
A State-Separating Proof
for Yao’s Garbling Scheme

Chris Brzuska1 and Sabine Oechsner2?

1 Aalto University, Finland, chris.brzuska@aalto.fi
2 University of Edinburgh, UK, s.oechsner@ed.ac.uk

Abstract. State-separating proofs (SSPs) are a recent proof and definition style for cryptographic security
games in pseudo-code. SSPs allow to carry out computational security reductions for cryptography such that
“irrelevant code” can be dealt with syntactically and does not require reasoning about execution semantics.
Real-world protocols have notoriously long specifications, and the SSP style of breaking down security games
and identifying subgames enables the analysis of such protocols. Indeed, SSPs have been used to analyze the
key schedules of TLS (ePrint 2021/467) and MLS (S&P 2022).
Similarly, secure multi-party computation (MPC) protocols tend to have lengthy specifications. In this work,
we explore how to use SSP techniques in the MPC context and for simulation-based security. On the example
of Yao’s circuit garbling scheme, we adapt the definitional style of SSPs and show that structuring the circuit
and security proof in a layered way allows for a brief, compelling, syntactic construction of the reductions
required in the hybrid proof of Yao’s garbling scheme.

1 Introduction

Computational security of cryptographic constructions requires reduction arguments to underlying assumptions on
computational hardness and thus are notoriously difficult to analyze. The approaches for tackling the complexity
of such reductions can be roughly divided into three categories: (semi-)automated or interactive symbolic provers
with computational guarantees, e.g. [Bla06],[BDJ+21]; proof assistants for computational security proofs, most
prominently EasyCrypt [BGHZ11]; and finally techniques for handwritten proofs which are our focus.

For handwritten proofs of complex protocols, composability and abstraction are chief techniques for man-
aging complexity. Notably, universal composability [Can01] and its variants, e.g. the IITM model [KTR20],
GNUC [HS15], iUC [CKKR19]; as well as reactive systems [BPW04] and constructive cryptography [Mau10]
have provided frameworks which help with composable definitions of security. Orthogonally, code-based game-
playing by Bellare and Rogaway [BR06] allows to write security proofs as a sequence of small code-based game-
hops, highlighting the small changes between subsequent games and verifying locally that these changes are
admissible. In a more recent addition to techniques, Brzuska, Delignat-Lavaud, Fournet, Kohbrok and Kohlweiss
(BDFKK [BDF+18]) introduced state-separating proofs (SSPs) which propose to structure the pseudocode of
cryptographic games into stateful code pieces (packages) that call each other. The program structure is rep-
resented by graphs, where the nodes represent packages with disjoint state. One of the advantages of SSPs is
that reductions can be defined syntactically : When describing a cryptographic game as graph, one can identify
a subgraph which matches a cryptographic assumption. The cryptographic assumption states then that these
subgraphs can be replaced, and the remaining part of the graph of the bigger cryptographic game becomes the
reduction. Syntactic arguments, thus, allow cryptographers to avoid to reason about conceptually “irrelevant”
code in a reduction proof.

SSPs have been used to show reduction-based security proofs for the key schedules of TLS [BDE+21] and
MLS [BCK22], two real-life protocols with complex design. Security notions for key exchange protocols are typi-
cally game-based, and each game hop idealizes only a single small primitive so that most of the protocol code is
“irrelevant” to the reduction argument, making them an ideal target for SSPs. In this work, we ask

Are SSPs equally useful for the modular analysis of secure multiparty computation protocols?

Secure multiparty computation (MPC) enables mutually distrusting parties to compute a public function f of
their secret inputs. While MPC security definitions are usually simulation-based rather than game-based, the
constructions and proofs follow an inherent structure: The function f is typically represented as a circuit and
both construction and security proof proceed in a gate-by-gate fashion. In this paper, we study the security of

? Part of work done while author was at Aarhus University, Denmark.

Yao’s garbling scheme, one of the central building blocks for constructing MPC protocols. A garbling scheme
allows one party, the garbler, to garble a circuit and a secret input such that another party, the evaluator, can
evaluate the garbled circuit and learn the result of the computation but not the input. The scheme is secure if the
garbling can be simulated given only the circuit evaluation, but without knowledge of the secret input. Garbling
schemes typically garble circuits garbled gate by gate, and each reduction step in the security proof only treats
a single gate within the circuit. Thus the reduction contains a large amount of “irrelevant” code, namely the
description of the garbling for the remaining circuit. We show that, indeed, SSPs can help to syntactically define
and visually identify code which us not relevant to the reduction step at hand.

Yao’s Garbling Scheme. Yao’s garbling scheme associates each gate of a circuit with 4 input keys and 2 output
keys and uses double encryption to encrypt the output keys under suitable input keys. The existing security proofs
due to Lindell and Pinkas [LP09] and Bellare, Hoang and Rogaway (BHR) [BHR12b] reduce the security of the
garbling scheme to the security of the underlying encryption scheme, performing a gate-wise hybrid argument
following a suitable topological sorting on the gates. See Section 2.2 for the full description.

Our Approach. Our approach is two-fold. The first part concerns the proof structure. We start with an observation:
Expressing circuits as composition of layers can greatly simplify our proof effort by adding additional structure.3

In a first step, we can now reduce circuit garbling security to layer garbling security. We then implement a hybrid
argument that reduces the security of each garbling layer to IND-CPA security of the encryption scheme. In this
reduction, we can focus on a single layer and ignore all other circuit levels, i.e., SSPs allow us to remove this code
via a syntactic argument. These two hybrid arguments allow us to obtain a game for circuit garbling in which
all primitives are idealized. In a final game hop, we split this game so that part of it acts as simulator while the
rest evaluates the circuit as desired. This step can again be performed by identifying a subgraph, in this case the
circuit evaluation.

The second important ingredient is recasting the BHR [BHR12b] garbling scheme security notion to better align
computation model and security notion. We describe security notions and garbling scheme syntax as composition
of packages as opposed to algorithms and games, respectively. This allows for a structured description of specific
garbling schemes and reduces some of the proof overhead which stems from “inlining” the construction into a
security game.

Our proof of Yao’s garbling scheme can be seen as the next logical step in a sequence of works: Lindell and
Pinkas [LP09] published the first security proof for Yao’s garbled circuits; BHR [BHR12b] abstracted Yao’s garbled
circuit construction to a general notion of garbling schemes and stated the reductions in clean pseudo-code; the
soundness of their reductions was later proved in EasyCrypt by Almeida, Barbosa, Barthe, Dupressoir, Grégoire,
Laporte and Pereira [ABB+17] via rather complex invariant proofs. Our contribution is a manually easily verifiable
version of the proof, including the soundness of the reductions. We remark that the recent work of Dupressoir,
Kohbrok and Oechsner [DKO21] as well as discussions with the authors of [ABB+17] give us hope that our proof
can be mechanized. However, formal verification–whether in existing general-purpose or SSP-specific tools such
as SSProve [AHR+21]–is a goal that is orthogonal to the scope of this work and we thus leave this question as
future work.

Outline. Section 2 introduces garbling schemes, Section 3 introduces state-separa-ting proofs (SSPs), Section 4
formulates garbling schemes in terms of state-separated packages. Section 5 defines Yao’s garbling schemes in
state-separated packages and provides its security proof. Finally, we provide additional perspective and discussion
in Section 8.

2 Garbling Schemes

2.1 Garbling schemes

Bellare, Hoang and Rogaway (BHR) [BHR12b] introduce the notion of a garbling scheme as an abstraction of
the primitive underlying the garbled circuits approach.

Definition 1 (Garbling scheme [BHR12b]). A (circuit) garbling scheme consists of 5 probabilistic, polynomial-
time algorithms gs = (gb, en, de, ev , gev) for circuit garbling, input encoding and output decoding, circuit evaluation
and garbled circuit evaluation, respectively.

3 Strictly speaking, layers are not necessary and gates would work as well, but layered circuits provide a visually more
appealing version of the argument, and are common anyway, e.g., in AES.

2

A garbling scheme is projective if input encoding is of the following shape: the circuit garbling gb outputs
input encoding information e that consists of two tokens per input bit, and input encoding en selects for each
input bit the corresponding token. We add the notion of an inverse projective garbling scheme as an analogy for
output decoding: A garbling scheme is inverse projective if the output decoding information d of gb consists of
two tokens per output bit, and de selects for each output token the corresponding bit. Furthermore, we assume
for the rest of this work that the circuit evaluation algorithm ev is fixed and hence omit it in descriptions and
write C(x) instead of ev(C, x). Φ(C) is defined as the information the circuit garbling leaks about a circuit C
(e.g. the circuit topology for Yao’s garbling scheme). For simplicity, throughout this article, Φ(C) will be equal
to C.

Definition 2 (Garbling scheme correctness [BHR12b]). Let κ ∈ N. A garbling scheme gs = (gb, en, de, gev)
is perfectly correct if for all circuits C and inputs x,

Pr(C̃,e,d)←$ gb(1κ,C)

[
C(x) = de(d, gev(C̃, en(e, x)))

]
= 1

Garbling scheme gs is statistically correct if the above equality holds with overwhelming probability in κ.

PRVSIM0gs,Φ,S

GARBLE(C, x)

(C̃, e, d)← gb(1κ, C)

x̃← en(e, x)

return (C̃, x̃, d)

PRVSIM1gs,Φ,S

GARBLE(C, x)

y ← C(x)

(C̃, x̃, d)← S(1κ, y, Φ(C))

return (C̃, x̃, d)

Fig. 1: Garbling scheme security games PRVSIMbgs,Φ,S .

Security is formulated using the simulation paradigm:
A real execution of the garbling scheme on real input x
is compared to a simulated (idealized) execution with-
out access to x, but only to Φ(C) and the result C(x) of
the computation. If both executions are indistinguish-
able, then the real execution leaks as much information
about x as the ideal information. Since the ideal exe-
cution is independent of x, no information about x is
leaked. More formally, the executions are formulated
as games PRVSIMbgs,Φ,S for b ∈ {0, 1} (Figure 1).

Definition 3 (Garbling scheme security [BHR12b]). Let κ ∈ N. A garbling scheme gs = (gb, en, de, gev)
is secure wrt. leakage function Φ if for all PPT adversaries A, there exists a PPT simulator S such that the
distinguishing advantage ∣∣Pr

[
1←$A → PRVSIM

0
gs,Φ,S

]
− Pr

[
1←$A → PRVSIM

1
gs,Φ,S

]∣∣
of A interacting with PRVSIM0gs,Φ,S and PRVSIM1gs,Φ,S is negligible in κ.

The above security notion is also referred to as selective security because an adversary needs to choose both circuit
C and input x to be garbled together. Adaptive security [BHR12a] on the other hand allows the adversary to
obtain a circuit garbling and only then adaptively choose the input x. This notion is notoriously hard to achieve.
This work focuses on the standard notion of selective security.

2.2 Yao’s garbling scheme

Two-party computation Assume that two mutually distrusting parties P1 and P2 with secret inputs x1 and x2,
respectively, wish to compute the public function f(x1, x2) of their inputs and learn the result y = f(x1, x2). To
achieve this task, they can run the following protocol template proposed by Yao in his seminal work on two-party
computation [Yao86].

1. Represent the function f to be computed as Boolean circuit C with gates of fan-in 2.
2. P1 garbles the circuit C into C̃ and encodes their input x1 into x̃1, and sends C̃ and x̃1 to P2.
3. P1 and P2 run a protocol to encode P2’s input x2.
4. P2 evaluates the garbled circuit C̃ on x̃1||x̃2, decodes the output ỹ to y, and sends y to P1.

The garbled circuits approach is one of the main design paradigms for secure two-party and multiparty com-
putation protocols. Yao’s construction is in fact only the first in a long sequence of works on successively more
optimized constructions, see [NPS99,KS08,PSSW09,ZRE15,GLNP15,RR21] and references therein. We focus on
Yao’s original construction since is the most studied and we are mainly interested in a comparison of proofs.
Apart from secure multiparty computation, applications of the garbled circuits idea include but are not limited
to one-time programs [GKR08] and verifiable computation [GGP10].

3

Yao’s construction We now describe how Yao’s garbling scheme construction matches the above template. The
construction uses an IND-CPA secure symmetric encryption scheme (kgen, enc, dec) where kgen selects uniformly
random bitstrings as keys. The encryption scheme is assumed to return a special error symbol ⊥ if decryption
fails due to the use of an incorrect decryption key4.

c0 = encZr(0)(encZ`(0)(Zj(opj(0, 0)))),

c1 = encZr(1)(encZ`(0)(Zj(opj(0, 1)))),

c2 = encZr(0)(encZ`(1)(Zj(opj(1, 0)))),

c3 = encZr(1)(encZ`(1)(Zj(opj(1, 1)))).

Fig. 2: Yao’s gate garbling

Circuit garbling. To garble a circuit C with q gates, n input and m
output wires, start by choosing two random bitstrings per circuit wire j
using kgen, and assign them semantics 0 and 1, respectively. Denote the
wire key map by Zj . Then for each gate gj with operation opj , do: Let
Z`, Zr, Zj be the left and right input wire key maps and the output wire
key maps, respectively. Encrypt the output wire keys under the input
wire keys according to opj (see code of the right). The garbled gate g̃j
consists of the ciphertexts c0, . . . , c3 in randomly permuted order, and
the garbled circuit C̃ consists of the q garbled gates g̃1, . . . , g̃q as well as
input encoding information (the key maps of the n input wires) and output decoding information (the key maps
of the m output wires).
Input encoding. For each bit xi of input x, select the corresponding input wire key on the ith input wire.
Circuit evaluation. Given garbled circuit C̃ and encoded input x̃, the garbled circuit is evaluated as follows:
For each gate g̃j , let z` and zr be the wire keys corresponding to left and right input wire (either obtained from
x̃ or a previous gate evaluation). Then attempt to decrypt each of the four gate ciphertexts with z` and zr. If the
circuit was garbled correctly, then exactly one will decrypt to the desired output wire key zj without error.
Output decoding. For each key zi on output wire i, select the corresponding output bit on the ith output wire.

Oblivious transfer protocol To encode P2’s input, an oblivious transfer (OT) protocol can be used. An OT
protocol consists of two parties, a sender and a receiver. The sender will input two bitstrings s0, s1; the receiver
inputs a choice bit b. The goal is for the receiver to learn sb without the sender learning b.

Security The protocol described is secure against semi-honest parties that follow that protocol description but
might try to learn additional information. Intuitively, security means here that no party learns anything about
the input of the other party other than what the output reveals. For security against corrupt P2, this reduces to
security of the OT protocol against receiver corruption. For corrupt P1, security reduces to OT security against
sender corruption and the following property of circuit garbling and input encoding: Given C, C̃ and x̃, no
information about x other than what C(x) leaks is revealed.

In order to prove this, we make the following observation: For each wire, the adversary only knows one of the
two wire keys, usually referred to as the active key. Moreover, gate garbling in (Fig. 2) is defined such that when
the adversary only knows the two active keys of the input wires of the gate, then the adversary also only learns
the active output key of the gate. To see this, let us consider the xor operation as an example, and let us say that
for the left input wire, the 0-key is active (known to the adversary) and for the right input wire, also the 0-key
is active. The 4 ciphertexts can be illustrated as follows:

The adversary only knows the blue key and thus can only recover the blue key. This observation generalizes to
arbitrary operations, since there are four ways5 to combine left active/inactive and right active/inactive key so
that the adversary always only learns one ciphertext—there is only one ciphertext which can be represented by
two nested blue squares. The adversary always learns the active output key, because if b` and br are the active bits,
then we encrypt Zj(op(b`, br) under Z(b`) and Z(br)—which is the active key. Applying this argument recursively
yields the desired security statement. The goal of the main example of this work will be to make this informal
security intuition precise.

4 This can be achieved, e.g., by padding the message with zeros before encryption and checking this condition during
decryption.

5 active/active, active/inactive, inactive/active, inactive/inactive

4

2.3 Conventions

We omit the security parameter κ whenever it is clear from context. We make the simplifying assumption that
each circuit is layered. A layered circuit is a circuit whose gates can be partitioned into layers 1, . . . , d such that
each wire connects gates in adjacent layers. Circuits such as AES are naturally layered, and transforming an
arbitrary circuit of size s into a layered one results in at most a quadratic increase in size [Weg87]. All our results
can be modified to non-layered circuits by formulating appropriate gate assumptions instead of layer assumptions.
We focus in layered circuits due to their nicer visual representation. Namely, if dependencies between gates can
be arbitrary, they can neither be drawn nor described in concise algebraic terms. Finding a suitable notation is
an interesting open problem.

3 State-separating proofs

Security games such as PRVSIM0gs,Φ,S described in the previous section are not known to come with a natural way
of composition such as Universal Composability [Can01,Mau12]. However, Brzuska, Delignat-Lavaud, Fournet,
Kohbrok, and Kohlweiss (BDFKK [BDF+18]) observe that by splitting a game into multiple parts while carefully
preserving dependencies, one can indeed achieve compositionality and modularity. This section provides a brief
overview over the key concepts of their proposal, state-separating proofs (SSPs), which are relevant for this work.

3.1 Packages

The central object of SSPs are packages, a collection of oracles with shared state that are described in pseudocode.

Definition 4 (Package). A package M provides a set of oracles [→M] which operate on a shared state and make
calls to a set of oracles [M →], which we call the dependencies of M.

Packages M, N can be composed sequentially along matching oracle names and dependencies, i.e., [M →]∩ [→ N],
or in parallel if their oracle names are disjoint, i.e., [→M] ∩ [→ N] = ∅. The result is again a package.

K

M
ORACLE6

ORACLE0

ORACLE1

ORACLE2
ORACLE3

ORACLE1
ORACLE4
ORACLE5 L

Fig. 3: Example call graph with
packages K, L and M.

A simple example of a package is what we call a monolithic security game
such as PRVSIM0gs,Φ,S . Splitting the block of pseudocode that describes a secu-
rity game into individual packages of code, each with their own state, yields
a modular game description. We can re-use code packages, and, in particular,
games can share packages and be composed via their shared code packages.
A schematic example of such a modular game is given in Fig. 3. Following
BDFKK, we represent games by call graphs. Boxes represent packages and
arrows labelled by oracle names represent oracles. An arrow from package M

to N stands for the fact that M is allowed to call the oracles of N noted on the
arrow. Any oracle that has no start or end package is open for composition.
Note that a package M cannot call its own oracles. We restrict how packages can call each other by requiring to
arrange them in an acyclic, directed graph, avoiding some known issues of interactive Turing machines (ITM)
previously discussed in the context of Universal Composability such as scheduling [HUM09,MT13]. This restriction
is in fact a functional style of oracles, i.e. after a caller M calls a callee N, the package N might make further oracle
calls to other packages, but eventually returns control to M. Interaction between packages is restricted to an
explicit call graph specifying which package is allowed to call which oracle(s) of which other packages. Going back
to Fig. 4, we can see that package L provides oracles ORACLE1, ORACLE4 and ORACLE5 and whose code includes
calls to oracles ORACLE1, ORACLE2 and ORACLE3. This is meaningful due to the aforementioned self-calling
restriction. I.e., if the code of ORACLE1 of L contains the line a← ORACLE1(b), then this means that ORACLE1
of package K is called.

Notation. For a package M, we denote by [→M] the oracle(name)s which M provides and by [M →] the depen-
dencies of M, namely the names of the oracles to which the oracles of M make calls. We use pseudo-code notation.
Sets and tables are denoted by capital letters: S, T [x]. The notation x ← y means that the value of variable y
is stored in variable x, and x←$S means that x is sampled uniformly at random from S. Finally x←$ algo(a)
means that the randomized algorithm algo is executed on argument a and the result is stored in variable x. We
use the following abbreviation in our code for error handling:

assert cond := if ¬cond then return error symbol.

5

We assume that a system cannot be called anymore after an assert was violated. However, the adversary will
still be allowed to produce an output.

Note that we use a visually more suggestive notation than BDFKK: We use notation [→M] and [M →]
instead of out(M) and in(M), and we allow parallel composition of packages M and N with overlapping [→M] and
[→ N]. We allow copies of the same package to appear several times in a graph. A subscript to the package and
its oracles is added when disambiguation requires it. The latter allows for a leaner notation with fewer parameters
and subscripts. The notation remains unambigious, since the call graph clarifies all oracle calls.

3.2 Games

The term game refers to any (composition of) package(s) which has no open oracle calls, that is:

Definition 5 (Game). A package G is a game if [G→] = ∅.

Note that the definition of a game G applies to single packages and compositions of packages alike, since a
composition of packages is syntactically a package. An example of such a game is the composition of packages K,
L and M in Fig. 3. We will sometimes write G(M) to highlight that game G is parametrized by a package M, i.e. all
of G is fixed except for M. An adversary is a special package that does not provide any oracles itself:

Definition 6 (Adversary). An adversary is a package A with [→ A] = ∅.

K

M
ORACLE6

ORACLE0

ORACLE1

ORACLE2
ORACLE3

A
ORACLE1
ORACLE4
ORACLE5 L

Fig. 4: Adversary A composed with
game from Fig. 3.

Conveniently, we can now compose an adversary with a game (provided
their interfaces match), as shown in Fig. 4 on our example from before:
The adversary A can interact with the game by making calls to the oracles
visible to it. As control is always returned to the adversary, the adversary
eventually terminates by outputting a bit. In security statements, the ad-
versary is typically an abstract package and we quantify over all possible
implementations. We will omit the adversary from call graphs whenever it
is clear from context how it would look like. We will return to experiments
with adversaries shortly after defining (polynomial) runtime.

Definition 7 (Polynomial Runtime). A game G runs in probabilistic polynomial time (PPT) if the number
of steps it makes are polynomial in the number of oracle queries made to it and the accumulated length of the
arguments of these queries. A package P runs in PPT if for all PPT games G with [P →] = [→ G], we have that
the game P→ G runs in PPT.

3.3 Game equivalences

We express properties of a game by comparing it to another game. The most stringent equivalence between two
games is code equivalence.

Definition 8 (Code Equivalence). Two games G0 and G1 are code equivalent if G0 can be transformed into G1

via a sequence of code transformations which do not affect input-output behaviour, we write G0
code≡ G1. Similarly,

two packages P0 and P1 are code equivalent if P0 can be transformed into P1 via sequence of code transformations
which do not affect the input-output behaviour regardless of the context in which P0 and P1 are used. We also

write P0
code≡ P1.

We will define two weaker notions of equivalence between games which refer to the view of an adversary onto the
games.

Definition 9 (Advantage). Let G0 and G1 be two games and let A be an adversary. Then the distinguishing
advantage Adv(A; G0,G1) of A is defined as∣∣Pr

[
1←$A → G0

]
− Pr

[
1←$A → G1

]∣∣ .
Definition 10 (Statistical Indistinguishability). Two games G0 and G1 are statistically indistinguishable,

denoted G0
stat
≈ G1, if for all (computationally unbounded) adversaries A making at most a polynomial number of

queries to Gb, the advantage Adv(A; G0,G1) is negligible.

6

Definition 11 (Computational Indistinguishability). Two games G0 and G1 are computationally indistin-

guishable if for all PPT adversaries A, the advantage Adv(A; G0,G1) is negligible, we write G0
comp
≈ G1.

Claim 1 (Indistinguishability) For two games G0 and G1,

G0
code≡ G1 ⇒ G0

stat
≈ G1 and G0

stat
≈ G1 ⇒ G0

comp
≈ G1.

3.4 Reductions

Computational analysis reduces the security of a cryptographic protocol to one or several computational hardness
assumptions. The security of a cryptographic protocol is expressed as indistinguishability of two games G0 and G1

(such as G0 = SEC0(GB) and G1 = SEC1(SIM)), and for the proof of their indistinguishibility, we define a sequence

of hybrid games H0,..,Ht such that G0 code≡ H0 and G1 code≡ Ht. We then need to argue that for all i ∈ {1, .., t}, we

have that Hi−1
comp
≈ Hi. The easiest way to prove such an argument is via a perfect reduction to a computational

assumption which is also expressed via indistinguishability of two games (A0, A1).

Definition 12 (Perfect Reduction). Let Hi−1 and Hi and A0 and A1 be game pairs with [→ Hi−1] = [→ Hi]
and [→ A0] = [→ A1]. A perfect reduction from (Hi−1, Hi) to (A0, A1) is a PPT package R such that

Hi−1
code≡ R → A0 and Hi

code≡ R → A1.

From Definition 12, it follows that for all PPT adversaries, Adv(A; Hi−1, Hi) ≤ Adv(A → R; A0, A1) and thus, in
particular, a perfect reduction implies that

A0
comp
≈ A1 ⇒ Hi−1

comp
≈ Hi.

The SSP style is particularly useful for perfect reductions. In particular, often, Hi and R → A1 will be identical
graphs, i.e., putting the graph of packages defining R together with the graph of packages defining A1, we obtain
the graph of packages Hi. We will see several such cases in this article.

4 State-Separated Garbling Schemes

We now apply the SSP ideas from Section 3 to garbling schemes. We first revisit the syntax, correctness and
security of a garbling scheme. We then discuss how to express and prove further properties.

4.1 Syntax and Correctness.

Traditionally (including the SSP literature), cryptographic constructions are viewed as a tuple of algorithms, or
alternatively Turing machines. Security and correctness are then described as games which invoke the different
algorithms. In this work, we take a different approach: The syntax of a garbling scheme will be defined as a tuple
of packages to align computation model and security model as closely as possible. As a result, we can eliminate
the proof overhead caused by incompatibilities.

Since garbling scheme security as introduced in Section 2 follows the simulation paradigm, we start by defining
our ideal functionality for circuit evaluation. The ideal functionality F

gbl
d provides oracles SETBIT for setting input

bits, d oracles EVALi for evaluating circuit layers 1 to d, GETBIT to obtain the result, as well as oracles CHECK1..d

that allows to check whether a circuit wire is already assigned a bit value. The purpose of the last oracle is to
allow the switch between different key semantics during the security proof of Yao’s garbling scheme. The semantic
switch will be stated as Claim 2. We will discuss the implications in more detail in Section 8.

Definition 13 (Ideal Functionality of a Garbling Scheme). The ideal garbling functionality F
gbl
d for circuits

of depth d is defined in Fig. 5 and has

[→ F
gbl
d] : SETBIT, EVAL1..d, GETBIT, CHECK1..d.

7

Fig. 5a shows Fgbld as composition of three packages: Two BITS packages that model the input bits and output
bits, respectively, and a circuit evaluation package EV1,d that performs the actual computation. Note that for
convenience, each BITS package is a multi-instance package, i.e. can be seen as containing multiple instances
of the same package, each storing a single bit, combined into one package. The queries to individual instances
are identified by their index j. We will see several examples of these multi-instance packages throughout this
paper. In the spirit of modularity, we further refine EV1,d in Fig. 5b: Remember that our circuit is layered, i.e. the
computation can be split into d layers where each layer only depends on the previous layer (or on the input in
case of the first layer). We therefore define EV1,d as composition of gate evaluation packages EV with further BITS
packages that store the intermediate result between layers. The pseudocode for packages EV and BITS is shown
in Fig. 5c.

CHECK GETBIT

SETBIT
EV1.d

BITS

BITS

SETBIT

EVAL

GETBIT

CHECK1
2..d

1..d

(a) Ideal functionality F
gbl
d .

CHECKd-1

CHECKd-2

GETBIT

SETBIT
EV

BITS

BITS

SETBIT

EVAL1

GETBIT

SETBIT
EV

BITS

BITS
GETBIT

EVALd

SETBIT
EVEVALd-1

GETBIT

SETBIT
BITS

GETBIT

CHECK1

CHECK2

(b) EV1..d is marked in blue.

EV

EVALj(`, r, op)

zin` ← GETBIT(`)

zinr ← GETBIT(r)

zoutj ← op(zin` , z
in
r)

SETBIT(j, zoutj)

return ()

BITS

SETBIT(j, z)

assert zj = ⊥
zj ← z

return ()

GETBIT(j)

assert zj 6= ⊥
return zj

CHECK(j)

assert zj 6= ⊥
return ()

(c)

Fig. 5: Graph and code of Fgbld .

F
gbl
d models circuit evaluation. The adversary can

set input bits via SETBIT and use the EVAL1 query to
evaluate the first layer of the circuit, then the EVAL2
query to evaluate the second layer of the circuit until
the last EVALd query. In between, the adversary may
perform CHECK queries to check whether bits in a the
BITS package have been set (this feature will later be
used by the simulator). In the end, the adversary can
retrieve the result of the evaluation via the GETBIT
query to the lowest BIT package. In the definition of
F
gbl
d , we already use the feature that the composition

of several packages is again a package: We define EV1..d

as composition of EV1 to EVd with BITS packages in
between (the graph highlighted in blue in Fig. 5), and

we define F
gbl
d as the composition of all of the packages

in the graph.
For convenience, we define F’

gbl
d of to be the sim-

plified ideal functionality F
gbl
d without CHECK queries.

We use F
gbl
d to define correctness and elaborate on the

difference between F’
gbl
d and F

gbl
d in Section 8. Run-

ning/Composing the algorithms of a garbling scheme
adequately should yield a program which behaves as
F
gbl
d . In order to make such as statement, let us ex-

press the BHR modeling of garbling schemes in pack-
ages. Recall that BHR describe a garbling scheme as
five algorithms (gb, en, gev , de, ev), where gb garbles a
circuit C, en garbles an input x, gev evaluates a gar-
bled circuit on a garbled input, de provides the output
of the garbled circuit using decoding information ob-
tained from the garbled evaluation (Def. 2) and ev is a simple circuit evaluation algorithm. Also recall that, in
this paper, we consider fixed en, de and ev since we focus on projective garbling schemes.

We start by replacing the five algorithms by five packages GB, KEYS, DE, GEV and EV. The call graph in Fig. 6
shows the intended use of the packages: Garbling a circuit and input, then evaluating the garbled circuit on the
garbled input and decoding the result. Each package is meant to capture the algorithm of the same name, except
for KEYS which models en with additional state (more discussion on this naming convention later). As KEYS, DE,
and EV are fixed, a garbling scheme is defined only by the two packages (GB, GEV). We further define a real garbling
scheme correctness game GCORR(GB, GEV), that is a correctness game parameterized by the at this point abstract
garbling scheme packages GB, GEV, as the package composition in Fig. 5. Then a projective garbling scheme is
defined as follows:

Definition 14 (Projective Garbling Scheme). Let d be a function of the security parameter. A pair of
packages (GB, GEV) is a projective garbling scheme with inverse projective decoding if the games GCORR(GB, GEV)

(Fig. 6a) and F’
gbl
d (Fig. 5) are statistically indistinguishable, i.e., GCORR(GB, GEV)

stat
≈ F’

gbl
d , and

[→ GB] : GBLi : i ∈ {1..d} [→ GEV] : EVALi : i ∈ {1..d}
[GB→] : GETKEYSout,GETKEYSin [GEV→] : GETAout,GETAin,GBLi : i ∈ {1..d}

8

KEYS

KEYS

GETAout

SETA

GBL1..d

GETKEYSin

EVAL1..d

GETKEYSin

GETKEYSout
GB

DEGETBIT

SETBIT

GEV

(a) Real correctness game GCORR(GB, GEV).

DE

SETA(j, k)

assert kj = ⊥
kj ← k

return ()

GETBIT(j)

assert kj 6= ⊥
Z ← GETKEYS(j)

if Z(0) = kj :

return 0

if Z(1) = kj :

return 1

return ().

KEYS

SETBIT(j, z)

assert zj = ⊥
zj ← z

return ()

GETKEYSout(j)

bflagj ← 1

if Zj = ⊥ then

Zj(0)←$ {0, 1}λ

Zj(1)←$ {0, 1}λ

return Zj(zj)

GETKEYSin(j)

assert zj 6= ⊥
assert aflagj = 1

∨ bflagj = 1

return zj

GETAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(zj)

GETBIT(j)

assert zj 6= ⊥

return zj

GETAout(j)

assert zj 6= ⊥
aflagj ← 1

if Zj = ⊥ then

Zj(0)←$ {0, 1}λ

Zj(1)←$ {0, 1}λ

return Zj(zj)

GETINAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(1-zj)

(b) Code of DE and KEYS packages

KEYS

KEYS

GETKEYSin

GETKEYSout
GB

GETKEYSin

SETBIT
GETAout

GBL1..d

(c) Real security game SEC0(GB).

BITS

KEYSGETAout
EVAL1..d

GETKEYSin

SETBIT

GETAout
GBL1..d

GETBIT

SETBIT
EV1..d

CHECK1

SIM
CHECK2..d

(d) Ideal security game SEC1(SIM).

Fig. 6: Correctness game GCORR(GB, GEV), code for
DE and KEYS and security games SEC0(GB) and
SEC1(SIM). Note that the oracles in the right col-
umn of KEYS are not called in GCORR(GB, GEV).

In our formalization of garbling scheme, GB and GEV share
keys via the KEYS package (Fig. 6). KEYS samples keys uni-
formly at random. GB sees both keys per wire (modeled via
GETKEYSin) and GEV only sees the active key (modeled via
GETAout). Oracles O with superscript Oout need to be called
before oracles with superscript Oin—this enforces (via as-
serts, see Fig. 6) that the input is garbled before the circuit
is garbled which is required for selective security.

4.2 Security

We expressed correctness of a garbling scheme by requiring
that it behaves (up to negligible probability) like the ideal
functionality. We express security of a garbling scheme by
stating that it does not leak more information to the adver-
sary than the ideal functionality. As is standard, we capture
this concept by demanding the existence of an efficient simu-
lator which obtains information from the ideal functionality
(namely the circuit C and the output value y = C(x), but
not x) and needs to simulate the garbling in a way that
is indistinguishable to the adversary. We define a real game
which corresponds to the real execution of a garbling scheme
and is captured by the code on the right of the dashed line
in Figure 6a which we reproduce in Figure 6c for conve-
nience. This is the information which is transmitted over
the network in a real execution of a garbling scheme. Ad-
ditionally, we also define an ideal game, parametrized by a
simulator which corresponds to the ideal execution of a gar-
bling scheme. Security then demands that the real and ideal
game are indistinguishable for every efficient adversary.

Definition 15 (Garbling scheme security). Let d be a
polynomial in the security parameter, and let gs = (GB, GEV)
be a garbling scheme. gs is secure if there is a PPT simula-
tor SIM such that for all PPT adversaries A, the advantage

Adv(A; SEC0(GB), SEC1(SIM))

for games SEC0(GB) and SEC1(SIM) in Fig. 6 is negligible.

4.3 Further properties

We have modeled correctness and security of garbling
schemes as indististinguishability of games, and we will now
express separable state via indistinguishability of games. In
the proof of Yao’s garbling scheme, we will need to show that
the KEYS package can be split into AKEYS and a BITS package,
so that AKEYS only has an active and inactive key, but does
not know the semantics of which one is the 0 key and which
one is the 1 key, see Fig. 7b, while BITS has the information
of whether the 0 key or the 1 key is active. This is true,
because in Fig. 7b, there is no GETKEYSin or GETKEYSout

query on KEYS, but only the queries for active/inactive keys
GETAout, GETAin and GETINAin (see Fig. 6 for their code).

9

Claim 2 The left and right game in Fig. 7a are perfectly indistinguishable.

BITS
SETBIT

CHECK
AKEYS

GETAout
GETAin
GETINAin

KEYS
SETBIT

GETAout
GETAin
GETINAin

(a) Key semantics switch games

KEYS I
S

SETBIT(j, z)

assert zj = ⊥
zj ← z

return ()

GETAout(j)

assert zj 6= ⊥
aflagj ← 1

if Zj = ⊥ then

Zj(0)←$ {0, 1}λ

Zj(1)←$ {0, 1}λ

return Zj(zj)

GETAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(zj)

GETINAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(1⊕ zj)

KEYS I
S

SETBIT(j, z)

assert zj = ⊥
zj ← z

return ()

GETAout(j)

assert zj 6= ⊥
aflagj ← 1

if Zj = ⊥ then

Zj(0⊕ zj)←$ {0, 1}λ

Zj(1⊕ zj)←$ {0, 1}λ

return Zj(zj ⊕ zj)

GETAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(zj ⊕ zj)

GETINAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(1⊕ zj ⊕ zj)

IDSETBIT
AKEYS

→ BITS

SETBIT(j, z)

assert zj = ⊥
zj ← z

return ()

GETAout(j)

assert zj 6= ⊥
aflagj ← 1

if Zj = ⊥ then

Zj(0)←$ {0, 1}λ

Zj(1)←$ {0, 1}λ

return Zj(0)

GETAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(0)

GETINAin(j)

assert zj 6= ⊥
assert aflagj = 1

assert Zj 6= ⊥
return Zj(1)

AKEYS I
S

GETAout(j)

assert CHECK(j)

aflagj ← 1

if Zj = ⊥ then

Zj(0)←$ {0, 1}λ

Zj(1)←$ {0, 1}λ

return Zj(0)

GETAin(j)

assert CHECK(j)

assert aflagj = 1

assert Zj 6= ⊥
return Zj(0)

GETINAin(j)

assert CHECK(j)

assert aflagj = 1

assert Zj 6= ⊥
return Zj(1)

(b) Inlining argument

Fig. 7: Code equivalence proof

Proof. Column 1 of Figure 7b depicts
the oracles of KEYS, and column 4 depicts
AKEYS. Column 3 shows BITS inlined into
AKEYS as well as the SETBIT oracle of BITS.
From column 3 to column 2, we encode
zero differently, namely as zj ⊕ zj , and in

the output of the GETINAin oracle, we add
the zero bit zj ⊕ zj to 1. Moreover, in the

GETINAin oracle, if zj = 1, then we sample
Zj(0) and Zj(1) in different order, but nei-
ther of the two variables is not read before
the other variable is used, their sampling
order does not affect the input-output be-
haviour. Finally, from column 1 to column
2, we perform a permutation on the indices
under which we store key values by replac-
ing each bit b by b⊕zj (This bijection works
both, from column 1 to column 2 and con-
versely.). Hence, KEYS is code-equivalence
to the composition of AKEYS and BITS.

Claim 2, in essence, states that if the
garbling (of the simulator) only relies on
active/inactive key semantics, then indeed,
the 0/1 key semantics of the keys does not
need to be available to any algorithm. This
argument is part of the aforementioned se-
mantic switch step in the proof of Yao’s
garbling scheme. We make two observa-
tions: (1) This particular code equivalence
step is conceptually relevant in the proof of
Yao’s garbling scheme and cannot be omit-
ted. (2) This code equivalence step is small
and easy to verify.

5 Yao’s Garbling Scheme

This section introduces our implementation of Yao’s garbling scheme. We focus on garbling scheme security and
the package GByao, and omit the garbled circuit evaluation package GEVyao.

5.1 Definition of Yao’s Circuit and Layer Garbling

Recall that in the traditional description of Yao’s garbling scheme (Section 2.2), each gate is garbled individually.
Grouping the garbling of multiple gates together into a layer yields a layer garbling. Given a layer garbling, one
can build a circuit garbling as follows. Assume for a moment that we already have a layer garbling package GB0yao,i
for garbling the ith layer of circuit C. The garbling process of a layer only shares state with the previous and the
subsequent layer of the circuit but not beyond. This shared state consists of key pairs (a 0-key and a 1-key for
each circuit wire) which we can store in the previously introduced KEYS packages. Hence GByao can be defined as
composition of layer garbling packages GB0yao,i with KEYS packages between them.

Definition 16 (Yao’s Circuit Garbling). We define the circuit layer garbling GByao as composition of layer
garbling packages GB0yao,i with KEYS packages as in Figure 8.

We now define the layer garbling also as a composition of smaller packages: MODGBi provides a modular
description of garbling and transforms gate operations into double encryption queries which MODGBi sends to

10

KEYS

KEYS

GETKEYSin

GETKEYSout
GByao

GETKEYSin

SETBIT
GETAout

GBL1..d

(a)

KEYS

GByao

SETBIT
GETAout

GETKEYSin

GETKEYSout

KEYS
GETKEYSin

GBL1

GBL2

GBLd

(b)

KEYS

KEYS

SETBIT
GETAout

GBL1

KEYS

GBL2

GBLd

...

GETKEYSin

GETKEYSout

GETKEYSout

GETKEYSin

KEYS
GETKEYSin

...

KEYS
GETKEYSout

GETKEYSin

GByao, 1

GByao, 2

GByao, d

0

0

0

(c)

Fig. 8: Circuit garbling package GByao and game SEC0(GByao) in different representations.

GBLi

SETBIT
GETAout

KEYS

GETKEYSin
KEYS

GETKEYSout

GETKEYSin

GByao, i
0

(a) Real layer sec. game LSEC0(GB0yao,i).
SETBIT
GETAout

GETKEYSin

KEYS

KEYS

EVAL
GETBIT

SETBIT
EV

GETAin
GETINAin

GByao, i

GBLi 1

(b) Ideal layer security game LSEC1(GB1yao,i).

KEYS

KEYS
GETKEYSout

MODDENCDENCMODGBiGBLi

GETAout
SETBIT

GETKEYSin

GETKEYSin
ENC1..n ENC0

1..n

(c) Real layer security game LSEC0i (GB
0
yao,i) with GB0yao,i highlighted in orange.

Fig. 9: Layer garbling package GByao,i and layer security games LSEC0(GB0yao,i) and LSEC1(GB1yao,i).

MODDENC which provides a modular description of double encryption and makes (simple) encryption queries to
ENC01...n (see Fig. 9c for the call-graph).

Definition 17 (Yao’s Layer Garbling). Let i ∈ N. We define the circuit layer garbling package GB0yao,i as

GB0yao,i := MODGBi → MODDENC→ ENC01...n

for packages MODGBi, MODDENC, ENC01...n defined in Fig. 12 and composed in Fig. 9c.

We now define the Yao-specific layer security games which turn out useful in the proof.

Definition 18 (Layer Security Games). Let i ∈ N. We define the real circuit layer security game LSEC0(GB0yao,i)

by Fig. 9a and the ideal circuit layer security game LSEC1(GB1yao,i), parametrized by the layer simulator GB1yao,i,
by Fig. 9b.

5.2 The Simulator

Analogously to the garbling scheme, we now also define the simulator in a layered way and thus reduce the
problem of finding a circuit garbling simulator to finding a layer garbling simulator. Assume for a moment that
we have a layer garbling simulator package GB1yao,i as well as a special key package AKEYS that stores keys with
active/inactive semantics instead of 0/1 semantics.

Definition 19 (Yao’s Circuit Simulator). We define the circuit garbling simulator SIMyao as composition of
layer garbling simulator packages GB1yao,i with AKEYS packages in Figure 10c.

11

KEYS

EVAL1..d
GETAout

CHECK1

SIMyao
GETBIT

SETBIT

GETKEYS

CHECK2..d
EV1..d

SETAout
GBL1..d

SETBIT
BITS

(a)

GETAout

EVAL1

KEYS
GETAout

SIMyao

GETBIT

SETBIT

GETKEYSin

EV

SETBIT

BITS

BITS

EV

BITS

GETBIT

SETBIT

BITS

EV
GETBIT

SETBIT

......

EVAL2

EVALd

GBL1

GBL2

GBLd

...

CHECK

CHECK

CHECK

CHECK

(b)

AKEYS

KEYS

EVAL1
GETBIT

SETBIT

GETKEYSin

EV

SETBIT

CHECK BITS
GETAout

GETAin
GETINAin

CHECK BITS

EV

BITS

GETBIT

SETBIT

BITS

EV
GETBIT

SETBIT

...

...

EVAL2

EVALd

AKEYS
GETAout
GETAin
GETINAin

GByao, 1

GByao, 2

GByao, d

...

GBL1

GBL2

GBLd

1

1

1

GETAout

AKEYS
GETAout

AKEYSGETAin
GETINAin

...

CHECK

CHECK

(c)

KEYS

KEYS

EVAL
GETAout

GByao, 1

GETAout, SETBIT

KEYS

EVAL

GETAin

GETINAin

GByao, 2

EVALGByao, d

...

GETBIT

SETBIT

SETBIT

GETBIT

KEYS
GETBIT

...

KEYS
SETBIT

GETKEYSin

EV

EV

EV

GETAout

GETAin

GETINAin

GBL1

GBL2

GBLd

1

1

1

GETAout

GETAin

GETINAin

(d)

Fig. 10: Circuit garbling simulator SIMyao and ideal circuit garbling game SEC1(SIMyao) in different representations.

Figure 10c depicts the definition of the circuit simulator package GB1yao, marked in blue in the graph at the
bottom of the figure. It consists of the layer simulator GB1yao, i, together with the AKEYS packages which store
the keys shared between two subsequent layers. The AKEYS packages (cf. Figure 7b) contains pairs of keys with
active/inactive key semantics and no information about bits as is required in the ideal security definition. Thinking
ahead about the security proof we want to perform, we get the ideal security game SEC1(SIMyao) in Figure 10c
syntactically closer to the real security game SEC0(GByao) by merging the AKEYS package and the BITS package

via inlining into a KEYS package which exposes only the oracles SETBIT, GETBIT, GETAout, GETAin, GETINAin,
as we saw in Section 4.3, Claim 2. The result of replacing AKEYS and BITS into KEYS is shown in Figure 10d.

Finally, we define the previously assumed layer garbling simulator GB1yao,i as the composition of a double
encryption simulator SIMdenc composed with the wrapper MODGBi from before.

Definition 20 (Yao’s Layer Simulator). Let i ∈ N. We define the layer garbling simulator GB1yao,i as

GB1yao,i := MODGBi → SIMdenc

for packages MODGBi and SIMdenc defined in Fig. 12.

We use the simulator GB1yao,i to parametrize our previously introduced ideal layer garbling security notion GB1yao,i
(Definition 18, Fig. 9b).

5.3 Main Theorem for Yao’s Garbling Scheme

The main theorem for Yao’s Garbling scheme states that its security reduces to the IND-CPA security of the
underlying symmetric encryption scheme.

Theorem 1. Let A be a PPT adversary, let d be a polynomial upper bound on the depth of the circuit which
A chooses, let n denote the width of the circuit and let se denote the symmetric encryption scheme used within
GByao. Then, there exists a PPT reduction R such that

Adv(A; SEC0(GByao), SEC1(SIMyao)) ≤ d · n · Adv(A → R; IND-CPA0(se), IND-CPA1(se)). (1)

In particular, R will be defined as sampling a uniformly random i←$ {1, .., d} and running Ri := Ricirc → Rilayer →
Rse where reduction Ricirc is in Lemma 1, reduction Rilayer is defined in Lemma 2 and reduction Rse is defined
in Lemma 3.

12

We first establish that circuit security reduces to layer security.

Lemma 1 (Circuit Security). Let d be a polynomial upper bound on the depth of the circuit which A chooses.
Then, for each 1 ≤ i ≤ d, there exist a PPT reductions Ricirc such that

Adv(A; SEC0(GByao), SEC1(SIMyao)) ≤
d∑
i=1

Adv(A → Ricirc; LSEC0(GByao,i), LSEC
1(SIMyao,i)).

Lemma 1 will be shown in Section 6. We then show that layer security reduces to multi-instance IND-CPA
security.

Lemma 2 (Layer Security). Let Rlayer,i be the reduction defined in Figure 12b. We have

Adv(A; LSEC0(GByao,i), LSEC
1(SIMyao,i)) ≤ Adv(A → Rilayer; IND-CPA01..n(se), IND-CPA11..n(se)).

The proof of Lemma 2 can be found in Section 7. Finally, we invoke the hybrid self-composition lemma by
BDFKK [BDF+18] to show that multi-instance security of IND-CPA encryption reduces to single-instance IND-
CPA encryption.

Lemma 3 (Self-composition [BDF+18]). There exists a PPT reduction Rse such that for all PPT A, we
have that

Adv(A; IND-CPA01..n(se), IND-CPA11..n(se)) ≤ n · Adv(A → Rse; IND-CPA
0(se), IND-CPA1(se)).

Theorem 1 follows by a standard argument which we provide for completeness below.

Proof (Theorem 1). Let A be a PPT adversary, then

Adv(A; SEC0(GByao), SEC1(SIMyao))

Lem 1
≤

d∑
i=1

Adv(A → Ricirc; LSEC0(GByao,i), LSEC
1(SIMyao,i))

Lem 2
≤

d∑
i=1

Adv(Bi → Rilyr; IND-CPA01..n(se), IND-CPA11..n(se)) with Bi := A → Ricirc

Lem 3
≤

d∑
i=1

n · Adv(Ci → Rse; IND-CPA
0(se), IND-CPA1(se)) with Ci := A → Ricirc → Rilyr (2)

Reduction R draws a random i←$ {1, .., d} and then runs Ri = Ricirc → Rilayer → Rse (see Theorem 1). Note
that by definition

Ci → Rise = A → Ri (3)

Thus, we have

Adv(A → R; IND-CPA0(se), IND-CPA1(se)) (4)

=
∣∣Pr
[
1 = A → R→ IND-CPA0(se)

]
− Pr

[
1 = A → R→ IND-CPA1(se)

]∣∣
=

∣∣∣∣∣
d∑
i=1

1

d
Pr
[
1 = A → Ri → IND-CPA0(se)

]
− 1

d
Pr
[
1 = A → Ri → IND-CPA1(se)

]∣∣∣∣∣
Eq. 3

=
1

d

∣∣∣∣∣
d∑
i=1

Pr
[
1 = Ci → Rse → IND-CPA0(se)

]
− Pr

[
1 = Ci → Rse → IND-CPA1(se)

]∣∣∣∣∣
=

1

d

∣∣∣∣∣
d∑
i=1

Adv(Ci → Rse; IND-CPA
0(se), IND-CPA1(se))

∣∣∣∣∣
Eq. 2

≥ 1

dn
Adv(A; SEC0(GByao), SEC1(SIMyao)). (5)

Comparing (4) and (5) establishes Inequality 1 in Theorem 1.

13

KEYS

KEYS

SETBIT
GETAout

GBL1

KEYS

GBL2

GBLd

...

GETKEYSin

GETKEYSout

GETKEYSout

GETKEYSin

KEYS
GETKEYSin

...

KEYS
GETKEYSout

GETKEYSin

GByao, 1

GByao, 2

GByao, d

0

0

0

(a) Game SEC0(GByao), cf. Fig. 8c.

KEYS

KEYS

SETBIT
GETAout

GBL1

KEYS

GBL2

GBLd

...
GETKEYSin

GETKEYSout

GETKEYSout

GETKEYSin

KEYS
GETKEYSin

...

KEYS
GETKEYSout

GETKEYSin

GByao, 1

GByao, 2

GByao, d

0

0

0

(b) Game R1
circ → LSEC0(GByao,1), reduction R1

circ is
marked in grey.

GBLi-1

GBLi+1

EVGByao, i EVAL
GETBIT

SETBIT

GETAin
GETINAin

1

KEYS

KEYS

EVAL
GETAout

GByao, 1

GETA, SETBIT

EVALGByao, i-1

...

GETBIT

SETBIT

KEYS
GETBIT

...

KEYS

SETBIT

EV

EV

GETAin
GETINAin

GBL1

GBLi

1

1

GETAout

GETAin
GETINAin

KEYS

GBLi+2

GBLd

...

GETKEYSout

GETKEYSin

KEYS
GETKEYSin

...

KEYS
GETKEYSout

GETKEYSin

GByao, i+2

GByao, d

0

0

KEYS

KEYS

GETKEYSout

GETKEYSin
GByao, i+1

0

(c) Game Ricirc → LSEC1(GByao,i), reduction Ricirc is
marked in grey.

GBLi+1

EVGByao, i EVAL
GETBIT

SETBIT

GETAin
GETINAin

1

KEYS

KEYS

EVAL
GETAout

GByao, 1

GETA, SETBIT

EVALGByao, i-1

...

GETBIT

SETBIT

KEYS
GETBIT

...

KEYS

SETBIT

EV

EV

GETAin
GETINAin

GBL1

GBLi

1

1

GETAout

GETAin
GETINAin

KEYS

GBLi+2

GBLd

...

GETKEYSout

GETKEYSin

KEYS
GETKEYSin

...

KEYS
GETKEYSout

GETKEYSin

GByao, i+2

GByao, d

0

0

KEYS

KEYS

GETKEYSout

GETKEYSin
GByao, i+1

0

GBLi-1

(d) Game Ri+1
circ → LSEC0(GByao,i+1), reduction Ri+1

circ is
marked in grey.

KEYS

KEYS

EVAL
GETAout

GByao, 1

GETA, SETBIT

KEYS

EVAL

GETAin
GETINAin

GByao, 2

EVALGByao, d

...

GETBIT

SETBIT

SETBIT

GETBIT

KEYS
GETBIT

...

KEYS
SETBIT

GETKEYSin

EV

EV

EV

GETAout

GETAin
GETINAin

GBL1

GBL2

GBLd

1

1

1

GETAout

GETAin
GETINAin

(e) Game Rdcirc → LSEC1(GByao,d), reduction Rdcirc is
marked in grey.

KEYS

KEYS

EVAL
GETAout

GByao, 1

GETA, SETBIT

KEYS

EVAL

GETAin
GETINAin

GByao, 2

EVALGByao, d

...

GETBIT

SETBIT

SETBIT

GETBIT

KEYS
GETBIT

...

KEYS
SETBIT

GETKEYSin

EV

EV

EV

GETAout

GETAin
GETINAin

GBL1

GBL2

GBLd

1

1

1

GETAout

GETAin
GETINAin

(f) Game SEC1(SIMyao,d), cf. Fig. 10d.

Fig. 11: Reductions for the hybrid argument for Lemma 1.

14

6 Proof of Lemma 1

Lemma 1 reduces circuit garbling security to layer garbling security via a hybrid argument over the d layers
of the circuit. I.e., our game-hopping argument starts with hybrid 0 which is SEC0(GByao) and gradually makes
modifications until reaching hybrid d which is SEC1(SIMyao). Between these d+1 hybrid games, we have d reductions
Ricirc with 1 ≤ i ≤ d (cf. Fig. 11b) so that Ricirc is the reduction used to prove the indistinguishability between
hybrid i and hybrid i+ 1. For convenience of proof, we define our i-th hybrid as composition between reduction
Ricirc and a layer security game and observe that, by definition of the first reduction R0

circ and the last reduction
Rdcirc, we have

SEC0(GByao)
code≡ R1

circ → LSEC0(GByao,1) (6)

SEC1(SIMyao)
code≡ Rdcirc → LSEC1(GByao,d), (7)

which translates SEC0(GByao) into R1
circ → LSEC0(GByao,1) and SEC1(SIMyao) into Rdcirc → LSEC1(GByao,d). Now,

for i ∈ {1, .., d-1}, we can describe our hybrid games either as Ricirc → LSEC1(GByao,i) or, equivalently, Ri+1
circ →

LSEC0(GByao,i+1), i.e.,

∀ i ∈ {1, .., d-1} : Ricirc → LSEC1(GByao,i)
code≡ Ri+1

circ → LSEC0(GByao,i+1). (8)

To verify Equation 6-8, note that for i ∈ {1, .., d}, Fig. 11b defines Ri, Fig. 9a defines the real layer game
LSEC0(GByao,i), and Fig. 9b defines the ideal layer game LSEC1(GByao,i).

For Equation 6, we provide SEC0(GByao) in Fig. 11a (copied here for convenience from Fig. 8) and R1
circ →

LSEC0(GByao,1) in Fig. 11b. Seeing the graphs side-by-side, we observe that they are, indeed, equal. This equiv-
alence proof (by graph equality) is a good example of the SSP technique which takes a single graph and either
views it as a single security game (Fig. 11a) or a composition of two things, reduction R1

circ and the (smaller)
game LSEC0(GByao,1). Analogously, for Equation 7, Fig. 11f describes LSEC1(SIMyao,i) (copied from Fig. 9b for
convenience), and Fig. 11e contains game Rd → LSEC1(GByao,d). Indeed, also these two graphs are equal. Finally,
for Equation 8, we provide Ricirc → LSEC1(GByao,i) in Fig. 11c and Ri+1

circ → LSEC0(GByao,i+1) in Fig. 11d and also
here, we observe that the two graphs are equal.

We conclude by showing that equations (6)-(8) suffice to prove Lemma 1. Let A be an adversary. We now
first plug-in the definition of advantage, then use Equation 6 and Equation 7 and then add zeroes in telescopic
sum-style, using Equation 8. We then use the triangle equality for absolute value, apply the definition of advantage
again and obtain Lemma 1.

Adv(A; SEC0(GByao), SEC1(SIMyao))

= |Pr
[
1 = A → SEC0(GByao)

]
− Pr

[
1 = A → SEC1(SIMyao)

]
|

(6),(7)
= |Pr

[
1 = A → R1

circ → LSEC0(GByao,1)
]
− Pr

[
1 = A → Rdcirc → LSEC1(GByao,d)

]
|

(8)
= |Pr

[
1 = A → R1

circ → LSEC0(GByao,1)
]

+
(d−1∑
i=1

−Pr
[
1 = A → Ricirc → LSEC1(GByao,i)

]
+ Pr

[
1 = A → Ri+1

circ → LSEC0(GByao,i+1)
])

− Pr
[
1 = A → Rdcirc → LSEC1(GByao,d)

]
|

= |
d∑
i=1

Pr
[
1 = A → Ricirc → LSEC0(GByao,1)

]
− Pr

[
1 = A → Ricirc → LSEC1(GByao,d)

]
|

≤
d∑
i=1

|Pr
[
1 = A → Ricirc → LSEC0(GByao,1)

]
− Pr

[
1 = A → Ricirc → LSEC1(GByao,d)

]
|

=
d∑
i=1

Adv(A → Ricirc; LSEC0(GByao,i), LSEC
1(SIMyao,i)).

15

KEYS

KEYS
GETKEYSout

MODDENCDENCMODGBiGBLi

GETAout
SETBIT

GETKEYSin

GETKEYSin
ENC1..n ENC0

1..n

(a) Real layer security game LSEC0i (GByao,i) with GByao,i
highlighted in orange.

KEYS

KEYS
GETKEYSout

MODDENCDENCMODGBiGBLi

GETAout
SETBIT

GETKEYSin

GETBIT
GETKEYSinENC1..n ENC1

1..n

(b) Hybrid layer security game HYBi. Reduction Rlayer,i is
highlighted in red.

KEYS

KEYS
GETKEYSout

MODDENCDENCMODGBiGBLi

GETAout
SETBIT

GETKEYSin

GETBIT
GETKEYSinENC1..n ENC1

1..n

(c) Hybrid layer security game HYBi. Subgame GDENC is
highlighted in pink.

KEYS

KEYSGETAout

SIMdencGBLi

GETAout
SETBIT

GETKEYSin

GETBIT
EVAL EV

SETBIT

GETAin

GETINAin

MODGBi DENC

(d) Ideal layer security game LSEC1i (GB
1
yao,i). Subgame

GDENCsim is highlighted in purple.

KEYS

KEYSGETAout

SIMdencGBLi

GETAout
SETBIT

GETKEYSin

GETBIT
EVAL EV

SETBIT

GETAin

GETINAin

MODGBi DENC

(e) Ideal layer security game LSEC0i (GB
1
yao,i). Layer simula-

tor GB1yao,i is marked in blue.

Oracle of MOD-DENC

DENC(`, r, op, j)

g̃j ← ⊥

Zout
j ← GETKEYSout(j)

for (b`, br) ∈ {0, 1}2 do

bj ← op(b`, br)

k0j ← Zout
j (bj)

c0in ← ENCi(b`, k
0
j , 0

λ)

c1in ← ENCi(b`, 0
λ, 0λ)

c←$ENCr(br, c
0
in, c

1
in)

g̃j ← g̃j ∪ c
return g̃j

Oracles of MODGBi

GBLi(`, r,op)

assert C̃ = ⊥
assert `, r,op 6= ⊥
assert |`|, |r|, |op| = n

for j = 1..n do

(`, r, op)← (`(j), r(j),op(j))

C̃j ← DENC(`, r, op)

C̃ ← C̃1..n

return C̃

Oracle of SIMdenc

DENC(`, r, op, j)

g̃j ← ⊥
EVALj(`, r, op)

Sout
j (0)← GETAout(j)

Sin
r (0)← GETAin(r)

Sin
r (1)← GETINAin(r)

Sin
` (0)← GETAin(`)

Sin
` (1)← GETINAin(`)

for (d`, dr) ∈ {0, 1}2 do

kin` ← Sin
` (d`)

kinr ← Sin
r (dr)

if d` = dr = 0 :

koutj ← Sout
j (0)

else koutj ← 0λ

cin ←$ enckinr (koutj)

c←$ enckin
`

(cin)

g̃j ← g̃j ∪ c
return g̃j

Oracles of ENC0i

ENCi(b,m0,m1)

Z in
i ← GETKEYSin

c←$ enc(Z in
i (b),m0)

return c

Oracles of ENC1i

ENCi(b,m0,m1)

Z in
i ← GETKEYSin(i)

zini ← GETBITin(i)

if zi 6= b then

c←$ enc(Z in
i (b),m1)

if zi = b then

c←$ enc(Z in
i (b),m0)

return c

(f) Code of MODGBi, MODDENC, SIMdenc, ENC
0, ENC1.

Fig. 12: Proof of Lemma 2 (Layer Security).

16

7 Proof of Lemma 2

The proof of Lemma 2 consists of the following two claims:

Claim 3 (Real Code Equivalence) ∀1 ≤ i ≤ d, it holds that

LSEC0(GByao,i)
code≡ Rilayer → IND-CPA01..n(se),

where Rilayer is defined in Figure 12b.

Claim 3 follows by definition of GByao,i.

Claim 4 (Ideal Code Equivalence) ∀1 ≤ i ≤ d, it holds that

LSEC1(SIMyao,i)
code≡ Rilayer → IND-CPA11..n(se),

where Rilayer is defined in Figure 12b.

Claim 3 and Claim 4 together directly yield Lemma 2. We now turn to the proof of Claim 4.

Proof (Proof of Claim 4). Claim 4 is the technical heart of the proof. HYBi := Rilayer → IND-CPA11..n(se) is
depicted in Figure 12b and Figure 12c. The only difference between these two figures is the highlighting. Namely,
we highlight the game GDENC in pink. If we can show that

GDENC
code≡ GDENCsim, (9)

we obtain Claim 4, since replacing GDENC in HYBi by GDENCsim (see Figure 12d for this replacement) directly yields
the ideal layer security game LSEC1(SIMyao,i), depicted in Figure 12e—the only difference between Figure 12d and
Figure 12e is the highlighting. The proof of Equation 9 is an inlining argument, see Figure 13.

Proof of Equation 9. The proof proceeds via code comparison. The left-most column in Fig. 13. shows GDENC and
the rightmost column shows the oracle of SIMdenc—we refer to Fig. 12 for the code of both.

From the leftmost column in Fig. 13 to the second column, we inline the code of calls to the respective ENC

packages. We move the GETKEYSin queries before the for loop. From the second to the third column, we also
inline the KEYS packages (cf. Fig. 6 for its code). For disambiguation, we add superscript in to the state of the
top KEYS package and superscript out to the state of the lower KEYS package. To obtain to the 4th column, we
apply the bijective maps b` 7→ b` ⊕ zin` and br 7→ br ⊕ zinr . Observe that b` = zin` ∧ br = zinr is true if and
only if b` ⊕ zin` = br ⊕ zinr = 0. We further replace bflagout ← 1 by aflagout ← 1: The read operation on
this variable is performed by the GETKEYS oracle and there, the reading is performed on bflag ∨ aflag, so
that it does not matter which flag is set. Moreover, variable bflagin is never set to 1 and thus, we can replace
assert bflagin ∨ aflagout = 1 by assert aflagout = 1.

From column 6 to column 5, we inline the EV and the KEYS package (we perform both steps in one). The main
challenge consists of comparing column 4 and column 5, which follows by mapping Si(0) to Zi(zi) and Si(1) to
Zi(zi ⊕ 1). This concludes the inlining proof.

17

Oracles of GDENC

SETBIT(j, z)

return SETBIT(j, z)

GETAout(i)

return GETAout(i)

DENC(`, r, op, j)

g̃j ← ⊥

Zout
j ← GETKEYSout(j)

for (b`, br) ∈ {0, 1}2 :

bj ← op(b`, br)

kj ← Zout
j (bj)

c0in ← ENC`(b`, kj , 0
λ)

c1in ← ENC`(b`, 0
λ, 0λ)

c←$ENCr(br, c
1
in, c

1
in)

g̃j ← g̃j ∪ c
return g̃j

GETKEYSin(j)

return GETKEYSin(j)

Oracles of GDENC

SETBIT(i, z)

return ()

GETAout(i)

return GETAout(i)

DENC(`, r, op, j)

g̃j ← ⊥
zin` ← GETBITin(`)

zinr ← GETBITin(r)

Zout
j ← GETKEYSout(j)

Z in
` ← GETKEYSin(`)

Z in
r ← GETKEYSin(r)

for (b`, br) ∈ {0, 1}2 :

bj ← op(b`, br)

koutj ← Zout
j (bj)

kin` ← Z in
` (b`)

if zin` = b` :

c0in ←$ enc(kin` , k
out
j)

if zin` 6= b` :

c0in ←$ enc(kin` , 0
λ)

c1in ←$ enc(k`, 0
λ)

kinr ← Z in
r (br)

if zinr = br :

c←$ enc(kinr , c
0
in)

if zinr 6= br :

c←$ enc(kinr , c
1
in)

g̃j ← g̃j ∪ c
return g̃j

GETKEYSin(j)

return GETKEYSin(j)

Oracles of GDENC

SETBIT(i, z)

assert zini = ⊥

zini ← z

return ()

GETAout(i)

assert zini 6= ⊥
aflag

in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (zini)

DENC(`, r, op, j)

g̃j ← ⊥
assert zin` 6= ⊥
assert zinr 6= ⊥

bflag
out
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

assert zin` 6= ⊥
assert aflagin` = 1

∨ bflag
in
` = 1

assert Z in
` 6= ⊥

assert zinr 6= ⊥
assert aflaginr = 1

∨ bflag
in
r = 1

assert Z in
r 6= ⊥

for (b`, br) ∈ {0, 1}2 :

kin` ← Z in
` (b`)

kinr ← Z in
r (br)

if b` = zin` ∧ br = zinr :

bj ← op(b`, br)

koutj ← Zout
j (bj)

else koutj ← 0λ

cin ←$ enc(kin` , k
out
j)

c←$ enc(kinr , cin)

g̃j ← g̃j ∪ c
return g̃j

GETKEYSin(j)

assert aflagoutj = 1

∨ bflag
out
j = 1

assert Zout
j 6= ⊥

return Zout
j

Oracles of GDENC

SETBIT(i, z)

assert zini = ⊥

zini ← z

return ()

GETAout(i)

assert zini 6= ⊥
aflag

in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (zini)

DENC(`, r, op, j)

g̃j ← ⊥
assert zin` 6= ⊥
assert zinr 6= ⊥

aflag
out
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

assert zinr 6= ⊥
assert aflaginr = 1

assert Z in
r 6= ⊥

assert zin` 6= ⊥
assert aflagin` = 1

assert Z in
` 6= ⊥

for (b` ⊕ zin` , br ⊕ zinr)

∈ {0, 1}2 :

kin` ← Z in
` (b`)

kinr ← Z in
r (br)

if b` ⊕ zin` = br ⊕ zinr = 0 :

bj ← op(b`, br)

koutj ← Zout
j (bj)

else koutj ← 0λ

cin ←$ enc(kin` , k
out
j)

c←$ enc(kinr , cin)

g̃j ← g̃j ∪ c
return g̃j

GETKEYSin(j)

assert aflagoutj = 1

∨ bflag
out
j = 1

assert Zout
j 6= ⊥

return Zout
j

Oracles of GDENCsim

SETBIT(i, z)

assert zini = ⊥

zini ← z

return ()

GETAout(i)

assert zini 6= ⊥
aflag

in
i ← 1

if Z in
i = ⊥ :

Z in
i (0)←$ {0, 1}λ

Z in
i (1)←$ {0, 1}λ

return Z in
i (zini)

DENC(`, r, op, j)

g̃j ← ⊥
assert zin` 6= ⊥
assert zinr 6= ⊥
zoutj ← op(zin` , z

in
r)

assert zoutj 6= ⊥
aflag

out
j ← 1

if Zout
j = ⊥ :

Zout
j (0)←$ {0, 1}λ

Zout
j (1)←$ {0, 1}λ

Sout
j (0)← Zout

j (zinj)

assert zinr 6= ⊥
assert aflaginr = 1

assert Z in
r 6= ⊥

Sin
r (0)← Z in

r (zinr)

assert zinr 6= ⊥
assert aflaginr = 1

assert Z in
r 6= ⊥

Sin
r (1)← Z in

r (1⊕ zinr)

assert zin` 6= ⊥
assert aflagin` = 1

assert Z in
` 6= ⊥

Sin
` (0)← Z in

` (zin`)

assert zin` 6= ⊥
assert aflagin` = 1

assert Z in
` 6= ⊥

Sin
` (1)← Z in

` (1⊕ zin`)

for (d`, dr) ∈ {0, 1}2 :

kin` ← Sin
` (d`)

kinr ← Sin
r (dr)

if d` = dr = 0 :

koutj ← Sout
j (0)

else koutj ← 0λ

cin ←$ enc(kinr , k
out
j)

c←$ enc(kin` , cin)

g̃j ← g̃j ∪ c
return g̃j

GETKEYSin(j)

assert aflagoutj = 1

∨ bflag
out
j = 1

assert Zout
j 6= ⊥

return Zout
j

Oracles of GDENCsim

SETBIT(i, z)

return SETBIT(i, z)

GETAout(i)

return GETAout(i)

DENC(`, r, op, j)

g̃j ← ⊥
EVALj(`, r, op)

Sout
j (0)← GETAout(j)

Sin
r (0)← GETAin(r)

Sin
r (1)← GETINAin(r)

Sin
` (0)← GETAin

` ()

Sin
` (1)← GETINAin

` ()

for (d`, dr) ∈ {0, 1}2 :

kin` ← Sin
` (d`)

kinr ← Sin
r (dr)

if d` = dr = 0 :

koutj ← Sout
j (0)

else koutj ← 0λ

cin ←$ enc(kinr , k
out
j)

c←$ enc(kin` , cin)

g̃j ← g̃j ∪ c
return g̃j

GETKEYSin(j)

return GETKEYSin(j)

Fig. 13: Inlining for code-equivalence of GDENC and GDENCsim.

18

Syntax notion Example sequence of games

[BR06] algorithm tuple,
e.g. π = (π1, π1)

[BDF+18] algorithm tuple,
e.g. π = (π1, π1)

this work package tuple,
e.g. π = (P1, P1)

Table 1: Overview over code-based game-hopping approaches by Bellare and Rogaway [BR06], state-separating
proofs [BDF+18] and state-separating constructions in this work. The table compares the notions of cryptographic
constructions and the schematic sequence of games in a typical proof.

8 Discussion

Selective vs. adaptive security. In Section 4, we introduced two versions of the ideal functionality for circuit
garbling, one for correctness and one for security. We need two different security notions because of the difference
between selective (Fgbld) and adaptive (F’gbld) security, as introduced by BHR. The selective security notion asks
the simulator to garble circuit and input together. In the adaptive security game, on the other hand, the simulator
first has to present the adversary with the garbled circuit who only then chooses the input to be garbled. BHR use
only one “ideal functionality” ev to express this difference since their security game controls when the simulator
is invoked, implicitly enforcing that the input is set before the simulator is called, see Fig. 1. In our case though
(and in the SSP style of security modeling in general), the simulator is invoked directly by the adversary and we
therefore need a way for the simulator to check via a CHECK query whether inputs have already been set. Only
when inputs have already been set, the simulator should garble inputs via GETAout and gates via GBL.

For the sake of defining correctness, both ideal functionalities provide the same functionality as the CHECK
oracle does not yield any new information. CHECK is only relevant when the oracles of the ideal functionality are
called by different packages (adversary and simulator, in the security game). We thus chose to define correctness

with respect to F’
gbl
d , the simpler and in some sense more natural version of the two.

When it comes to security though, the output interface of the ideal functionality is split between adversary
and simulator, hence the two ideal functionalities differ in the information they provide to the simulator. Yao’s
garbing scheme is known to be adaptively secure for circuits of small depth or width [JW16,KKP21] and other
garbling schemes [BHR12a,BHK13,HJO+16,GS18,JO20] are adaptively security for general or restricted circuit
classes. However, for general circuits, Yao’s garbling scheme is only known to provide selective security and thus
our security proof is with respect to F

gbl
d .

Local arguments and “irrelevant code”. We mentioned in the introduction that SSPs allow us to describe local
arguments, i.e. arguments that only reason about a subgame, but allow us to derive statements about the game as
a whole. The connection between the subgame and the bigger game does not require reasoning about semantics,
but instead is purely syntactical. This work shows several examples:

– Switch of key semantics (Claim 2)
– Reduction of circuit garbling security to layer garbling security (Lemma 1)
– Reduction of layer garbling security to encryption scheme security (Lemma 2)

In addition, our proof style differs in a subtle, but useful way from existing SSPs. Existing works using SSP-
style proofs either (1) define security as a monolithic security game in the Bellare-Rogaway style of code-based
game-playing and then perform a perfect equivalence step in which the game is split into a modular description
[BDF+18], [CHK21], or (2) the security definition is tailored to the specific cryptographic construction in question

19

[BDE+21], [BCK22]. We propose a third approach: Defining the syntax of the primitive as a package tuple and
the security notion itself as composition of packages. Thereby, the security notion becomes modular. Moreover
the concrete implementation of the individual packages might be describable as package composition. As a result,
when there is a natural modular description (as there is for Yao’s garbling scheme), we can take advantage of
SSP techniques for the entire security proof, without the need to modularize the games in the proof separately
from the construction.

The different definition and proof styles are compared in Table 1. The first row shows a code-based game-
playing proof [BR06], expressed schematically in the SSP style. The first and last games in the sequence of
game hops are monolithic games parameterized by algorithms, and all intermediate games are of the same size.
BDFKK [BDF+18] (second row) propose a more flexible approach to the intermediate game hops, but keeps the
monolithic first and last games so that an additional proof is necessary to establish equivalence between monolithic
and modular games. In our case, the first and last game are modular games parameterized by packages which
aligns computation model and security notion.

Acknowledgments. We are greatful to Pihla Karanko, Markulf Kohlweiss, Kirthivaasan Puniamurthy, Luisa Zep-
pelin, and the participants of the Advanced Topics in Cryptography course 2021 at Aalto University for useful
suggestions on the presentation. We thank François Dupressoir for insightful discussions about the EasyCrypt
security proof of Yao’s garbled circuits in [ABB+17].

Sabine Oechsner was supported by the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under grant agreement No 669255 (MPCPRO), the Concordium
Blockhain Research Center, Aarhus University, Denmark, and the Danish Independent Research Council under
Grant-ID DFF-8021-00366B (BETHE). This work was supported by the Blockchain Technology Laboratory at
the University of Edinburgh and funded by Input Output Global and the Academy of Finland.

References

ABB+17. José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent La-
porte, and Vitor Pereira. A fast and verified software stack for secure function evaluation. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1989–2006. ACM
Press, October / November 2017.

AHR+21. Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Catalin
Hritcu, Kenji Maillard, and Bas Spitters. Ssprove: A foundational framework for modular cryptographic proofs
in coq. In 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,
2021, pages 1–15. IEEE, 2021.

BCK22. Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Key-schedule security for the TLS 1.3 standard. Cryp-
tology ePrint Archive, Report 2021/137, 2022. to appear at S&P 2022, https://eprint.iacr.org/2021/467.

BDE+21. Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Fournet, Konrad Kohbrok, and Markulf
Kohlweiss. Key-schedule security for the TLS 1.3 standard. Cryptology ePrint Archive, Report 2021/467, 2021.
https://eprint.iacr.org/2021/467.

BDF+18. Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss. State sepa-
ration for code-based game-playing proofs. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 222–249. Springer, Heidelberg, December 2018.

BDJ+21. David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos, and Solène Moreau. An interactive prover
for protocol verification in the computational model. IEEE Secur. Priv., 19, 2021.

BGHZ11. Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Computer-aided security
proofs for the working cryptographer. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
71–90. Springer, Heidelberg, August 2011.

BHK13. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via UCEs. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 398–415. Springer,
Heidelberg, August 2013.

BHR12a. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications to one-time
programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

BHR12b. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM Press, October 2012.

Bla06. Bruno Blanchet. A computationally sound mechanized prover for security protocols. In 2006 IEEE Symposium
on Security and Privacy, pages 140–154. IEEE Computer Society Press, May 2006.

20

https://eprint.iacr.org/2021/467
https://eprint.iacr.org/2021/467

BPW04. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition theorem for secure reactive
systems. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 336–354. Springer, Heidelberg, February
2004.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
Heidelberg, May / June 2006.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001.

CHK21. Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of healing in secure group messaging:
Why cross-group effects matter. In Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, pages 1847–1864. USENIX Association, 2021.

CKKR19. Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. iUC: Flexible universal composability made
simple. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS,
pages 191–221. Springer, Heidelberg, December 2019.

DKO21. François Dupressoir, Konrad Kohbrok, and Sabine Oechsner. Bringing state-separating proofs to easycrypt - A
security proof for cryptobox. IACR Cryptol. ePrint Arch., page 326, 2021.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482.
Springer, Heidelberg, August 2010.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, Heidelberg, August 2008.

GLNP15. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under standard assump-
tions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages 567–578. ACM
Press, October 2015.

GS18. Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near optimal online complexity. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages
535–565. Springer, Heidelberg, April / May 2018.

HJO+16. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs. Adaptively secure
garbled circuits from one-way functions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 149–178. Springer, Heidelberg, August 2016.

HS15. Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability framework. Journal of Cryptology,
28(3):423–508, July 2015.

HUM09. Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Polynomial runtime and composability. Cryptol-
ogy ePrint Archive, Report 2009/023, 2009. https://eprint.iacr.org/2009/023.

JO20. Zahra Jafargholi and Sabine Oechsner. Adaptive security of practical garbling schemes. In Karthikeyan Bhar-
gavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, INDOCRYPT 2020, volume 12578 of LNCS, pages
741–762. Springer, Heidelberg, December 2020.

JW16. Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 433–458. Springer, Heidelberg, Octo-
ber / November 2016.

KKP21. Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. On treewidth, separators and yao’s garbling. IACR
Cryptol. ePrint Arch., page 926, 2021.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July
2008.

KTR20. Ralf Küsters, Max Tuengerthal, and Daniel Rausch. The IITM model: A simple and expressive model for
universal composability. J. Cryptol., 33(4):1461–1584, 2020.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, April 2009.

Mau10. Ueli Maurer. Constructive cryptography - a primer (invited paper). In Radu Sion, editor, FC 2010, volume
6052 of LNCS, page 1. Springer, Heidelberg, January 2010.

Mau12. Ueli Maurer. Constructive cryptography - A new paradigm for security definitions and proofs. In Sebastian
Mödersheim and Catuscia Palamidessi, editors, Theory of Security and Applications - Joint Workshop, TOSCA
2011, Saarbrücken, Germany, March 31 - April 1, 2011, Revised Selected Papers, volume 6993 of Lecture Notes
in Computer Science, pages 33–56. Springer, 2012.

MT13. Daniele Micciancio and Stefano Tessaro. An equational approach to secure multi-party computation. In
Robert D. Kleinberg, editor, ITCS 2013, pages 355–372. ACM, January 2013.

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design. In Pro-
ceedings of the First ACM Conference on Electronic Commerce (EC-99), pages 129–139, 1999.

21

https://eprint.iacr.org/2009/023

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party computation
is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer,
Heidelberg, December 2009.

RR21. Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the half-gates lower bound for garbled
circuits. LNCS, pages 94–124. Springer, Heidelberg, 2021.

Weg87. Ingo Wegener. The complexity of Boolean functions. BG Teubner, 1987.
Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages

162–167. IEEE Computer Society Press, October 1986.
ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in garbled

circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

22

	A State-Separating Proof for Yao's Garbling Scheme
	 Chris Brzuska and Sabine Oechsner

