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Abstract. Circuit-based private set intersection (circuit-PSI) enables
two parties with input set X and Y to compute a function f over the
intersection set X ∩ Y , without revealing any other information. State-
of-the-art protocols for circuit-PSI commonly involves a procedure that
securely checks whether two input strings are equal and outputs an addi-
tive share of the equality result. This procedure is typically performed by
generic two party computation protocols, and its cost occupies quite large
portion of the total cost of circuit-PSI. In this work, we propose equal-
ity preserving compression (EPC) protocol that compresses the length
of equality check targets while preserving equality using homomorphic
encryption (HE) scheme, which is secure against the semi-honest ad-
versary. This can be seamlessly applied to state-of-the-art circuit-PSI
protocol frameworks. We demonstrate by implementation that our EPC
provides speed-up for circuit-PSI protocols over moderate to high band-
width (over 100Mbps), which is up to 1.7x around 500Mbps.

Keywords: Private Set Intersection, Circuit-based Private Set Intersec-
tion, Homomorphic Encryption

1 Introduction

A two-party functionality of private set intersection (PSI) enables two parties P0

and P1 having respective input set X and Y to compute the intersection X ∩ Y,
without revealing any other information beyond the original set cardinality |X|
and |Y | to each other.

There are many real-world applications related to PSI, and some of them only
requiring the intersection set may find an efficient solution from PSI alone. How-
ever, there is another variant of PSI that outputs only f(X ∩Y ) for some target
function f rather than the intersection set X ∩Y, and this would be more desir-
able for other applications. One typical but a popular example is PSI-Cardinality
that computes cardinality of the intersection, where f(X ∩ Y ) = |X ∩ Y |. In-
deed these kinds of PSI are receiving growing attention from industry, for ex-
ample, Google [22, 27] and Facebook [6] explored some variants PSI including
PSI-Cardinality-with-Sum that computes the cardinality and the sum of associ-
ated values over the intersection set.

This PSI-with-computation notion is generalized to the circuit-PSI function-
ality, which outputs the intersection information in secret-shared form, instead



of the intersection set itself. More precisely, for each element x ∈ X, circuit-PSI
outputs each party random bits s0 and s1 respectively, such that s0 ⊕ s1 = 1 if
and only if x ∈ X ∩ Y (of course 0 otherwise). This is used as a general-purpose
preprocessing, in the sense that two parties use the shares to perform target
computation on the intersection. Notable examples would be PSI-Threshold that
only reveals whether the cardinality of X ∩Y is larger than some threshold, and
private set union (PSU) that literally computes X ∪ Y .

The work of Pinkas et al. [32] proposed a novel construction of circuit-PSI
protocol which has linear communication complexity in the input set size. After
that, several following works [7,35] have proposed improved instantiation of the
framework and those works indeed shows the state-of-the-art performance for
circuit-PSI.

To generate final bits s0 and s1 in circuit-PSI, the framework involves O(N)
times of private equality share generation (ESG) that takes an input string from
each party and outputs Boolean shares of the equality result between two strings
for N = |X| = |Y |. This is one of the main differences of circuit-PSI from plain
PSI, where the latter one typically uses private equality test that simply out-
puts the equality result itself. For private equality test, there are many efficient
method such as oblivious pseudo-random functions (OPRFs) [16, 24, 35]. How-
ever it is not directly applicable for ESG, and the most of circuit-PSI protocols
perform ESG by other costly methods such as generic two party computation
(2PC).

It results in a large performance gap between plain PSI and circuit-PSI.
More importantly, the cost for ESG occupies the largest part of circuit-PSI,
about 96% and 91% of the total communication in circuit-PSI protocols of [32]
and [7] respectively. Recently reported work [35] applied Silent-OT [5] to reduce
the communication burden of ESG, but this communication reduction comes
at the cost of running time. Then it still takes over 20 times of running time
than plain PSI protocols, which means ESG is also the most heavy part of
circuit-PSI [35]. Recently, there has been reported remarkable improvements
on OT extensions [12, 38] that have small communication cost comparable to
Silent-OT [5] and fast computational cost comparable to [23]. These works would
improve the performance of ESG procedure, but ESG still takes quite large
portion of circuit-PSI protocol.

1.1 Our Contribution

Our work starts with an observation that all known methods for ESG have com-
plexity linear in `, the bit-length of strings. Some works [32,35] simply exploited
two party GMW protocol [19] by evaluating equality check circuit composed
of ` − 1 AND gates, and it naturally results in complexity linear in `. After
then [7, 15] proposed more efficient protocol that has improved communication
burden, but it still suffered from linear complexity in `.

• With a purpose of reducing workload of ESG, we propose a functionality
what we call equality preserving compression (EPC) that converts two large
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integers into smaller integers, while preserving the equality condition. Then
we construct a homomorphic encryption (HE) based efficient protocol real-
izing EPC functionality with semi-honest security. Asymptotically it com-
presses `-bit input integers into O(log `)-bits, with Õ(`) computational and
communication complexity.

• We then combine our EPC into the circuit-PSI framework of [32], which
achieves semi-honest security. Our EPC protocol perfectly preserve equal-
ity, in other words with zero failure probability, and hence the correctness
analysis for previous circuit-PSI protocols remain exactly same. Moreover it
provides concrete improvement since it changes the heavy ESG part to be
executed logarithmic sized input.

1.2 Related Works

Plain PSI. The early proposal of PSI is based on Diffie-Hellman (DH) [26], and
this still serve as a basis of modern PSIs with considerably low communication
cost but high computational cost. Recently many OPRF-based (plain) PSI pro-
tocols [8, 24, 29, 30, 35] have been reported with rather low computational cost,
at the cost of communication burden.

PSI-with-functionality. Toward PSI with additional functionality, Google [22,
27] provides PSI-with-computation protocol stem from DH-based PSI, which is
tailored for specific target functionality that reveals computing cardinality of the
intersection and summing all associated values of the intersection sets. After then
Facebook [6] further developed this to a protocol that letting two parties have
additive shares of intersected elements, with a purpose of supporting general
computation over the intersection set.

Circuit-PSI. As a more generalized concept, circuit-PSI is firstly proposed by [20]
and then continuous improvements have been reported [11,31,33]. In particular
[31] has a similarity with our paper, as their main idea called permutation-
based hashing is to cut-off the length of item while preserving equality, with a
purpose of reducing the cost for equality check. However, the technique is only
applicable to the initial hashing routine (will be explained by cuckoo/simple
hashing later), and not compatible with the currently best framework of circuit-
PSI due to Pinkas et al. [32] based on oblivious programmable PRF (OPPRF). As
OPPRF-based circuit-PSI framework shows the best performance, whose details
are presented later in Section 3. We note that, despite the similarity of their
names, construction of OPPRF is quite different to OPRF, and hence OPRF-
based PSI protocol does not implies OPPRF-based circuit-PSI protocol. Indeed,
we are aware of only one work [35] that constructs plain PSI and circuit-PSI from
the same underlying idea. There is another concept of PSI-with-computation [15]
different to circuit-PSI, which improves the efficiency of PSI-with-computation
while additionally reveals the cardinality of intersection set as well as the desired
function evaluation f(X ∩ Y ).
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HE in PSI field. There are also HE-based PSI approaches [9, 10], which mainly
focused on extremely unbalance-sized set cases. The first work [10] considered
plain PSI, and the main usage of HE is to solve private set membership (PSM)
problem by evaluating inclusion polynomial; x ∈ Y is equivalent to F (x) =∏
y∈Y (x−y) = 0, which is quite different to our use of HE. The following work [9]

extended this protocol to PSI having associated value and strengthened the
security to malicious setting, but HE is applied in similar sense to the previous
work. The authors of [9] leaved a short mention on circuit-PSI as a combination
of their HE-based PSM protocol with the final equality share generation. As the
circuit-PSI protocol was not the main interest of the paper, the authors merely
mentioned that the final task can be done by 2PC without detailed analysis.

1.3 Roadmap

In Section 2, we recall the preliminaries including oblivious transfer and homo-
morphic encryption, and in Section 3, we present the state-of-the-art circuit-PSI
framework due to [32]. In Section 4, we propose an equality preserving com-
pression functionality concept and efficient protocol for that. Then in Section
5, we combine our proposed EPC protocol with the OPPRF-based circuit-PSI
protocol to improve efficiency, and provide experimental results in Section 6.

2 Preliminary

2.1 Notations

We write vectors as bold lowercase letters, and matrices as bold uppercase letters.
For any real number x, we denote bxe by the round-off to integer. The i-th
component of a vector v is denoted by vi, and i, j-th entry of a matrix M
is denoted by mi,j . For an integer k, a set {1, · · · , k} is denoted by [k]. The
logarithm function log is assumed to have base 2 unless specially denoted by
logw with base w. For any statement T that can be determined by true or false
(Boolean), we denote 1(T ) be the truth value for the equality, i.e., it is 1 if T is
true and 0 else.

2.2 Oblivious Transfers

A 1-out-of-n oblivious transfer (OT) of `-bit input messages (n, 1)-OT` takes
as input n messages m1, · · · ,mn ∈ {0, 1}` from the sender and a choice index
c ∈ [n] from the receiver, and outputs mc to the receiver and nothing to the
sender. We also use a notion of 1-out-of-2 correlated-OT (COT) of `-bit input
messages (2, 1)-COT`, where the sender inputs a correlation d ∈ {0, 1}` and the
receiver inputs a choice bit b ∈ {0, 1}. Then the functionality outputs to the
sender r and d+ r for a randomly chosen r ∈ {0, 1}`, and to the receiver b ·d+ r.
We write m times of (n, 1)-(C)OT` calls by (n, 1)-(C)OTm` .
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There are protocols called OT-extension (OTe) that efficiently extend small
numbers of base OTs to large numbers of OTs. Assuming that such small num-
bers of base OTs are done, the most typical IKNP OTe protocols execute (2, 1)-
OT` and (2, 1)-COT` with communication λ + 2` [23] and λ + ` [3] bits per
one call. Recently another breakthrough line of OT extensions [5, 12, 38] are
proposed, which greatly reduces communication overhead of IKNP-style OT-
extension, while preserving similar communication cost. For sufficiently many
OT and COT calls, for example more than 220 calls, Silent OTe allows one to
execute (2, 1)-OT` and (2, 1)-COT` with nearly 2`+1 and `+1 bit communication
per one call, respectively.

Boolean shares and Gate evaluations. For a bit x ∈ {0, 1}, we say x0 ∈
{0, 1} and x1 ∈ {0, 1} satisfying x = x0⊕x1 be 2-party additive Boolean shares,
or simply Boolean shares of x. Consider two bits x and y are shared as xi and
yi by two party P0 and P1. Then two parties can privately compute Boolean
shares of gate evaluations on input x and y using OT. Note that Boolean shares
for XOR x⊕ y can be easily computed by xi ⊕ yi by each party’s own. Boolean
shares for AND gate can be evaluated by (2, 1)-COT2

1 [13,19]. For the underlying
idea, observe that (2, 1)-COT1 with the sender’s input correlation bit d and the
receiver’s input choice bit b essentially computes Boolean shares of b ∧ d. To
evaluate AND gate, two parties execute a correlated-OT with input xi and y1−i
to have Boolean shares of a = xi∧y1−i, and then with input yi and x1−i to have
Boolean shares of b = x1−i ∧ y1−i. Then the party Pi outputs xi ∧ yi ⊕ ai ⊕ bi
and the other party P1−i outputs x1−i ∧ y1−i ⊕ a1−i ⊕ b1−i, which are Boolean
shares of x ∧ y = (x0 ⊕ x1) ∧ (y0 ⊕ y1).

2.3 RLWE-based Homomorphic Encryption

A homomorphic encryption (HE) scheme is an encryption scheme that supports a
ring-structured plaintext M, and homomorphic arithmetic operations between
ciphertexts that acts on inner plaintext. We especially exploit a ring learning
with errors (RLWE) based HE scheme, BFV scheme [14].

For simplicity, we restrict our description for RLWE-based HE using power-
of-2 cyclotomic rings of integers, which is widely used in several HE libraries.
Let R := Z[X]/(Xn + 1) be a polynomial quotient ring where n is a power-of-2
integer. This scheme supports a plaintext space Rp := R/pR = Zp[X]/(Xn+ 1)
for some plaintext modulus prime integer p, and the corresponding ciphertext
space is R2

q for some q � p.

BFV Scheme. We will briefly review the BFV homomorphic encryption scheme.
The IND-CPA security of BFV is based on the hardness assumption of the RLWE
problem. For more details, we refer to [4, 14].

Key Generation. Given a security parameter λ > 0, fix integers n, P (P be a
positive integer that will be used in the evaluation key generation), and distri-
butions Dkey, Derr and Denc over R in a way that the resulting scheme is secure
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against any adversary with computational resource of O(2λ). Typically Dkey is
chosen by ternary coefficient polynomials in R, and Derr and Denc are chosen
by discrete Gaussian distribution of appropriate standard deviation σ.

1. Sample a ← Rq, s ← Dkey, and e ← Derr. Then the secret key is defined
as sk = (1, s) ∈ R2, and the corresponding public key is defined as pk =
(b, a) ∈ R2

q, where b = [−a · s+ e]q.
2. Sample a′ ← Rq and e′ ← Derr. Then the evaluation key is defined as

evk = (b′, a′) ∈ R2
q, where b′ = [−a′ · s+ e′ + Ps′]q for s′ = [s2]q.

Encryption. Given a public key pk and a plaintext m ∈ R, Sample r ← DEnc and
e0, e1 ← Derr. Then compute Enc(pk, 0) = [r ·pk+(e0, e1)]q and EncBFV(pk,m) =
[Enc(pk, 0) + (∆BFV · [m]p, 0)]q,where ∆BFV = bq/pe.

Decryption. Given a secret key sk ∈ R2 and a ciphertext ct ∈ R2
q, Dec

BFV(sk, ct) =⌊
p
q [〈sk, ct〉]q

⌉
.

The ciphertext of BFV scheme is (b(x), a(x)) satisfying b(x) = −a(x) · s(x) +
e(x). The e(x) part is called as noise term of ciphertext. We note that infinite
norm of noise term of ct in decryption function should be bounded by q

2p for
correctness of decryption.

Addition. Given ciphertexts ct1 and ct2 in R2
q, their sum is defined as ctAdd =

[ct1 + ct2]q.

Multiplication. Given ciphertexts ct1 = (b1, a1) and ct2 = (b2, a2) in R2
q and an

evaluation key evk, their product is defined as ctMult =
[
(d0, d1) +

⌊
P−1 · d2 · evk

⌉]
q
,

where (d0, d1, d2) is defined by
[⌊

p
q (b1b2, a1b2 + a2b1, a1a2)

⌉]
q
.

Batching. BFV scheme basically supports encryptions of plaintext ring Rp ele-
ment, and homomorphic addition and multiplication over Rp. As a useful notion
for batching multiple data in one ciphertext, one can use a ring isomorphism

Rp ∼= Fn/d
pd

where d is the smallest integer such that pd = 1 mod 2n and Fpd
is a finite field of order pd. Using this isomorphism, one can perform slot-wise
encryption and operation of n/d elements in Fpd by single instruction on the
ciphertext. It is worth to note when the plaintext modulus p and the polynomial
quotient n satisfies

p = 1 mod 2n, (1)

which provides n slots of Zp element. This can be achieved only with somewhat
restrictive parameters, but the underlying plaintext slot Zp is much simpler than
extension fields Fpd so that one can fully enjoy the power of batching. In this
regard, we refer this case by full batch and indeed our paper mainly focus on full
batch HE parameters.
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Security Notions. For security, we consider the standard IND-CPA security that
requires two ciphertexts of different messages are (computationally) indistin-
guishable given an encryption oracle. The IND-CPA security of RLWE-based
HE literally comes from the hardness of ring learning with errors (RLWE) prob-
lem. For concrete parameter setting of IND-CPA security, the bit-size of cipher-
text modulus log q and polynomial ring dimension n, and error distribution Derr
should be selected to secure against various lattice reduction attacks.

3 Circuit-based PSI

The definition circuit-based PSI (circuit-PSI) functionality to generate Boolean
additive shares is given as Figure 1. After circuit-PSI, the results can be used
for one’s desired function evaluation. In the rest of this section, we describe the
abstract framework of [32] which continues to the following improvements [7,35].
Then we especially review the equality share generation methods of each works
which occupies the largest part of the total cost, from which we can observe
the input bit-length ` equality share generation plays the most crucial role for
complexity.

Parameters: A receiver with an input set X of size N and a sender with an input
set Y of size N.

Functionality: The functionality sends to the receiver an injective indexing function
ι : X → [M ] for some M ≥ N and a vector s0 ∈ {0, 1}M , and to the sender a vector
s1 ∈ {0, 1}M such that s0,i ⊕ s1,i = 1(ι−1(i) ∈ X ∩ Y ) for i ∈ ι(X), and s0,i ⊕ s1,i = 0
for i /∈ ι(X).

Fig. 1: FCPSI. (Ideal) Functionality of circuit-PSI

3.1 The OPPRF-based Circuit-PSI Framework

Let the receiver R holds a set X and the sender S holds a set Y of the same size
N. The framework consists of the following three main stages.

Step 1. Hashing. For ε > 0, each party creates a hash table withM = (1+ε)·N
bins, but with different hashing method. The receiver applies cuckoo hashing
with d hash functions h1, · · · , hd : {0, 1}∗ → [M ] on input X. More precisely,
for a suitable choice of ε, there is a cuckoo hashing algorithm that stores every
element x ∈ X in hj(x)-th bin for some j ∈ [d] with overwhelming probability,
while ensuring that at most one element is stored in each bin. This yields a
simple representation of the cuckoo hash table: TX [hj(x)] = x. Note that the
mapping from x ∈ X to hj(x) determines the indexing function ι in the circuit-
PSI definition of Figure 1.
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On the other hand, the sender creates a simple hash table with the same
hash functions on input Y, which stores each y ∈ Y in every bin hj(x) for every
j ∈ [d]. Naturally each bin can hold more than one element, and hence the i-
th bin of the simple hash table TY [i] is indeed a set. It is known that that for
M = O(N) hash table size, the number of elements in each bin is O(log(N)).

Since hj(x) 6= hj(y) for some j implies x 6= y, two parties only need to
compare each elements of the same bin of each hash tables. Since the cuckoo hash
table TX ensures at most one element of x ∈ X per each bin, circuit-PSI reduces
to the problem that securely outputs an additive share of 1(TX [i] ∈ TY [i]) for
each bin i, which is essentially a private set membership (PSM) problem. Here the
receiver has to fill the empty bin in TX with dummy value to prevent additional
information leakage.

Step 2. Bin Tagging. This step further reduces the aforementioned PSM
problem into an equality share generation (ESG) problem between two parties,
where each party inputs a vector v and v∗ of length M respectively, and is given
as output a Boolean vector of additive share of 1(vi = v∗i ).

This is realized by a functionality called oblivious programmable pseudo-
random function (OPPRF) [25] where the sender obliviously computes a PRF
F on receiver’s input while the sender can program F with values (yi, zi) so
that F (yi) = zi. The formal definition of OPPRF is given as Figure 2. [32] is
the first work that applies OPPRF functionality for this purpose, and then [7]
and [35] developed more efficient OPPRF protocols to improve the performance
of circuit-PSI.

Parameters: A sender with input L = {(yi, zi)} where yi ∈ {0, 1}∗ and zi ∈ {0, 1}`,
and a receiver with input X = {xi} with xi ∈ {0, 1}∗.

Functionality: The functionality samples a random function F : {0, 1}∗ → {0, 1}`
such that F (y) = z for each (y, z) ∈ L, and sends F (X) := {F (x) : x ∈ X} to the
receiver.
After then, upon an input y of the sender, the functionality outputs F (y) to the sender.

Fig. 2: FOPPRF. (Ideal) Functionality of oblivious programmable PRF

To convert PSM problem to ESG problem, two parties execute a protocol
for OPPRF functionality with the following input. The sender who has a simple
table samples a random tag value vi ∈ {0, 1}` for each i-th bin, and generate
the input set L obtained by concatenating each y ∈ Y with the tag of the bins
where y is stored, namely

L =
{(
y||hj(y), vhj(y)

)}
y∈Y,j∈[d] = {(y′||i, vi)}i∈[M ],y′∈TY [i] .
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The receiver feeds its input set by T̃X = {TX [i]||i}i∈[M ] . After the execution of
OPPRF protocol, the receiver assigns

v∗i = F (TX [i]||i) ∈ {0, 1}`

in each hash address i to construct a vector v∗ of length M. From the definition
of OPPRF functionality, it holds that vi = v∗i if the element TX [i] is in the
set TY [i], otherwise v∗i is a random element. Therefore the original PSM-related
problem is translated into equality share generation problem between v from the
sender and v∗ from the receiver.

Remark 1 (Failure Probability). Note that there is a failure probability of 2−`

where the random element v∗i is same to vi despite TX [i] is not in TY [i]. The
length of tag ` should be chosen so that the overall failure probability is smaller
than 2−σ where σ is statistical security parameter. Since there are M bins, it
should hold that 2−σ > 1− (1− 2`)M , which is sufficient with

` > σ + dlogMe. (2)

One exception is OPPRF of [7] that requires ` > σ + dlog 4Me, and this comes
from different structure of their OPPRF. For the detailed explanation, see Ap-
pendix A.

Step 3. Equality Share Generation. In this step two parties finally generate
Boolean shares of 1(vi = v∗i ), whose definition is formally given as Figure 3.

Parameters: A sender with an input string a and a receiver with an input string b.

Functionality: The functionality outputs bits s0 and s1 such that s0 ⊕ s1 = 1(a = b)
to each party respectively.

Fig. 3: FESG. (Ideal) Functionality of equality share generation

There are several known methods [7, 15] to perform this step in semi-honest
model, but thanks to recent improvements on OT extension [12,38], GMW pro-
tocol is likely to be the most competitive one. Using GMW protocol, one can
evaluate the equality check circuit on `-bit string composed of ` − 1 AND gate
evaluations using (2, 1)-COT2`−2

1 .

3.2 Applications of Circuit-PSI

Below we present some typical but popular applications of circuit-PSI. We would
like to remark that the overheads for these applications are significantly small
compared to circuit-PSI cost, as also remarked in [32].
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Private Intersection Cardinality and Threshold. These applications would
be most direct consequences of circuit-PSI. The cardinality of intersection set
(PSI-Ca) can be obtained by evaluating a Hamming distance circuit that re-
quires less than M AND gates on circuit-PSI outputs. Moreover, by augmenting
one comparison circuit to the Hamming distance circuit (less than M + logM
AND gates), we can let the parties know whether the cardinality is larger than
some threshold t (PSI-Th).

Private Sum over Intersection. Assume the sender having set X additionally
holds an associated values {vx ∈ G : x ∈ X} for some additive group G, and
we want to let the receiver having set Y knows the sum of associated values
over the intersection set, namely V =

∑
x∈X∩Y vx. This is sometimes called

PSI-Sum1. For that we adapt a method of [15]: The sender samples r ∈ GM
that sums to

∑
ri = 0. Then two parties execute OT upon the choice bit s1,i

from the receiver, and two messages ri for s0,i choice and ri + vι−1(i) for 1− s0,i
choice from the sender, where vι−1(i) = 0 for i /∈ ι(X). The receiver adds all
received value to have

∑
ri + V = V, without knowing any other information

since each summand is masked by random value ri. This can be easily tweaked
to let the sender know V =

∑
x∈X∩Y vx, by letting the sender samples r such

that
∑
ri = R for a sender-side chosen R ∈ G. Then from the same protocol the

receiver ends with R+ V , and finally sends back the value to the sender so that
the sender recover V = (R+ V )−R.

Remark 2. Circuit-PSI can handle the case where both parties hold associated
value sets so that parties perform further computations over those sets. How-
ever it is somewhat complicated as it requires some modification of OPPRF
application (of Step 2. Bin Tagging). Thus we simply refer Section 6 of [32] for
details.

Private Set Union. Circuit-PSI also leads to private set union (PSU ), where
the receiver obtains X ∪Y . Note that by assuming the receiver holds Y (and the
sender holds X), PSU is equivalent to let the receiver know X\Y . We can also
adapt a method of [15] for PSU as follows: Two parties first run circuit-PSI on
each input X and Y so that the result equality share is related to X, i.e., two
parties obtain s0,x and s1,x for each x ∈ X. Then the set X\Y can be obtained
from OT between two parties, with a choice bit s1,x from the receiver, and two
messages x for s0,x choice and ⊥ for 1− s0,x choice from the sender. Note that
the receiver obtains x if x ∈ X\Y , and ⊥ otherwise, and the sender knows no
information about which element of X is sent to the receiver.

1 Some protocols [15, 22] outputs both cardinality and summation. It should be re-
marked that circuit-PSI based protocol can selectively exposes cardinality or sum-
mation, or even both.
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4 Equality Preserving Compression

The final equality share generation procedure occupies the largest part of the
total cost in circuit-PSI protocol, and the input bit-length ` of equality share
generation plays an important role. In this section, we present a procedure that
converts the equality share generation target inputs into another values whose
size is asymptotically logarithm to the original input bit-length, while the equal-
ity results remain unchanged. More formally, we define the 2-party functionality
equality preserving compression (EPC) FEPC that takes an integer v ∈ Zt from
the sender and another integer v∗ ∈ Zt from the receiver. The functionality out-
puts each party a random integer r and r∗ in another modulus ring Zp, where
it holds that v = v∗ in Zt if and only if r = r∗ in Zp for p < t.

Parameters: A sender with an input v ∈ Zt and a receiver with an input v∗ ∈ Zt,
and the target size p.

Functionality: The functionality sends a random r ∈ Zp and r∗ ∈ Zp to the sender
and receiver respectively, such that v = v∗ in Zt if and only if r = r∗ in Zp.

Fig. 4: FEPC. (Ideal) Functionality of equality preserving compression

4.1 A Basic Protocol

Our protocol starts from the following simple observation on word decomposi-
tion. For any base w, the w-base decomposition of v and v∗ by v =

∑u−1
i=0 vi ·wi

and v∗ =
∑u−1
i=0 v

∗
i · wi where u := dlogw te and vi, v

∗
i ∈ [0, w) satisfies

v = v∗ ⇐⇒ D :=

u−1∑
i=0

(vi − v∗i )2 = 0 in Z. (3)

Note that D ≤ u · (w− 1)2 ≈ logw t · (w− 1)2, which has much smaller size than
the original size t.

Based on this idea, we consider a simple 2-round protocol that privately
computes D and output a random element r ∈ Zp and r∗ := r + D ∈ Zp by
Figure 5. However, the correctness may fails without any condition on the word
base w and p, since it may happens that r = r∗ ∈ Zp despite of v 6= v∗ if D
is divisible by p. To avoid this, the word base w has to be chosen so that D is
always less than p, namely

p > u · (w − 1)2. (4)

We note that u · (w − 1)2 = O(log t), this protocol asymptotically realizes FEPC

for p = O(log t).
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Parameters: A sender with input v ∈ Zt and a receiver with input v∗ ∈ Zt and
the target size p.

Protocol:

1. Sender generates a homomorphic encryption secret key sk, and decomposes in
w-base v ∈ Zt to {vi}0≤i<u for u = dlogw te. After that sender encrypts each
vi using sk, and sends them to receiver.

2. Receiver picks a random integer r ∈ Zp, and decomposes v∗ ∈ Zt to {v∗i }0≤i<u.
Then receiver homomorphically compute r +

∑u−1
i=0 (vi − v∗i )2, and sends the

resulting ciphertext back to sender.
3. Sender decrypts the received ciphertext using sk, to obtain r∗ = r+

∑u−1
i=0 (vi−

v∗i )2 ∈ Zp.

Fig. 5: A basic protocol for FEPC functionalities

4.2 Optimizations and Full Protocol

Upon the basic protocol above, we specially focus on BFV scheme to utilize
batching property. Furthermore, we achieve huge speed-up from a simple de-
composition of D =

∑
(vi − vi∗)2 by totally removing homomorphic ciphertext

multiplication. On security aspect, we use noise flooding to ensure function pri-
vacy of homomorphic encryption. A full protocol description that puts everything
together is presented by Figure 6, and below we provide some details for each
technique.

Batching with RLWE-based HE. As reivewed in Section 3, two parties
have to perform O(N)-many times of equality checks in circuit-PSI. In this
regard, we can exploit batch property of BFV scheme to perform multiple calls
of FEPC, on some conditions on target size p and HE parameters. To recall, for
the given RLWE dimension n, we can encrypt n/d number of Fpd elements in
one ciphertext for the smallest integer d such that pd = 1 mod 2n. This means
that using smaller p gives better compression ratio, but this makes the number
of slots in a single ciphertext smaller. For example, p > 2n is necessary to use
full batch (i.e n slots).

Removing Ciphertext Multiplications. In most of HE schemes, homomor-
phic multiplication takes much larger time than scalar multiplication. To remove
homomorphic multiplications, we let the sender additionally sends one more ci-
phertext which is an encryption of

∑u−1
i=0 v

2
i . In this case, the receiver can com-

pute D by

D =

u−1∑
i=0

v2i − 2 ·
u−1∑
i=0

vi · v∗i +

u−1∑
i=0

v∗2i .

12



As the receiver knows v∗i values, it can compute
∑u−1
i=0 v

∗2
i part and then the

receiver only needs to perform scalar multiplications and additions to obtain an
encryption of D.

Remark 3 (Additive HE). This optimization opens possibility to apply additive
homomorphic encryption (AHE) schemes such as Paillier scheme [28], but the
performance of RLWE-based AHE is still better when we use small plaintext
space and batching technique. See Appendix B for more detailed argument.

Realizing Function Privacy. For the security proof, we need to ensure the
function privacy from the return ciphertext from receiver to sender. For that we
apply randomization and noise flooding method, whose detail will be presented in
the next subsection. Concretely this can be realized by letting receiver randomize
the resulting ciphertext by homomorphically adding a fresh encryption of zero,
and add large enough error to apply noise flooding method before send the
computation result back to sender.

(In-)efficiency of Binary Case: w = 2. The extreme case w = 2 deserves
to be considered independently, as it obviously results in the smallest output
(exactly log t), although requires the largest number of ciphertexts communica-
tion. In fact, we found in literature [18] a similar idea using (3) especially for
bit decomposition, which further exploits a computational convenience of bit
decomposition: Note that (x− y)2 = x⊕ y for binary x and y, and x⊕ y can be
computed by outputting x if y = 0 and 1− x otherwise, which does not require
even scalar multiplications.

Therefore, one may think w = 2 as an appealing choice due to these advan-
tages, while sacrificing some communications. However, we would like to remark
that the batching efficiency has to be importantly considered also, and this ex-
treme case indeed has quite poor batching efficiency. It is because the desired
plaintext modulus p ≈ log t becomes smaller than a typical choice of the ring
dimension n ≥ 4096 of RLWE-based HE. For example, our interest t is less than
64 bits, and it can be easily checked that small primes of size ≈ 64 have order
at least 32 in Z2n for n = 4096. This means that we are only able to batch
128 = 4096/32 elements in one ciphertexts. On the contrary, we can take full
4096 slots by taking larger word size w that provides p > 2n, which are indeed
used for our experiments in Section 6.

4.3 Security and Cost Analysis

In this section, we will discuss about security of our protocol with correctness
proof. We also analyze the computational and communication costs. Before that,
we need to recall some details of RLWE-based HE scheme. We will focus on BFV
scheme [14], but it does not mean that our method is restricted to this scheme.
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Parameters: A sender with input v ∈ ZM
t and a receiver with input v∗ ∈ ZM

t

and the target size p.

Protocol:

1. [Setup] Two parties agree on a proper HE parameter (n, q) that supports
plaintext space Zn

p , and satisfies IND-CPA security. Then the sender samples
a key pair (sk, pk), and sends the public key pk to the receiver. The sender pads
v by 0 and the receiver pads v∗ by 1, until they have length divisible by n, say
γ · n. Two parties also agree on word base w satisfying p > dlogw te · (w− 1)2,
and define u = dlogw te .

2. [Encryption] Sender performs the following for 0 ≤ k < γ:
(a) Decompose each vnk+j into

∑u−1
i=0 vj,i · w

i for 1 ≤ j ≤ n.
(b) Batch them into mk,i = (vj,i)1≤j≤n ∈ Zn

p for 0 ≤ i < u.
(c) Define mk,u = (

∑u−1
i=0 v

2
j,i)1≤j≤n ∈ Zn

p

(d) Encrypt {mk,i} into {ctxtk,i} using sk and send those ciphertexts to the
receiver.

3. [Compute D and Masking] Receiver performs the following for 0 ≤ k < γ:
(a) Decompose each v∗nk+j into

∑u−1
i=0 v

∗
j,i · wi for 1 ≤ j ≤ n.

(b) Batch them into m∗k,i = (v∗j,i)1≤j≤n ∈ Zn
p for 0 ≤ i < u.

(c) Define m∗k,u = (
∑u−1

i=0 v
∗2
j,i)1≤j≤n ∈ Zn

p

(d) Compute a ciphertext ctxtk,d = ctxtk,u ⊕
∑u−1

i=0

(
ctxtk,i � 2m∗k,i

)
⊕m∗k,u

(e) Sample a random vector r∗k ∈ Zn
p .

(f) Generate an encryption ctxtfp,k (using pk) of zero of error size Bfp which
is large enough for function privacy.

(g) Send back ctxtk := ctxtk,d ⊕ ctxtfp,k ⊕ r∗k to the sender.

4. [Decryption] Sender decrypts ctxtk to have rk ∈ Zn
p for 0 ≤ k < γ.

5. [Finalize] Sender outputs r ∈ ZM
p by concatenating every rk and cutting the

last γ · n−M dummy elements. Receiver outputs r∗ ∈ ZM
p by performing the

same with r∗k.

Fig. 6: A full protocol ΠBEPC for M batch calls of FEPC functionalities

Randomizing BFV Ciphertexts. Recall that a BFV encryption of a message
m(x) is of the form(

−a(x) · s(x) +
q

p
·m(x) + e(x), a(x)

)
∈ R2

q.

As secret key owner can recover not only m(x) but also e(x). For this reason, we
need to add additional noise e∗(x) such that |e∗i | > 2σ ·B for the function privacy
of homomorphic encryption scheme. Here B is upper bound of e(x)’s coefficients
and σ is the statistical security parameter. This method is called noise flooding
and this idea is firstly proposed by [17].
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Noise Analysis. For the concrete choice of homomorphic encryption parame-
ter, we need to analyze the noise term in our HE-based EPC protocol. Here we
will consider the infinity norm ||f(x)|| which is defined as maxi |fi| and the ex-
pansion factor of ring R is defined as δR = max{||f(x) ·g(x)||/(||f(x)|| · ||g(x)||) :
f(x), g(x) ∈ R}. In addition, we assume that the noise term of ctxtk,i in Figure 6
is bounded by Bfresh.

Lemma 1 (Noise growth during homomorphic scalar multiplication).
For the given BFV ciphertext (b(x), a(x)) with noise term e(x) such that ||e(x)|| <
B, the result ciphertext of homomorphic scalar multiplication has noise term
e∗(x) such that ||e∗(x)|| < δR · p ·B + δR · p2.

Proof. In case of homomorphic scalar multiplication, it can be done by multiply-
ing a polynomial c(x) to each a(x) and b(x). Each coefficient of c(x) is bounded
by the plaintext modulus p. For the a∗(x) = c(x) · a(x) and b∗(x) = c(x) · b(x),

b∗(x) + a∗(x) · s(x) =
⌊q
t

⌉
· (m(x) · c(x)) + e(x) · c(x)

=

⌊
q

p

⌉
· ([m(x) · c(x)]p + p · I(x)) + e(x) · c(x)

=

⌊
q

p

⌉
· [m(x) · c(x)]p +

(
q

p
+ ε

)
· p · I(x) + e(x) · c(x)

=

⌊
q

p

⌉
· [m(x) · c(x)]p + ε · p · I(x) + e(x) · c(x) mod q

Therefore, ||e∗(x)|| = ||ε · p · I(x) + e(x) · c(x)|| ≤ δR · p2 + δR · p ·B. ut

Furthermore, homomorphic addition between two ciphertext with noise bound
B1 and B2 returns ciphertext with noise bound B1 + B2 + 2p. Finally, homo-
morphic addition between ciphertext with noise bound B and plaintext returns
ciphertext with noise bound B + 2p.

From now on, we can analyze the noise term in our HE-based EPC protocol.
This analysis gives us concrete HE parameter choices. If we see Figure 6, the
receiver have to compute following (at 3-(d)):

ctxtk,d = ctxtk,u ⊕
u−1∑
i=0

(
ctxtk,i � 2m∗k,i

)
⊕m∗k,u.

By Lemma 1, the noise term of output ciphertext ctxtk,d will be bounded by
B∗ = 2u · (δR · p · Bfresh + δR · p2) + Bfresh + 4p. After that we need to add
encryption of zero of error size Bfp = 2σB∗ for statistic security parameter
σ for the function privacy. At last, receiver needs to add random vector r∗k to
the ciphertext. So, for the correct BFV decryption at the decryption phase, the
ciphertext modulus q should satisfies the following inequality:

q

p
> (2σ + 1) ·

(
2u · (δR · p ·Bfresh + δR · p2) +Bfresh + 4p

)
+ 2p.

15



Recall that we have u = O(log t) for the target size p = O(log t), and therefore
we asymptotically have q = O(log4 t) where t is input size.

Theorem 1. The protocol ΠBEPC of Figure 6 realizes M times of FEPC func-
tionality calls in a semi-honest model if

q > p · (Bfp +B∗ + 2p)

where B∗ = 2u · (δR · p · Bfresh + δR · p2) + Bfresh + 4p and Bfp = 2σB∗ for a
statistical security parameter σ.

Proof. It is already explained that the condition for q provides the correctness
and the function privacy required for our protocol.

For the sake of simplicity, we forget batching for a while and assume each
parties has integer v and v∗ in Zt. During the protocol execution, the receiver
has input v∗ and a random output r∗, and its view consists of the public key pk
and the ciphertexts of vi (decomposed value) and

∑
v2i . This can be simulated

by replacing all ciphertexts to encryptions of zero, which is indistinguishable
from the real execution thanks to the IND-CPA security of HE.

The sender has input v and its view is a ciphertext of D + r and it outputs
the plaintext D + r ∈ Zp by decrypting the ciphertext. This can be simulated
by encrypting the output r′ ∈ Zp of ideal functionality, since from the function
privacy the sender cannot know any other information than the decryption result,
and the distribution of D + r is identical to the distribution of r′ (uniform over
Zp). ut

Asymptotic cost analysis. As the ciphertext modulus q is determined as
above, we can estimate the total costs. Let γ = dM/ne and u = logw t by
following notations of ΠBEPC. For computational cost, our protocol requires γ(u+
2) encryptions, γu homomorphic scalar multiplications, 2γ(u+ 3) homomorphic
additions, and γ decryptions for M numbers of EPC calls. Such HE operations
including homomorphic scalar multiplication can be done by O(1) numbers of
Rq operations that is roughly translates into O(n log n log q) bit operations [4].
By approximating γn ≈M, we conclude that amortized computational cost per
EPC call is O(log t · log n · log q) bit operations as u = O(log t). In case of secure
RLWE parameters, n ∝ log q roughly holds for the fixed computational security
parameter λ. Since q = O(log4 t), we conclude that the computational cost per
one EPC is Õ(log t). Toward communication cost, the sender sends γ(u + 1)
fresh ciphertexts to the receiver and the receiver returns γ ciphertexts after HE
oepration to the sender. The size of fresh ciphertexts is γ(u + 1)(n log q + λ)
and the size of returned ciphertexts is 2γn log q. Then the total communication
cost is γn(u + 3) log q + γ(u + 1)λ bits. We again approximate γn ≈ M and
divide the total cost by M to see amortized cost for one EPC call. Then it
results in approximately (u+3) log q ≈ (logw t+3) log q bits communication and
asymptotically Õ(log t) for one EPC call.
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5 Application to Circuit-PSI Framework

Our equality preserving compression (EPC) of the previous section can be seam-
lessly augmented to the OPPRF-based circuit-PSI framework described in Sec-
tion 3 as Figure 7.

Parameters: A receiver with an input set X of size N and a sender with an input
set Y of size N, and compression target bit-length `c.

Protocol:

1. [Hashing] Both parties agree on hash functions h1, · · · , hd, and table size param-
eter ε. The receiver construct a cuckoo hash table TX from X, and the sender
constructs a simple hash table TY from Y using hash functions h1, · · · , hd into
M = (1 + ε) ·N bins. The receiver define the address mapping X to TX by ι.

2. [Bin Tagging] The sender samples uniformly random tags v ∈ ZM
2` and sends

L = {(y′||i, vi)}i∈[M ],y′∈TY [i] to FOPPRF. The receiver sends T̃X = {TX [i]||i}i∈[M ]

to FOPPRF, and receives v∗ ∈ ZM
2` from FOPPRF.

3. [Equality Preserving Compression] The sender sends v and the receiver sends
v∗ to FEPC, and receives r ∈ ZM

2`c and r∗ ∈ ZM
2`c from FEPC respectively.

4. [Equality Share Generation] For 1 ≤ i ≤ M, the sender sends ri and the
receiver sends r∗i to FESG, and receives s0,i ∈ {0, 1} and s1,i ∈ {0, 1} from FESG

respectively.

Fig. 7: ΠCPSI. Protocol of our circuit-PSI: OPPRF-based framework + EPC

Since EPC perfectly preserve equality (without failure probability), all pre-
vious works’ analysis for correctness (or failure probability) are still valid. More-
over, as Theorem 1 shows that EPC is secure against semi-honest adversary, the
semi-honest security ΠCPSI is also guaranteed.

Theorem 2. The protocol ΠCPSI of Figure 7 realizes the FCPSI functionality in
a semi-honest model in the hybrid model of FOPPRF,FEPC and FESG.

Effect of EPC. In asymptotic complexity view, the overall cost remains same
since EPC itself takes Õ(`) complexities. Thus, we have to figure out concrete
costs to see the effect of EPC. We already observe that known methods for
ESG has linear cost in `c, and in particular GMW protocol requires about 2M`c
chosen-message OTs. For EPC from `-bit to `c-bit, the word-size w should be

maximally taken so that 2`c ≈ (w−1)2
logw · `, and it determines the correspond-

ing chunk size u = `/ logw. Then EPC takes u times homomorphic operations
including encryption, scalar multiplication, decryption, and addition with com-
munication of u number of ciphertext. We point that n times of EPC calls can
be done at once, thanks to batching property. Thus, as ESG input bit-length
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reduces from ` to `c thanks to EPC, we can save 2n(`− `c) the number of OTs
from ≈ u times of HE operations. More precisely, we have the trade-off below:

2n(`− `c)× chosen-message OTs

l
u× HE scalar-mults + (u+ 2)× HE adds + u Ciphertext Comm.

One may think that HE operations are incomparably slow than OT, and
hence this trade-off provides no improvement. However, we would like emphasize
that our HE operations only consist of scalar multiplication and additions: HE
scalar multiplication is just two polynomial multiplication with degree n which
is quite fast compare to multiplication between encrypted data. For a concrete
example, we may take n = 4096, ` = 61, `c = 19, and u = 8, which is one of
exploited parameters in later experiment section. This reduces 344, 064 number
of chosen-message OTs at the cost of 8 homomorphic scalar multiplication, 10
homomorphic additions, and 8 HE ciphertext communications.

Round Complexity. On round complexity view, one may think EPC requires
additional one communication round than vanilla OPPRF-based framework.
However, we remark that ESG stage takes O(log `) rounds for input length `
when performed by GMW protocol. Since EPC reduces ESG input length into
`c = O(log `), EPC indeed brings asymptotic improvement on the round com-
plexity when GMW protocol is used.

Offline Tag Encryption. The tag vector v sampled by the sender in the bin
tagging step is independent to the input set of the protocol, so it can be sampled
before the input set is known, in other words in offline phase. This observation
brings negligible improvement in the original framework without equality pre-
serving compression, as it only shifts the random v sampling time to offline.
Meanwhile, it has a notable effect when combined with our equality preserving
compression, as the server can perform the encryption phase of ΠBEPC in offline
phase. Then the online phase of the protocol performs only HE operations, which
leads to faster online execution.

6 Performance Evaluation

In this section, we consider concrete instantiation of our circuit-PSI protocol of
Section 5 and evaluate the performance. More precisely, we first discuss concrete
parameter selections of sub-protocols, especially with respect to the compression
target `c. Then we evaluate the performances of several combinations of our
EPC protocol and previous ESG protocols. Finally we provide full circuit-PSI
protocol costs evaluation by attaching previous hashing and OPPRF steps, and
some consequences of our protocols.
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Fig. 8: Timing result of EPC and ESG with various network bandwidth and
schemes. All experiments are done with set size N = 220 and ` = 61.

Throughout this section, we assume computational security parameter λ =
128 and statistical security parameter σ = 40. For experiments, we use a single
machine equipped with 3.50GHz Intel Xeon processors with 128GBs of RAM,
where the lower bandwidths is simulated by Wondershaper [21]. All experiments
are executed with a single thread on each party in order to be consistent with
previous works. For implementation, we use SEAL [36] library for homomorphic
encryption, libOTe library [34] for Silver OT [12], and emp-ot library [37] for
Ferret OT [38].

6.1 Parameter Selections

OPPRF output length `. For circuit-PSI on input set size N, OPPRF output
strings will be fed as input of EPC. We take the length ` = σ + dlogMe for
failure probability less than 2−σ (See Equation 2) where M = (1 + ε) · N is
cuckoo/simple hash table size with d hash functions. We use ε = 0.27 and d = 3
by following previous works [32,35], and then OPPRF output length is given by
` = σ + 1 + dlogNe.
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HE parameters. First of all, we fix HE ring dimension n = 212 which is the mini-
mal one supporting depth-1 scalar multiplication. For the choice of HE plaintext
modulus p, one can easily expect that the full batch case is likely to be the most
efficient case. Thus we take p to support full batch, whose concrete choice is
a prime integer satisfying p = 1 mod 2n. The minimal prime satisfying p = 1
mod 2n is p = 40961, and hence the minimal possible `c is dlog(40961)e = 16.
For `c > 16, there would be several primes p such that p = 1 mod 2n having
bit-length `c, and we choose maximal p among them for each `c. The word-base
w is taken by the maximal one satisfying the correctness condition p > u·(w−1)2

where u = d`/ logwe is the chunk size. Finally HE ciphertext modulus q is deter-
mined as following: an initial modulus is taken q′ by the minimal one where our
protocol is correct, and then the final modulus q is augmented by σ-bit margin
on q′ for function privacy. It empirically holds that log q ≈ σ + 2 log p + log n.
Detailed HE and EPC parameters are presented in Appendix C.

6.2 The Choice of `c with ESG

Since state-of-the-art OTs [12, 38] have extremely low communication cost, the
total communication cost is likely to increase when EPC is applied. Therefore,
the choice of `c should be different along with the network environment. In this
regard, Figure 8 shows timing results of EPC and ESG protocols for each `c over
various bandwidths from 30Mbps to 5Gbps.

For each bandwidth, we choose `c of minimal total running time, whose result
is summarized by Table 1. As expected, effect of EPC protocol is negative in low
bandwidth case due to the communication cost growth. However, for bandwidth
≥ 100Mbps, our protocol shows 1.3 to 2.24 times faster result than ESG only
cases. One can see that Silver [12] is always better than Ferret [38], but the both
cases deserve to consider since the performance gain of Silver comes from so far
non-standard assumption.

Remark 4 (Another ESG from [7]). We found another ESG method from [7],
which is not based on GMW protocol. The original paper reported in Table 4 [7]
their ESG method takes 9.27 seconds for N = 220 and ` = 61 case, over LAN
environment of 3Gbps bandwidth. As EPC takes 3.65 seconds in LAN network
with `c = 24, we may roughly estimate the combination of EPC and their ESG
method to take 7.3 = 3.65 + 9.27 · 24/61 seconds, and conclude that EPC still
brings improvement. This would be the most competitive one for high band-
width, but as their ESG method requires quite large communications (about
1GB for N = 220), Silver/Ferret based GMW protocol would still be the best
ESG method for lower bandwidths. This is not presented in our table, as their
implementation is not publicized and we fail to reproduce the reported perfor-
mance from our re-implementation.

6.3 Performance of Circuit-PSI

We can complete circuit-PSI protocol by attaching hash step and OPPRF at the
beginning. In this evaluation, we implement one of state-of-art OPPRF from [7],
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ESG Cost `c OTe
With EPC No EPC

Time Comm. Time Comm.

30Mbps
33 Silver 57.78 160.4 30.36 37.86
21 Ferret 66.9 186.1 47.68 37.86

100Mbps
21 Silver 22.85 186.1 22.8 37.86
19 Ferret 28.03 199.8 36.81 37.86

500Mbps
19 Silver 11.31 199.8 20.14 37.86
16 Ferret 14.78 236.5 33.15 37.86

5Gbps 19 IKNP 10.39 931.2 17.92 2638.7

Table 1: Performances of ESG with/without EPC, provided with the best choice
of `c. All experiments are done with set size N = 220 and ` = 61. Communica-
tions in MB, and timings in seconds.

but one may use any other OPPRFs [16, 35], and the choice of OPPRF has
no effect on the post ESG and EPC phase. Tables below show the time result
and communication cost for N = 216 and 220. The best case takes 25.32 seconds
which was 43.69 seconds without EPC protocol (500Mbps with Ferret OT). Same
with the previous sub-section, our method shows improvement when bandwidth
larger than 100Mbps.
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github.com/magnific0/wondershaper, 2020.
22. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,

Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On Deploying
Secure Computing: Private Intersection-Sum-with-Cardinality. In EuroS&P, pages
370–389. IEEE, 2020.

23. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivious
Transfers Efficiently. In CRYPTO, pages 145–161. Springer, 2003.

24. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
Batched Oblivious PRF with Applications to Private Set Intersection. In ACM
CCS, pages 818–829, 2016.

25. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
Practical Multi-party Private Set Intersection from Symmetric-key Techniques. In
ACM CCS, pages 1257–1272, 2017.

26. Catherine Meadows. A more efficient cryptographic matchmaking protocol for use
in the absence of a continuously available third party. In S&P, pages 134–134.
IEEE, 1986.

27. Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-
sided Malicious Security for Private Intersection-Sum with Cardinality. In
CRYPTO, pages 3–33. Springer, 2020.

28. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238. Springer, 1999.

29. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
Private Set Intersection from Sparse OT Extension. In CRYPTO, pages 401–431.
Springer, 2019.

30. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: fast,
malicious Private Set Intersection. In EUROCRYPT, pages 739–767. Springer,
2020.

31. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
Set Intersection Using Permutation-based Hashing. In USENIX Security, pages
515–530, Washington, D.C., August 2015. USENIX Association.

32. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Ef-
ficient Circuit-based PSI with Linear Communication. In EUROCRYPT, pages
122–153. Springer, 2019.

33. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
Circuit-based PSI via Cuckoo Hashing. In EUROCRYPT, pages 125–157. Springer,
2018.

23

https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper


34. Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe.

35. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and Circuit-PSI
from Vector-OLE. In EUROCRYPT. Springer, 2021.

36. Microsoft SEAL (release 3.5). https://github.com/microsoft/SEAL, April 2020.
Microsoft Research, Redmond, WA.

37. Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Mul-
tiParty computation toolkit. https://github.com/emp-toolkit, 2016.

38. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret:
Fast extension for correlated ot with small communication. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, pages
1607–1626, 2020.

24

https://github.com/osu-crypto/libOTe
https://github.com/microsoft/SEAL
https://github.com/emp-toolkit


A Relaxed OPPRF [7]

The OPPRF (Oblivious Programmable PRF) functionality picks a random func-
tion F where the sender can program the value F (x) by desired z. In [7], the
authors proposed an extended notion called relaxed OPPRF functionality, which
considers several random functions F1, · · · , Fd and the sender programs x ∈ X
so that Fi(x) = z with at least one i ∈ [d]. This converts a bin-wise PSM
(Private Set Membership) problem TX [i] ∈ TY [i] to another PSM problem that
checking z ∈ {F1(x), · · · , Fd(x)}. After then, they apply the standard table OP-
PRF [25] to further converts this into ESG problem. Rigorously speaking, this
consecutive execution of relaxed OPPRF and table OPPRF does not exactly fit
to OPPRF functionality definition, since the sender cannot program it’s desired
values. However, in this work, it only matters that two parties can attach some
tags for each bin to convert PSM problem into ESG problem, and we simply say
the consecutive execution by CGS OPPRF.

For the failure probability, we note that the authors uses d = 3 random
functions for relaxed OPPRF that succeeds with probability (1 − 2−`)3M , and
then post-OPPRF succeeds with probability (1 − 2−`)M . This results in the
condition ` > σ + dlog 4Me.

B Comparison with Paillier Additive HE

As our protocol only perform scalar multiplications, one may consider to use
another additive HE (AHE), for example Paillier [28] scheme. Paillier scheme
supports plaintext space ZP for some integer P , and the corresponding ciphertext
space is ZP 2 . Here P is typically taken quite large (≥ 21024) to ensure certain
security level, and a naive application of Protocol ΠEPC outputs huge random
numbers in ZP . This can be circumvented by applying well-known smudging
technique [2] where we take a sufficiently large random masking r so that r
statistically hides the information of d, and each party take the final modulus
reduction by p on each output d+ r and r.

However, we argue that RLWE-based AHE is still better for circuit-PSI pur-
pose, where the encryption target message size is much less than 32-bit. RLWE-
based AHE can supports plaintext space ZNp for rather small p, and the corre-
sponding ciphertext space is taken R2

q where log q = O(log p). Then the amor-
tized encryption cost per one message is 2 log q. For our interest message size,
RLWE ciphertext modulus q ≈ 2100 suffices so that one message is encrypted
into less than 200 bits,. However Paillier AHE encrypts a message into a quite
large ciphertext of 2 logP ≥ 2048 bits, and the amortized cost is less inefficient
than RLWE-base AHE.

C HE and EPC Parameters

Below shows detailed parameter information that is used in our experiment. For
all cases, ring dimension in HE scheme is fixed with 4096. And, this parameter
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satisfied 128 security based on homomorphic encryption standard document [1]
(except the last row, as maximal possible log q for 4096 dimension is 109).

N `c p log q w u

216

16 40961 84 65 10
17 114689 86 113 9
18 188417 88 154 8
20 1032193 92 385 7
22 4169729 96 834 6
26 67094289 104 3663 5
31 2147377153 114 23170 4

220

16 40961 84 62 11
17 114689 86 108 10
18 188417 88 145 9
19 417793 90 229 8
21 2056193 94 542 7
24 16760833 100 1672 6
27 134176769 106 5181 5
33 8589852673 118 46341 4

Table 3: HE and EPC parameters in our evaluations.
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