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ABSTRACT
Large-scale quantum computers will be able to efficiently solve
the underlying mathematical problems of widely deployed public
key cryptosystems in the near future. This threat has sparked in-
creased interest in the field of Post-Quantum Cryptography (PQC)
and standardization bodies like NIST, IETF, and ETSI are in the
process of standardizing PQC schemes as a new generation of cryp-
tography. This raises the question of how to ensure a fast, reliable,
and secure transition to upcoming PQC standards in today’s highly
interconnected world.

In this work, we propose and investigate a migration strategy
towards post-quantum (PQ) authentication for the network proto-
col Transport Layer Security (TLS). Our strategy is based on the
concept of “mixed certificate chains” which use different signature
algorithms within the same certificate chain. In order to demon-
strate the feasibility of our migration strategy we combine the
well-studied and trusted hash-based signature schemes SPHINCS+
and XMSS with elliptic curve cryptography first and subsequently
with lattice-based PQC signature schemes (CRYSTALS-Dilithium
and Falcon). Furthermore, we combine authentication based on
mixed certificate chains with the lattice-based key encapsulation
mechanism (KEM) CRYSTALS-Kyber as representative for PQC
KEMs to evaluate a fully post-quantum and mutually authenticated
TLS 1.3 handshake.

Our results show that mixed certificate chains containing hash-
based signature schemes only at the root certificate authority level
lead to feasible connection establishment times despite the increase
in communication size. By analyzing code size and peak memory
usage of our client and server programs we further demonstrate the
suitability of our migration strategy even for embedded devices.

KEYWORDS
Transport Layer Security, Post-Quantum Cryptography, Authenti-
cation, Public Key Infrastructure, Embedded Systems.

1 INTRODUCTION
With recent landmark achievements in the realm of quantum-
computing research, the advent of powerful, large-scale quantum
computers seems inevitable [4, 53]. Because of the existence of
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Shor’s algorithm—a polynomial time quantum algorithm solving
integer factorization and discrete logarithms—most currently used
public key cryptography (denoted as “conventional cryptography”
in the following) will be broken once sufficiently large universal
quantum computers are built. This looming threat has sparked an in-
creased interest in the field of Post-Quantum Cryptography (PQC),
leading to numerous standardization efforts [15, 25, 41].

Compared to current public key cryptosystems, PQC primitives
generally incur a higher cost in some metric: computational cost,
storage requirements, or network bandwidth. Consequently, the
impact of these novel schemes needs to be carefully evaluated when
integrated into protocols and applications. Since key-exchange
messages of conventionally established sessions can be recorded,
an adversary may later be able to break into such sessions once a
powerful quantum computer is available. Hence, it is considered
critical to protect the confidentiality of application data against
such attack scenarios. As a result, most existing migration strategies
focus on confidentiality by fostering hybrid key exchange (KEX) in
protocols [13, 16, 33, 52]. In these hybrid schemes, conventional key
agreement, e. g., ECDHE, is combined with a post-quantum (PQ)
key encapsulation mechanism (KEM) to eventually protect against
“harvest now, decrypt later” attacks.

As adversaries cannot retroactively impersonate entities in com-
munication sessions, i. e., break authentication properties, the mi-
gration towards post-quantum authentication has attracted less
attention so far. Nevertheless, the migration to post-quantum au-
thentication still needs to be completed before large-scale quantum
computers exist. Since authentication is typically based on long-
term public keys in form of certificates involving trusted third
parties, i. e., certificate authorities (CAs), a transition towards post-
quantum authentication is generally considered complex and time-
consuming. In this transition the network protocol Transport Layer
Security (TLS) will play a very important role, since it is widely
regarded as the “gold standard” for building secure, networked
applications. Thus, fast adoption of upcoming PQC standards re-
quires (a) schemes that are fully trusted in the security community
(e. g., long track record of no attacks), (b) a clear understanding
of the performance impact of PQC, and (c) viable migration plans
for applications and protocols that cover confidentiality as well as
authentication.
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Contributions. In this work, we propose and investigate a migration
strategy towards post-quantum authentication for TLS 1.3— the
most recent version of the TLS standard [46]. Our approach is based
on the concept of “mixed certificate chains”, where we combine
well-studied and trusted hash-based signature schemes (SPHINCS+
or XMSS) at the root CA level with either conventional elliptic
curve cryptography (ECC) or lattice-based PQC signature schemes
(CRYSTALS-Dilithium or Falcon) at the subsequent certificate lev-
els, i. e., intermediate certificate authorities (ICAs) and end enti-
ties (EEs). To demonstrate the feasibility of our migration strategy,
we perform several experiments under realistic network conditions.
The main contributions of our work are summarized as follows:

• Our two-step migration strategy based on mixed certificate
chains presents a novel solution for the transition to up-
coming PQC standards and post-quantum authentication.

• We propose nine mixed certificate chains as part of our
migration strategy as well as six control certificate chains
and assess their impact on the TLS 1.3 handshake in com-
bination with the lattice-based KEM CRYSTALS-Kyber.1

• We conduct our experiments under realistic network condi-
tions: Our setup consists of two client devices with different
computing and storage capabilities; our three cloud-based
servers are set up with increasing client-server distances.

• Since use cases like company networks or Internet of Things
(IoT) applications increasingly require client authentication,
we focus on mutual authentication for TLS in our experi-
ments, which has not been investigated in previous studies.

• We demonstrate the feasibility of our proposed migration
strategy even for embedded devices by reporting the fol-
lowing performance measurements: (i) connection estab-
lishment times, (ii) communication size, (iii) code size, and
(iv) peak memory usage.

Outline. In Section 2, we introduce the reader to PQC in general and
motivate our selection of PQC schemes for signatures as well as key
establishment. Section 3 highlights related work. In Section 4 we
describe the migration strategy based on mixed certificate chains
and the integration of PQC into the TLS 1.3 handshake. We present
and evaluate our results in Section 5. Section 6 concludes our work.

2 POST-QUANTUM CRYPTOGRAPHY
The goal of PQC is to provide cryptographic primitives that are able
to withstand attacks using the computing power of quantum com-
puters. While the mathematical problems of integer factorization
and computing a discrete logarithm are the foundation of many of
today’s cryptographic schemes, they can be efficiently solved by
a general quantum computer. However, there remain alternative
mathematical problems where also a quantum computer does not
efficiently provide a solution. Such problems, hence, are suitable
candidates to construct PQC schemes.

It is important to note that while PQC schemes defend against
quantum computers, they themselves do not require quantum tech-
nologies for their practical use— as opposed to, e.g., Quantum Key
Distribution. For example, “classical” computing devices are capable
of computing or verifying a PQC signature.
1The source-code of our integrations of PQC into the open-source library wolfSSL is
publicly available at https://github.com/boschresearch/pq-wolfSSL.

PQC schemes are categorized into families based on their un-
derlying hard mathematical problem: There are the families of
lattice-based, code-based, hash-based, isogeny-based, and multi-
variate schemes. The underlying mathematical constructions result
in very different properties of the cryptographic schemes in regard
to efficiency, computing time, and memory consumption as well as
message, key, and signature sizes, etc.

Lattice-based schemes are usually very efficient and have “medi-
um” key, ciphertext, and signature sizes— larger than the sizes of
the currently deployed RSA and elliptic curve (EC) cryptosystems
but smaller or more balanced than most other PQC families. Some
code-based and multivariate schemes have very large public keys;
hash-based schemes, on the other hand, have very small public
keys but large signature sizes. Today, there is a vast selection of
schemes in each of the PQC families. This often allows to find a
PQC scheme that is suitable for a specific application. However,
PQC generally incurs a higher cost in some metric (computational
cost, storage, or network bandwidth) compared to conventional
schemes currently in use. This often is a challenge in particular for
embedded devices that provide a restricted amount of resources.

2.1 PQC Standardization
Since December 2016, there has been an ongoing (as of 2021) stan-
dardization effort by the National Institute of Standards and Tech-
nology (NIST) for PQC schemes. The standardization process is con-
ducted in form of an open “competition”: The international research
community is invited to submit, vet, and improve submissions from
all major PQC families. In the initial first round, almost 80 PQC
schemes had been submitted. This field has been narrowed down by
NIST to only 15 schemes in the ongoing third round: The “Round 3
Finalists” are for digital signature algorithms (DSAs) CRYSTALS-
Dilithium [7], Falcon [26] (both lattice-based), and Rainbow [23]
(multivariate) as well as for public key encryption and key estab-
lishment Classic McEliece [1] (code-based), CRYSTALS-Kyber [6],
NTRU [20], and Saber [9] (all lattice-based). The “Alternate Candi-
dates” are for digital signature algorithms GeMSS [17] (multivari-
ate), Picnic [19] (symmetric), and SPHINCS+ [5] (hash-based) as
well as for public key encryption and key establishment BIKE [3],
HQC [39] (both code-based), FrodoKEM [2], NTRU Prime [10]
(both lattice-based), and SIKE [31] (isogeny-based). As the above
list shows, 7 out of the 15 remaining candidates belong to the
family of lattice-based PQC with balanced performance profiles.
Nevertheless, it is likely that NIST will standardize several of these
candidates from different PQC families to provide schemes with
different properties in regards to resource utilization and efficiency.

In addition to the NIST standardization efforts, the Internet En-
gineering Task Force (IETF) already published two Requests for
Comments (RFCs) for PQC signatures: XMSS [30] and LMS [37].
Both of these schemes are also recommended by NIST to be used
in particular applications such as firmware signatures [22]. As the
security of hash-based signature schemes only depends on security
assumptions of the underlying hash functions, they are well trusted
and offer strong security guarantees even against attacks aided by
quantum computers.

https://github.com/boschresearch/pq-wolfSSL
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Since their one-time signature keys must not be reused, XMSS
and LMS are stateful hash-based signature schemes. The construc-
tion of SPHINCS+ eliminates the need for maintaining a state and
thus it is a stateless signature scheme. Despite their strong secu-
rity proofs, their adoption in everyday applications appears to be
challenging mostly due to larger signatures and slow signing times.

2.2 Selection of Key Establishment and
Signature Schemes

For the study in this work, we selected several PQC signature
schemes for the evaluation of mixed certificate chains and one
representative PQC key encapsulation mechanism for a complete
post-quantum TLS handshake. Note that we only selected one KEM
for key establishment since we are focusing on the migration to-
wards post-quantum authentication in TLS. In turn, this reduces
the dimensions of scheme combinations and allows for a clear eval-
uation of our migration strategy.

For the signature schemes in the certificate chain we selected
hash-based schemes, which have large signatures but small public
keys, and lattice-based schemes, which have moderate key and
signature sizes. Hash-based signature schemes are very robust and
well trusted. Due to their small public key size and fast verifica-
tion times, they can easily be used in addition to conventional
signature schemes, e.g., at the root CA level even in small embed-
ded devices. More specifically, we selected the hash-based scheme
SPHINCS+ from the NIST standardization process and XMSS as
representative of the IETF PQC-RFCs and the two lattice-based sig-
nature schemes CRYSTALS-Dilithium and Falcon. We did not select
signature schemes from other PQC families because of recent crypt-
analytic progress on multivariate schemes, i. e., GeMSS and Rain-
bow [11], as well as Picnic [24], a post-quantum signature scheme
based on symmetric cryptography and zero-knowledge proofs.

To achieve a complete PQC-based TLS 1.3 handshake we selected
CRYSTALS-Kyber for key establishment— a finalist in NIST’s stan-
dardization process. As a representative of lattice-based KEMs it
offers some of the smallest key sizes and can be implemented very
efficiently [32]. Besides that, CRYSTALS-Kyber has already proven
to be a suitable candidate for the integration into TLS in several
other works [14, 44, 49]. It is also part of the PQC-CRYSTALS suite
and thus closely related to CRYSTALS-Dilithium. Consequently, it
is a natural pairing for CRYSTALS-Dilithium and also fits well to the
other signature schemes. Henceforth, we omit the CRYSTALS-prefix
and refer to both schemes as Kyber and Dilithium. An overview
of all selected schemes including key, signature, ciphertext sizes,
and benchmark results on our experimental platforms is given in
Table 2 in Section 5.1.

3 RELATEDWORK
Since NIST started its PQC standardization process, there have
been many initiatives for testing and benchmarking the proposed
schemes. The SUPERCOP2 toolkit integrates and benchmarks the
schemes for x86-64 CPU architectures and the subprojects of the
mupq-project3 for various embedded platforms, such as ARMCortex-
M4 (pqm4) [32] or the more efficient Cortex-Ax processors (pqax).

2https://bench.cr.yp.to/supercop.html.
3https://github.com/mupq.

The studies on integrating PQC into TLS started with the integra-
tion of lattice-based key exchange in TLS 1.2 [12] andwere extended
by multivariate signature schemes in [18]. The authors of [42] de-
veloped an experimental framework for the TLS 1.3 handshake
which is able to emulate network connections with real conditions.
Therewith, they studied the impact of connection latency, packet
loss rate, and packet fragmentation on various post-quantum sig-
nature schemes and (hybrid) key exchange. The work presented in
[49] further evaluates the integration of PQC under real network
conditions. These works complement the previous public industry
experiments by Google [13, 34] and the follow-up collaboration
between Google and Cloudflare [33, 35]. While these were highly
realistic experiments, they only focused on hybrid key exchange.

Considering the evaluation of post-quantum TLS on embedded
systems, [14] integrated and evaluated SPHINCS+ and Kyber on four
different platforms in the TLS 1.2 handshake using the mbed TLS
library, from the high performance class of ARM Cortex-A53 down
to Cortex-M0+. The authors of [43] provided integrations of PQC
into the industrial protocol OPC UA, which performs its TLS-like
handshake using X.509 certificates for mutual authentication.

The combination of different signature schemes in the same
certificate chain has been evaluated in two previous works. The au-
thors of [48] introduced a novel post-quantum TLS variant relying
on key encapsulation mechanisms for authentication—KEMTLS.
They compared their handshake variant against size optimized
certificate chains and KEMs resulting in combinations of multivari-
ate, hash-based, and lattice-based signature schemes in addition to
isogeny-based key establishment. The authors of [50] found that a
combination of Dilithium at end entities and Falcon at CA levels
outperforms the respective PQC control certificate chains in TLS 1.3
handshakes, but they did not consider post-quantum key establish-
ment in their performance study. As NIST already declared it will
only standardize one lattice-based signature scheme, we do not
consider combinations of Dilithium and Falcon in our work [40].

In this work, however, we assess mixed certificate chains as part
of a migration strategy towards post-quantum authentication by
combining hash-based schemes at the root CA level with conven-
tional cryptography or lattice-based schemes at subsequent levels.
Furthermore, we consider two client platforms in our experiments
(x86-64 CPU and Cortex-A53) as well as client authentication in
TLS 1.3, which has not been investigated in previous studies. As
opposed to the existing works that combine PQC signature schemes
across different chain levels, we do not necessarily aim for perfor-
mance improvements in terms of connection establishment time.
Instead, our main goal is to explore the feasibility of our migration
strategy by also taking implementation cost (code size and memory
usage) into account and by evaluating the overall impact on the
TLS 1.3 handshake protocol under realistic network conditions.

4 TOWARDS POST-QUANTUM
AUTHENTICATION IN TLS 1.3

In this section we describe our approach for the transition to post-
quantum authentication in TLS 1.3 which is based on mixed cer-
tificate chains. In order to assess our proposed strategy we also
introduce the selected combinations of signature schemes.

https://bench.cr.yp.to/supercop.html
https://github.com/mupq
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Besides that, we briefly explain the integration of PQC into the
handshake of TLS 1.3 and the corresponding integration into the
cryptographic library wolfSSL.

4.1 Migration Strategy Based on Mixed
Certificate Chains

Digital certificates play a key role in today’s public key infras-
tructures (PKIs). They contain a public key alongside additional
information related to the owner (subject) who possesses the corre-
sponding secret key. In essence, a digital certificate ties the owner’s
identity to its public key via the signature of a certificate author-
ity. X.509 certificates are the most common standard for digital
certificates. They are primarily used for digital authentication in
protocols like TLS, SSH, and IKEv2.

In a typical hierarchical PKI for TLS connections a trusted root
CA holds a self-signed root certificate and issues certificates to ICAs.
In turn, the task of ICAs is to sign other ICA or EE certificates ulti-
mately creating a chain of trust. Validating EE certificates requires
that (a) the root CA certificate is trusted and securely stored on the
respective entities and that (b) all signatures in the certificate chain
are verified using the public key of the issuer’s certificate (see Fig. 1).
In this chain of trust, the self signed root certificate serves as the
main trust anchor. As a consequence, root CAs typically operate
offline in high-security environments in order to protect their se-
cret signing key. While the distribution of root CA certificates is
straightforward in desktop environments, e. g., via regular soft-
ware updates, it is considered a major challenge in IoT applications,
since IoT devices often lack appropriate software/firmware update
mechanisms despite their long lifespans [21, 27].

Moreover, root CA certificates typically have long validity pe-
riods, often between 10–25 years [28]. As a result, root CAs will
already have to consider a transition to PQC in case their certifi-
cates expire in the near future. ICA and EE certificates, on the other
hand, have much shorter validity periods (between 1–10 years) [28].
Besides that, they can be renewed via standardized mechanisms.
For instance, EEs in WebPKIs, i. e., TLS servers, can automatically
renew their certificates via the Automated Certificate Management
Environment (ACME) [8].

Therefore, we expect the following two aspects to prevent a fast
and seamless transition to post-quantum authentication in TLS:

(1) Despite the fact that root CAs need to initiate the transition
to PQC in the near future, most PQC signature schemes
have not received the same level of scrutiny as currently
deployed public key cryptography. However, as the main
trust anchor in a PKI root CAs require fully-trusted and
well-established signature schemes.

(2) Not all components of a PKI need a transition to PQC simul-
taneously. As authentication cannot be broken retroactively,
there is no need for end entities to deploy PQC for authen-
tication right away. In addition, certificates at higher levels,
i. e., ICA or EE, can be exchanged more easily.

Out of all proposed PQC signature schemes, hash-based schemes
are arguably considered most mature for real-world deployment,
because (a) most of their underlying constructions, e. g., Merkle
trees, have been studied for decades, (b) their security relies only
on minimal assumptions, i. e., (second-)preimage resistance, and

(c) stateful hash-based schemes are already specified in IETF RFCs
and also recommended by NIST. As a consequence, hash-based
schemes already fulfill the requirements for signature schemes at
the root CA level. However, because of their slow signing times
and large signature sizes it is a challenge to deploy them at other
levels of a PKI especially in embedded IoT devices [14]. In addition,
stateful hash-based schemes require careful state synchronization
in order to prevent any leakage of secret key material. But since
root CAs operate in high-security environments, we assume they
are capable of effectively applying state management techniques,
such as introduced in [38]. Stateless hash-based signature schemes,
on the other hand, mitigate the drawback of state synchronization,
at the cost of bigger signature sizes (see Table 2).

In order to ease the transition to post-quantum authentication
in TLS we propose the following two-step migration strategy, in
which hash-based signature schemes play a key role. In the first
step, we combine hash-based schemes at the root level with conven-
tional signature schemes, e. g., ECDSA, at the subsequent levels of a
hierarchical PKI. In this step, ICAs and EEs will only be required to
implement the verify operation of the respective hash-based scheme.
Note that we consider this only as intermediate step towards com-
plete post-quantum authentication. As quantum computers capable
of breaking currently deployed public key cryptography will not
become available within the next few years, we do not require
authentication to resist such attacks during this first step.

In the second step of our migration strategy, we combine hash-
based schemes with lattice-based signature schemes in order to
provide full post-quantum authentication. We consider this a valid
strategy for the following three reasons:

(1) Due to the long life span of the root CA certificates de-
ployed in the first step, a complex and time-consuming
redistribution of root certificates can be avoided.

(2) More PQC signature schemes will have reached the same
level of maturity as hash-based schemes by then. At the
time of writing, lattice-based schemes are arguably consid-
ered most suitable for general purposes, but in case of any
cryptanalytic breakthroughs alternatives will exist.

(3) Since hash-based schemes offer comparatively fast verifica-
tion times we expect to see only a negligible performance
impact when combined with either conventional cryptogra-
phy in the first step or lattice-based schemes in the second
step of our migration strategy.

Nevertheless, in the second step, ICAs and EEs need to fully
implement the respective lattice-based signature scheme in addition
to the verification of hash-based signatures. As a consequence, we
do not only consider TLS metrics such as handshake duration and
communication size in our evaluation but also the impact of our
migration strategy on code size and memory.

4.2 Signature Scheme Combinations
As motivated in Section 2, we selected the two hash-based signature
schemes XMSS (stateful; short: XMS) and SPHINCS+ (stateless;
short: SP), the two lattice-based schemes Dilithium (short: Dil) and
Falcon (short: Fal), as well as the conventional scheme ECDSA
(short: EDS) for the evaluation of our migration strategy. Moreover,
we consider both performance variants of the SPHINCS+ signature
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framework: its speed-optimized instantiation (short: SPf, ‘f’ for fast)
and its size-optimized instantiation (short: SPs, ‘s’ for small).

Since our focus is on the evaluation of post-quantum signature
schemes in TLS, we are considering only two key establishment
schemes, ECDHE (short: EDH ) as conventional scheme and Kyber
(short: Kyb) as representative for lattice-based post-quantum KEMs.

We chose the parameter sets of the evaluated PQC schemes to
target NIST security level 1 with two exceptions: the specification
of Dilithium does not offer a NIST level 1 set, instead we work with
its parameter set that corresponds to security level 2; XMSS has
no official NIST security level, since it is not part of the NIST PQC
process. For the conventional ECC schemes ECDSA and ECDHE
we are using the curve SECP256R1.

For our experiments we considered a certificate chain length of
three, which is the predominant case in current deployments of TLS
(about 40.0 %) [49]. Since we also target client authentication, server
and client are both equipped with their own device certificate and
the respective certificate chain. Although mutual authentication
is not commonly used in WebPKIs, several use cases for it exist
outside of it, e. g., company networks and IoT applications [44]. In
fact, many industry-specific protocols that rely on security features
of TLS even advocate the use of mutual authentication, such as
MQTT [36] and OPC UA [45].

Following our selection of signature schemes and aforemen-
tioned prerequisites, we derive two groups for our evaluation:

(1) Control: This group contains six ‘regular’ certificate chains
containing only a single signature scheme. As a reference
we compare our migration strategy against a fully con-
ventional certificate chain within a fully conventional TLS
handshake. In order to assess the feasibility of our approach,
we compare mixed certificate chains against PQC-based cer-
tificate chains that contain either only a single hash-based
or a single lattice-based signature scheme.

(2) Mixed Certificate Chain: This group presents our two-step
migration strategy and contains nine combinations of signa-
ture schemeswithin certificate chains.We selected the three
hash-based schemes (XMS, SPf, SPs) as signature schemes at
the root CA level. In accordance with our two-step process,
we combine XMSS and the two SPHINCS+ instantiations
with the conventional signature scheme ECDSA represent-
ing our first transitional migration step. To complete the
migration to full post-quantum authentication, we subse-
quently combine the selected hash-based schemes with
lattice-based PQC schemes (Dilithium and Falcon).

The complete list of all 15 combinations (including their abbre-
viated notation) is given in Table 1. We present the measurement
results of these combinations in Section 5.

4.3 Post-Quantum TLS 1.3 Handshake
The goal of TLS is to establish an encrypted communication channel
between two endpoints. Its most recent version—TLS 1.3—was
introduced in 2018 as RFC 8446 [46].Within global TLS connections,
TLS 1.3 still plays a minor role with a share of approximately only
5.4% [29]. But considering current adoption rates [47], we expect
it will be the pre-dominant version by the time PQC has become
state-of-the-art. As a result, we focus on TLS 1.3 in our work.

Table 1: Evaluated scheme combinations within TLS 1.3.

Signature Scheme

Root CA Interm. CA End Entity KEX Notation
4

C
on

tr
ol

ECDSA ECDSA ECDSA ECDHE EDS-EDH
Dilithium Dilithium Dilithium Kyber Dil-Kyb
Falcon Falcon Falcon Kyber Fal-Kyb
XMSS XMSS XMSS Kyber XMS-Kyb
SPHINCS+-f SPHINCS+-f SPHINCS+-f Kyber SPf-Kyb
SPHINCS+-s SPHINCS+-s SPHINCS+-s Kyber SPs-Kyb

M
ix
ed

C
er
ti
fi
ca
te

C
ha

in

XMSS ECDSA ECDSA Kyber XMS+EDS-Kyb
XMSS Dilithium Dilithium Kyber XMS+Dil-Kyb
XMSS Falcon Falcon Kyber XMS+Fal-Kyb

SPHINCS+-f ECDSA ECDSA Kyber SPf+EDS-Kyb
SPHINCS+-f Dilithium Dilithium Kyber SPf+Dil-Kyb
SPHINCS+-f Falcon Falcon Kyber SPf+Fal-Kyb

SPHINCS+-s ECDSA ECDSA Kyber SPs+EDS-Kyb
SPHINCS+-s Dilithium Dilithium Kyber SPs+Dil-Kyb
SPHINCS+-s Falcon Falcon Kyber SPs+Fal-Kyb

4 We denote our control certificate chains as DSARoot&ICA&EE-KEX and our
mixed certificate chains as DSARoot+DSAICA&EE-KEX.

Compared to its predecessor, TLS 1.3 offers major security as
well as performance improvements in its handshake protocol [46].
Legacy symmetric cryptography is no longer supported and it even
mandates the use of authenticated encryption. Besides that, en-
cryption of all handshake messages after the ServerHello message
has been added. A new concept of cipher suites has also been
introduced, separating authentication and key exchange mecha-
nisms from the symmetric mechanisms protecting the established
secure tunnel. Furthermore, its modular design has been improved,
which facilitates the integration of new cryptographic schemes.
This makes it easier to integrate PQC into the handshake of TLS 1.3,
as highlighted in previous works [42, 49, 50].

Fig. 1 shows the resulting TLS 1.3 handshake after the integra-
tion of PQC. Regarding key exchange, a post-quantum KEM first
needs to be transformed into an ephemeral KEX scheme as follows.
The client creates an ephemeral key pair using the KEM’s key gen-
eration function. Within the ClientHello message it advertises the
selected KEM as part of the supported_groups extension alongside
the generated KEM public key as part of the key_share extension.
Having received the ClientHello message, the server performs the
KEM’s encapsulation operation resulting in a shared secret and
the ciphertext. The server then sends the ciphertext back to the
client within the key_share extension of the ServerHello message.
As we require mutual authentication in our experiments, the server
requests client authentication by sending a CertificateRequestmes-
sage. Besides that, the server transmits its X.509 certificate chain
(excluding the root CA certificate) as part of theCertificatemessage
as well as a post-quantum signature over the handshake transcripts5
within the CertificateVerify message. The client subsequently per-
forms the KEM’s decapsulation operation now sharing a secret with

5Handshake transcript is a hash value computed by hashing the concatenation of all
handshake messages that have been sent so far.
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Figure 1: Post-quantum TLS 1.3 handshake illustrating the concept of mixed certificate chains.

the server. The client authenticates the server’s identity by verify-
ing the signature and the received certificate chain, performing a
total of three PQC verify operations for a chain length of three. In
response to the server’s CertificateRequest message, the client also
sends a signature over the handshake transcript (CertificateVerify)
alongside its own certificate chain (excluding the root CA certifi-
cate) within theCertificatemessage. By verifying the signature over
the handshake transcript and the entire certificate chain, the server
authenticates the client, which completes the TLS 1.3 handshake.

4.4 Integration of PQC into wolfSSL
Existing integrations of PQC into TLS 1.3 libraries are aimed at
desktop/server environments [33, 48, 51]. Work that targets em-
bedded systems, on the other hand, only supports TLS 1.2 [14].
Therefore, we selected the open source TLS library wolfSSL (v4.7.0)
for our integrations of PQC, because it is suitable for embedded
systems and supports TLS 1.3.

WolfSSL consists of the cryptography engine wolfCrypt, which
is responsible for all cryptography operations and services. As a
result, the integration of PQC into wolfSSL requires: (a) to extend
the wolfCrypt engine with PQC and (b) to make them accessible
to wolfSSL’s implementation of the TLS 1.3 handshake. We used
the most recent reference implementations of the four selected
NIST PQC schemes6 and the latest reference implementation of

6https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

XMSS7. Note that we did not make use of any architecture-specific
optimizations (AVX2 and assembly) in our experiments.

Enabling PQC in the TLS handshake required to make the inte-
grated schemes and newly defined Object Identifiers (OIDs) avail-
able in the respective modules of wolfSSL. To handle the larger key
and signature size of the integrated PQC signature schemes, inter-
nal buffer sizes needed to be increased, such asMAX_X509_SIZE
andMAX_CERT_VERIFY_SIZE. Currently, wolfSSL does not sup-
port fragmentation of the CertificateVerify messages for signatures
larger than the maximum single record size of 214 B (16 kB). There-
fore, we implemented a fragmentation mechanism for messages
containing a signature larger than the single record size, primarily
relevant for the speed-optimized variant of SPHINCS+ (see Table 2).

5 MEASUREMENTS AND EVALUATION
We consider two types of client devices in our experiments: (i) Note-
book equipped with an Intel Core i5-6300U quad-core processor
running at 2.4GHz and 8GB of RAM; (ii) Raspberry Pi 3 Model B
equipped with an ARM Cortex-A53 quad-core processor running
at 1.2GHz and 1GB of RAM (denoted Embedded in the following).
The first represents a typical client device in, e. g., company net-
works, whereas the latter represents an embedded client in typical
IoT settings. Both devices are connected via their Ethernet interface
to the local access point.

7https://github.com/XMSS/xmss-reference.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://github.com/XMSS/xmss-reference
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Our servers are set up as remote Azure virtual machines (Stan-
dard D2as_v4) at three different locations (West Europe, East US,
East Australia). They are equipped with two virtual CPUs based
on an AMD EPYC7452 processor running at 2.35GHz and 8GB of
RAM. The remote servers are located at increasing distances to
our local clients based in West Europe, as the following round-trip-
time (RTT) statistics show:

• Client → West Europe: 26.1ms (mean RTT; hop count: 15).
• Client→ East US: 105ms (mean RTT; hop count: 19).
• Client→ East Australia: 258ms (mean RTT; hop count: 21).

Client and Server Programs. Our client and server implement a
mutually authenticated TLS 1.3 handshake using the full 1-RTT
mode without pre-shared key resumption; the selected ciphersuite
is TLS_AES_256_GCM_SHA384. Library and programs are com-
piled using gcc’s O3 flag. Note that we do not consider caching of
intermediate certificates, as well as extensions commonly found
in WebPKI settings (SCT, OCSP, CRL, SAN), since a few extra byte
of certificate data do not fundamentally change handshake perfor-
mance [49, 50].

Measured Parameters and Objectives. In order to evaluate the fea-
sibility of mixed certificate chains as migration strategy for TLS 1.3
towards PQC, we conduct several time-related as well as cost-
related measurements. We introduce three measurement points
in our client and server programs as outlined in Fig. 1. With time
to first byte (TTFB) we measure the latency a client experiences
from initiating the TLS handshake to receiving the first byte of en-
crypted application data (excluding the initial TCP handshake).8 In
order to assess the individual cryptographic load client and server
experience during the TLS handshake, we also measure client and
server connect time by observing the time when the handshake is
initiated from their point of view up until sending their respective
Finished message. Apart from these time-related measurements we
also investigate the impact mixed certificate chains have on the
following cost metrics: communication size, resulting code size of
the PQC-enabled wolfSSL library, and peak memory usage of client
and server programs for each of our test cases.

In our measurements the conventional use case EDS-EDH serves
as baseline for the comparison between mixed certificate chains
and other evaluated control certificate chains. Note that with our
time-related measurements we do not expect to see performance im-
provements compared to the conventional and PQC-based control
use cases, instead we aim to assess the feasibility of our approach
as practical migration strategy towards enabling post-quantum
authentication for TLS.

5.1 Standalone Performance of Evaluated
Cryptographic Primitives

At first, we evaluated standalone performance characteristics for
the signature and key establishment algorithms used in this work.
We modified wolfCrypt’s internal benchmark tool to integrate the
newly added PQC schemes. Table 2 shows the averaged benchmark
results on the three experimental platforms. In addition, we report

8To account for the time the server spends authenticating the client, we have the
server send the first message of encrypted application data.

Table 2: Overview of evaluated cryptographic schemes in-
cluding performance benchmarks on target platforms (time
rounded to three significant figures).

Algorithm NIST Sizes Performance
(Parameter) Level (byte) (ms)

Embed. Notebook Server

Key Encapsulation Schemes

ECDHE
(SECP256R1) × sk: 32 gen: 1.52 0.0920 0.0910

pk: 65 agmt: 4.40 0.255 0.271

Kyber [6]
(Kyber512) 1

sk: 1632 gen: 0.572 0.0380 0.0330
pk: 800 enc: 0.772 0.0440 0.0370
ct: 768 dec: 0.772 0.0490 0.0430

Signature Schemes

ECDSA
(SECP256R1) ×

sk: 32 gen: 1.52 0.0920 0.0910
pk: 65 sign: 1.94 0.116 0.119
sig: 73 vfy: 4.85 0.285 0.301

Dilithium [7]
(Dilithium-2) 2

sk: 2544 gen: 2.04 0.107 0.0880
pk: 1312 sign: 11.9 0.414 0.389
sig: 2420 vfy: 2.21 0.121 0.0990

Falcon [26]
(Falcon-512) 1

sk: 1281 gen: 158 20.1 16.9
pk: 897 sign: 35.7 5.90 4.91
sig: 666 vfy: 0.435 0.0420 0.0310

SPHINCS+ [5]
(SHA-256-128s
-simple)

1
sk: 64 gen: 473 114 93.6
pk: 32 sign: 3540 866 710
sig: 7856 vfy: 3.53 0.876 0.678

SPHINCS+ [5]
(SHA-256-128f
-simple)

1
sk: 64 gen: 7.33 1.75 1.47
pk: 32 sign: 183 43.3 36.4
sig: 17,088 vfy: 10.2 2.46 2.05

XMSS [30]
(XMSS-SHA2
-10-256)

–
9

sk: 36 gen: 11,300 2190 1870
pk: 64 sign: 50.1 9.70 8.26
sig: 2500 vfy: 6.49 1.20 1.03

Notation: secret key (sk), public key (pk), ciphertext (ct), signature (sig), key
generation (gen), key agreement (agmt), encapsulation (enc), decapsulation
(dec), sign (sign), verify (vfy).
9 Since XMSS is not part of NIST’s PQC standardization process, it does

not have an official NIST security level.

the size characteristics of all evaluated schemes: key size and cipher-
text/signature size. Note that, for the ECC schemes (ECDHE and
ECDSA) we enabled wolfSSL’s optimized implementation based on
its multi-precision math library.

Key Establishment Schemes. All three functions of the post-quan-
tum KEM Kyber (key generation, encapsulation, and decapsulation)
outperform ECDHE on every platform. In fact, ECDHE’s key agree-
ment is slower by at least a factor of five. As a result, Kyber’s
comparatively small public key and ciphertext sizes (≤1 kB) and
fast performance make it a promising PQC scheme.

Signature Schemes. As expected the two lattice-based signature
schemes Dilithium and Falcon perform better than their three hash-
based counterparts on all platforms. In all evaluated hash-based
schemes the sign operation is very expensive. For example, a single
sign operation takes about 3.5 s using the size-optimized SPHINCS+
(SPs) instantiation on the embedded target compared to only 1.9ms
with ECDSA. Considering verification, all hash-based schemes are
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Figure 2: Time measurements in the local setting (median
times in ms; error bars for 25th and 75th percentile): Embed-
ded→ Notebook.

within an acceptable range, whereas Dilithium and Falcon even
outperform ECDSA.

Besides that, we observe that ECDSA has faster signing opera-
tions than verification as opposed to the two lattice-based schemes,
where verification is considerably faster than signing. Since verifi-
cation is required more often in a typical TLS handshake, we expect
to see a feasible performance in case client or server make use of a
lattice-based signature scheme.

Nevertheless, this benchmark shows that PQC signature schemes
will generally affect the performance of TLS handshakes more than
PQC key establishment (in case of fast lattice-based KEMs). Note
that in signature schemes, key generation is required only in case
a new long term signing key pair needs to be generated.

5.2 Connection Establishment Times
For each of the two client devices (Notebook and Embedded) and
each of the 15 certificate chain test cases (9 mixed and 6 control
certificate chains) we perform 1000 TLS 1.3 handshakes with each
of the three remote servers. In addition, we perform the same ex-
periment in a local network, where the embedded device acts as
client and the notebook as server. This local experiment allows us
to better analyze the impact of the actual cryptographic operations
without hardly any network latency (mean RTT: 0.919ms). In the
following, we focus our analysis on median TTFB, since it includes
all operations related to server as well as client authentication.

Local Server. Fig. 2 shows the results of our local experiment. The
control combinations EDS-EDH and Dil-Kyb show the best perfor-
mance with median TTFB at 29.7ms for the former and 30.0ms for
the latter. Nevertheless, combining hash-based signature schemes
with ECDSA—as part of the first step in our migration strategy—
shows very promising results. Compared to the conventional con-
trol case EDS-EDH the increase in median TTFB remains feasi-
ble, especially in the following two combinations: SPs+EDS-Kyb
(+4.64ms) and XMS+EDS-Kyb (+5.57ms).

Considering the final step of our strategy, we observe a similar
small increase in median TTFB. In that case the fastest two PQC-
only mixed certificate chains are: XMS+Dil-Kyb with an increase of
+4.69ms and SPs+Dil-Kyb with an increase of +4.41ms, which is

also the smallest increase of all evaluated mixed certificate chains
in this setting.

Furthermore, our approach of using SPHINCS+ only at the root
CA level gives a significant improvement compared to certificate
chains from the control group that use SPHINCS+ across the entire
chain. In fact, we observe an average decrease in TTFB of 79.9 % in
case of SPf-Kyb and 99.0 % in case of SPs-Kyb. The slow handshake
times in the pure SPHINCS+ settings are largely due to the slow sign-
ing operation of the two particular SPHINCS+ signature schemes
(see Table 2), especially in case of SPs-Kyb where we experienced a
median TTFB of 4.48 s.

Remote Servers. Next, we analyze our mixed certificate chains
under realistic network conditions where our two client devices
connect to the aforementioned remote servers over a public net-
work. Fig. 3 shows the six handshake related time measurements
of this experiment. Despite the increase in message sizes due to
larger certificates, signatures, and ciphertexts we see a success rate
of 100 % in all performed handshake experiments. Note that we do
not report measurements for the following three hash-based con-
trol combinations: SPf-Kyb, SPs-Kyb, and XMS-Kyb. As we showed
in the local network setting SPHINCS+-only certificate chains are
impractical for most applications, because of their slow handshake
times. In case of a certificate chain purely based on XMSS, we do not
trust embedded clients and load-balanced server farms to securely
manage the state of XMSS private keys.

Before we assess the individual impact of our two-step migra-
tion strategy, we look at the general feasibility of the evaluated
mixed certificate chains for TLS 1.3. We observe a feasible increase
in median TTFB across all nine evaluated mixed certificate chains
compared to the ECC-based control handshake (EDS-EDH ). For
connections to the server located in West Europe this increase is
+12.4 % (Notebook) and +14.4 % (Embedded) respectively. The same
holds true for connections to the server in East US: +2.77 % (Note-
book) and +3.66 % (Embedded). As expected, the increase becomes
even less significant when connecting to the server located in East
Australia: +1.52 % (Notebook) and +1.06 % (Embedded). This demon-
strates that the impact of individual cryptographic operations on
all reported connection establishment times decreases with longer
client-server distances due to the higher round-trip times. As a
consequence, we focus the subsequent evaluation of time-related
handshake measurements when connecting to servers located in
West Europe (Figs. 3a and 3b) and East US (Figs. 3c and 3d).

In case the notebook connects to the server located in West Eu-
rope (Fig. 3a) we observe the smallest increase in median TTFB
compared to EDS-EDH with mixed certificate chains using ECDSA
at ICA and EE level— the first step of our proposed strategy. Be-
cause of their comparatively small certificate chain sizes (see Ta-
ble 5 in Appendix A), fast conventional sign operation for hand-
shake signatures, and balanced verify operations, the combina-
tions SPs+EDS-Kyb (+5.09ms) and XMS+EDS-Kyb (+5.27ms) seem
promising transitional candidates, as in the local setting. Regarding
the final step towards complete post-quantum security, the combi-
nation XMS+Dil-Kyb shows the fastest TTFB with an increase of
+7.99ms. For both migration steps, we observe the same behavior
when connecting to the server in East US (Fig. 3c).
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(b) Embedded (West Europe)→ Server (West Europe).
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(c) Notebook (West Europe)→ Server (East US).
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(f) Embedded (West Europe)→ Server (East Australia).

Figure 3: Time measurements under realistic network conditions at increasing client-server distances (median times in ms;
error bars for 25th and 75th percentile).

We find similar results, in case the embedded device acts as client.
Again, the mixed certificate chains of the first migration step (hash-
based schemes combined with ECDSA) show a feasible median
TTFB compared to the conventional control combination EDS-EDH
when connecting to the server based in West Europe (Fig. 3b):
XMS+EDS-Kyb (+12.9ms) and SPs+EDS-Kyb (+15.7ms).

In the final step of our strategy, the combination XMS+Dil-Kyb
even outperforms EDS-EDH (−5.39ms). We attribute this behavior
to scheme dependent computational fluctuations, especially in case
of Dilithium [32], as well as higher traffic load caused by larger
message sizes as indicated by the error bars in Fig. 3. These findings
are also replicated for the server based in East US (Fig. 3d).

5.3 Communication Size
Fig. 4 shows the size of all messages that client and server exchange
during their handshake (total handshake size) in contrast to median
TTFB. In all evaluated test cases we observe an increase in com-
munication size as a result of the significant increase in certificate
chain size (see Table 5 in Appendix A) and, to a lesser degree, as a
result of larger signatures and key exchange material (see Table 2).

In addition to its promising TTFB, the scheme combination
XMS+EDS-Kyb of our first migration step leads to the smallest total
handshake size (10.1 kB) among all investigated mixed certificate
chains. On the other hand, our three combinations containing the
SPHINCS+ variant SPf at the root CA level show the highest total
handshake sizes with a minimum of 39.4 kB (SPf+EDS-Kyb) up to
54.2 kB (SPf+Dil-Kyb).
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(a) Notebook (West Europe)→ Server (West Europe).

(b) Embedded (West Europe)→ Server (West Europe).

Figure 4: Total handshake size vs. time to first byte of evalu-
ated scheme combinations (KEX omitted for readability).

Regarding the mixed certificate chains that present our final
migration step, the combination XMS+Fal-Kyb has the lowest total
handshake size with 16.1 kB. The combination XMS+Dil-Kyb, how-
ever, has a slightly larger total handshake size of 24.8 kB, which
is virtually the same as the purely Dilithium-based combination
Dil-Kyb (24.7 kB), but compared to XMS+Fal-Kyb it has shown a
more promising median TTFB in our time-related measurements.

5.4 Code Size
We compiled wolfSSL as static library for each of our test cases and
linked it with the corresponding client or server programs. To allow
for a fair comparison of the libraries’ code size we only enabled the
cryptographic operations relevant for the respective test case.

In Table 3 we report the code size of the wolfSSL library for
each of our client device and all 15 scheme combinations. Note
that ECC, i. e., ECDSA and ECDHE, is mandatory when building
wolfSSL as TLS 1.3 client or server, therefore its functionality is

Table 3: Total code size of wolfSSL library for evaluated
scheme combinations (reported in kB; rounded to three sig-
nificant figures).

Embedded Notebook

Algorithm
Combination

Code Size Overhead Code Size Overhead
(kB) (kB) Δ (%) (kB) (kB) Δ (%)

EDS-EDH 393 — — 377 — —
Dil-Kyb 633 240 +61.2 484 107 +28.5
Fal-Kyb 727 334 +85.1 569 192 +51.0

XMS(+EDS)-Kyb 602 209 +53.2 448 71.5 +19.0
XMS+Dil-Kyb 649 257 +65.3 503 126 +33.5
XMS+Fal-Kyb 743 350 +89.2 588 211 +56.0

SPf(+EDS)-Kyb 607 215 +54.6 457 79.7 +21.2
SPf+Dil-Kyb 655 262 +66.8 511 134 +35.7
SPf+Fal-Kyb 748 356 +90.6 596 219 +58.2

SPs(+EDS)-Kyb 607 214 +54.6 456 79.4 +21.1
SPs+Dil-Kyb 654 262 +66.7 511 134 +35.5
SPs+Fal-Kyb 748 355 +90.6 596 219 +58.1

included in all of the libraries. Nevertheless, we limit the impact
of ECC on the resulting code size by only enabling the required
elliptic curve SECP256R1. Other configuration options that we
require in all library builds are the relevant symmetric ciphers,
hash functions, and TLS 1.3 functionality including X.509 certificate
handling; we disable all other non-relevant options. As we built
the library optimized for speed (-O3) rather than size, we observe
larger code sizes than typical embedded libraries (≤ 100 kB) [14].
We report total code size consisting of data, bss, and text sections.
Due to the different platforms of our client devices (Cortex-A53 vs.
Core i5) the code size of our libraries varies. However, we are more
interested in the relative impact our mixed certificate chains have
on final code size rather than absolute size. Besides that, most of
the code size will end up in static flash memory which is typically
not a limiting factor even in embedded systems.

On both client platforms, the integration of hash-based signa-
ture schemes and Kyber leads to the smallest overhead in code
size, which automatically enables combinations of the initial migra-
tion step; with XMSS having the lowest impact: 53.2 % (Embedded)
and 19.0 % (Notebook). As sign operations of hash-based schemes
are not required on client and server side in our approach, the re-
sulting code size can be decreased further by only implementing
the corresponding verification operation. As Kyber and Dilithium
use wolfSSL’s implementation of SHA3, combining hash-based sig-
nature schemes with Dilithium for a post-quantum secure TLS
handshake leads to acceptable overhead. In case of the embedded
device code size increases in average by another 12.1 % and in case
of the notebook by another 14.5%. Due to Falcon’s larger overall
code size its impact is higher when combined with hash-based
schemes from the first migration step, with an average additional
increase of 36.0 % (Embedded) and 37.0 % (Notebook).

As servers are typically equipped with sufficient amount of mem-
ory, we enable all cryptographic algorithms relevant for our test
cases in the server’s library— resulting in a total code size of 798 kB.
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Table 4: Peakmemory usage of client program on our embed-
ded platform for evaluated scheme combinations (reported
in kB; rounded to three significant figures).

Algorithm
Combination

Client: Embedded

heap stack total Δ (%)

C
on

tr
ol

EDS-EDH 107 62.8 170 —
Dil-Kyb 128 111 240 +41.2
Fal-Kyb 119 102 221 +30.2
XMS-Kyb 122 63.5 186 +9.49
SPf-Kyb 167 61.3 228 +34.4
SPs-Kyb 129 61.9 191 +12.4

M
ix
ed

C
er
ti
fi
ca
te

C
ha

in

XMS+EDS-Kyb 115 63.3 178 +5.19
XMS+Dil-Kyb 129 111 240 +41.4
XMS+Fal-Kyb 119 102 221 +30.2

SPf+EDS-Kyb 131 68.3 199 +17.2
SPf+Dil-Kyb 142 111 253 +49.0
SPf+Fal-Kyb 135 102 236 +39.3

SPs+EDS-Kyb 119 63.3 182 +7.43
SPs+Dil-Kyb 133 111 244 +43.7
SPs+Fal-Kyb 126 102 227 +34.0

5.5 Peak Memory Usage
We use Valgrind’s massif tool10 to measure peak heap and stack
usage of our client and server programs for each mixed certificate
chain and control group setting. Heap usage is mostly affected by
dynamic memory allocations related to buffers for sending mes-
sages. Due to larger certificate chain sizes sent in the Certificate
message as well as larger signatures sent in the CertificateVerify
message, we see an increase in peak heap usage across all test cases
on all platforms. Other notable allocations are related to loading
the private key of the corresponding signature scheme, the DER-
decoded certificate chain, the cryptographic material related to the
ephemeral key exchange scheme, and other smaller wolfSSL context
buffers. As a result, combinations of hash-based signature schemes
and ECDSA, which are a part of our first migration step, show the
smallest increase in peak heap usage benefiting from small public
keys and signatures of ECDSA. Regarding our second migration
step, the combination of hash-based schemes and Dilithium leads
to the highest increase in heap usage because of Dilithium’s larger
keys and signature sizes with an average increase of 39.9 % across
all platforms compared to the control combination EDS-EDH.

Note that peak stack usage is not influenced by the size of the
cryptographic material. Instead, it depends largely on the imple-
mentation of the underlying hard mathematical problem. In our
analysis we observe the highest peak stack usage when Dilithium is
used in the TLS 1.3 handshake. Nevertheless, we expect future im-
plementations of standardized PQC schemes to offer size-optimized
implementations potentially reducing their stack usage.

However, as heap and stack both reside on RAM it is very impor-
tant to achieve an overall low memory consumption for both, since

10https://valgrind.org.

this is typically a scarce resource— especially on embedded systems.
Table 4 shows the results of our memory analysis for the embedded
client. Peak memory usage of all our 15 test cases is below 256 kB
and hence within acceptable range of typical embedded systems.
For our memory analysis of the client program on the notebook
and server program see Table 6 in Appendix A.

5.6 Migration Strategy
We show that our proposed migration strategy based on mixed
certificates is feasible in TLS 1.3. The combination of hash-based
signature schemes, especially XMSS, with conventional ECDSA as
the first step in our migration strategy gives promising results. On
both evaluated client platforms XMS+EDS-Kyb shows fast connec-
tion establishment times, lowest overhead in communication and
code size, as well as lowest memory usage of all evaluated mixed
certificate chains. In case state management is not desired at the
root CA level, SPs+EDS-Kyb is another well-balanced alternative,
with similar results in time to first byte, code size, and memory
usage but larger communication overhead.

Considering the final step in our migration strategy, we observe
that the scheme combinationXMS+Dil-Kyb is feasible for both client
devices— even outperforming the control combination EDS-EDH
on the embedded device. It also comes with acceptable overhead in
code size; however, its impact on RAM is significant due to high
peak stack usage of Dilithium’s reference implementation. Never-
theless, we expect that future implementations of Dilithium will
offer stack optimized implementations. Alternatively, the combina-
tion XMS+Fal-Kyb leads to slightly higher connection establishment
times but still tolerable for short-lived TLS connections. However,
it has smaller communication size and lower peak memory usage
compared to XMS+Dil-Kyb.

While other scheme combinations can be used in our migration
strategy, we see a combination of hash- and lattice-based schemes
favorable for the following two reasons:

(1) Hash-based schemes at the root CA level already offer con-
servative security against current as well as future quantum-
computer attacks. They have been analyzed for decades
and are based only on minimal security assumptions. Fur-
thermore, stateful hash-based schemes are the first PQC
schemes to be specified in form of an IETF RFC.

(2) While lattice-based schemes are still fairly new and thus
less tested, they have arguably attracted the most attention
in academia over the last few years. Their balanced perfor-
mance characteristics make them promising candidates for
standardization.

6 CONCLUSION
In this paper, we presented a novel two-step migration strategy
towards upcoming standards of PQC signature schemes based on
the concept of mixed certificate chains. In a first intermediate step,
we combined trusted hash-based signature schemes at the root
CA level with the conventional scheme ECDSA to prepare for a
seamless transition to PQC-based authentication in TLS. The final
migration step aims for complete post-quantum security, where
we evaluated the combination of hash-based signature schemes at
the root CA level with lattice-based schemes at the ICA and EE
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level alongside the post-quantum KEM Kyber. In fact, using hash-
based signature schemes only at the root CA level allows us to
alleviate most of their drawbacks: slow signing performance, large
signatures, and state management in case of XMSS.

Considering the first step of our proposed strategy, the combina-
tion XMS+EDS-Kyb showed promising results on both our client
devices (Notebook and Embedded) with feasible connection estab-
lishment times, lowest overhead in communication and code size,
as well as lowest memory usage of all evaluated mixed certificate
chains. Moreover, XMSS is already specified in an IETF RFC and
recommended by NIST as well as other standardization bodies.

The PQC-only combination XMS+Dil-Kyb displayed promising
results as part of the final migration step. The measured time to
first byte is feasible for both client platforms and has acceptable
overhead in code size. Its impact on RAM, however, is significantly
higher compared to other evaluated scheme combinations.

Furthermore, the reported results complement existing experi-
mental studies [48–50]: We evaluated the impact of PQC signature
schemes and PQC key establishment on the TLS 1.3 handshake by
working with current round three reference implementations and
by assessing mutual authentication under real network conditions.

While we focused on the network protocol TLS 1.3 in this work,
it is of interest to investigate the impact of our proposed migration
steps on other protocols such as SSH or IKEv2/IPsec in future work.
We hope our practical results facilitate research into the concept of
mixed certificate chains and ease the migration towards the next
generation of cryptography.
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A APPENDIX

Table 5: Certificate sizes of evaluated scheme combinations
(reported in kB; rounded to three significant figures).

Algorithm
Combination

Certificate Size (kB) Chain Size
(excl. root; kB)

Δ
(%)

Root CA ICA EE

C
on

tr
ol

EDS-EDH 0.775 0.803 0.764 1.57 —
Dil-Kyb 5.59 5.62 5.58 11.2 +615
Fal-Kyb 2.71 2.74 2.69 5.43 +246
XMS-Kyb 4.04 4.07 4.03 8.10 +417
SPf-Kyb 23.3 23.3 23.3 46.6 +2870
SPs-Kyb 11.1 11.1 11.1 22.2 +1320

M
ix
ed

C
er
ti
fi
ca
te

C
ha

in

XMS+EDS-Kyb 4.04 4.09 0.760 4.85 +209
XMS+Dil-Kyb 4.04 5.72 5.58 11.3 +621
XMS+Fal-Kyb 4.04 5.17 2.68 7.87 +402

SPf+EDS-Kyb 23.3 23.4 0.764 24.1 +1440
SPf+Dil-Kyb 23.3 25.0 5.58 30.6 +1850
SPf+Fal-Kyb 23.3 24.5 2.70 27.2 +1630

SPs+EDS-Kyb 11.1 11.2 0.760 11.9 +662
SPs+Dil-Kyb 11.1 12.8 5.58 18.4 +1070
SPs+Fal-Kyb 11.1 12.3 2.70 15.0 +855
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Table 6: Peak memory usage of client and server programs for the evaluated scheme combinations (reported in kB; rounded to
three significant figures).

Algorithm
Combination

Client: Embedded Client: Notebook Server

heap stack total Δ (%) heap stack total Δ (%) heap stack total Δ (%)

C
on

tr
ol

EDS-EDH 107 62.8 170 — 111 70.1 181 — 110 69.0 179 —
Dil-Kyb 128 111 240 +41.2 137 111 248 +37.4 128 111 238 +33.3
Fal-Kyb 119 102 221 +30.2 125 103 227 +25.9 119 103 221 +24.0
XMS-Kyb 122 63.5 186 +9.49 124 64.1 188 +3.88 120 64.0 184 +2.86
SPf-Kyb 167 61.3 228 +34.4 168 61.8 230 +27.2 167 61.4 228 +27.8
SPs-Kyb 129 61.9 191 +12.4 130 61.9 192 +6.26 129 61.6 190 +6.61

M
ix
ed

C
er
ti
fi
ca
te

C
ha

in

XMS+EDS-Kyb 115 63.3 178 +5.19 119 70.2 189 +4.71 117 69.9 186 +3.86
XMS+Dil-Kyb 129 111 240 +41.4 134 111 245 +35.5 126 111 237 +32.7
XMS+Fal-Kyb 119 102 221 +30.2 125 102 227 +25.9 120 103 222 +24.5

SPf+EDS-Kyb 131 68.3 199 +17.2 132 70.0 202 +11.7 131 69.2 200 +11.9
SPf+Dil-Kyb 142 111 253 +49.0 147 111 258 +42.6 141 111 252 +40.8
SPf+Fal-Kyb 135 102 236 +39.3 138 103 241 +33.3 134 102 236 +32.3

SPs+EDS-Kyb 119 63.3 182 +7.43 123 70.2 193 +6.87 122 69.2 191 +6.89
SPs+Dil-Kyb 133 111 244 +43.7 138 110 249 +37.7 132 111 242 +35.6
SPs+Fal-Kyb 126 102 227 +34.0 129 102 231 +28.1 125 103 228 +27.4


	Abstract
	1 Introduction
	2 Post-Quantum Cryptography
	2.1 PQC Standardization
	2.2 Selection of Key Establishment and Signature Schemes

	3 Related Work
	4 Towards Post-Quantum Authentication in TLS 1.3
	4.1 Migration Strategy Based on Mixed Certificate Chains
	4.2 Signature Scheme Combinations
	4.3 Post-Quantum TLS 1.3 Handshake
	4.4 Integration of PQC into wolfSSL

	5 Measurements and Evaluation
	5.1 Standalone Performance of Evaluated Cryptographic Primitives
	5.2 Connection Establishment Times
	5.3 Communication Size
	5.4 Code Size
	5.5 Peak Memory Usage
	5.6 Migration Strategy

	6 Conclusion
	Acknowledgments
	References
	A Appendix

