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Abstract. Alongside the development of cloud computing and Internet
of Things(IoT), cloud-based RFID is receiving more attention nowadays.
Cloud-based RFID system is specifically developed to providing real-time
data that can be fed to the cloud for easy access and instant data inter-
pretation. Security and privacy of constrained devices in these systems
is a challenging issue for many applications. To deal with this problem,
we propose χperbp, a lightweight authentication protocol based on χper
component. χper is a hardware/software friendly component that can
be implemented using bit-wise operations. To evaluate the performance
efficiency of our proposed scheme, we implement the χperbp scheme on a
FPGA module Xilinx Kintex-7 using the hardware description language
VHDL. Our security and cost analysis of the proposed protocol shows
that the proposed protocol provides desired security against various at-
tacks, in a reasonable cost. Also, formal security evaluation using BAN
logic and Scyther tool indicates its security correctness. Besides, we anal-
yse the security of a related protocol which has been recently proposed by
Fan et al. It is a cloud-based lightweight mutual authentication protocol
for RFID devices in an IoT system. Although they have claimed security
against active and passive adversaries, however, our detailed security
analysis in this paper demonstrates major drawbacks of this protocol.
More precisely, the proposed attack disclose the tag’s secrets efficiently.
Given the tag’s secrets, any other attack will be trivial.

Keywords: IoT; Authentication; Security analysis; Desynchronization At-
tack; Tag Impersonation Attack; Reader Impersonation Attack



1 Introduction

Cloud computing is growing rapidly as the next generation platform for compu-
tation, with applications in approximately any area because of its performance,
high availability, least cost and many others. On the other hand, in recent years,
the use of radio frequency identification (RFID) has increased across a range of
different industries such as retail industry, healthcare, transportation and etc.
due to its inherent benefits. However, the wide distribution of RFID systems
may threaten the security of both businesses and consumers. A cloud-based
RFID system, as depicted in Figure 1, is typically composed of three compo-
nents, namely a tag, a reader and a cloud server. The RFID tag is typically a
small device that utilizes low-power radio waves to receive, store, and transmit
data to nearby readers and allows users to automatically identify and track in-
ventory and assets. It is comprised of a microchip or integrated circuit (IC) with
a small memory to store the object’s identity and data, a small antenna and a
low power battery(in active tags, passive tags have no power). The RFID reader
is a scanner which has more computation and storage resource than the tag and
placed in a fixed location to interrogate the tag. The cloud server has consider-
able resources and in fact, it is the brain of an RFID system which operates as
a data processor that manages, controls, and stores the data from the tags and
readers.

Fig. 1: A Cloud-Based RFID System

Providing secure communication between these components is regarded as
one of the main issues in the RFID systems. In order to satisfy this goal, the
authentication protocol of a tag is used in the RFID systems. Authentication
protocol is a method to authenticate a remote device like an RFID tag by a



reader over an insecure communication channel. Cloud-based authentication is
a solution that is quick-to-deploy, easily managed, and support extensive au-
thentication methods. The most common challenge to employ an authentication
protocol in such systems is that the tags typically have limited storage and
computing resources to support standard cryptographic algorithm such as RSA,
ECC, and etc. In addition, an authentication protocol must be secure against
various common attacks such as impersonation, replay, de-synchronization and
etc. attacks.

The contribution of this paper contains two main folds:

– First, we analyze the Fan et al. [17] scheme (called Timestamp-permutation)
and show that the proposed scheme is vulnerable to secret disclosure attack.
This attack disclose the value of IDi and its encrypted value E1(IDi). Given
these values, an adversary can perform other known attacks such as de-
synchronization, traceability and so on.

– Second, to address this concern, we proposed an improved lightweight au-
thentication protocol(called χperbp) for IoT applications. We prove the se-
curity of the χperbp through formal and informal analysis. At the end, to
evaluate the performance efficiency of our proposed scheme, we implement
the χperbp scheme on a FPGA module Xilinx Kintex-7 using the hardware
description language VHDL and compare the synthesis results with some
lightweight schemes.

2 Related works

The evolution of IoT technology drives researchers to design secure and reliable
authentication protocol for low-cost RFID systems. However, many challenges
arise from using lightweight authentication protocols in RFID systems. For ex-
ample, some of the proposed schemes are vulnerable to one or more security
attacks [2,33,18] and some of them are inefficient in terms of processing time
[29,21].

Hoque et al. [20] proposed a serverless, forward secure and untraceable au-
thentication protocol for RFID tags. They claimed that their scheme safeguards
both tag and reader against almost all major attacks without the intervention of
server. However, Deng et al. [12] showed that the proposed scheme is vulnerable
to de-synchronization attack. They addressed the weakness of the Hoque et al.
scheme and proposed an improved serverless authentication scheme. In [24], Li
et al. analyzed the Deng et al. scheme and pointed out that this scheme cannot
resist location tracking attack, and also its tag searching method is low efficient.
Tan et al. [32] proposed an authentication protocol that provides comparable
protection against known attacks without needing a central authority. However
recently, in [34], Wei et al. showed that the scheme is vulnerable to denial of
service, de-synchronization, and tracking attacks.

In [13], Dhillon et al. proposed an authentication scheme for the Internet
of Multimedia Things(IoMT) environments. They declared that the scheme is
robust and can resist significant security attacks. However, Mahmood et al.[25]



showed that it is vulnerable to user masquerading attacks and a stolen verifier
attack. Besides, their scheme also violates the anonymity and traceability of a
user.

More recently, Fan et al. [17] proposed a lightweight cloud-based authenti-
cation protocol called Timestamp-permutation for IoT systems. The proposed
scheme uses only simple operations such as rotation, permutation, concatena-
tion and a symmetric encryption algorithm. Therefore, it’s well suited for using
in low-cost applications such as RFID systems. They claimed that the proposed
scheme is secure against various known attacks, but in this paper, we show that it
is vulnerable to disclosure attack. This attack can disclose the secret information
stored in a tag such as the identity IDi and its encrypted value E1(IDi).

3 Timestamp-permutation protocol

In this section, we give briefly description of Timestamp-permutation protocol
[17]. This protocol consists of two phases: 1-Initialization 2-Authentication. We
represent the notations used in this article in Table 1 and a brief description of
Timestamp-permutation scheme in Figure 2. The timestamps in this protocol
are based on reader’s current time. Before considering this protocol, we need to
introduce some definitions.

Definition 1. Let A, B are two n-bits strings, where

A = a1a2...an, ai ∈ {0, 1}, i = 1, 2, ..., n

B = b1b2...bn, bi ∈ {0, 1}, i = 1, 2, ..., n

and C = A⊕B where C = c1c2...cn, ci ∈ {0, 1}, i = 1, 2, ..., n. Moreover let

bk1 , bk2 , ..., bkm = 1

bkm+1
, bkm+2

, ..., bkn = 0

where 1 ≤ k1 < k2 < ... < km ≤ n and 1 ≤ km+1 < km+2 < ... < kn ≤ n. The
function Per(A,B) is defined as following:

Per(A,B) = ck1ck2 ...ckmcknckn−1 ...ckm+2ckm+1

Definition 2. Let wt(B) is the Hamming weight of B, where 0 ≤ wt(B) ≤ n.
The function Rot(A,B) is defined as: A is left routed wt(B) bits.



Table 1: Notation used in this paper
Notation Description

Ti the i-th RFID tag
C the cloud server
R the RFID reader
A the adversary
IDi the identity of Ti
Per(A,B) the permutation
Rot(A,B) the rotation
θ() the obscuring the timestamp

E1()\D1()
the symmetric encryption\decryption algorithm
using a key shared between the readers

E2()\D2()
the symmetric encryption\decryption algorithm
using a key shared between the readers and cloud

(X)L the left half of X
(X)R the right half of X
X ≪ i rotate X left by i positions
X ≫ i rotate X right by i positions
bXci assuming X = x1x2 . . . xn, then bXci = xi+1 . . . xn
dXei assuming X = x1x2 . . . xn, then dXei = x1 . . . xi
X̄i assuming X = x1x2 . . . xn, then X̄i = x1 . . . xi−1x̄i . . . xn

3.1 Initialization Phase

We suppose that this phase is conducted in a secure environment. This phase
includes the following steps:

1. Ti stores timestamp Tt, the unique identity IDi which is assigned by the
system and its encryption value E1(IDi).

2. R has the keys of two symmetric encryption algorithms E1 and E2.
3. C stores the encrypted value of each tag’s identity and the corresponding

timestamps which are followed by a bit "0" or "1". This mark bit is exploited
to record which timestamp is more likely to be synchronized with the tag.
C only has the key of the second symmetric encryption algorithm E2.

3.2 Authentication Phase

1. The reader R generates a timestamp Tr and sends it to the tag Ti.
2. Upon receiving Tr, the tag computes

M1 = Rot(E1(IDi), E1(IDi)⊕ Tt)

M2 = Per(M1, E1(IDi)⊕ Tr)



and sends the messages {M2, θ(Tt), Tr} to R. Then the reader forwards the
messages to C.

3. The cloud C searches in its database for timestamp Tt which matches θ(Tt).
Then it looks for E1(IDi) which matches Per(M1, E1(IDi)⊕Tr) in the result
of the first search. If E1(IDi) exists, two states may occur:

– If the mark bit of Tt is "1", the timestamp marked "0" will be replaced
by Tr.

– If the mark bit of Tt is "0", the last certification may not end normally.
Tr will be stored and the previous timestamps will not be deleted.

Then C computes M3 = E2(E1(IDi)‖Tt‖Tr) and sends it to R.

4. R computes D2(E1(IDi)‖Tt‖Tr) to get {E1(IDi), Tt, Tr}. If it matches with
Per(M1, E1(IDi) ⊕ Tr) then R authenticates C. Then the reader decrypts
E1(IDi) and computes M4 = Rot(IDi, IDi ⊕ Tt), M5 = Per(M4, IDi ⊕ Tr)
and sends (M5)L to Ti.

5. Upon receiving, Ti compares (M5)L with (M ′5)L = (Per(M4, IDi⊕Tr))L, if
it matches, the tag authenticates the reader and replaces timestamp Tt with
Tr. Then it sends (M ′5)R = (Per(M4, IDi ⊕ Tr))R to R.

6. If (M ′5)R matches with (M5)R then R authenticates Ti and sends M6 =
E2(E1(IDi)‖Tr) to C.

7. C computes E2(E1(IDi)‖Tr) and compares it with M6. If they matches, C
authenticates R and updates its database as following:

– Change the mark bit of timestamp Tr to "1".

– Delete the timestamps except Tr.



Tag Ti Reader R Cloud C

IDi,E1(IDi),Tt Tr,E1,E2 Tt,T ′t ,E2

Generate Tr
Query,Tr←−−−−−−−

M1 =
Rot(E1(IDi), E1(IDi)⊕
Tt)
M2 =
Per(M1, E1(IDi)⊕ Tr)

M2−−−−−−→
θ(Tt),Tr

M2−−−−−−→
θ(Tt),Tr

M3 =
E2(E1(IDi)‖Tt‖Tr)

M3←−−
decrypt M3 to get
{E1(IDi), Tt, Tr}
M2

?
= Per(M1, E1(IDi)⊕ Tr)

M4 = Rot(IDi, IDi ⊕ Tt)
M5 = Per(M4, IDi ⊕ Tr)

(M5)L←−−−−−
m′4 = Rot(IDi, IDi ⊕
Tt)
M ′5 = Per(m′4, IDi ⊕
Tr)

(M ′5)L
?
= (M5)L

replace Tt with Tr
(M′5)R−−−−−→

(M ′5)R
?
= (M5)R

M6 = E2(E1(IDi)‖Tr)
M6−−→

M ′6 = E2(E1(IDi)‖Tr)
M ′6

?
= M6

Fig. 2: Timestamp-permutation protocol

4 Cryptanalysis of Timestamp-permutation protocol

In this section, we analyze the security of the Timestamp-permutation protocol
against various attacks. The proposed attacks are based on the observations
below:

1. Ti does not contribute to the session randomness. Hence, as far as it has not
updated its timestamp, its response to identical challenge will be the same.

2. On a session of protocol between a legitimate R and Ti, in Step 1, R

generates a timestamp Tr and sends it to Ti and in Step 5, Ti stores it as a
new Tt. Hence, a passive adversaryA who monitors the transferred messages
of a session over public channel knows the next value of Tt which is used by
Ti.



3. Let A = a1a2 . . . an, B = b1b2 . . . bn and wt(B) = w. Given Per(A,B) =
x1x2 . . . xn, then :

if b1 = 1 : Per(A, B̄1) = x2 . . . xwxw+1 . . . xnx̄1

if b1 = 0 : Per(A, B̄1) = x̄nx1x2 . . . xwxw+1 . . . xn−1

On the other word:

if b1 = 1 : Per(A, B̄1) = (Per(A,B) ≪ 1)⊕ 1

if b1 = 0 : Per(A, B̄1) = (Per(A,B)⊕ 1) ≫ 1

Following this property, given Per(A,B) and Per(A, B̄1), one can determine
the value of b1.

4.1 Secret disclosure attack

Following the observation 1, Ti does not generate any random number. Therefore,
the values of Tt andM1 = Rot(E1(ID), E1(ID)⊕Tt) remains unchanged until Ti
participates in a success session with the reader. According to the observation 2,
assume that A has eavesdropped the last successful session between Ti and R

and knows the stored value Tt. Then the adversary A can retrieve E1(ID) as
following:

1. Let E1(ID) = e1e2...en and ID = id1id2...idn
2. A impersonates R by selecting Tr ∈ {0, 1}n and sending it to Ti.
3. Upon receiving Tr, the tag computesM1,M2 and sends the messages {M2, θ(Tt), Tr}

to R.
M1 = Rot(E1(ID), E1(ID)⊕ Tt)

M2 = Per(M1, E1(ID)⊕ Tr)

4. A stores M2, and sends T̄ 1
r to Ti.

5. Upon receiving T̄ 1
r , the tag computes M1 and M ′2 = Per(M1, E1(ID)⊕ T̄ 1

r )
and returns {M ′2, θ(Tt), T̄ 1

r }.
6. if M ′2 = M2 ≪ 1 then e1 = 1 otherwise if M ′2 = M2 ≫ 1 then e1 = 0.
7. Following this approach, given the value of dE1(ID)ei−1, A determines ei

as follows:
(a) A impersonates the reader by selecting Tr ∈ {0, 1}n such that dTrei−1⊕
dE1(ID)ei−1 = {1}i−1 and sending it to Ti.

(b) Upon receiving Tr, the tag computes M1 and M2 = Per(M1, E1(ID)⊕
Tr) and returns {M2, θ(Tt), Tr} to the expected R.

(c) A stores M2, and sends T̄ ir to Ti.
(d) Upon receiving T̄ ir , the tag computes M1 and M ′2 = Per(M1, E1(ID)⊕

T̄ ir) and returns {M ′2, θ(Tt), T̄ ir} to R, which is indeed A.



(e) if bM ′2ci−1 = (bM2ci−1 ≪ 1) ⊕ 1 then ei = 1 otherwise if bM ′2ci−1 =
(bM2ci−1 ⊕ 1) ≫ 1 then ei = 0.

In the following, we describe how an adversary A can retrieve the whole bits
of ID.
1. A eavesdrops N information sessions of the protocol between Ti and le-

gitimate R and blocks the response message (M5)L. Hence, the Tt is not
updated and the adversary A has {T jr , Tt, E1(ID),M j

2 , (M
j
5 )L}j=Nj=1 , where

M j
5 = Per(Rot(ID, ID ⊕ Tt), ID ⊕ T jr ) (1)

2. Given (M5)L, Tt and Tr, the only unknown value in Equation 1 is the ID’s
bits. To simplify the index formulation, we remove the indices r, 5 and L for
Tr and (M5)L respectively. Let

T = t1t2...tn and T = {T1, ..., TN}

M = m1m2...mn
2
and M = {M1, ...,MN}

Hence, A can find the ID’s bits as following:
– Suppose that the LSB bit of the T1

1 = {Tk1 , ..., Tkl1 } is "1" and the
LSB bit of the T0

1 = {Tkl1+1
, ..., TkN } is "0". We know that the LSB

bit of the values Rot(ID, ID ⊕ Tt) and ID are fixed, therefore if the
LSB bit of M1

1 = {Mk1 , ...,Mkl1
} all are the same or the LSB bit M0

1 =
{Mkl1+1

, ...,MkN } are not the same, then we conclude that the id1 = 0,
otherwise the id1 = 1.
Given t1 ⊕ id1, there is only two possible bit positions in M that can be
occupied due to t2 ⊕ id2. To make the process easier to understand, we
modify the elements of the set M as the following:
• If id1 = 0 then we shift the elements of the set M1

1 = {Mk1 , ...,Mkl1
}

one position to the left and put an indicator "x" into their MSB.

... x
2 3 n

2

(a) Elements of the set M1
1

...
1 2 n

2

(b) Elements of the set M0
1

Fig. 3: Case id1 = 0

• Otherwise, if id1 = 1, we do that for elements of the set M0
1 =

{Mkl1+1
, ...,MkN }.

...
1 2 n

2

(a) Elements of the set M1
1

... x
2 3 n

2

(b) Elements of the set M0
1

Fig. 4: Case id1 = 1



We remain the name of elements of the set M unchanged after this
modification.

– Let assume that the the second bit of the T1
2 = {Tk′1 , ..., Tk′l2} is "1" and

the second bit of the T0
2 = {Tk′l2+1

, ..., Tk′N } is "0". Given that second bit
of the values Rot(ID, ID ⊕ Tt) and ID are fixed, therefore if the LSB
bit of {Mk′1

, ...,Mk′l2
} all are the same or the LSB bit {Mk′l2+1

, ...,Mk′N
}

are not the same, then we conclude that the id2 = 0, otherwise the
id2 = 1. Similarly, if id2 = 0 then we shift the elements of the set
M1

2 = {Mk′1
, ...,Mk′l2

} one position to the left and put an indicator "x"
into their MSB. Otherwise, if id2 = 1 we do that for elements of the set
M0

2 = {Mk′l2+1
, ...,Mk′N

}. We remain the name of elements of the set M
unchanged after this modification.

– We continue this method until the left half bits of the ID are deter-
mined(because according to the Timestamp-permutation protocol, we
only have the left half of the M5). To determine the half right bits, we
remove the Mjs from the set M which whole of bit positions are occu-
pied with "x" and replace them with new session information (M5)Ls.
On average we expect to still have N

2 of Ms in the set M where we are
determining the value of idn.

Given ID and E1(ID), any other attacks such as tag/reader impersonation
attack, traceability attack, de-synchronization attack and so on will be trivial.

Algorithm 1: Disclosure attack algorithm to find the encrypted
value E1(ID)

Data: Timestamp Tr
Result: The encrypted value E1(ID) = e1e2...en

1 Select Tr ;
2 Send Tr and T̄ 1

r to Ti and store its response M2 and M ′2
respectively;

3 if (M ′2 = (M2 ≪ 1)⊕ 1) then
4 e1 = 1;
5 else
6 e1 = 0;

7 for i=2 to 128 do
8 Select Tr ∈ {0, 1}n such that

dTrei−1 ⊕ d(E1(ID)ei−1 = {1}i−1 and send it and T̄r
i to Ti ;

9 if (bM ′2ci−1 = (bM2ci−1 ≪ 1)⊕ 1) then
10 ei = 1;
11 else
12 ei = 0 ;



Algorithm 2: Disclosure attack algorithm to find the identity
ID
Data: Timestamp Tr, (M5)L
Result: The identity ID = id1id2...idn

1 Eavesdrop {(T jr , (M
j
5 )L)}j=Nj=1 ;

2 for i=1 to n
2 do

3 Construct the sets (T1
i ,M1

i ),(T0
i ,M0

i );
4 if (the LSB bits of M1

i all are the same or the LSB bits of M0
i

are not the same) then
5 idi = 0;
6 shift the elements of the set M1

i one position to the left ;
7 else
8 idi = 1 ;
9 shift the elements of the set M0

i one position to the left ;

5 Improved protocol

The main drawback of the Fan et al. [17] scheme which leads to the disclosure
attack, is the lack of a nonlinear function. Hence, it can not provide enough con-
fusion, as a criteria to design a secure primitive. Following the Shannon’s idea,
any secure primitive should provide confusion and diffusion [3]. However, the
proposed Per(Rot(.)) function only provides diffusion property. To add the con-
fusion property into the previous scheme, we use a nonlinear function χ which is
used in the Keccak [4] algorithm in our improved scheme. Keccak was standard-
ized as SHA-3 hash function by NIST. χ function is an adjustable permutation
for any odd value and we use a variant with 3 bits input-output. Using this
nonlinear component, we introduce χper(A,B) : {0, 1}3w ×{0, 1}3w → {0, 1}3w,
as depicted in Figure 6, where each variable consist of 3 words and w denotes a
word length. χper(.) is used to design a general function called χperz(.). Algo-
rithm 3 describes χperz(.), which includes z call to χper(.). The variables z and
w provides trade off between efficiency and security. Our recommendations for
w and z are w = 32 and z ≥ 16. In A, the security of χperz(.) function has been
investigated against several known attacks.

Given χperz(.), we redesign the protocol of Fan et al. and call it χperbp,
stands for χper based protocol.

5.1 Initialization Phase of χperbp

This phase of the improved protocol includes the following steps:

1. Ti stores the timestamp Tt, the unique identity IDi which is assigned by the
system and its secret key value Ki, shared by C. We also assume that each
tag is equipped with a χperz(.) function.



2. R has its identifier RID and its key Kr, shared with C. The reader is
equipped with χperz(.), a 48-bit PRNG(.) and a secure hash function H(.),
e.g., PHOTON [19].

3. C stores the key and the identifier of R and Ti.

5.2 Authentication Phase of χperbp

The authentication phase of χperbp is defined as below:

1. The reader R generates a random number Rr and sends it to the tag Ti.

2. Upon receiving Rr, the tag computes two values Rt = χperz((Tt‖Rr),Ki)
andMt = χperz(IDi⊕(Rr‖(Rt)R),Ki) and then sends the messages {Mt, (Rt)R}
to R. Afterwards, it replaces the value Tt with (Rt)L and stores it in its local
memory.

3. The reader R extracts its timestamp Tr and computes MACr = H(Mt‖
(Rt)R‖Rr‖Kr‖Tr‖RID). Then it sends {Mt, (Rt)R, Rr, Tr,MACr} to C.

4. The cloud C checks timestamp Tr to make sure it’s in a reasonable delay
time and searches in its database for the RID, based on the received MACr
to authenticate the reader R. Then, it searches in its database for a record of
a tag which is matched toMt to authenticate the tag Ti. Next, C extracts its
timestamp Tc, computes Mc = χperz(IDi,Ki ⊕ (Tc‖(Rt)R)), DIi = IDi ⊕
RID⊕χperz(Tc‖Tr,Kr) andMACc = H(Mc‖Mt‖Rr‖(Rt)R‖RID‖IDi‖Tc)
and sends {MACc, DIi,Mc, Tc} to R.

5. R extracts the value IDi from DIi and verifies the received Tc and MACc
to authenticate C and Ti. Then, it computesMr = χperz(Mt⊕Mc, IDi) and
sends {Mc,Mr, Tc} to Ti.

6. Once received the message,Ti verifies whetherMc
?
= χperz(IDi,Ki⊕(Tc‖(Rt)R))

to authenticate C. Then it authenticates the reader R using Mr.



Tag Ti Reader R Cloud C

IDi,Ki,Tt RID,Kr IDi,Ki,RID,Kr
Generate Rr

Query,Rr←−−−−−−−

Rt = χperz((Tt‖Rr)
,Ki)

Mt = χperz(IDi ⊕
(Rr‖(Rt)R), Ki)
Replace Tt with (Rt)L

Mt,(Rt)R−−−−−−−→ Extract Tr

MACr = H(Mt‖(Rt)R‖Rr

‖Kr‖Tr‖RID)
MACr,Tr−−−−−−−−−−→

Mt,Rr,(Rt)R

Verify Tr

Authenticate R based on
MACr
Authenticate Ti based
on Mt

Extract Tc

Mc = χperz(IDi,Ki⊕
(Tc‖(Rt)R))

MACc = H(Mc‖Mt‖Rr‖
(Rt)R‖RID‖IDi‖Tc)

DIi = IDi ⊕RID⊕
χperz(Tc‖Tr,Kr)

Verify Tc and extract IDi
Verify MACc, authenticate C

and Ti

MACc,DIi←−−−−−−−−
Tc,Mc

Mr = χperz(Mt ⊕Mc, IDi)
Tc,Mc←−−−−−
Mr

Verify Mc and Mr

Authenticate C based on
Mc

Authenticate Ti based
on Mr

Fig. 5: Illustration of the authentication phase of χperbp



Fig. 6: C = χper(A,B)

Algorithm 3: χperz(A,B) based on χper(A,B)

Data: A = a0‖a1‖a2 and B = b0‖b1‖b2
Result: χperz(A,B)

1 for i=0 to 2 do
2 xi,0 = ai and yi,0 = bi ;

3 for i=0 to z-1 do
4 Xi = x0,i‖x1,i‖x2,i , Yi = y0,i‖y1,i‖y2,i;
5 Xi+1 ← χper(Xi, Yi);
6 Yi+1 ← (Yi ≪ 95)⊕ 0x243f6a8823ac08e1cb7a0379;

7 Return Xz.

6 Security Analysis of the χperbp Protocol

In this section, firstly we analyze the informal security of our proposed scheme
against the attacks proposed in this paper and then, using formal security anal-
ysis under the broadly-accepted Burrows-Abadi-Needham (BAN) logic and an
automated security analysis tool Scyther, we show that the χperbp protocol is
secure against various known attacks. At the end of this section, we show the
security comparison of the improved scheme with some relevant schemes in Ta-
ble 4.

6.1 Informal security analysis

Replay attack In this attack, an adversary tries to eavesdrop some communi-
cation information and resend them to the tag, reader or the server in another
time. In the improved scheme χperbp, we use two random numbers Rt, Rr along
with two timestamps Tr, Tc for each session to preventing the replay attack.



Impersonation attack Assume an adversary tries to impersonate himself/her-
self as a legal tag to cloud server. He/she is not able to produce a valid request
message Mt because the adversary needs to know the user’s identity IDi and
shared password key Ki between the tag and the cloud. Also the adversary can-
not impersonate himself/herself as a legal cloud server because he/she is not
able to produce Mc. Therefore the χperbp scheme is secure against impersonate
attack.

Traceability and anonymity In χperbp scheme, all transferred messages be-
tween three parties tag, reader and the cloud server include at least one of the
random numbers Rt, Rr or timestamps Tr, Tc which are updated in each session.
Therefore an adversary cannot trace a particular tag since tag’s responses to a
fixed query is always different at the valid sessions.

Secret disclosure attack The weakness of the Fan et al. scheme that deal to
disclosure attack is the lack of a nonlinear function. In χperbp scheme, we use
χperz(.) function which satisfies the confusion property significantly. Therefore
an adversary is not able to carry out disclosure attack same as described in
section 4.

De-synchronization attack In χperbp scheme, we use two timestamps Tr
and Tc to synchronize the reader and cloud. The Tr value concatenates with
{Mt, (Rt)R, Rr,Kr, RID} and the Tc value concatenates with {Mc,Mt, Rr, (Rt)R, RID, IDi},
then both of them are hashed. Therefore the attacker can not change the values
Tr and Tc, because he/she must compute the MACr and MACc, but he/she
doesn’t know the values of the IDi, RID and Kr.

A man-in-the-middle attack The communications between the reader and
the cloud are hashed, therefore if the attacker intercepts the messages {Tr,Mt, Rr, (Rt)R}
or {DIi, Tc,Mc}, he/she cannot compute the MACr and MACc because he/she
doesn’t know the values of the IDi, RID and Kr. Also, the tag verifies the
received messages with χper function, so the χperbp is secure against man-in-
the-middle attack.

6.2 Formal security analysis using BAN logic

To correct evaluate about the χperbp scheme, we use BAN Logic [8] proposed
by Burrows, Abadi and Needham. The BAN logic provides a formal method
for reasoning about the beliefs of principals in cryptographic protocols. From a
practical viewpoint, the analysis of a protocol is performed as follows:

– Transform message into idealized logical formula
– State assumptions about original message
– Make annotated idealized protocols for each protocol statement with asser-

tions



– Apply logical rules to assumptions and assertions
– Deduce beliefs held at the end of protocol

We present the notations and rules used in BAN logic proof in Table 2 and Ta-
ble 3. The steps of our formal security analysis are as follows:

Table 2: BAN logic notations

Notation Description
A| ≡ X A believes X
A / X A receives X
A| ∼ X A sends X
#(X) X is fresh
A

k←→ B A and B have a shared secret k
{X}k X is encrypted by the secret key k
A| ⇒ X A regulates X
< X >k X is exclusive OR-ed with k
H(X) Hash of X

Table 3: BAN logic rules

Rule Description

R1 : A|≡A
k←→B,A/{X}k

A|≡B|∼X

A believes that B has sent X
to him/her when A believes
that he/she shared key k with
B and received the encrypted
message {X}k

R2 : A|≡B|∼H(X),A/X
A|≡B|∼X

A believes that B has sent X
to him/her when A believes
that B has sent hashed value H(X)

R3 : A|≡B|∼(X,Y )
A|≡B|∼X

A believes that X has been
sent by B when he/she believes
B has sent (X,Y)

R4 : A|≡#(X)
A|≡#(X,Y )

A believes that if X is fresh
then (X,Y) is fresh

– Step 1. All transmitted messages of the protocol: In this step, we list
all transmitted messages of the χperbp scheme as bellow:



M1 : R → Ti : Rr, Query.
M2 : Ti → R : (Rt)R = χperz((Tt‖Rr),Ki),Mt = χperz(IDi⊕(Rr‖(Rt)R),Ki).
M3 : R → C : MACr = H(Mt‖(Rt)R‖Rr‖Kr‖Tr‖RID),Mt, Rr, (Rt)R, Tr.
M4 : C → R : Mc = χperz(IDi,Ki ⊕ (Tc‖(Rt)R)),MACc = H(Mc‖Mt‖Rr
‖(Rt)R‖RID‖IDi‖Tc), DIi = IDi ⊕RID ⊕ χperz(Tc‖Tr,Kr), Tc.
M5 : R → Ti : Mc,Mr = χperz(Mt ⊕Mc, IDi), Tc.

– Step 2. Idealizing the messages of the protocol: In this step, using
the BAN logic notations, we express idealized form of the messages in the
previous step.
IM1 : Ti / Rr, Query.
IM2 : R / {(Rt)R,Mt}Ki .
IM3 : C / H(Mt, (Rt)R, Rr,Kr, Tr, RID), {Mt, (Rt)R}Ki , Tr, Rr.
IM4 : R / {Mc}Ki , {DIi}Kr , H(Mc,Mt, Rr, (Rt)R, RID, Tc, IDi), Tc.
IM5 : Ti / {Mc}Ki , {Mr}IDi , Tc.

– Step 3. Explicit assumptions: The explicit assumptions of the χperbp
scheme are listed as following:
A1 : R| ≡ #(Rr).
A2 : Ti| ≡ #(Rt).
A3 : R| ≡ #(Tr).
A4 : C| ≡ #(Tc).

A5 : Ti| ≡ Ti
Ki←→ C.

A6 : C| ≡ C
Ki←→ Ti.

A7 : R| ≡ R
Kr←→ C.

A8 : C| ≡ C
Kr←→ R.

– Step 4. Security goals of the protocol: The security goals that the
χperbp scheme must meet are as follows:
G1 : C| ≡ Ti| ∼ IDi.
G2 : C| ≡ R| ∼ RID.
G3 : R| ≡ C| ∼ RID.
G4 : R| ≡ C| ∼ IDi.
G5 : Ti| ≡ C| ∼ IDi.
G6 : Ti| ≡ R| ∼ IDi.

– Step 5. Proving the security goals of the protocol:
Result1: From the R1, A5, A3 and IM3, IM2, the goal G1 is proved.
Result2: According to the R2, A8 and IM3, the goal G2 is proved.
Result3: Given the R2, A1, A7 and IM4, the goal G3 is proved.
Result4: According to the IM4, R1, R2, R3, A4 and A7, the goal G4 is
proved.
Result5: Given the IM5, A5 and R1, the goal G5 is proved.
Result6: Given the R1, R4, A2, A4, A7 and IM5, the goal G6 is proved.



6.3 Automated verification through Scyther tool

We use Scyther tool [9] to verify the correctness and security of the χperbp
scheme. Scyther is an automated security protocol analysis tool under the per-
fect cryptography assumption, in which it is assumed that the adversary learns
nothing from the encrypted or hashed data. We describe the specification of a
security protocol by a set of roles such as tag’s role, reader’s role and server’s
role. Roles are defined by a sequence of events such as sending or receiving of
terms. Scyther’s input language is SPDL, therefore we write χperbp scheme in
SPDL language as depicted in B. To learn more about Scyther tool and SPDL
language, we refer the reader to [10,9]. Report of Scyther tool, as depicted in Fig-
ure 7, shows that the χperbp scheme is secure against known attacks.

Table 4: Security comparison

SDA ImA DeA RA TA FBSA MIMA AA
Ref [1] X X X X × × X X
Ref [27] X X X X × × × ×
Ref [15] × × X X × X X X
Ref [16] × × × X X X X ×
Ref [17] × × × × × × × ×
χperbp X X X X X X X X
SDA : secret disclosure attack
ImA : impersonation attack
DeA : de-synchronization attack
RA : replay attack
TA : traceability attack
FBSA : forward-backward security attack
MIMA : man-in-middle attack
AA : anonymity attack



Fig. 7: Scyther tool results

6.4 Performance analysis

The χperbp scheme uses two main security functions: the χperz(.) function
and a hash function. In the tag side, which has limited resources, the χperz(.)
function only need to be implemented. We implement the χperz(.) function
on the FPGA module Xilinx Kintex-7 using the hardware description language
VHDL. Synthesis and simulation of the HDL code is executed using Vivado
v2018.3. As mentioned in section 5, security and performance of the χperz(.)
function depends on the two parameters w and z. We recommend w = 32 and
z ≥ 16, therefore, based on these values, we calculate the throughput, tp, and
the throughput-area ratio, tp-area of the χperz(.) algorithm by the following
formula:

tp =
Block size

Cycles per block
× Frequency(Mhz)



tp-area =
tp

SliceLUTs

The throughput and implementation cost comparison of the χperz(.) function
with some lightweight encryption functions which are used in the lightweight
authentication schemes is shown in Table 5. Furthermore, we also implement
the Per(Rot(.)) function which acts as a major function in the Timestamp-
permutation protocol.

As shown in Table 5, the device utilization of the simulation after synthesis
of the χperz(.) is 460 look-up-tables (LUTs) and its clock rate (frequency) is
680(Mhz). Moreover, χperz(.) function has the highest tp/area which shows that
it is more lightweight than the others.

An RTL schematic of the χper(.) function is depicted in Figure 8. In this
figure, the χper(.) function is represented in terms of logic gates such as AND,
NAND, and OR. In this diagram, 96-bit plaintext (A = a1‖a2‖a3) and 96-bit
secret key (B = b1‖b2‖b3) are inputs, and 96-bit C is the output.

Fig. 8: Logic diagram of the synthesized χper(.) function

Table 5: Throughput and implementation cost for various functions [14][22]

Function Area
(LUT)

Frequency
(Mhz)

Throughput
(Mbps)

Throughput/Area
(Mbps/LUT)

SIMON-96 435 564 1041 2.39
SPECK-96 452 473 1622 3.59
PRESENT-80 311 542 1084 3.49
Blake 251 211 477 1.90
Keccak 393 159 864 2.19
Per(Rot(.))-80 904 244 81 0.08
χperz(.)-96 460 680 10880 23.65



7 Conclusion

In this paper, we analyzed the Timestamp-permutation protocol proposed by
Fan et al. for IoT applications and showed that their scheme is vulnerable to
disclosure attack. This attack can disclose all the secret information stored on a
tag such as the identity of the tag IDi and its encryption value E1(IDi). This
attack is practical because it requires at most 128 session information. This val-
ues can be used to other attacks such as impersonate attack, de-synchronization
attack, replay attack and etc. The permutation function used in the Timestamp-
permutation scheme has not good confusion property and this weakness lead to
the disclosure attack. To address this vulnerability, we use a nonlinear function
called χperz(.) and redesign the Timestamp-permutation scheme. We implement
the χperz(.) function on a Xilinx Kintex-7 FPGA using VHDL language and
compare the implementation cost with some lightweight encryption functions.
The security and performance comparison results of the χperbp show that this
protocol is well suited for resource-constrained environments such as RFID tags
and sensor nodes.

As a limitation of χperbp, we should mention that to find the tag through
the authentication phase, the server should search whole database. Although, the
server could have enough computation resources, however, it is a shortcoming
in any application for which scalability is important. Hence, as a future work,
we suggest to improve this feature of the protocol. In addition, χper is a new
primitive which can be used in any other protocol independent of χperbp. In
this paper, we have shown its security against various attack, but we encourage
other researchers to investigate its security independently.
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A Security Analysis of χper function

In this section, we present the results of our security analysis of χper against
differential [6], linear [26], impossible differential [23,5] and zero-correlation [7]
attacks. To investigate these attacks, we consider the χper function as three
layers. Add-key, Non-linear (it is described with three AND and three XOR
operation), and Mix-shift layers (see Figure 6). Note that to find a differential and
linear characteristic the Add-key layer has no effect. Therefore, in these analyzes
we can ignore it. Also, the action of the Non-linear layer can be described as
parallel with a 3×3 S-box. This S-box in hexadecimal notation is given by Table
6.



x 0 1 2 3 4 5 6 7
S(x) 0 3 6 1 5 4 2 7

Table 6: The 3-bit S-box used in χper in hexadecimal form.

A.1 Differential/Linear Cryptanalysis

In order to argue for the resistance of χper against differential and linear attacks,
we applied Mixed Integer Linear Programming (MILP) method as explained in
[35,28,31] to search for differential and linear characteristics. The results are
listed in Table 7 .

] rounds 1 2 3 4 5 6 7 8

w = 32
Linear 1 3 6 11 19 24 28 32

Differential 1 3 6 11 18 24 (32) (37)
Table 7: Lowerbounds on the number of active S-boxes in χper. In case the MILP
optimization was too long, we provide upper bounds between parentheses.

A.2 Impossible Differential characteristics

Impossible differential attack [23,5] finds two internal state differences ∆i, ∆o

such that ∆i is never propagated to ∆o. The attacker then finds many pairs of
plaintext/ciphertext and key values leading to (∆i, ∆o). Those key values are
wrong values, thus key space can be reduced. To search for impossible charac-
teristics we applied MILP method based on the [11,30].

Our MILP model shows the longest impossible differential characteristics
reach 6 rounds. The details of one of these characteristics can be seen in Table
8. Note that in this 8, the Input differential, Middle differential, and Output dif-
ferential shows the differentials before S-box layer, after S-box layer, and after
Mix-Shift layers, respectively. Also, the bits "0", "1", and "?" shows zero, active,
and unknown differentials, respectively. To prove the impossibility of this differ-
ential, we use the following property that can be derived from the Differential
Distribution Table (DDT) of χper S-box.

Fact 1 The S-box of χper has the following property:

– If the input difference of the S-box is 0x1 = 001, 0x2 = 010, and 0x3 = 100,
then the output difference must be as ??1, ?1?, and 1??, respectively, where
the ? shows an unknown difference bit.
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A.3 Zero-Correlation Linear Approximation

The zero-correlation attack is one of the cryptanalytic method introduced by
Bogdanov and Rijmen [7]. The attack is based on linear approximations with
zero correlation. To search for zero-correlation linear approximations, we applied
the MILP method for χper. The longest zero-correlation linear approximation
was obtained for 6 rounds of χper when w = 32. Table 9 shows an examples
of this zero-correlation linear approximation. Note that in this table, the Input
mask, Middle mask, and Output mask shows the linear masks before S-box layer,
after S-box layer, and after Mix-Shift layers, respectively. Also, the bits "0", "1",
and "?" shows zero, active, and unknown masks, respectively.

In the same way with impossible differential characteristics, Fact 1 is also
true in linear mode and we have used it in Table 9.
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B Security Protocol Description Language model of the
χperbp scheme

usertype Timestamp;
const XOR: Function;
const Concatenate: Function;
const Right: Function;
const Left: Function;
const Xper: Function;
hashfunction H;

protocol Xperbp(Tag,Reader,CloudServer){
role Tag {
const IDi,Ki ;
var Mr,Mc;
fresh Rr : Nonce;
var Tr,Ts,Tt: Timestamp;
recv-!Tt(Tag,Tag,Tt);
recv-1(Reader,Tag,Rr);
macro Rt={Concatenate(Tt,Rr)}Ki;
macro RRt= Right(Rt);
macro Mt={XOR(IDi,Concatenate(Rr,RRt))}Ki;
send-2(Tag,Reader,Mt,RRt);
recv-5(Reader,Tag,Mc,Ts,Mr);
macro Mc’={IDi}XOR(Ki,Concatenate(Ts,RRt));
macro Mr’={XOR(Mt,Mc)}IDi;
match(Mc,Mc’);
match(Mr,Mr’);
claim(Tag,Secret,IDi);
claim(Tag,Secret,Ki);
claim(Tag,Niagree);
claim(Tag,Nisynch);
claim(Tag,Alive);
claim(Tag,Weakagree);
}

role Reader {
const RID,Kr,Ki,IDi;
var RRt,RtR,RtL,Mc,Mt,MACc,DIi;
fresh Rr : Nonce;
var Tt,Ts,Tr: Timestamp;
recv-!Tr(Reader,Reader,Tr);
send-1(Reader,Tag,Rr);
recv-2(Tag,Reader,Mt,RRt);
macro MACr=H(Concatenate(Mt,RRt,Rr,Kr,Tr,RID));
send-3(Reader,CloudServer,MACr,Tr,Mt,Rr,RRt);
recv-4(CloudServer,Reader,Mc,DIi,Ts,MACc);



macro IDi’=XOR(DIi,RID,{Concatenate(Ts,Tr)}Kr);
macro MACc’=H(Concatenate(Mc,Mt,RRt,Rr,Ts,IDi’,RID));
match(MACc,MACc’);
macro Mr={XOR(Mt,Mc)}IDi;
send-5(Reader,Tag,Mc,Ts,Mr);
claim(Reader,Secret,IDi);
claim(Reader,Secret,Kr);
claim(Reader,Secret,RID);
claim(Reader,Niagree);
claim(Reader,Nisynch);
claim(Reader,Alive);
claim(Reader,Weakagree);
}

role CloudServer{
const RID,Kr,IDi,Ki ;
var RRt,RtR,RtL,Mt,MACr,DIi;
fresh Rr : Nonce;
var Ts,Tt,Tr: Timestamp;
recv-!Ts(CloudServer,CloudServer,Ts);
recv-3(Reader,CloudServer,MACr,Tr,Mt,Rr,RRt);
macro Mt’={XOR(IDi,Concatenate(Rr,RRt))}Ki;
macro MACr’=H(Concatenate(Mt,RRt,Rr,Kr,Tr,RID));
match(Mt,Mt’);
match(MACr,MACr’);
macro Mc={IDi}XOR(Ki,Concatenate(Ts,RRt));
macro MACc=H(Concatenate(Mc,Mt,RRt,Rr,Ts,IDi,RID));
macro DIi=XOR(IDi,RID,{Concatenate(Ts,Tr)}Kr);
send-4(CloudServer,Reader,Mc,DIi,Ts,MACc);
claim(CloudServer,Secret,IDi);
claim(CloudServer,Secret,Ki);
claim(CloudServer,Secret,Kr);
claim(CloudServer,Secret,RID);
claim(CloudServer,Niagree);
claim(CloudServer,Nisynch);
claim(CloudServer,Alive);
claim(CloudServer,Weakagree);
} }
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