }j∈[J])

FIGURE 18—Client algorithms for hint request. The total number
of indices in the output sets is O(m logn), where m is the total
number of additions, deletions and in-place edits.

1: procedure HintRes(D′, uq)→ ur

2: Parse uq as {Sadd
j }j∈[J], {Sedit

j }j∈[J], {Sdel
j }j∈[J]

3: Initialize each entry in (p′1, . . . , p
′
J ) as 0b

4: for j ∈ [J ] do
5: Set p′j ←

⊕
e∈Sadd

j
D′[e]

6: Update p′j ← p′j
⊕

(Xz ⊕X′
z) for z ∈ Sedit

j

7: Update p′j ← p′j
⊕

(Yz ⊕ Y ′
z ) for z ∈ Sdel

j

8: Output ur ← (p′1, . . . , p
′
J )

FIGURE 19—Offline server responds to an update request. The
X-array and Y -array are the same as in Figure 3.

key until it finds such a set. Then the client calls Eval and outputs the
indices in the clear (this is different from the SACM protocol since
our tweak is not compatible with their private puncturable PRF).
The client probabilistically removes i: with probability 1 − p(n),
i will be removed; and with probability p(n), i is kept in the set.
The client then sends the resulting indices to the server and gets the
corresponding parity.

Refresh is done similarly. A used set (key) should be discarded,
and the client generates a new key. It sends the indices (with i
probabilistically removed) to the offline server to fetch the parity for
the new set.

E.4 Correctness and security analysis

Lemma 5 (Correctness error estimation). Let Eval be the algorithm
for incremental SACM construction described in Appendix E.2. For
S ← Eval(k, n) (where k is a set key and n is the database size)
and a fixed index i ∈ S, the number of elements in S that are
related to i, which we denote as a random variable ζ, satisfies that
E[ζ] ≤ 2/ logn.

Proof. Consider the strings with longest suffixes of length z with
the binary representation of i. Then each of such strings is in S with
probability 1

2log n+B−z .
Let Tz denote the set of strings that shares the longest common

suffix of length exactly z with i. We have E[|Tz|] ≤ 1
2log n+B−z ·

2logn−(z−1) = 1
2B−1 . (This is because there are at most 2logn+1−z

strings that could have the longest suffix of length z with x).
Aggregate on z, we have E[ζ] =

∑1+logn
z=1/2 logn E[Tz] ≤∑1+logn

z=1/2 logn 1/2B−1 = (1 + 1/2 logn) · 2
2B
≤ logn · 2

log2 n
=

2/ logn.
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To prove properties for incremental SACM, we re-define the cor-
rectness, security and non-triviality for incremental PRS as follows:

Correctness. The correctness definition is the same as in Sec-
tion 5.3 except that we do not impose requirement on the set size.

Security. There are two parts. First, a PPT adversary cannot dis-
tinguish between S and U , where S ← Eval(k, n) for a randomly
sampled k, and U is a set sampled from [n] with each element
sampled with probability p(n). Second, a PPT adversary cannot
distinguish between S′ and U ′, where S′ ← Eval(k, n+ o(n)) and
U ′ is a set sampled from [n+o(n)] with each element sampled with
probability p(n).

Non-triviality We define a function g(n) to be E[|U ⊖ U ′|]. We
say an incremental PRS satisfies non-triviality if E[|S1 ⊖ S2|] =
o(g(n)).

Theorem 11. Assuming the existence of a secure PRF f :
K × {0, 1}∗ → {0, 1}. The incremental set construction with
Gen,Eval,Member defined in Appendix E.2 satisfies correctness,
security and non-triviality.

Proof. Correctness and security directly follows by construction
and security follows from the security of PRF. Now we show
non-triviality. Denote the set size as s(n). Then by our con-
struction, E[|S1 ⊖ S2|] = mp(n) = m/

√
n log2 n. Note that

g(n) = O(s(n)) =
√
n/ log2 n. Therefore, when m = o(n),

E[S1 ⊖ S2] = o(g(n)).

Theorem 12. Incremental SACM satisfies occasional correctness,
and incremental OO-PIR’s security and non-triviality (Definition 2).

Proof. Correctness follows from Lemma 5 and Theorem 7.6 in
SACM [51]. Security follows from incremental PRS security. Non-
triviality follows from PRS non-triviality and the analysis in Sec-
tion E.2.
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