
Sleepy Channels:
Bitcoin-Compatible Bi-directional Payment Channels without Watchtowers

Lukas Aumayr1

TU Wien
lukas.aumayr@tuwien.ac.at

Sri AravindaKrishnan Thyagarajan1,2

Carnegie Mellon University
t.srikrishnan@gmail.com

Giulio Malavolta
Max Planck Institute for

Security and Privacy
giulio.malavolta@hotmail.it

Pedro Moreno-Sánchez
IMDEA Software Institute
pedro.moreno@imdea.org

Matteo Maffei
Christian Doppler Laboratory Blockchain

Technologies for the Internet of Things, TU Wien
matteo.maffei@tuwien.ac.at

Abstract

Payment channels (PC) are a promising solution to the
scalability issue of cryptocurrencies, allowing users to
perform the bulk of the transactions off-chain without
needing to post everything on the blockchain. Many PC
proposals however, suffer from a severe limitation: Both
parties need to constantly monitor the blockchain to en-
sure that the other party did not post an outdated trans-
action. If this event happens, the honest party needs to
react promptly and engage in a punishment procedure.
This means that prolonged absence periods (e.g., due to
a power outage) may be exploited by malicious users. As
a mitigation, the community has introduced watchtowers,
a third-party monitoring the blockchain on behalf of off-
line users. Unfortunately, watchtowers are either trusted,
which is critical from a security perspective, or they have
to lock a certain amount of coins, called collateral, for
each monitored PC in order to be held accountable, which
is financially infeasible for a large network.

We present Sleepy Channels, the first bi-directional PC
protocol without watchtowers (or any other third party)
that supports an unbounded number of payments and
does not require parties to be persistently online. The
key idea is to confine the period in which PC updates
can be validated on-chain to a short, pre-determined time
window, which is where the PC parties have to be online.
This behavior is incentivized by letting the parties lock a
collateral in the PC, which can be adjusted depending on
their mutual trust and which they get back much sooner
if they are online during this time window. Our proto-
col is compatible with any blockchain that is capable
of verifying digital signatures (e.g., Bitcoin), as shown
by our proof of concept. Moreover, Sleepy Channels im-
pose a communication and computation overhead similar
to state-of-the-art PC protocols while removing watch-

tower’s collateral and fees for the monitoring service.

1 Introduction

Bitcoin has put forward an innovative payment paradigm
both from the technical and the economical point of
view. A permissionless and decentralized consensus pro-
tocol is leveraged to agree on the validity of the transac-
tions that are afterwards added to an immutable ledger.
This approach, however, severely restricts the transac-
tion throughput of decentralized cryptocurrencies. For
instance, Bitcoin supports about 10 transactions per sec-
ond and requires confirmation times of up to 1 hour.

Payment channels (PC) [33] have emerged as one of
the most promising scalability solutions. A PC enables
an arbitrary number of payments between users while
only two transactions are required on-chain. The most
prominent example, currently deployed in Bitcoin, is the
Lightning Network (LN) [23], which at the time of writ-
ing hosts bitcoins worth more than 170M USD, in a total
of more than 27K nodes and more than 76K channels.

In a bit more detail, a PC between Alice and Bob is
created with a single on-chain transaction open-channel,
where users lock some of the coins into a shared output
controlled by both users (e.g., requiring a 2-of-2 multisig-
nature), effectively depositing their coins and creating
the channel. Both users additionally make sure that they
can get their coins back at a mutually agreed expiration
time. After the channel has been successfully opened,
they can pay each other arbitrarily many times by ex-
changing authenticated off-chain messages representing
updates of their share of coins in the shared output. The
payment channel can be finally closed by including a

1These two authors contributed equally.
2Part of the work was carried out when the author was at Friedrich

Alexander Universität Erlangen-Nürnberg, Germany.

1

close-channel transaction on-chain that effectively sub-
mits the last authenticated distribution of bitcoins to the
blockchain (or after the channel has expired).

Issue with bidirectional channels. While the initial ver-
sions of payment channels were unidirectional (i.e., only
payments from Alice to Bob were allowed), several de-
signs for bi-directional payment channels have been pro-
posed so far. The technical crux of these protocols is to
ensure that no coins are stolen between the mutually un-
trusted Alice and Bob. To illustrate the problem, imagine
that the current balance of the channel bal is {Alice:10,
Bob:5 }. Alice pays 3 coins to Bob, moving the channel
balance to bal’ as {Alice:7, Bob:8 }. At this point, Alice
benefits from bal while Bob would benefit if bal’ is the
one established on-chain.

The different designs of bi-directional payment chan-
nels available so far provide alternative solutions for this
crucial dispute problem (see Table 1). One approach con-
sists on leveraging the existence of Trusted Execution
Environment (TEE) at both Alice and Bob [25]. This
approach, however, adds a trust assumption that goes
against the decentralization philosophy of cryptocurren-
cies and it is unclear whether it holds in practice [11, 45].
Another approach consists on relying on a third-party
committee [2, 10] to agree on the last balance accepted
by Alice and Bob. Again, this adds an additional assump-
tion on the committee and current proposals work only
over smart contracts as those available in Ethereum.

The most promising approach in terms of reduced
trust assumptions and backwards compatible with Bit-
coin, which is the one implemented in the LN, is based
on the encoding of a punishment mechanism that allows
Alice (or Bob) rescue all the coins in a channel if Bob (or
Alice) attempts to establish a stale or outdated balance
on-chain. Following with the running example, after the
balance bal′ is established, Alice and Bob exchange with
each other a revocation key associated to bal that effec-
tively allows one of the parties to get all the coins from
bal if it is published on-chain by the other party.

In detail, imagine that after bal′ has been agreed and
bal has been revoked, Alice (the case with Bob is sym-
metric) attempts to close the channel with balance bal.
As soon as bal is added on-chain, a small punishment
time δ is established within which Bob can transfer all
coins in bal to himself with the corresponding revocation
key. After δ has expired, bal is established as final. This
mechanism with time δ is called relative timelock1 in
the blockchain folklore (i.e., relative to the time bal is
published).

1This can be realized via checkSequenceVerify (CSV) script
available in Bitcoin.

The reader might ask at this point: And what happens
if Bob does not monitor the blockchain on time (e.g., Bob
crashes or he is offline) to punish the publishing of bal?
In that case, Alice effectively manages to publish an old
state that would be more beneficial for her. Therefore,
the above mechanism makes an important requirement
for the channel users: Both Alice and Bob have to be
online persistently to ensure that if one of them cheats,
the other can punish within δ. However, if Alice and Bob
are regular users, it is highly likely that they go offline
sporadically if not for prolonged periods of time. More-
over, existing currencies like Monero do not possess the
capability for relative timelock in their script, and there-
fore the approach falls short of backwards compatibility
with some prominent currencies.

The role of watchtowers. In order to avoid this problem,
honest users (Bob in our running example) can rely on
a third party, called Watchtower, that does the punishing
job on his behalf. Several constructions for watchtower
have been proposed so far [44, 4, 22, 30, 29, 3], but they
all share the same fundamental limitation: watchtowers
are either trusted, which is critical from a security per-
spective, or they have to lock a certain amount of coins,
called collateral, for each monitored channel in order to
be held accountable, which is financially infeasible for a
large network.

Given this state of affairs, in this work we investigate
the following question: Is it possible to design a secure,
and practical payment channel protocol that does not re-
quire channel parties to be persistently online, nor addi-
tional parties (not even watchtowers) or additional trust
assumptions, and is backwards compatible (no complex
scripts) with current UTXO-based cryptocurrencies?

1.1 Our Contribution

In this work, we answer this question in the affirmative.
We design Sleepy Channels a new bi-directional payment
channel protocol (Section 5) that does not require either
of the channel parties to be persistently online, and there-
fore does not require the services of a watchtower. Our
protocol allows users to schedule ahead of time when
they have to come online to validate possible channel up-
dates. Moreover, our protocol does not make use of any
complex script and is therefore backwards compatible
with existing UTXO-based cryptocurrencies.

At the core of our Sleepy Channels protocol, we have
a novel collateral technique that plays a dual role: (1)
Enables the punishment of a misbehaving channel user
within a predetermined time, irrespective of when the
cheating exactly takes place. In technical terms, we no

2

Table 1: Comparison among payment channel approaches. Online assumption refers to the honest user be online for revocation of an old state
on-chain. Unrestricted lifetime means the protocol does not require users to close the channel before a pre-specified time. Unbounded payments refers
to channel users making any number of payments while the channel is open. In terms of scripts, DS refers to digital signatures, SIGHASH_NOINPUT
refers to a specific signature scheme [13], Seq. number refers to attaching a state number to a transaction and verifying if it is greater or smaller than
the current height of the blockchain. In case of Duplex [14], d is the number of payments made in the channel. LRS refers to Linkable Ring Signature
scheme used in Monero [37], and DLSAG refers to the transaction scheme proposed in [31].

Bi-directional Pre-schedule online Unrestricted lifetime Unbounded payments #Tx. to close channel Script Requirement1

Spillman [36] 7 X 7 X 1 DS
CLTV [39] 7 X 7 X 1 DS + CLTV
Duplex [14] X X2 7 7 logd DS + CLTV
Eltoo [13] X 7 X X 2 DS + CSV + SIGHASH_NOINPUT + Seq number

Lightning [23] X 7 X X 1 DS + CSV
Generalized [1] X 7 X X 2 DS3 + CSV

Paymo [37] 7 X 7 X 1 Monero’s LRS + CLTV
DLSAG [31] 7 X 7 X 1 DLSAG + CLTV
Teechan [25] X X X X 1 DS + TEE
This work X X 7 X 1 DS + CLTV

This work+[38] X X 7 X 1 DS
1: Requiring less script capabilities from the blockchain results in better compatibility with currencies, and better on-chain privacy (fungibility).

2: This requires that the transactions of the first level of the tree use CLTV instead of CSV.
3: The digital signature scheme used must have adaptor signature [1] capability.

longer require relative timelocks (CSV). (2) Incentivises
a channel user to cooperate in closing the channel if
the other channel user wishes to do so. Our collateral
technique requires both users to lock same amount of
collateral each, whose exact value is fully determined
by the level of trust between the users: High trust level
means a low collateral, while a low trust level means a
high collateral.

Our protocol only involves signature generation on
mutually agreed transactions, along with the use of veri-
fiable timed signatures [38, 37] for achieving backward
compatibility with existing currencies, especially privacy-
preserving currencies like Monero for the first time. With
the aid of techniques from [38, 37], the transactions in our
protocol look exactly the same as any other regular trans-
action in the currency, thereby ensuring high fungibility.
If the currency already supports checkLockTimeVerify
(CLTV) script2, then our protocol only requires signature
generation. We evaluate the performance of our Sleepy
Channels protocol in the presence of CLTV and our re-
sults show that the time and communication cost are
inline with the highly efficient protocols used in LN [23].

1.2 Related Work
Spillman [36] and CLTV [39] proposed uni-directional
payment channels between Alice and Bob where pay-
ments could only be made to Bob and thus the balance
of Bob only increases. Therefore there was no payment
revocation as Bob always preferred the most recent pay-
ment. Moreover the channel had a fixed expiry that is

2The script (available in Bitcoin) sets a transaction to be valid
only after some pre-specified height (t) of the blockchain. That is, the
transaction is set to be valid only after some point of time in the future.

set at the time of the channel creation. Duplex chan-
nels [14] support bi-directional channels but only support
a limited number of payments as with each successive
payment, the lifetime of the channel decreases. More-
over, the protocol requires logd number of transactions
to close the channel where d is the number of payments
made. Other payment channel proposals typically require
only one transaction to close. Eltoo [13] also supports
bi-directional payments but requires special signature
scheme like SIGHASH_NOINPUT, relative timelocks
(CSV) and related scripts, and therefore is not compatible
with several of the existing currencies, including Bitcoin
itself. Lightning channels [23] are the most popular chan-
nels currently in use that support bi-directional payments
but require relative timelocks (CSV). Generalized chan-
nels [1] support bi-directional payments but again require
relative timelocks (CSV). More importantly they require
the underlying signature scheme to support adaptor sig-
natures [1] capability3. Paymo [37] and DLSAG [31]
are proposals tailored for Monero that only support uni-
directional payments. Teechan [25] is a bi-directional
payment channel proposal but requires both users to pos-
sess TEEs. A summary of the comparison is presented
in Table 1. Payment channels that support arbitrary con-
ditional payments are referred to as state channels [15,
16, 10] and require complex scripts like smart contracts
and are incompatible with UTXO-based currencies.

As discussed above, parties may avail the services of
a third party like a watchtower. Monitor [44] is watch-
tower proposal requiring no special scripts. However an

3Recently it was shown that deterministic signatures do not possess
adaptor signature capabilities [17], that includes signature schemes like
BLS.

3

offline watchtower is not penalised and may even get
rewarded if a revoked payment is successful on-chain.
DCWC [3] is another such proposal that fails to penalise
an offline watchtower where the honest user ends up los-
ing coins as a revoked payment is posted on the chain.
Outpost [22] requires a special OP_RETURN script and
also requires the channel user (hiring the watchtower) to
pay the watchtower for every channel update. PISA [29]
heavily relies on smart contract support and also requires
the watchtower to lock large collateral (equal to the chan-
nel capacity) along with the channel. Cerberus chan-
nels [4] and FPPW [30] are recent proposals that suffer
from the problem of revealing the channel balance to the
watchtower per update and therefore lack balance privacy.
Similar to PISA, they also require the watchtower to lock
large collateral along with the channel. All of the above
watchtower proposals also fundamentally lack channel
unlinkability as the watchtower can clearly track channel
related transactions on-chain. Except for PISA, all of the
above proposals still require relative timelocks (CSV),
which can be replaced with absolute timelocks (CLTV)
at the expense of restricted lifetimes for the channels.

2 Solution Overview

In this section we give a high level overview of our con-
struction. We start by reviewing the state-of-the-art in
payment channels, i.e., those employed in the Lightning
Network [23], illustrating its limitations and, based on
that, gradually introducing our solution.

Lightning channels. Two parties A and B lock up some
money in a joint address (or channel). They can perform
payments to each other by exchanging payment transac-
tions txPay, which commit to an updated balance of both
users. Each party gets their own copy of this transaction,
txA

Pay and txB
Pay, respectively, so that they can spend them

unilaterally. In order for this mechanism to be secure,
the parties need to revoke the previous state whenever an
update is performed. This is done by exchanging a pun-
ishment transaction that gives the balance of the cheating
user to the honest user, should the former try to post an
old state. To give precedence to the punishment transac-
tion, the party that posts their payment transaction txPay

is forced to wait for a relative timelock of ∆ (in practice,
one day) until they can spend their balance, in order to
give time to the other party to punish. We illustrate this
channel construction in Figure 1.

With this mechanism in place, a party that wants to
prevent being cheated on needs to be online constantly
throughout the lifetime of the channel and to monitor
the blockchain for old states. If it does, it has ∆ time

txF

f

txA
Pay

vB

vA

B

A

OutputA

+∆

B
Upon revocation

... analogous for B

ChAB

Figure 1: The transaction flow of LN channel between A
and B. Rounded boxes represent transactions, rectangles within
represent outputs of the transaction: here vA + vB = f . Incom-
ing arrows represent transaction inputs, while outgoing arrows
represent how an output can be spent. Double lines from trans-
action outputs indicate the output is a shared address. Single
line from the transaction output indicate that the output is a
single party address. We write the timelock (∆) associated with
a transaction over the corresponding arrow.

units immediately after the posting of txPay to perform
the punishment. One workaround for this problem is to
employ a trusted third party, a Watchtower, which takes
over the responsibility of monitoring the ledger, thereby
allowing a party to safely go offline. As pointed out
previously, this approach has fundamental drawbacks
such as the need for the Watchtower to lock up coins
for each channel that it watches over, besides the fees
requested by the Watchtower for its service.

Replacing the relative timelock. A first attempt to solve
the issue could be replacing the relative timelock of ∆

time units in Figure 1 with an absolute timelock until
time T, i.e., by specifying T as a block height using the
CLTV script. In other words, the party A that posts a state
txA

Pay has to wait until time T (irrespectively of when txA
Pay

is posted on the chain) before it can retrieve the funds.
This allows B to safely go offline during the channel
lifetime and only come back shortly before T to check if
an old state was posted by A. Unfortunately, in this case
an honest party that posts the latest state still needs to
wait until T expires before having access to their funds
and note that T could span several weeks (if T is too
short, then either parties frequently update the channel
state or the channel is closed to reflect the current state).

To fix this issue, we could implement a mechanism
that unlocks A’s funds as soon as B claims its own funds
from txA

Pay. Another way to think of this is that B by
unlocking its funds gives a confirmation that txA

Pay is
indeed the latest state. However, note that the balance
that B committed to in the latest state can be very small
or even 0, such that the incentive for B to give this fast
confirmation is small or nonexistent. This leaves A to
wait for a potentially long time and opens the door to
Denial-of-Service (DoS) attacks from B.

4

Incentivizing fast unlock. In the extreme case where B
has balance 0, we need an incentive for B to unlock the
channel early. Taking a step towards our solution, we
let B add a collateral of amount c equal to the channel
capacity f . B’s collateral is set such that it remains locked
until B gives a fast confirmation for unlocking A’s coins.
Note that A’s coins are now guaranteed to be smaller
(or equal in the worst case) to the amount of coins B
has locked. This means that a malicious B attempting to
perform a DoS attack on A, ends up locking at least as
many coins from itself until T. Analogously, A has to put
the same amount c as a collateral for the symmetric case.

Making the collateral dynamic. We further refine this
solution by changing c from the total capacity of the
channel f to a parameter chosen by both parties of the
channel. Depending on the level of trust between the two
parties, the value of c can be anything from 0 up to f .
Once the two parties agreed on a value for c, during the
funding of the channel, they can fund the channel with
the total channel capacity f plus the additional collateral
2c (c from each party). Note that the payments are still
made with the channel capacity of f and the collateral
coins 2c are only used as incentive for fast closing of
channels. And after the closing, both party A and B get
back their original collateral amounts of c coins each.

There is still one problem left though. Again, if the
balance of B is 0 and A’s balance is the capacity of the
channel f , then B can lock up c coins and will lock up
c+ f coins of A before the fast confirmation. In a final
improvement, we resolve this issue by refining the txPay

transaction so that the posting party gets back their part
of the collateral. This is safe since the collateral serves
merely the purpose to incentivize the party who did not
post the transaction, to acknowledge that that transaction
does indeed corresponds to the latest channel state. Note
that the posting party only unlocks its collateral right
away and not its channel balance set by txPay. Indeed,
in the extreme case, if A posts txA

Pay on the chain, A can
redeem its collateral c coins immediately while B locks
up c coins and A locks up only f coins. If c = f , notice
that B has locked the same amount of coins as A, which
discourages B from launching a DoS attack on A.

Overcoming the drawbacks. With the presented con-
struction, we indeed manage to achieve bidirectional
channels with unbounded payments without the need for
users to constantly be online and monitor the blockchain.
Instead, they can safely go offline and can come back only
shortly before the pre-defined lifetime T of the channel.
Further, our construction requires only digital signatures
and absolute timelocks in the form of CLTV or VTS [38],
as we show in Section 5.

3 Preliminaries

We denote by λ ∈ N the security parameter and by
x←A(in;r) the output of the algorithm A on input in
using r←{0,1}∗ as its randomness. We often omit this
randomness and only mention it explicitly when required.
We consider probabilistic polynomial time (PPT) ma-
chines as efficient algorithms.
Universal Composability. We model security in the uni-
versal composability framework with global setup [9],
which lets us model concurrent executions. We consider
a set of parties P = {P1, . . . ,Pn} that is running the pro-
tocol. Further, we assume static corruptions, where the
adversary A announces at the beginning which parties
he corrupts. We denote the environment by E , which cap-
tures anything that happens “outside the protocol execu-
tion”. We model a synchronous communication by using
a global clock Fclock capturing execution rounds. Addi-
tionally, we assume authenticated communication with
guaranteed delivery between users, captured by FGDC.

For a real protocol Π and an adversary A we write
EXECΠ,A,E to denote the ensemble corresponding to the
protocol execution. For an ideal functionality F and an
adversary S we write EXECF ,S,E to denote the distribu-
tion ensemble of the ideal world execution.

Definition 3.1 (Universal Composability). A protocol τ

UC-realizes an ideal functionality F if for any PPT ad-
versaryA there exists a simulator S such that for any en-
vironment E the ensembles EXECτ,A,E and EXECF ,S,E
are computationally indistinguishable.

Digital Signatures. A digital signature scheme DS, lets
a user authenticate a message by signing it with respect
to a public key. Formally, we have a key generation al-
gorithm KGen(1λ) that takes the security parameter 1λ

and outputs the public/secret key pair (pk,sk), a sign-
ing algorithm Sign(sk,m) that inputs sk and a message
m ∈ {0,1}∗ and outputs a signature σ, and a verifica-
tion algorithm Vf(pk,m,σ) that outputs 1 if σ is a valid
signature on m under the public key pk, and outputs 0
otherwise. We require the standard notion unforgeability
for the signature scheme [21]. A stronger notion of strong
unforgeability for the signature scheme was shown to be
equivalent to the UC formulation of security [5].
2-Party Computation. The aim of a secure 2-party com-
putation (2PC) protocol is for the two participating users
P0 and P1 to securely compute some function f over their
private inputs x0 and x1, respectively. Apart from output
correctness, we require privacy, i.e., the only information
learned by the parties in the computation is the one deter-
mined by the function output. Note that we require the

5

standard security with aborts, where the adversary can
decide whether the honest party will receive the output of
the computation or not. In other words, we do not assume
any form of fairness or guaranteed output delivery. For
a comprehensive treatment of the formal UC definition
we refer the reader to [8]. In this work, we make use
of 2-party signing key generation (ΓJKGen) and 2-party
signature generation (ΓSign) protocols [26, 18, 6].
Blockchain and Transaction Scheme. We assume
the existence of an ideal ledger (blockchain) func-
tionality B [28, 27, 1] that maintains the list of coins
currently associated with each address (denoted by
addr) and that we model as a trusted append-only
bulletin board. The corresponding ideal functionality
FB maintains the ledger B locally and updates it
according to the transactions between users. Trans-
actions are generated by the transaction function
tx: A transaction txA that is generated as txA :=
tx([addr1, . . . ,addrn], [addr′1, . . . ,addr

′
m], [v1, . . . ,vm]),

such that it transfers all the coins (say v coins) from the
source addresses [addr1, . . . ,addrn] to the destination
addresses [addr′1, . . . ,addr

′
m] such that v1 coins are sent

to addr′1, v2 coins are sent to addr′2 and so on, where
v1 + v2 + · · ·vm = v. Addresses are typically public
keys of digital signature schemes and the transaction is
authenticated with a valid signature with respect to each
of the source addresses [addr1, . . . ,addrn] (as the public
keys). We consider Unspent Transaction Output (UTXO)
model where an address is tied to the transaction that
creates it and is spendable (used as input to a transaction)
exactly once, like in Bitcoin, Monero, etc.

4 Ideal Functionality Bi-directional Chan-
nels

We define an ideal functionality F that closely follows
the bi-directional payment functionality defined in [1].
In fact, our functionalities captures the same security and
efficiency notions, except that we achieve delayed finality
with punish, which means that the channel owner has the
guarantee that until time T , the time until which the latest
state is locked, either that state or one that gives all the
money to the honest party can be enforced on the ledger.
Whenever one party tries to close the channel with the
latest state, the other party is incentivized to confirm it
before T, thereby unlocking not only the state but also
their collateral c.
Specific Notation. We abbreviate γ as an attribute
tuple containing the following information γ :=
(γ.id,γ.users,γ.cash,γ.st,γ.T,γ.c), where γ.id ∈ {0,1}∗
is the channel identifier, γ.users defines the two users of

the channel, γ.cash ∈ R≥0 the total capacity, γ.st defines
a list of outputs (addresses and values) in, γ.T ∈ R≥0
defines the lifetime of the channel, and γ.c ∈R≥0 defines
the collateral of the channel.

We denote by m
τ
↪−→ P the output of message m to party

P in round τ. Similarly, m
τ←−↩ P denotes the input of

message m in round τ. A message m generally consists
of (MESSAGE-ID,parameters). For better readability, we
omit session identifiers in messages. In our communica-
tion model, messages sent between parties are received
in the next round, i.e., if A sends a message to B in round
τ, B will receive it in round τ+1. Messages sent to the
environment, the simulator S or to F are received in the
same round.

Description. As we do not consider privacy notions, we
say thatF implicitly forwards all messages to the S . Note
that F cannot create signatures or prepare transaction ids.
It expects the S to perform these tasks, e.g., expecting a
transaction of a certain structure to appear on the ledger,
and outputting ERROR, if this does not happen. Similarly,
whenever the functionality expects the S to provide or
set a value, but the S does not do it, the functionality
implicitly outputs ERROR, where all guarantees are poten-
tially lost. Hence, we are interested only in protocols that
realize F , but never output ERROR.
F interacts with a ledger B(∆,Σ,V) parameterized

over a given upper bound ∆, after which valid transactions
are appended to the ledger, a signature scheme Σ and
a set V , defining valid spending conditions, including
signature verification under Σ and absolute timelocks. F
can see the transactions on the ledger and infer ownership
of coins. Following [1], we keep the functionality F
description generic, by parameterizing it over Tp and k,
both of which are independent of ∆. Tp is an upper bound
on the number of consecutive off-chain communication
rounds between two users, while k defines the number
of states that a channel has. We present a protocol later,
where k = 2. Both Tp and ∆ are defined as upper bounds.
If the actual values are less, S implicitly informs F of
these values.

The ideal functionality keeps a map Γ, which maps the
id of an existing channel to the channel tuple γ represent-
ing the latest state and the address of the funding transac-
tion, ChAB. Note that during an update, there may be two
states that are active {γ,γ′}. We give a formal description
of FB(∆,Σ,V) (which we abbreviate as F) in Figure 2. Fol-
lowing, we explain our functionality in prose and argue
inline, why certain security and efficiency goals hold.

Create. When both parties of channel γ send a mes-
sage (CREATE,γ, tidP) to F within Tp rounds, F ex-
pects a funding transaction to appear on B within ∆

6

rounds, spending both inputs tidA and tidB and holding
γ.cash+2γ.c coins. The channel funding address ChAB
is stored in Γ and CREATED is sent to both parties.

Update. One party P initiates the update with
(UPDATE, id,

−→
θ , tstp), where id refers to the channel iden-

tifier,
−→
θ represents the new state (e.g., coin distribution

or other applications that work under delayed finality with
punish) and tstp denotes the time needed to setup anything
that is built on top of the channel. First, the parties agree
on the new state. For this, S informs F of a vector of k
transactions. Both parties can abort here by P not send-
ing SETUP–OK and Q not sending UPDATE–OK. When P
receives UPDATE–OK, they move on to the revocation. F
expects a message REVOKE from both parties, and in the
success case, UPDATED is output to both parties. In case
of an error, the ForceClose subprocedure is executed,
which expects the funding transaction of the channel to
be spent within ∆ rounds.

Close. Either party can initiate a channel’s closure by
sending (CLOSE, id) to F . If the other party sends the
same message within Tp rounds, F expects a transaction
representing the latest state of the channel to appear on
the ledger within ∆ rounds. Should only one party re-
quest the closure or in case one party is corrupted, F
expects either the a transaction representing the latest of
the channel or an older state, followed by a punishment
(see Punish). If the funding transaction remains unspent,
outputs ERROR.

Punish. To give honest parties the guarantee that either
the most recent state of the channel which is locked until
at most time T can be enforced on B, or the honest party
can get all coins, we need the punish phase. This check
is executed in each round. We can model this in the UC
framework, by expecting E to pass the execution token
in every round. If E fails to do that, F outputs an error
the next time it has the execution token. Whenever the
funding transaction of any open channel γ in Γ is spent,
F expects either a transaction that spends the coins in
accordance to the latest state of γ, or a transaction giving
γ.cash+ γ.c coins to the honest party. Else, ERROR is
output. In the case that a transaction in accordance to the
latest state of γ appears on the ledger, either the funds of
the party that has posted the transaction are locked until
T (after which a transaction claiming them appears) or
the other party unlocks them beforehand by unlocking
their own funds and collateral. In the latter case, the other
party loses the negligible amount (which we say is a
system parameter in R≥0 for a ledger B) to the first party.

5 Sleepy Channels: Our Bi-Directional
Payment Channel Protocol

In this section we describe our Sleepy Channel proto-
col for realizing bi-directional payment channels for a
currency whose transaction scheme makes use of the
signature scheme ΠDS for authentication. For simplicity
we assume the transaction scheme lets verify transaction
timeouts4, meaning that a transaction is considered valid
only if it is posted after a specified timeout T has passed.
We discuss in Section 5.1.3 how we can remove this as-
sumption from the transaction scheme. We additionally
make use of 2-party protocols whose functionality we
describe below.
2-Party Key Generation. Parties A and B can jointly
generate keys for a signature scheme ΠDS. We denote
this interactive protocol by ΓJKGen. It takes as input the
public parameters pp from both parties and outputs the
joint public key pk to both parties and outputs the secret
key share skA to A and skB to B.
2-Party Signing. Parties A and B having a shared key
can jointly sign messages with respect to the signature
scheme ΠDS. We denote this interactive protocol by
ΓSign. It takes as input the message m and the shared
public key pk from both parties and secret key shares
skA and skB from A and B, respectively. The protocol
outputs the signature σ (to one of the parties), such that
ΠDS.Vf(pk,m,σ) = 1.

We can instantiate both 2-party protocols (ΓJKGen or
ΓSign) with efficient interactive protocols for specific sig-
natures schemes of interest. If the currencies use ECDSA
signatures, Schnorr signatures or BLS signatures [7, 12]
for transaction authentication, we can instantiate ΓJKGen

and ΓSign with protocols from [26], [18], or [6], respec-
tively. Monero uses a linkable ring signature scheme [37,
31] for authentication and the corresponding tailored
2-party protocols for key generation and signing are de-
scribed in [37].

5.1 Our Protocol
We consider parties A and B already have an open chan-
nel ChAB which is a shared public key pkAB (between A
and B) and the corresponding secret key skAB is shared
among the parties. Parties can make multiple payments
using the channel (in either direction) and confirm the
final payment state on the chain. However, after each
payment, the payment state of the channel is updated and
accordingly old states are revoked. The formal descrip-
tion of the protocol can be found in Figures 4 and 5.

4Realizable through the locktime script that is available in Bitcoin.

7

Ideal Functionality F(Tp,k)

Create: Upon (CREATE,γ, tidA)
τ0←−↩ A, distinguish:

Both agreed: If already received (CREATE,γ, tidB)
τ←−↩ B, where τ0−τ≤ Tp: If txF := tx([tidA, tidB],ChAB,γ.cash+2γ.c) for some

address ChAB appears on B in round τ1 ≤ τ+∆+Tp, set Γ(γ.id) := ({γ},ChAB) and (CREATED,γ.id)
τ1
↪−→ γ.users. Else stop.

Wait for B: Else wait if (CREATE, id)
τ≤τ0+Tp
←−−−−−↩ B (then, “Both agreed” option is executed). If such message is not received, stop.

Update: Upon (UPDATE, id,
−→
θ , tstp)

τ0←−↩ A, parse ({γ},ChAB) := Γ(id), set γ′ := γ, γ′.st :=
−→
θ :

1. In round τ1 ≤ τ0 +Tp, let S define
−→
tid s.t. |

−→
tid|= k. Then (UPDATE–REQ, id,

−→
θ , tstp,

−→
tid)

τ1
↪−→ B and (SETUP, id,

−→
tid)

τ1
↪−→ A.

2. If (SETUP–OK, id)
τ2≤τ1+tstp←−−−−−−↩ A, then (SETUP–OK, id)

τ3≤τ2+Tp
↪−−−−−−→ B. Else stop.

3. If (UPDATE–OK, id)
τ3←−↩ B, then (if B honest or instructed by S) send (UPDATE–OK, id)

τ4≤τ3+Tp
↪−−−−−−→ A. Else distinguish:

• If B honest or if instructed by S, stop (reject). Else set Γ(id) := ({γ,γ′},ChAB), run ForceClose(id) and stop.

4. If (REVOKE, id)
τ4←−↩ A, send (REVOKE–REQ, id)

τ5≤τ4+Tp
↪−−−−−−→ B. Else set Γ(id) := ({γ,γ′},ChAB), run ForceClose(id) and stop.

5. If (REVOKE, id)
τ5←−↩ B, Γ(id) := ({γ′},ChAB), send (UPDATED, id,

−→
θ)

τ6≤τ5+Tp
↪−−−−−−→ γ.users and stop (accept). Else set Γ(id) :=

({γ,γ′},ChAB), run ForceClose(id) and stop.

Close: Upon (CLOSE, id)
τ0←−↩ A, distinguish

Both agreed: If already received (CLOSE, id)
τ←−↩ B, where τ0− τ≤ Tp, let ({γ},ChAB) := Γ(id) and distinguish:

• If txc := tx(ChAB, [outA,outB], [γ.c+ γ.st.bal(A),γ.c+ γ.st.bal(B)]) appears on B in round τ1 ≤ τ0 +∆, set Γ(id) := ⊥, send

(CLOSED, id)
τ1
↪−→ γ.users and stop.

• Else, if at least one of the parties is not honest, run ForceClose(id). Else, output (ERROR)
τ0+∆
↪−−−→ γ.users and stop.

Wait for B: Else wait if (CLOSE, id)
τ≤τ0+Tp
←−−−−−↩ B (in that case “Both agreed” option is executed). If such message is not received,

run ForceClose(id) in round τ0 +Tp.

Punish: (executed at the end of every round τ0) For each (X ,ChAB) ∈ Γ check if B contains a transaction txA
Pay,i := tx(ChAB,oC,vC)

for some addresses oC and some values vC, s.t. ∑v∈vC
= γ.cash and one address o ∈ oC belongs to A with the corresponding value

v ∈ vC = γ.c for some A ∈ γ.users and B ∈ γ.users\{A}. If yes, then define L := {γ.st | γ ∈ X} and distinguish:

Punish: If B is honest and txA
Pay,i does not correspond to the most recent state in X , txB

Pnsh,i := tx(o ∈ oC,oP,γ.st.bal(A)),
where oP is an address controlled by B, appears on B in round τ1 ≤ τ0 +∆. Afterwards, in round τ2 ≤ τ1 +∆ a transaction
txA,B

Fpay,i := (o ∈ oC,oS,vS), for some addresses oS and corresponding values vS where one address o ∈ oS belongs to B and the

corresponding value of o is γ.st.bal(B)+ γ.c− ε, appears on B, set Γ(id) =⊥, send (PUNISHED, id)
τ2
↪−→ B and stop.

Close: Either Γ(id) =⊥ before round τ0 +∆ (channel was peacefully closed) or after round τ1 ≤ τ0 +∆ a transaction txA,B
Fpay,i :=

(o ∈ oC,oS,vS), for some addresses oS and corresponding values vS where one address o ∈ oS belongs to B and the corresponding
value of o is γ.st.bal(B)+γ.c−ε, appears on B before a transaction txA∗

Fpay,i := ([o∈ oC,o′ ∈ oS],oF ,γ.st.bal(A)+ε) where address

oF of A appears on B. Set Γ(id) :=⊥ and send (CLOSED, id)
τ2≤τ1+∆
↪−−−−−→ γ.users. Else, transaction txA,A

Fpay,i := tx(o∈ oC,oE ,γ.st.bal(A))

where address oE of A appears on B in round τ3 ≤ γ.T+∆. Set Γ(id) :=⊥ and (CLOSED, id)
τ3
↪−→ γ.users and stop.

Error: Otherwise (ERROR)
τ0+∆
↪−−−→ γ.users.

Subprocedure ForceClose(id): Let τ0 be the current round and (γ, tx) := Γ(id). If within ∆ rounds tx is still an unspent transaction

on B, then (ERROR)
τ0+∆
↪−−−→ γ.users and stop. Else, latest in round γ.T+∆, m ∈ {CLOSED,PUNISHED,ERROR} is output via Punish.

Figure 2: Ideal Functionality

5.1.1 High Level Overview

We present below the intuition for our protocol using the
transaction flow presented in Figure 3.

Payment. For each payment from the channel ChAB, par-
ties generate two versions of transactions, one version
under the control of party A and the other in the control
of party B. By “under control”, we mean that in party A’s

8

txF

f +2c

txA
Pay

c

vA

vB + c

A

txA,B
Fpay

ε

vB + c− ε B

ExitChA

txA∗
Fpay

vA + ε A

A

SleepyChA

≥ T

B
Upon revocation

Fast finish

... analogous for B

ChAB

Figure 3: Transaction flow of our protocol. Here double lines
from transaction outputs indicate that the output is a 2-party
shared address between A and B. Single line from the transac-
tion output indicate that the output is a single party address. We
have vA + vB = f and ε is some negligible amount of coins.

version, A has the necessary signatures to post the pay-
ment transaction txA

Pay. Analogously, B has the necessary
signature to post the payment transaction txB

Pay. Both of
these transactions spend from ChAB. In contrast to prior
bi-directional protocols, both versions have an important
asymmetry in the coin distribution among the parties.

In more detail, the channel ChAB holds in total f +2c
coins where f is the payment capacity among the parties,
while 2c is the collateral amount locked by both parties
A and B with c coins from each. The value of c is agreed
upon by the parties locally before they open the channel
and are returned to the respective parties at the close
of the channel. Consider a payment where A’s balance
is vA and B’s is vB such that vA + vB = f . The payment
transaction txA

Pay splits the funds of ChAB in the following
way: (1) c coins to an address fully controlled by A, (2)
vA coins to a shared address between A and B referred to
as the sleepy channel SleepyChA, and (3) vB + c coins to
a shared address between A and B referred to as the exit
channel ExitChA.

Notice that A can immediately get c coins from out-
put (1). To spend from output (2) (the sleepy channel
SleepyChA) which is a shared address, parties sign 2 dif-
ferent transactions.
1. Transaction txA,A

Fpay, that transfers vA to an address of
A, but is valid only after a timeout T.

2. Transaction txA∗
Fpay, that spends from SleepyChA and

an auxiliary address auxA (contains ε coins as output
in txA,B

Fpay in Figure 3) that is also a shared address
between A and B. The transaction transfers vA coins
from SleepyChA and ε (a negligible amount) from
auxA, to an address of A.

The signatures on both of the above transactions are pos-
sessed by A and not B.

To spend from output (3) (the exit channel ExitChA)
which is a shared address, parties sign a transaction txA,B

Fpay

that transfers ε coins to the auxiliary address auxA and
vB + c− ε coins to an address of B. Notice that B’s bal-
ance vB and its collateral c (minus a negligible amount
ε) are transferred together to B’s address. In contrast to
output (2), the signature on txA,B

Fpay is only available with B
and not A. The version for B following txB

Pay is analogous
to what we saw above except the roles are reversed.

Close. To close the channel with this payment state, we
have two scenarios where either both parties are respon-
sive, or one of them is unresponsive. For simplicity we
consider A as the party closing the channel and B is ei-
ther responsive or not. If B is responsive, party A posts
txA

Pay with the corresponding signature that it has, on the
blockchain. Since B is responsive, it posts the transaction
txA,B

Fpay spending from ExitChA with the corresponding
signature that it has, on the blockchain. Note that B now
retrieves its balance vB and collateral c, while one of the
outputs of the transaction is auxA. Now party A can finish
the payment fast, by posting the transaction txA∗

Fpay that
spends from SleepyChA and auxA simultaneously, thus
retrieving its balance vA (plus some ε). Recall that A can
already retrieve its collateral c by itself.

In the latter case where B is unresponsive, party A
posts txA

Pay on the blockchain as above. Now, A waits

until the timeout T and posts the transaction txA,A
Fpay that

retrieves vA coins from SleepyChA to itself. Party B can
retrieve vB +c− ε coins from ExitChA anytime it wishes.

Payment Revocation and Punishment. When the par-
ties want to revoke the payment, they together gener-
ate a punishment transaction txA

Pnsh that spends from
SleepyChA to an address of B. The parties generate a sig-
nature on this transaction such that B holds the signature.
Similar punishment transaction and signature are gener-
ated in B’s version where A holds the signature for the
transaction. In total, the parties have three different trans-
actions spending from the sleepy channel SleepyChA.

If party A misbehaves, and posts txA
Pay after it has been

revoked, party B has until timeout T to punish this be-
haviour by posting txA

Pnsh and the corresponding signa-
ture. This results in B getting the vA coins. Party B then
posts the transaction txA,B

Fpay spending from ExitChA re-
trieving vB + c− ε. In effect, A only gets its collateral
back, while B is able to retrieve the entire payment ca-
pacity f and its own collateral c.

Collateral As Incentive. Observe that the collateral that
is with the channel funds are retrieved by the respective

9

parties during closing, irrespective of a cheating event.
This is because the purpose of the collateral in the Sleepy
Channels protocol is to incentivise fast closure of the
channel if one of the parties wishes to close the channel.
Notice that if party A wishes to close the channel with an
unrevoked payment, it posts the corresponding payment
transaction txA

Pay on the chain. Now, A immediately re-
trieves its collateral c, while A’s channel balance vA, and
B’s channel balance and collateral, i.e., vB + c are still
lying unspent in the outputs of txA

Pay. If value of c is high
enough, party B is discouraged from launching a DoS
attack on A: where party B does not retrieve the coins
from ExitChA and lets party A wait until the timeout T to
get vA back. To see this, if party B attempts to launch the
DoS attack on A, party B itself locks vB + c− ε coins in
ExitChA until T. On the other hand, if B retrieves its coins
from ExitChA immediately, party A also can retrieve its
coins from SleepyChA immediately with the aid of auxA.

The value of c is determined by the level of trust be-
tween A and B. If both parties completely trust each other,
the collateral c is set to 0. In the worst case where they do
not trust each other at all, the collateral is set to be equal to
the payment capacity, i.e., c = f and have vA ≤ vB+c−ε

when ε≈ 0. This means that during the DoS attack, party
B locks at least the same amount of coins in ExitChA
as party A does in SleepyChA. Therefore, by not letting
A spend its coins until timeout T, party B also can not
spend the same amount of coins until timeout T.

5.1.2 Security

In this section we state our main theorem and we in-
formally outline the main steps our our analysis. In Ap-
pendix A we give a formal description of our Sleepy
Channels protocol Π in the UC framework. It differs
from the protocol Π′′ in Section 5 in that the crypto-
graphic protocols for 2-party key generation and 2-party
signing are substituted by the corresponding ideal func-
tionalities. This is captured by the following Lemma.

Lemma 1. Let ΓJKGen be a UC-secure 2-party key-
generation protocol and let ΓSign be a UC-secure 2-party
signing protocol. Then the protocols Π and Π′′ are com-
putationally indistinguishable from the point of view of
the environment E .

In Appendix A.1 we describe a simulator S that inter-
acts with the ideal functionality F (defined in Section 4),
whereas the environment interacts with φF (the ideal pro-
tocol for F). Then in Appendix A.2 we show that any
attack that can be carried out against Π can also be car-
ried out against φF . This allows us to state the following
theorem.

Theorem 5.1. The protocol Π UC-realizes the the ideal
functionality F .

5.1.3 Extensions

In this section we describe possible extensions of our pro-
tocol that makes it applicable in a wider class of settings.
TimeLock script independence. The curious reader
may wonder whether our protocol achieves the sought-
after goal of (bi-directional) payment channels needing
only the signature verification script from the underly-
ing blockchain. Although we remove the dependency
on relative timelock scripts, our protocol still relies on
absolute timelock scripts (see point 1 in finish-payment
transactions Figure 4) to guarantee the closure of the
channel after some (fixed) time T. Thus a natural ques-
tion is whether one can construct bidirectional payment
channels without relying on time-lock scripts at all. It
turns out that, if one is willing to rely on time-lock puz-
zles [34], we can avoid the dependence from timelock
scripts entirely. As it was shown in prior works [38, 37],
absolute time-locks5 can be simulated using verifiable
timed signatures (VTS): VTS allow one to encapsulate a
signature on a message for a pre-determined amount of
time T. At the same time, the party who is solving the
puzzle, is guaranteed that the signature recovered after
time T is a valid one. Parties are required to perform
persistent background computation for the lifetime of
the channel. However for currencies like Monero where
we do not have any timelock script, we do not know of
any other viable mechanism other than the one using
VTS from [37]. A recent work [32] has enabled parties
to securely outsource this computation to a decentralized
network thereby removing any sort of computational load
on the parties.

Extending lifetime and capacity of the channel. In
contrast to Lightning Network channels, the channel
ChAB between A and B is time bounded because of the
bound required in Sleepy Channels. More precisely, par-
ties have to close the channel ChAB before the timeout
T that are set on the finish-payment transactions txA,A

Fpay,i

and txB,B
Fpay,i that spend from SleepyChA and SleepyChB,

respectively. However, if both parties cooperate, they can
easily extend their channel duration by transferring the
coins from the current channel ChAB to a new channel
Ch′AB (shared between A and B) in accordance with the
latest channel balance that the parties had in ChAB. In

5Crucially, this transformation does not work for the relative time-
lock logic, since there the time depends on some event which is trig-
gered by the attacker and thus one cannot set the time parameter of the
VTS ahead of time.

10

Parties A and B have a payment channel ChAB with capacity f +2c and secret key share for the channel are skA
Ch,AB and skB

Ch,AB
for party A and B, respectively. Here f denotes the payment capacity of the channel and c is the collateral that a party allocates for
the channel. Parties additionally have a refund transaction txrfnd := tx(ChAB, [pkA,pkB], [vA + c,vB + c]) and the corresponding
signature σrfnd with respect to ChAB, where vA + vB = f and pkA and pkB are some public keys of A and B, respectively.

Address Generation

1. Parties generate the following key pairs using ΠDS.KGen(1λ)

• Party A generates
(
pkCPay,A,skCPay,A

)
,(pkpun,A,skpun,A), (pkfp,A,skfp,A) and (pkffp,A,skffp,A)

• Party B generates
(
pkCPay,B,skCPay,B

)
,(pkpun,B,skpun,B), (pkfp,B,skfp,B) and (pkffp,B,skffp,B)

2. Parties run ΓJKGen to generate shared addresses: SleepyChA,SleepyChB,ExitChA,ExitChB,auxA,auxB.
i-th Payment

For the i-th payment where vA,i and vB,i are the balance of A and B, respectively with f = vA,i + vB,i, the parties do the following:

Payment Transactions: Generate payment transactions txA
Pay,i := tx

(
ChAB, [pkCPay,A,SleepyChA,ExitChA], [c,vA,i,vB,i + c]

)
and

txB
Pay,i := tx

(
ChAB, [pkCPay,B,SleepyChB,ExitChB], [c,vB,i,vA,i + c]

)
Punishment Transactions: Generate txA

Pnsh,i := tx
(
SleepyChA,pkpun,B,vA,i

)
and txB

Pnsh,i := tx
(
SleepyChB,pkpun,A,vB,i

)
Finish-Payment Transactions:
1. Generate txA,A

Fpay,i := tx
(
SleepyChA,pkfp,A,vA,i

)
and txB,B

Fpay,i := tx
(
SleepyChB,pkfp,B,vB,i

)
both timelocked until time T.

2. Generate another set of faster finish-pay transactions txA,B
Fpay,i := tx

(
ExitChA, [pkffp,B,auxA], [vB,i + c− ε,ε]

)
and

txB,A
Fpay,i := tx

(
ExitChB, [pkffp,A,auxB], [vA,i + c− ε,ε]

)
.

3. Generate a set of enabler transactions txA∗
Fpay,i := tx

(
[SleepyChA,auxA],pkfp,A,vA,i + ε

)
and

txB∗
Fpay,i := tx

(
[SleepyChB,auxB],pkfp,B,vB,i + ε

)
that enable a faster finish-payment.

Signature Generation: Parties generate signatures on transactions by running the interactive protocol ΓSign in each step. In case
one of the party aborts at any step, the other party closes the channel with the (i−1)-th payment state.
1. Party A receives signature σ

A,A
Fpay,i on transaction txA,A

Fpay,i under the shared key SleepyChA. Party B receives signature σ
B,B
Fpay,i on

transaction txB,B
Fpay,i under the shared key SleepyChB.

2. Party A receives signatures
(
σSleepyCh,A,σaux,A

)
on the transaction txA∗

Fpay,i with respect to the shared keys SleepyChA and
auxA, respectively. Party B receives signatures

(
σSleepyCh,B,σaux,B

)
on the transaction txB∗

Fpay,i with respect to the shared keys
SleepyChB and auxB, respectively.

3. Party A receives signature σ
B,A
Fpay,i on the transaction txB,A

Fpay,i under the shared key ExitChB. Party B receives signature σ
A,B
Fpay,i

on the transaction txA,B
Fpay,i under the shared key ExitChA.

4. Party A receives signature σA
Pay,i on the transaction txA

Pay,i under the shared key ChAB. Party B receives signature σB
Pay,i on the

transaction txB
Pay,i under the shared key ChAB.

Figure 4: Sleepy Channel protocol - Payment setup and payments

other words, parties can post a single transaction on the
blockchain anytime before T to transfer the coins from
ChAB to Ch′AB. The channel balance of the parties in
Ch′AB is set according to the most recent payment state
between them in the channel ChAB. Similar procedure is
adopted in the Splicing protocol [35] of Lightning Net-
work where users can periodically increase or decrease
their channel capacity on-chain without violating any
payments already made. Our Sleepy Channel protocol
apart from extending the channel lifetime, can also up-
date the channel capacity with this approach.

6 Performance Evaluation

We evaluated a proof of concept to (i) show correctness
of our scheme, (ii) showcase compatibility with Bitcoin,
and (iii) measure on- and off-chain transaction overhead.
The source code is available at [19].
Implementation subtleties. There are several ap-
proaches on how Sleepy Channels can be implemented,
given the scripting functionality of, say, Bitcoin. For in-
stance, timelocks can be enforced either at a single trans-
action output or for the whole transaction, 2-party signing
can be replaced with a multisig script (for a blow up in
the transaction size) and revocation can be via exchang-

11

i-th Payment Revocation
To revoke the i-th payment, parties jointly generate signatures by running the interactive protocol ΓSign: Generate signature σA

Pnsh,i
on the punishment transaction txA

Pnsh,i (party A receives σA
Pnsh,i as output and gives it to B) and signature σB

Pnsh,i on the punishment
transaction txB

Pnsh,i (party B receives σB
Pnsh,i as output and gives it to A). If during the revocation either party aborts, the

non-aborting party immediately closes the channel with the most recent unrevoked payment.
Channel Closing

Either party can close the channel ChAB with the j-th unrevoked payment. To do this:
1. Party A posts

(
txA

Pay, j,σ
A
Pay, j

)
on B. This is followed by one of the two cases:

(a) Fast finish: Party B posts
(

txA,B
Fpay,i,σ

A,B
Fpay,i

)
on B, and party A posts

(
txA∗

Fpay,i,σ
A∗
Fpay,i

)
on B for fast finish

(b) Lazy finish: If not, A can post
(

txA,A
Fpay,i,σ

A,A
Fpay,i

)
on B after timeout T

2. Analogously, party B can post
(

txB
Pay, j,σ

B
Pay, j

)
on B. This is followed by one of the two cases:

(a) Fast finish: Party A posts
(

txB,A
Fpay,i,σ

B,A
Fpay,i

)
on B, and party B posts

(
txB∗

Fpay,i,σ
B∗
Fpay,i

)
on B for fast finish

(b) Lazy finish: If not, B can post
(

txB,B
Fpay,i,σ

B,B
Fpay,i

)
on B after timeout T

Punishing Revoked payments
If A posts the j-th revoked payment txA

Pay, j on B, B can post the punishment transaction
(

txA
Pnsh,i,σ

A
Pnsh,i

)
on B before the absolute

timeout T. If B posts the j-th revoked payment txB
Pay, j on B, A can post

(
txB

Pnsh,i,σ
B
Pnsh,i

)
on B before the absolute timeout T.

Figure 5: Sleepy Channel protocol - Channel closing and punishment

ing a hash secret, a private key or a signed punishment
transaction upon revoking an old state).In this section,
we follow our protocol description from Figures 4 and 5
and use transaction level timelocks, 2-party signing and
exchange signed punishment transactions for revocation.

Deploying the transactions. Now we describe the trans-
actions used in Sleepy Channels and we refer the reader
to Table 2 in Appendix B for the details on transaction
sizes and their cost in terms of on-chain fees. We also
give a pointer to the corresponding transactions deployed
in the Bitcoin testnet, thereby demonstrating the back-
wards compatibility of Sleepy Channels.

The first step in Sleepy Channels is building a funding
transaction txF [40]. Built on top of the funding, we look
at A’s commitment (or state) transaction txA

Pay,i [41] and
note that the transactions for B are symmetric. When A
puts the current state on the ledger, there are two ways
how A can claim its money. On the one hand, if B unlocks
its own funds by putting txA,B

Fpay,i [43], then A can claim
its funds with txA∗

Fpay,i right away [42]. On the other hand,
after the lifetime expires, A can unilaterally claim its
funds with txA,A

Fpay,i. If A puts an old state, then B can
punish A via txA

Pnsh,i. Finally, two users can close their
channel honestly with a transaction, where both funds
are unlocked right away.

We find that for opening a channel in Sleepy Chan-
nels, the two parties together need to put 338 bytes on-

chain and exchange 2026 bytes (8 transactions off-chain).
For each subsequent updates, the two parties need to
exchange 2408 bytes (10 transactions off-chain). The
closing and punishment happen on-chain. For the closing
there are three options. Either they close honestly (225
bytes, 1 tx), or one party closes unilaterally and unlocks
its funds after the timelock expires (449 bytes, 2 tx), or
one party closes unilaterally and the other one unlocks
the funds right away (823 bytes, 3 tx). The punishment
case requires 450 bytes and 2 transactions.

Comparison to LN. As for our construction, the LN
channel functionality can be implemented with subtle
differences, resulting in different outcomes. The funding
transaction of LN is identical to ours, except that it locks
no additional collateral. The commitment transactions
differ, as they have one fewer output, and therefore only
226 bytes. Moreover, in LN there are no fast finish trans-
actions. This totals to 338 bytes on-chain and exchanging
832 bytes (4 transactions) for opening a LN channel. For
updating, the users exchange 1214 bytes (6 transactions).
Note that the honest, the unilateral close and the punish-
ment in sleepy channels is identical to LN, both in terms
of transaction structure and in size.

Overhead. The Sleepy Channels protocol does not re-
quire costly cryptography. It requires computing and ver-
ifying signatures locally, 2-party signing and a maximum
off-chain communication in the order of 103 bytes for

12

0 5 10 15 20 25 30
0

200

400

600

800

% of channels employing a watchtower

C
ol

la
te

ra
l(

B
T

C
)

Figure 6: Results of the first simulation.

each operation. The computational time can be expected
to be negligible on even commodity hardware; the com-
munication is limited only by network latency.

6.1 Simulation
We perform some additional experiments with respect
to a recent snapshot of LN. In this snapshot, there are
71k channels, 16k channel nodes and a total capacity of
2712 BTC. As the balance distribution of each channel
is unknown, we assume that it is split evenly between the
two users. The source code of our simulation experiments
is available at [20]. We repeat the experiments 100 times
for each and plot the average and standard deviation.

Watchtower collateral. We investigate the collateral a
watchtower service needs to provide, in order to cover
their customers should they go offline. For this, we ran-
domly sample a percentage of nodes that wish to employ
a watchtower and based on their balances in their chan-
nels, we plot the amount of collateral in Figure 6. This
amount rises linearly with the amount of users that wish
to employ a watchtower. If 30% of all users do so, (i)
the watchtower service needs to lock up approximately
800 BTC and (ii) users needs to pay fees for that, even if
there are no disputes.

Risk of failing to go online. We simulate the risk of
users having to periodically monitor the blockchain in
LN. In LN, there is a certain time interval, e.g., once a day,
when users need to come online and check whether or not
the other party tried to cheat. In our setting, we investigate
a time frame of 30 days, i.e., users come online 30 times.

In our simulation, we assume that there is a certain
chance that users fail to come online and monitor the
blockchain in time. We further assume that neighboring
nodes will notice this; a realistic assumption due to the
ping and pong messages [24] of the LN. We assume
that neighboring nodes want to maximize their profits
and will exploit such a case by putting an old state and

0.002 0.004 0.006 0.008 0.01

5

50

500

5,000

50,000

Chance of missing check

C
ha

nn
el

s
at

ri
sk

Figure 7: Results of the second simulation. (Blue = LN, Red
= Sleepy Channels)

thereby, potentially stealing funds of the offline user.
The Sleepy Channels protocol would not fully prevent

this behavior, but reduce it significantly. That is, for a
given period of time, in this simulation 30 days, the users
need to come online only once, i.e., before the channel
expires. They can of course fail to come online there
with the same probability, but this event occurs only once
instead of 30 times. Obviously, the longer this time span
is, the greater the chances for LN nodes is to miss at
least one of these intervals, while for Sleepy Channels
it remains the same. For 30 days, only about 3% of the
channels are at risk for Sleepy Channels compared to LN,
for any given chance of missing the online check.

In Figure 7 we plot the number of channels that are at
risk for a given probability that a user will fail to come
online in each interval, once for each the LN and Sleepy
Channels. The y axis is shown in logarithmic scale.

7 Conclusion

Payment channels are one of the most promising pay-
ment solutions for blockchain-based cryptocurrencies.
Despite their large adoption, many such proposal suf-
fer from limitations, such as requiring the parties to be
constantly online and monitor the network, or outsourc-
ing this task to third parties (e.g., watchtowers). In this
work, we propose a new payment channel architecture
(Sleepy Channels) that supports bi-directional payments
and does not require the parties to be persistently online.
The protocol is backward compatible with many exist-
ing currencies (e.g., Bitcoin, Monero. . .) and relies on
lightweight cryptographic machinery. Our performance
evaluation shows that the protocol is efficient enough
to be adopted in a large payment ecosystems (such as
the Lightning Network). An interesting open question is
whether our techniques are also applicable to account-
based currencies, rather than UTXO-based currencies.

13

Acknowledgements

The work was partially supported by the Deutsche
Forschungsgemeinschaft (DFG – German Research
Foundation) under 442893093, by the state of Bavaria
at the Nuremberg Campus of Technology (NCT), by
CoBloX Labs, by the European Research Council (ERC)
under the European Union’s Horizon 2020 research
(grant agreement 771527-BROWSEC), by the Austrian
Science Fund (FWF) through the projects PROFET
(grant agreement P31621) and the project W1255-N23,
by the Austrian Research Promotion Agency (FFG)
through the Bridge-1 project PR4DLT (grant agreement
13808694), the COMET K1 SBA and COMET K1 ABC,
by the Vienna Business Agency through the project Vi-
enna Cybersecurity and Privacy Research Center (VISP),
by the Austrian Federal Ministry for Digital and Eco-
nomic Affairs, the National Foundation for Research,
Technology and Development and the Christian Doppler
Research Association through the Christian Doppler
Laboratory Blockchain Technologies for the Internet of
Things (CDL-BOT).

References

[1] Lukas Aumayr et al. “Generalized Channels from
Limited Blockchain Scripts and Adaptor Signa-
tures”. In: AsiaCrypt (2021). URL: https : / /
eprint.iacr.org/2020/476.

[2] Georgia Avarikioti, Eleftherios Kokoris-Kogias,
and Roger Wattenhofer. “Brick: Asynchronous
State Channels”. In: CoRR abs/1905.11360 (2019).
arXiv: 1905.11360. URL: http://arxiv.org/
abs/1905.11360.

[3] Georgia Avarikioti et al. Towards Secure and Ef-
ficient Payment Channels. 2018. arXiv: 1811 .
12740 [cs.CR].

[4] Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos,
and Roger Wattenhofer. “Cerberus Channels: In-
centivizing Watchtowers for Bitcoin”. In: FC
2020. Ed. by Joseph Bonneau and Nadia Heninger.
Vol. 12059. LNCS. Springer, Heidelberg, Feb.
2020, pp. 346–366. DOI: 10.1007/978-3-030-
51280-4_19.

[5] Michael Backes and Dennis Hofheinz. “How to
Break and Repair a Universally Composable Sig-
nature Functionality”. In: ISC 2004. Ed. by Kan
Zhang and Yuliang Zheng. Vol. 3225. LNCS.
Springer, Heidelberg, Sept. 2004, pp. 61–72.

[6] Dan Boneh, Manu Drijvers, and Gregory
Neven. “Compact Multi-signatures for Smaller
Blockchains”. In: ASIACRYPT 2018, Part II.
Ed. by Thomas Peyrin and Steven Galbraith.
Vol. 11273. LNCS. Springer, Heidelberg, Dec.
2018, pp. 435–464. DOI: 10.1007/978-3-030-
03329-3_15.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham.
“Short Signatures from the Weil Pairing”. In: ASI-
ACRYPT 2001. Ed. by Colin Boyd. Vol. 2248.
LNCS. Springer, Heidelberg, Dec. 2001, pp. 514–
532. DOI: 10.1007/3-540-45682-1_30.

[8] Ran Canetti. “Security and Composition of Mul-
tiparty Cryptographic Protocols”. In: Journal of
Cryptology 13.1 (Jan. 2000), pp. 143–202. DOI:
10.1007/s001459910006.

[9] Ran Canetti et al. “Universally Composable Se-
curity with Global Setup”. In: TCC 2007. Ed. by
Salil P. Vadhan. Vol. 4392. LNCS. Springer, Hei-
delberg, Feb. 2007, pp. 61–85. DOI: 10.1007/
978-3-540-70936-7_4.

[10] Manuel M. T. Chakravarty et al. “Hydra: Fast
Isomorphic State Channels”. In: IACR Cryptol.
ePrint Arch. 2020 (2020), p. 299.

[11] Guoxing Chen et al. “SgxPectre: Stealing Intel
Secrets from SGX Enclaves Via Speculative Exe-
cution”. In: 2019 IEEE European Symposium on
Security and Privacy (EuroS P). 2019, pp. 142–
157. DOI: 10.1109/EuroSP.2019.00020.

[12] Chia Network FAQ. https://www.chia.net/
faq/.

[13] Christian Decker and Rusty Russell. eltoo: A
Simple Layer2 Protocol for Bitcoin. https://
blockstream.com/eltoo.pdf.

[14] Christian Decker and Roger Wattenhofer. “A Fast
and Scalable Payment Network with Bitcoin Du-
plex Micropayment Channels”. In: Stabilization,
Safety, and Security of Distributed Systems - 17th
International Symposium, SSS 2015, Edmonton,
AB, Canada, August 18-21, 2015, Proceedings. Ed.
by Andrzej Pelc and Alexander A. Schwarzmann.
Vol. 9212. Lecture Notes in Computer Science.
Springer, 2015, pp. 3–18. DOI: 10.1007/978-3-
319-21741-3_1. URL: https://doi.org/10.
1007/978-3-319-21741-3_1.

14

https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2020/476
https://arxiv.org/abs/1905.11360
http://arxiv.org/abs/1905.11360
http://arxiv.org/abs/1905.11360
https://arxiv.org/abs/1811.12740
https://arxiv.org/abs/1811.12740
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1109/EuroSP.2019.00020
https://www.chia.net/faq/
https://www.chia.net/faq/
https://blockstream.com/eltoo.pdf
https://blockstream.com/eltoo.pdf
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1

[15] Stefan Dziembowski, Sebastian Faust, and
Kristina Hostáková. “General State Channel
Networks”. In: ACM CCS 2018. Ed. by David Lie
et al. ACM Press, Oct. 2018, pp. 949–966. DOI:
10.1145/3243734.3243856.

[16] Stefan Dziembowski et al. “Perun: Virtual Pay-
ment Hubs over Cryptocurrencies”. In: 2019 IEEE
Symposium on Security and Privacy. IEEE Com-
puter Society Press, May 2019, pp. 106–123. DOI:
10.1109/SP.2019.00020.

[17] Andreas Erwig et al. “Two-Party Adaptor Signa-
tures from Identification Schemes”. In: PKC 2021,
Part I. Ed. by Juan Garay. Vol. 12710. LNCS.
Springer, Heidelberg, May 2021, pp. 451–480.
DOI: 10.1007/978-3-030-75245-3_17.

[18] Rosario Gennaro et al. “Secure Distributed Key
Generation for Discrete-Log Based Cryptosys-
tems”. In: EUROCRYPT’99. Ed. by Jacques Stern.
Vol. 1592. LNCS. Springer, Heidelberg, May
1999, pp. 295–310. DOI: 10 . 1007 / 3 - 540 -
48910-X_21.

[19] Github repository of our Sleepy Channels eval-
uation. https : / / github . com / sleepy -
channels/overhead.

[20] Github repository of our Sleepy Channels sim-
ulation. https : / / github . com / sleepy -
channels/simulation.

[21] Shafi Goldwasser, Silvio Micali, and Ronald L.
Rivest. “A Digital Signature Scheme Secure
Against Adaptive Chosen-message Attacks”. In:
SIAM Journal on Computing 17.2 (Apr. 1988),
pp. 281–308.

[22] Majid Khabbazian, Tejaswi Nadahalli, and Roger
Wattenhofer. “Outpost: A Responsive Lightweight
Watchtower”. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technolo-
gies. AFT ’19. Zurich, Switzerland: Association
for Computing Machinery, 2019, 31–40. ISBN:
9781450367325. DOI: 10 . 1145 / 3318041 .
3355464. URL: https://doi.org/10.1145/
3318041.3355464.

[23] Lightning Network. https : / / lightning .
network/.

[24] Lightning Network specification, BOLT #1: Base
Protocol, ping and pong messages. https : / /
github.com/lightningnetwork/lightning-
rfc/blob/master/01- messaging.md#the-
ping-and-pong-messages.

[25] Joshua Lind et al. “Teechan: Payment Chan-
nels Using Trusted Execution Environments”.
In: CoRR abs/1612.07766 (2016). arXiv: 1612.
07766. URL: http://arxiv.org/abs/1612.
07766.

[26] Yehuda Lindell. “Fast Secure Two-Party ECDSA
Signing”. In: CRYPTO 2017, Part II. Ed. by
Jonathan Katz and Hovav Shacham. Vol. 10402.
LNCS. Springer, Heidelberg, Aug. 2017, pp. 613–
644. DOI: 10.1007/978-3-319-63715-0_21.

[27] Giulio Malavolta et al. “Anonymous Multi-Hop
Locks for Blockchain Scalability and Interoper-
ability”. In: NDSS 2019. The Internet Society, Feb.
2019.

[28] Giulio Malavolta et al. “Concurrency and Privacy
with Payment-Channel Networks”. In: ACM CCS
2017. Ed. by Bhavani M. Thuraisingham et al.
ACM Press, 2017, pp. 455–471. DOI: 10.1145/
3133956.3134096.

[29] Patrick McCorry et al. “Pisa: Arbitration Outsourc-
ing for State Channels”. In: Proceedings of the
1st ACM Conference on Advances in Financial
Technologies. AFT ’19. Zurich, Switzerland: As-
sociation for Computing Machinery, 2019, 16–30.
ISBN: 9781450367325. DOI: 10.1145/3318041.
3355461. URL: https://doi.org/10.1145/
3318041.3355461.

[30] Arash Mirzaei et al. FPPW: A Fair and Privacy
Preserving Watchtower For Bitcoin. Cryptology
ePrint Archive, Report 2021/117. https://ia.
cr/2021/117. 2021.

[31] Pedro Moreno-Sanchez et al. “DLSAG: Non-
interactive Refund Transactions for Interopera-
ble Payment Channels in Monero”. In: Financial
Cryptography and Data Security. Ed. by Joseph
Bonneau and Nadia Heninger. Cham: Springer
International Publishing, 2020, pp. 325–345.

[32] “Personal Communication”. In: (). To Appear at
ACM CCS 2021.

[33] Joseph Poon and Thaddeus Dryja. The bitcoin
lightning network: Scalable off-chain instant pay-
ments. 2016.

[34] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-
lock Puzzles and Timed-release Crypto. Cam-
bridge, MA, USA, 1996.

[35] Rusty Russell. [Lightning-dev] Splicing Proposal.
https : / / lists . linuxfoundation . org /
pipermail/lightning-dev/2018-October/
001434.html. 2018.

15

https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21
https://github.com/sleepy-channels/overhead
https://github.com/sleepy-channels/overhead
https://github.com/sleepy-channels/simulation
https://github.com/sleepy-channels/simulation
https://doi.org/10.1145/3318041.3355464
https://doi.org/10.1145/3318041.3355464
https://doi.org/10.1145/3318041.3355464
https://doi.org/10.1145/3318041.3355464
https://lightning.network/
https://lightning.network/
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#the-ping-and-pong-messages
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#the-ping-and-pong-messages
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#the-ping-and-pong-messages
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#the-ping-and-pong-messages
https://arxiv.org/abs/1612.07766
https://arxiv.org/abs/1612.07766
http://arxiv.org/abs/1612.07766
http://arxiv.org/abs/1612.07766
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1145/3318041.3355461
https://doi.org/10.1145/3318041.3355461
https://doi.org/10.1145/3318041.3355461
https://doi.org/10.1145/3318041.3355461
https://ia.cr/2021/117
https://ia.cr/2021/117
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html

[36] Jeremy Spillman. Spillman-style payment chan-
nels. https://tinyurl.com/uwzfb2tu.

[37] Sri Aravinda Krishnan Thyagarajan et al. PayMo:
Payment Channels For Monero. Cryptology ePrint
Archive, Report 2020/1441. https://eprint.
iacr.org/2020/1441. 2020.

[38] Sri Aravinda Krishnan Thyagarajan et al. “Verifi-
able Timed Signatures Made Practical”. In: ACM
CCS 2020. Ed. by Jay Ligatti et al. ACM Press,
Nov. 2020, pp. 1733–1750. DOI: 10 . 1145 /
3372297.3417263.

[39] Peter Todd. CLTV-style payment channels. https:
//github.com/bitcoin/bips/blob/master/
bip-0065.mediawiki#Payment_Channels.

[40] txF of our evaluation on the Bitcoin testnet.
https://tinyurl.com/589xku8w.

[41] txA
Pay,i of our evaluation on the Bitcoin testnet.

https://tinyurl.com/2w6aebr9.

[42] txA∗
Fpay,i of our evaluation on the Bitcoin testnet.

https://tinyurl.com/bskz7fvx.

[43] txA,B
Fpay,i of our evaluation on the Bitcoin testnet.

https://tinyurl.com/2uwn5fvb.

[44] Unlinkable Outsourced Channel Monitoring.
https : / / diyhpl . us / wiki / transcripts /
scalingbitcoin / milan / unlinkable -
outsourced-channel-monitoring/.

[45] Jo Van Bulck et al. “A Tale of Two Worlds: As-
sessing the Vulnerability of Enclave Shielding
Runtimes”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Commu-
nications Security. CCS ’19. London, United
Kingdom: Association for Computing Machinery,
2019, 1741–1758. ISBN: 9781450367479. DOI:
10.1145/3319535.3363206. URL: https://
doi.org/10.1145/3319535.3363206.

A UC Protocol

Using the notation introduced in Section 4, we here give
a formal version of the protocol that is augmented in
a way to model it in the UC framework. More specif-
ically, we model the environment to capture anything
that happens outside of the protocol execution as well as
communication model. Additionally, we replace (i) the
2-party key generation protocol ΓJKGen for a signature
scheme ΠDS with an idealized version FJKGen and (ii)
the 2-party signing protocol ΓSign for a signature scheme
with an idealized version FSign. Finally, we add the pos-
sibility to honestly close payment channels in a way that

requires only one on-chain transaction, i.e., by creating
a transaction spending from the funding transaction and
giving each user their respective balance right away.

In order to improve the readability of the protocol, we
exclude checks that an honest user would naturally per-
form, such as that parameters given from the environment
are well-formed, there is an input of the fund belonging
to each of the two users holding the right amount of coins,
verifying that channels to be updated or closed exist, the
new state is valid or that a channel to be updated or closed
is not currently being updated or closed. This can be for-
mally handled by using a protocol wrapper, that performs
these checks on the messages from the environment and
drops invalid ones. We refer to [1], where such a wrapper
for payment channels is formally defined and use the
same in this work. Similarly, for the ideal functionality
we use such a wrapper as well.

Sleepy channel protocol Π

Create
Party A upon (CREATE, id,γ, tidA)

t0←−↩ E :
1. Generate

(
pkCPay,A,skCPay,A

)
,(pkpun,A,skpun,A),

(pkfp,A,skfp,A) and (pkffp,A,skffp,A). Let pkeyA
set be the set

of public keys of these key pairs.
2. Extract vA,0 and vB,0 from γ.st, and c := γ.c

3. Send (createInfo, id, tidA,pkeyA
set)

t0
↪−→ B.

4. If (createInfo, id, tidB,pkeyB
set)

t0+1
←−−↩ B, continue. Else, go

idle.
5. Using pkeyA

set and pkeyB
set, A together with B runs

FJKGen to generate the following set of shared
addresses: addrset := {ChAB,SleepyChA,SleepyChB,
ExitChA,ExitChB,auxA,auxB} which takes tg rounds. In
case of failure, abort.

6. Generate tx f := tx([tidA, tidB], [ChAB], [2 ·c+vA,0 +vB,0])
7. Let txset0 ← GenerateTxs(addrset,pkeyA

set,pkeyB
set,c,

vAi ,vBi)
8. Let sigset

A
0 ← SignTxsA(txset0,addrset,pkeyA

set ∪pkeyB
set)

9. A generates a signature σtidA for the output tidA and sends

(createFund, id,σtidA)
t0+1+tg+ts
↪−−−−−−→ A.

10. If (createFund, id,σtidB)
t0+2+tg+ts
←−−−−−−↩ B, post

(txF ,{σtidA ,σtidB}) to B.
11. If txF is accepted by B in round t1 ≤ t0 + 2 + tg +

ts+∆, store ΓA(id) := (txF , txset0,sigset
A
0 ,addrset,pkeyA

set,

pkeyB
set) and (CREATED, id)

t1
↪−→ E .

Update

Party A upon (UPDATE, id,
−→
θ , tstp)

t0←−↩ E

1. (updateReq, id,
−→
θ , tstp)

t0
↪−→ B

16

https://tinyurl.com/uwzfb2tu
https://eprint.iacr.org/2020/1441
https://eprint.iacr.org/2020/1441
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://tinyurl.com/589xku8w
https://tinyurl.com/2w6aebr9
https://tinyurl.com/bskz7fvx
https://tinyurl.com/2uwn5fvb
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3319535.3363206

Party B upon (updateReq, id,
−→
θ , tstp)

τ0←−↩ A

1. Retrieve (txF , txseti−1,sigset
B
i−1,addrset,pkeyA

set,pkeyB
set)

= ΓB(id)

2. Extract vA,i and vB,i from
−→
θ , and c from txF

3. Let txseti ← GenerateTxs(addrset,pkeyA
set,pkeyB

set,
c,vAi ,vBi)

4. Let
−→
tid := (txA

Pay,i.id, tx
B
Pay,i.id) be a tuple of the transac-

tion ids of transaction txA
Pay,i and txB

Pay,i.

5. (UPDATE–REQ, id,
−→
θ , tstp,

−→
tid)

τ0
↪−→ E

6. (updateInfo, id)
τ0
↪−→ A

Party A upon (updateInfo, id)
t0+2
←−−↩ B

1. Retrieve (txF , txseti−1,sigset
A
i−1,addrset,pkeyA

set,pkeyB
set)

= ΓA(id)

2. Extract vA,i and vB,i from
−→
θ , and c from txF

3. Let txseti ← GenerateTxs(addrset,pkeyA
set,pkeyB

set,
c,vAi ,vBi)

4. Let
−→
tid := (txA

Pay,i.id, tx
B
Pay,i.id) be a tuple of the transac-

tion ids of transaction txA
Pay,i and txB

Pay,i.

5. (SETUP, id,
−→
tid)

t0+2
↪−−→ E

6. If (SETUP–OK, id)
t1≤t0+2+tstp←−−−−−−−↩ E , send (updateCom, id)

t1
↪−→ B

7. Wait one round.
8. SignTxsA(txseti,addrset,pkeyA

set ∪pkeyB
set)

Party B upon (updateCom, id)
τ1≤τ0+2+tstp←−−−−−−−−↩ A

9. (SETUP–OK, id)
τ1
↪−→ E

10. If not (UPDATE–OK, id)
τ1←−↩ E , go idle.

11. SignTxsA(txseti,addrset,pkeyA
set ∪pkeyB

set)

Party A in round t1 +1+ ts

12. If sigset
A
i is returned from SignTxsA, (UPDATE–OK, id)

t1+1+ts
↪−−−−→ E . Else, execute ForceClose(id) and go idle.

13. If not (REVOKE, id)
t1+1+ts←−−−−↩ E , go idle.

14. A together with B runs the interactive protocol FSign to
generate the following signature. σA

Pnsh,i on the punish-
ment transaction txA

Pnsh,i.Party A receives σA
Pnsh,i as output

after tr. In case of failure, execute ForceClose(id).

15. (revoke, id,σA
Pnsh,i)

t1+1+ts+tr
↪−−−−−−→ B

Party B in round τ1 + ts

16. If sigset
B
i is not returned from SignTxsA, execute

ForceClose(id) and go idle.
17. Participate in the signing of txA

Pnsh,i.

18. Upon (revoke, id,σA
Pnsh,i)

τ1+1+ts+tr←−−−−−−↩ A, continue. Else,
execute ForceClose(id) and go idle.

19. (REVOKE–REQ, id)
τ1+1+ts+tr
↪−−−−−−→ E

20. If not (REVOKE, id)
τ1+1+ts+tr←−−−−−−↩ E , go idle.

21. B together with A runs the interactive protocol FSign to
generate the following signature. σB

Pnsh,i on the punish-
ment transaction txB

Pnsh,i. Party B receives σB
Pnsh,i as out-

put after tr. In case of failure, execute ForceClose(id).

22. (revoke, id,σB
Pnsh,i)

τ1+1+ts+2tr
↪−−−−−−−→ A

23. ΘB(id) := ΘB∪
{
(txseti−1,sigset

B
i−1,σ

B
Pnsh,i−1)

}
24. ΓB(id) := (txF , txseti,sigset

B
i ,addrset,pkeyA

set,pkeyB
set)

25. (UPDATED, id)
τ1+2+ts+2tr
↪−−−−−−−→ E

Party A in round t1 +2+ ts + tr

26. Participate in the signing of txB
Pnsh,i.

27. If (revoke, id,σB
Pnsh,i)

t1+3+ts+2tr←−−−−−−−↩ B and the signature is
valid, go to next step. Else, execute ForceClose(id).

28. ΘA(id) := ΘA∪
{
(txseti−1,sigset

A
i−1,σ

B
Pnsh,i−1)

}
29. ΓA(id) := (txF , txseti,sigset

A
i ,addrset,pkeyA

set,pkeyB
set)

30. (UPDATED, id)
t1+3+ts+2tr
↪−−−−−−−→ E

Close

Party A upon (CLOSE, id)
t0←−↩ E

1. Extract (txF , txseti,sigset
A
i ,addrset,pkeyA

set,pkeyB
set) from

ΓA(id).

2. Extract vA,i and vB,i from txA
Pay, j ∈ txseti, and c from txF

3. Create transaction txc :=
tx(ChAB,{pkA,pkB},

{
vA,i + c,vB,i + c

}
), where pkA

is an address controlled by A and pkB an address
controlled by B.

4. A together with B runs the interactive protocol FSign to
generate the following signature, σtxc on the transaction
txc. This takes tr rounds.

5. In case the signature generation was successful, post
(txc,σtxc) on B. Else, execute ForceClose(id).

6. If txc appears on B in round t1 ≤ t0 + tr +∆, set ΘA(id) :=

⊥, ΓA(id) :=⊥ and send (CLOSED, id)
t2
↪−→ E .

Punish

Party A upon PUNISH
t0←−↩ E :

For each id ∈ {0,1}∗ s.t. ΘP(id) 6=⊥:

17

1. Iterate over all elements (txseti,sigset
A
i ,σ

B
Pnsh,i) in ΘP(id)

2. If the revoked payment txB
Pay,i ∈ txseti is on B, post(

txB
Pnsh,i,σ

B
Pnsh,i

)
on B before the absolute timeout T.

3. Let txB
Pnsh,i be accepted by B in round t1 ≤ t0 +∆. Post

(txB,A
Fpay,i,σtxB,A

Fpay,i
∈ sigset

A
i)

4. After txB,A
Fpay,i is accepted by B in round t2 ≤ t1 +∆, set

ΘA(id) :=⊥, ΓA(id) :=⊥ and output (PUNISHED, id)
t1
↪−→

E .

Subprotocols

ForceClose(id):
Let t0 be the current round

1. Extract (txF , txset0,sigset
A
0 ,addrset,pkeyA

set,pkeyB
set) from

ΓA(id) and extract txA
Pay, j from txset and σA

Pay, j and sigset.

2. Party A posts
(

txA
Pay, j,σ

A
Pay, j

)
on B

3. Let t1 ≤ t0 +∆ be the round in which txA
Pay, j is accepted

by B.

4. If txA,B
Fpay,i appears on B at or after round t2 ≤ t1 +∆ and

before T, post
(

txA
Pay, j,σ

A
Pay, j

)
and send (CLOSED, id)

t3≤t2+∆
↪−−−−−→ E . Otherwise, post

(
txA,A

Fpay,i,σ
A,A
Fpay,i

)
after T and

send (CLOSED, id)
t4≤T+∆
↪−−−−−→ E .

5. Set ΓP(id) :=⊥, ΘP(id) :=⊥.

GenerateTxs(addrset,pkeyA
set,pkeyB

set,c,vAi ,vBi):

1. Using the addresses in addrset and the public keys in
pkeyA

set and pkeyB
set, do the following.

2. Generate txA
Pay,i := tx(ChAB, [pkCPay,A,SleepyChA,

ExitChB], [c,vA,i,vB,i + c])

3. Generate txB
Pay,i := tx(ChAB, [pkCPay,B,SleepyChB,

ExitChA], [c,vB,i,vA,i + c])

4. Generate punishment transactions txA
Pnsh,i :=

tx(SleepyChA,pkpun,B,vA,i) and txB
Pnsh,i :=

tx(SleepyChB,pkpun,A,vB,i)

5. Generate finish-pay transactions txA,A
Fpay,i :=

tx(SleepyChA,pkfp,A,vA,i) and txB,B
Fpay,i :=

tx(SleepyChB,pkfp,B,vB,i) both timelocked until
time T.

6. Generate a set of faster finish-pay transactions txA,B
Fpay,i :=

tx(ExitChA, [pkffp,B,auxA], [vB,i+c−ε,ε]) and txB,A
Fpay,i :=

tx(ExitChB, [pkffp,A,auxB], [vA,i + c− ε,ε]).

7. Generate a set of enabler transactions txA∗
Fpay,i :=

tx([SleepyChA,auxA],pkfp,A,vA,i + ε) and txB∗
Fpay,i :=

tx([SleepyChB,auxB],pkfp,B,vB,i + ε) that enable a faster
finish-payment.

8. Return txset := {txA
Pay,i, tx

B
Pay,i, txA

Pay,i, tx
A
Pnsh,i, tx

B
Pnsh,i,

txA,A
Fpay,i, tx

B,B
Fpay,i, tx

A,B
Fpay,i, tx

B,A
Fpay,i, tx

A∗
Fpay,i, tx

B∗
Fpay,i}

SignTxsA(txset,addrset,pkeyA
set ∪pkeyB

set):
Party A (specified by the superscript of the function) is the
one that receives the signatures first.
Upon agreement, i.e., A and B start executing this subprotocol
in the same round with the same parameters, the following is
executed. Extracting the transactions, addresses and public
keys from the parameters, Party A together with B runs FSign

to sign the transactions as follows.

1. Party A receives signature σ
A,A
Fpay,i on transaction txA,A

Fpay,i
under the shared key SleepyChA.

2. Party B receives signature σ
B,B
Fpay,i on transaction txB,B

Fpay,i
under the shared key SleepyChB.

3. Party A receives signatures
(
σSleepyCh,A,σaux,A

)
on

the transaction txA∗
Fpay,i with respect to the shared keys

SleepyChA and auxA, respectively.

4. Party B receives signatures
(
σSleepyCh,B,σaux,B

)
on

the transaction txB∗
Fpay,i with respect to the shared keys

SleepyChB and auxB, respectively.

5. Party A receives signature σ
A,B
Fpay,i on the transaction

txA,B
Fpay,i under the shared key ExitChB.

6. Party B receives signature σ
B,A
Fpay,i on the transaction

txB,A
Fpay,i under the shared key ExitChA.

7. Party A receives signature σA
Pay,i on the transaction

txA
Pay,i under the shared key ChAB.

8. Party B receives signature σB
Pay,i on the transaction

txB
Pay,i under the shared key ChAB.

This takes ts rounds and in case of failure (i.e., a
signatures is not received or not valid for the spec-
ified transaction and output), execute the steps in
Close. In case of success, returns to A sigset

A
i :={

σ
A,A
Fpay,i,

(
σSleepyCh,A,σaux,A

)
,σ

B,A
Fpay,i,σ

A
Pay,i

}
and to

B sigset
B
i :=

{
σ

B,B
Fpay,i,

(
σSleepyCh,B,σaux,B

)
,σ

A,B
Fpay,i,σ

B
Pay,i

}

Indistinguishability: What is left at this point is to
show that the UC version of the protocol is computation-
ally indistinguishable from the one described in Section 5.

18

More specifically, in the UC version of the protocol we
substituted (i) the 2-party key generation protocol ΓJKGen

for a signature scheme ΠDS with an idealized version
FJKGen and (ii) the 2-party signing protocol ΓSign for a
signature scheme ΠDS with an idealized version FSign.
For the UC formulations we refer the reader to [5, 8]. Let
Π′′ be the protocol we presented in Section 5.

Π′: We define Π′ as Π′′ except that the (UC-secure)
2-party key generation protocol ΓJKGen for a signature
scheme ΠDS is replaced by an idealized version FJKGen.
Such ideal functionality samples a key pair honestly and
simulates the shares of the corrupted party.

Π′′ ≈ Π′: Towards a contradiction, we assume that
there exists an adversary A that can computationally dis-
tinguish between Π′ and Π′′. We can construct a reduc-
tion algorithm R that uses A as a subprocedure. Since
the two protocols only differ in ΓJKGen being replaced by
FJKGen,R using A can be used to distinguish a keyshare
of ΓJKGen from the data received in FJKGen, which in turn
would break the security of our 2-party key generation
protocol with non-negligible probability.

Π: We define Π as Π′ except that the (UC-secure)
2-party signing protocol ΓSign for a signature scheme
ΠDS is replaced with an idealized version FSign, which
signs messages locally and simulates the interaction of
corrupted parties. Note that this corresponds to the UC
version of the protocol.

Π′ ≈ Π: Towards a contradiction, we assume that
there exists an adversary A that can computationally
distinguish between Π and Π′. Since the two protocols
only differ in ΓSign being replaced by FSign, this means
that A is able to distinguish a real interaction from a
simulated one with non-negligible probability. This is a
contradiction against the UC-security of ΓSign.

A.1 UC Simulator

In this section we give the pseudocode of a simulator for
the formal Sleepy Channel protocol Π of Appendix A
in the ideal world. Our simulator interacts with F and
B. The subprotocol SignTxsP refers to the one given in
the formal protocol description. Normally, the challenge
of providing a UC-simulation proof is that the simula-
tor is not given the secret inputs of parties sent by the
environment. Instead, the functionality usually specifies
exactly what is leaked to the simulator, and the simulator
has to generate a simulated transcript merely from this
leaked information. The simulated transcript has to be
indistinguishable from the transcript that is the result of
the real world protocol execution.

Note that in our model, all messages to the function-
ality are implicitly forwarded to the simulator, i.e., there
are no secret inputs. Hence, we can omit the simulation
of the case where both protocol participants are honest;
the simulator in this case would merely need to recreate
the side-effect of the protocol code, which can be easily
achieved with access to all the messages sent to the func-
tionality. Indeed, the main challenge in our setting is to
handle any behavior of malicious parties.

Simulator for Create

Case A is honest and B is corrupted

Upon A sending (CREATE,γ, tidA)
τ0
↪−→F , if B does not send

(CREATE,γ, tidB)
τ
↪−→ F where |τ0− τ| ≤ T1, then distinguish

the following cases:

1. If B sends (createInfo, id, tidB,pkeyB
set)

τ0
↪−→ A, then send

(CREATE,γ, tidB)
τ0
↪−→ F on behalf of B.

2. Otherwise stop.

Do the following:

1. Set id := γ.id, generate(
pkCPay,A,skCPay,A

)
,(pkpun,A,skpun,A), (pkfp,A,skfp,A)

and (pkffp,A,skffp,A). Let pkeyA
set be the set of public keys

of these key pairs. Send (createInfo, id, tidA,pkeyA
set)

τ0
↪−→

B.

2. If you receive (createInfo, id, tidB,pkeyB
set)

τ0+1
←−−−↩ B, do the

following. Else go idle.

3. Using pkeyA
set and pkeyB

set, the simulator on behalf
of A together with B runs FJKGen to generate the
following set of shared addresses: addrset := {ChAB,
SleepyChA,SleepyChB,ExitChA,ExitChB,auxA,auxB}
which takes tg rounds. In case of failure, abort.

4. Generate tx f := tx([tidA, tidB], [ChAB], [2 ·c+vA,0 +vB,0])

5. Let txset0 ← GenerateTxs(addrset,pkeyA
set,pkeyB

set,c,
vAi ,vBi)

6. Let sigset
A
0 ← SignTxsA(txset0,addrset,pkeyA

set ∪pkeyB
set)

7. Generates a signature on behalf of A, σtidA , for the output

tidA and send (createFund, id,σtidA)
t0+1+tg+ts
↪−−−−−−→ A.

8. If you (createFund, id,σtidB)
τ0+2+tg+ts
←−−−−−−−↩ B, post

(txF ,{σtidA ,σtidB}) to B.

9. If txF is accepted by B in round τ1 ≤ τ0 + 2 + tg +
ts+∆, store ΓA(id) := (txF , txset0,sigset

A
0 ,addrset,pkeyA

set,
pkeyB

set).

Simulator for Update

Case A is honest and B is corrupted

Upon A sending (UPDATE, id,
−→
θ , tstp)

τ0
↪−→ F , proceed as

19

follows:

1. (updateReq, id,
−→
θ , tstp)

t0
↪−→ B

2. Upon (updateInfo, id)
t0+2
←−−↩ B, do the following

3. Retrieve (txF , txseti−1,sigset
A
i−1,addrset,pkeyA

set,pkeyB
set)

= ΓA(id)

4. Extract vA,i and vB,i from
−→
θ , and c from txF

5. Let txseti ← GenerateTxs(addrset,pkeyA
set,pkeyB

set,
c,vAi ,vBi)

6. Let
−→
tid := (txA

Pay,i.id, tx
B
Pay,i.id) be a tuple of the transac-

tion ids of transaction txA
Pay,i and txB

Pay,i. Inform F of
−→
tid

in round t0 +2.

7. If A sends (SETUP–OK, id)
t1≤t0+2+tstp
↪−−−−−−−→ F , send

(updateCom, id)
t1
↪−→ B

8. Wait one round.

9. If in round t1 + 1, B starts executing
SignTxsA(txseti,addrset,pkeyA

set ∪ pkeyB
set), send

(UPDATE–OK, id)
t1+1
↪−−→ F on behalf of B

10. SignTxsA(txseti,addrset,pkeyA
set ∪pkeyB

set)

11. If sigset
A
i is returned from SignTxsA, instruct F

to (UPDATE–OK, id)
t1+1+ts
↪−−−−→ E via A. Else, execute

ForceCloseA(id) and go idle.

12. If A does not send (REVOKE, id)
t1+1+ts
↪−−−−→ F , go idle.

13. The simulator on behalf of A together with B runs the
interactive protocol FSign to generate the following signa-
ture. σA

Pnsh,i on the punishment transaction txA
Pnsh,i. Party

A receives σA
Pnsh,i as output. This takes tr rounds. In case

of failure, execute ForceCloseA(id).

14. (revoke, id,σA
Pnsh,i)

t1+1+ts+tr
↪−−−−−−→ B

15. If B starts FSign to sign txB
Pnsh,i in round t1 + 2+ ts + tr,

send (REVOKE, id)
t1+2+ts+tr
↪−−−−−−→F on behalf of B and partic-

ipate in the signing on behalf of A.

16. If (revoke, id,σB
Pnsh,i)

t1+3+ts+2tr←−−−−−−−↩ B and the signature is
valid, go to next step. Else, execute ForceCloseA(id).

17. ΘA(id) := ΘA∪
{
(txseti−1,sigset

A
i−1,σ

B
Pnsh,i−1)

}
18. ΓA(id) := (txF , txseti,sigset

A
i ,addrset,pkeyA

set,pkeyB
set)

Case B is honest and A is corrupted

Upon A sending (updateReq, id,
−→
θ , tstp)

t0
↪−→ B, send

(UPDATE, id,
−→
θ , tstp)

t0
↪−→F on behalf of A, if A has not already

sent this message. Proceed as follows:

1. Upon (updateReq, id,
−→
θ , tstp)

τ0←−↩ A, do the following

2. Retrieve (txF , txseti−1,sigset
B
i−1,addrset,pkeyA

set,pkeyB
set)

= ΓB(id)

3. Extract vA,i and vB,i from
−→
θ , and c from txF

4. Let txseti ← GenerateTxs(addrset,pkeyA
set,pkeyB

set,
c,vAi ,vBi)

5. Let
−→
tid := (txA

Pay,i.id, tx
B
Pay,i.id) be a tuple of the transac-

tion ids of transaction txA
Pay,i and txB

Pay,i. Inform F of
−→
tid.

6. (updateInfo, id)
τ0
↪−→ A

7. Upon A sending (updateCom, id)
τ0+1+tstp
↪−−−−−→ B, send

(SETUP–OK, id)
τ1
↪−→ F on behalf of A.

8. Receive (updateCom, id)
τ1≤τ0+2+tstp←−−−−−−−−↩ A

9. If B sends (UPDATE–OK, id)
τ1
↪−→ F ,

SignTxsA(txseti,addrset,pkeyA
set ∪pkeyB

set)

10. If sigset
B
i is not returned from SignTxsA in round τ1 + ts,

execute ForceCloseB(id) and go idle.

11. If A starts the FSign in round τ1 + ts to generate σA
Pnsh,i,

send (REVOKE, id)
τ1+ts
↪−−−→ F on behalf of A. Participate in

the signing on behalf of B.

12. Upon (revoke, id,σA
Pnsh,i)

τ1+1+ts+tr←−−−−−−↩ A, continue. Else,
execute ForceCloseB(id) and go idle.

13. If B does not send (REVOKE, id)
τ1+1+ts+tr
↪−−−−−−→ F , go idle.

14. S on behalf of B together with A runs the interactive pro-
tocol FSign to generate the following signature. σB

Pnsh,i
on the punishment transaction txB

Pnsh,i. Party B receives
σB

Pnsh,i as output after tr. In case of failure, execute
ForceCloseB(id).

15. (revoke, id,σB
Pnsh,i)

τ1+1+ts+2tr
↪−−−−−−−→ A

16. ΘB(id) := ΘB∪
{
(txseti−1,sigset

B
i−1,σ

B
Pnsh,i−1)

}
17. ΓB(id) := (txF , txseti,sigset

B
i ,addrset,pkeyA

set,pkeyB
set)

Simulator for Close

Case A is honest and B is corrupted

Upon A sending (CLOSE, id)
t0
↪−→ F , do the following.

1. Extract (txF , txseti,sigset
A
i ,addrset,pkeyA

set,pkeyB
set) from

ΓA(id).

2. Extract vA,i and vB,i from txA
Pay, j ∈ txseti, and c from txF

3. Create transaction txc :=
tx(ChAB,{pkA,pkB},

{
vA,i + c,vB,i + c

}
), where pkA

is an address controlled by A and pkB an address
controlled by B.

4. The simulator on behalf of A together with B runs the inter-

20

active protocol FSign to generate the following signature,
σtxc on the transaction txc. This takes tr rounds.

5. In case the signature generation was successful, post

(txc,σtxc) on B and send (CLOSE, id)
t0+tr
↪−−−→F on behalf of

B. Else, execute ForceCloseA(id).

6. If txc appears on B in round t1 ≤ t0 + tr +∆, set ΘA(id) :=
⊥, ΓA(id) :=⊥.

Simulator for Punish

Case A is honest and B is corrupted

Upon A sending PUNISH
τ0
↪−→F , for each id ∈ {0,1}∗ such

that ΘA(id) 6=⊥ do the following:

1. Parse {(txseti,sigset
A
i ,σ

B
Pnsh,i)}i∈m := ΘA(id) and extract

γ from ΓA(id). If for some i ∈ m, there exist a transaction
txB

Pay,i ∈ txseti on B do the following.

2. Post
(

txB
Pnsh,i,σ

B
Pnsh,i

)
on B before the absolute timeout

T.

3. Let txB
Pnsh,i be accepted by B in round t1 ≤ t0 +∆. Post

(txB,A
Fpay,i,σtxB,A

Fpay,i
∈ sigset

A
i)

4. After txB,A
Fpay,i is accepted by B in round t2 ≤ t1 +∆, set

ΘA(id) :=⊥, ΓA(id) :=⊥.

Simulator for ForceCloseP(id)

Let τ0 be the current round

1. Extract (txF , txset0,sigset
A
0 ,addrset,pkeyA

set,pkeyB
set) from

ΓA(id) and extract txA
Pay, j from txset and σA

Pay, j and sigset.

2. Post
(

txA
Pay, j,σ

A
Pay, j

)
on B

3. Let t2 ≤ t1 +∆ be the round in which txA
Pay, j is accepted

by B.

4. If txA,B
Fpay,i appears on B at or after round t3 ≤ t2 + ∆

and before T, post
(

txA
Pay, j,σ

A
Pay, j

)
. Otherwise, post(

txA,A
Fpay,i,σ

A,A
Fpay,i

)
after T. Set ΓP(id) :=⊥, ΘP(id) :=⊥.

A.2 Simulation proof
To proof that the protocol is a (G)UC-realization of the
functionality F , we show that the execution ensembles
EXECΠ,A,E and EXECF ,S,E are computationally indis-
tinguishable. I.e., for the simulator S presented in Ap-
pendix A.1, for every environment the interaction with
S and F is computationally indistinguishable from the
interaction with A and Π. We show this for the differ-
ent phases Create, Update, Close, Punish as well as the
subprotocol ForceClose.

For readability we define m[τ] to capture the fact that
a message m is observed by the environment in round τ.
Note that messages sent to parties in the protocol that are
under adversarial control observe the message after one
round. Additionally, we interact with other functionali-
ties, e.g., for signing and the ledger. To capture any side
effect observable by the environment including messages
sent parties who are potentially controlled by the adver-
sary or changing public variables such as the ledger, we
do the following. We denote obsSet(action,τ) as the set
of all observable side effects triggered by action action
in round τ. Finally, we refer to a message by the message
identifier, e.g., CREATE or createInfo. We note that other
message parameters are omitted. Instead, we refer to rel-
evant parts in the ideal world and the real world, where
one can verify that indeed the same objects are created,
checks are performed, etc.

We require a SUF-CMA secure signature scheme Σ

and a ledger B(∆,Σ,V) where V allows for transaction
authorization under Σ and absolute time-locks.6 The for-
mer property is needed to ensure that the environment
and malicious party cannot generate signatures on behalf
of honest parties with non-negligible probability. Instead,
only the simulator can generate signatures on behalf of
honest parties. Further, we require a ledger that supports
transaction authorization under Σ and absolute time-locks
for encoding our construction.

Lemma 2. The Create phase of Π UC-realizes the Cre-
ate phase of F .

Proof. We consider the case where A is honest and B is
corrupted. Note that the reverse case is symmetric.

Real World: After receiving CREATE in round
t0, A sends createInfo to B in t0. If A receives also
createInfo in t0 + 1, A will perform first the action
a0 := “run address generation” in round t0 + 1 and on
success, create the transactions for the channel followed
by a1 := “create signatures” in round t0 +1+ tg. If this
is successful, A generates the signature for the fund-
ing tx txF and sends the signature via createFund to
B in t0 + 1 + tg + ts. If A receives also createFund
from B in round t0 + 2+ tg + ts, it will perform action
a2 := “Post funding tx on B”. If it is accepted in round
t1 ≤ t0 + 2+ tg + ts +∆, finally A will output CREATED.
Thus, the execution ensemble is EXECcreate

Π,A,E :=
{createFund[t0 + 1],obsSet(a0, t0 + 1),obsSet(a1, t0 +
1 + tg),createFund[t0 + 2 + tg + ts],obsSet(a2, t0 + 2 +
tg + ts),CREATED[t1]}.

6The necessity for time-locks can be dropped when using verifiable
timed signatures (VTS) as discussed in Section 5.1.3, although we do
not provide a formal analysis for such variant here.

21

Ideal World: After A sending CREATE in round t0
to F , the simulator sends createInfo to B. If B sends
createInfo to A, the simulator informs F and performs
a0 in round t0 +1. Upon success, S creates the transac-
tions for the channel and performs a1 in round t0 +1+ tg.
If this was successful, the simulator on behalf of A
generates the signature of txF and sends createFund
to B in t0 + 1 + tg + ts. If B sends also createFund
to A, received in t0 + 2 + tg + ts + ∆, perform a2 in
t0 +2+ tg + ts +∆. If the funding tx is accepted in round
t1≤ t0+2+tg+ts+∆,F (which expects it after being in-
formed by S) outputs CREATED in round t1 ≤ t0+2+tg+
ts +∆. Thus, the execution ensemble is EXECcreate

F ,S,E :=
{createFund[t0 + 1],obsSet(a0, t0 + 1),obsSet(a1, t0 +
1 + tg),createFund[t0 + 2 + tg + ts],obsSet(a2, t0 + 2 +
tg + ts),CREATED[t1]}

Lemma 3. The ForceClose subprotocol of Π UC-
realizes the ForceClose subprocedure of F .

Proof. We consider the case where A is honest and B is
corrupted. Note that the reverse case is symmetric.

Real World: Taking the latest state, a performs ac-
tion a0 := “post

(
txA

Pay, j,σ
A
Pay, j

)
on B” in round t0. Af-

ter the transaction appears on B in round t1 ≤ t0 +∆, do
the following depending on B. Either (i) the transaction
txA,B

Fpay,i appears on B in round t2 ≤ t1 +∆ and before T.

In this case, A posts
(

txA
Pay, j,σ

A
Pay, j

)
, which we denote

as action a1, followed by sending CLOSED in round tm :=
t3leqt2 +∆. Otherwise, (ii) A posts

(
txA,A

Fpay,i,σ
A,A
Fpay,i

)
af-

ter T, which we denote as action a2, followed by send-
ing CLOSED in round tm := t4 ≤ T+∆. Thus, the exe-
cution ensemble is EXECforceclose

Π,A,E := {obsSet(a0, t0),o∈
{obsSet(a1, t2),obsSet(a2,T)},CLOSED[tm]}.

Ideal World: Taking the latest state, the simulator
will mirror the behavior of the real world. In round
t0, it will performs action a0. After the transaction ap-
pears on B in round t1 ≤ t0 +∆, do the following de-
pending on B. Either (i) the transaction txA,B

Fpay,i ap-
pears on B in round t2 ≤ t1 +∆ and before T. In this
case, the simulator posts

(
txA

Pay, j,σ
A
Pay, j

)
, which we de-

note as action a1. Otherwise, (ii) the simulator posts(
txA,A

Fpay,i,σ
A,A
Fpay,i

)
after T, which we denote as action

a2.Meanwhile, the functionality F expects that either
of these transactions appears on B. If this happens, ei-
ther in round tm := t3 ≤ t2 +∆ in case (i) or in round
tm := t4 ≤ T+∆, it outputs CLOSED. Thus, the execu-
tion ensemble is EXECforceclose

F ,S,E := {obsSet(a0, t0),o ∈
{obsSet(a1, t2),obsSet(a2,T)},CLOSED[tm]}.

Lemma 4. The Update phase of Π UC-realizes the Up-
date phase of F .

Proof. We start by considering the case where A is hon-
est and B is corrupted.

Real World: A upon UPDATE in round t0 does the fol-
lowing. The update phase consists of the following steps:
Informing B, generating the transactions for the new state,
signing these transactions, signing the revocation for B
and signing the revocation for A. We capture the steps
visible to the E below, together with their dependencies.
The execution ensemble EXECupdate

Π,A,E follows as a list for
better readability.

• updateReq to B in round t0
• SETUP to E in t0 + 2 (if received updateInfo from

B)

• updateCom to B in round t1 ≤ t0 + 2 + tstp(if re-
ceived SETUP–OK from E)

• SignTxs in t1 +1

• UPDATE–OK to E in round t1 +1+ ts (if signing suc-
cessful)

• sign revocation of B with B in round t1 +1+ ts (if
REVOKE from E)

• revoke to B in round t1 +1+ ts + tr (if signing suc-
cessful)

• sign revocation of A with B in round t1 +2+ ts + tr
• UPDATED to E in round t1 +3+ ts +2tr (if signature

for revocation received from B)

Ideal World: Upon A sending UPDATE in round t0 to
F , S simulates the protocol view to E . The same steps of
the update phase have to be conducted: Informing B, gen-
erating the transactions for the new state, signing these
transactions, signing the revocation for B and signing the
revocation for A. We capture the steps visible to the E
below, together with their dependencies and if they are
executed by S orF . The execution ensemble EXECupdate

F ,S,E
follows as a list for better readability.

• updateReq to B in round t0 (S)

• SETUP to E in t0+2 (if received updateInfo from B)
(F)

• updateCom to B in round t1 ≤ t0 + 2+ tstp (if re-
ceived SETUP–OK from E) (S)

• SignTxs in t1 +1 (S)

• UPDATE–OK to E in round t1 +1+ ts (if signing suc-
cessful) (F after instructed by S)

22

• sign revocation of B with B in round t1 +1+ ts (if
REVOKE from E) (S)

• revoke to B in round t1 +1+ ts + tr (if signing suc-
cessful) (S

• sign revocation of A with B in round t1 +2+ ts + tr
(S)

• UPDATED to E in round t1 +3+ ts +2tr (if signature
for revocation received from B) (F)

Now we consider the case where B is honest and A is
corrupted.

Real World: A upon UPDATE in round t0 does the
following. The update phase consists of the following
steps: Generating the transactions for the new state, sign-
ing these transactions, signing the revocation for A and
signing the revoaction for B. Similar to the previous case,
we capture the steps visible to the E below, together with
their dependencies. The execution ensemble EXECupdate

Π,A,E
follows as a list for better readability.

• UPDATE–REQ to E in round τ0 (if received
updateReq from A)

• updateInfo to A in round τ0

• SETUP–OK to E in round τ1 ≤ τ0 + 2+ tstp (if re-
ceived updateCom from A)

• SignTxs in τ1

• sign revocation of B with A in round τ1 + ts (if pre-
vious signing was successful)

• REVOKE–REQ to E in round τ1 +1+ ts (after receiv-
ing revoke from A in that round)

• sign revocation of A with A in round τ1 +1+ ts + tr
• revoke to A in round τ1 +1+ ts +2tr (in case revo-

cation was signed successfully)

• UPDATED to E in round τ1 +2+ ts +2tr

Ideal World: Upon A sending UPDATE in round t0 to
F , S simulates the protocol view to E . The same steps of
the update phase have to be conducted: Generating the
transactions for the new state, signing these transactions,
signing the revocation for B and signing the revocation
for A. We capture the steps visible to the E below, to-
gether with their dependencies and if they are executed
by S or F . The execution ensemble EXECupdate

F ,S,E follows
as a list for better readability.

• UPDATE–REQ to E in round τ0 (if received
updateReq from A) (F)

• updateInfo to A in round τ0 (S)

• SETUP–OK to E in round τ1 ≤ τ0 + 2+ tstp (if re-
ceived updateCom from A) (F)

• SignTxs in τ1 (S)

• sign revocation of B with A in round τ1 + ts (if pre-
vious signing was successful) (S)

• REVOKE–REQ to E in round τ1 +1+ ts (after receiv-
ing revoke from A in that round) (F)

• sign revocation of A with A in round τ1 +1+ ts + tr
(S)

• revoke to A in round τ1 +1+ ts +2tr (in case revo-
cation was signed successfully) (S)

• UPDATED to E in round τ1 +2+ ts +2tr (F)

Lemma 5. The Close phase of Π UC-realizes the Close
phase of F .

Proof. We consider the case where A is honest and B is
corrupted. Note that the reverse case is symmetric.

Real World: After receiving CLOSE in round
t0, A creates a closing transaction txc from the lat-
est state of the channel. A then performs action
a0 := create signature for txc with B. In case of
success, A performs a1 := post txc on B in round
t0 + tr. If it appears in round t1 ≤ t0 + tr + ∆, send
CLOSED. If the signature generation was unsuccessful
in round t2 ≥ t0, A runs a2 := ForceClose. Thus,
the execution ensemble is either EXECclose

Π,A,E :=
{obsSet(a0, t0),obsSet(a1, t0 + tr),CLOSED[t1]} or
EXECclose

Π,A,E := {obsSet(a0, t0),obsSet(a2, t2)}.
Ideal World: In this case, after A receving CLOSE

in round t0, S handles creating the transaction and
performing a0 in round t0 and a1 in t0+ tr, while F sends
CLOSED if the closing transaction appears on B in round
t1≤ t0+tr+∆. If the signature generation was unsuccess-
ful in round t2 ≥ t0, the simulator will perform a2 and in-
struct F to do the same (by not sending CLOSE on behalf
of B). Thus, the execution ensemble is EXECclose

F ,S,E :=
{obsSet(a0, t0),obsSet(a1, t0 + tr),CLOSED[t1]} or
EXECclose

F ,S,E := {obsSet(a0, t0),obsSet(a2, t2)}.

Lemma 6. The Punish phase of Π UC-realizes the Pun-
ish phase of F .

Proof. We consider the case where A is honest and B is
corrupted. Note that the reverse case is symmetric.

23

Table 2: Overhead for operations, given a current fee of 102 satoshi per byte and a price of 57,202 USD per BTC.

txs off-chain bytes txs on-chain bytes USD
create 2 · (txA

Pay,i + txA,B
Fpay,i + txA∗

Fpay,i + txA,A
Fpay,i) 2026 txF 338 2.13

update 2 · (txA
Pay,i + txA,B

Fpay,i + txA∗
Fpay,i + txA,A

Fpay,i + txA
Pnsh,i) 2408 - - -

close (optimistic) - - txA
Pay,i 225 1.42

close (slow) - - txA
Pay,i + txA,A

Fpay,i 449 2.83
close (fast) - - txA

Pay,i + txA,B
Fpay,i + txA∗

Fpay,i 823 5.18
punish - - txA

Pay,i + txA
Pnsh,i 450 2.83

Real World: After A receives PUNISH from E in
round t0,7 A checks if there is a transaction on the ledger
that belongs to an old state of one of its channels. If
yes, using the corresponding revocation secret, A per-
forms action a0 := post punishment transaction in round
t0. After it is accepted in round t1 ≤ t0 +∆, A performs
a1 := post collateral unlock transaction. If that is ac-
cepted in round t2≤ t1+∆, A outputs message PUNISHED.
Thus, the execution ensemble is EXECpunish

Π,A,E :=
{obsSet(a0, t0),obsSet(a1, t1),PUNISHED[t2]}.

Ideal World: The ideal functionality checks at the
end of every round t0 (this is achieved by marking it-
self stale if not invoked by E , see Section 4) if a trans-
action spending the funding transaction that is not the
most recent state is on the ledger. If it is, and the other
party is honest, it expects a punishment transaction to
appear in round t1 ≤ t0 + ∆. Additionally, it expects
that the collateral unlock transaction of that party ap-
pears in round t2 ≤ t1 + ∆. If both appear, F outputs
PUNISHED in round t2. Meanwhile, the simulator will
take care of posting both the punishment a0 and the col-
lateral unlock transaction a1 in rounds t0 and t1, respec-
tively. Thus, the execution ensemble is EXECpunish

F ,S,E :=
{obsSet(a0, t0),obsSet(a1, t1),PUNISHED[t2]}.

Theorem A.1. The protocol Π UC-realizes the the ideal
functionality F .

Proof. The proof of the theorem follows by a standard
hybrid argument and an application of Lemmas 2 to 6.

B Deployment cost

To further evaluate our Sleepy Channels protocol, we
want to measure the cost in terms of on-chain fees when

7Note that we require the environment to send this message, as we
defined that all security guarantees of F are lost in the case of message
ERROR. However, this is exactly what happens if the environment does
not give the execution token to F via PUNISH, see Section 4

using the protocol. Taking the numbers from Section 6,
we do the following. To post a Bitcoin transaction to
the blockchain, one has to give a certain amount of fees
to the miner. This fee is dependent on the size of the
transaction. At the time of writing, the fee of including a
transaction to the next block is 11 satoshis per byte and
the price of 1 Bitcoin in USD is 57202,30. Together with
the fact that there are 108 satoshis in one Bitcoin, we can
compute the fees in USD for each of the Sleepy Channels
operations. We show our results in Table 2.

24

	Introduction
	Our Contribution
	Related Work

	Solution Overview
	Preliminaries
	Ideal Functionality Bi-directional Channels
	Sleepy Channels: Our Bi-Directional Payment Channel Protocol
	Our Protocol
	High Level Overview
	Security
	Extensions

	Performance Evaluation
	Simulation

	Conclusion
	UC Protocol
	UC Simulator
	Simulation proof

	Deployment cost

