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Abstract. We propose two zero-knowledge arguments for arithmetic
circuits with fan-in 2 gates in the uniform random string model. Our first
protocol features O(

√
log2N) communication and round complexities

and O(N) computational complexity for the verifier, where N is the size
of the circuit. Our second protocol features O(log2N) communication
and O(

√
N) computational complexity for the verifier. We prove the

soundness of our arguments under the discrete logarithm assumption
or the double pairing assumption, which is at least as reliable as the
decisional Diffie-Hellman assumption.

The main ingredient of our arguments is two different generalizations
of Bünz et al.’s Bulletproofs inner-product argument (IEEE S&P 2018)
that convinces a verifier of knowledge of two vectors satisfying an inner-
product relation. For a protocol with sublogarithmic communication, we
devise a novel method to aggregate multiple arguments for bilinear op-
erations such as multi-exponentiations, which is essential for reducing
the communication overhead. For a protocol with a sublinear verifier,
we develop a generalization of the discrete logarithm relation assump-
tion, which is essential for reducing verification overhead while keeping
the soundness proof solely relying on the discrete logarithm assumption.
These techniques are of independent interest.

1 Introduction

A zero-knowledge (ZK) argument is a protocol between two parties, the prover
and the verifier, such that the prover can convince the verifier that a particular
statement is true without revealing anything else about the statement itself. ZK
arguments have been used in numerous applications such as verifiable outsourced
computation, anonymous credentials, and cryptocurrencies.

Our goal is to build an efficient ZK argument for arithmetic circuits that
is sound under well-established standard assumptions, such as the discrete log-
arithm (DL) assumption: Compared to q-type strong assumptions such as q-
DLOG [41, 28], the standard assumptions will provide strong security guaran-
tees as well as a good efficiency with smaller group size due to Cheon’s attack
on q-type assumptions [21].
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The first sublinear ZK argument for arithmetic circuits solely based on the
hardness of the DL problem is due to Groth [30] and improved by Seo [45]. These
works feature constant round complexity as well.

Groth [32] gives a ZK argument with a cubic root communication complexity
using pairing-based two-tiered homomorphic commitment scheme whose binding
property is based on the double pairing (DPair) assumption [1, 2]. The first
logarithmic ZK argument for arithmetic circuits solely from the DL assumption
is due to Bootle, Cerulli, Chaidos, Groth, and Petit [15] and improved by Bünz,
Bootle, Boneh, Poelstra, Wuille, and Maxwell [17], which is called Bulletproofs.
Hoffmann, Klooß, and Rupp [36] revisited and improved Bulletproofs by showing
that it can cover systems of quadratic equations, of which rank 1 constraint
systems is a special case. These logarithmic ZK argument systems [15, 17, 36]
have linear verifiers and other DL-based ZK argument systems with different
asymptotic performance, in particular sublinear verifier, have proposed. e.g.,
Hyrax [47] and Spartan [46]. Recently, Bünz, Maller, Mishra, and Vesely [19]
achieved a logarithmic ZK argument with a sublinear verifier whose soundness
is proved under the DPair assumption.

Focusing on specific languages, there are more researches achieving logarith-
mic communication complexity [5, 34] prior to Bulletproofs. Logarithmic com-
munication complexity in these works is attained with relatively large round
complexity, compared to [30, 45].

Relying on the non-standard but reliable assumptions, there exists a ZK ar-
gument system with better asymptotic performance due to Bünz, Fisch, and
Szepieniec [18] that achieves logarithmic communications and logarithmic veri-
fier simultaneously, but it relies on rather stronger assumption such as the strong
RSA assumption and the adaptive root assumption. A lot of important research
for succinct non-interactive argument (SNARG) [31, 40, 12, 29, 13, 43, 8, 11, 34,
33, 41, 28, 48, 22] have been proposed on the top of bilinear groups, where an ar-
gument consists of a constant number of group elements. However, the soundness
of these works relies on non-falsifiable knowledge extractor assumptions and/or
the structured reference string (SRS) that requires a trusted setup, which is not
required in the aforementioned DL-based protocols. There is another important
line of works [7, 9, 23, 50] for SNARG that are not based on bilinear groups,
but based on interactive oracle proofs [10]. These works are strong candidates
for post-quantum ZK arguments and simultaneously minimizing communication
cost and verifier computation. However, their communication cost is propor-
tional to log2

2N for the circuit size N , which is larger than that of the DL based
approach [15, 17].

1.1 Our Results

We propose two ZK arguments for arithmetic circuits with fan-in 2 gates. In
particular, for a given arithmetic circuit of size N ,

1. we propose the first ZK argument with sublogarithmic communication. We
prove its soundness under the DL assumption and the DPair assumption.
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2. we present the first ZK argument with logarithmic communication and sub-
linear verifier computation such that its soundness is solely based on the
discrete logarithm assumption.

Note that all our proposals do not require the structured reference string, so
that the proposals are transparent proof systems; that is, it does not require
a trusted setup. We first propose two different generalizations of Bulletproofs
inner-product argument that convinces a verifier of knowledge of two vectors
satisfying an inner-product relation, and then we use a method to convert from
inner-product argument (without ZK) to ZK argument for arithmetic circuits
in [15, 17].

We provide a comparison for transparent ZK argument systems in Table 1.
Note that there are much more efficient argument systems in the discrete loga-
rithm setting [11, 39, 41, 28, 22, 24] if we rely on a trusted setup and non-standard,
non-falsifiable assumptions.

1.2 Overview of Our Approach

In this subsection, we briefly overview our approach for inner-product argument
with improved complexity, sublogarithmic communications or sublinear verifier.
Having inner-product arguments, we can follow Bulletproofs approach for the
reduction from inner-product arguments to ZK arguments for arithmetic circuits.

Sublogarithmic Communications. We consider the inner-product relation
{(g,h, u, P ;a, b) : P = gahbu〈a,b〉}, where a, b are witness vectors and g,h, u, P
consist of a statement.

First, we observe that the length of witness is halved for each recursive step
in Bulletproofs and it can be generalized by reducing the length of witness one
2n-th if N is a power of 2n for any positive integer n. If need be, one can
easily pad the inputs to ensure that the requirement for the format of N holds,
like in Bulletproofs. Then, in our generalization, the recursive steps are quickly
finished in log2nN times compared with log2N of Bulletproofs, but the prover
sends 2n(2n − 1) group elements in the generalization, which is larger than
Bulletproofs. One can easily verify that the communication cost O(n2 log2nN)
becomes minimal when n = 1, so that the original Bulletproofs has a minimal
case of this näıve generalization in terms of proof size. Nevertheless, this näıve
generalization is a good starting point toward our target, sublogarithmic inner-
product argument without a trusted setup.

Second, we apply the commit-and-prove approach inside the generalized Bul-
letproofs to reduce transmission overhead. More precisely, instead of sending
2n(2n − 1) group elements, the prover sends only a commitment to a vector of
2n(2n − 1) group elements using homomorphic commitment scheme to group
elements (e.g., [1, 2]). In fact, those group elements are necessary for the verifier

to update from P to P̂ for the next recursive step and this process cannot be per-
formed by the verifier without knowing those 2n(2n− 1) group elements. Thus,
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Scheme Communication P’s comp. V’s comp. Assump.

Groth [30] & Seo [45] O(
√
N) O(N) O(N) DL

Groth [32] O( 3
√
N) O(N) O( 3

√
N) DPair

BulletP. [15, 17] & HKR [36] O(logN) O(N) O(N) DL

Hyrax [47] O(
√
w + d logN) O(N logN) O(

√
w + d logN) DL

Spartan 1 [46] O(
√
N) O(N) O(

√
N) DL

Spartan 2 [46] O(log2N) O(N logN) O(log2N) DL

BMMV [19] O(logN) O(N) O(
√
N) DPair

Supersonic [18] O(logN) O(N logN) O(logN) UOGroup

Ligero [3] O(
√
N) O(N logN) O(N) CR hash

STARK [7] O(log2N) O(N log2N) O(log2N) CR hash

Aurora [9] O(log2N) O(N logN) O(N) CR hash

Fractal [23] O(log2N) O(N logN) O(log2N) CR hash

Virgo [50] O(d logN) O(N logN) O(d logN) CR hash

Our IP arguments + Transformation to AC arguments (Theorem 12):

Protocol2 (Section 4) O(
√

logN) O(N2
√
logN ) O(N) DL & DPair

Protocol3 (Section 6) O(logN) O(N) O(
√
N) DL

Table 1. Comparison for transparent ZK arguments
IP: inner-product, AC: arithmetic circuit, N : circuit size, d: circuit depth, w: input
size, DL: discrete logarithm assumption, DPair: double pairing assumption, UOGroup:
unknown-order group (strong RSA assumption & adaptive root assumption), CR hash:
collision-resistant hashes
All arguments in the table are public coin (Definition 4), so that they achieve non-
interactivity in the random oracle model using the Fiat-Shamir heuristic [25].

the prover sends P̂ along with its proof to the verifier. This process of committing
and proving can be achieved using a multi-exponentiation argument (e.g., [19]).
Nevertheless, if we naively apply this commit-and-prove approach here, it ends
up with asymptotically the same proof size as Bulletproofs since we must prove
multiple multi-exponentiation arguments. More precisely, the communication
cost O(n2 log2nN) of the recursive step in the generalized Bulletproofs is reduced
to O(log2nN) when committing a value instead of sending O(n2) group elements
in each recursive round, but it additionally requires proving the log2nN multi-
exponentiation arguments with n2-length vectors costing O

(
(log2nN)·(log2 n

2)
)
.

Overall, its communication cost is O
(
(log2nN) · (log2 n

2)
)

= O(log2N), which
is asymptotically the same as that of Bulletproofs.

Lastly, in order to further reduce the communication cost, we devise a novel
technique for aggregating multiple multi-exponentiation arguments. As afore-
mentioned, we use commit-and-prove approach, in particular, using pairing-
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Protocol2Protocol1

O((log2 n)(log2nN)) O(log2nN + log2 n)

GBP

O(n2 log2nN)

BP [17]

MEA [19]

O(log2N)

CG [2]

ProdMEA→ aAggMEA

Each arrow links the underlying protocol (starting point) and the advanced protocol
(ending point). The big-O notation under each protocol indicates communication
complexity of the protocol.
The oval nodes indicate known results; BP: Bulletproofs [15, 17], MEA: multi-
exponentiation argument [19], CG: Commitment to group elements [2]. The rectangle
nodes indicate the proposed protocols; GBP: Generalized Bulletproofs in Fig. 2,
ProdMEA: Product of multi-exponentiation argument in Fig. 6, aAggMEA: Augmented
aggregation of multi-exponentiation argument in Fig. 5. Protocol1: Inner-product
argument in Fig. 3. Protocol2: Sublogarithmic inner-product argument in Fig. 4.
N is the dimension of witness vector. n is a positive integer parameter for GBP, where
n = 1 implies the original Bulletproofs.

Fig. 1. Our Approach for Logarithmic Communications

based homomorphic commitment scheme [1, 2]. There exists a well-known ag-
gregating technique for multiple arguments using homomorphic commitment
scheme that essentially uses homomorphic property of commitment scheme (e.g.,
aggregating range proofs [17], linear combinations of protocols [36]). Unfortu-
nately, this aggregating technique is not well applied to our case since each
multi-exponentiation argument uses distinct base vk and exponent zk.

Our strategy for aggregating multiple multi-exponentiations is to reduce
multiple relations to a single relation by multiplying all relations and then
employ a recursive proof technique like Bulletproofs. However, we find that
this strategy does not work well. The detailed explanation about difficulty we
faced is given in Section 4.2. Instead, we devise an augmented aggregated multi-
exponentiation argument called aAggMEA; we add redundant values in the tar-
get relation for aAggMEA such that the final relation can cover the desired
aggregated multi-exponentiation relation, and then we reduce from aAggMEA
to a product argument called ProdMEA that proves a single product relation
containing multiple multi-exponentiation relations. After changing to a single
relation, we can employ a recursive proof technique used in Bulletproofs and
achieve O

(
(log2nN) + (log2 n

2)
)

communication overhead. Using aAggMEA,

we finally achieve O(
√

log2N) communication cost when setting n to satisfy
O(log2nN) = O(log2 n

2). For example, if N = (2n)m and n = 2m, then the
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communication cost is O(m) = O(
√

log2N). We provide a high-level pictorial
explanation for our approach in Fig. 1.

Sublinear Verifier From Discrete Logarithms. Now, we consider another
protocol whose goal is to achieve sublinear verifier while keeping benefits of
Bulletproofs such as logarithmic communications and soundness proof from the
discrete logarithm assumption.

First, we start from an observation such that indeed the soundness of Bul-
letproofs inner-product is based on the discrete logarithm relation assumption
that no adversary can find non-trivial relation among given group elements. In
particular, if all group elements are chosen at random, the discrete logarithm
assumption directly guarantees the discrete logarithm relation assumption.

Interestingly, we find that even non-uniform group elements can guarantee
that no adversary can find non-trivial relation among given group elements.
Note that we do not rely on the structured reference string, but use bilinear
map e : G1 × G2 → Gt to generate structured group elements in Gt from
uniformly selected group elements in G1 and G2. We formalize our observation
by generalizing the discrete logarithm relation assumption (Definition 7) and
then prove that the discrete logarithm assumption in G1 and G2 is sufficient to
guarantee the hardness of finding non-trivial relation among structured group
elements in Gt (Theorem 7). This result is of independent interest and can be
used to prove the security of other protocols beyond proof systems. Using this
result, we can reduce the CRS size to be a square root of the length N of
witness vector whiling keeping the soundness proof under the discrete logarithm
assumption.

Nevertheless, a näıve approach using the above idea will keep linear verifier
computation in N since we reduce the CRS size only but keep the same verifica-
tion process as that of Bulletproofs. Using the CRS of O(

√
N) size, we introduce

a trick to track verifier’s necessary computation with only O(
√
N) computation

without performing O(N) computation like Bulletproofs. This trick does not
increase the prover’s computation and communication overhead, so that we can
keep linear prover complexity and logarithmic communication complexity while
achieving the sublinear verifier under the discrete logarithm assumption.

1.3 Related Work

Argument for Algebraic Relations. Groth [30] proposed a sublinear ZK argument
for linear algebra relations. In particular, he proposed an argument for bilinear
maps such as inner-products and then showed that many linear algebra relations,
such as trace, can be reduced to that argument for bilinear maps. Bootle et al.
reduced communication overhead of inner-product argument to be logarithmic
in the dimension of witness [15, 17]. There are proposals for other algebraic
relations. For example, Groth and Sahai [35] proposed a non-interactive ZK
proof system for pairing-based relations, such as pairing-product, without relying
on NP reduction. Lai, Malavolta, and Ronge proposed a logarithmic argument
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for pairing-based relations [38] and Bünz, Maller, Mishra, Vesely [19] further
improved it.

Polynomial Commitment Scheme. Kate, Zaverucha and Goldberg introduced
polynomial commitment scheme such that a committer first commits to a poly-
nomial f(X), and then later opens f(x) at some point x (mostly chosen by a
verifier) and convinces a verifier of correctness of f(x). Polynomial commitments
play an important building block not only for constructing ZK arguments for
arithmetic circuits [32, 47, 41, 28, 48, 16, 22, 46, 50] but also for constructing many
other crypto primitives such as verifiable secret sharing [37, 4], anonymous cre-
dentials [20, 27], and proofs of storage and replication [49]. Although Kate et
al.’s polynomial commitment scheme achieves succinct opening and verification
cost, it requires structured reference string that requires a trusted setup. Poly-
nomial commitment schemes without a trusted setup can be achieved through
a transparent inner-product argument [15, 17, 47, 16].

1.4 Organization

After providing necessary definitions in the next section, we present a näıve
generalization of Bulletproofs inner-product argument in Section 3 and reduce
its communication overhead in Section 4 by using a newly proposed building
block in Section 5. We present another generalization that achieves sublinear
CRS size and verifier computation in Section 6. In Section 7, we extend our
inner-product arguments to ZK arguments for arithmetic circuits. In Section 8,
we discuss a way to combine ideas for two our generalized Bulletproofs protocols.

2 Definitions

Arguments of Knowledge. Let K be the common reference string (CRS)
generator that takes the security parameter as input and outputs the CRS σ.
In this paper, the CRS is a randomly generated group element, so that indeed
we are in the common random string model, where an argument consists of two
interactive PPT algorithms (P,V) such that P and V are called the prover and
the verifier, respectively. The transcript produced by an interaction between P
and V on inputs x and y is denoted by tr ← 〈P(x),V(y)〉. Since we are in the
common random string model, for the sake of simplicity we omit the process of
runningK and assume the CRS is given as common input to both P and V. At the
end of transcript, the verifier V outputs b, which is denoted by 〈P(x),V(y)〉 = b,
where b = 1 if V accepts and b = 0 if V rejects.

Let R be a polynomial time verifiable ternary relation consisting of tuples of
the CRS σ, a statement x, and a witness w. We define a CRS-dependent language
Lσ as the set of statements x that have a witness w such that (σ, x, w) ∈ R.
That is, Lσ = { x | ∃ w satisfying (σ, x, w) ∈ R }. For a ternary relation R, we
use the format {(common input; witness) : R} to denote the relation R using
specific common input and witness. Let negl(λ) be a negligible function in λ.
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Definition 1. Let K be the CRS generator and (P,V) be an argument. We
say that the argument (P,V) has perfect completeness if for all non-uniform
polynomial-time interactive adversaries A,

Pr

[
〈P(σ, x, w),V(σ, x)〉 = 1
∨ (σ, x, w) /∈ R

∣∣∣∣ σ ← K(1λ);
(x,w)← A(σ)

]
= 1.

Definition 2. Let K be the CRS generator and (P,V) be an argument. We say
that the argument (P,V) has witness-extended emulation if for every determin-
istic polynomial prover P∗ there exists an expected polynomial time emulator
E such that for all non-uniform polynomial time interactive adversaries A, the
following inequality holds.∣∣∣∣∣∣∣∣∣∣∣∣

Pr

[
A(tr) = 1

∣∣∣ σ ← K(1λ); (x, s)← A(σ);
tr ← 〈P∗(σ, x, s),V(σ, x)〉

]

−Pr

 A(tr) = 1 ∧
if tr is accepting,
then (σ, x, w) ∈ R

∣∣∣∣∣∣ σ ← K(1λ); (x, s)← A(σ);

(tr, w)← E〈P
∗(σ,x,s),V(σ,x)〉(σ, x)



∣∣∣∣∣∣∣∣∣∣∣∣
< negl(λ),

E has access to the oracle 〈P∗(σ, x, s),V(σ, x)〉 that permits rewinding P∗ to a
specific round and rerunning V using fresh randomness.

In Definition 2, the value s can be regarded to be the state of P∗, including
the randomness. Therefore, whenever P∗ can make a convincing argument when
in state s, E can extract a witness. Therefore, we call such an argument (P,V)
satisfying Definition 1 and Definition 2 argument of knowledge and the argument
is formalized in Definition 3.

Definition 3. The argument (P,V) is called an argument of knowledge for re-
lation R if the argument has (perfect) completeness and (computational) witness-
extended emulation.

Transparent Setup and Non-interactive Argument in the Random Or-
acle Model. A protocol in the common random string model can be converted
into a protocol without a trusted setup in the random oracle model [6]; if K
outputs random group elements of an elliptic curve group G of prime order,
then the CRS can be replaced with hash values of a small random seed, where
the hash function mapping from {0, 1}∗ to G is modeled as a random oracle as
in [14].

Any public coin interactive argument protocol defined in Definition 4 can be
converted into a non-interactive one by applying the Fiat-Shamir heuristic [25]
in the random oracle model; all V’s challenges can be replaced with hash values
of the transcript up to that point.

Definition 4. An argument (P,V) is called public coin if all V’s challenges are
chosen uniformly at random and independently of P’s messages.

All interactive arguments proposed in this paper can be converted to transparent
non-interactive arguments in the random oracle model.
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Assumptions. Let G1 be a group generator such that G1 takes 1λ as input and
outputs G, the description of a group of order p.

Definition 5 (Discrete Logarithm Assumption). We say that G satisfies
the discrete logarithm assumption if for all non-uniform polynomial-time adver-
saries A, the following inequality holds.

Pr
[
ga = h

∣∣∣g, h $←G; a← A(p, g, h,G)

]
< negl(λ).

Definition 6 (Double Pairing Assumption). We say that the asymmetric
bilinear group generator G satisfies the double pairing assumption if for all non-
uniform polynomial-time adversaries A, the following inequality holds.

Pr

 e(g′, G)
= e(g′′, Ga)

∣∣∣∣∣∣∣
(p, g,H,G1,G2,Gt, e)← G(1λ);

G
$←G2; a

$←Zp;
(g′, g′′)← A((G,Ga), (p, g,H,G1,G2,Gt, e))

 < negl(λ)

Abe et al. [2] proved that the double pairing assumption is as reliable as the
decisional Diffie-Hellman assumption in G2.

Groups, Vectors, and Operations. We introduce some notations for suc-
cinct description of protocols. [m] denotes a set of continuous integers from 1
to m, {1, . . . ,m}. Let G be an asymmetric bilinear group generator that takes
the security parameter λ and outputs (p, g,H,G1,G2,Gt, e), where G1,G2,Gt
are distinct (multiplicative) cyclic groups of order p of length λ, g and H are
generators of G1 and G2, respectively, and a map e : G1 × G2 → Gt is a non-
degenerate bilinear map. In this paper, we preferably use lower case letters for
elements in G1 and upper case letters for elements in G2. A vector is denoted
by a bold letter, e,g., g = (g1, ..., gm) ∈ Gm1 and a = (a1, ..., am) ∈ Zmp . For a

vector a ∈ Zmp , its separation to the left half vector a1 ∈ Zm/2p and the right

half vector a−1 ∈ Zm/2p is denoted by a = a1‖a−1. Equivalently, the notation
‖ is used when sticking two vectors a1 and a−1 to a and it can be sequentially
used when sticking several vectors.1

We use several vector operations denoted as follows.

Component-wise Operations. The component-wise multiplication between sev-
eral vectors is denoted by ◦. e.g., for gk = (gk,1, . . . , gk,n) ∈ Gni , i ∈ {1, 2, t}, and
k ∈ [m], ◦k∈[m]gk = (

∏
k∈[m] gk,1 . . . ,

∏
k∈[m] gk,n). If k = 2, we simply denote it

by g1 ◦ g2.

1 Note that we use the indices (1,−1) instead of (1, 2) since it harmonizes well with
the usage of the challenges in Bulletproofs and our generalization of Bulletproofs.
e.g., let a = a1‖a−1 be a witness and x be a challenge, and then a is updated to∑
i=±1 aix

i, a witness for the next recursive round.
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Bilinear Functions.

1. The standard inner-product in Znp is denoted by 〈 , 〉 and it satisfies the
following bilinearity.

〈
∑
k∈[m]

ak,
∑
j∈[n]

bj〉 =
∑
k∈[m]

∑
j∈[n]

〈ak, bj〉 ∈ Zp

2. For g = (g1, . . . , gn) ∈ Gni , i ∈ {1, 2, t} and a = (a1, . . . , an) ∈ Znp , the
multi-exponentiation is denoted by ga :=

∏
k∈[n] g

ak
k ∈ Gi and it satisfies

the following bilinearity.

(◦k∈[m]gk)
∑

j∈[`] zj =
∏
k∈[m]

∏
j∈[`]

g
zj

k ∈ Gi

3. For g = (g1, . . . , gn) ∈ Gn1 and H = (H1, . . . ,Hn) ∈ Gn2 , the inner-pairing
product2 is denoted by E(g,H) :=

∏
k∈[n] e(gk, Hk) ∈ Gt and it satisfies the

following bilinearity.

E(◦k∈[m]gk, ◦j∈[`]Hj) =
∏
k∈[m]

∏
j∈[`]

E(gk,Hj) ∈ Gt

Scalar-Vector Operations.

1. For c ∈ Zp and a ∈ Zmp , the scalar multiplication is denoted by c · a :=
(c · a1, . . . , c · an) ∈ Zmp .

2. For c ∈ Zp and g ∈ Gmi , i ∈ {1, 2, t} the scalar exponentiation is denoted by
gc := (gc1, . . . , g

c
n) ∈ Gmi .

3. For c ∈ Zmp and g ∈ Gi, i ∈ {1, 2, t} the vector exponentiation is denoted by
gc := (gc1 , . . . , gcm) ∈ Gmi .

3 A Generalization of Bulletproofs

Bulletproofs inner-product argument is a proof system, denoted by BPIP, con-
vincing of the following relation.{

(g,h ∈ GN , u, P ∈ G;a, b) : P = gahbu〈a,b〉 ∈ G
}

(1)

where G is an arbitrary cyclic group of order p satisfying the discrete logarithm
relation assumption, and g,h, and u are uniformly selected common inputs. We
provide a review of Bulletproofs in the supplementary material.

In this section, we present a generalization of Bulletproofs inner-product
argument for the relation in Eq. (1). In each round of BPIP, each vector in
the CRS and witness is split into two equal-length subvectors. We generalize

2 We call this operation “inner-pairing product” that is named by [19]. Note that
this operation is also called “canceling bilinear map” in the context of converting
composite-order bilinear groups to prime-order bilinear groups [26].
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Bulletproofs by splitting a vector of length N into 2n subvectors of length N/2n
in each round, where n = 1 implies the original Bulletproofs protocol. Similar to
Bulletproofs, we assume N is a power of 2n for the sake of simplicity. Then, for
proving the relation in Eq. (1), let N̂ = N

2n and the prover begins with parsing
a, b, g, and h to We provide a review of Bulletproofs in the supplementary
material.

In this section, we present a generalization of Bulletproofs inner-product
argument for the relation in Eq. (1). In each round of BPIP, each vector in the
CRS and the witness are split into two equal-length subvectors. We generalize
Bulletproofs by splitting a vector of length N into 2n subvectors of length N/2n
in each round, where n = 1 implies the original Bulletproofs protocol. Similar to
Bulletproofs, we assume N is a power of 2n for the sake of simplicity. Then, for
proving the relation in Eq. (1), let N̂ = N

2n and the prover begins with parsing
a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Let In = {±1,±3, . . . ,±(2n−1)} be a 2n-size index set. In each recursive round
of Bulletproofs, the prover computes and sends two group elements L and R. In
our generalization, instead of L and R, P calculates vi,j = g

aj

i h
bi
j u
〈ajbi〉 ∈ G for

all distinct i, j ∈ In, and then sends {vi,j} i,j∈In
i6=j

to V. Note that if n = 1, then

v1,−1 and v−1,1 are equal to L and R in Bulletproofs, respectively. V chooses

x
$←Z∗p and returns it to P. Finally, both P and V compute

ĝ = ◦i∈Ingx
−i

i ∈ GN̂ , ĥ = ◦i∈Inh
xi

i ∈ GN̂ , and P̂ = P ·
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G

and P additionally computes a witness for the next round argument

â =
∑
i∈In

aix
i ∈ ZN̂p and b̂ =

∑
i∈In

bix
−i ∈ ZN̂p .

We show that this process is a reduction to a one 2n-th length inner-product
argument. That is, (ĝ, ĥ, u, P̂ ; â, b̂) satisfies Eq. (1). We observe that

P = gahbu〈a,b〉 =
∏
i∈In

gai
i h

bi
i u
〈ai,bi〉, and thus

P̂ =
( ∏
i∈In

gai
i h

bi
i u
〈ai,bi〉

)
·
( ∏

i,j∈In
i6=j

(
g
aj

i h
bi
j u
〈aj ,bi〉

)xj−i)
=
∏
i,j∈In

(
g
aj

i h
bi
j u
〈aj ,bi〉

)xj−i

=
(
◦i∈In gx

−i

i

)∑
j∈In ajx

j

·
(
◦j∈In h

xj

j

)∑
i∈In bix

−i

· u〈
∑

j∈In ajx
j ,
∑

i∈In bix
−i〉

= ĝâ · ĥ
b̂
· u〈â,b̂〉. (2)

Therefore, (ĝ, ĥ, u, P̂ ; â, b̂) satisfies the inner-product relation in Eq. (1), and

thus an argument of N -length is reduced to the same argument of N̂ -length.
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GBPIP(g,h ∈ GN , u, P ∈ G;a, b ∈ ZNp )
If N = 1:

Step 1: P sends V a and b.
Step 2: V outputs Accepts if and only if P = gahbua·b holds.

Else (N > 1):

Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i, j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i h
bi
j u
〈ajbi〉 ∈ G,

and then sends {vi,j} i,j∈In
i6=j

to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂ , ĥ = ◦i∈Inh
xi

i ∈ GN̂ and P̂ = P
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G.

Additionally, P computes â =
∑
i∈In aix

i ∈ ZN̂p and b̂ =
∑
i∈In bix

−i ∈ ZN̂p .
Step 4: Both P and V run GBPIP(ĝ, ĥ, u, P̂ ; â, b̂).

Fig. 2. A Generalization of Bulletproofs

We briefly provide a sketch of the soundness proof. After receiving vi,j ’s, we

rewind P∗ 4n− 1 times and obtain 4n− 1 challenge-witness tuples (xk, âk, b̂k)
for k ∈ [4n−1]. Then, we know that the extracted witness satisfies the following
equality for all k ∈ [4n− 1].

P
∏
s∈Jn

( ∏
i,j∈In
j−i=s

vi,j
)xs

k = P
∏

i,j∈In
i6=j

v
xj−i
k
i,j = P̂ =

(
◦i∈In g

x−i
k
i

)âk
(
◦j∈In h

xj
k
j

)b̂ku〈âk,b̂k〉

=
( ∏
i∈In

g
x−i
k âk

i h
xi
kb̂k

i

)
u〈âk,b̂k〉 (3)

where Jn := {±2,±4,±6, . . . ,±(4n−4),±(4n−2)} of size 4n−2. Assuming that
all x2i ’s are distinct, one can prove that the (4n− 1)× (4n− 1) matrix M with

(k, j)-entry x−4n+2j
k is invertible, where M ’s k-th row is a vector of exponents

used in the left-hand side of Eq. (3). Thus, we can use M−1 to find exponents
{aP,r, bP,r}r∈In , cP and {as,r, bs,r}r∈In , cs for s ∈ JN satisfying

P =
( ∏
r∈In

gaP,r
r hbP,r

r

)
ucP ∈ G,

( ∏
i,j∈In
j−i=s

vi,j
)

=
( ∏
r∈In

gas,r
r hbs,r

r

)
ucs ∈ G.
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Therefore, we successfully extract the exponents with bases gr and hr for r ∈ In,
which are the witness vectors a and b, respectively. Of course, we must show
that the exponent cP should be equal to 〈a, b〉. To this end, we can use more
rewinding to extract a tuple satisfying Eq. (3) and obtain the following theorem.

Theorem 1. The inner-product argument in Fig. 2 has perfect completeness
and computational witness-extended-emulation under the discrete logarithm re-
lation assumption.

The proof of Theorem 1 is relegated to the supplementary material.

3.1 Efficiency

The prover repeats the (N > 1) case log2nN times and runs the (N = 1) case.
For each (N > 1) case, P sends vi,j ’s of size 2n(2n − 1) and two integers in
the (N = 1) case, so that the communication overhead sent by P is 2n(2n −
1) log2nN group elements and 2 integers. The verifier updates ĝ, ĥ and P̂ that
cost O(N + n2 log2nN) group exponentiation. For sufficiently small n <

√
N ,

it becomes O(N). The prover should compute vi,j for all i, j for each round,
so that the prover’s computation overhead is O(Nn2). The overall complexities
are minimized when n has the smallest positive integer (that is, 1), which is
identical the original Bulletproofs inner-product argument protocol. Therefore,
the generalization in this section does not have any benefit, at least compared
with with the original Bulletproofs.

4 Sublogarithmic Inner-Product Argument from
Diffie-Hellman

We improve our generalization of Bulletproofs inner-product argument by using
the pairing-based homomorphic commitment scheme to group elements [1, 2].
Furthermore, this additional commitment scheme requires to put the commit-
ment key into the common random string, so that we slightly extend our target
relation by adding some uniformly distributed group elements, which become a
part of the common random string in our argument. That is, the desired relation
that our proof system proves is as follows.{

(g,h ∈ GN1 , u ∈ G1,F 1, . . . ,Fm ∈ G2n(2n−1)
2 ,H ∈ Gm2 , P ∈ G1;a, b)

: P = gahbu〈a,b〉 ∈ G1

}
(4)

where (p,G1,G2,Gt, e) is an asymmetric bilinear group satisfying the discrete
logarithm relation assumption in G1 and the double pairing assumption, and
g,h,u,F k, and H are the common random string. Here, F k and H are not
necessary to define the relation P = gahbu〈a,b〉. However, our inner-product
protocols will use them to run a subprotocol for multi-exponentiation arguments
given in the following subsections.
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4.1 Proof Size Reduction using Multi-Exponentiation Argument

As aforementioned, the generalized Bulletproofs in Fig. 2 with n > 1 carries
larger communication overhead than that of Bulletproofs. In order to reduce the
communication cost in each round, we can use a commitment to group elements.
That is, the prover sends a commitment to group elements vi,j ’s instead of
sending all vi,j ’s. This will reduce communication cost in each round. Then,

however, the verifier cannot directly compute the update P̂ of P ,
∏

i,j∈In
i6=j

vx
j−i

i,j ,

by himself, and thus the prover sends it along with its proof of validity, which is
exactly a multi-exponentiation argument proving the following relation.{

(F ∈ GN2 , z ∈ ZNp , P ∈ Gt, q ∈ G1;v ∈ GN1 ) : P = E(v,F ) ∧ q = vz
}
, (5)

where F is the common random string such that their discrete logarithm relation
is unknown to both P and V and z is an arbitrary public vector.

We will omit the detailed description for the multi-exponentiation argument
for the relation in (5), but provide an intuitive idea for it. In fact, Bulletproofs
inner-product argument can be naturally extended to this proof system due to
the resemblance between the standard inner-product and the inner-pairing prod-
uct. More precisely, the additive homomorphic binding commitment to an integer
vector (e.g., ga) is changed with the multiplicative homomorphic commitment to
a group element vector (e.g., E(v,F )) and the standard inner-product between
two integer vectors (e.g., 〈a, b〉) can be substituted with multi-exponentiation
(e.g., vz).3 This type of extension is well formulated by Bünz, Maller, Mishra,
and Vesely [19] in terms of two-tiered homomorphic commitment scheme [32].
The multi-exponentiation argument in [19] costs the same complexities as those
of Bulletproofs inner-product argument; O(logN) communication overhead and
O(N) computational costs for the prover and the verifier.

For our purpose, we can use the commitment scheme to group elements [32]
and the multi-exponentiation argument in [19] so that we can construct a pro-
tocol with shorter communication overhead. The full description of the scheme
is provided in Fig. 3. In the protocol description, we add the state informa-
tion for the prover and the verifier, denoted by stP and stV , respectively. Both
stP and stV are initialized as empty lists and used to stack the inputs of the
multi-exponentiation argument for each recursive round. At the final stage, the
prover and the verifier can run several multi-exponentiation argument protocols
in parallel.

Although this approach reduces communication overheads, compared to the
generalized Bulletproofs, it is not quite beneficial for our purpose. More precisely,
the communication overhead O(n2 log2nN) of the generalized Bulletproofs is re-
duced to O((log2 n) · (log2nN)) since the communication overhead per round
O(n2) is reduced to its logarithm O(log2 n) by the multi-exponentiation argu-
ment. Although the communication overhead is reduced to O((log2 n)·(log2nN))

3 The Bulletproofs is about two witness vectors a and b and it can be easily modi-
fied with one witness vector a and a public b. e.g., [47]. Our multi-exponentiation
argument corresponds to this variant.
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Protocol1(g,h, u,F k for k ∈ [m], P ∈ G1, stV ;a, b, stP ), where m = log2nN

If N = 1:
Step 1: P sends V a and b.
Step 2: V proceeds the next step if P = gahbua·b holds.

Otherwise, V outputs Reject.
Step 3: If stP is empty, then V outputs Accept.

Otherwise, let (uk, vk,xk;vk) be the k-th row in stP .
Step 4: P and V run MEA(F k,xk, uk, vk;vk) for k ∈ [m].

Else (N > 1): Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i 6= j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i h
bi
j u
〈aj ,bi〉 ∈ G1

sets v = (vi,j) ∈ G2n(2n−1)
1 in the lexicographic order and sends V E(v,Fm).

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: P computes v = vx =
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G1, where x is the vector

consisting of xj−i, and then sends it to V.
Step 4: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂1 , ĥ = ◦i∈Inh
xi

i ∈ GN̂1 and P̂ = P · v ∈ G1.

Additionally, P computes â =
∑
i∈In aix

i ∈ ZN̂p and b̂ =
∑
i∈In bix

−i ∈ ZN̂p .
Step 5: V updates stV by adding a tuple (E(v,Fm), v,x) into the bottom. P

updates stP by adding a tuple (E(v,Fm), v,x;v) into the bottom. Both P
and V run Protocol1(ĝ, ĥ, u,F k for k ∈ [m− 1], P̂ , stV ; â, b̂, stP ).

Fig. 3. Protocol1

compared with the generalized Bulletproofs (n > 1), the resulting complexity
is equal to O(log2N), which is asymptotically the same as the communication
overhead of Bulletproofs inner-product argument. Therefore, this protocol is no
better than Bulletproofs, at least in terms of communication complexity. Nev-
ertheless, Protocol1 in Fig. 3 is a good basis for our sublogarithmic protocol
presented in the next subsection.

4.2 Sublogarithmic Protocol from Aggregated Multi-Exponentiation
Arguments

We build our main protocol for sublogarithmic transparent inner-product argu-
ments on the basis of Protocol1 in Fig. 3. To this end, we develop an aggrega-
tion technique to prove multiple multi-exponentiation arguments at once, which
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proves the following aggregated relation.

RAggMEA =


(
F k ∈ G2n(2n−1)

2 , zk ∈ Z2n(2n−1)
p , Pk ∈ Gt, qk ∈ G1

;vk ∈ G2n(2n−1)
1 for k ∈ [m]

)
:
∧
k∈[m]

(
Pk = E(vk,F k) ∧ qk = vzk

k

)


Failed näıve approach: linear combination. One may try to employ a ran-
dom linear combination technique, which is widely used to aggregate multiple
relations using homomorphic commitment schemes. For example, it is called lin-
ear combination of protocols in [36]. To this end, one may also try to use one
F instead of distinct F k’s for every pairing equation and employ homomorphic
property of pairings and multi-exponentiations to apply random linear combi-
nation technique. Unfortunately, however, the relation RAggMEA consists of two
distinct type of equations Pk and qk containing distinct zk’s, so that such a ran-
dom linear combination technique is not directly applicable to RAggMEA even
with one F .
Why we use distinct F k’s? Our basic strategy for aggregation is to merge
multiple equations into a single equation by product. Later, we will present a
reduction for it (Theorem 3). To this end, it is necessary to use distinct F k’s
for each equation since it prevents the prover from changing opening vectors
between committed vectors in the product.
A difficulty when we use several Fk’s. As we mentioned, we use different
F k’s for each commitment Pk. In this case, it is not easy to efficiently prove that
the equation that Pk = E(vk,F k) holds. The CRS contains all F k’s, and thus,
in order to prove Pk = E(vk,F k), we have to prove that only one F k is used
and the others are not used in the equation. Proving unusedness of all the other
F j for j 6= k with high performance is rather challenging.
Our solution: augmented aggregate multi-exponentiation argument.
Adding some redundant values, we can further generalize the relation RAggMEA

and obtained the following relation RaAggMEA for augmented aggregation of
multi-exponentiations.
(
F k ∈ G2n(2n−1)

2 , zk ∈ Z2n(2n−1)
p , Hk ∈ G2, Pk ∈ Gt, qk ∈ G1

;vk,j ∈ G2n(2n−1) for k, j ∈ [m]

)
:
∧
k∈[m]

(
Pk =

∏
j∈[m]E(vk,j ,F j) ∧ qk = vzk

k,k ∧ (v
zj

k,j = 1G1
for j 6= k)

)


Here, Pk is a commitment to vk,j ’s and qk is a multi-exponentiation of the
committed value vk,k and a public vector z. In particular, Pk is defined by using
all F k’s to avoid the difficulty mentioned in the previous paragraph. Although
there are redundant vk,j ’s in Pk (j 6= k), the above relation is sufficient to
guarantee qk is a multi-exponentiation of a committed value vk,k. In addition,
Hk’s are not necessary in the above relation, but we use Hk’s in the product
argument, which will be explained in the next section, where we reduce from the
augmented aggregation multi-exponentiation protocol.

The full description of our inner-product argument protocol using aAggMEA
is given in Fig. 4.
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Protocol2(g,h, u,F k for k ∈ [m],H, P ∈ G1, stV ;a, b, stP ), where m = log2nN

If N = 1:
Step 1: P sends V a and b.
Step 2: V proceeds the next step if P = gahbua·b holds.

Otherwise, V outputs Reject.
Step 3: If stP is empty, then V outputs Accept.

Otherwise, let (uk, vk,xk;vk) be the k-th row in stP and

vk,j =

{
1G1 if j 6= k
vk if j = k

Step 4: P and V run aAggMEA(F k,xk, Hk, uk, vk;vk,j for k, j ∈ [m]).

Else (N > 1): Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i, j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i h
bi
j u
〈aj ,bi〉 ∈ G1

sets v = (vi,j) ∈ G2n(2n−1)
1 in the lexicographic order and sends V E(v,Fm).

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: P computes v = vx =
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G1, where x is the vector

consisting of xj−i, and then send v to V.
Step 4: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂1 , ĥ = ◦i∈Inh
xi

i ∈ GN̂1 , and P̂ = P · v ∈ G1.
In addition, P computes

â =
∑
i∈In

aix
i ∈ ZN̂p and b̂ =

∑
i∈In

bix
−i ∈ ZN̂p .

Step 5: V updates stV by adding a tuple (E(v,Fm), v,x) into the bottom. P
updates stP by adding a tuple (E(v,Fm), v,x;v) into the bottom. Both P
and V run Protocol2(ĝ, ĥ, u,F k for k ∈ [m− 1],H, P̂ , stV ; â, b̂, stP ).

Fig. 4. Protocol2: Sublogarithmic Inner-Product Argument

Theorem 2. The inner-product argument in Fig. 4 has perfect completeness
and computational witness-extended-emulation under the discrete logarithm re-
lation assumption in G1 and the double pairing assumption.

The proof of Theorem 2 is relegated to the supplementary material.

4.3 Efficiency

A main difference between Protocol1 and Protocol2 is the aggregating process for
log2nN multi-exponentiation arguments. Due to communication-efficient feature
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aAggMEA(F k ∈ GN2 ,zk ∈ ZNp , Hk ∈ G2, Pk ∈ Gt, qk ∈ G1;vk,j ∈ GN1 for k, j ∈ [m])

Step 1: V chooses and sends y
$←Zp to P.

Step 2: Both P and V set

z̃k = yk−1zk, F̃ k = F y
k−1

k , H̃k = Hym

k , and P̃ =
∏
k∈[m]

(
P y

k−1

k · e(qy
k−1

k , H̃k)
)
,

and P additionally sets ṽk = ◦j∈[m]v
yj−k

j,k .

Step 3: P and V run ProdMEA(F̃ k, z̃k, H̃k, P̃ ; ṽk for k ∈ [m])

Fig. 5. Reduction from aAggMEA to ProdMEA

of aAggMEA, the communication overhead is improved from O((log2 n)·log2nN)
to O(log2 n + log2nN). If we can set n to satisfy O(log2nN) = O(log2 n), then
the communication complexity becomes O(log2 n+ log2nN) = O(

√
log2N).

As for the computational overhead, compared to generalized Bulletproofs,
only a run of aAggMEA protocol is imposed. Our proposal for the aAggMEA
protocol is an extended variant of Bulletproofs (see the next section for the
detail), so that its computational complexity is still linear in the length of witness
vector that is O(n2 log2nN) though it requires expensive pairing operations.
Therefore, for sufficiently small n <

√
N , this does not affect on the overall

complexity, so that the total prover’s computational overhead is O(Nn2) and
the verifier’s computational overhead is O(N + n2 log2nN) that are equal to
those of general Bulletproofs.4

5 Aggregating Multi-Exponentiation Argument

In this section, we propose an augmented aggregation of multi-exponentiation
arguments aAggMEA for the relation in Eq. (6). Vectors in Eq. (6) are of dimen-
sion 2n(2n− 1). For the sake of simplicity, we set the dimension of vectors N
in this section and, by introducing dummy components, we can without loss of
generality assume that N is a power of 2. The proposed protocol consists of two
parts. First, the aAggMEA is reduced to a proof system, denoted by ProdMEA,
for the following relation RPMEA for a product of multi-exponentiation.

RPMEA =

{
(F k ∈ GN2 , zk ∈ ZNp , Hk ∈ G2, P ∈ Gt;vk ∈ GN1 for k ∈ [m])
: P =

∏
k∈[m]E(vk,F k)e(vzk

k , Hk)

}

4 Note that when the communication complexity is evaluated, we set n = 2
√

log2 N

that is much smaller than
√
N = 2

1
2
log2 N , and thus our estimation for computational

cost makes sense.
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The reduction is provided in Fig. 5 and its security property is given in the
following theorem.

Theorem 3. The aAggMEA protocol in Fig. 5 has perfect completeness and
computational witness-extended-emulation if the ProdMEA protocol used in Fig. 5
has perfect completeness and computational witness-extended-emulation and the
double pairing assumption holds.

The proof of Theorem 3 is relegated to the supplementary material.
Next, we propose a ProdMEA protocol for the relationRPMEA. The ProdMEA

protocol recursively reduces from an argument for N -length witness to an argu-
ment for N̂ = N

2 -length witness. First, parse F k, zk, and vk to two vectors of

N̂ -length, respectively, as follows.

F k = F k,1‖F k,−1, zk = zk,1‖zk,−1, and vk = vk,1‖vk,−1

P begins with computing and sending V for k ∈ [m]

L =
∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk) ∈ Gt

and R =
∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk) ∈ Gt.

V chooses a random challenge x
$←Z∗p and returns it to P. Next, both P and V

compute a common input for the next step argument as follows. For k ∈ [m],

F̂ k = F x
−1

k,1 ◦ F
x
k,−1 ∈ GN̂2 , ẑk = zk,1x

−1 +zk,−1x ∈ ZN̂p , P̂ = Lx
2

P Rx
−2

∈ Gt

and P computes a half-dimension witness for the next step argument for k ∈ [m],

v̂k = vxk,1 ◦ vx
−1

k,−1 ∈ GN̂1 .

One can easily check that P̂ equals the followings.

P̂ =
( ∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk)
)x2

·
∏
k∈[m]

E(vk,F k)e(vzk

k , Hk)

·
( ∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk)
)x−2

=
∏
k∈[m]

E(vxk,1,F
x
k,−1)E(vk,F k)E(vx

−1

k,−1,F
x−1

k,1 )e(v
zk,−1x

2

k,1 · vzk

k · v
zk,1x

−2

k,−1 , Hk)

=
∏
k∈[m]

E(vxk,1 ◦ vx
−1

k,−1,F
x
k,−1 ◦ F

x−1

k,1 )e((vxk,1 ◦ vx
−1

k,−1)zk,1x
−1+zk,−1x, Hk)

=
∏
k∈[m]

E(v̂k, F̂ k)e(v̂ẑk

k , Hk).
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ProdMEA(F k ∈ GN2 ,zk ∈ ZNp , Hk ∈ G2, P ∈ Gt for k ∈ [m];vk ∈ GN1 for k ∈ [m])

If N = 1:
Step 1: P sends v1, . . . , vm to V.
Step 2: V outputs Accepts if and only if P =

∏
k∈[m] e(vk, Fk)e(v

zk
k , Hk) holds.

Else (N > 1):

Let N̂ = N
2

and for k ∈ [m] parse F k, zk and vk to
F k = F k,1‖F k,−1, zk = zk,1‖zk,−1, and vk = vk,1‖vk,−1, respectively.

Step 1:P computes for k ∈ [m]

L =
∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk) ∈ Gt

and R =
∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk) ∈ Gt.

Then, P sends L and R to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

F̂ k = F x
−1

k,1 ◦ F xk,−1 ∈ GN̂2 , ẑk = zk,1x
−1 + zk,−1x ∈ ZN̂p ,

and P̂ = Lx
2

P Rx
−2

∈ Gt.
Additionally, P computes for k ∈ [m], v̂k = vxk,1 ◦ vx

−1

k,−1 ∈ GN̂1 .
Step 4: Both P and V run ProdMEA(F̂ k, ẑk, Hk, P̂ ; v̂k).

Fig. 6. ProdMEA protocol

Thus, P̂ satisfies again a ProdMEA relation with half-length witness v̂k’s, so that
both P and V run ProdMEA(F̂ k, ẑk, Hk, P̂ ; v̂k) together. The full description of
ProdMEA is provided in Fig. 6. We briefly provide a sketch of the soundness
proof. That is, given a successful prover P∗, we extract a witness vk. The ex-
tractor runs P∗ and receives L and R. By rewinding P∗ three times and feeding
P∗ three challenges xi for i ∈ [3] such that x2i 6= x2j for i 6= j, the extractor

obtains v̂
(i)
k ’s for i ∈ [3] and k ∈ [m] satisfying the following.

Lx
2
iPRx

−2
i =

∏
k∈[m]

E(v̂
(i)
k , F̂ k)e(v̂

(i)
k

ẑk , Hk)

=
∏
k∈[m]

E(v̂
(i)
k ,F

x−1
i

k,1 ◦ F
xi

k,−1)e(v̂
(i)
k

zk,1x
−1
i +zk,−1xi , Hk)

=
∏
i∈[m]

E(v̂
(i)
k
x−1
i ,F k,1)E(v̂

(i)
k
xi ,F k,−1)e(v̂

(i)
k

zk,1x
−1
i +zk,−1xi , Hk) (6)
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Since x2i ’s are distinct, the matrix

x−21 1 x21
x−22 1 x22
x−23 1 x23

 is invertible. Therefore, by using

the elementary linear algebra in the exponent, we can obtain gP,k,1, gP,k,−1 and
gP,k,H for k ∈ [m] satisfying

P =
∏
k∈[m]

E(gP,k,1,F k,1)E(gP,k,−1,F k,−1)e(gP,k,H , Hk).

Therefore, we extract a witness vk = gP,k,1‖gP,k,−1 for k ∈ [m]. Of course, we
have to show that gP,k,H = vzk

k for k ∈ [m]. To this end, we can use more
rewinding to extract a tuple satisfying Eq. (6) and obtain the following theorem.

Theorem 4. The ProdMEA protocol in Fig. 6 has perfect completeness and com-
putational witness-extended-emulation under the double pairing assumption.

The proof of Theorem 4 is relegated to the supplementary material.

5.1 Tradeoff between Rounds and Communications

If N = 1, the prover sends v1, . . . , vm to the verifier and the verifier checks
if P =

∏
k∈[m] e(vk, Fk)e(vzkk , Hk) holds. This procedure requires to transmit

m group elements in G1. When running additional rounds, we can reduce this
transmission cost to be logarithmic in m.

If m = 1, the prover sends v1 ∈ G1 to the verifier. If m > 1, for the sake of
simplicity, we assume that m is a power of 2. The prover and the verifier compute
and set Bk := Fk ·Hzk

k ∈ G2. Let ṽ = (v1, . . . , vm) and B = (B1, . . . , Bm). Next,
both the prover and the verifier run the protocol for the relation P = E(ṽ,B)
where P and B are common inputs and ṽ is a witness. For example, both can
run the single multi-exponentiation argument protocol (Fig. 6 with no product)
with zero coefficient vector z = 0, which requires the prover to send 2 logm
group elements in Gt and one group element in G1.

5.2 Efficiency

Basic Protocol. The prover sends two group elements in Gt for each recursive
stage and m group elements in G1 at the final stage. Overall, the protocol runs
O(logN) rounds and the prover sends 2 logN group elements in Gt and m
group elements in G1. For the i-th recursive stage, prover’s computational cost
is dominated by O( mN2i−1 ) bilinear map computation. Overall, the prover computes
O(mN) bilinear maps. The verifier’s computational cost is O(N +m) since the
final stage requires O(m) operations for verification and the verifier’s work in
each recursive stage is exactly the same as that of Bulletproofs so that it can be
batched and reduced to a single multi-exponentiation of length N .

Protocol with Low Communication Cost. At the final stage of this version, the
protocol runs a single multi-exponentiation argument protocol instead of directly
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sending the witness. It will pose additional logm rounds but O(logm) communi-
cation cost instead of m. Overall, the protocol uses O(logN +logm) rounds and
the prover sends O(logN + logm) group elements in Gt and one group element
in G1. Both the prover and the verifier’s asymptotic computational costs are un-
changed; that is, O(mN) bilinear maps and O(N + m) group/field operations,
respectively.

6 Inner-Product Argument with Sublinear Verifier from
Discrete Logarithms

In this section, we propose an inner-product argument with logarithmic com-
munication and sublinear verifier computation, solely based on the discrete log-
arithm assumption.

6.1 Matrices and Operations

For succinct exposition, we additionally define notations using matrices. Similar
to a vector, a matrix is denoted by a bold letter and a vector is considered a row
matrix. For a matrix a ∈ Zm×np , its separation to the upper half matrix a1 ∈
Zm/2×np and the lower half matrix a−1 ∈ Zm/2×np is denoted by a = Ja1‖a−1K.
We define three matrix operations as follows.

Inner-Product. For a, b ∈ Zm×np , the inner-product between a and b is defined
as 〈a, b〉 :=

∑
r∈[m],s∈[n] ar,sbr,s ∈ Zp.

Multi-Exponentiation. For g ∈ Gm×ni , i ∈ {1, 2, t} and a ∈ Zm×np , the multi-

exponentiation is defined as ga :=
∏
r∈[m],s∈[n] g

ar,s
r,s ∈ Gi.

Outer-Pairing Product. For g ∈ Gm1 and H ∈ Gn2 , the outer-pairing product5 is
defined as

g ⊗H :=

 e(g1, H1) . . . e(g1, Hn)
...

. . .
...

e(gm, H1) . . . e(gm, Hn)

 ∈ Gm×nt .

Note that we set the output of the outer-pairing product to be a matrix instead
of a vector, unlike a usual vector-representation of a tensor product since the
matrix-representation is useful when separating it into two parts.

5 Note that this operation is also called “projecting bilinear map” in the context of
converting composite-order bilinear groups to prime-order bilinear groups [26].
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6.2 General Discrete Logarithm Relation Assumption

We restate the discrete logarithm relation assumption in terms of problem in-
stance sampler to generalize it. Let GDLRsp be a sampler that takes the security
parameter λ as input and outputs (p, g1, . . . , gn,G), where G is a group G of
λ-bit prime-order p and g1, . . . , gn are generators of G.

Definition 7 (General Discrete Logarithm Relation Assumption). Let
GDLRsp be a sampler. We say that GDLRsp satisfies the general discrete loga-
rithm relation (GDLR) assumption if all non-uniform polynomial-time adver-
saries A, the following inequality holds.

Pr

[
a 6= 0 ∧ ga = 1G

∣∣∣∣(p, g ∈ Gn,G)← GDLRsp(1λ)
a← A(p, g,G)

]
< negl(λ),

where 1G is the identity of G and negl(λ) is a negligible function in λ.

Definition 8. For a fixed integer N , the sampler GDLRspRand is defined as
follows.

GDLRspRand(1
λ) : Choose a group G of λ-bit prime-order p; g

$←GN ;
Output (p, g,G).

Theorem 5. GDLRspRand satisfies the GDLR assumption if the discrete loga-
rithm assumption holds for the same underlying group G.

In fact, the security theorem of Bulletproofs inner-product argument holds
under the GDLR assumption; it uses only the fact that no adversary can find
non-trivial relation, regardless of the distribution of generators g. We restate the
security theorem of Bulletproofs below.

Theorem 6 ([17]). The inner-product argument of Bulletproofs (given in Fig. 8)
has perfect completeness and computational witness-extended-emulation under
the general discrete logarithm assumption.

We propose another sampler that satisfies the GDLR assumption.

Definition 9. For fixed integers m and n, the sampler GDLRspBM is defined as
follows.

GDLRspBM (1λ) : (p, g,H,G1,G2,Gt, e)← G(1λ); g
$←Gm1 ;H

$←Gn2 , u
$←Gt;

Output (p, g ⊗H, u,Gt).

Theorem 7. GDLRspBM satisfies the GDLR assumption if the discrete loga-
rithm assumption holds on G1 and G2.

Proof. Suppose that there exists a non-uniform polynomial-time adversary A
breaking the GDLR assumption with non-negligible probability. That is, with
non-negligible probability, A outputs a matrix a ∈ Zm×np and an integer c ∈ Zp
such that (g⊗H)auc = 1Gt

and a, c are not all zeros, where 1Gt
is the identity

of Gt. We separate the adversarial types according to the output distribution.
Let ai ∈ Znp be the i-th row vector of a for i ∈ [m].
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– (Type 1) c 6= 0
– (Type 2) Not Type-1. ∀i ∈ [m], Hai = 1G2 .
– (Type 3) Neither Type-1 or Type-2.

It is straightforward that A should be at least one of the above 3 types. For each
adversary, we show how to break one of the DL assumption on G1, G2, and Gt.6

Type-1 adversary. Given a DL instance ht ∈ Gt, we construct a simulator finding

Dloge(g,H)ht. First, choose x and z
$←Znp and set g = gx, H = Hz, and u = ht.

Then, the distribution of (g,H, u) is identical to the real GDLR instance. The
type-1 adversary outputs a and c such that c 6= 0 and a 6= 0. From the necessary
condition for a and c, we know the following equality holds.

〈x⊗ z,a〉+ c ·Dloge(g,H)ht = 0 (mod p)

Since we know all components except for Dloge(g,H)ht and c 6= 0, we can find
Dloge(g,H)ht by solving the above modular equation.

Type-2 adversary. This type of adversary can be used as an attacker break-
ing the general discrete logarithm relation assumption on G2 with a sampler
GDLRspRand. Theorem 5 guarantees that there is no type-2 adversary breaking
the GDLR assumption with GDLRspBM under the DL assumption on G2.

Type-3 adversary. Given a DL instance ĝ ∈ G1, we construct a simulator finding

DLg ĝ. First, choose an index k
$←[m], integer vectors x = (x1, . . . , xm)

$←Zmp ,

z
$←Znp , and w

$←Zp, and set g = (gx1 , . . . , gxk−1 , ĝ, gxk+1 , . . . , gxm), H = Hz,
and u = e(g,H)w. Then, the distribution of (g,H, u) is identical to the real
GDLR instance. Let x̂ = (x1, . . . , xk−1, Dlogg ĝ, xk+1, . . . , xm). Then, g = gx̂.

The type-3 adversary outputs a and c such that c = 0 and Hai 6= 1G2 for
some i ∈ [n]. From the necessary condition for a and c, we know the following
equality holds.

〈x̂⊗ z,a〉+ c · w = x1〈z,a1〉+ · · ·+ (Dlogg ĝ)〈z,ak〉+ · · ·+ xm〈z,am〉+ c · w
= 0 (mod p)

Since the index k is completely hidden from the viewpoint of A, i = k with
non-negligible 1/m probability. If i = k, then 〈z,ak〉 6= 0, so that we can recover
(Dlogg ĝ) by solving the above modular equation, since we know all components
except for Dlogg ĝ. ut

6.3 Another Generalization of Bulletproofs with Sublinear Verifier

In Bulletproofs, most of the common input for P and V are uniformly selected
group elements, which is the common random string. What we expect from these

6 Note that the DL assumption on G1 implies the DL assumption on Gt by the MOV
attack [42].
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group elements is that their discrete logarithms are unknown, so that the discrete
logarithm relation assumption holds. The discrete logarithm assumption implies
the general discrete logarithm relation assumption with uniform sampler and
this assumption is the root of the soundness of Bulletproofs. We can generalize
Bulletproofs while keeping the soundness proof by using arbitrary sampler satis-
fying the general discrete logarithm relation assumption, instead of GDLRspRand
to create the CRS.

Sublinear Common Inputs. We uniformly generate g,h ∈ Gm1 and H ∈ Gn2 and
use g ⊗H and h⊗H ∈ Gm×nt instead of the CRS in Bulletproofs. That is, we
construct a proof system for the following relation.{

(g,h ∈ Gm1 ,H ∈ Gn2 , u, P ∈ Gt; a, b ∈ Zm×np )

: P = (g ⊗H)a(h⊗H)bu〈a,b〉 ∈ Gt

}
(7)

Note that this modification does not require the structured reference string since
g⊗H and h⊗H are publicly computable from the common random string g, h
andH. Furthermore, the proof system is still sound since, like the CRS in Bullet-
proofs, g⊗H and h⊗H hold the general discrete logarithm relation assumption
under the discrete logarithm assumption on G1 and G2 by Theorem 7.

Sublinear Verification. If we setm = n =
√
N , the above modification can reduce

the CRS size to be a square root of Bulletproofs. Nevertheless, computing g⊗H
requires linear computation in N so that the verification cost is still linear in
N . We arrange the order of witness a and b in each round, and thus we can go
through the process without exactly computing g ⊗H and h⊗H. We explain
how to avoid a full computation of g⊗H and h⊗H. Without loss of generality,
we assume that m and n are powers of 2.7 If m > 1, then let m̂ = m

2 and parse
a, b ∈ Zm×np , g,h ∈ Gm1 to

a = Ja1‖a−1K b = Jb1‖b−1K, g = g1‖g−1, and h = h1‖h−1.

Then, the bases g ⊗H ∈ Gm×nt and h ⊗H ∈ Gm×nt are able to be implicitly
parsed to Jg1 ⊗H‖g−1 ⊗HK and Jh1 ⊗H‖h−1 ⊗HK, respectively. Let g̃i =

gi ⊗H ∈ Gm̂×nt and h̃i = hi ⊗H ∈ Gm̂×nt for i ∈ {1,−1}. Next, P calculates

L = g̃a1
−1 h̃

b−1

1 u〈a1,b−1〉 and R = g̃
a−1

1 h̃
b1

−1 u〈a−1,b1〉 ∈ Gt

and sends them to V. This computation of P is equivalent to Bulletproofs with

CRS g⊗H and h⊗H. V returns a random challenge x
$←Z∗p to P. Finally, both

P and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ Gm̂1 , ĥ = hx1 ◦ h
x−1

−1 ∈ Gm̂1 , and P̂ = Lx
2

P Rx
−2

∈ Gt
7 If needed, we can appropriately pad zeros in the vectors since zeros do not affect the

result of inner-product.

25



Protocol3(g,h ∈ Gm1 ,H ∈ Gn2 , u, P ;a, b)

If m = 1: P and V run BPIP(e(g1,H), e(h1,H), u, P ;a, b).
Else (m > 1): Let m̂ = m

2
. Parse a, b, g, and h to

a = Ja1‖a−1K b = Jb1‖b−1K, g = g1‖g−1, and h = h1‖h−1.

Step 1: P calculates

L = (g−1 ⊗H)a1 (h1 ⊗H)b−1u〈a1,b−1〉 ∈ Gt

and R = (g1 ⊗H)a−1(h−1 ⊗H)b1 u〈a−1,b1〉 ∈ Gt
and sends them to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ Gm̂1 , ĥ = hx1 ◦ hx
−1

−1 ∈ Gm̂1 , and P̂ = Lx
2

P Rx
−2

∈ Gt.
Additionally, P computes â = a1x+ a−1x

−1 and b̂ = b1x
−1 + b−1x ∈ Zm̂p .

Step 4: Both P and V run the protocol with (ĝ, ĥ,H, u, P̂ ; â, b̂).

Fig. 7. Protocol3: Another Generalization of Bulletproofs

and P additionally computes â = a1x + a−1x
−1 and b̂ = b1x

−1 + b−1x ∈ Zm̂p .

Then, P̂ is well computed since L and R are equivalent to those in Bulletproofs.

In Bulletproofs, however, g̃x
−1

1 ◦g̃x−1 and h̃
x

1◦h̃
x−1

−1 should be computed as the new

bases for the next round argument with witness â and b̂. Instead, in Protocol3,

we use the equality ĝ ⊗H = g̃x
−1

1 ◦ g̃x−1 and ĥ ⊗H = h̃
x

1 ◦ h̃
x−1

−1 such that ĝ

and ĥ are the bases for the next argument with â and b̂. Therefore, both P and
V can run the protocol with (ĝ, ĥ,H, u, P̂ ; â, b̂). If m = 1, the CRS is of the
form e(g1,H) and e(h1,H), which is uniform in Gt, so that we can directly run
Bulletproofs over Gt. We present the full description of our protocol, denoted
by Protocol3, in Fig. 7. The number of rounds and the communication cost in
Protocol3 are the same as those of Bulletproofs over Gt. The verification cost
is O(

√
N) when setting m = n. Note that a näıve verification in the (m = 1)

case requires O(
√
N) expensive pairing computation for calculating e(g1,H) and

e(h1,H), but using a similar trick in the case (m > 1), the verifier can update
H only instead of e(g1,H) and e(h1,H) and then perform constant pairing
operations only at the final stage.

Linear Prover and Logarithmic Communication. In terms of the prover’s com-
putation and communcation overheads, Protocol3 is asymptotically the same as
Bulletproofs inner-product argument since we can consider Protocol3 as Bullet-
proofs with CRS g ⊗H and h ⊗H. That is, the prover’s complexity is O(N)
and the communication overhead is O(log2N).
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Theorem 8. The argument presented in Fig. 7 for the relation (7) has perfect
completeness and computational witness-extended-emulation under the general
discrete logarithm assumption with the sampler GDLRspBM .

Proof. Although the verification cost in Protocol3 is reduced compared with Bul-
letproofs, the prover’s and the verifier’s computation in Protocol3 is equivalent
to that of Bulletproofs with the CRS g⊗H and h⊗H. Therefore, the proof of
this theorem should be exactly the same as the proof in Theorem 9 except that
the general discrete logarithm relation assumption is guaranteed by Theorem 7
instead of Theorem 5. ut

6.4 Practical verification of Protocol 3

When it comes to asymptotic complexity, Protocol3 is definitely better than
Bulletproofs. However, for practical performance, we consider the computation
time of group operations which depends on choice of elliptic curve. Actually, both
scheme use different elliptic curves. More specifically, Bulletproofs uses ed25519
curve for efficiency. However Protocol3 cannot apply ed25519 curve because this
curve does not support pairing operation. For Protocol3, we consider pairing
friendly elliptic curve like BLS12-381.

We consider a typical parameter setting N = 220 in 128-bits security and
ed25519 curve for Bulletproofs, BLS12-381 curve for Protocol3. Bulletproofs re-
quires 2 × 220 group operations for verification. Protocol3 requires 2 × 210 G1

operations and 2 × 210 G2 operations for verification. The computation time
of group operations G1 and G2 in BLS12-381 curve are roughly 5× and 10×
slower than that of group operation in ed25519 curve respectively [44]. Then we
can conclude that the verification time of Protocol3 is 67× faster than that of
Bulletproofs.

7 Extensions

7.1 Zero-Knowledge Argument for Arithmetic Circuits

The perfect special honest verifier zero-knowledge (SHVZK) means that given
the challenge values, it is possible to simulate the whole transcript even without
knowing the witness. The inner-product argument is an important ingredient
for the SHVZK argument for arithmetic circuits [15, 17]. We can apply this
well-known approach with our inner-product arguments. In the supplementary
material, we provide the formal definition of SHVZK and present how to use our
inner-product arguments for the SHVZK argument for arithmetic circuits.

7.2 Transparent Polynomial Commitment Scheme

Informally, using the polynomial commitment scheme, a committer first commits
to a polynomial f(X), and then later opens f(x) at some point x (mostly chosen
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Scheme CRS size
Commit Opening P’s computation V’s

Assump.
size proof size Commit Open computation

Groth [32] O(
3√
N)G2 O(

3√
N)Gt O( 3

√
N)G1 O(N)τ1 O(

2
3
√
N)τ1 O(

3√
N)p DPair

BulletP. [17] O(N)G1 O(1)G1 O(log2N)G1 O(N)τ1 DL

Hyrax [47] O(
√
N)G1 O(log2N)G1 O(N)τ1 O(

√
N)τ1 DL

BFS [18] O(N)GU O(1)GU O(log2N)GU O(N)u O(N log2N)u O(log2N)u UO

Virgo [50] O(1) O(1)H O((log2N)2)H O(N log2N)h O((log2N)2)h CR hash

BMMV [19] O(
√
N)G2 O(1)Gt O(log2N)Gt O(N)τ1 O(

√
N)p O(

√
N)τ2 DPair

Protocol2 O(N)G1 O(1)G1 O(
√

log2N)Gt O(N)τ1 O(N2
√

log N )τ1 O(N)τ1 DL&DPair

Protocol3 O(
√
N)G2 O(1)Gt O(log2N)Gt O(N)τt O(N)τt O(

√
N)τ2 DL

(G1,G2,Gt): bilinear groups, GU : group of unknown order, H: hash function,
τi: group operations in Gi, u: group operation in GU , p: pairing operation, h: hash operation,
N : degree of polynomial, DL: discrete logarithm assumption, DPair: double pairing assumption,
UO: strong RSA assumption and adaptive root assumption in unknown order groups, CR hash:
collision-resistant hashes

Table 2. Transparent polynomial commitment schemes

by a verifier) and convinces a verifier of correctness of f(x). We provide the
formal definitions of commitment scheme and polynomial commitment scheme
in the supplementary material.

The inner-product argument with the Pedersen commitment scheme such as
Bulletproofs can be naturally considered a transparent polynomial commitment
scheme and is already used in many prior works (e.g., [47, 16, 19]). For example,
a polynomial f(X) =

∑
i∈[N ] aiX

i−1 ∈ Zp[X] can be represented by a vector

a = (a1, . . . , aN ) of its coefficients. Then, the prover can commit to a using
Pedersen commitment (that is, ga, where g is the commitment key.) and prove
an evaluation at any point x by proving an inner-product relation between a
and the vector (1, x, x2, . . . , xN−1).

Bulletproofs inner-product argument convinces about the relation in Eq. (1).
Our main protocol Protocol2 is a proof system for the relation in Eq. (4), which
is equivalent to the relation in Eq. (1) except for the CRS. Therefore, Protocol2
can be used as a transparent polynomial commitment scheme in exactly the same
way as Bulletproofs. In Table 2, we present a comparison for asymptotic com-
plexities of polynomial commitment schemes. Note that although both P and V
perform bilinear operations in Protocol2, those are sublinear in the dimension N
of the witness vector, so that group operations with O(N) complexity dominate
computational complexities.

8 Discussion on Best of Protocol2 and Protocol3

There are several directions to improve our results. One of improvements is to
combine ideas of two protocols Protocol2 and Protocol3. It seems difficult to get
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both advantages of our two protocols since each of them uses a bilinear map
for a different purpose. In Protocol2, the bilinear map is used in the first step
for compressing multiple group elements by sending a commitment instead of
multiple group elements. In the first step of Protocol3, the P sends L and R to
the verifier, where L and R are elements in Gt. We can generalize Protocol3 like
Protocol1, but we cannot put L and R into a homomorphic commitment scheme
directly since L and R are already in the target group of the bilinear map.

We share an idea to circumvent the above difficulty. In Protocol2, P commits
to a vector v whose components form vi,j = g

aj

i h
bi
j u
〈a,b〉 ∈ G1. Similarly, we

can generalize Protocol3 so that P commits to vi,j whose components consist of
(gi ⊗H)aj (hj ⊗H)biu〈aj ,bi〉 ∈ Gt. Since vi,j is in the target group, we cannot
again commit to vi,j by using homomorphic commitment schemes. Nevertheless,
we observe that vi,j can be represented as E(αi,j ,H), where αi,j ∈ Gn depends
on aj and bi. Since H is a public parameter, the prover may commit to αi,j ’s
instead of vi,j ’s and then prove suitable relations. We hope this observation is
helpful for tackling the difficulty for best of both protocols.
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Supplementary Materials

A Bulletproofs [17]

A.1 Inner-Product Argument (without Zero-Knowledge)

We review Bulletproofs inner-product argument, which is denoted by BPIP and
given in Fig. 8, for the relation in Eq. (1).

BPIP(g,h ∈ GN , u, P ∈ G;a, b ∈ ZNp )

If N = 1:
Step 1: P sends V a and b.
Step 2: V outputs Accepts if and only if P = gahbua·b holds.

Else (N > 1): Let N̂ = N
2

and parse a, b, g, and h to

a = a1‖a−1, b = b1‖b−1, g = g1‖g−1, and h = h1‖h−1.

Step 1: P calculates

L = ga1
−1h

b−1
1 u〈a1,b−1〉 ∈ G and R = g

a−1
1 hb1

−1u
〈a−1,b1〉 ∈ G,

and then sends L,R to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ GN̂ , ĥ = hx1 ◦ hx
−1

−1 ∈ GN̂ , and P̂ = Lx
2

P Rx
−2

∈ G.

Additionally, P computes

â = a1x+ a−1x
−1 ∈ ZN̂p and b̂ = b1x

−1 + b−1x ∈ ZN̂p .
Step 4: Both P and V run BPIP(ĝ, ĥ, u, P̂ ; â, b̂).

Fig. 8. Bulletproofs (Inner-Product Argument)

The main idea of Bulletproofs is recursive reduction from an argument for
N -length witness to an argument for (N̂ = N

2 )-length witness. For the sake of
simplicity, we assume that N is a power of 2 and one can pad the input if need be.
First, the prover parses a, b, g, and h to two vectors of N̂ -length, respectively,
as follows.

a = a1‖a−1, b = b1‖b−1, g = g1‖g−1, and h = h1‖h−1

P begins by computing and sending V

L = ga1
−1h

b−1

1 u〈a1,b−1〉 ∈ G and R = g
a−1

1 hb1
−1u

〈a−1,b1〉 ∈ G.
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V chooses a random challenge x
$←Z∗p and returns it to P. Next, both P and V

compute a common input for the next step argument

ĝ = gx
−1

1 ◦ gx−1 ∈ GN̂ , ĥ = hx1 ◦ h
x−1

−1 ∈ GN̂ and P̂ = Lx
2

P Rx
−2

∈ G

and P additionally computes a witness for the next step argument

â = a1x+ a−1x
−1 ∈ ZN̂p and b̂ = b1x

−1 + b−1x ∈ ZN̂p .

One can easily check that the updated P̂ equals to the followings.

Lx
2

P Rx
−2

=(ga1
−1h

b−1

1 u〈a1,b−1〉)x
2

(gahbu〈a,b〉)(g
a−1

1 hb1
−1u

〈a−1,b1〉)x
−2

=g
a1+x

−2a−1

1 g
x2a1+a−1

−1 · hx
2b−1+b1

1 h
b−1+x

−2b1

−1 · ux
2〈a1,b−1〉+〈a,b〉+x−2〈a−1,b1〉

=(gx
−1

1 ◦ gx−1)xa1+x
−1a−1 · (hx1 ◦ h

x−1

−1 )x
−1b1+xb−1 · u〈xa1+x

−1a−1,x
−1b1+xb−1〉

=ĝâ · ĥ
b̂
· u〈â,b̂〉

Thus, P̂ satisfies again an inner-product relation ĝâ ·ĥ
b̂
·u〈â,b̂〉 with a half-length

witness â and b̂. Next, both P and V run BPIP(ĝ, ĥ, u, P̂ ; â, b̂) together. The full
description of Bulletproofs is provided in Fig. 8.

Theorem 9 ([17]). The inner-product argument of Bulletproofs (given in Fig. 8
of the supplementary material) has perfect completeness and computational witness-
extended-emulation under the discrete logarithm relation assumption.

In the above recursive step, P sends only two group elements in G and the
length of witness vectors becomes a half in the next round. Thus, it requires
O(log2N) group elements during O(log2N) rounds. The verifier computes ĝ and

ĥ that require O(N) exponentiations for each round, but these computations can
be optimized to be a single multi-exponentiation of N -length for all rounds.

A.2 Zero-Knowledge Arguments for Arithmetic Circuits

Bulletproofs presents another zero-knowledge argument protocol that is for ar-
bitrary arithmetic circuits. More precisely. this protocol proves the following
relation and the detailed description of protocol is given in Fig. 9.

(
g,h ∈ GN ,V ∈ GM , g, h ∈ G,WL,WR,WO ∈ ZQ×Np ,W V ∈ ZQ×Mp ,
c ∈ ZQp ; aL,aR,aO ∈ ZNp ,v,γ ∈ ZMp

)
: Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧ WLa

>
L +WRa

>
R +WOa

>
O = W V v

> + c>
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BPAC(g,h,V , g, h,WL,WR,WO,W V , c;aL,aR,aO,v,γ)

Step 1: P computes α, β, ρ
$←Zp, AI = hαgaLhaR ∈ G, AO = hαgaO ∈ G,

sL, sR
$←ZNp , S = hρgsLhsR ∈ G

and send AI , AO, and S to V.

Step 2: V chooses y, z
$←Z∗p and returns it to P.

Step 3: Both P and V compute

yN := (1, y, y2, . . . , yN−1) ∈ ZNp , zQ+1 := (z, z2, . . . , zQ) ∈ ZQp ,

δ(y, z) := 〈y−N ◦ (zQ+1 ·WR),zQ+1 ·WL〉,

h′i := hy
−i+1

i , ∀i ∈ [N ] and h′ := (h′1, . . . , h
′
N ).

Additionally, P computes

l(x) := aL ·X + aO ·X2 + y−N ◦ (zQ+1 ·WR) ·X + sL ·X3 ∈ ZNp [X],

r(X) := yN ◦ aR ·X − yN + zQ+1 · (WL ·X +WO) + yN ◦ sR ·X3 ∈ ZNp [X],

t(X) := 〈l(X), r(X)〉 =
∑
i∈[6]

ti ·Xi ∈ Zp[X],

w := WL · aL +WR · aR +WO · aO,

t2 := 〈aL,aR ◦ yN 〉 − 〈aO,yN 〉+ 〈zQ+1,w〉+ δ(y, z) ∈ Zp,

τi
$←Zp ∀i ∈ {1, 3, 4, 5, 6}, Ti := gtihτi ∀i ∈ {1, 3, 4, 5, 6},

and send Ti for i ∈ {1, 3, 4, 5, 6} to V.

Step 4: V chooses x
$←Z∗p and returns it to P.

Step 5: P computes

l := l(x) ∈ ZNp , r := r(x) ∈ ZNp , t̂ := 〈l, r〉 ∈ Zp,

τx :=

6∑
i=1,i 6=2

τi · xi + x2 · 〈aQ+1,W V · γ〉 ∈ Zp, µ := α · x+ β · x2 + ρ · x3 ∈ Zp

and send τx, µ, t̂ to V.

Step 6: V send a random challenge w
$←Zp to P.

Step 7: Both P and V run BPIP(g,h′, gw, P · h−µ · gw·t̂; l, r).

Fig. 9. Bulletproofs (Arithmetic Circuit Argument)
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B Proof of Theorem 1

B.1 General Forking Lemma

Theorem 10 (General Forking Lemma [15]). Let (K,P,V) be a (2k + 1)-
move, public coin interactive protocol with µ challenges x1, . . . , xµ in sequence.
Let ni ≥ 1 for 1 ≤ i ≤ µ. Consider an (n1, . . . , nk)-tree of accepting transcripts
with challenges in the following tree format. The tree has depth µ and

∏µ
i=1 ni

leaves. The root of the tree is labeled with the statement. Each node of depth i < µ
has exactly ni children, each labeled with a distinct value of the i-th challenge
xi.

Let χ be a witness extraction algorithm that succeeds with probability 1 −
neg(λ) for some negligible function neg(λ) in extracting a witness from an
(n1, . . . , nk)-tree of accepting transcripts in probabilistic polynomial time. As-

sume that
∏k
i=1 ni is bounded above by a polynomial in the security parameter

λ. Then, (K,P,V) has witness-extended emulation.

B.2 Proof of Theorem 1

Proof. (completeness) For the recursive step, Eq (2) guarantees the completeness
of the protocol. For N = 1, it is straightforward since the prover provides a
witness a and b and the verifier checks the relation.
(witness-extended emulation) In order to show the computational witness-extended
emulation, we construct an expected polynomial time extractor χ whose goal is
to extract the witness by using a polynomially bounded tree of accepting tran-
scripts. If then, similar to Bulletproofs, we can apply the general forking lemma.

The case (N = 1) is straightforward since the prover sends the witness and
then the verifier can directly check the correctness. Let us focus on the case
(N > 1). We prove that for each recursive step that on input (g,h, u, P ), we can
efficiently extract from the prover a witness a and b under the discrete logarithm
relation assumption whose instance is the CRS g, h, and u. First, the extractor
runs the prover to get vi,j for i 6= j ∈ In. At this point, the extractor rewinds
the prover 12n− 5 times and feeds 12n− 5 non-zero challenges xk such that all
x2k are distinct. Then, the extractor obtains 12n − 5 pairs âk and b̂k such that
for each k ∈ [12n− 5]

P
∏
s∈Jn

( ∏
i,j∈In
j−i=s

vi,j
)xs

k = P
∏

i,j∈In
i6=j

v
xj−i
k
i,j = P̂

=
(
◦i∈In g

x−i
k
i

)âk
(
◦j∈In h

xj
k
j

)b̂ku〈âk,b̂k〉

=
( ∏
i∈In

g
x−i
k âk

i h
xi
kb̂k

i

)
u〈âk,b̂k〉 (8)

where Jn := {±2,±4,±6, . . . ,±(4n − 4),±(4n − 2)} of size 4n − 2. We know
that squares of the first 4n−1 challenges, x21, . . . , x

2
4n−1, are distinct, so that the
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following matrix M ∈ Z(4n−1)×(4n−1)
p is invertible since it is a product of two

invertible matrices, where one of which is a diagonal matrix and the other is a
Vandermonde matrix with distinct rows.

M =


x−4n+2
1 x−4n+4

1 · · · 1 · · · x4n−41 x4n−21

x−4n+2
2 x−4n+4

2 · · · 1 · · · x4n−42 x4n−22
...

... · · · 1 · · ·
...

...
x−4n+2
4n−1 x−4n+4

4n−1 · · · 1 · · · x4n−44n−1 x
4n−2
4n−1



=


x−4n+2
1 0 · · · 0

0 x−4n+2
2 · · · 0

...
...

. . . 0
0 0 · · · x−4n+2

4n−1

 ·


1 x21 · · · x4n−21 · · · x8n−61 x8n−41

1 x22 · · · x4n−22 · · · x8n−62 x8n−42
...

...
. . .

. . .
. . .

...
...

1 x24n−1 · · · x4n−24n−1 · · · x
8n−6
4n−1 x

8n−4
4n−1

 .

The extractor knows all the exponents xj−ik , x−ik , xjk, âk, and b̂k in Eq. (8).
There are 4n− 1 distinct powers of x2k in the left-hand side in Eq. (8). Thus, by
using the inverse matrix of M and the elementary linear algebra in the public
exponents of the first 4n − 1 equalities in Eq. (8), we can find the exponents
{aP,r, bP,r}r∈In , cP and {as,r, bs,r}r∈In , cs for s ∈ JN satisfying

P =
( ∏
r∈In

gaP,r
r hbP,r

r

)
ucP ∈ G, (9)

( ∏
i,j∈In
j−i=s

vi,j
)

=
( ∏
r∈In

gas,r
r hbs,r

r

)
ucs ∈ G. (10)

Next, we prove that the extracted exponents {aP,r}r∈In , {bP,r}r∈In , cP satisfy
the desired relation cP =

∑
r∈In〈aP,r, bP,r〉 = 〈aP , bP 〉, where aP and bP are

concatenations of aP,r’s and bP,r’s, respectively. Putting Eq. (9) and Eq. (10)
into Eq. (8), we have for each k ∈ [12n− 5],

( ∏
r∈In

gaP,r
r hbP,r

r

)
ucP ·

∏
s∈Jn

( ∏
r∈In

gas,r
r hbs,r

r

)xs
kucsx

s
k

=
( ∏
r∈In

g
x−r
k âk
r hx

r
kb̂k
r

)
u〈âk,b̂k〉.

This can be rewritten as( ∏
r∈In

g
aP,r+

∑
s∈Jn

xs
kas,r

r h
bP,r+

∑
s∈Jn

xs
kbs,r

r

)
ucP+

∑
s∈Jn

csx
s
k

=
( ∏
r∈In

g
x−r
k âk
r hx

r
kb̂k
r

)
u〈âk,b̂k〉 for k ∈ [12n− 5].
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By the discrete logarithm relation assumption, the above equality implies that
for k ∈ [12n− 5] and r ∈ In

gr exponents : aP,r +
∑
s∈Jn as,rx

s
k = âkx

−r
k (11)

hr exponents : bP,r +
∑
s∈Jn bs,rx

s
k = b̂kx

r
k (12)

u exponents : cP +
∑
s∈Jn csx

s
k = 〈âk, b̂k〉. (13)

If we find exponents satisfying Eq. (8), Eq. (9) and Eq. (10), but not one of the
above Eq. (11), Eq. (12) and Eq. (13), it directly implies a non-trivial relation
between the CRS and so we break the discrete logarithm relation assumption in
G1.

As an intermediate step toward the relation cP =
∑
r∈In〈aP,r, bP,r〉, we find a

relation between aP,r and âk and a relation between bP,r and b̂k since such rela-
tions can be combined with Eq. (13) to find the relation cP =

∑
r∈In〈aP,r, bP,r〉.

From Eq. (11) and Eq. (12), we can remove âk and b̂k and deduce that for each
k ∈ [12n− 5] and any r, r′ ∈ In,

aP,rx
r
k +

∑
s∈Jn

as,rx
s+r
k − aP,r′xr

′

k −
∑
s∈Jn

as,r′x
s+r′

k = 0 (14)

bP,rx
−r
k +

∑
s∈Jn

bs,rx
s−r
k − bP,r′x−r

′

k −
∑
s∈Jn

bs,r′x
s−r′
k = 0. (15)

In both Eq. (14) and Eq. (15), degrees of xk range between 6n− 3 and −6n+ 3
according to r ∈ In and s ∈ Jn. That is, the number of distinct integers in
the range is 12n − 5 that is equal to the number of distinct challenges xk for
k ∈ [12n−5]. That implies that the following polynomial equations in the variable
X hold for any r, r′ ∈ In.

aP,rX
r +

∑
s∈Jn

as,rX
s+r − aP,r′Xr′ −

∑
s∈Jn

as,r′X
s+r′ = 0

and bP,rX
−r +

∑
s∈Jn

bs,rX
s−r − bP,r′X−r

′
−
∑
s∈Jn

bs,r′X
s−r′ = 0.

This can be rewritten as

aP,rX
r +

∑
s∈Jn

as,rX
s+r is the same polynomial for all r ∈ In. (16)

bP,rX
−r +

∑
s∈Jn

bs,rX
s−r is the same polynomial for all r ∈ In. (17)

The only way to hold the above two equations is that

1. The polynomial in Eq. (16) is
∑
s∈In aP,sX

s, regardless of r.
2. The polynomial in Eq. (17) is

∑
s∈In bP,sX

−s, regardless of r.
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Fix an r ∈ In, say r = 2n− 1. Then, putting the above result into Eq. (16) and
Eq. (17), we have

aP,2n−1X
2n−1 +

∑
s∈Jn

as,2n−1X
s+2n−1 =

∑
s∈In

aP,sX
s

bP,2n−1X
−2n+1 +

∑
s∈Jn

bs,2n−1X
s−2n+1 =

∑
s∈In

bP,sX
−s

Combining the above result with Eq. (11) and Eq. (12), we have for k ∈ [12n−5]

aP,2n−1x
2n−1
k +

∑
s∈Jn

as,2n−1x
s+2n−1
k = âk =

∑
s∈In

aP,sx
s
k

bP,2n−1x
−2n+1
k +

∑
s∈Jn

bs,2n−1x
s−2n+1
k = b̂k =

∑
s∈In

bP,sx
−s
k .

Thus, we obtain the relations âk =
∑
s∈In aP,sx

s
k and b̂k =

∑
s∈In bP,sx

−s
k

for k ∈ [12n − 5], which is the intermediate step toward the desired relation
cP =

∑
r∈In〈aP,r, bP,r〉.

As aforementioned, we combine these relations with Eq. (13) and obtain that
for k ∈ [12n− 5]

cP +
∑
s∈Jn

csx
s
k = 〈

∑
s∈In

aP,sx
s
k,
∑
s∈In

bP,sx
−s
k 〉 =

∑
s,s′∈In

〈aP,s, bP,s′〉xs−s
′

k

=
∑

s,s′∈In
s′ 6=s

〈aP,s, bP,s′〉xs−s
′

k +
∑
s∈In

〈aP,s, bP,s〉

Since this relation holds for all x1, . . . , x12n−5, it must be that

cP =
∑
s∈In

〈aP,s, bP,s〉 = 〈aP , bP 〉.

Therefore, we construct the extractor that outputs aP , bP and cP satisfying
the above inner-product relation. The extractor rewinds 12n− 5 times for each
recursive step. Thus, it uses (12n−5)log2nN transcripts in total and thus runs in
expected polynomial time in N and λ. Then, by the general forking lemma, we
conclude that the argument has computational witness-extended emulation. ut

C Proof of Theorem 2

Proof. (Completeness) For N > 1, the protocol resembles the generalization of
the bulletproofs in Fig. 2. It is sufficient to show that for the case (N = 1),
the correctly generated state information stP successfully passes the augmented
aggregation of multi-exponentiation arguments protocol. For k ∈ [m], uk =
E(vk,F k) and vk = vxk

k , where xk is the challenge vector used in the k-th
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recursive stage. Since the prover sets vk,j = 1G1
for j 6= k and vk,k = vk for

k ∈ [m], we have

uk =
∏
j∈[m]

E(vk,j ,F j) ∧ vk = vxk

k,k ∧ (v
xj

k,j = 1G1
for j 6= k),

which is the relation in Eq. (6). Therefore, it will correctly pass values to the
aAggMEA protocol.

(Witness-Extended-Emulation) Due to the general forking lemma, it is sufficient
to construct an extractor χ that extracts a witness from a suitable tree of ac-
cepting transcripts in probabilistic polynomial time.

We begin with (12n− 5, . . . , 12n− 5︸ ︷︷ ︸
log2nN

, 2m, 7, . . . , 7︸ ︷︷ ︸
log2(2n(2n−1) log2nN)

)-tree of accept-

ing transcriptions. Note that the number of all challenges in the tree is (12n −
5)log2nN · 2m · 7log2(2n(2n−1) log2nN) that is bounded above by a polynomial in N
and λ, so that we can apply the general forking lemma.

If N = 1 and stP is empty, then it is straightforward since the verifier receives
a witness a and b satisfying P = gahbuab and check the validity for any accepting
transcript in the tree. If N = 1 but stP is non-empty, then we use the fact that
the lower position subtree of (1+log2(2n(2n−1) log2nN)-depth is (2m, 7, . . . , 7)-
tree of accepting transcripts for aAggMEA. aAggMEA has the witness-extended
emulation under the co-sCDH assumption by Theorem 3 and Theorem 4. Using
the (2m, 7, . . . , 7)-tree of accepting transcripts, the extractor can extract vk,j
satisfying∧

k∈[m]

(
uk =

∏
j∈[m]

E(vk,j ,F j) ∧ vk = vxk

k,k ∧ (v
xj

k,j = 1G1
for j 6= k)

)
, (18)

for each accepting transcript in the upper position (12n− 5, . . . , 12n− 5︸ ︷︷ ︸
log2nN

)-subtree

of the main tree. Note that for j 6= k, vk,j may not equal to 1G1
unlike the original

protocol. However, what we need from Eq. (18) is only the relation vk = vxk

k,k

such that vk,k is committed by the prover before receiving xk.
All the remaining process is equivalent to the proof of Theorem 1; the format

of the upper position subtree of accepting transcripts is exactly the same as that
required in the proof of generalized Bulletproofs in Theorem 1. Furthermore,
for each upper position accepting transcript, we have shown that the extractor
can extract the vk,k, which is used in the computation of P̂ = P · vk in the
k-th recursive round. Thus, what the extractor has for each accepting transcript
for this protocol is exactly the same as that of the extractor for the general-
ized Bulletproofs protocol, so that we can employ the extractor in the proof of
Theorem 1 under the discrete logarithm relation assumption in G1.

As we aforementioned, we use (12n− 5, . . . , 12n− 5︸ ︷︷ ︸
log2nN

, 2m, 7, . . . , 7︸ ︷︷ ︸
log2(2n(2n−1) log2nN)

)-

tree of accepting transcriptions, which has leaves of polynomially bounded size
in N and λ. Therefore, we can apply the general forking lemma. ut
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D Proof of Theorem 3

We begin with providing the definition of the q-double pairing assumption, which
will be used in the proof for the witness-extended emulation of the scheme.

Definition 10 (q-Double Pairing Assumption). Let G be an asymmetric
bilinear group generator. We say that G satisfies the q-Double Pairing assumption
in G2 if all non-uniform polynomial-time adversaries A, the following inequality
holds.

Pr

 g 6= 1G1

∧
E(g,F ) = 1Gt

∣∣∣∣∣∣
(p, g,H,G1,G2,Gt, e)← G(1λ);

F
$←Gq2;

g ← A(p,F , g,H,G1,G2,Gt, e)

 < negl(λ),

where 1Gt
is the identity of Gt and negl(λ) is a negligible function in λ.

Theorem 11. The q-double pairing assumption holds in G2 for polynomially
bounded q if the double pairing is assumed hard. In particular, the reduction is
tight.

Proof. Assume that there exists a PPT adversaryA who breaks the q-double par-
ing assumption for polynomial-size q. Given a double pairing instance (G,Ga) ∈
G2

2, we construct a reduction using A as a subroutine. The reduction chooses a

random vector (r1, . . . , rq)
$←Zqp, sets F = ((Ga)r1 , Gr2 , . . . , Grq ), and sends to A.

Due to the random exponents ri’s, F looks uniformly distributed from A’s view-
point. Thus, A successfully outputs g = (g1, . . . , gq) such that E(g,F ) = 1Gt

with non-negligible probability. Then, the reduction outputs a pair (gr11 , g
r2
2 · · · g

rq
q )

as an answer to the double pairing problem.

Since E(g,F ) = 1Gt
holds, we know that the following should holds as well.

E((gr11 , . . . , g
rq
q ), (Ga, G, . . . , G)) = e(gr11 , G

a) · e(gr22 · · · grqq , G) = 1Gt

Thus, the above equality guarantees the correctness of the reduction’s output.

It is clear that the reduction is tight in the sense that the reduction’s ad-
vantage for breaking the double pairing assumption is exactly identical to the
advantage of A for breaking the q-double pairing assumption. ut

Now we are ready to prove Theorem 3 about the protocol for the following
relation.{

(F k, zk, Hk ∈ G2, Pk, qk;vk,j for k, j ∈ [m])

:
∧
k∈[m]

(
Pk =

∏
j∈[m]E(vk,jF j) ∧ qk = vzk

k,k ∧ (v
zj

k,j = 1G1
for j 6= k)

)}
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(Completeness) When setting F̃ k, z̃k, H̃k, P̃ , and ṽk as in the protocol descrip-
tion, we have

P̃

=
∏
k∈[m]

(
P y

k−1

k · e(qy
k−1

k , Hym

k )
)

=
∏
k∈[m]

(( ∏
j∈[m]

E(vk,jF j)
)yk−1

· e((vzk

k,k)y
k−1

, Hym

k )
)

=
( ∏
j∈[m]

E(◦k∈[m]v
yk−1

k,j ,F j)
)
·
( ∏
k∈[m]

e(vy
k−1zk

k,k , Hym

k )
)

=
∏
k∈[m]

E(◦j∈[m]v
yj−1

j,k ,F k) · e(vy
k−1zk

k,k , Hym

k ) // Change index j with index k

=
∏
k∈[m]

E(◦j∈[m]v
yj−k

j,k ,F y
k−1

k ) · e(vy
k−1zk

k,k , Hym

k )

=
∏
k∈[m]

E(ṽk, F̃ k) · e
(
(◦j∈[m]v

yj−k

j,k )y
k−1zk , H̃k) // Use the relation vzk

j,k = 1G1

for j 6= k

=
∏
k∈[m]

E(ṽk, F̃ k) · e(ṽz̃k

k , H̃k)

Thus, we know that F̃ k, z̃k, H̃k, P̃ , and ṽk satisfy the relation in Eq. (6). Thus,
if ProdMEA has the completeness, aAggMEA has also the completeness.

(Witness-Extended-Emulation) Due to the general forking lemma, it is sufficient
to construct an extractor χ that extracts a witness from a suitable tree of ac-
cepting transcripts in probabilistic polynomial time.

Suppose that ProdMEA has witness-extended emulation and the double pair-
ing assumption holds. Thus, we can employ the extractor for ProdMEA and the
q-double pairing assumption holds in G2. The extractor rewinds the prover in
the reduction by feeding 2m distinct challenges yi for i ∈ [2m] and obtains the

witness ṽ
(i)
k for k ∈ [m] and i ∈ [2m] satisfying ProdMEA argument. That is, for

i ∈ [2m] we have∏
k∈[m]

(
P
yk−1
i

k e(qk, Hk)y
m+k−1
i

)
= P̃i

=
∏
j∈[m]

E((ṽ
(i)
j )y

j−1
i ,F j)e((ṽ

(i)
j )y

m+j−1
i zj , Hj). (19)

All exponents in the above equation are powers of yi. Let M be an 2m × 2m
Vandermonde matrix with i-th row (1, yi, . . . , y

2m−1
i ). Let ak = (ak,1, . . . , ak,2m)

be the k-th row of M−1 for k ∈ [2m]. Then, using elementary linear algebra in
the exponent of Eq. (19), the extractor can compute wk,j ∈ GN1 and νk,j ∈ G1
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for k, j ∈ [m] such that

Pk =

m∏
i=1

P̃
ak,i

i =
∏
j∈[m]

E(wk,j ,F j)e(νk,j , Hj). (20)

From now, we show that the extracted wk,j and νk,j satisfy the desired relations
νk,j = 1G1

for all k, j ∈ [m], qk = wzk

k,k for all k ∈ [m], and wzk
j,k = 1G1

for j 6= k.
When we put the above equality into Eq. (19), we have∏

k∈[m]

(( ∏
j∈[m]

E(wk,j ,F j)
yk−1
i e(νk,j , Hj)

yk−1
i

)
· e(qk, Hk)y

m+k−1
i

)
=
∏
j∈[m]

(
E(ṽ

(i)y
j−1
i

j ,F j)e((ṽ
(i)
j )y

m+j−1
i zj , Hj)

)
.

By the q-double pairing assumption, we can separate the above equation as
follows. For each i ∈ [2m] and j ∈ [m], we have

F j correspondence : ◦k∈[m]w
yk−1
i

k,j = (ṽ
(i)
j )y

j−1
i (21)

Hj correspondence :
(∏

k∈[m] ν
yk−1
i

k,j

)
· qy

m+j−1
i
j = (ṽ

(i)
j )y

m+j−1
i zj (22)

Combining Eq. (21) and Eq. (22), we can remove ṽi,j ’s and obtain the followings.( ∏
k∈[m]

ν
yk−1
i

k,j

)
· qy

m+j−1
i
j =

∏
k∈[m]

w
ym+k−1
i zj

k,j (23)

We observe that all the values except yi in the above equation is fixed before
choosing the challenge yi, the degree of yi’s vary between 0 and 2m − 1, and
the above equation holds for each challenge yi. Since the number of distinct
challenges is larger than the maximum degree of yi, the only way to hold Eq. (23)
is that

Left-Hand Side Right-Hand Side

For k ∈ [m], yk−1i correspondence: νk,j = 1G1

ym+j−1
i correspondence: qj = w

zj

j,j

For k 6= j, ym+k−1
i correspondence: 1G1

= w
zj

k,j .

Thus, putting the above result into Eq. (20), the extractor eventually has wk,j

for k ∈ [m] satisfying

qk = wzk

k,k ∧ Pk =
∏
j∈[m]

E(wk,j ,F j) ∧ (w
zj

k,j = 1G1
for all j 6= k).

ut
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E Proof of Theorem 4

Proof. (Completeness) If N = 1, it is straightforward to check the completeness
of the scheme in Figure 6. For N > 1, we have

P =
∏
k∈[m]

E(vk,F k)e(vzk

k , Hk)

and so

P̂ =
( ∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk)
)x2

·
∏
k∈[m]

E(vk,F k)e(vzk

k , Hk)

·
( ∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk)
)x−2

.

=
∏
k∈[m]

E(vxk,1,F
x
k,−1)E(vk,F k)E(vx

−1

k,−1,F
x−1

k,1 )e(v
zk,−1x

2

k,1 · vzk

k · v
zk,1x

−2

k,−1 , Hk)

=
∏
k∈[m]

E(vxk,1 ◦ vx
−1

k,−1,F
x
k,−1 ◦ F

x−1

k,1 )e((vxk,1 ◦ vx
−1

k,−1)zk,1x
−1+zk,−1x, Hk)

=
∏
k∈[m]

E(v̂k, F̂ k)e(v̂ẑk

k , Hk).

Therefore, the completeness is satisfied.

(Witness-Extended Emulation) The double pairing assumption implies the q-
double pairing assumption in G2 by Theorem 11, so that from now we assume
that the q-double pairing assumption holds in G2. In order to show the compu-
tational witness-extended emulation, we construct an expected polynomial time
extractor χ whose goal is to extract the witness by using a poly(λ)-bounded tree
of accepting transcripts. If then, we can apply the general forking lemma.

The case (N = 1) is straightforward since the prover sends the witness and
the verifier can directly check the correctness. Let us focus on the case (N > 1).
We prove that for each recursive step that on input (F k, zk, Hk, P ) for k ∈ [m],
we can efficiently extract from the prover a witness vk for k ∈ [m] under the
q-double pairing assumption for the CRS F k’s and Hk’s. First, the extractor
runs the prover to get L and R. At this point, the extractor rewinds the prover
7 times and feeds 7 non-zero challenges xi such that x2i 6= x2j for all j 6= i. Then,
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the extractor obtains 7 tuples (xi, v̂
(i)
1 , . . . , v̂(i)m ) such that for i ∈ [7]

Lx
2
iPRx

−2
i

=
∏
k∈[m]

E(v̂
(i)
k , F̂ k)e(v̂

(i)
k

ẑk , Hk)

=
∏
k∈[m]

E(v̂
(i)
k ,F

x−1
i

k,1 ◦ F
xi

k,−1)e(v̂
(i)
k

(zk,1x
−1
i +zk,−1xi), Hk)

=
∏
i∈[m]

E(v̂
(i)
k
x−1
i ,F k,1)E(v̂

(i)
k
xi ,F k,−1)e(v̂

(i)
k

(zk,1x
−1
i +zk,−1xi), Hk) (24)

We know that squares of the first 3 challenges x21, x
2
2, x

2
3 are distinct, so that the

following matrix M ∈ Z3×3
p is invertible since it is a product of two invertible

matrices, where one of which is a diagonal matrix and the other is a Vandermonde
matrix.

M =

x−21 1 x21
x−22 1 x22
x−23 1 x23

 =

x−21 0 0
0 x−22 0
0 0 x−23

 ·
1 x21 x

4
1

1 x21 x
4
2

1 x21 x
4
3

 .
By using the inverse matrix of M and the elementary linear algebra in the public
exponents of the first 3 equalities for i = 1, 2, 3 in Eq. (24), we can find tu-
ples group element vectors (gP,k,1, gP,k,−1, gP,k,H), (gL,k,1, gL,k,−1, gL,k,H), and
(gR,k,1, gR,k,−1, gR,k,H) satisfying

P =
∏
k∈[m]

E(gP,k,1,F k,1)E(gP,k,−1,F k,−1)e(gP,k,H , HK) (25)

L =
∏
k∈[m]

E(gL,k,1,F k,1)E(gL,k,−1,F k,−1)e(gL,k,H , HK) (26)

R =
∏
k∈[m]

E(gR,k,1,F k,1)E(gR,k,−1,F k,−1)e(gR,k,H , HK). (27)

Next, we prove that the extracted group elements gP,k,1, gP,k,−1, gP,k,H satisfy
the desired relation gP,k,H = gzk

P,k, where gP,k is the concatenation of gP,k,1 and
gP,k,−1 for k ∈ [m]. Putting Eq. (25), Eq. (26) and Eq. (27) into Eq. (24), we
have for each i ∈ [7],∏

k∈[m]

E(g
x2
i

L,k,1 ◦ gP,k,1 ◦ g
x−2
i

R,k,1,F k,1) ·E(g
x2
i

L,k,−1 ◦ gP,k,−1 ◦ g
x−2
i

R,k,−1,F k,−1)

·e(gx
2
i

L,k,H · gP,k,H · g
x−2
i

R,k,H , Hk)

=
∏
k∈[m]

E(v̂
(i)
k
x−1
i ,F k,1)E(v̂

(i)
k
xi ,F k,−1)e(v̂

(i)
k

(zk,1x
−1
i +zk,−1xi), Hk)
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By the q-double pairing assumption, the above equality implies that for i ∈ [7]
and k ∈ [m]

F k,1 correspondence : g
x2
i

L,k,1 ◦ gP,k,1 ◦ g
x−2
i

R,k,1 = v̂
(i)
k
x−1
i (28)

F k,−1 correspondence : g
x2
i

L,k,−1 ◦ gP,k,−1 ◦ g
x−2
i

R,k,−1 = v̂
(i)
k
xi (29)

Hk correspondence : g
x2
i

L,k,H · gP,k,H · g
x−2
i

R,k,H = v̂
(i)
k

zk,1x
−1
i +zk,−1xi(30)

If we find exponents satisfying Eq. (24), Eq. (25), Eq. (26) and Eq. (27), but not
one of the above Eq. (28), Eq. (29) and Eq. (30), it directly implies a non-trivial
relation between the generators F k’s and Hk’s and so we break the q-double
pairing assumption.

As an intermediate step toward the relation gP,k,H = gzk

P,k, we find a relation

between gP,k and v̂
(i)
k for k ∈ [m] since such the relation can be combined with

Eq. (30) to find the desired relation gP,k,H = gzk

P,k. From Eq. (28) and Eq. (29),
we can deduce that for each i ∈ [7] and k ∈ [m],

g
x3
i

L,k,1 ◦ g
xi

P,k,1 ◦ g
x−1
i

R,k,1 = gxi

L,k,−1 ◦ g
x−1
i

P,k,−1 ◦ g
x−3
i

R,k,−1 ∈ GN1 . (31)

Eq. (31) can be interpreted that seven xi’s are solutions of m × N equations.
That is, for each equation, we have 7 solutions. Since the degree of xi in each
equation varies between -3 and 3, each equation should hold for all x ∈ Zp. The
only way to hold the above bunch of equations is that for k ∈ [m]

gL,k,1 = 1G1
, gP,k,1 = gL,k,−1, gR,k,1 = gP,k,−1, gR,k,−1 = 1G1

.

Putting the above result into Eq. (28), for i ∈ [7] and k ∈ [m] we have

gP,k,1 ◦ g
x−2
i

P,k,−1 = v̂
(i)
k
x−1
i .

Thus, we obtain the relation v̂
(i)
k = gxi

P,k,1 ◦ g
x−1
i

P,k,−1 for i ∈ [7], which is the
intermediate step toward the desired relation gP,k,H = gzk

P,k.

As aforementioned, we combine these relations with Eq. (30) and obtain that
for i ∈ [7] and k ∈ [m]

(gL,k,H)x
2
i · gP,k,H · (gR,k,H)x

−2
i = v̂

(i)
k

(zk,1x
−1
i +zk,−1xi)

=
(
gxi

P,k,1 ◦ g
x−1
i

P,k,−1
)zk,1x

−1
i +zk,−1xi

= g
zk,1

P,k,1 · g
zk,−1x

2
i

P,k,1 · gzk,1x
−2
i

P,k,−1 · g
zk,−1

P,k,−1

= (gP,k,1)zk,−1x
2
i · gzk

P,k · (gP,k,−1)zk,1x
−2
i .

Since this relation holds for all i ∈ [7], it must be that

gP,k,H = gzk

P,k for k ∈ [m].
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Therefore, we construct the extractor that outputs gP,k and gP,k,H satisfying
the above desired relation. The extractor rewinds 7 times for each recursive step.
Thus, it uses 7log2N transcripts in total and thus runs in expected polynomial
time in N and λ. Then, by the general forking lemma, we conclude that the
argument has computational witness-extended emulation. ut

F Extensions

F.1 Special Honest Verifier Zero-Knowledge

Definition 11. (Perfect Special Honest Verifier Zero-Knowledge) A public coin
argument (K,P,V) is perfect special honest verifier zero-knowledge (SHVZK) for
R if there exists probabilistic polynomial time simulator S such that for all pairs
of interactive adversaries A = (A1,A2),

Pr

[
A2(tr) = 1
∧(σ, x, w) ∈ R

∣∣∣∣ σ ← K(1λ); (x,w, ρ)← A1(σ); tr ← 〈P(σ, x, w),V(σ, x; ρ)〉
]

= Pr

[
A2(tr) = 1
∧(σ, x, w) ∈ R

∣∣∣∣∣σ ← K(1λ); (x,w, ρ)← A1(σ); tr ← S(x, ρ)

]
,

where ρ is the public coin randomness used by V.

In the above definition, the adversary A1 chooses a tuple of the statement,
witness, and the source of randomness used by V, but A2 cannot distinguish
between the honestly generated transcript by P and the simulated transcript by
S.

F.2 Zero-Knowledge Argument for Arithmetic Circuits

Bootle et al. [15] presents a conversion from an arbitrary arithmetic circuit with
N multiplication fan-in two gates into a certain relation containing a Hadamard
product with linear constraints. Bünz et al. [17] slightly generalizes the relation
to include committed values as inputs to the arithmetic circuit, so that the
converted relation contains the committed values as well. The formal description
of these relations in [15, 17] is given as follows.

(
g,h ∈ GN ,V ∈ GM , g, h ∈ G,WL,WR,WO ∈ ZQ×Np ,W V ∈ ZQ×Mp ,
c ∈ ZQp ; aL,aR,aO ∈ ZNp ,v,γ ∈ ZMp

)
: Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧ WLa

>
L +WRa

>
R +WOa

>
O = W V v

> + c>

 (32)

where W V ∈ ZQ×Mp is of rank M .

Bulletproofs for arithmetic circuits is a zero-knowledge argument for Eq. (32),
and in particular, Bünz et al. [17] proved the following theorem.
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Theorem 12 (Theorem 5 in [17]). There exists an efficient arithmetic cir-
cuit protocol for the relation in Eq. (32) using the argument for the inner-product
relation in Eq. (1). In particular, the arithmetic circuit protocol has perfect com-
pleteness, SHVZK and computational witness-extended emulation if the discrete
logarithm relation assumption holds and the underlying inner-product argument
has perfect completeness and computational witness-extended emulation.

We provide Bulletproofs arithmetic circuit protocol in the supplementary mate-
rial (Fig. 9) for the self-containedness. Bulletproofs arithmetic circuit argument
is indeed a reduction to an inner-product argument. In the reduction phase, the
prover sends only 8 group elements and 3 field elements to the verifier for con-
stant rounds, so that the overall communication overhead is asymptotically the
same as that of the underlying inner-product argument.

Our sublogarithmic proof system Protocol2 can be combined with Bullet-
proofs arithmetic circuit argument by replacing Bulletproofs inner-product ar-
gument. In fact, the language in Eq. (4) differs from the relation (1) on the
CRS only and the relation is equivalent. Therefore, we can still employ Theo-
rem 12 taking Protocol2 as the underlying inner-product argument. Similarly, we
can employ Theorem 12 with taking Protocol3 as the underlying inner-product
argument.

F.3 Commitment Schemes

Definition 12 (Binding Commitment Scheme). A commitment scheme for
a message space M is a pair of algorithms (Setup,Com) such that

– Setup(1λ) → ck: takes a security parameter λ and outputs a commitment
key ck.

– Com(ck,M) → c: takes a commitment key and a message M ∈ M and
outputs a commitment c.

We say that a commitment scheme C = (Setup,Com) for a message space M
is binding if for all polynomial time adversaries A the following probability is
negligible in λ

Pr

[
M0,M1 ∈M ∧M0 6= M1

∧ Com(ck,M0) = Com(ck,M1)

∣∣∣∣ Setup(1λ)→ ck;
A(ck)→ (M0,M1)

]
Definition 13 (Extractable Polynomial Commitment Scheme). A poly-
nomial commitment scheme consists of a 5-tuple of algorithms (Setup,Com,
Eval.Setup,Eval.Prove,Eval.Verify) such that

– Setup(F, d)→ ck: takes a polynomial-coefficient field and a maximum degree
as input and outputs a commitment key ck.

– Com(ck, f(X)) → c: takes a commitment key ck and a polynomial f(X) ∈
F[X] of maximum degree d as input and outputs a commitment c.
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– (Eval.Setup,Eval.Prove,Eval.Verify): is a (CRS generator, prover, verifier)-
tuple of an interactive argument of knowledge with respect to the relation{

(ck, c, x, z; f(X) ∈ F) : Com(ck, f(X))→ c ∧ deg(f(X)) ≤ d ∧ f(x) = z
}
,

where Setup(F, d)→ ck.

We say that a polynomial commitment PC = (Setup,Com,Eval.Setup,Eval.Prove,
Eval.Verify) is extractable if (Setup,Com) is a binding commitment scheme and
if (Eval.Setup,Eval.Prove,Eval.Verify) has witness extended emulation.
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