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Abstract. This paper continues author’s previous ones about compression of points on
elliptic curves Eb : y2 = x3 + b (with j-invariant 0) over a finite field Fq of characteristic > 3.
More precisely, we show in detail how any two (resp. three) points from Eb(Fq) can be quickly
compressed to two (resp. three) elements of Fq (apart from a few auxiliary bits) in such a
way that the corresponding decompression stage requires to extract only one cubic (resp.
sextic) root in Fq (with several multiplications and without inversions). As a result, for many
q occurring in practice the new compression-decompression methods are more efficient than
the classical one with the two (resp. three) x or y coordinates of the points, which extracts two
(resp. three) roots in Fq. We explain why the new methods are useful in the context of modern
real-world pairing-based protocols. As a by-product, when q ≡ 2 (mod 3) (in particular, Eb

is supersingular), we obtain a two-dimensional analogue of Boneh–Franklin’s encoding, that
is a way to sample two “independent” Fq-points on Eb at the cost of one cubic root in Fq.
Finally, we comment on the case of four and more points from Eb(Fq).

Key words: batch point compression, Boneh–Franklin’s encoding, conic bundle struc-
ture, cubic and sextic roots, elliptic curves of j-invariant 0, Freeman’s transformation, gen-
eralized Kummer varieties, high 2-adicity, rationality problems, recursive proof systems.

1 Introduction

Nowadays, pairing-based cryptography [1] can be certainly considered as an independent
fruitful area of public-key cryptography, which is interesting from both mathematical and
practical points of view. There are countless pairing-based protocols, many of which have
found applications in the real world. It is worth noting protocols based on composite-order
groups such as Boneh–Goh–Nissim’s (BGN) somewhat homomorphic encryption [2] or Boneh–
Sahai–Waters’s fully collusion resistant traitor tracing [3]. It is also impossible not to mention
succinct non-interactive zero-knowledge (NIZK) proofs among which the most popular one is
possibly Groth16 [4]. And their recursive compositions are constructed via chains of elliptic
curves as first suggested in [5].

Unfortunately, composite-order subgroups of Eb(Fq) must be very large to be protected
against sub-exponential factorization algorithms. By virtue of Hasse’s inequality (see, e.g., [1,
Theorem 2.9]) we have #Eb(Fq) ≈ q, hence pairing computation on Eb turns out to be very
cumbersome as confirmed in [6]. Fortunately, with the help of so-called Freeman’s transforma-
tion [7] (cf. [8, Sections 9-10]) we can almost always rewrite a protocol in the composite-order
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setting to the prime-order one operating with point vectors from En
b (Fq) for a smaller q and

some n ∈ N. In this case, an instance of the subgroup decision problem is a (prime-)order
subgroup of En

b (Fq). For the majority of protocols it is sufficient to take n = 2, but there
are some protocols (such as Katz–Sahai–Waters’s predicate encryption [7, Section 7]) needing
n = 3.

As said, e.g., in [9, Section 2.2] for the sake of efficiency of recursive proofs one needs
to leverage pairing-friendly elliptic curves defined over highly 2-adic fields Fq, that is the
number q − 1 should be divided by a non-small power 2m, where m ∈ N. More precisely,
this allows to apply the fast Fourier transform (FFT) in order to speed up the polynomial
arithmetic over Fq. To be definite, we will suppose that high 2-adicity takes place if m > 3,
but in practice usually 20 < m < 60. Our choice follows from the fact that (as is known, e.g.,
from [1, Section 5.1.7]) for q ≡ 1 (mod 8) it is problematic to express a square root in Fq via
one exponentiation. Of course, we can always utilize Tonelli–Shanks’s algorithm, namely [1,
Algorithm 5.14] (cf. [10]), but it has a greater computational complexity.

Recall that curves Eb are ordinary (a.k.a. non-supersingular) only if q ≡ 1 (mod 3) or,
equivalently, a primitive cubic root ω := 3

√
1 lies in Fq. Since only curves Eb possess order

6 automorphism (of the form [−ω](x, y) := (ωx,−y)), according to [1, Section 3.2.5] such
pairing-friendly ordinary curves are preferred in pairing-based cryptography. To our knowl-
edge, at the moment, the most popular curves are BLS12-381 [11, Section 4.2.1] for a general
use and BLS12-377 [9, Table 2] for one layer proof composition, where the numbers after the
hyphen equal dlog2(q)e. Moreover, the field Fq of the latter curve (in contrast to the former
one) is highly 2-adic with m = 46. Among other things, the pages [12], [13] specify 2-cycles
of curves of j-invariant 0 (over highly 2-adic fields) among which only one is pairing-friendly.

In compliance with [14, Examples IV.1.3.5-6] elliptic curves are not rational. Therefore
from the geometric point of view the most compact representation of them is on the affine
plane A2

(x,y), for example in the Weierstrass form. Consequently, any point from En
b (Fq) ⊂ F2n

q

is obviously represented with the help of 2ndlog2(q)e bits. In particular, for n = 2 (resp. n = 3)
and log2(q) ≈ 380 we obtain ≈ 1520 (resp. ≈ 2280) bits, which is quite a lot. In comparison,
with the same 128-bit security level classical (i.e., non-pairing-friendly) elliptic curves are
defined over 256-bit fields Fq. And many widespread cryptosystems on such curves (e.g.,
ECDH or ECDSA) don’t require simultaneous compressing several points, so it is sufficient
to manipulate only 512 bits.

At the same time, by virtue of Hasse’s inequality Fq-points on Eb can be compressed
to about half with regard to the information theory. There is the classical compression-
decompression method representing a point as its x (resp. y) coordinate in addition to one
(resp. two) bits to uniquely recover the initial y (resp. x) coordinate via extracting in Fq
the square (resp. cubic) root. In comparison with standard arithmetical operations in Fq, the
latter one is very costly, because even for q 6≡ 1 (mod 8) (resp. q 6≡ 1 (mod 27)) it consists
in one exponentiation in Fq according to Lemma 2 (resp. 3). As a result, after compressing
Fq-point vectors of length n = 2 (resp. n = 3) we obtain ≈ 760 (resp. ≈ 1140) bits at the
price of n exponentiations in the decompression stage.
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1.1 Brief description of the new compression method

Apart from τ6 := [−ω] there are on Eb the automorphisms

τ2 := τ 36 : (x, y) 7→ (x,−y), τ3 := τ 46 : (x, y) 7→ (ωx, y)

of orders 2 and 3 respectively. For any n ∈ N and m ∈ {2, 3, 6} consider the diagonal subgroup
Gn,m := 〈(τm, . . . , τm)〉 ' Z/m of the automorphism group on En

b . Notice that it is Frobenius
invariant even if ω 6∈ Fq. Further, introduce the Fq-quotient GKn,m := En

b /Gn,m, which is
called generalized Kummer variety [15, Section 7], because for m = 2 this is a (usual) Kummer
variety [15, Example 8.1]. Also, we need the notation of the quotient Fq-cover ϕn,m : En

b →
GKn,m, which, as usual [14, Theorem I.4.4], gives the function field extension Fq(GKn,m) ↪→
Fq(En

b ). Whenever m = 2 or ω ∈ Fq, by virtue of Artin’s theorem (see, e.g., [16, Theorem
VI.1.8]) ϕn,m is a Galois cover whose Galois group equals Gn,m. Therefore ϕn,m is a Kummer
cover due to [16, Theorem VI.6.2]. All of the above is illustrated with the famous examples
ϕ1,2(x, y) = x and ϕ1,3(x, y) = y.

We see that GK1,m are obviously rational curves. More generally, there is the analogous
notion of (geometrically) rational variety as defined in [14, Example II.8.20.1]. Rationality of
the surfaces GK2,3, GK2,6 is a classical fact. According to [17, Section 2] the threefold GK3,6

is also rational and there are [18, Questions 1.3, 1.4] about rationality of GK4,6, GK5,6. In
turn, the varieties GKn,m are never rational for n > m in accordance with [15, Example 8.10],
[17, Remark 2.9]. In fact, we are interested in Fq-rationality of GKn,m. In a cryptographic
context this concept [19, Definition 6.1] first arose in so-called torus-based cryptography for
compressing Fq-points of algebraic tori. By the way, since pairing values can be interpreted as
such points, this compression technique is known to be useful in pairing-based cryptography.

For the Kummer covers ϕn,m computing an inverse image ϕ−1n,m(P ) of a point P ∈
ϕn,m

(
En

b (Fq)
)

can be implemented by means of extracting in Fq some root of degree m.
Suppose that GKn,m is an Fq-rational variety and there are explicit formulas of a birational
Fq-isomorphism ψn,m : GKn,m

∼99K An and its inverse ψ−1n,m : An ∼99K GKn,m. As is customary
in algebraic geometry, the arrow 99K (resp. ∼99K) means a (bi)rational map rather than an
(iso)morphism, that is the map may be undefined at some points. Treating them separately,
we thus get a new compression-decompression method for all Fq-points on En

b . Indeed, the
compression (resp. decompression) stage consists in evaluating the map χn,m := ψn,m ◦ ϕn,m

at a general point Q ∈ En
b (Fq) (resp. finding χ−1n,m(R), where R := χn,m(Q)).

For the surface GK2,3 (resp. GK2,6) Fq-rationality is explicitly established in Section 2
(resp. [20, Sections 2-3]), although these results can’t be considered very important for pure
mathematics because of their simplicity. Besides, it turns out that Fq-formulas of ψ±13,6, derived
in [17, Section 2] for b = −1, are still valid for any b ∈ F∗q . However if the field Fq is not
highly 2-adic, to compress points from E2

b (Fq) (resp. E3
b (Fq)) we apply in Section 4 slightly

another approach based on Fq-rationality of GK1,3 (resp. GK2,3). Nevertheless, since the
varieties GKn,3 are not rational for n > 2, we can only hope for breakthroughs concerning Fq-
rationality of GK4,6, GK5,6. At the same time, cryptographers rarely come across protocols,
obtained by Freeman’s transformation, manipulating Fq-point vectors of length greater than
three.

We know that under the condition q ≡ 2 (mod 3) a curve Eb is supersingular and every
element of Fq has a unique cubic root in Fq. Moreover, in accordance with [21, Theorem
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3.3.15] the group Eb(Fq) ' Z/(q + 1). Although ϕn,3 are no longer Galois covers, we still can
find the inverse image under ϕn,3 via extracting a cubic root in Fq. In particular, ϕ−11,3 : Fq →
Eb(Fq) and ϕ−12,3 : GK2,3(Fq)→ E2

b (Fq) are true maps, that is they are correctly defined for each
input argument. The former is widely known as Boneh–Franklin’s encoding [1, Section 8.3.2].
The latter gives rise to the new encoding χ−12,3 : F2

q → E2
b (Fq), because points of a (possibly

reducible) Fq-curve, where ψ−12,3 is not defined, as usual, can be easily processed independently.

Thus χ−12,3 allows to generate in constant time two “independent” Fq-points on Eb twice as

efficient as ϕ−11,3 applied two times. “Independency” means that the discrete logarithm between
these points is unknown to anyone.

As far as we know, at the moment, supersingular curves are not preferable in the pairing
context, because of their small embedding degrees (6 3 in a large characteristic [1, Section
4.3]). The only exception is a recent verifiable delay function (VDF) developed in [22], where
pairings are combined with isogenies. However this and other isogeny-based protocols (such
as SIDH [23] or CSIDH [24]) deal with many supersingular curves. Of course, (C)SIDH has
one starting curve, which may be of j-invariant 0, but these protocols don’t require to (often)
sample points on it. We hope that in the near future advanced isogeny-based protocols will
appear for which the task of efficient regular sampling on the starting curve is important.

An idea of batch compressing points on an elliptic Fq-curve is not new. It has already
arisen in [25] for any number n ∈ N of points (and not necessarily for j-invariant 0) under
the name multiple point compression similarly to double one in [26]. The methods of these
papers compress to n+ 1 elements of Fq (i.e., the representation is not optimal), however
their decompression stages don’t need to extract any roots. If n is large, then this approach
is expected to be the best trade-off between compactness and efficiency. Nevertheless, for
small n our approach is the best if bandwidth/memory is more critical than speed.

2 Derivation of formulas

By analogy with [27, Theorem 9], we have

Lemma 1. There is (up to a birational Fq-isomorphism) the affine model

GK2,3 = (y21 − b)t3 − (y20 − b) ⊂ A3
(t,y0,y1)

for which the corresponding quotient map has the form

ϕ2,3 : E2
b 99K GK2,3 (x0, y0, x1, y1) 7→

(x0
x1
, y0, y1

)
.

Proof. Clearly, Fq(GK2,3) = Fq(E2
b )G2,3 , that is rational functions on GK2,3 are G2,3-invariant

ones on E2
b . Also, consider the field

F := Fq(t, y0, y1) ⊂ Fq(GK2,3), where t :=
x0
x1
.

Note that F (x1) = Fq(E2
b ), because x0 = tx1. Since x31 = y21 − b, the extension degree [Fq(E2

b ) :
F ] 6 3. At the same time, [Fq(E2

b ) : Fq(GK2,3)] = 3 according to Artin’s theorem. Thus
F = Fq(GK2,3). Finally, looking at the equalities t3 = x30/x

3
1 = (y20 − b)/(y21 − b), we obtain

the aforementioned equation for GK2,3. There are no another dependencies between the coor-
dinates t, y0, y1, because GK2,3 is a surface in A3. It remains to apply [14, Corollary I.4.5].
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Theorem 1. The generalized Kummer surface GK2,3 is Fq-rational.

Proof. We borrow the approach used for proving [27, Theorem 12]. It is based on the theory
of conic bundles (see, e.g., [27, Section 1.4]), but the reader can verify the formulas below
(e.g., in Magma [28]) without knowledge of this theory. There is the natural conic bundle
structure

π : GK2,3 → A1
t (t, y0, y1) 7→ t.

In other words, GK2,3 can be seen as an Fq(t)-conic. In a diagonal form,

GK2,3 = −y20 + t3y21 + b(1− t3).

Therefore the degenerate (i.e., reducible or, equivalently, singular) fibers of π lie over t ∈
{0,∞} ∪ {ωi}2i=0, where ∞ := (1 : 0) ∈ P1. More precisely, for these t we see that π−1(t) =
L+
t ∪ L−t , where

L±0 :=

{
t = 0,

y0 = ±
√
b,

L±∞ :=

{
t =∞,
y1 = ±

√
b,

L±
ωi :=

{
t = ωi,

y1 = ±y0.

First, after the transformation

τ :=

{
z0 := y0,

z1 := ty1,
τ−1 =

{
y0 := z0,

y1 := z1/t

we obtain the cubic surface

GK ′2,3 := τ(GK2,3) = −z20 + tz21 + b(1− t3) ⊂ A3
(t,z0,z1)

.

We then blow down [14, Section V.3] one of the components τ(L±1 ) by means of the transfor-
mation

θ :=


y0 :=

z0 − z1
1− t

,

y1 :=
z0 − tz1

1− t
,

θ−1 =

{
z0 := −ty0 + y1,

z1 := −y0 + y1,

coming to
S := θ(GK ′2,3) = ty20 − y21 + b(t2 + t+ 1) ⊂ A3

(t,y0,y1)
.

Further, simultaneous blowing down some pair of components over t ∈ {ω, ω2} has the form

η :=


z0 :=

(t+ 1)y0 + y1
t2 + t+ 1

,

z1 :=
ty0 + (t+ 1)y1
t2 + t+ 1

,

η−1 =

{
y0 := (t+ 1)z0 − z1,
y1 := −tz0 + (t+ 1)z1,

which gives the simpler surface

T := η(S) = tz20 − z21 + b ⊂ A3
(t,z0,z1)

.

Note that the maps τ , θ, η respect the conic bundle π, that is they can be seen as Fq(t)-
isomorphisms of conics. That’s why we avoid the tautology t := t in their description. Finally,
the projection pr : T ∼99K A2

(z0,z1)
is a desired map, because t = (z21 − b)/z20 .
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For the compositions ψ2,3 := pr ◦ η ◦ θ ◦ τ and χ2,3 := ψ2,3 ◦ ϕ2,3 Magma [28] says that

χ2,3 : E2
b 99K A2

(z0,z1)
χ2,3 =


z0 :=

x1(2x
2
0y1 − x0x1(y0 − y1)− 2y0x

2
1)

y20 − y21
,

z1 :=
x30y1 + 2x0x1(x0y1 − y0x1)− y0x31

y20 − y21
,

ψ−12,3 : A2
(z0,z1)

∼99K GK2,3 ψ−12,3 =



t :=
z21 − b
z20

,

y0 :=
z30z1 − 2z0(z0 − z1)(z21 − b)− (z21 − b)2

z30
,

y1 := −z
2
0(z0 − 2z1) + (2z0 − z1)(z21 − b)

z21 − b
.

Let’s consider the cases when the denominators equal zero. Obviously, t ∈ {0,∞} ⇒
x0x1 = 0, and

y20 − y21 = 0 ⇔ ∃k ∈ Z/6: (x1, y1) = [−ω]k(x0, y0). (1)

In turn, it can easily be checked that z0 = 0 (i.e., z1 = ±
√
b under the condition t 6= 0) if and

only if (t, y0, y1) ∈ Im(%±) for the sections of π given by

%± : A1
t 99K GK2,3 %± :=


y0 := ±

√
b(2t+ 1),

y1 :=
±
√
b(t+ 2)

t
.

It is readily seen that

t =
y0 ∓

√
b

±2
√
b

=
±2
√
b

y1 ∓
√
b

and eventually we get the conics

C±1 := Im(%′±1) = (y0 ∓
√
b)(y1 ∓

√
b)− 4b ⊂ A2

(y0,y1)
,

where %′±1 := pr ◦ %±.

3 New compression method for two points

We need the auxiliary sets

V ′ :=
{

(x, y) ∈ Eb | xy = 0
}
∪
{

(0 : 1 : 0)
}
⊂ Eb[2] ∪ Eb[3],

V := Eb×V ′ ∪ V ′×Eb.

Formally, for two points Pi = (xi, yi) from Eb(Fq) \ V ′ the new compression map has the form

com2,3 : E2
b (Fq) \ V ↪→ F2

q ×[0, 5]×[0, 2]
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com2,3(P0, P1) :=


(x0, y0, k, 0) if ∃k ∈ Z/6: P1 = [−ω]k(P0),

(t, x1, k, 1) if ∃k ∈ Z/2: (y0, y1) ∈ C(−1)k ,

(z0, z1, n, 2) otherwise,

where (z0, z1) = χ2,3(P0, P1) and n ∈ [0, 2] is the position number of the element x1 ∈ F∗q in
the set

{
ωix1

}2
i=0
∩ F∗q with respect to some order in F∗q . For example, in the case of a prime

q this can be the usual numerical one.
It is worth noting that in the definition of com2,3 the condition (1) is successively checked

by iterating over elements of Z/6. The same strategy is applied for the second condition
∃k ∈ Z/2: (y0, y1) ∈ C(−1)k . Further, the set [0, 5]×[0, 2] clearly requires 5 bits for representing
its elements. Finally, since in discrete logarithm cryptography points of small orders don’t
occur, we omit the definition of the compression map on V (Fq) for the sake of simplicity,
although it can be easily defined if desired.

The corresponding decompression map is given as follows:

com−12,3 : Im(com2,3)
∼−→ E2

b (Fq) \ V

com−12,3(z0, z1,m, `) =


(z0, z1, x1, y1) if ` = 0 and (x1, y1) = [−ω]m(z0, z1),

(z0z1, y0, z1, y1) if ` = 1 and (y0, y1) = %′(−1)m(z0),

(tx1, y0, x1, y1) if ` = 2 and (t, y0, y1) = ψ−12,3(z0, z1),

where for ` = 2 the initial x1 = 3
√
g1 (for g1 := y21 − b) can be determined with the help of

m = n.
According to [29, Equalities (2), (3)] and analogous ones for other q 6≡ 1 (mod 27) the

cubic root 3
√
g1 can be extracted at the cost of one exponentiation in Fq (in particular, without

inverting the denominator of g1, namely (z21 − b)2). For illustrative purposes, let’s consider
once again, e.g., the case q ≡ 4 (mod 9). For e := (8q − 5)/9 ∈ N and g = u/v ∈ (F∗q )3 such
that u, v ∈ F∗q we obtain:

ge = ue ·vq−1−e = ue ·v(q−4)/9 = u3(u8v)(q−4)/9, (ge)3 = g(8q−5)/3 = g8(q−1)/3 ·g = g.

Since the projective or Jacobian coordinates [1, Sections 2.3.2 and 10.7.9] are preferred in
practice, the decompression stage doesn’t require finding inverse elements at all. By definition,
in these coordinates the curve Eb possesses the equations

Eb : Y 2Z = X3 + bZ3, Eb : Y 2 = X3 + bZ6

respectively. And there are the birational isomorphisms

σ : Eb
∼99K Eb (X : Y : Z) 7→

(
X

Z
,
Y

Z

)
, (X : Y : Z) 7→

(
X

Z2
,
Y

Z3

)
respectively. By the way, in both cases,

σ−1 : Eb
∼99K Eb (x, y) 7→ (x : y : 1).
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If the compression stage starts from the projective or Jacobian coordinates, then even in
the classical method it is necessary to compute one inverse in Fq. Indeed, given two points (Xi :
Yi : Zi) ∈ Eb(Fq) with Zi 6= 0 one needs the value v := (Z0Z1)

−1 in order to get Z−10 = vZ1

and Z−11 = vZ0. This famous trick, originally attributed to Montgomery, is clearly generalized
to any number of inversions. In turn, in the compression stage of the new method instead of
the two inversions v, (y20 − y21)−1 only one is also enough, because

χ2,3 ◦ σ×2 =
(num0

den
,
num1

den

)
: Eb

2
99K A2

(z0,z1)

for some polynomials numi, den ∈ Fq[Xi, Yi, Zi]
1
i=0 trivially obtained from the formulas of

χ2,3. To determine the position number n one needs to know Z−11 , hence we should in fact
invert Z1 ·den. Finally, it is worth emphasizing that all of the above is equally valid for the
degenerate cases ` ∈ {0, 1}.

4 Folklore compression method for two points and its

variation for three ones

First, we put fi := x3i + b and gi := y2i − b. Since the numbers 2, 3 are relatively prime,
the roots y0 =

√
f0 and x1 = 3

√
g1 can be extracted simultaneously, that is at the cost of a

sixth root in Fq. Indeed, for h := f 3
0 g

2
1 it is sufficient to compute α := 6

√
h =
√
f0 3
√
g1, because

3
√
g1 = f0g1/α

2 and
√
f0 = α/ 3

√
g1. Moreover, by analogy with [20, Section 3], whenever q 6≡

1 (mod 8), q 6≡ 1 (mod 27), the value α can be expressed via one exponentiation in Fq. This
follows directly from the fact that α =

3
√√

h and from the next easily verified lemmas.

Lemma 2. Given a quadratic residue a ∈ (F∗q )2 we have:

√
a =


√

(−1)i ·a(q+3)/8 if q ≡ 5 (mod 8),

a(q+1)/4 if q ≡ 3 (mod 4)

for some i ∈ {0, 1}.

Lemma 3. Given a cubic residue a ∈ (F∗q )3 we have:

3
√
a =



[30, Proposition 1] if q ≡ 1 (mod 9) and q 6≡ 1 (mod 27),

a(8q−5)/9 if q ≡ 4 (mod 9),

a(q+2)/9 if q ≡ 7 (mod 9),

a(2q−1)/3 if q ≡ 2 (mod 3).

Thus there is the compression map

E2
b (Fq) \ V ↪→ F2

q ×[0, 5] (P0, P1) 7→ (x0, y1, n),
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where n ∈ [0, 5] is the position number of the element y0x1 ∈ F∗q in the set{
(−1)iωj ·y0x1

}1,2
i=0,j=0

∩ F∗q with respect to some order in F∗q . As above, n is used in the de-
compression stage for recovering the original y0, x1. Notice that at the heart of this method
is Fq-rationality of

E2
b /G = Eb/G1,2×Eb/G1,3, where G := G1,2×G1,3 ' Z/6.

We call it folklore, because it doesn’t require an algebraic geometry technique, so perhaps
someone already knows it.

Remark 1. The significant drawback of the folklore method consists in the fact that (in con-
trast to com2,3) it doesn’t work efficiently over highly 2-adic fields Fq. The same drawback
exists for author’s other method [20, Sections 2-3] based on Fq-rationality of GK2,6. Never-
theless, since the folklore one has a slightly simpler definition, we conclude that it is more
preferred for use when possible.

Similarly, one can apply the folklore methodology to the new method with z0, z1 in order
to compress three points Pi = (xi, yi) from Eb(Fq) \ V ′. As earlier, consider the set

V := E2
b×V ′ ∪ Eb×V ′×Eb ∪ V ′×E2

b .

It is about the compression map

E3
b (Fq) \ V ↪→ F3

q ×[0, 5]×[0, 2]×[0, 1] (P0, P1, P2) 7→ (z0, z1, x2, n, s),

where (z0, z1,m, `) = com2,3(P0, P1) and in the non-degenerate case ` = 2 the number n ∈
[0, 5] is the position of the element x1y2 ∈ F∗q . In turn, for ` ∈ {0, 1} we put n := m and the
additional sign bit s is utilized to recover y2 (regardless of P0, P1). Since for these ` the latter
points are obtained without root computations, the overall complexity doesn’t go beyond one
exponentiation in Fq.

Besides, pay attention that for ` = 2 the root 6
√
h (where h := g21f

3
2 ) can still be found at

the cost of one exponentiation in Fq even if the inverse of the denominator of h (i.e., of g21) is
unknown. By analogy with

√
· (see, e.g., [31, Section 5]) and 3

√
·, we explain in [32, Section

2] how to do this for q ≡ 3 (mod 4), q ≡ 2 (mod 3), or, equivalently, q ≡ 11 (mod 12). For
self-completeness, let’s repeat the reasoning. For e := (q + 1)/12 ∈ N and h = u/v ∈ (F∗q )6

such that u, v ∈ F∗q we obtain:

he = ue ·vq−1−e = ue ·v(11q−13)/12 = uv9 ·(uv11)(q−11)/12, (he)6 = h(q+1)/2 = h(q−1)/2 ·h = h.

We invite the reader to independently check that this trick is easily generalized to other
q 6≡ 1 (mod 8), q 6≡ 1 (mod 27).

Thus we completely justified Tables 1, 2, which contain a complexity comparison (all the
operations are carried out in Fq) of the compression-decompression methods for two and three
points respectively. As is customary, the addition, subtraction, and multiplication operations
in Fq are omitted, because they are much cheaper. Taking this opportunity, we stress that
arguments of the given paper, related to avoiding the inversion operation, are equally valid
for author’s previous compression-decompression methods. In other words, the number of
inversions in [27, Theorem 13] and [20, Tables 1, 2] can be actually reduced to only one in
the compression stage (at the price of several multiplications).
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Galois group compression decompression

classical method with x0, x1 G2
1,2

one inversion

two
√
·

classical method with y0, y1 G2
1,3 two 3

√
·

folklore method with x0, y1 G1,2×G1,3 one 6
√
·

new method with z0, z1 G2,3 one 3
√
·

Table 1: Worst-case complexity for compressing Eb
2
(Fq) (with respect to the projective or

Jacobian coordinates)

Galois group compression decompression

classical method with x0, x1, x2 G3
1,2

one inversion

three
√
·

classical method with y0, y1, y2 G3
1,3 three 3

√
·

folklore-classical method with x0, x1, y2 G2
1,2×G1,3 one 6

√
· and one

√
·

folklore-classical method with x0, y1, y2 G1,2×G2
1,3 one 6

√
· and one 3

√
·

new method with z0, z1, x2 G2,3×G1,2 one 6
√
·

Table 2: Worst-case complexity for compressing Eb
3
(Fq) (with respect to the projective or

Jacobian coordinates)
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Appendix. Compressing Eb(Fq2)×Eb2(Fq)
Throughout the current supplementary section, we assume that q ≡ 1 (mod 3) or, equiva-

lently, ω ∈ Fq. Unlike the main part of the paper, here the opposite situation would be drasti-
cally different as it becomes clear below. Given γ ∈ F∗q \ (F∗q )2 let b = b0 + b1

√
γ and b0, b1, b2 ∈

Fq such that bb2 6= 0. Our goal is to simultaneously compress points (x0 + x1
√
γ, y0 + y1

√
γ)

and (x2, y2) from the sets Eb(Fq2), Eb2(Fq) respectively (xj, yj ∈ Fq). This problem is relevant
for pairing delegation [33] and type 4 pairings [34, Section 3] whenever the embedding de-
gree of the curve Eb2 is equal to 12. In this popular case, Eb is a sextic twist of Eb2 over
the field Fq2 . See [1, Section 3.2.5] to understand the significance of twists in pairing-based
cryptography.

For compressing Eb(Fq2) it is suggested to apply the method from [27]. The given method
extracts a cubic root in Fq in the decompression stage. Therefore the concatenation of its
result z0, z1 with x2 gives rise to the compression method for Eb(Fq2)×Eb2(Fq) with the cost
of a sextic root in Fq, by analogy with compressing three Fq-points in Section 4.

Table 3 exhibits a complexity comparison (all the operations are carried out in Fq) of
the compression-decompression methods for points in the projective or Jacobian coordinates.
As is customary, the addition, subtraction, and multiplication operations in Fq are omitted,
because they are much cheaper. We use the fact (e.g., from [1, Section 5.2.1]) that an inverse
element (resp. square root) in Fq2 can be expressed via an inverse element (resp. two square
roots) in Fq. However, to our knowledge, a cubic root in Fq2 is not computed through a few
radicals in Fq. As a result, in comparison with Table 2, the new table doesn’t contain the
very slow methods with the coordinates y0, y1, x2 or y0, y1, y2.

The method of [27] is similar to the one of Sections 2, 3. It is based on Fq-rationality of
the surface

GKb := α(t)(y20 + γy21 − b0)− β(t)(2y0y1 − b1) ⊂ A3
(t,y0,y1)

,

where α(t) := 3t2 + γ and β(t) := t(t2 + 3γ). The latter is nothing but the generalized Kum-
mer surface Rb/[ω]2 (up to a birational Fq-isomorphism). Here

Rb =

{
y20 + γy21 = x30 + 3γx0x

2
1 + b0,

2y0y1 = γx31 + 3x20x1 + b1
⊂ A4

(x0,y0,x1,y1)

is the Weil restriction (see, e.g., [19, Section 4]) of Eb, equipped with the Fq-automorphism
[ω]2(x0, y0, x1, y1) := (ωx0, y0, ωx1, y1) of order 3. Notice that

t =
x0
x1
, x1 = 3

√
2y0y1 − b1
α(t)

= 3

√
y20 + γy21 − b0

β(t)
.

Although [27] doesn’t deal with the case q ≡ 1 (mod 4) (including the BLS12-377 curve),
it is not difficult to generalize the results to the given case if desired. We are not going to do
this, because our purpose is opposite, namely to specify the Fq-parametrization of GKb as
clearly as possible on the example of the BLS12-381 curve (b0 = b1 = 4 and γ = −1). That
makes sense, since the description in [27, Section 3.1] is not sufficiently explicit.
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compression decompression

classical method with x0, x1, x2

one inversion

three
√
·

folklore-classical method with x0, x1, y2 one 6
√
· and one

√
·

new method with z0, z1, x2 one 6
√
·

Table 3: Worst-case complexity for compressing Eb(Fq2)×Eb2(Fq) (with respect to the pro-
jective or Jacobian coordinates)

First,
√

6 ∈ Fq, because
√
−3 = 2ω + 1 ∈ Fq and

√
−2 ∈ Fq as shown in [27, Section 3.1].

There is the birational Fq-isomorphism

τ : GKb
∼99K A2

(z0,z1)
(t, y0, y1) 7→

(numz0

denz

,
numz1

denz

)
,

where

numz0 := f0(t)y0 + f1(t)y1, numz1 := −
√

6·α(t)(t2 − 4t+ 1), denz := g0(t)y0 + g1(t)y1,

and

f0(t) := 6
(

(7
√

6− 13)t3 − 13t2 + (3
√

6− 1)t− 1
)
,

f1(t) := 3
√

6·α(t)
(

(
√

6− 3)t2 +
√

6·t− 1
)
,

g0(t) := 3
(

(
√

6 + 2)t4 + 2t3 − 2(4
√

6− 5)t2 + 10t−
√

6
)
,

g1(t) := 6α(t)
(

(
√

6− 1)t− 1
)
.

It turns out that

τ−1 : A2
(z0,z1)

∼99K GKb (z0, z1) 7→
(numt

dent

,
numy0

deny

,
numy1

deny

)
,

where

numt := z20 + 12z21 − 1, dent := −2(z0 + 6z21), deny := −
√

6·α(t)(t2 + 1),

numy0 := α(t)
(
F0(t)Z0 + F1(t)Z1

)
, numy1 := G0(t)Z0 +G1(t)Z1,

Z0 :=
z0 ·dent + numt

z1 ·dent

, Z1 :=
1

z1

and

F0(t) := 2
(

(
√

6− 1)t− 1
)
, F1(t) := (

√
6− 4)t2 − 4t+

√
6,

G0(t) := −(
√

6 + 2)t4 − 2t3 + 2(4
√

6− 5)t2 − 10t+
√

6,

G1(t) := (
√

6 + 2)t5 + 2t4 + 2(3
√

6− 8)t3 − 16t2 + (5
√

6− 2)t− 2.

All the written formulas are checked in Magma [28]. As usual, to compress any points
from Eb(Fq2) it remains to process the degenerate cases when the denominators equal zero.
In order not to complicate the text we leave this as an elementary exercise.
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