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Abstract. We present a novel full hardware implementation of Stream-
lined NTRU Prime, with two variants: A high-speed, high-area imple-
mentation, and a slower, low-area implementation. We introduce several
new techniques that improve performance, including a batch inversion
for key generation, a high-speed schoolbook polynomial multiplier, an
NTT polynomial multiplier combined with a CRT map, a new DSP-free
modular reduction method, a high-speed radix sorting module, and new
en- and decoders. With the high-speed design, we achieve the to-date
fastest speeds for Streamlined NTRU Prime, with speeds of 5007, 10989
and 64026 cycles for encapsulation, decapsulation, and key generation
respectively, while running at 285 MHz on a Xilinx Zynq Ultrascale+.
The entire design uses 40060 LUT, 26384 flip-flops, 36.5 Bram and 31
DSP.

Keywords: NTRU Prime · Hardware Implementation · Lattice Cryp-
tography · Post-Quantum Cryptography · FPGA

1 Introduction

With the advent of quantum computers, many cryptosystems would become in-
secure. In particular, quantum computers would completely break many public-
key cryptosystems, including RSA, DSA, and elliptic curve cryptosystems. Due
to this concern, the National Institute of Standards and Technology (NIST) be-
gan soliciting proposals for post-quantum cryptosystems [16]. The algorithms
solicited are divided into public-key encryption (key exchange) and digital sig-
nature. The NIST Post-Quantum Cryptography Standardization Process has
entered the third phase, and NTRU Prime [7] is one of the candidates of key-
encapsulation algorithms, as an alternate candidate. Since hardware implemen-
tations will be an important factor in the evaluation, it is important to research
hardware implementations for various use cases.
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NTRU Prime has two instantiations: Streamlined NTRU Prime and NTRU
LPRime. In this paper, we implement the Streamlined NTRU Prime cryptosys-
tem on Xilinx Artix-7 and Xilinx Zynq Ultrascale+ FPGA. We present two
different versions: A high performance, large area implementation, and a slower,
compact implementation. Both implement the full cryptosystem, including all
en- and decoding. We also present several novel designs to implement the subrou-
tines required by NTRU Prime, such as sorting, modular reduction, polynomial
multiplication and polynomial inversion.

2 Background

2.1 Definitions

Streamlined NTRU Prime [7] defines the following polynomial rings:

R = Z[x]/(xp − x− 1) (1)

R/q = (Z/q)[x]/(xp − x− 1) (2)

R/3 = (Z/3)[x]/(xp − x− 1) (3)

The parameters (p, q, w) of Streamlined NTRU Prime satisfy the following:

p, q ∈ P (4)

w > 0, w ∈ Z, 2p ≥ 3w (5)

q ≥ 16w + 1 (6)

xp − x− 1 is irreducible in R/q (7)

The recomended parameter set for Streamlined NTRU Prime is sntrup761:

p = 761, w = 286, q = 4591 (8)

For this reason, we will focus on this parameter set during this paper. NTRU
Prime also uses the following notations:

– Small : A polynomial of R has all of its coefficients in (-1,0,1).
– Weight w : A polynomial of R has exactly w non-zero coefficients.
– Short : The set of small weight w polynomials of R.
– Round : Rounding all coefficients of a polynomial to the nearest multiple of

3.
– Hasha(x) : The SHA-512 hash of the byte array x, prepended by the single

byte value a. Only the first 256 bits of the output hash are used.
– Encode & Decode: Streamlined NTRU Prime uses an en- and decoding algo-

rithm to transform polynomials in R/3 amd R/q to and from byte strings.
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2.2 Streamlined NTRU Prime

The key generation of Streamlined NTRU Prime is described in Algorithm 1,
and the encapsulation and decapsulation in Algorithm 2 and 3 respectively.

Algorithm 1: Streamlined NTRU Prime Key Generation

1 Generate a uniform random small g ∈ R/3 until g is invertible in R/3
2 Generate a uniform random f ∈ Short
3 Generate a uniform random byte array ρ of length (p+ 3)/4
4 v ⇐ 1/g in R/3
5 K ⇐ g/(3f) in R/q
6 K̄ ⇐ Encode K
7 k̄ ⇐ Encode (f , v)
8 return (K̄, (k̄, K̄, ρ, hash4(K̄))) as (public key, secret key)

Algorithm 2: Streamlined NTRU Prime Encapsulation

Input: public key K̄
1 Generate a uniform random r ∈ Short
2 K ⇐ Decode K̄
3 c ⇐ Round (Kr) in R/q
4 c̄ ⇐ Encode c
5 r̄ ⇐ Encode r
6 C ⇐ (c̄, hash2(hash3(r̄), hash4(K̄)))
7 return (C, hash1(hash3(r̄′), C)) as (ciphertext, session key)

2.3 Design Consideration with FPGAs

Field Programmable Gate Arrays (FPGAs) are popular hardware implementa-
tion platforms so that we can easily construct and simulate customized digital
logic circuits, and even make them as products. Most FPGAs provide several
different general purposed resources which are either common in general logic cir-
cuits or able to simulate or to execute boolean functions, which are constructed
by basic logic gates. On the hardware implementation with FPGAs, the utiliza-
tion of these resources is the most important standard of comparison among
similar implementation. To “make an apples-to-apples comparison,” a specified
FPGA platform is often assigned in a call-for-proposal project. For example,
NIST recommands that “(PQC submission) teams generally focus their hard-
ware implementation efforts on Artix-7” as FPGA platform [2]. Artix-7� is a
FPGA platform manufactured by Xilinx® . We will focus on Xilinx FPGAs in
this paper, in particular Xilinx Zynq® Ultrascale+� and Artix-7 FPGAs, but
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Algorithm 3: Streamlined NTRU Prime Decapsulation

Input: ciphertext C , secret key (k̄, K̄, ρ, hash4(K̄))
1 c ⇐ Decode c̄
2 f, v ⇐ Decode k̄
3 e ⇐ (3fc in R/q ) modulo 3
4 r′ ⇐ ev in R/3
5 if r′ does NOT have weight w then
6 r′ ⇐ (1, 1, ... , 1, 0, 0, ... , 0) // The first w elements are 1, the rest 0

7 Redo Encapsulation with K̄ and r′, compute new ciphertext C′

8 r̄′ ⇐ Encode r′

9 if C′ = C then
10 return hash1(hash3(r̄′), C)
11 else
12 return hash0(hash3(ρ), C)

note that the philosophy of the design consideration remains the same if the re-
sources are of similar types and structures, even when the FPGA manufacturer
differs. The main resources provided in FPGAs are introduced as follows.

Look-Up Tables (LUTs): Look-up tables are very basic units in popular FP-
GAs. An LUT is a combinational logic unit with usually 4 to 6 input bits and
1 to 2 output bits. Here we denote an LUT with m input bits and n output
bits as LUTm,n. An LUT can be considered as a block of read-only memory. For
example, an LUT5,2 can be considered as a block with 32 cells, each of which
contains 2 bits. Xilinx Zynq Ultrascale+ and Artix-7 provide LUT units which
support both the functions of LUT5,2 and LUT6,1 [20] [19].

Usually LUTs are used to implement combinational digital circuit, but they
are also useful to implement read-only memories (ROMs) and random-access
memory, call distributed RAM. For example, to construct a 12-bit, 32-cell read-
only memory unit, we will need 6 LUT5,2 units. A 13-bit, 64-cell block costs 13
LUT6,1 units.

Digital Signal Processing (DSP) Slices: A DSP slice is an arithmetic unit
which consists of one multiplier and some accumulators. The multiplier sup-
ports signed integer multiplication with many bits, and it costs a lot of LUTs to
construct the same multiplier if the DSP slice is not applied. Xilinx Zynq Ultra-
scale+ provides DSP slices with 27× 18-bit signed integer multipliers [24], and
Xilinx Artix-7 provides DSP slices with 25×18-bit signed integer multipliers [21].

If we multiply two integers whose bit lengths are more than the limit one
DSP slice can offer, we can either apply a pipeline approach, or connect two
or more DSP slices in parallel. For example, to multiply a 24-bit signed integer
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with a 32-bit signed integer, we can connect 2 slices in parallel, or to multiply
the multiplicand with the least significant 16 bits of the other integer and then
with the most significant bits. If we can control the bit lengths of the integers
we want to multiply, however, we are able to limit the bit lengths so that one
DSP slice can handle the multiplication.

Block Memories (BRAMs): A block memory unit stores a certain large num-
ber of bits. Every BRAM provides several channels with partially customizable
data widths during the hardware synthesis stage. We can read and/or write the
data stored in one BRAM only via the channels. This fact means that we can
access as many words simultaneously as the number of channels in one BRAM,
and if we want to access more words at the same clock cycle, we need either to
duplicate the data from the BRAM to another in advance, or to partition the
data we want to store in two or more BRAMs.

Both Xilinx Zynq Ultrascale+ and Artix-7 provides BRAM units [23] [22],
each of which contains 36kbits and two channels. Every BRAM unit can be
divided into two blocks with 18kbits, each of which in turn provides two channels,
and the synthesis report records 0.5 BRAMs of utilization as long as a 18kbits
block is utilized. In both FPGAs the data width of each 18kbits block can be
customized as 1, 2, 4, 9, or 18 bits.

2.4 Multiplication using Good’s Trick with NTT

Polynomial multiplication is one of the most important operations which need
to be carefully designed in NTRU Prime (the other is the polynomial inversion).

Polynomials in R/q can be written as

f(x) =

p−1∑
i=0

fix
i

where − q−1
2 ≤ fi ≤ q−1

2 for every i satisfying 0 ≤ i ≤ p − 1. The polynomial
multiplication of two polynomial f(x) and g(x) in R/q is

f(x)� g(x) , (f(x)g(x) mod±q) mod xp − x− 1

where we denote r = n mod±q (signed modulo) for any integer n and r if
− q−1

2 ≤ r ≤ q−1
2 and there exist an integer m such that n = mq + r. To reduce

modulo xp−x−1 is easy since we only need to substitute xj with xj−p+1 +xj−p

for every j ≥ p and reduce the eventual polynomial into the form
∑p−1

i=0 fix
i.

So the key is to evaluate f(x)g(x) mod±q. For multiplying two polynomials of
degree p − 1, a Fast-Fourier-Transform-like approach can effectively reduce the
number of integer multiplications we need, from O(p2) to O(p lg p). Such an ap-
proach operating in a prime field Z/q but not complex nubmers is a Number
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Theoretic Transform (NTT).

NTT is usually a 2k-point transformation method with a pre-determined
positive integer k (written as NTT2k(·), and the inverse operation iNTT1k(·)).
For polynomials f(x) and g(x) of degree at most 2k − 1 and with at least 2k−1

zero coefficients, the polynomial multiplication can be implemented as

f(x)g(x) = f(x)g(x) mod x2k − 1

= iNTT2k(NTT2k(f(x))�NTT2k(g(x)))

where � is the point-wise multiplication. For NTRU Prime with p = 761, we
need to pad 263 monomials with zero coefficients to the polynomials, making
NTT211(·) work.

Good [11] provides another approach, applying NTT29(·) instead and then
doing 9 degree-512 polynomial multiplications where the polynomials are with
at least 256 zero coefficients. In this approach, we need only to pad 7 zeros to
the polynomials. This idea was introduced in NTRU Prime originally in [1] and
[8].

In the case p = 761, we regard the polynomial as of degree 767 instead, with
the coefficients of the high-degree terms set to 0. Since f(x)g(x) is of degree at
most 1535 (1534 actually), we have f(x)g(x) = f(x)g(x) mod x3·512 − 1. We set
x = yz and it can be shown that

f(x)g(x) = f(yz)g(yz) mod (y3 − 1)(z512 − 1)

In detail, we see that for the set of integer i in [0, 1535], the mapping i ≡
513`+ 512j (mod 1536) to the set of the integer pair (j, `) where 0 ≤ j ≤ 3 and
0 ≤ ` ≤ 511 is one-to-one and onto. Then f(x) (and g(x), same as follows) can
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be expressed as

f(x) =

760∑
i=0

fix
i +

1535∑
i=761

0xi ≡
1535∑
i=0

fiy
i mod 3zi mod 512

=

2∑
j=0

511∑
`=0

f(513`+512j) mod 1536y
jz`

≡ (

511∑
`=0

f513` mod 1536 · z`) + (

511∑
`=0

f(513`+1024) mod 1536 · z`)y

+ (

511∑
`=0

f(513`+512) mod 1536 · z`)y2

≡ (

511∑
`=0

f(` mod 3)29+` · z`) + (

511∑
`=0

f((`−1) mod 3)29+` · z`)y

+ (

511∑
`=0

f((`−2) mod 3)29+` · z`)y2 (mod (y3 − 1)(z512 − 1))

Here we define fyj (z) ,
∑511

`=0 f((`−j) mod 3)29+` · z` for convenience, and then
f(x) ≡ fy0(z) + fy1(z)y + fy2(z)y2 (mod (y3− 1)(z512− 1)). We can assert that
f·(z) and g·(z) are all of z-degree 511 and with at least half of the coefficients
being 0, so that f·(z)g·(z) can be evaluated as

f·(z)g·(z) ≡ iNTT29(NTT29(f·(z))�NTT29(g·(z)))

Then f(x)g(x) is given by

h(x) = f(x)g(x) ≡ (fy0(z) + fy1(z)y + fy2(z)y2)(gy0(z) + gy1(z)y + gy2(z)y2)

≡ (fy0(z)gy0(z) + fy1(z)gy2(z) + fy2(z)gy1(z))

+ (fy0(z)gy1(z) + fy1(z)gy0(z) + fy2(z)gy2(z))y

+ (fy0(z)gy2(z) + fy1(z)gy1(z) + fy2(z)gy0(z))y2

, h(z, y) =

2∑
j=0

511∑
`=0

hj`z
`yj (mod (y3 − 1)(z512 − 1))

We can regard the polynomial multiplication of h(x) = f(x)g(x) as a school-
book multiplication with respect to y, where the coefficients of the powers of
y’s are the sum of the z-polynomial products, which can be computed by NTT.
Notice that for every hj` the index j directs to the coefficient polynomial of yj ,
and the index ` directs to the coefficient of z` in each polynomial. To map back
the coefficients of h(z, y) to those of h(x), we can see h(x) is given by

h(x) =

1535∑
i=0

h(i mod 3),(i mod 512)x
i
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2.5 Chinese Remainder Theorem and NTT

To compute NTT2k(·) we need to find a 2k-th root of unity in the field Z/q.
Specifically, to apply Good’s trick for p = 761 and q = 4591, we need to find a
512-th root of unity in Z/4591. This is impossible since 4591− 1 = 2 · 33 · 5 · 17
without the factor 512.

In [8] it is suggested to apply the Chinese Remainder Theorem (CRT) to
resolve this issue. To make clear how CRT can be applied, the following two
cases are considered:

Case 1: Polynomial multiplications used in the standard of NTRU Prime are
multiplications with one small polynomial (coefficients are all −1, 0, or 1) and
one R/q polynomial (coefficients are in the range [− q−1

2 , q−1
2 ], or [−2295, 2295]).

If we use the school-book scheme we can see that all of the coefficients in the poly-

nomial multiplication without modulo q are ranged in [−p(q−1)
2 , p(q−1)

2 ], which is
a 22-bit signed integer. If, instead, we wan to apply Good’s trick, we can choose
two good primes (in whose finite fields we can find a 512-th root of unity) q1 and
q2 such that q1q2 > p(q − 1) + 1. Then we apply Good’s trick seperately.

For all coefficients of xi’s computed with an NTT in Z/q1 and Z/q2, respec-
tively, say hi,1 and hi,2, we can get the eventual hi by

hi,1q
′
2q2 + hi,2q

′
1q1 ≡ ((hi,1q

′
2) mod±q1)q2 + ((hi,2q

′
1) mod±q2)q1 , h

(0)
i

hi ≡ h
(0)
i (mod±q)

where q′1 ≡ q−11 (mod q2) and q′2 ≡ q−12 (mod q1). We can see that h
(0)
i is in

the range [−q1q2 + q1+q2
2 , q1q2 − q1+q2

2 ], and we need only to check if it is in
[− q1q2

2 , q1q2
2 ] and tune up or down by q1q2. That is,

hi = h
(0)
i + kq1q2, k ∈ {−1, 0, 1}

Notice that we will control the logic such that we always multiply a 25-bit signed
integer with a 18-bit signed integer, as the built-in multipliers in Xilinx FPGAs
are all signed 25× 18-bit multipliers. This fact is important in the next case.

Case 2: In our implementation batch inversion is applied (see Section 3.4).
This makes multiplication with two R/q polynomials necessary. In this case,
all coefficients in the polynomial multiplication without modulo q are ranged in

[−p(q−1)2
4 , p(q−1)2

4 ], which is [−4008206025, 4008206025] and then the coefficients
are 33-bit signed integers. In this case three good primes are picked. We have
that

hi,1q
′
23q2q3 + hi,2q

′
31q3q1 + hi,3q

′
12q1q2 ≡ ((hi,1q

′
23) mod±q1)q2q3

+ ((hi,2q
′
31) mod±q2)q3q1

+ ((hi,3q
′
12) mod±q3)q1q2

, h
(0)
i

hi ≡ h
(0)
i (mod±q)
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where q′23 ≡ (q2q3)−1 (mod q1), q′31 ≡ (q3q1)−1 (mod q2) and q′12 ≡ (q1q2)−1

(mod q3). h
(0)
i is (roughly) ranged in [− 3q1q2q3

2 , 3q1q2q3
2 ], and we can still check if

it is in [− q1q2q3
2 , q1q2q3

2 ] and tune up or down by q1q2q3. That is,

hi = h
(0)
i + kq1q2q3, k ∈ {−1, 0, 1}

We choose q1 = 7681, q2 = 12289 and q3 = 15361 here. In this case, q′23 = 2562 =
(A02)16, q′31 = 8182 = 213 − (A)16 and q′12 = 10 = (A)16, making all three of
h′i,a = (hi,aq

′
bc) mod±qa can be done with simple addition or subtraction only

followed by a modulo operation. This makes all h′i,a represented as 14-bit signed
integers. Multiplying the remaining qbqc can be done also by one 25 × 18-bit
multiplier since in this configuration

h′i,q1q2q3 + h′i,q2q3q1 + h′i,q3q1q2

= h′i,q1 · 188771329 + h′i,q2 · 117987841 + h′i,q3 · 94391809

= h′i,q1(184347 · 210 + 1) + h′i,q2(230445 · 29 + 1) + h′i,q3(184359 · 29 + 1)

= h′i,q1((2D01B)16 · 210 + 1) + h′i,q2((3842D)16 · 29 + 1) + h′i,q3((2D027)16 · 29 + 1)

3 Hardware Implemenation

3.1 Parallel Schoolbook Multiplier

This multiplier use a massively parallel version of the schoolbook multiplication
algorithm. It consist of an LFSR, an accumulator register, and a large number
of multiply accumulate units.

The use of schoolbook multiplication both for NTRU Prime [14] and for
other lattice KEM [17] [10] is not new. Two different implementations, based on
the same overall design architecture, are presented in this paper: The first is a
high-speed, high-area implementation. The second is a much smaller, but also
slower implementation. Both are similar with regards to the speed-area product.
They also have very simple memory access patterns. The differences between
the two is that the faster implementation stores all values in flip-flops, whereas
the compact implementation uses distributed RAM. The architecture is shown
in Figure 1.

The high performance and efficiency of this design is based on the fact that
in Streamlined NTRU Prime, all multiplications are always with one polynomial
in R/3, and the second either also in R/3 or in R/q. Multiplication with both
polynomials in R/q do not normally occur (the only exception here is during the
batch inversion using Montgomery’s trick, see Section 3.4). This idea was previ-
ously presented in [17] and [10], and allows a number of optimizations. The fact
that one polynomial is always in R/3 allows the individual multiply accumulate
(MAC) units to be very simple, and we do not perform any modular reduction
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at this step. Its algorithmic description can be found in Algorithm 4.

Before the multiplication starts, the small R/3 polynomial is loaded into an
LFSR of length p, with the tap points set to correspond to the polynomial of
the NTRU Prime ring, R/3 = (Z/3)[x]/(xp − x− 1). For this reason, 3 bits are
needed per coefficient, as the tap points can lead to coefficients in the range from
−2 to 2. Once the R/3 polynomial is fully shifted into the LFSR, the multiplica-
tion can begin. During multiplication, one coefficient from the R/q polynomial
is retrieved from BRAM at a time. This coefficient is then multiplied with every
single coefficient in the LFSR, and added to an accumulator register. LFSR is
then shifted once, and the next coefficient from the R/q polynomial is retrieved.
This repeats for every coefficient from the R/q polynomial. After this, the accu-
mulator register contains the completed polynomial multiplication. The register
contents are then sent to the multiplier output, where they are taken modulo q.
Because of the LFSR, no additional polynomial modulo reduction is required.

Algorithm 4: Single coefficient multiply accumulate (MAC) algorithm.
Note that no modulo calculation is performed here. The 23 bits are large
enough so that no overflow can occur.

Input : a: a 23-bit signed number, b: a 13-bit signed number, c: a 3-bit
signed number with −2 ≥ c ≥ 2

Output: The 23-bit result a + b · c
1 r−2 ← −b� 1 ;
2 r−1 ← −b ;
3 r0 ← 0 ;
4 r1 ← b ;
5 r2 ← b� 1 ;
6 return a + rc

For the high-speed schoolbook multiplier, p MAC units are instantiated, and
as a result, one coefficient from the R/q polynomial can be processed per clock
cycle. For the compact implementation using distributed RAM, 24 MAC units
are instantiated. This number comes from the value of p, and the size of the
smallest distributed RAM blocks. In Xilinx FPGA’s, the LUT can be configured
as 32-bit dualport RAM, with one read/write port, and one read-only port. With
p = 761, and d761/24e = 32, it means that 24 MAC units pack the RAM as
densely as possible. This means that every 32 clock cycles, a new coefficient from
the R/q polynomial is processed, and the multiplier thus also takes 32 times as
many cycles.

It takes p clock cycles to shift the R/3 polynomial into the LFSR. It also
takes p clock cycles to shift the result out of the accumulator array, during which
the accumulator array is also set to 0. Both of these operation can be interleaved
to save time, i.e. a new R/3 polynomial can be shifted in while the accumulator



Streamlined NTRU Prime on FPGA 11

array is shifted out. As a result, for p = 761, the high-speed multiplication takes
1522 cycles, otherwise 2283 cycles.

BRAM

Small Polynomial LFSR,

with tap points for xp − x− 1

3 bit

Accumulator Array

MACMAC MAC MAC

2 bit

13 bit

23 bit
23 bit

Modulo

Reduction

23 bit

13 bit3 bit

R/q · R/3 Polynomial Multiplier

Fig. 1. Architecture of the parallel schoolbook polynomial multiplier for the parameter
set sntrup761. The accumulator array has a size of p ·23 bits. The blocks with the label
MAC are described in Algorithm 4. The difference between the high-speed and the low-
area multiplier are in the number of MAC units, and whether the accumulator array
and small polynomial LFSR are implemented in flip-flops or in distributed RAM.

3.2 Architecture of R/q · R/q NTT Multiplier

The architecture NTT multiplication employing Good’s trick is shown in Figure
2, which is modified from the NTT/INTT architecture from [25]. This multiplier
is used for the R/q ·R/q multiplication during batch inversion (see Section 3.4),
and takes 35,463 clock cycles. The control unit which controls the unit consists
of the following stages: load, NTT , point mul, reload, INTT , crt, and reduce
stages.

– In the load stage, the coefficients of the polynomials f and g to be multiplied
are stored in bank 0 and bank 1, and the address is determined by Good’s
permutation and address generators.
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– In the NTT stage, read one data from bank 0 and one data from bank 1,
pass them to the butterfly unit, and write the output A and B back to the
same address of bank 0 and bank 1.

– In the point mul stage, read out two data from the same bank and multiply
it and decide which address to write to bank 2 according to the power of y
modulo y3 − 1.

– In the reload stage, read data from bank 2 and write it back to bank 0 and
bank 1 after nine point multiplications.

– In the INTT stage, the process is the same as in the NTT stage.
– In the crt stage, the DSP slices in the 3 butterfly units are applied to calculte

the partial result h′i,aqbqc in CRT. All of the partial results are then added
as one integer, which is the input of the modulo q unit. After this f(x)g(x)
is ready but without modulo xp − x− 1 yet.

– In the reduce stage, f(x)g(x) mod xp − x− 1 is evaluated.

We inspect in detail how the coeffcients in the polynomial fyi(z) and gyi(z)
are stored in the memory banks. One z-polynomial requires 512 cells as the stor-
age of coefficients, and we save half of the coefficients in 256 cells of bank 0 and
the other half in 256 cells of bank 1. This design is to feed the inputs simuta-
neously into the butterfly units, and an efficient in-place memory addressing is
introduced in [13], which provides the formula of bank index B(·) and the lower
bits of the address Al(·). The higher bits of the address Ah(·) just indicate which
polynomial it is. The bank index and address are given by

B(zi, hyj (z)) = i[8]⊕ i[7]⊕ ...⊕ i[0]

Al(z
i, hyj (z)) = i[8 : 1]

Ah(zi, hyj (z)) =

{
j, h = f

j + 3, h = g

A(zi, hyj (z)) = 28Ah(.) + Al(.)

It should be noted that in the reload stage and at the end of multiplication, as
NTT itself re-arranges the order of the coefficients such that the address in one
polynomial is bit reversed, the lower 9 bits of the address need to be reversed.
The higher 3 bits do not join the bit reversal.

3.3 Generation of Short Polynomials

During the encapsulation and key generation in NTRU Prime, a so called short
polynomial has to be created. For this, the original NTRU Prime paper suggests
using a sorting network. A total of of p 32-bit random numbers are created. Of
the first w, the lowest two bits are set so that the number is always even. For the
others, the lowest two bits are set so that the number is always odd. This list of
numbers is then sorted, and the upper 30 bits are discarded, and each number
is subtracted by one. As a result, exactly w elements are either 1 or -1, and the
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Fig. 2. Architecture of Good’s trick NTT multiplication

rest are all zero.

The reference C implementation of NTRU Prime [7], as well as the hard-
ware implementation in [14] use a constant-time sorting network. However on
an FPGA, we can use a faster method in the form of the radix sorting algo-
rithm [12]. Radix sort is an extremely fast sorting algorithm. But radix sort has
the drawback of having input dependent addressing, which would disqualify it
for memory architectures that have a cache due to side-channel leakages. As the
BRAMs on an FPGA do not have any sort of cache, we can safely implement the
algorithm. Our implememation is based on the radix sorting algorithm found in
the SUPERCOP benchmark suite [5]. As a result, we can generate a new short
polynomial in 4,837 cycles.

A further optimizations we have implemented is the pregeneration of short
polynomials. As these can be generated independent of the operation (encapsu-
lation or key generation) or any other input, we can pregenerate a short polyno-
mial, instead of generating it on-demand. Once it has been output at the start
of an, e.g. encapsulation, we can use the rest of the time spent on encapsulation
to pregenerate a new short polynomial for the next operation. This in particular
speeds up encapsulation, as the rest of the modules do not have to wait until
the sorting has completed.

3.4 Batch Inversion using Montgomery’s Trick

Montgomery’s trick is a method to speed up inversion by doing batch inversion
[15]. This allows us to replace n inversions with a single inversion, together with
3n− 3 multiplications. Montgomery’s trick is described in Algorithm 5. The al-
gorithm is faster assuming multiplication is faster than inversion, and that one
has enough storage space to store the intermediate products. Batch inversion
with Montgomery’s Trick for NTRU Prime was already proposed in the original
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paper [4]. It was recently implemented for fast key generation in an integration
of NTRU Prime into OpenSSL [3]. There, for the parameter set sntrup761 and a
batch size of 32, it led to a generation speed of 156,317 cycles per key, compared
to the non-batch 819,332 cycles.

For the polynomial inversion itself, we use the constant-time extended GCD
algorithm from CHES 2019 [6]. This algorithm uses a constant number of “di-
vision steps” (or divsteps) to calculate the gcd of the input polynomials. It was
already used in a previous implementation [14]. We extend this by allowing a
configurable number of divsteps per clock cycle. Increasing the number of di-
vsteps per clock cycle proportionally decreases the number of cycles.

Algorithm 5: Description of Montgomery’s trick for batch inversion

Input : n: the batch size, fx: an array of n numbers to be inverted
Output: The array of n inverted f−1x

1 a1 ← f1 ;
2 for i from 2 to n do
3 ai ← ai−1 · fi ;
4 end
5 Compute inverse a−1n ;
6 for i from n to 2 do
7 f−1i ← a−1i · ai−1 ;

8 a−1i−1 ← ai · fi ;

9 end

10 f−11 ← a−11 ;

11 return (f−11 , ..., f−1n )

In our implementation, we only implement batch inversion for the inversion
in R/q. For inversion in R/3, it is very simple and efficient to simply increase
the number of parallel divsteps, as the modular multiplication in R/3 is trivial.
With, e.g. 32 parallel divsteps, an inversion in R/3 takes 47,166 cycles. The
inversion in R/3 also has the potential of having non invertable polynomials.
Currently, we skip the invertability check, and simple redo the inversion with a
new polynomial in case of a non-invertable polynomial. However for batch in-
version, we would have to check every polynomial for invertability, as a single
non-invertable polynomial would force us to redo the entire batch.

Doing batch inversion has an additional caveat: it requires n multiplications
where both polynomials are in R/q (line 7 in Algorithm 5). This is an issue, as
the polynomial multiplier for NTRU Prime normally always has one operand in
R/3. This mean we cannot use the same multiplier, as the normal multiplier has
optimizations that rely on one operand being in R/3. As a result, we include a
second multiplier only for the R/q · R/q multiplication.

Due to the additional R/q · R/q multiplier, batch inversion is not automat-
ically the optimal way of inverting polynomials in R/q. This is because the
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additional multiplier consumes hardware resources that could otherwise be used
to implement more parallel divsteps for the R/q inversion. In addition, larger
batch sizes require more BRAM to store intermediate results. Depending on the
speed and hardware consumption of non-batch inversion, batch inversion and
multiplication respectively, together with the available hardware resources and
batch size, the optimal solution varies. A contour plot that shows the minimum
batch size needed for Montgomery’s Trick to be worthwhile for different inver-
sion and multiplication speeds is shown in Figure 3. In practice, we recommend
to use batch sizes of 5, 21 and 42. These sizes are found via experimentation,
and pack the 36kbit BRAM as densely as possible. Table 4 lists the additional
BRAM cost for the different batch sizes, as well as the associated cycles.
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Cycles for two R/q · R/3 and one R/q · R/q multiplication
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Fig. 3. Minimum batch size when comparing the cycle count for the three multipli-
cations incurred per polynomial inversion when using Montgomery’s Trick, to simply
accelerating the inversion itself. This assumes a base R/q inversion speed of 1,200,000
cycles. An example: Assume the three multiplications take 40,000 cycles in total. At
the same, assume that with the extra hardware resources, we could alternatively ac-
celerate the inversion by a factor of 4, so that it takes only 300,000 cycles. According
to the plot, we would need a batch size of at least just over 4 for Montgomery’s trick
to be worthwhile.
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3.5 Reduction without DSPs

In this section we extend the technique of fast modulo reduction in [25] (called
Shifting Reduction in this paper) without using additional DSP slices which are
often necessary in a Barrett reduction unit or a Montgomery reduction unit.
We apply this technique in the cases q ∈ {7681, 12289, 15361}. Moreover, in the
case q = 4591, another reduction technique (called Linear Reduction in this
paper) will be introduced. All four modular reductions are fully pipelined, and
can process one new operand per clock cycle.

Fast Signed Modular Multiplication on q = 12289 We start with the
modification of the unsigned reduction with q = 12289 as introduced in [25]. In
the signed case, the reduction is slightly different.

Suppose −6144 ≤ a ≤ 6144 and −6144 ≤ b ≤ 6144. We know that z = ab is
a 27-bit signed number (not 28-bit, which is in the unsigned case) and

(5C00000)16 = −37748736 ≤ z = ab ≤ 37748736 = (2400000)16

We have q = 214−212+1, so 214 ≡ 212−1 (mod q). The sign bit z[26] contributes
−226 ≡ 1365 = 211 − 683 (mod q). With a similar detivation in [25], z can be
re-expressed as

z = −226z[26] + 214z[25 : 14] + z[13 : 0]

≡ 1365z[26] + z[13 : 0]

+ 212(z[25 : 24] + z[23 : 22] + z[21 : 20] + z[19 : 18]

+ z[17 : 16] + z[15 : 14])

− (z[25 : 14] + z[25 : 16] + z[25 : 18] + z[25 : 20]

+ z[25 : 22] + z[25 : 24])

≡ 211z[26] + z[11 : 0]

+ 212(z[25 : 24] + z[23 : 22] + z[21 : 20]

+ z[19 : 18] + z[17 : 16] + z[15 : 14] + z[13 : 12])

− (683z[26] + z[25 : 14] + z[25 : 16]

+ z[25 : 18] + z[25 : 20] + z[25 : 22] + z[25 : 24])
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We let

zpu , z[25 : 24] + z[23 : 22] + z[21 : 20] + z[19 : 18]

+ z[17 : 16] + z[15 : 14] + z[13 : 12]

zp2u , zpu[4] + zpu[3 : 2] + zpu[1 : 0]

zp3u , zp2u[2] + zp2u[1 : 0]

zp , 212zpu + 211z[26] + z[11 : 0]

zn , 683z[26] + z[25 : 14] + z[25 : 16] + z[25 : 18]

+ z[25 : 20] + z[25 : 22] + z[25 : 24]

Clearly zp− zn ≡ z (mod q). zpu is not greater than 21, zp2u is not greater than
6, and zp3u not greater than 3. zp can be represented as

zp ≡ 212zp3u + 211z[26] +Z[11 : 0]− (zp2u[2] + zpu[4] + zpu[4 : 2]) , z∗p (mod q)

which is not greater than 12288 + 2048 + 4095 = 18431 < q + q−1
2 . We also have

zn ≤ 683+(3+15+63+255+1023+4095) = 6074 < q−1
2 . Now z0 , z∗p−zn ≡ z

(mod q) and is an integer in [−6074, 18431]. We need only to check if z0 is greater
than q−1

2 = 6144, and perform a subtraction of q if this is the case.

The equivlent logic circuit is given in Figure 4. The thicker blocks and
dataflows differ from that in [25] for signed reduction.
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Fig. 4. Modified circuit for signed reduction modulo 12289.
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Fast Signed Modular Multiplication on q = 7681 Shifting Reduction can
be easily applied in the case q = 7681 since q is of the form q = 2h − 2l + 1.

Suppose −3840 ≤ a ≤ 3840 and −3840 ≤ b ≤ 3840. Now z = ab is a 25-bit
signed number and

(11F0000)16 = −14745600 ≤ z = ab ≤ 14745600 = (0E10000)16

Since q = 213−29+1, we have 213 ≡ 29−1 (mod q). The sign bit z[24] contributes
−224 ≡ −1912 (mod q). Now z can be re-expressed as

z = −224z[24] + 213z[23 : 13] + z[12 : 0]

≡ z[12 : 0] + 29(z[23 : 21] + z[20 : 17] + z[16 : 13])

− (1912z[24] + z[23 : 21] + z[23 : 17] + z[23 : 13])

≡ z[8 : 0] + 29(z[23 : 21] + z[20 : 17] + z[16 : 13] + z[12 : 9])

− (1912z[24] + z[23 : 21] + z[23 : 17] + z[23 : 13]) (mod q)

We let

zpu , z[23 : 21] + z[20 : 17] + z[16 : 13] + z[12 : 9]

zp2u , zpu[5 : 4] + zpu[3 : 0]

zp3u , zp2u[4] + zp2u[3 : 0]

zp , z[8 : 0] + 29zpu

zn , 1912z[24] + z[23 : 21] + z[23 : 17] + z[23 : 13]

zpu is a 6-bit unsigned integer, and if zpu[5 : 4] = 3, then zpu[3 : 0] ≤ 4 and
zp2u ≤ 7. So zp2u ≤ 17 and is a 5-bit integer and then zp3u ≤ 15, and zp2u[4] +
zpu[5 : 4] ≤ 3. Now

zp = z[8 : 0] + 29zpu

≡ z[8 : 0] + 29zp2u − zpu[5 : 4]

≡ z[8 : 0] + 29zp3u − (zp2u[4] + zpu[5 : 4]) , z∗p (mod q)

and is bounded by 8191. On the other hand, zn is bounded by 1912 + 7 + 127 +
2047 = 4093. Therefore, z0 , z∗p − zn ≡ zp − zn = z (mod q) and is an integer
in [−4093, 8191]. Actually we can tighten the possible values to [−3581, 8191]
because of this lemma:

Lemma 1. z0 ≥ −3581, which is larger than −(q − 1)/2 = −3840.

Proof. We need to consider the case 3582 ≤ zn ≤ 4093 only, since for the case
zn < 3582 the inequality always holds. Then

3582 ≤ 1912z[24] + z[23 : 21] + z[23 : 17] + z[23 : 13] ≤ 4093
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We know that the bound of each term is 1912, 7, 127, 2047, respectively. To
make zn not less than 3582, we need z[24] = 1. Therefore,

3582− 1912− 7− 127 = 1539 = (603)16 ≤ z[23 : 13] ≤ 2047 = (7FF)16

Then z[23 : 21] ≥ 6, implying zpu ≥ 6, and further zp2u ≥ 1 and zp3u ≥ 1.
Therefore z∗p ≥ 512, and then

z∗p − zn ≥ 512− 4093 = −3581.

ut

We now only need to determine if z0 > 3840 where another signed subtraction
by q with reduction is necessary to bound the eventual value in [−3840, 3840].
The equivlent circuit for signed reduction modulo 7681 is shown in Figure 5. We
can see that the architecture is very similar to that for modulo 12289. The main
difference is the dataflow of the sign bit.
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Fig. 5. Equivlent circuit for signed reduction modulo 7681.

Fast Signed Modular Multiplication on q = 15361 We still use Shifting
Reduction in the case q = 15361. Suppose −7680 ≤ a ≤ 7680 and −7680 ≤ b ≤
7680. Now z = ab is a 27-bit signed number and

(47C0000)16 = −58982400 ≤ z = ab ≤ 58982400 ≤ (3840000)16
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We have q = 214 − 210 + 1, and the sign bit z[26] contributes −226 ≡ 3345 =
212 − 751 (mod q). z can be re-expressed as

z = −226z[26] + 214z[25 : 14] + z[13 : 0]

≡ 3345z[26] + z[13 : 0] + 210(z[25 : 22] + z[21 : 18] + z[17 : 14])

− (z[25 : 14] + z[25 : 18] + z[25 : 22])

= 212z[26] + z[9 : 0]

+ 210(z[25 : 22] + z[21 : 18] + z[17 : 14] + z[13 : 10])

− (751z[26] + z[25 : 14] + z[25 : 18] + z[25 : 22])

We let

zpu , z[13 : 10] + z[25 : 22] + z[21 : 18] + z[17 : 14]

zp2u , zpu[5 : 4] + zpu[3 : 0] + 4z[26]

zp3u , zp2u[4] + zp2u[3 : 0]

zp , 210zpu + 212z[26] + z[9 : 0]

zn , 751z[26] + z[25 : 14] + z[25 : 18] + z[25 : 22]

Note that the definition of zp2u is slightly different from the other cases. We can
see that zpu is a 6-bit unsigned integer. If zpu[5 : 4] = 3, then zpu[3 : 0] ≤ 12 and
zp2u ≤ 19. So zp2u ≤ 21 and is a 5-bit integer. Now

zp = 210zpu + 212z[26] + z[9 : 0]

= 210zpu[3 : 0] + 214zpu[5 : 4] + 210 · 4z[26] + z[9 : 0]

≡ z[9 : 0] + 210zp2u − zpu[5 : 4]

≡ z[9 : 0] + 210zp3u − (zp2u[4] + zpu[5 : 4]) , z∗p (mod q)

and is bounded by 16383. zn is bounded by 751+4095+255+15 = 5116. There-
fore, z0 = z∗p − zn ≡ zp − zn = z (mod q) and is an integer in [−5116, 16383].
We need only to check if the value of z0 is greater than 7680, and perform a
subtraction of q if this is the case.

The circuit for signed reduction modulo 15361 is omitted as it is similar to
those for modulo 7681 and 12289. The main difference is still the dataflow for
the sign bit.

Fast Signed Modular Reduction on q = 4591 The reduction of integers
modulo q = 4591 (or other q’s in the parameter set of NTRU Prime) using
Shifting Reduction is not easily obtained since all of these primes are not of the
form q = 2h − 2l + 1. Specifically, q = 4591 = 212 + 29 − 24 − 1 is of effective
Hamming weight 4. Shifting Reduction will make the bits spread into the lower
bits, making the positive and the negative parts of the partial results (as zp and



Streamlined NTRU Prime on FPGA 21

zn defined in the case q ∈ {7681, 12289, 15361} ) hard to be analyzed.

In the signed version modification doing modulo 12289, we separate the sign
bit from other bits and consider it independently. Actually, every bit can be con-
sidered independently, especially in the case q = 4591. We may transform the
reduction problem into several signed additions. Here we will call this technique
Linear Reduction.

In the implementation we are considering, the integer z that will be reduced
is a 33-bit signed integer and bounded by

(11117A137)16 ≤ z ≤ (0EEE85EC9)16 = 4008206025 = (2295)2 · 761

And then z can be represented as

z = −232z[32] +

31∑
i=0

2iz[i]

≡ 433z[32]

+ 2079z[31] + 3335z[30] + 3963z[29] + 4277z[28] + 4434z[27]

+ 2217z[26] + 3404z[25] + 1702z[24] + 851z[23] + 2721z[22]

+ 3656z[21] + 1828z[20] + 914z[19] + 457z[18] + 2524z[17]

+ 1262z[16] + 631z[15] + 2611z[14] + 3601z[13] + 4096z[12]

+ z[11 : 0] (mod q)

Of course we can do 22 signed modular additions, but this approach will make
the critical path be 5 signed modular additions. With implementation in hard-
ware, we can actually pre-combine some of the additions.

The basic idea is to utilize the power of look-up tables (LUTs). Xilinx FPGAs
provide LUT units supporting the functions of both LUT5,2 and LUT6,1. We can
divide the most significant 21 bits into 5 groups, each containing 3 to 5 specified
bits, and collect z[11 : 0] as one group. Specifically, we define

p0 , z[11 : 0]

p1 , (3335z[30] + 2721z[22] + 2524z[17] + 2611z[14]) mod q

p2 , (433z[32] + 851z[23] + 914z[19] + 457z[18] + 631z[15]) mod q

n0 , −(3963z[29] + 4277z[28] + 3404z[25] + 3656z[21] + 3601z[13]) mod q

n1 , −(4434z[27] + 1262z[16] + 4096z[12]) mod q

n2 , −(2079z[31] + 2217z[26] + 1702z[24] + 1828z[20]) mod q
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Of course we can apply any other partition. The partition we decide is good for
the latter calculation because we can see the the bound of each group:

p0 ≤ 4095

p1 ≤ 4076 < 4095

p2 ≤ 3286, p2 + 4591 ≤ 7877 < 8191

n0 ≤ 4054 < 4095

n1 ≤ 3981 < 4095

n2 ≤ 3573, n2 + 4591 ≤ 8164 < 8191

All possible values of p1, p2, n0, n1, and n2 are pre-calculated and stored in the
distributed memory constructed by LUT5,2 units. The values of p1, p2, n0, n1,
and n2 are then determined at the outputs of the LUTs, according to the inputs
z[33 : 12].

Now we can easily implement the reduction with the modular additions:

p01 , p0 + p1

n01 , n0 + n1

zp , (p01 mod q) + p2

zn , (n01 mod q) + n2

z ≡ z∗ , zp − zn

We can see p01, n01, zp, zn are all 13-bit unsigned integers. and z∗ is bounded
by [−8191, 8191], which is a 14-bit signed integer. z mod±q can be found by

z mod±q = z∗ + kq, k ∈ {−2,−1, 0, 1, 2}

The modular reduction for q = 4591 uses just 117 LUT, 53 FF and no DSP.
This is significantly better than the Barrett based modular reduction from [14],
which required 304 LUT, 107 FF and one DSP.

3.6 General Purpose Encode/Decode

On the implemenation of the general purpose encoder and decoder used in NTRU
Prime (for the algorithms, see Appendix A), we inspect inductively the details
of the process of the encoder, especially how R2 and M2 (denoted as R2 and
M2 in the algorithm) change with respect to R and M , how many output bytes
there are in each round, and what exactly M2 is during each recursive call.

Case 1: When len(M) = 1, that is, R = 〈r0〉 and M = 〈m0〉, there is no
recursive call. We know that r0 < 16384, so all the bytes of r0 are dumped as
output bytes to the encoded sequence. If m0 > 255, the output is of 2 bytes and
otherwise 1 byte.
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Case 2: When len(M) = 2, that is, R = 〈r0, r1〉 and M = 〈m0,m1〉, we
compute r′0 = r0 + m0r1. The upper bound for r′0 and the new m′0 can actually
be pre-determined just from m0 and m1. Whether 0, 1, or 2 bytes are sent as
output can also pre-determined from m0 and m1.

Case 3: When R = 〈r0, ...r2n−1, r2n〉, M = 〈m0, ...,m0,m1〉 and len(M) =
2n + 1 where n is a positive integer, we can compute that r′i = r2i + m0r2i+1

for each 0 ≤ i ≤ n − 1. The upper bound of each r′i and the new m′0 can be
pre-determined just from m0. Whether 0, 1, or 2 bytes are sent as output can
also pre-determined by m0. We denote the “replaced” r′i appended into R2 as

r
′(replaced)
i , which satisfies

r
′(replaced)
i ∈ {r′i, b

r′i
256
c, b r′i

65536
c}

and then we have R2 = 〈r′(replaced)0 , ..., r
′(replaced)
n−1 , r2n} and M2 = 〈m′0, ...m′0,m1〉,

with len(M2) = n + 1. Note that the structure of M ′ and M are similar: a se-
quence of specified integers m0s or m′0s in [1, 16383] followed by an integer m1,
which is either distinct from or the same as m0 or m′0.

Case 4: When R = 〈r0, ...r2n, r2n+1〉, M = 〈m0, ...,m0,m1〉 and len(M) =
2n+ 2 where n is a positive integer, we can compute that r′i = r2i +m0r2i+1 for
each 0 ≤ i ≤ n. If 0 ≤ i ≤ n− 1, the upper bound of r′i and the new m′0 can be
pre-determined only by m0. The upper bound of r′n, which is the last element in
R2, and the new m′1, which is the last element in M2, is pre-determined by both
m0 and m1. For 0 ≤ i ≤ n− 1, whether 0, 1, or 2 bytes are sent as output when
computing r′i is also pre-determined by m0. Whether 0, 1, 2 bytes are sent as
output when computing r′n is pre-determined by m0 and m1. In this case, the re-

sulting R2 = 〈r′(replaced)0 , ..., r
′(replaced)
n−1 , r

′(replaced)
n }, M2 = 〈m′0, ...,m′0,m′1}, and

len(M) = n + 1. The structure of M2 and M are still similar: a sequence of
specified integers m0s or m′0s followed by an integer m′1, which is either distinct
from or the same as m0 or m′0.

We know that when the encode starts, M = 〈q, ..., q〉 and len(M) is odd.
This implies that we need only to track m0, m1 and the output bytes for each
regular pair of r’s and for the last r. Table 1 show the values of m0, m1, and the
output bytes. We can see the total encoded bytes are of length 1158.

With q′ = 1531 = q/3, which is applied in Round-encode, a similar tracking
info can also easily be pre-determined, shown in Table 2. The total encoded bytes
are of length 1007.

All of the tracked info are provided outside the encoder and the decoder,
making the circuit able to do the encode/decode for any case of Q. Both of the
encoder and the decoder needs an internal memory buffer to save the interme-
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Table 1. Round infomation doing R/q-encode.

Round len(M) m0 regular output subtotal m1 last output

1 761 4591 2 760 4591 N/A
2 381 322 1 190 4591 N/A
3 191 406 1 95 4591 N/A
4 96 644 1 47 4591 1
5 48 1621 1 23 11550 2
6 24 10265 2 22 286 1
7 12 1608 1 5 11468 2
8 6 10101 2 4 282 1
9 3 1557 1 1 11127 N/A
10 2 9740 N/A N/A 11127 2
11 1 N/A N/A N/A 1608 2

Table 2. Round infomation doing Round-encode.

Round len(M) m0 regular output subtotal m1 last output

1 761 1531 1 380 1531 N/A
2 381 9157 2 380 1531 N/A
3 191 1280 1 95 1531 N/A
4 96 6400 2 94 1531 2
5 48 625 1 23 150 1
6 24 1526 1 11 367 1
7 12 9097 2 10 2188 2
8 6 1263 1 2 304 1
9 3 6232 2 2 1500 N/A
10 2 593 N/A N/A 1500 1
11 1 N/A N/A N/A 3475 2

diate R.

The block diagrams of the encoder and decoder are shown in Figure 6 and 7,
where the dashed blocks are outside of the module. The parameter module is a
look-up table of either Table 1 or Table 2, making the encoder/decoder flexible
to do/recover either R/q-encode or Round-encode. The encoder needs a DSP
slice to evaluate r′0 = r0 + m0r1. And the decoder needs 4 DSP slices to apply
Barrett’s reduction to evaluate r0 = r′0 mod m0.

The encoding of a public key and cipherext takes 2297 and 2296 cycles re-
spectively. The decoding of a public key and ciphertext takes 1550 and 1541
cycles respectively.
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r0' = r0 + m0r1

r0

r1

Control Unit

m0, len(M), reg. output, last output
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Addr. Gen. 

R Addr.
Gen. 

R Input 
BRAM 

R Buffer 
BRAM 

0

1

r0'(replaced)

len(M)

output offset 
reg. output 
last output

Output 
BRAM 

outputs

Fig. 6. The block diagram of the encoder.

3.7 SHA-512 Hash Function

Streamlined NTRU Prime uses SHA-512 internally as a hash function. It is used
on the one hand to generate the share secret after encapsualtion and decap-
sulation, but also to create the ciphertext confirmation hash. The ciphertext
confirmation hash is a hash of the public key and the short polynomial r, and is
appended to the ciphertext. Our SHA-512 implementation is based on the imple-
mentation used in [14] and [18], but has been optimized to increase performance.
The hashing of a 1024 bit block takes 117 cycles.

4 Evaluation & Comparison with other Implementations

In this section, we will compare our implementation with existing Streamlined
NTRU Prime implementations [14] and [9], as well as with NTRU-HPS821 [10].
NTRU-HPS821 is a round 3 finalist key-encapsulation algorithm. All Stream-
lined NTRU Prime implementations employ the parameter set sntrup761, and
NTRU-HPS821 has comparable security strength. All benchmark numbers of in-
dividual operations for the Zynq Ultrascale+ and the Artix-7 are listed in Table
3 and 5 respectively. Benchmark numbers of the full implementation are listed in
Table 6. Our high-speed implementation has the fastest cycle count and execu-
tion times of all Streamlined NTRU Prime implementations for all 3 operations.
At the same time, while our low-area implementation does require slightly more
LUTs (at most 31% more) then the lightweight implementation from [14], our
implementation is significantly faster, with 2.05, 4.08 and 3.04 speedup respec-
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Solve (r0, r1): 
r0' = r0 + m0r1

Control Unit
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BRAM 
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BRAM 
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input offset 
reg. input 
last input

R Output 
BRAM 

r0, r1

encoded bytes

Fig. 7. The block diagram of the decoder.

tively for key generation, encapsulation and decapsulation.

When comparing our high-speed implementation with that of NTRU-HPS821
[10], one can see that our encapsulation uses fewer LUT, flip-flops, BRAMs, but
more DSP. While our cycle count is slightly higher, this is compensated by the
higher frequency, leading to a slightly faster execution time. For decapsulation,
our design uses less of every resource except BRAM. In particular, our design
uses 31% fewer flip-flops and 78% less DSP. While the cycle count is higher
and the frequency lower for decapsulation, the total execution time is only 11%
slower. For key generation, our design uses fewer LUT, flip-flops, and DSP, while
also having a lower cycle count and faster clock speeds. However, our design does
use significantly more BRAM. Batch inversion also has the downside of an initial
large latency as the whole batch is calculated. Table 4 compares the cycle counts
for different batch sizes. Larger batches increase the total number of cycles to
complete the batch, but dramatically decrease the amortized cycles per key.
However, the speedup from increasing the batch size from 21 to 42 is relatively
low.

The difference between our high-speed and low-area implementation lie in a
number of different sub modules. For one, the low-area version does not use batch
inversion for key generation, and uses only 2 divsteps per clock cycles instead of
4 during R/q inversion, and 2 divsteps instead of 32 for the R/3 inversion. The
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Table 3. A comparison of different Streamlined NTRU Prime implementations for the
parameter set sntrup761 and NTRU-HPS821. The entries for this work and from [14]
include all en- and decoding of ciphertext, public and secret keys. The key generation
cycle counts for our high-speed implementation assume a batch size of 21, and list the
amortized per-key cycles. All entries are implemented on a Xilinx Zynq Ultrascale+
FPGA.

Design Module Slices LUT FF BRAM DSP Freq
(MHz)

Cycles Time

Streamlined NTRU
Prime, this work,
high speed

Key Gen 6,038 37,813 25,368 33 23 285 64,026 224.7 µs
Encap 5,381 31,996 22,425 4.5 6 289 5,007 17.3 µs
Decap 5,432 32,301 22,724 3.5 9 285 10,989 38.6 µs

Streamlined NTRU
Prime, this work,
low area

Key Gen 1,232 7,216 3,726 5,5 12 285 629,367 2,208 µs
Encap 1,074 6,030 3,211 4.5 7 290 29,245 100.8 µs
Decap 1,051 6,016 3,194 3 7 283 85,628 302.6 µs

Streamlined NTRU
Prime [14]

Key Gen 1,068 5,935 4,144 11.5 12 271 1,289,959 4,748 µs
Encap 844 4,570 2,843 7.5 8 271 119,250 439 µs
Decap 902 5,117 2,958 7 8 271 260,307 958 µs

SNTRUP [9], no
key gen or decoding

Encap 10,319 70,066 38,144 9 0 263 - 56.3 µs
Decap 10,319 70,066 38,144 9 0 263 - 53.3 µs

NTRU-HPS821,
[10]

Key Gen 10,127 50,347 44,281 6.5 45 250 67,157 268.6 µs
Encap 7,370 33,698 30,551 5.5 0 250 4,576 18.3 µs
Decap 7,785 38,642 33,003 2.5 45 300 10,211 34.0 µs

low-area implementation also uses the compact version of the parallel schoolbook
multiplier. Finally, the high-speed implementation uses two separate decoders,
one for public keys, and one for ciphertexts. This allows the secret key (which
also contains the public key) and the ciphertext to be decoded in parallel during
decapsulation. In the low-area implementation, only one decoder is present, and
the decoding occurs sequentially.

Table 4. The effect of the different batch sizes on the speed of key generation, with
4 divsteps per clock cycle for the R/q inversion. The clock frequency and other FPGA
resources are only minimally affected by increasing the batch size.

Batch Size Total cycles Amortized cycles BRAM

1 316,785 316,785 3.5
5 524,174 104,835 16.5

21 1,344,558 64,026 33
42 2,447,759 58,280 55.5

4.1 Side Channels

Both the high-speed and the low-area implementation are fully constant-time
with regards to secret input. The radix sorting used in the generation of short
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Table 5. Our work implemented on a Xilinx Artix-7 FPGA. As to be expected of
the lower-end platform, the design uses more LUT and has a lower maximum clock
frequency when compared to the Zynq Ultrascale+.

Design Module Slices LUT FF BRAM DSP Freq
(MHz)

Cycles Time

Streamlined NTRU
Prime, this work,
high speed

Key Gen 10,827 39,200 25,536 33.5 23 143 64,026 447.7 µs
Encap 11,218 40,879 22,382 4.5 6 144 5,007 34.8 µs
Decap 10,169 36,789 22,700 3.5 9 137 10,989 80.2 µs

Streamlined NTRU
Prime, this work,
low area

Key Gen 2,376 7,579 3,824 5.5 12 159 629,367 3,958 µs
Encap 1,945 6,379 3,069 4.5 6 147 29,245 198.9 µs
Decap 1,842 6,279 3,086 3 7 131 85,628 653.6 µs

Table 6. Full implementation of our work, with all operations merged.

Design Platform Slices LUT FF BRAM DSP Freq (MHz)

High speed
Zynq Ultrascale+ 7051 40,060 26,384 36.5 31 285

Artix-7 11,745 41,428 26,381 36.5 31 140

Low area
Zynq Ultrascale+ 1,539 9,154 4,423 8.5 18 285

Artix-7 2,968 9,574 4,399 8.5 18 128

polynomials does include secret-dependant memory indexing. However, as the
BRAMs on modern Xilinx FPGA have no cache, this does not expose a side
channel. At the same time, we did not implement any advanced protections
against more advanced attacks such as DPA.

5 Conclusion

We present a novel and complete constant-time hardware implementation of
Streamlined NTRU Prime, with two variants: A high-speed implementation, and
a low-area one. Both compare favorably to existing Streamlined NTRU Prime
implementations, as well as to the round 3 finalist NTRU-HPS821. We plan on
publishing the source code of our implementation after the review is complete.
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A Encode and Decode Algorithm

1 limit = 16384
2 def Encode(R,M):
3 if len(M) == 0: return []
4 S = []
5 if len(M) == 1:
6 r,m = R[0],M[0]
7 while m > 1:
8 S += [r%256]
9 r,m = r//256 ,(m+255)//256

10 return S
11 R2,M2 = [],[]
12 for i in range(0,len(M)-1,2):
13 m,r = M[i]*M[i+1],R[i]+M[i]*R[i+1]
14 while m >= limit:
15 S += [r%256]
16 r,m = r//256 ,(m+255)//256
17 R2 += [r]
18 M2 += [m]
19 if len(M)&1:
20 R2 += [R[ -1]]; M2 += [M[-1]]
21 return S+Encode(R2,M2)

Listing 1.1. The Python code of the encoder [7]. The lists R and M must have the
same length, and ∀i : 0 ≤ R[i] ≤M [i] ≤ 214. Then, Decode(Encode(R;M);M) = R.

1 limit = 16384
2 def Decode(S,M):
3 if len(M) == 0: return []
4 if len(M) == 1: return [sum(S[i]*256**i for i in range(len(S)))%M[0]]
5 k = 0; bottom ,M2 = [],[]
6 for i in range(0,len(M)-1,2):
7 m,r,t = M[i]*M[i+1],0,1
8 while m >= limit:
9 r,t,k,m = r+S[k]*t,t*256,k+1,(m+255)//256

10 bottom += [(r,t)]
11 M2 += [m]
12 if len(M)&1:
13 M2 += [M[-1]]
14 R2 = Decode(S[k:],M2)
15 R = []
16 for i in range(0,len(M)-1,2):
17 r,t = bottom[i//2]; r += t*R2[i//2];
18 R += [r%M[i]]; R += [(r//M[i])%M[i+1]]
19 if len(M)&1:
20 R += [R2[-1]]
21 return R

Listing 1.2. The Python code of the decoder [7].
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