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Abstract. Continuous Group Key Agreement (CGKA) – or Group Ratcheting – lies
at the heart of a new generation of End-to-End (E2E) secure group messaging (SGM)
and VoIP protocols supporting very large groups. Yet even for these E2E protocols the
primary constraint limiting practical group sizes continues to be their communication
complexity. To date, the most important (and only deployed) CGKA is ITK which
underpins the IETF’s upcoming Messaging Layer Security SGM standard.

In this work, we introduce server-aided CGKA (saCGKA) to more precisely model
how E2E protocols are usually deployed. saCGKA makes explicit the presence of
an (untrusted) server mediating communication between honest parties (as opposed
to mere insecure channels of some form or another). Next, we provide a simple and
intuitive security model for saCGKA. We modify ITK accordingly to obtain SAIK; a
practically efficient and easy to implement saCGKA designed to leverage the server to
obtain greatly reduced communication and computational complexity (e.g. relative to
ITK). Under the hood, SAIK uses a new type of signature called Reducible Signature
which we construct from, so called, Weighted Accumulators. SAIK obtains further
advantages by using Multi-Recipient Multi-Message PKE. Finally, we provide empirical
data comparing the communication complexity for senders, receivers and the server in
ITK vs. three saCGKAs including two instantiations of SAIK.
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1 Introduction

End-to-end (E2E) secure applications have become one of the most widely used class of cryptographic
applications on the internet with billions of daily users. Accordingly, the E2E protocols upon which these
applications are built have evolved over several distinct generations, adding functionality and new security
guarantees along the way. Modern protocols are generally expected to support things like multi-device
accounts, continuous refreshing of secrets and asynchronous communication. Here, asynchronous refers to
the property that parties can communicate even when they are not simultaneously online. To make this
possible, the network provides an (untrusted) mailboxing service for buffering packets until recipients
come online.

The growing demand for E2E security motivates increasingly capable E2E protocols; in particular,
supporting ever larger groups. For example, in the enterprise setting organizations regularly have natural
sub-divisions with far more members than practically supported by today’s real-world E2E protocols.
Support for large groups opens the door to entirely new applications; especially in the realm of machine-
to-machine communication such as in mesh networks and IoT. The need for large groups is compounded
by the fact that many applications treat each device registered to an account as a separate party at
the E2E protocol level. For example, a private chat between Alice and Bob who each have a phone and
laptop registered to their accounts is actually a 4-party chat from the point of view of the underlying E2E
protocol.

Next Generation E2E Protocols. The main reason current protocols (at least those enjoying state-of-the-art
security, e.g. post compromise forward security) only support small groups is that their communication
complexities grow linearly in their group sizes. This has imposed natural limitations on real-world group
sizes (generally at or below 1000 members).

Consequently, a new generation of E2E protocols are being developed both in academia (e.g. [33, 2,
4, 5, 3, 6, 7]) and industry [16]. Their primary design goal is to support extremely large groups (e.g.
10s of thousands of users) while still meeting, or exceeding, the security and functionality of today’s
state-of-the-art deployed E2E protocols. Technically, the new protocols achieve this by reducing their
communication complexity down to logarithmic in the group size; albeit, only under favorable conditions
in the execution. This informal property is sometimes termed the fair-weather complexity of a protocol.

To date, the most important of these new E2E protocols is the IETF’s upcoming SGM standard
called the Messaging Layer Security (MLS) protocol. It is the product of a collaboration between industry
practitioners and academic cryptographers. MLS is in the final stages of standardization and its core
components are already seeing initial deployment [32].

Continuous Group Key Agreement. To the best of our knowledge, all next gen. E2E protocols share the
following basic design paradigm. At their core lies a Continuous Group Key Agreement (CGKA) protocol;
a generalization to the group setting of the Continuous Key Agreement 2-party primitive [2, 39] underlying
the Double Ratchet.

Intuitively, a CGKA protocol provides E2E secure group management for evolving groups, i.e., groups
whose properties such as the set of members, the group name, the set of moderators, etc., can change
mid-session. Each change to a group’s properties initiates a fresh epoch. A CGKA protocol ensures that
all group members in an epoch agree on the current group properties as well as on a symmetric epoch key,
known only to them. The epoch key can then be used to protect application data (e.g. messages or video
stream).

MLS too, is (implicitly) based on a CGKA, originally dubbed TreeKEM [20]. Since its inception,
TreeKEM has undergone several substantial changes [14, 15] before reaching its current form [13, 5]. For
clarity, we refer to its current version as Insider-Secure TreeKEM (ITK) (using the terminology of [5]
where that version was introduced). ITK has already seen its first real world deployment as the backbone
of Cisco’s Webex conferencing protocol [32].

Why Consider CGKA? CGKA is interesting because of the following two observations. First, CGKA
seems to be the minimal functionality encapsulating almost all of the cryptographic challenges inherent to
building next generation E2E protocols. Second, building typical higher-level E2E applications (e.g. SGM
or conference calling) from a CGKA can be done via relatively generic, and comparatively straightfor-
ward mechanisms. Moreover, the resulting application directly inherits many of its key properties from
the underlying CGKA; notably their security guarantees and their communication and computational
complexities. In this regard, CGKA is to SGM what a KEM is to hybrid PKE. For the case of SGM, this
intuitive paradigm and the relationship between properties of the CGKA and resulting SGM was made
formal in [8]. In particular, that work abstracts and generalizes MLS’s construction from ITK.
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1.1 Our Contributions

The new CGKA in this work is motivated by the observation that in most deployments of E2E protocols
the untrusted mailboxing service buffering packets for offline recipients is actually implemented by a full
featured (and often highly scalable) server. Thus, we introduce a new (type) of CGKA that leverages
the computational capabilities of the server to greatly reduce the bandwidth requirements (especially for
recipients) over state-of-the art CGKA protocols, and in particular over ITK.

A bit more technically, we introduce a variant of CGKA we call server-aided CGKA (saCGKA). Along
with the usual protocols for group members, saCGKA also includes a special Extract procedure run by
the untrusted server to convert a “full packet” uploaded by a sender into an individualized “sub-packet”
destined for a particular recipient.4 We introduce a new, greatly simplified security notion for saCGKA
and construct a new practical saCGKA protocol based on ITK called Server-Aided ITK (SAIK). To obtain
SAIK, we make two key modifications to ITK, sketched out below.

Multi-message multi-recipient PKE. First, we replace ITK’s use of standard (CCA secure) PKE with
multi-message multi-recipient PKE (mmPKE). As demonstrated by [51], directly constructing mmPKE
can result in a significantly more efficient scheme than produced by parallel composition of standard PKE
schemes (both in terms of ciphertext sizes and computation cost of encryption).

We introduce a new security notion for mmPKE, accurately matching the needs of SAIK. It both
strengthens and weakens past notions: On the one hand, proving SAIK secure demands that we equip
the mmPKE adversary of [51] with adaptive key compromise capabilities. On the other hand, we “only”
require replayable CCA (RCCA) security [30] rather than full-blown CCA as used in previous’ works [4, 5].
This is possible, because our new security model requires agreement on the semantics of the transcript
of all previous messages, while previous models required agreement on their values (which seems overly
strict).

We prove the mmPKE construction of [51] satisfies our new notion based on a form of gap Diffie-
Hellman assumption, the same as in [51]. The reduction is tight in that the security loss is independent
of the number of parties (i.e. key pairs) in the execution. Moreover, we extend the proof to capture
mmPKE constructions based on “nominal groups” [1]. Nominal groups abstract the algebraic structure
over bit-strings implicit to the X25519 and X448 scalar multiplication functions and corresponding twisted
Edwards curves.[48]. In practical terms, this means our proofs also apply to instantiations of [51] that are
based on the X25519 and X448 functions.

Reducible signatures. Second, we replace ITK’s use of standard (EUF-CMA secure) signatures with a new
type called Reducible Signature (RS). Intuitively, an RS allows signing a message vector ~m = (m1, . . . ,mn)
such that later, anyone, e.g. the untrusted mailboxing service, can compute signatures authenticating
sub-vectors (i.e., reductions) of ~m. The verifier authenticates both the values in the sub-vector and their
original positions in ~m.5

We show how to build Reducible Signatures from standard EUF-CMA secure signatures and a new
type of accumulator called Weighted Accumulators. These can be constructed from various assumptions
including RSA, lattice-based and pairing-based assumptions. However, we introduce a more practically
efficient construction from a collision resistant hash function.

We believe RS to be of interest in their own right, as they naturally lend themselves to a wider class
of applications where reducible messages are delivered via resources with computational capabilities. One
example is outsourced storage, where a number of files is uploaded to an untrusted cloud. With RS, a
data producer can upload a single signature over all files such that later, a consumer can efficiently verify
authenticity of a couple downloaded files. Two other use cases are the E2E protocols used by the Ring
service [9] and the Wickr Messaging Protocol [43]. In both cases, signing uploaded encrypted content with
an RS would allow each receiver to download just the parts of the header (i.e. the ”manifest” in Ring
parlance) the recipient needs for decryption.6

Simpler security model. To analyze the security of SAIK we introduce a new, greatly simplified, security
notion for (sa)CGKA which we view as a contribution in its own right. Indeed, past work on CGKA
has struggled to provide security notions for CGKA that are both simple enough to be intuitive yet still
meaningfully capture the necessary properties. The notion put forth in this work omits/simplifies various
4 In a typical ITK packet anywhere between half to almost all of the content is not needed by any given receiver

beyond verifying the sender’s signature over the packet.
5 This distinguishes RS from redactable signatures [25].
6 For a messaging application like Wickr which tends to have short plaintexts, redundant data in the header can

make up the majority of data downloaded.
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security features of a CGKA as long as they can be easily achieved by known practical extensions of a
generic CGKA protocol. Thus we obtain a definition focused on the basic properties of a CGKA with the
idea that a protocol satisfying our notion can be easily extended to a “full-fledged” CGKA using known
techniques.
Performance evaluation. Finally, we provide empirical data comparing the communication complexity for
senders and receivers running various instantiations of SAIK and ITK for a variety of execution profiles.
Our results show that for senders SAIK slightly reduces communication complexity (and halves the number
of public key operations) compared to ITK. Meanwhile for senders the communication complexity goes
from anywhere between logarithmic and even linear in the group size of ITK down to at most logarithmic
and even constant for SAIK. Concretely, in a group with 10K parties a receiver in an ITK session may
need to download 1.5MB to transition into a new epoch while the same receiver in SAIK downloads no
more than 2.2KB.
Outline of the paper. The remainder of this paper is structured as follows. In Sec. 2, we give a more
technical overview of the main construction, suitable for practitioners who don’t need all the proof details.
In Sec. 3 we cover basic notation. Additional preliminaries can be found in App. A. Secs. 4 to 6 cover
mmPKE, weighted accumulators and reducible signatures, respectively. Sec. 7 explains the security model
for saCGKA. In Sec. 8, we formally state security of SAIK. Sec. 9 presents extensions of SAIK for other
primitives, correctness errors and security predicates. Finally, Sec. 10 contains empirical evaluation and
comparison of SAIK to previous constructions. An precise description of the SAIK protocol can be found
in App. E.

1.2 Related Work

Next generation CGKA protocols. The study of next generation CGKA protocols for very large groups was
initiated by Cohn-Gorden et al. in [33]. This was soon followed by the first version of TreeKEM in [53]
which evolved to add stronger security [53, 14, 57] and more flexible functionality [15] culminating in its
current form ITK of [5] reflected in the most recent draft of the MLS RFC [13].

Reducing the communication complexity of TreeKEM and its descendants is not a new goal. Tainted
TreeKEM [7] exhibits an alternate complexity profile optimized for a setting where the group is managed
by a small set of moderators. Recently, [6] introduced new techniques for ‘multi-group” CGKAs (i.e.
CGKAs that explicitly accommodate multiple, possibly intersecting, groups) with better complexity than
obtained by running a “single-group” CGKA for each group. Other work has focused on stronger security
notions for CGKA both in theory [4] and with an eye on practice [3, 5]. Supporting more concurrency has
also been a topic of focus as witnessed by the protocols in [22, 15, 58].
Cryptographic models of CGKA security. Defining CGKA security in a simple yet meaningful way has
proven to be a serious challenge. Many existing definitions [7, 3, 8, 22] fall short in at least one of the two
following senses. Either they do not capture key guarantees desired (and designed for) by practitioners
(such as providing guarantees to newly joined members) or they place unrealistic constraints on the
adversary. Above all, they do not consider fully active adversaries. For instance, in [7], the adversary is
not allowed to modify packets. In [3, 8], new packets can be injected but only when authenticity can be
guaranteed despite past corruptions (thereby limiting the guarantees the model can capture about session
healing). A good indication that these simplifications can be problematic is described in [5]. Namely, each
of the above works proves security assuming their CGKA only uses IND-CPA secure encryption. Yet [5]
demonstrates an active attack on TreeKEM (that applies equally to similar CGKAs) which uses honest
group members as decryption oracles to clearly violate the intuitive security we’d expect from a CGKA.

An interesting outlier is the work of [24] which does permit a large class of active attacks but only in
the context of the key derivation process of ITK. So while their adversaries can arbitrarily modify secrets
in an honest party’s key derivation computation, they can not deliver arbitrary packets to honest parties.
This is a significant limitation, e.g., it does not capture adversaries that deliver packets with ciphertexts
for which they do not know the plaintexts.

In contrast to the above works, [4] aims to capture a quite realistic setting including a fully active
adversary that can even set parties’ random coins. In [5] this setting is extended to capture insider security.
That is, active adversaries that can also corrupt the PKI. This captures the standard design criterion for
deployed E2E applications that key servers are not considered trusted third parties. Unfortunately, this
level of real-world accuracy has resulted in a (seemingly inherently) complicated model.
Symbolic models of CGKA security. Complementing the above line of work, several versions of TreeKEM
have been analyzed using a symbolic approach and automated provers [21]. Their models consider fully
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active attackers and capture relatively wide ranging security properties which the authors are able to
convincingly tackle by using automated proofs.

Reducible signatures. The Reducible Signatures introduced in this work are conceptually, relatively similar
to Redactable Signatures (see e.g. [25, 52, 38, 41]). The latter allow an untrusted censor to remove parts
of the signed message vector, hopefully hiding the removed parts from the verifier. This secrecy property
is not a goal of our reducible signatures, hence, our constructions are different. See also Remark 5.

mmPKE. mmPKE was first proposed by Kurosawa [47] though their security model was flawed as pointed
out and fixed by Bellare et.al [18, 17]. Yet, those works too lacked generality as they demanded malicious
receivers know a secret key for their public key. This restriction was lifted by Poettering et.al. in [51]
who show that well-known PKE schemes such as ElGamal[40] and Cramer-Shoup [35] are secure even
when reusing coins across ciphertexts. Indeed, reusing coins this way can also reduce the computational
complexity of encapsulation and the size of ciphertexts for KEMs as shown in the Multi-Recipient KEM
(mKEM) of [56, 31, 46] for example. All previous security notions (for mmPKE and mKEM) allow an
adversary to provide malicious keys (with or without knowing corresponding secret keys), but none allow
for adaptive corruption of honest keys, which is necessary to prove ITK secure (at least against adaptive
adversaries).

1.2.1 Comparison with [42] The concurrent work of Hashimoto et al. [42] introduces a new variant of
CGKA, which we will refer to as filtered CGKA (fCGKA), along with an fCGKA protocol called CmPKE.
We compare their results to ours below.

Syntax. Both fCGKAs and saCGKA receivers are provided a personalized packet. In an fCGKA this is
achieved by having the sender upload one packet per receiver together with a header downloaded by
all receivers. In particular, this syntax already implies that an fCGKA will have linear communication
complexity for the sender. In contrast, saCGKA is a generalization of fCGKA. In an saCGKA the server
uses an extract procedure specified as part of the protocol to derive personalizes packets for each receiver
based on a single packet uploaded by the sender.

Communication complexity. The communication complexity of CmPKE and SAIK are incomparable. For a
group of size N , in SAIK the size of packet uploaded by a sender varies from O(logN) to O(N) depending
on the sequence of group operations performed so far.7. Moreover, implementors have quite some leeway to
guide executions to the O(logN) range (without imposing any constraints on how higher level applications
use SAIK). In contrast, for CmPKE senders communication complexity is always Ω(N). Nor is this merely
a consequence of the syntax. Each receiver necessarily receives a different ciphertext (component) specific
to their own decryption key.

For receivers the situation is reversed. While in CmPKE they download a packet of size O(1) in SAIK
they download data ranging between O(1) and O(logN). Thus, in a typical execution, reducing receiver
bandwidth from logarithmic to constant comes at the cost of increasing sender bandwidth from logarithmic
to linear.

Security model. The security model for fCGKA is essentially that of [5]. In particular, in that work an
epoch E is identified by the transcript that leads to E, i.e., the sequence of protocol packets leading from
the group’s initial state to the group’s state in epoch E. To adapt this to the fCGKA syntax [42] identify
epochs via the sequence of packet headers leading to that epoch (as the headers are the only part of the
uploaded packet that is in the view of all receivers).

In our model epochs are identified by the transcript’s semantics, i.e., the sequence of group operations
leading to the current state. Apart from arguably being closer to the desired intuition8, this formal choice
is also crucial to expressing saCGKA security. The generality of a generic saCGKA’s extract procedure
run by the server means that our security model cannot rely on there being any overlap in transcripts
of different receivers, even when they are receiving the personalized result of the same uploaded packet.
Besides allowing for a more general security notion, another advantage of identifying epochs this way
is that we can rely on the weaker notion of mmIND-RCCA security for the underlying PKE primitives
we use instead of the CCA flavoured notions used in [42] (and previous works considering fully active
adversaries).
7 In fact, in certain corner cases, uploaded packets can even have size O(1). For example, the commit packets sent

by the user at the right most leaf in a ratchet tree with N = 2n + 1 leaves for any natural number n can have
size O(1).

8 members want to agree on what events occurred rather than how the events were communicated
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On the other hand [42] does include the simplifications to the model of [5] that we make. Thus, their
notion more completely captures real-world security goals but therefor is also significantly more complex
to define and work with in proofs (just as was the case in [5]). Taming the complexity of CGKA security
notions (and the proofs they require) while maintaining relevance to real-world settings is an ongoing
challenge in the area. Thus, in our view identifying “sound” simplifications can be a contribution in its
own right. By “sound” we intuitively mean that the simplified notion, construction and proof can all be
easily extended to more complete versions by directly applying known techniques (namely those in [5]).
Consequently, sound simplifications let us more clearly focus on the novelties in new work.

Group representation. Finally, at a technical level CmPKE departs from all previous CGKA’s (including
SAIK) by internally arranging group members in a depth 1 tree (as opposed to the usual left balanced
binary tree). Consequently, the core operation of encrypting a secret to the rest of the group except to
oneself requires encrypting the secret to each user individually. To this end [42] introduce a collection
of novel post-quantum secure multi-recipient PKE schemes designed to minimize the size of ciphertext
components destined for individual recipients. Moreover, they prove that it suffices to authenticate (i.e.
sign) just the single component of the ciphertext that contains the actual blinded plaintext. This allows
the sender to sign just the header component of a CmPKE packet while avoiding having to sign each
personalized packet for the senders. In other words, like SAIK, a CmPKE sender need only compute a
single signature.

2 Construction Intuitions

With an eye towards practitioners and to build intuition for the technical contributions we begin with an
intuitive description of our constructions.

The ITK protocol. One of the most important steps in ITK is when a sender generates a sequence of n key
pairs and communicates to each group member all n public keys, as well as secret keys from i to n, where
i differs among recipients. (In ITK, several group members act as a single recipient; this is irrelevant for
this description.) The key pairs are generated in a way such that for each i there exists a single secret (a
short bitstring) that can be used to derive all key pairs from i to n. This means that each recipient needs
only to obtain one secret and the public keys from 1 to i− 1.

mmPKE. We use the following notation: ~m is the vector of n secrets, S is the set if all recipient public
keys and Sm for m ∈ ~m is the subset of S consisting of all recipients who receive m. In ITK, the sender
simply encrypts each m to each public key in Sm using standard (CCA secure) PKE. In contrast, SAIK
redraws its internal abstraction boundaries viewing encrypting ~m to a partition of S as a single call to an
mmPKE. This allows SAIK to use the ElGamal-based mmPKE construction of [51]. Compared to ITK,
this cuts both the computational complexity of encrypting ~m and the resulting ciphertext size in half
(asymptotically as |~m| grows).

The mmPKE of [51] is straightforward. Let DEM be a data encapsulation scheme and KDF be a Key
Derivation Function.9 Recall that a (generalized) ElGamal encryption of m to public key gx requires
sampling coins r to obtain ciphertext (gr,DEM(km,m)) where km = KDF(grx, gx). The mmPKE variant
reuses coins r from the first ElGamal ciphertext to encrypt all subsequent plaintexts. Thus, the final
ciphertext has the form (gr,DEM(k1,m1),DEM(k2,m2), . . .) where ki = KDF(grxi , gxi).

Optimizing for Short Messages. Normally, when m can have arbitrary size, a sensible mmPKE would use
a KEM\DEM style construction to avoid having to re-encrypt m multiple times. In other words, for each
m ∈ M choose a fresh key k′m for an AEAD and encrypt m with k′m. Then use the mmPKE of [51] to
encrypt k′m to each public key in Sm. However, since the secrets encrypted in SAIK have the same length
as AEAD keys, in our case it is more efficient to encrypt the secrets directly. We refer to Figure 2 in
Section 4 for the details of the construction. We remark that the security notion of [51] does not permit
such an optimization.10

Reducible signatures. A packet sent by SAIK consists of a number of fields: the n public keys, the common
coins gr and the individual ciphertexts DEM(k,m). To optimize bandwidth, in SAIK, the mailboxing
service forwards to each receiver only the data it needs: the public keys from 1 to i − 1, gr and one
9 In SAIK we can instantiate DEM with an off-the-shelf AEAD such as AES-GCM and KDF with HKDF.

10 The reason is that they require the mmPKE to hide if two recipients get the same message. In contrast, it is
permitted by our notion parameterized by larger leakage function. The security proof of SAIK works with the
larger leakage too.
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ciphertext. However, this leaves us with the following question: how can the receiver verify the packet’s
authenticity given only a subset of the fields? Reducible Signatures (RS) allow doing just that.

In more detail, using an RS scheme, the sender computes a short signature σ over a vector ~m of
fields. It then uploads ~m and σ to the server. Later, the RS allows the server to compute a signature σ′
authenticating any sub-vector ~m′ of ~m out of a collection of possible sub-vectors chosen by the sender.
Crucially for SAIK, the receiver verifies not just the values in the sub-vector, but also which field in ~m
holds each of the values.

Construction. Our construction of RS uses a standard (EUF-CMA secure) signature scheme and a
cryptographic accumulator. Roughly speaking, the latter primitive allows computing a short representation
acc of a set M and ”proofs of inclusion” for elements of M ; i.e. a proof πm attesting to the fact that
m ∈ M . A proof πm is verified given only m, acc and πm. In particular, the rest of M is not needed.
Additionally, we build a hash chain over the list of public keys in reverse order. Specifically, if a user is
provided keys 1 to i − 1, it can complete the hash chain given the n − i-th element of it, i.e. the hash
up from the n-th key to the i-th. In our RS construction, a signature σ consists of an accumulator acc
representing the set of all pairs (i,mi), where mi is the value of field i, then end of the hash chain h and
a standard signature over acc and h. The signature σ′ for a receiver i consists of the signed acc, h, the
n − i-th part of the hash chain, as well as π(i,mi). (That way, a receiver can authenticate not just the
value mi but also to which field that value is assigned as well as that the keys provided in a package are
actually the correct ones.)

Weighted Accumulators. To instantiate our blackbox design, we must choose a concrete accumulator. Of
course, using an RS in SAIK only makes sense if the added bandwidth needed to download σ′ in place
of a single standard signature (for all of ~m as in ITK) is dominated by the bandwidth savings due to
downloading the sub-tuple ~m′ instead of ~m. Thus, it’s critical that we try to minimize the size of both the
accumulator and the proofs that fields are contained in it.

At first glance this seems like an easy task as there are several RSA-based and pairings-based accumu-
lators with constant sized proofs [10, 50, 36, 19, 12, 55, 28]. However, security of RSA-based constructions
requires a large modulus, which makes them practically inefficient. Pairing-based accumulators have
another serious drawback if used as part of an RS in SAIK. Namely, producing a proof of inclusion requires
either a trapdoor (which can also be used to break the security of the accumulator) or a large set of
parameters linear in |~m| computed from it. For SAIK, this means that the sender needs to choose the
trapdoor and send the public parameters to the untrusted server computing proofs. Moreover, since the
sender’s secrets may leak any time and SAIK aims to provide Post-Compromise Security (PCS), this has
to be done anew for each send.

This motivates our hash-based accumulator design. The starting point is the construction of [26], which
builds a Merkle tree with leaves containing the fields (i,mi). The accumulator acc is the hash value at the
root and a proof that (i,mi) is consists of the hash values at each node leading into the path from the
leaf of (i,mi) up to the root. In particular, this can be produced by the server given nothing more than
~m. As Merkle trees are balanced binary trees this construction results in an accumulator acc consisting of
a single hash value and proofs of approximately log(|~m|) hash values.

It turns out that for SAIK some fields in ~m are needed by far more recipients than others. To use
this for further optimizations, we introduce the notion of a weighted accumulator which is additionally
provided a weight for each element accumulated. Intuitively, the weight of an element denotes the number
of times we expect to produce a proof for the element and the goal is to minimize the expected proof
length. In our construction, we use the weights to replace the balanced Merkle tree with a Huffman tree,
thereby minimizing the weighted sum of the paths to the root. This yields the average proof length of 2
hashes.

For SAIK the weight assigned to a field (i,mi) is the number of receivers that will download the field.
This means that with our accumulator, the proof size sent by the server is constant when amortized across
all receivers of a given packet.

Hedged RS. Finally, we augment the above design of an RS with a symmetric key used by the signer to
sign and the verifier to verify. This hedges against compromises of the signing key. Indeed, SAIK trivially
provides group members with a stream of constantly refreshed shared symmetric keys. That way, even
when an adversary learns a users signing keys, as soon as the group transitions to a secure epoch, the
leaked keys become useless to the adversary. We implement the symmetric authentication of an RS by
adding a MAC of the accumulator as another component of σ. We refer to Figures 5 for the details of the
construction.
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3 Preliminaries

Additional preliminaries can be found in App. A. For m,n ∈ Z, we define [n] := {1, 2, . . . , n}, [m : n] :=
{m,m+ 1, . . . , n} and if [m : n] := ∅ if n < m. We write x $← X for sampling an element x uniformly at
random from a (finite) set X as well as for the output of a randomized algorithm, i.e. x $← A(y) denotes
the output of the probabilistic algorithm A on input y using fresh random coins. For a deterministic
algorithm A, we write x = A(y). Adding an element y to a set Y is denoted by Y +← y and appending an
entry z to a list L is written as Z ++← z. Appending a whole list L2 to a list L1 is denoted by L1 ++ L2.
For a vector ~x, we denote its length as |~x| and ~x[i] denotes the i-th element of ~x for i ∈ [|~x|]. Note that we
use vectors as in programming, i.e. we don’t require any algebraic structure on them. For clarity, we use
len to denote the length of paths and other collections. Moreover, we use object-oriented notation for
trees, described below.

τ.root Returns the root.
τ.nodes Returns the set of all nodes in the tree.
v.isroot Returns true iff v = τ.root.
v.isleaf Returns true iff v has no children.
v.parent Returns the parent node of v (or ⊥ if v.isroot).
v.children Returns the ordered list of v’s children (or ⊥ if v.isleaf).
v.nodeIdx Returns the node index of v.
v.depth Returns the length of the path from v to the root τ.root. Formally, τ.root.depth = 0 and

v.depth = 1 + v.parent.depth for v 6= τ.root.

4 Multi-Message Multi-Recipient Encryption

We recall the syntax of mmPKE from [18]. At a high level, mmPKE is standard encryption that supports
batching a number of encryption operations together, in order to improve efficiency.11

Definition 1 (mmPKE). A Multi-Message Multi-Receiver Public Key Encryption scheme mmPKE =
(KG,Enc,Dec,Ext) consists of the following four algorithms:

KG $→ (ek, dk): Generates a new public/secret key pair.
Enc(~ek, ~m) $→ C: On input of a vector of public keys ~ek and a vector of messages ~m of the same length,
outputs a multi-recipient ciphertext C encrypting each message in ~m to the corresponding public key
in ~ek.

Ext(C, i)→ ci: A deterministic algorithm that takes as input a multi-recipient ciphertext C and a
position index i and outputs an individual ciphertext ci for the i-th recipient.

Dec(dk, c)→ m ∨ ⊥: On input of an individual ciphertext c and a secret key dk, outputs either the
decrypted message m or, in case decryption fails, ⊥.

4.1 Security with Adaptive Corruptions

Our security notion for mmPKE requires indistinguishability in the presence of active adversaries who can
adaptively corrupt secret keys of recipients. The notion builds upon the (strengthened) IND-CCA security
of mmPKE from [51], but there are two important differences: First, [51] does not consider corruptions.
Second, instead of CCA, we define the slightly weaker notion of Replayable CCA (RCCA). Roughly, for
regular encryption, RCCA [30] is the same as CCA except modifying a ciphertext so that it encrypts the
exact same message is not considered an attack. RCCA security is implied by CCA security.

Our security notion, called mmIND-RCCA, is formalized by the game in Fig. 1. The game is similar
to typical games formalizing RCCA security of regular encryption in the multi-user setting. The main
difference is that the challenge ciphertext is computed by encrypting one of two vectors of messages ~m∗0
and ~m∗1 under a vector of public keys ~ek

∗
. The vector ~ek

∗
is chosen by the adversary and can contain keys

generated by the challenger as well as arbitrary keys. The adversary also gets access to standard decrypt
and corrupt oracles for each recipient. To disable trivial wins, we require that whenever a key in ~ek

∗
is

generated by the adversary or corrupted, the corresponding messages in ~m∗0 and ~m∗1 must be the same.
Moreover, the decryption oracle for receiver i outputs a special symbol ‘test’ if the plaintext is receiver i’s
message in either ~m∗0 or ~m∗1 (this is the standard way to define RCCA).
11 Our syntax is slightly different than in majority of works on mmPKE, where there is no Ext algorithm and

instead Enc outputs a vector of individual ciphertexts. Since Ext is deterministic, the syntaxes are equivalent.
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Game mmIND-RCCA

ExpmmIND-RCCA
mmPKE,N,b (A = (A1,A2))

for i ∈ [N ] do (~eki, dki)← KG()
Corrupted← ∅
(~ek
∗
, ~m∗0, ~m

∗
1, st)← ADec1,Cor

1 (ek1, . . . , ekN )
req |~m∗0| = |~m∗1| = |~ek

∗
|

c∗ $← Enc(~ek
∗
, ~m∗b)

b′ ← ADec2,Cor
2 (c∗, st)

req leak( ~m0) = leak( ~m1)
req ∀j : ~ek

∗
[j] ∈ {eki : i ∈ [N ] \ Corrupted}

∨ m∗0[j] = m∗1[j]
return b′

Oracle Dec1(i, c)

req i ∈ [N ]
return Dec( ~dk[i], c)

Oracle Cor(i)

req i ∈ [N ]
Corrupted +← i
return dki

Oracle Dec2(i, c)

req i ∈ [N ]
m← Dec( ~dk[i], c)
if ∃j : ~ek

∗
[j] = eki

∧ m ∈ {~m∗0[j], ~m∗1[j]} then
return ‘test’

else return m

Fig. 1: The mmIND-RCCA security game for mmPKE with leakage function leak(~m) =
(len(~m[1]), . . . , len(~m[n])).

Algorithm DH-mmPKE[G, g, p,DEM,Hash]

KG
x $← Zp

ek← gx, dk← x
return (dk, ek)

Enc(~ek, ~m)

r $← Zp

c0 ← gr

for i ∈ [|~m|] do
ci = DEM.D(Hash(ekri , eki, i),mi)

return C = (c0, c1, . . . , cn)

Ext(i, C = (c0, . . . , cn))

return (c0, ci)

Dec(dki, c = (c0, ci))

k = Hash(cdki
0 , eki, i)

return DEM.D−1(k, ci)

Fig. 2: The mmPKE scheme based on Diffie-Hellman from [51]. The scheme requires a group G of prime
order p, generated by g, a data encapsulation mechanism DEM and a hash function Hash.

Finally, the notion is parameterized by the leakage function leak(~m) which formalizes information
about a vector ~m leaked by the encryption function. In this work, we only use the standard leakage that
would result from using regular encryption in parallel, that is, leak(~m) outputs the length of each element
of ~m. However, we note that SAIK is still secure if mmPKE leaks more information, such as relations
between elements of ~m (formally, one-way RCCA is implied even by mmIND-RCCA with larger leakage;
see App. D).

Definition 2 (mmIND-RCCA). Let N ∈ N. For a scheme mmPKE, we define the advantage of an
adversary A against Indistinguishability Against Replayable Chosen Ciphertext Attacks (mmIND-RCCA)
security of mmPKE as

AdvmmIND-RCCA
mmPKE,N (A) = Pr

[
ExpmmIND-RCCA

mmPKE,N,0 (A) = 1
]
− Pr

[
ExpmmIND-RCCA

mmPKE,N,1 (A) = 1
]
,

where ExpmmIND-RCCA
mmPKE,N,b is described in Fig. 1.

4.2 Construction

Fig. 2 recalls the mmPKE scheme based on Diffie-Hellman from [51], here called DH-mmPKE. The scheme
requires a group G of prime order p, generated by g, a data encapsulation mechanism DEM and a hash
function Hash.

In this work, we show that DH-mmPKE is mmIND-RCCA secure with adaptive corruptions, assuming
that DSSDH holds in G and DEM is IND-RCCA secure. Our reduction is relatively tight. In particular, it
is independent of the total number of recipients N , which for typical use cases is orders of magnitude
larger than the other parameters. Concretely, for CGKA N can reach tens of thousands for CGKA, while
other parameters are typically less than 100.

Remark 1 (Nominal groups.). Some practical applications of Diffie-Hellman, most notably Curve25519
and Curve448 [48], implement a Diffie-Hellman operation that is not exponentiation in a prime-order
group. Instead, such operations can be formalized as so-called nominal groups [1]. In App. B, we generalize
and prove Theorem 1 for nominal groups (the security loss is larger by an additive factor). In particular,
this means that DH-mmPKE is secure if instantiated with Curve25519 and Curve448.
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Theorem 1. Let G be a group of prime order p with generator g, let DEM be a data encapsulation
mechanism and let mmPKE = DH-mmPKE[G, g, p,DEM,Hash]. For any adversary A and any N ∈ N,
there exist adversaries B1 and B2 with runtime roughly the same as A’s such that

AdvmmIND-RCCA
mmPKE,N (A) ≤ 2n · (e2qcAdvDSSDH

(G,g,p)(B1) + qd1

p
+ qh

p
) + AdvIND-RCCA

DEM (B2)),

where Hash is modeled as a random oracle, e is the Euler number, n is the length of the encrypted challenge
vector, and qd1 , qc and qh are the number of queries to the oracles Dec1, Cor and the random oracle,
respectively.

We only give a proof intuition, which focuses on a technique for getting tighter security with corruptions.
See App. C.1 for a full proof.

Proof (intuition). The proof proceeds in a sequence of game hops. We start with G0, which is the
mmIND-RCCA experiment with the bit b = 0. Then, in G1 to Gn we switch the elements of the message
vector encrypted by the challenger from elements of ~m∗0 to elements of ~m∗1, one by one. Gn is the
mmIND-RCCA experiment with b = 1.

Consider the first hop G1 where the vector (~m∗1[1], ~m∗0[2], . . . , ~m∗0[n]) is encrypted by the challenger. To
show that G0 and G1 are indistinguishable, we define two additional hops: First, G0.1 is the same as G0
except if ~m∗0[1] 6= ~m∗1[1], then the DEM key k∗ used to encrypt ~m∗0[1] is random and independent. Second,
G0.2 is the same as G0.1 except if ~m∗0[1] 6= ~m∗1[1], then ~m∗1[1] is encrypted under DEM instead of ~m∗0[1].

Distinguishing between G0.1 and G0.2 can be easily reduced to DEM security. Observe that the
difference between G0.2 and G1 is the same as between G0 and G0.1: k∗ is random in G0.2 and real in G1.
Therefore, it is left to show that G0 and G0.1 are indistinguishable.

Let A be any adversary playing G0 or G0.1. A’s distinguishing advantage is upper-bounded by the
probability that it inputs to the RO the pre-image of k∗. We call this event E. We next construct a
reduction B who wins if E and some other independent events occur in the experiment with A and G0.
B is given an DSSDH instance X = gx and Y = gy and tries to find Z = gxy. It runs A and embeds Y

in multiple keys created by G0 using self-reducability: some eki’s are unknown, i.e., set to Y ai for random
ai, and some eki’s are known, i.e., set to gai for random ai. Further, B embeds X as the component c∗0 of
the challenge ciphertext C∗. The decrypt oracle is simulated using the DSSDH oracles in the standard
way (see App. C.1).

We claim that if 1) only known keys are corrupted, 2) the public key of the first recipient of C∗ is
unknown and 3) E occurs, then B wins. Indeed, 1) ensures that B can simulate the corrupt oracle. Further,
2) means that the hash pre-mage of k∗ is implicitly set to a value containing Z. 3) guarantees that A
inputs this value to the RO, which means that B wins. To maximize the probability of 1) and 2), B makes
each key known with some fixed probability p. One can verify that for p = 1/qc, the probability of 1) and
2) is highest, namely 1/(e2qc). (This technique is inspired by Coron [34].) �

Remark 2. The work [51] proves that DH-mmPKE is tightly mmIND-CCA secure without corruptions,
under the same assumptions as ours. However, their tight security reduction breaks if corruptions are
allowed (technically, the reason is that they make all keys “unknown”; see the proof sketch above). A
straightforward fix (making exactly one key “unknown”) would result in a security loss linear in N . The
security loss of our reduction is independent of N but still larger than in [51] (technically, we choose the
optimal number of “unknown” keys).

5 Weighted Accumulators

A cryptographic accumulator, as introduced in [19], allows to generate a short accumulated representation
acc of a set and later compute a short proof that an element is in the set represented by acc. Weighted
accumulators generalize the above notion, in order to allow for more efficient constructions. In particular,
a weighted accumulator allows to generate an accumulated representation of a weighted set, i.e., a set
of pairs (x,w), where w is an integer weight.Later, it is possible to compute a proof that an element x
(without weight) is in the weighted set represented by acc.

Introducing weights allows to define new measures of efficiency. For example, our construction in
Sec. 5.2 optimizes the weighted sum of sizes of all proofs, where the weight of a proof size is the weight of
the element whose membership is proved. We stress that weights are irrelevant in the context of security.
Formally, the following definition extends the syntax of accumulators from [12] to incorporate weights,
but removes the setup algorithm as it isn’t necessary for our constructions.
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Algorithm Huf-wAcc[Hash]

wEval({(x1, w1), . . . , (xn, wn)})

τ ← labeled-huffman(
(x1, . . . , xn), (w1, . . . , wn))

acc ← τ.root.label
return (acc, aux = (

(x1, . . . , xn), (w1, . . . , wn)))

wProve(acc, x, aux)

τ ← labeled-huffman(aux)
π ← ()
Let v ∈ τ.leaves s.t. v.label = Hash(leaf, x).
while v 6= τ.root do

vp ← v.parent, (vL, vR)← vp.children
if v = vL then π ++← (‘R’, vR.label)
else π ++← (‘L’, vL.label)
v ← v.parent

return π

wVrfy(acc, π, x)

ĥ← Hash(‘leaf’, x)
for i = 0 to len(π)− 1 do

if π[i] = (‘L’, h) then
ĥ← Hash(‘int’, h, ĥ)

else if π[i] = (‘R’, h) then
ĥ← Hash(‘int’, ĥ, h)

else return 0
return ĥ = acc

labeled-huffman(~x, ~w)
Initialize τ ← huffman(~x, ~w). Compute the following label for each node v in τ : If ∃i : v = τ.leaves[i] then v.label = Hash(‘leaf’, ~x[i]), else v.label =
Hash(‘int’, v.children[0].label, v.children[1].label). Return τ

Fig. 3: Weighted cryptographic accumulator Huf-wAcc. The function huffman computes the Huffman tree;
see App. A.6. See also Sec. 3 for tree-related notation.

Definition 3 (Weighted Accumulators). A Weighted Accumulator scheme wAcc consists of the fol-
lowing three algorithms:

wEval(X) $→ (acc, aux): Takes as input a set X of element-weight pairs (x,w), where w is a positive
integer, and outputs an accumulated representation acc of X and auxiliary information aux.

wProve(acc, x, aux) $→ π: Generates a proof π that (x,w) ∈ X for some set X with the accumulated
representation acc and some integer w.

wVrfy(acc, x, π)→ 0 ∨ 1: Verifies the proof π and outputs 1 for accept or 0.

Remark 3. Some works define cyrptographic accumulators with more features. For instance, dynamic
accumulators [28] allow to modify acc so that elements are added to the represented set. See e.g. [10] for
an overview. Such features are not required for our application. However, weights can be added to any
accumulators if this benefits their application.

5.1 Security

We recall the notion of unforgeability (also called collision resistant/freeness) from [37] (and adapt the
syntax to account for weights).

Definition 4 (Accumulator Unforgeability). We define the advantage of an adversary A against
the unforgeability of a weighted accumulator Acc as

AdvUF
Acc(A) = Pr

[
@w ∈ N : (x,w) ∈ X ∧ (acc, )← wEval(X)

∧ Vrfy(acc, x, π) = 1

∣∣∣∣ (X,x, π)← A
]
.

5.2 Efficient Construction from Collision-Resistant Hashing

Our construction combines the accumulator scheme of [26] based on Merkle (hash) trees with the idea of
Huffman trees (see App. A.6).

The idea of [26] is to build a binary Merkle tree τ on the accumulated set X. That is, τ has one leaf
for each element of X. Moreover, each node of τ has assigned a hash value: the value of a leaf is the
hash of its element x, and the value of an internal node is the hash of concatenated values of its children.
The accumulated representation of X is the value of the root. Membership of an element x is proven
by providing the values of all nodes on the co-path of the path from x’s leaf of to the root. In order to
optimize the weighted sum of the sizes of all proofs, in our scheme τ is not a balanced tree as in [26], but
a Huffman tree with the weights of words set to the weights of the elements of X. The formal description
of our scheme wAcc is given in Fig. 3.

Huffman Codes are optimal in the sense that the weighted sum of the codeword lengths is minimal.
Codeword length depends on the depth of an element in the tree, which is equivalent to proof size in our
construction. Therefore, the weighted accumulator minimizes the weighted sum of proof sizes. For equal
weights on all words, a Huffman tree is a balanced binary tree, so our accumulator collapses to a regular
Merkle tree in that case.

In App. C.2 we prove the following theorem.
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Theorem 2. Let Huf-wAcc[Hash] denote the accumulator from Fig. 3 instantiated with a function Hash :
{0, 1}∗ → {0, 1}κ. For any adversary A, there exists an adversary B such that

AdvUF
Huf-wAcc[Hash](A) ≤ AdvCR

Hash(B).

Remark 4. In our description, generating proofs for all elements x requires recomputing the Huffman tree
for each invocation of Huf-wAcc.wProve. We note that in practice, caching the tree is often more efficient.

5.3 Other Constructions

Alternatively to our hash-based construction, cryptographic accumulators, and hence also weighted
accumulators, can be built from various assumptions, e.g. pairing groups [10, 50, 36], RSA groups
[19, 12, 55, 28] and recently from lattices [49, 59]. We compare them to our solution in Sec. 9.4.

6 Reducible Signatures

Consider a scenario in which a sender uploads a vector of messages ~m on a server and later each of a
number of recipients wants to download a sub-vector of ~m and verify its authenticity. One naive solution
would be to sign ~m using a regular signature scheme. However, this has a high receiver-communication
cost, because receivers have to download the elements of ~m they are not interested in. Another naive
solution would be to sign each sub-vector of ~m that someone may be interested in. However, this has a
high sender-communication cost. Reducible signatures provide a better solution which minimizes both
sender and receiver communication cost. Here, the sender uploads a single signature, which can be later
personalized for different recipients by the (untrusted) server.

Hedging. Our application requires that message vectors are authenticated under both an asymmetric
key pair of the sender and a symmetric key shared among the sender and all recipients. Therefore, we
define a variant called Hedged Reducible Signatures (HRS), which means that signing and verification
algorithms take as input both an asymmetric signing/verification key and a symmetric key. Intuitively,
security is guaranteed as long as either the symmetric or asymmetric signing key is secure (the other
one can be arbitrary). Observe that if the symmetric key is set to a fixed value, then HRS collapses
to asymmetric reducible signatures. If instead the asymmetric keys are set to a fixed value, then HRS
collapses to reducible MAC’s.

The reason for defining a single primitive that combines reducible signatures and reducible MAC’s
instead of signatures and MAC’s separately is allowing more efficient schemes. For example, for our
construction using separate signatures and MAC’s would double the communication cost.

Reducible signatures. A reducible (asymmetric or symmetric) signature scheme allows to sign a vector of
messages ~m such that later anyone, without the secret key, can compute a signature σ′ on a sub-vector ~m′
of ~m. The signature on the reduced vector ~m′ is typically larger than the original signature on ~m, because
it contains hints for the verifier about the missing parts of ~m.

The signer controls how the signed message ~m can be reduced by specifying a set of allowed reduction
patterns rp. Formally, we define

Definition 5. A reduction pattern rp for message vectors of length n is any subset of [n]. A vector of
messages ~m reduced according to rp, denoted rp(~m), is the sub-vector of ~m consisting of ~m[i] for i ∈ rp.

When checking a signature σ′ on ~m′, the verifier also specifies a reduction pattern rp according to which,
in their belief, the signed vector ~m was reduced to obtain ~m′. (Security will require that if verification
passes, then this is indeed true). We assume that the verifier knows rp out-of-band (this will be the case
for CGKA). However, if needed, it can be sent together with the signature σ′.

Weights. In order to enable more efficient schemes, we define weighted HRS. That is, the signer assigns to
each allowed reduction pattern rp an integer weight w. This allows to construct schemes that minimize
the weighted sum of signatures σ′ on all reduced message vectors. Looking ahead, w will be the number
of recipients downloading the sender’s message reduced according to rp and the weighted sum will be
the total receiver communication cost. We note that weights have no meaning in the context of security.
Formally, the signing algorithm will take as input a class of allowed reduction patterns defined as follows.

Definition 6. A reduction pattern class RPC for message vectors of length n is a set of pairs (rp, w),
where rp is a reduction pattern for message vectors of length n and w ∈ N is a weight.
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Game AEUF-RCMA, SEUF-RCMA

ExpATK
HRS(A), ATK ∈ {AEUF-RCMA, SEUF-RCMA}

Q← ∅
if ATK = AEUF-RCMA then

(sk∗, vk∗) $← KeyGen
(~m∗, σ∗, k∗, rp∗) $← ASignA(·,·)(vk)

else if ATK = SEUF-RCMA then
k∗ $← K
(~m∗, σ∗, vk∗, rp∗) $← ASignS(·,·,·),Verify(·,·,·)()

for each (~m,RPC) ∈ Q do
req @w : (rp∗, w) ∈ RPC ∧ ~m∗ = rp∗(~m)

return Vrfy(vk∗, k∗,m∗, rp∗, σ∗)

Oracle SignA(k′, ~m,RPC)

req RPC ∈ RPCS|~m|
Q +← (~m,RPC)
return Sign(sk∗, k′, ~m,RPC)

Oracle SignS(vk′, ~m,RPC)

req RPC ∈ RPCS|~m|
Q +← (~m,RPC)
return Sign(sk′, k∗, ~m,RPC)

Oracle Verify(vk′, ~m, σ, rp)

return Vrfy(vk′, k∗, ~m, σ, rp)

Fig. 4: Asymmetric and symmetric unforgeability games for HRS.

Formal syntax. For message vectors of length n, we will denote by RPCSn the set of all reduction pattern
classes supported by an HRS scheme. This means that the supported reduction patterns are all rp contained
in some RPC ∈ RPCSn.

Definition 7 (HRS). A Hedged Reducible Signature (HRS) scheme HRS for a collection of reduction
pattern classes RPCSn for n ∈ N consists of the following algorithms:

KeyGen $→ (sk, vk): Generates a new signing/verification key pair.
Sign(sk, k, ~m,RPC) $→ σ: On input a signing key sk, a symmetric key k ∈ {0, 1}κ, a vector of messages
~m and a reduction pattern class RPC ∈ RPCS|m|, outputs a signature σ.
Reduce(vk, σ, ~m, rp) $→ σ′ ∨ ⊥: On input a verification key vk, a signature σ, a vector of messages ~m
and a reduction pattern rp, outputs a signature σ′ authenticating rp(~m) (or ⊥ in case the operation
fails).
Vrfy(vk, k, ~m, rp, σ′)→ 0 ∨ 1: On input a verification key vk, a symmetric key k, a vector of messages
~m, a reduction pattern rp and a signature σ′, outputs 1 for accept or 0 for reject.

Definition 8. An HRS scheme HRS for a collection of reduction pattern classes RPCSn for n ∈ N is
(perfectly) correct if for all n ∈ N, k ∈ {0, 1}κ, RPC ∈ RPCSn, (rp, w) ∈ RPC and message vectors ~m of
length n, we have

Pr

Vrfy(vk, k, rp(~m), rp, σ′) = 1

∣∣∣∣∣∣
(sk, vk)← KeyGen()

σ ← Sign(sk, k, ~m,RPC)
σ′ ← Reduce(vk, σ, ~m, rp)

 = 1.

Remark 5. Reducible signatures should not be confused with redactable signatures (see e.g. [25, 52, 38, 41]).
The latter allow to sign a message m such that later a censor can, without the secret key, redact parts of
m and compute a valid signature on the result. An important security goal is to hide from the verifier the
redacted contents, or even that a redaction took place. In contrast, reducible signatures allow the verifier
to check which reduction pattern was applied, which is in conflict with the goal of redactable signatures.

6.1 Security

We adapt the usual EUF-CMA security notion for Reducible Signatures. Intuitively, an adversary who
knows only one of the symmetric secret and the asymmetric secret key should not be able to generate a valid
signature. This is formalized in Definition 9, where we define Symmetric and Asymmetric Unforgeability
against Reducible Chosen Message Attacks(S/AEUF-RCMA).

Definition 9. For ATK ∈ {AEUF-RCMA,SEUF-RCMA} and an HRS, we define ExpATK
HRS in Fig. 4 and

the advantage of an adversary A against the ATK security of HRS as

AdvATK
HRS(A) = Pr

[
ExpATK

HRS(A) = 1
]
.

In addition to unforgeability, we also require our Reducible Signature to be Key Committing. Intuitively,
it should not be possible for an adversary to find different symmetric keys, such that a signature is valid
under both keys. We define the security notion in App. A.7, Definition 20 and prove that our construction
achieves this notion in App. C.4.
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Algorithm BGM-HRS[Hash,Acc, Sig,MAC]

KeyGen

return Sig.kg()

Sign (sk, k, ~m, (`, ~w))

X ← {((i, ~m[i]), ~w[i]) | i ∈ [`]}
(acc, aux) $← Acc.Eval(X)
ĥ← 0
for t = |~m| to `+ 1 do

ĥ← Hash(~m[t], ĥ)
h← Hash(`, acc, ĥ)
tag← MAC.tag(k, h)
sig← Sig.sign(ssk, (h, tag))
return (sig, tag, acc, aux)

Reduce (vk, ~m, σ, rp = (`, i, j))

parse (sig, tag, acc, aux)← σ
req i ∈ [`+ 1] ∧ j ∈ [0 : |~m| − `]
if i ∈ [`] then

π ← Acc.Prove(acc, ~m[i], aux)
else

π ← ⊥
ĥ← 0
for t = |~m| to `+ j + 1 do

ĥ← Hash(~m[t], ĥ)
return (sig, tag, acc, π, ĥ)

Vrfy (vk, k, ~m, rp = (`, i, j), σ′)

parse (sig, tag, acc, π, ĥ)← σ′

if i /∈ [`+ 1] then return 0
if i 6= `+ 1 then

req |~m| = j + 1
req Acc.Vrfy(acc, (i, ~m[1]), π)
t0 ← 2

else
req |~m| = j
t0 ← 1

for t = |~m| to t0 do ĥ← Hash(~m[t], ĥ)
h← Hash(`, acc, ĥ)
v1 ← MAC.vrf(k, h, tag)
v2 ← Sig.vrf(vk, (h, tag), sig)
return v1 ∧ v2

Fig. 5: Hedged reducible signature scheme HRS from accumulator Acc, hash function H, signature scheme
Sig and mac MAC. If the message wasn’t reduced, verification consists of recomputing h and verifying the
signature.

6.2 Construction

Supported reductions. We observe that the messages sent in the CGKA protocol consists of three chunks
of data, from which each user requires a different type of subset. First, there is data that every user needs,
which is mainly auxiliary data. Then it includes all new public keys from the senders leaf in the tree to
the root. Here, each user only needs the prefix up to its lowest common ancestor with the sender. Lastly,
it contains a list of ciphertexts, from which each user can decrypt exactly one. Note that the common
part for all users can equivalently be handled by including this fixed message as the first message of the
list and requiring prefixes to be non-empty. Since such a reduction pattern seems more versatile, we opt
to define our patterns this way.

Definition 10. We let RPCSSAIK
n = {RPCSAIK

`,~w | ` ∈ [n], ~w : ~w ∈ N`+1} for n ∈ N with

RPCSAIK
`,~w := {([i : min(i, `)] ∪ [`+ 1 : `+ j], ~w[i]) | i ∈ [`+ 1], j ∈ [0 : n− `]}

RPCSAIK
l, ~w is completely described by ` and ~w (for a fixed n), so we will use them as input to all algorithms

instead. Similarly, for every (rp, w) ∈ RPCSAIK
l, ~w , rp is uniquely defined by the integers `, i, j, so we use that

representation here too.

Construction. Now we show the construction of the Reducible Signature scheme HRS itself. We adapt the
construction of [38] to efficiently support the structure of Definition 10 by using a collision-resistant hash
function in addition to a EUF-CMA secure signature, a (weighted) cryptographic accumulator and a MAC.
Note that the auxiliary accumulator information isn’t included in the signature after the reduction as
RPCSAIK

l,w allows only one singleton element. In App. C.3, we prove the following theorem.

Theorem 3. Let HRS = BGM-HRS[Hash, Acc,Sig,MAC] denote the scheme from Fig. 5 instantiated with
a hash Hash, a signature scheme Sig, a cryptographic accumulator Acc and a MAC. For any adversary A,
there exist adversaries B1, B2 and B3, and B′1, B′2 and B′3, all with roughly the same runtime as A, s.t.

AdvAEUF-RCMA
HRS (A) ≤ AdvEUF-CMA

Sig (B1) + AdvCR
Hash(B2) + AdvUF

Acc(B3) and

AdvSEUF-RCMA
HRS (A) ≤ AdvEUF-CMA

MAC (B′1) + AdvCR
Hash(B′2) + AdvUF

Acc(B′3).

7 Server-Aided Continuous Group Key Agreement

In this section, we explain saCGKA protocols and our new security model for them. Our model is based
on the model of [4]. However, we make a number of simplifications and adjustments, explained in Sec. 7.3.

A saCGKA protocol allows a dynamic group of parties to agree on a continuous sequence of symmetric
group keys. An execution of a saCGKA protocol proceeds in epochs. During each epoch, a fixed set of
current group members shares a single group key. A group member can modify the group state, that
is, create a new epoch, by sending a single message to the mailboxing service. Afterwards, each group
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member can download a possibly personalized message and, if they accept it, transition to the new epoch.
Three types of group modifications are supported: adding a member, removing a member and updating,
i.e., refreshing the group key.

saCGKA protocols are designed for the setting with active adversaries who fully control the mailboxing
service and repeatedly expose secret states of parties. Note that, unless some additional uncorruptible
resources such as a trusted signing device are assumed, the above adversary subsumes the typical notion
of malicious insiders (or actively corrupted parties in MPC).

To talk about security of saCGKA, we need the language of history graphs introduced in [8]. A
history graph is a symbolic representation of group evolution. Epochs are represented as nodes and group
modifications are represented as directed edges. For example, when Alice in epoch E decides to add Bob,
she creates a epoch E′ with an edge from E to E′. The graph also stores information about parties’
current epochs, adversary’s actions, etc.

In an ideal execution, the history graph would be a chain. However, this is not necessarily true. For
example, if two parties simultaneously create epochs, then a fork in the graph is created. Moreover,
an active adversary can deliver different messages to different parties, causing them to follow different
branches. Further, it can make parties join fake groups invented in its head by injecting messages that
invite them. Epochs in fake groups form what we call detached trees. In general, the graph is a forest.

Using history graphs we can list intuitive security properties of saCGKA.

Consistency: Any two parties in the same epoch agree on the group state, i.e., the set of current members,
the group key, the last group modification and the previous epoch. One consequence of consistency is
agreement on the transcript, that is, any two parties in a given epoch reached it by executing the
same sequence of group modifications since the latter one joined.

Confidentiality: An epoch E is confidential if the adversary has no information about its group key. An
active adversary may destroy confidentiality in certain epochs. saCGKA security is parameterized by
a confidentiality predicate which decides if an epoch E is confidential.

Authenticity: Authenticity for a party A in an epoch E is preserved if the following holds: If a party in E
transitions to a child epoch E′ and identifies A as the sender creating E′, then A indeed created E′.
Again, an active adversary may destroy authenticity for certain epochs and parties. saCGKA security
is parameterized by an authenticity predicate which decides if authenticity of a party A in epoch E is
preserved.

The confidentiality and authenticity predicates.generalize forward-secrecy and post-compromise security
to the group setting. In the remainder of this section, we present a single simulation-based definition of
saCGKA security, which implies all of the above guarantees (among others).

7.1 Security Model Intuition

We define security of saCGKA protocols in the UC framework. That is, a saCGKA protocol is secure if
no environment A can distinguish between the real world where it interacts with parties executing the
protocol and the ideal world where it interacts with the ideal saCGKA functionality and a simulator.
Readers familiar with game-based security should think of A as the adversary (see also App. A.2 for some
additional discussion).

The real world. In the real-world experiment, the following actions are available to A: First, it can instruct
parties to perform different group operations, creating new epochs. When this happens, the party runs the
protocol, updates its state and hands to A the message meant to be sent to the mailboxing service. The
mailboxing service is fully controlled by A. This means that the next action it can perform is to deliver
arbitrary messages to parties. A party receiving such message updates its state (or creates it in case of
new members) and hands to A the semantic of the group operation it applied. Moreover, A can fetch
from parties group keys computed according to their current states and corrupt them by exposing their
current states.12

The ideal world. In the ideal-world experiment A can perform the same actions, but instead of the protocol,
parties use the ideal CGKA functionality, Fcgka. Internally, Fcgka maintains and dynamically extends
history graph. When A instructs a party to perform a group operation, the party inputs Send to Fcgka.
The functionality creates a new epoch in its history graph and hands to A an idealized message. The
12 To make this section accessible to readers not familiar with UC, we avoid technical details, which sometimes

results in inaccuracies. E.g., parties are corrupted by the (dummy) adversary, not A. We hope this doesn’t
distract readers familiar with UC.
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message is chosen by an arbitrary simulator, which means that it is arbitrary. When A delivers a message,
the party inputs Receive to Fcgka. On such an input Fcgka first asks the simulator to identify the epoch
into which the receiver transitions. The simulator can either indicate an existing epoch or instruct Fcgka
to create a new one. The latter ability should only be used if A injects a message and, accordingly, epochs
created this way are marked as injected. Afterwards, Fcgka hands to A the semantics of the message,
computed based on the graph. A corruption in the real world corresponds in the ideal world to Fcgka
executing the procedure Expose and the simulator computing the corrupted party’s state. When A fetches
the group key, the party inputs GetKey to Fcgka, which outputs a key from the party’s epoch. The way
keys are chosen is discussed next.

Security guarantees in the ideal world. To formalize confidentiality, Fcgka is parameterized by a predicate
confidential, which determines the epochs in the history graph in which confidentiality of the group
key is guaranteed. For such a confidential epoch, Fcgka chooses a random and independent group key.
Otherwise, the simulator chooses an arbitrary key. To formalize authenticity, Fcgka is parameterized
by authentic, which determines if authenticity is guaranteed for an epoch and a party. As soon as an
injected epoch with authentic parent appears in the history graph, Fcgka halts, making the worlds easily
distinguishable. Finally, Fcgka guarantees consistency by computing the outputs, such as the set of group
members outputted by a joining party, based on the history graph. This means that the outputs in the
real world must be consistent with the graph (and hence also with each other) as well, else, the worlds
would be distinguishable.

Observe that the simulator’s power to choose epochs into which parties transition and create injected
epochs is restricted by the above security guarantees. For example, an injected epoch can only be created
if the environment exposed enough states to destroy authenticity. For consistency, Fcgka also requires that
a party can only transition to a child of its current epoch. Another example is that if a party in the real
world outputs a key from a safe epoch, then the simulator cannot make it transition to an unsafe epoch.

Personalizing messages. saCGKA protocols may require that the mailboxing service personalizes messages
before delivering them. In our model, such processing is done by A. It can deliver an honestly processed
message, or an arbitrary injected message. The simulator decides if a message is honestly processed, i.e.,
leads to a non-injected epoch, or is injected, i.e., leads to an injected epoch. Note that this notion has an
RCCA flavor. For example, delivering an otherwise honestly generated message but with some semantically
insignificant bits modified can still lead the receiver to an honest epoch.

Adaptive corruptions. Our model allows A to adaptively decide which parties to corrupt, as long as this
does not allow it to trivially distinguish the worlds. Specifically, A can trivially distinguish if a corruption
allows it to compute the real group key in an epoch where Fcgka already outputted to A a random key.
Our statement quantifies over A’s that do not trivially win.

We note that, in general, there can exist protocols that achieve the following stronger guarantee: Upon
a trivial-win corruption, Fcgka gives to the simulator the random key it chose and the simulator comes
up with a fake state that matches it. However, this requires techniques which typically are expensive
and/or require additional assumptions, such as a random oracle programmable by the simulator or a
common-reference string. We note that the disadvantage of this is restricted composition in the sense that
any composed protocol can only be secure against the class of environments restricted in the same way.

Relation to game-based security. It may be helpful to think about distinguishing between the real and ideal
world as a typical security game for saCGKA. The adversary in the game corresponds to the environment
A. The adversary’s challenge queries correspond to A’s GetKey inputs on behalf of parties in confidential
epochs and its reveal-session key queries correspond to A’s GetKey inputs in non-confidential epochs. To
disable trivial wins, we require that if the adversary queries a challenge for some epoch, then it cannot
corrupt in a way that makes it non-confidential. Apart from the keys in challenge epochs being real or
random, the real and ideal world are identical unless one of the following two bad events occurs: First, the
adversary breaks consistency, that is, it causes the protocol to output in the real world something different
than Fcgka in the ideal world. Second, the adversary breaks authenticity, that is, it makes the protocol
accept a message that violates the authenticity requirement in the ideal world, making Fcgka halt forever.
Therefore, distinguishing between the worlds implies breaking consistency, authenticity or confidentiality.

Advantages of simulators. Using a simulator simplifies the notion, because the ideal world does not need
to encode parts of the protocol that are not relevant for security. For example, in our model the epochs
into which parties transition are arbitrary, as long as security holds. This means that in the ideal world
we do not need a protocol function that outputs some unique epoch identifiers. In general, our ideal world
is agnostic to the protocol, which is conceptually simple.
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7.2 Details of the CGKA Functionality

In this section, we formally define Fcgka. The code of Fcgka is in Fig. 6.

Notation. We use the keyword assert cond to restrict the simulator’s actions. Formally, if the condition cond
is false, then the functionality permanently halts, making the real and ideal worlds easily distinguishable.
Further, we use only allowed if cond to restrict the environment. That is, our statements quantify only
over environments who, when interacting with Fcgka and any simulator, never make cond false. 13 Finally,
we write receive from the simulator to denote that the functionality sends a dummy value to it, waits
until it sends a value back and asserts via assert that the received value is of the correct format.

State. Fcgka maintains a history graph represented as an array HG, where HG[epid] denotes the epoch
identified by an integer epid. We use the standard object-oriented notation for epochs. In particular, each
epoch E has a number of attributes listed below (E.inj, E.exp and E.chall are related to corruptions).
Apart from HG, Fcgka stores an array CurEp, where CurEp[id] denotes the current epoch of the party id.

E.par The integer identifier of the parent epoch.
E.sndr The party who created the epoch by performing a group operation.
E.act The group modification performed when E was created: either up for update, or add-idt for adding

idt, or rem-idt for removing idt.
E.mem The set of group members.
E.key The shared group key.
E.inj A boolean flag indicating if the epoch is injected.
E.exp The set of group members exposed (i.e., corrupted) in this epoch.
E.chall A flag indicating if a random group key has been outputted.

Inputs from parties. The first two inputs, Send and Receive, are handled quite similarly. First, all inputted
values are sent to the simulator (there are no private inputs). Second, the simulator sends a flag ack which
decides if sending/receiving succeeds (or fails with output ⊥). Third, Fcgka updates the history graph and
enforces that this does not destroy authenticity and consistency by checking that *auth-is-preserved
and *HG-is-consistent are true. Finally, Fcgka transitions the sender/receiver to the new epoch (or
removes its pointer in case it is removed) and computes the output using the new graph.

One aspect that needs more explanation is updating the graph when a party id receives c. In this case,
the simulator interprets c for Fcgka (which abstracts away ciphertexts) by providing the sender sndr′ and
the action act′. If act′ removes id, then the only possible authenticity check is that either sndr′ removed id
in its current epoch or the epoch is not authentic for sndr′. If id is not removed, the simulator identifies the
epoch epid into which id transitions or joins. The epoch can be ⊥, in which case Fcgka creates a new epoch
E with the infected flag inj set. If id is a current group member, then E is a child of its current epoch.
Otherwise, if id joins, then E is a detached root. Afterwards, Fcgka checks if epid identifies a detached
root into which a current group member id transitions. If this is the case, the root is attached as a child of
id’s current epoch. For instance, this implies that any other party transitioning to epid must do so from
id’s current epoch and the epoch semantic must be consistent between it, id and the party who joined into
epid.

The last input to Fcgka is GetKey, which simply outputs the group key from the party’s current epoch.
The key is set to a random or arbitrary value the first time it is retrieved by some party.

Corruptions. When a party is corrupted, Fcgka simply adds it to the exposed set exp of its current epoch.
The set is later used by the security predicates. Then Fcgka disallows corruptions in case extending the
exp set switched confidential of some epoch E with E.chall set from true to false.

7.3 Our saCGKA Security Model vs Previous Models

In order to make the security notion tractable, we made a number of simplifications compared to the
models of [4, 5], listed below.

– Immediate transition: In our model, a party performing a group operation immediately transitions
to the created epoch. In reality, a party would only send a message and wait for an ACK from the
mailboxing service before transitioning. If it receives a different message before ACK, it transitions to

13 A relaxed restriction would require that A makes cond false with a small probability ε. In our case A knows if
it violates cond, so fixing ε = 0 is without loss of generality.
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Functionality Fcgka

Parameters: confidential(epid), authentic(epid, id), idcreator

Initialization // Executed on first input.
CurEp[∗],HG[∗]← ⊥
epCtr← 0
E ← *new-ep; E.sndr← idcreator; E.mem← {idcreator}
HG[0]← E
CurEp[idcreator]← 0

Inputs

Input (Send, act), act ∈ {up, add-idt, rem-idt} from id
// Send inputs to adv. and allow it to reject them.
Send (Send, id, act) to the simulator and receive ack.
req ack
// Compute the new epoch E created by the action.
E ← *new-ep; E.par← CurEp[id]; E.sndr← id; E.act← act
E.mem← *members(CurEp[id], act)
epCtr++; HG[epCtr]← E
// Enforce security after possible changes to HG.
assert *HG-is-consistent ∧ *auth-is-preserved
// Immediately transition id into the created epoch.
CurEp[id]← epCtr
// Output the idealized message chosen by adv.
Receive from the simulator C.
return C

Input GetKey from id
Send (Key, id) to the simulator and receive I.
epid← CurEp[id]
req epid 6= ⊥
if HG[epid].key = ⊥ then

// Set the key to a random or arbitrary value, depending on
confidential.
if confidential(epid) then

HG[epid].key $← {0, 1}κ
HG[epid].chall← true

else
HG[epid].key← I

return HG[epid].key

Corruption (Expose, id)
if CurEp[id] 6= ⊥ then // Record that id’s state leaked.

HG[CurEp[id]].exp +← id
// Disallow adaptive corruptions to avoid commitment problem.
only allowed if @epid : HG[epid].chall ∧ ¬confidential(epid)

Input (Receive, c) from id
// Send inputs to adv and allow it to reject the packet.
Send (Receive, id, c) to the simulator and receive ack.
req ack
// Ask adv. to interpret the packet.
Receive from the simulator (sndr′, act′).
if act′ = rem-id then

// Check that sndr′ executed rem-id or injections are possible.
honestRem← ∃epid :

(
HG[epid].par = CurEp[id]
∧ HG[epid].sndr = sndr′ ∧ HG[epid].act = rem-id

)
assert honestRem ∨ ¬authentic(HG[CurEp[id]], sndr′)
CurEp[id]← ⊥
return (sndr′, act′)

// Ask adv, to identify the epoch epid where id transitions. If epid = ⊥, a
new injected epoch is created.
Receive from the simulator epid.
if epid = ⊥ then

E ← *new-ep
E.sndr← sndr′; E.act← act′; E.inj← true

if CurEp[id] 6= ⊥ then // If id is in the group, compute E.par and
E.mem according to its epoch.

E.par← CurEp[id]
E.mem← *members(CurEp[id], act′)

else // If id joined, E is a detached root with arbitrary member set.
Receive E.mem from the simulator; set E.par← ⊥.

epCtr++; HG[epCtr]← V
epid← epCtr

assert HG[epid] 6= ⊥
// If a current group member transitions to a detached root, attach it.
if CurEp[id] 6= ⊥ ∧ HG[epid].par = ⊥ then

HG[epid].par← CurEp[id]
assert CurEp[id] = ⊥ ∨ HG[epid].par = CurEp[id]
assert CurEp[id] 6= ⊥ ∨ HG[epid].act = add-id
// Enforce security after possible changes to HG.
assert *HG-is-consistent ∧ *auth-is-preserved
CurEp[id]← epid
// Transition id and compute its output.
if HG[epid].act = add-id then

return (HG[epid].sndr,HG[epid].mem)
else return (HG[epid].sndr,HG[epid].act)

Helper *new-ep
return new epoch with sndr = ⊥, par = ⊥, act = ⊥, mem = ∅,
inj = false, key = ⊥, exp = ∅, chall = false.

Helper *members(epid, act)
G← HG[epid].mem
if act = add-idt then G +← idt
else if act = rem-idt then G -← idt
if act 6= up ∧G = HG[epid].mem then return ⊥
return G

Helper *HG-is-consistent
// True if HG is a forest and group membership is consistent.
return true iff

a) ∀id s.t. CurEp[id] 6= ⊥ : id ∈ HG[CurEp[id]].mem
b) HG has no cycles
c) ∀epid ∈ [epCtr] : HG[epid].mem 6= ⊥
d) ∀epid ∈ [epCtr] s.t. HG[epid].par 6= ⊥ :

HG[epid].mem = *members(HG[epid].par,HG[epid].act)

Helper *auth-is-preserved
// True if there is no authentic epoch created by injected packet. Observe that the
root epid = 0 cannot be injected by definition.
return @epid : 1 ≤ epid ≤ epCtr ∧ HG[epid].inj

∧ authentic(HG[epid].par,HG[epid].sndr)

Fig. 6: The ideal CGKA functionality.
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that epoch instead. This mitigates the problem that if many parties send at once then they end up in
parallel epochs and cannot communicate.
A protocol Prot implementing immediate transition can be transformed in a black-box manner into
a protocol Prot’ that waits for ACK as follows: To perform a group operation, Prot’ creates a copy
of the current state of Prot and runs Prot to obtain the provisional updated state and the message.
The message is sent and all provisional states are kept in a list. If some message is ACK’ed, the
corresponding provisional state becomes the current one. In any case, all states are cleared upon
transition.

– No PKI for authentication keys: Our ideal world is oblivious to authentication PKI keys. One
consequence of this is that we cannot distinguish certain secure epochs from insecure and we are
forced to use weaker security predicates. For example, injecting messages inviting new members is
always allowed. Moreover, we give no guarantees for parties joining into detached trees (i.e., fake
groups created by the adversary). In reality, in protocols like MLS new members use PKI to verify
authenticity of messages inviting them and the states of (even fake) groups into which they join. In
particular, MLS’s tree signing mechanism achieves the guarantee that any epoch (even in a detached
tree) where all members use uncorrupted PKI keys is secure [5].
Since this is not required by our security definition, our protocol ITK does not sign messages for new
members or implement tree signing. However, both can be easily added. (Since messages for new
members are completely different than for current members, there is no benefit from using HRS.)

– Deleting group keys: Fcgka does not keep track of whether parties were corrupted before or after
outputting the group keys. This information is necessary to enforce that parties’ states contain
no information about group keys after outputting them. This property is important for FS of the
messaging protocol building on saCGKA but it is also trivially achieved by all protocols we are aware
of.

– No randomness corruptions: We do not consider attacks where the adversary exposes or modifies the
randomness used by the protocol. Considering this would make the model quite complicated. For
example, it would require dealing with scenarios where the adversary computes a message in its head,
injects it, and then makes a party re-compute it.

– Simplified syntax: First, our syntax does not include a command for group creation. Instead, the creator
starts as a single group member and adds other parties one by one. In reality, one would implement a
more efficient solution where many parties can be added at once. For even better efficiency in cases
many operations are executed at once, some protocols like MLS use the so-called propose-commit
syntax. Unfortunately, this makes the syntax significantly more complex.

– No correctness guarantees: We do not model correctness of saCGKA protocols, i.e., the simulator can
always make a party reject a message. Therefore, a protocol that does nothing is secure according to
the notion. This greatly simplifies the definition, because now the mailboxing service’s protocol is not
part of the model. (But it should be described as part of the protocol.)

Another difference between our model and those of [4, 5] is that in [4, 5] epochs are (uniquely) identified
by messages creating them. This is problematic for saCGKA, because different receivers transition to a
given epoch using different messages. Crucially, this means that their messages cannot be used to identify
injected epochs. We deal with this in a clean way and allow the simulator to identify epochs. That is,
epoch identifiers are arbitrary as long as consistency, authenticity and confidentiality hold. This has the
additional advantage that security of TreeKEM-like protocols requires IND-RCCA secure encryption
instead of IND-CCA as in [4, 5].

We note that another solution would be to parameterize the saCGKA functionality by a relation on
received messages that specifies if they lead to the same epoch (each protocol requires a different relation).
One disadvantage of this is introducing an additional protocol-related parameter to the ideal world, which
makes it more complicated. Moreover, it seems hard to define such a relation for SAIK without changing
the protocol. Indeed, this would require a public value received by each party that uniquely identifies the
epoch. SAIK’s messages do not have an obvious candidate.

8 Security of SAIK

In this section, we formally state security of SAIK. The details of SAIK can be found in App. E, while an
intuition is given in Sec. 2. Knowledge of SAIK is not needed for this section.
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Security predicates for SAIK

confidential(epid) ⇐⇒ ¬*in-det-tree(epid) ∧ *grp-secs-secure(epid)
authentic(epid, id) ⇐⇒ ¬*in-det-tree(epid) ∧

(
epid = 0 ∨ *grp-secs-secure(epid) ∨ *ind-secs-secure(epid, id)

)
*in-det-tree(epid) ⇐⇒ ¬*ancestor(0, epid)

*grp-secs-secure(epid = 0) ⇐⇒ HG[epid].exp = ∅
*grp-secs-secure(epid > 0) ⇐⇒ HG[epid].exp = ∅ ∧ ¬HG[epid].inj ∧

(
*grp-secs-secure(HG[epid].par)

∨ *all-ind-secs-secure(epid)
)

*all-ind-secs-secure(epid) ⇐⇒ ∀id ∈ HG[epid].mem \ {HG[epid].sndr} : *ind-secs-secure(HG[epid].par, id)

*ind-secs-secure(epid, id) ⇐⇒
(
@epid′ : *share-ind-secs(epid, epid′, id) ∧ *ind-secs-bad(epid′, id)

)
∧ ¬*exposed-ind-secs-weak(epid, id)

*share-ind-secs(epid, epid′, id) ⇐⇒ epid and epid′ are the same or connected via undirected path of epochs epid′′
such that HG[epid′′].sndr 6= id ∧ HG[epid].act /∈ {rem-id, add-id}

*ind-secs-bad(epid, id) ⇐⇒ id ∈ HG[epid].exp ∨ (HG[epid].sndr = id ∧ HG[epid].inj) ∨ (HG[epid].act = add-id ∧ HG[epid].inj)

*exposed-ind-secs-weak(epid, id) ⇐⇒ ∃epid1, epid2, epid3 : all of the following conditions are satisfied:
(1) epid1 6= epid2 ∧ *ancestor(epid1, epid) ∧ *ancestor(epid2, epid3)
(2) HG[epid1].act = HG[epid2].act = add-id
(3) *share-ind-secs(epid1, epid, id) ∧ *share-ind-secs(epid2, epid3, id)
(4) HG[epid2].inj ∧ id ∈ HG[epid3].exp

Fig. 7: Security predicates instantiating Fcgka constructed by SAIK.

The predicates confidential and authentic for SAIK are defined in Fig. 7. We define two versions of
the predicates: the stronger one that skips the code in boxes and the weaker one that includes the whole
code. The stronger version is not achieved by SAIK. In Sec. 9.2 we sketch how to modify it to achieve it.14

We start by explaining the stronger version, which is simpler. First, both predicates give no guarantees
for epochs in detached trees until they are attached. From now on, we do not consider epochs in detached
trees. The definition is built around the notion of secrets. Secrets are an abstraction for values stored
in the protocol state. There are two types of secrets: group secrets, stored in the state of each party,
and individual secrets, stored in the states of some parties. Each corruption exposes a number of secrets
and each epoch change replaces a number of secrets by possibly secure ones. The helper predicate
*grp-secs-secure(epid) decides if the group secrets in epid are secure, i.e., not exposed, and the predicate
*ind-secs-secure(epid, id) decides if id’s individual secrets in epid are secure.

The predicate confidential(epid) is equivalent to *grp-secs-secure(epid), because the group key
is a group secret. Further, the predicate authentic(epid, id) is true if either *grp-secs-secure(epid) is
true or *ind-secs-secure(epid, id), because both group and id’s secrets are necessary to impersonate
id in epid. It remains to determine when group and individual secrets are exposed. For group secrets,
*grp-secs-secure(epid) is defined recursively. The base case states that the group secrets in the root
epid = 0 are secure if and only if no party is corrupted in the root. The intuition is that the first secrets
are chosen at random by the group creator, and, for FS, corruptions in the descendants of an epoch do
not affect the confidentiality of its group secrets.

The induction step states that the group secrets in an epoch epid > 0 are secure if no party is corrupted
in epid, the epoch is not created by an injection and either the group secrets in epid’s parent epidp are
secure or all individual secrets in epid are secure. Intuitively, this formalizes the requirement that the
adversary can learn the group secrets in only three ways: First, from the state of a party corrupted in
epid. Second, by injecting them (some injections are disallowed by the authenticity predicate). Third, by
computing them the same way an honest receiver transitioning to epid would. The latter can only be done
using exposed group secrets of epidp and the receiver’s individual secrets in epidp. Note that the possible
receivers are those parties that are group members in epid and that are not epid’s creator (who transitions
on sending).

Finally, individual secrets of id in epid are exposed whenever there is some other epoch epid′ where
id’s secrets are the same as in epid and where id was corrupted or its secrets were injected on its behalf.
Secrets of id are the same in two epochs if no epoch change between them replaces the secrets, i.e., is
created by id, removes it or adds it.

Weaker guarantees. In the weaker version of the security predicates, individual secrets of id in epid are not
secure in an additional scenario, formalized by *exposed-ind-secs-weak. In this scenario, an ids first
14 The modification causes a small efficiency loss, but also makes the protocol and proof more complex by

introducing many special cases.
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honestly adds id and the environment A injects a message adding id to some other epoch. Finally, id joins
A’s epoch and is corrupted before sending any message. See Sec. 9.2 for an explanation of why SAIK is
insecure in this case and how it can be modified to be secure (the explanation does not require knowledge
of the details of SAIK).

Theorem. Security of SAIK is formalized by the following theorem, proved in App. F. We note that for the
mmPKE scheme, we assume a security property called One-Wayness under Relaxed Chosen-Ciphertext
Attack, mmOW-RCCA. The notion is strictly weaker than mmIND-RCCA. See App. D for the definition of
mmOW-RCCA and a proof that it is implied by mmIND-RCCA.

Theorem 4. Let Fcgka be the CGKA functionality with predicates confidential and authentic defined
in Fig. 7. Let SAIK be instantiated with schemes mmPKE, HRS and the HKDF functions modelled as a
hash Hash. Let A be any environment. Denote the output of A from the real-world execution with SAIK
and the hybrid setup functionality Faks from Fig. 14 as realSAIK,Faks(A). Further, we denote the output
of A from an ideal-world execution with Fcgka and a simulator S as idealFcgka,S(A). There exists a
simulator S and adversaries B1 to B5 such that

Pr [idealFcgka,S(A) = 1]−Pr [realSAIK,Faks(A) = 1] ≤ AdvCR
Hash(B1)

+ q2
e(qe + 1) log(qn) ·AdvmmOW-RCCA

mmPKE,qe log(qn),qn(B2)

+ 3qhq2
e(qe + 1)/2κ + 2qe ·AdvAEUF-RCMA

HRS (B3)
+ 2qe ·AdvRKC

HRS(B4) + qe ·AdvSEUF-RCMA
HRS (B5),

where qe, qn and qh denote bounds on the number of epochs, the group size and the number of A’s queries
to the random oracle modelling the Hash, respectively.

9 Extensions

9.1 Trading-off Server Computation for Communication

Our new (sa)CGKA SAIK assumes that the mailboxing service is a full featured server capable of
performing the individualization of messages responsible for the improved bandwidth of our protocol. This
individualization mainly consists of generating proofs of accumulation. We assume strong accumulators
which allow creation of these proofs without secret knowledge. However, we can trade off this server
computation for increased sender communication by having the sender pre-compute all proofs and send
them along with the rest of the packet. Receiver communication is unaffected by this change.

For the hash-based accumulator described in Sec. 5, an easy optimization is possible. Instead of
computing all proofs individually, the sender can instead include the whole Huffman tree in its package.
The server then only selects the co-paths in the tree relevant for each user, which is similarly complex to
selecting the correct message for each user, which is exactly the task of a standard mailboxing service.
This approach increases communication by approximately 2N hashes, where N is the number of receiving
public keys, i.e. linear in the number of group members in the worst case and logarithmic in the best case.

In conclusion, our saCGKA can be transformed into a regular CGKA at the cost of sender communi-
cation while avoiding server computation.

Note that the variant where each submessage is signed individually requires less communication (i.e.
N signatures instead of 2N hashes) than the transformed SAIK variant and also doesn’t require server
computation. However, computing each signature requires an expensive public key operation, leading to a
shorter sender message, but more computation for the sender than required by the server in SAIK.

9.2 Better Security Predicates

In this section, we sketch the reason why SAIK does not achieve the better security predicates and how it
can be modified to achieve them. Intuition about SAIK from Sec. 2 is sufficient to understand this section.

Roughly, SAIK achieves the worse security predicates because of the following attack: Say ids, the only
corrupted party, creates a new epoch E adding a new member id. According to SAIK, in this case ids
fetches from the Authenticated Key Service, AKS, (a type of PKI setup) a public key ek for mmPKE and
a verification key vk for HRS, both registered earlier by id. In epochs after E, parties use ek to encrypt
messages to id (even before id actually joins) and vk to verify messages from id. Now the adversary A can
create a fake epoch E′ adding id with the same ek and vk. Then, id joins E′ and is corrupted, leaking
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dk and sk. This allows A to compute the group key in E and inject messages to parties in E. However,
the expectation is that this is not possible, since no party is corrupted in E (and ids healed). The better
security predicates (formally, the predicates in Fig. 7) achieve just this: security in an honest epoch E
does not depend on whether some member joins a fake group in E′

The following modification to SAIK achieves better security: We note that in SAIK, id registers in the
AKS an additional public key ek′ which is used to send secrets needed for joining. The corresponding dk′
is deleted immediately after joining. In the modified SAIK, when ids adds id, it generates for id new key
pairs (eks, dks) and (vks, sks). It sends dks and sks to id, encrypted under ek′. Now messages to id are
encrypted such that both dk and dks are needed to decrypt them. In particular, to encrypt m, a sender
chooses a random r and encrypts r under ek and m⊕ r under eks. Similarly, messages from id have two
signatures, one verified under vk, and one under vks. As soon as id creates an epoch, it generates a new
single mmPKE key pair and a single HRS key pair.

The attack is prevented, because even after corrupting id in E′, A does not know dk′ needed to decrypt
dks and sks. Therefore, confidentiality and authenticity in E is not affected.

9.3 Primitives with Imperfect Correctness

While the proofs of SAIK security assume primitives perfect correctness, they can be easily modified to
work with imperfect correctness. This is achieved by adding one game hop where we abort in the new
game if a correctness error occurs. This loses an additive term in the security bound that depends on
the correctness parameter and the number of possible occurrences. Additionally, the usage of primitives
with imperfect correctness generally yields imperfect correctness guarantees for the application as well
(potentially with multiplicative correctness error when using multiple primitives). For completeness, we
give definitions of imperfect correctness of the primitives used directly by SAIK in this section.

Definition 11. We call an mmPKE scheme δ-correct, if for all n ∈ N, (eki, dki) ∈ KG for i ∈ [n],
(m1, . . . ,mn) ∈Mn and ∀j ∈ [n]

Pr
[

cj ← Ext(j, C)
mj 6= Dec(dkj , cj)

∣∣∣∣C $← Enc((ek1, . . . , ekn), (m1, . . . ,mn))
]
≤ δ

Definition 12. An HRS scheme HRS for a collection of reduction pattern classes RPCSn for n ∈ N is
δ-correct if for all n ∈ N, RPC ∈ RPCSn, (rp, w) ∈ RPC and message vectors ~m of length n, we have

Pr

Vrfy(vk, k, rp(~m), rp, σ′) 6= 1

∣∣∣∣∣∣
(sk, vk)← KeyGen()

k $← {0, 1}κσ ← Sign(sk, k, ~m,RPC)
σ′ ← Reduce(vk, σ, ~m, rp)

 ≤ δ.
9.4 Other Accumulators

We only define so-called strong accumulators, i.e. accumulators where generation and proving membership
don’t require a secret trapdoor. This is necessary for server-aided CGKA, as the mailboxing server is
modelled as untrusted and therefore can’t know the accumulator trapdoor. We note however, that SAIK
can also be instantiated with weak accumulators at the cost of increased sender communication. Instead
of letting the server compute the proofs, the sender has to pick a fresh trapdoor (and therefore also public
parameters) each time it sends a message, precompute all required proofs and include the proofs as well
as the public parameters in its message to the mailboxing server, which then distributes them to the
receivers. The result is not a server-aided CGKA.

Choosing a new trapdoor for every message is needed to preserve post-compromise security as
unforgebility of accumulators doesn’t necessarily hold if the adversary knows the trapdoor.

The pairing-based accumulator of [50] is a special case we want to elaborate further on. It can be used
as a weak accumulator, allowing for fast and compact proof generation. However at the cost of limiting
the number of accumulated elements and increasing the size of the public parameters linearly in that
bound, it can be transformed into a strong accumulator. We plot the latter variant in Fig. 8.

RSA-based accumulators yield constant size accumulator values and proofs, however the modulus has
to be chosen at ∼ 15360bits to achieve 256bits of security. For this size, it would require groups of over
230 participants in order for our hash-based accumulator to become worse.

Lattice-based accumulators [49, 59] follow the same hash-tree approach as we do but replace the
regular hash function by a lattice-based hash function. The advantage of choosing these (less efficient) hash
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functions lies in their compatibility with non-interactive zero-knowledge proofs, which makes it possible to
proof membership in the accumulator in a zero-knowledge fashion. Since we explicitly don’t want to hide
what was accumulated, the increased size of lattice-based hash functions makes them considerably worse
for our application.

Lastly, apart from communication, our hash-based accumulator also saves on computation, as all other
variants require a linear amount of public key operations in the number of accumulated elements. Our
accumulator only requires a linear amount of hashes, which are substantially more efficient than public
key operations.

10 Evaluation

We compare the communication complexity (informally; the “bandwidth”) of SAIK (using our weighted
accumulator), ITK and a variant of ITK called ITKI where sender uploads an individually tailored and
signed message per recipient. We also compare the bandwidth of SAIK when instantiated with different
accumulators. Plots for sender and receiver bandwidth can be found in Fig. 8.

Recall that, for all 3 protocols, the size of a packet sent (i.e. the number of fields it contains) can vary
quite significantly depending on the session history. Consequently, the plots consist of regions rather than
lines. However, the protocols have identical behavior in this regard. For a given group size N , history of
past CGKA operations H and a next operation O the number of fields in the packets for O is the same
for each of the 3 protocols. The only thing that varies is the size of the signatures and the size of the
fields. (So for example, if the next packet sent for SAIK is at the bottom of SAIK’s indicated size range
then same holds for the other protocols; namely their next packet size will also be at the bottom of their
respective size ranges.) We remark that determining ”average” or ”expected” packet sizes requires first
fixing many setting dependent aspects of an execution which is outside the scope of this work. Indeed,
it is an important topic of future research to better understand which kinds of policies governing when
parties initiate CGKA operations lead to more bandwidth efficient executions for realistic categories of
executions.

We highlight some interesting features of the plots. Even for senders (where RS confer no bandwidth
savings compared to standard signature), SAIK requires between 81% to just 56% of the bandwidth of
ITK due SAIK’s use of mmPKE. Conversely, ITKI senders need 138% to 192% of ITK’s bandwidth, since
ITKI includes 1 signature per recipient.

On the receiver side, ITK is overwhelmingly worse than SAIK and ITKI. For example, SAIK receivers
need between 60% to about .05% of ITK’s bandwidth. Meanwhile, SAIK is slightly worse than ITKI due to
the proofs of inclusion required by the RS. But this comes at a large cost in ITKI’s sender computational
complexity. While ITKI requires 1 signature per reduced message, the Huffman-based RS of SAIK requires
just 1 signature and between N and log(N) hash evaluations per packet. In essence, relative to ITKI, SAIK
trades a bandwidth overhead of 0% to 5% for a large reduction in the sender’s computational complexity.
(The possible number of reduced messages is the same for all protocols and can range between log(N) and
N .)

We recall that for Huffman-based accumulators, the length of a proof for a given field varies depending
on both the total number of fields in a packet and the weight assigned to that field. The most frequently
downloaded fields have the shortest proofs. Thus the longest proof for a field in a packet can be between
log(N) and log log(N) hash values. But the average proof length sent by the server (across all proofs for
all recipients of a packet) varies between log(N) and 2 hash values. In contrast, the balanced trees of
Merkle-based accumulator means that the average proof length across fields in a packet have between
log(N) and log log(N) hash values. The difference in average case complexity explains the somewhat lower
best-case cumulative server outgoing bandwidth for Huffman-based SAIK in plot (d).

Plots (e) and (f) compare SAIK when using different accumulators, namely the Huffman-based one, the
RSA-based accumulator of [12] and the pairing-based accumulator of [50]. The Huffman-based accumulator
is more efficient than both other variants even in the worst case. We refer to Sec. 9.4 for a more detailed
discussion on the choice of accumulators.
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[25] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan Katzenbeisser, Mark
Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and Dominique Schröder. Redactable signatures
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Supplementary Material
A Additional Preliminaries

A.1 Assumptions

The security of our mmPKE construction, same as that of [51], is based on a variant of the Computational
Diffie-Hellman(CDH) assumption called the Double-Sided Strong Diffie-Hellman Assumption (or just
Static Diffie-Hellman Assumption in [51]). We recall it in Definition 13. Intuitively, it states that CDH is
hard given access to a DDH-oracle for both CDH inputs.

Definition 13 (Double-Sided Strong Diffie-Hellman Assumption). Let G = (G, p, g) be a cyclic
group of prime order p with generator g. We define the advantage of an algorithm A in solving the
Double-Sided Strong Diffie-Hellman problem(DSSDH) with respect to G as

AdvDSSDH
G (A) =

[
Z = gxy

∣∣∣∣ x, y $← Z2
p

Z $← AOx(·,·),Oy(·,·)(G, p, g, gx, gy),

]
where Ox,Oy are oracles which on input U, V output 1, iff Ux = V or Uy = V respectively. The probability
is taken over the random coins of the group generator, the choice of x and y and the adversaries random
coins.

A.2 Universal Composability

We formalize security in the universal composability (UC) framework [29]. We moreover use the modification
of responsive environments introduced by Camenisch et al. [27] to avoid artifacts arising from seemingly
local operations (such as sampling randomness or producing a ciphertext) to involve the adversary.

The UC framework requires a real-world execution of the protocol to be indistinguishable from an
ideal world, to an an interactive environment. The real-world experiment consists of the group members
executing the protocol (and interacting with the PKI setup). In the ideal world, on the other hand,
the protocol gets replaced by dummy instances that just forward all inputs and outputs to an ideal
functionality characterizing the appropriate guarantees.

The functionality interacts with a so-called simulator, that translates the real-world adversary’s actions
into corresponding ones in the ideal world. Since the ideal functionality is secure by definition, this implies
that the real-world execution cannot exhibit any attacks either.

The Corruption Model. We use the — standard for CGKA/SGM but non-standard for UC — corruption
model of continuous state leakage (transient passive corruptions) [4].15 In a nutshell, this corruption
model allows the adversary to repeatedly corrupt parties by sending corruption messages of the form
(Expose, id), which causes the party id to send its current state to the adversary (once).

Restricted Environments. In order to avoid the so-called commitment problem, caused by adaptive
corruptions in simulation-based frameworks, we restrict the environment not to corrupt parties at
certain times. (This roughly corresponds to ruling out “trivial attacks” in game-based definitions. In
simulation-based frameworks, such attacks are no longer trivial, but security against them requires strong
cryptographic tools and is not achieved by most protocols.) To this end, we use the technique used in [4]
(based on prior work by Backes et al. [11] and Jost et al. [45]) and consider a weakened variant of UC
security that only quantifies over a restricted set of so-called admissible environments that do not exhibit
the commitment problem. Whether an environment is admissible or not is defined as part of the ideal
functionality F: The functionality can specify certain boolean conditions, and an environment is then
called admissible (for F), if it has negligible probability of violating any such condition when interacting
with F.

A.3 Collision-Resistant Hashing

We define collision resistance for hash functions in Definition 14.
15 Passive corruptions together with full network control allow to emulate active corruptions.
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Definition 14 (Collision Resistance). Let Hash : {0, 1}∗ → {0, 1}κ be a hash function. We define the
advantage of an adversary A against the collision resistance of Hash as

AdvCR
Hash(A) = Pr [Hash(x1) = Hash(x2) | (x1, x2) $← A] .

Note that for simplicity, we define unkeyed hash functions. Generally, these hash functions aren’t
collision resistant, since there always exists some algorithm that has a hard-coded collision. However
since such algorithms are unknown for real-world hash functions and we give constructive reductions (i.e.
fully black-box reductions where access to an algorithm breaking our building blocks directly yields an
algorithm finding a collision), we ignore these existing but unknown algorithms. For a more in-depth
discussion, see [54].

A.4 Data Encapsulation Meachanism(DEM)

A DEM is the symmetric equivalent of a PKE scheme. We recall it in Definition 15.

Definition 15 (DEM). A data encapsulation mechanism (DEM) DEM is described by a (efficiently
samplable) keyspace K and the two algorithms D,D−1:

D(k,m) $→ c: The encryption algorithm takes a key k ∈ K and a message m and returns an ciphertext
c.

D−1(k, c) $→ m′ ∨ ⊥: The decryption algorithm takes a key k ∈ K and a ciphertext c and outputs either
a decrypted message or ⊥.

A DEM DEM is δ-correct, if for all messages m and all keys k ∈ K

Pr[D−1(k,D(k,m)) = m] ≥ δ

Analogue to mmPKE, we consider IND-RCCA security for DEMs. It is described in Definition 16.

Definition 16. The advantage of an adversary A against the IND-RCCA security of a DEM DEM is
defined as

AdvIND-RCCA
DEM (A) = Pr[ExpIND-RCCA

DEM,0 (A) = 1]− Pr[ExpIND-RCCA
DEM,1 (A) = 1],

where ExpIND-RCCA
DEM,b (A) is defined in Fig. 9.

Game IND-RCCA for DEM

ExpIND-RCCA
DEM,b (A)

k $← K
(St,m∗0,m∗1) $← ADec(·),Enc(·)

c∗ $← D(k,mb)
return ADec(·),Enc(·)(St, c∗)

Oracle Dec(c)

m′ $← D−1(k, c)
if m′ ∈ {m∗0,m∗1} then

return test
else

return m′

Oracle Enc(m)

return D(k,m)

Fig. 9: IND-RCCA security for DEMs.

A.5 Message Authentication Codes (MAC)

Message authentication codes are defined in Definition 17.

Definition 17. A message authentication code MAC = (MAC.tag,MAC.vrf) consist of a keyspace K and
the following two algorithms:

MAC.tag(k,m) $→ tag: The tagging algorithm takes a key k and a message m and outputs a tag t.
MAC.vrf(k,m, tag) $→ {0, 1}: The verification algorithm takes a key k, a message m and a tag tag and
outputs either 0 or 1.
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A mac MAC is correct, if for all k ∈ K and messages m

Pr[MAC.vrf(k,m,MAC.tag(k,m)) = 1] = 1

The security notion for MACs we consider is Unforgeability against chosen message attacks(EUF-CMA).

Definition 18. A mac MAC is EUF-CMA secure, if for all PPT adversaries A the advantage

AdvEUF-CMA
MAC (A) = Pr

[
m 6∈ Q∧

MAC.vrf(k,m∗, tag∗) = 1

∣∣∣∣ k $← K
(m∗, t∗) $← ATag(·),Ver(·,·)

]
is negligible, where the Tag oracle computes a tag under key k on a given message m and adds it to Q and
Ver takes a message and a tag and outputs the result of the MAC.vrf algorithm on the two inputs with k.

Additionally, we need a property called Key Committing, i.e. it should be hard to find two different
keys for which a tag authenticates a message. This is again a symmetric analogue to Exclusive Ownership
with the same reasoning for the different name, i.e. ownership of a symmetric key isn’t a reasonable
concept. We define it formally in Definition 19

Definition 19 (Key Commiting). Let MAC = (MAC.tag,MAC.vrf) be a MAC with keyspace K. We
define the advantage of an adversary A in the Key Committing game for MAC as

AdvKC
MAC(A) = Pr

MAC.vrf(k∗1 ,m∗, tag∗) = 1∧
MAC.vrf(k∗2 ,m∗, tag∗) = 1∧

k∗1 6= k∗2

∣∣∣∣∣∣ (k∗1 , k∗2 ,m∗, tag∗) $← A

 .
Remark 6. In general, EUF-CMA security does not imply KC security. This can easily be seen by considering
a MAC which is EUF-CMA secure but ignores the last bit of its key. However, popular constructions like
HMAC are naturally KC secure (as long as the hash function is collision resistant).

Additionally, any EUF-CMA secure MAC is KC secure in the random oracle model by tagging (H(k)||m)
instead of only m.

A.6 Huffman Trees

The Huffman Code[44] is an optimal prefix-free code, i.e. no codeword is a prefix of another code word
and the weighted sum of all codewords is minimal. It is defined over a list of words X, their (relative)
weights w and an alphabet C of size m. The Huffman code is represented by an m-ary tree, where each
node is labelled by a symbol from the alphabet C and encoding a word is done by following the path
from the root to the leaf corresponding to the word. Huffman codes are optimal, if the frequencies of the
encoded symbols are powers of the tree arity. We will limit the definition to binary huffman trees. The
construction algorithm is described in Fig. 10.

A.7 Key Committing Signatures

We define the notion of Key Committing for Reducible Signature. Intuitively, it should not be possible
for an adversary to find different symmetric keys, such that a signature is valid under both keys.16 The
notion is similar in nature to notions of exclusive ownership [23], however the notion of ownership does
not reasonably apply to symmetric keys.

Definition 20 (Reducible Key Committing). Let HRS be a hedged Reducible Signature scheme. We
define the advantage of an adversary A in the Reducible Key Commiting(RKC) experiment as

AdvRKC
HRS(A) = Pr


(~m, σ, k1,RPC) = Q[i] ∧
σ′ = Reduce(vk, σ, ~m, rp) ∧

Vrfy(vk, k2, rp(~m), rp, σ′) = 1 ∧
k1 6= k2

∣∣∣∣∣∣∣∣
(vk, sk) $← KeyGen

(k2, rp, i) $← ASign(sk,·)(vk)

 ,
where the Sign oracle, on input a tuple containing a message vector ~m, a symmetric key k and a reduction
class RPC, generates a signature σ using sk, adds (~m, σ, k,RPC) to the list Q and outputs σ.
16 Looking ahead, this property prevents the following attack: A is in an epoch E where the symmetric HRS key

is leaked (during corruption of B) and sends a message authenticated with her secure asymmetric key. Then,
the adversary can deliver A’s message to D in an epoch E′, hence making C jump around the history graph.
This attack is prevented because messages sent from E and delivered to E′ are authenticated under different
symmetric keys from the key schedules of E and E′.
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Algorithm Huffman

Huffman( ~X, ~w)
Let T be an empty binary tree
for xi ∈ ~X do

T.nodes +← xi
xi.weight = wi

L = sort(T.nodes) // ascending by weight and depth in T
while |L| 6= 1 do

[x1, x2] = L[1 : 2] // first 2 elements in L
V +← lnew
lnew.weight =

∑q

i=1 wi
for i ∈ [2] do

xi.parent := lnew
xi.label = i

L = L \ {x1, x2}
L +← lnew

L = sort(L) // ascending by weight and depth in T
return T

Fig. 10: Construction of a binary Huffman tree on word vector ~X with weights ~w.

B Nominal Groups

We recall the definition of and parameters for nominal groups from [1].

Definition 21 (Nominal Group). A nominal group N = (G, g, p, EH , EU , exp) consists of a finite set of
elements G, a base element g ∈ G, a prime p, a finite set of “good” exponents EH ⊂ Z, a set of exponents
EU ⊂ Z \ pZ and an efficiently computable exponentiation function exp : G × Z → G. We write Xy as
shorthand for exp(X, y) and call elements of G “group elements”. N has to fulfil the following properties:

1. G is efficiently recognizable.
2. (Xy)z = Xyz for all X ∈ G, y, z ∈ Z
3. the function φ defined by φ(x) = gx is a bijection from EU to {gx|x ∈ [p− 1]}.

A nominal group N is called rerandomisable, when additionally

4. gx+py = gx for all x, y ∈ Z
5. for all y ∈ EU , the function φy defined by φy(x) = gxy is a bijection from EU to {gx|x ∈ [p− 1]}.

Property 3 (and 5) ensure that discrete logarithms are unique in N in EU .
Additionally, we define the two statistical parameters

∆N := ∆[GH , GU ],

with GH is the uniform distribution over EH and GU is the uniform distribution over EU and

PN = max
Y ∈G

Pr
x

$←EH
[Y = gx].

Any cyclic group, such as NIST curves, can be seen as a rerandomisable nominal group with the special
properties that ∆N = 0 and PN = p− 1. Other popular examples of rerandomisable nominal groups are
Curve25519 and Curve448. Table 1 lists the parameters for these nominal groups.

Name P-256 P-384 P-512 Curve25519 Curve448
Security Level 128 192 256 128 224

PN 2−255 2−383 2−520 2−250 2−444

∆N 0 0 0 2−125 2−220

Size in bits 256 384 512 256 512

Table 1: Statistical parameters of NIST curves and nominal group curves.

32



For a more detailed explanation of these values, see [1]. Nominal groups and prime-order groups behave
indistinguishably except when group elements are sampled with exponents outside of EH or a collision
occurs which wouldn’t have been a collision in a prime-order group. Since these two events are statistical
in nature and occur with low probability, this only adds a negligible additive security loss compared to
Theorem 1.

The DSSDH assumption is almost identical over nominal groups except for the choice of exponents.

Definition 22 (Double-Sided Strong Diffie-Hellman Assumption). Let N = (G, g, p, EH , EU , exp)
be a nominal group. We define the advantage of an algorithm A in solving the Double-Sided Strong
Diffie-Hellman problem(DSSDH) with respect to N as

AdvDSSDH
N (A) =

[
Z = gxy

∣∣∣∣ x, y $← E2
U

Z $← AOx(·,·),Oy(·,·)(N , p, g, gx, gy),

]
where Ox,Oy are oracles which on input U, V output 1, iff Ux = V or Uy = V respectively. The probability
is taken over the random coins of the group generator, the choice of x and y and the adversaries random
coins.

Remark 7. Since x, y are sampled from EU , the second property of nominal groups guarantees that the
oracles Ox and Oy are well-defined.

Theorem 5. Let N = (G, g, p, EH , EU , exp) be a nominal group. If the DSSDH assumption holds relative
to N and DEM is an IND-RCCA secure DEM, then mmPKE from Fig. 2 is mmIND-RCCA secure with
adaptive corruptions in the random oracle model and leakage function leak revealing the length of each
plaintext. Specifically, there are adversaries B1,B2 against DSSDH and IND-RCCA of DEM respectively,
s.t. for all adversaries A against the mmIND-RCCA

AdvmmIND-RCCA
mmPKE (A) ≤ 2e2qC · n · (AdvDSSDH

N (B1) + qD1

p
+ qH

p
)+

n ·AdvIND-RCCA
DEM (B2) + 2(n+ 1)2 ·∆N ,+O(qD, qH) · PN ,

where the runtime of B1 and B2 is roughly the same as A and qD1 , qH and qC denote the number of queries
to the decryption oracle D in phase 1, the random oracle H and the corruption oracle Cor respectively.

Proof. Mainly, the proof of Theorem 1 still applies. That is because all operations performed by the
adversary are well-defined over nominal groups. The main difference occurs when rerandomising the keys
in each hybrid. Here, not every exponent yields a valid group element, i.e. a valid key. Formally, we would
add an additional hybrid for each chosen key, sampling its exponent from EU instead of EH , which adds
an additive term in ∆N to the advantage function. It is imperative that N is rerandomisable as otherwise
embedding the (randomised) challenge would be problematic.

Secondly, whenever group elements are submitted to one of the oracles, there is a (tiny) probability of
collisions of group elements. As it is comparable to the chances of guessing discrete logarithms in prime
order groups, which is mostly ignored in proofs, we omit a complete analysis as it wouldn’t contribute any
meaningful insights.

In conclusion, after sampling all keys from EU and accounting for possible collisions in the gap oracles,
the proof for nominal groups works as shown in Theorem 1.

C Missing Proofs

C.1 Proof of Theorem 1

Theorem 1. Let G be a group of prime order p with generator g, let DEM be a data encapsulation
mechanism and let mmPKE = DH-mmPKE[G, g, p,DEM,Hash]. For any adversary A and any N ∈ N,
there exist adversaries B1 and B2 with runtime roughly the same as A’s such that

AdvmmIND-RCCA
mmPKE,N (A) ≤ 2n · (e2qcAdvDSSDH

(G,g,p)(B1) + qd1

p
+ qh

p
) + AdvIND-RCCA

DEM (B2)),

where Hash is modeled as a random oracle, e is the Euler number, n is the length of the encrypted challenge
vector, and qd1 , qc and qh are the number of queries to the oracles Dec1, Cor and the random oracle,
respectively.
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Proof. We define n hybrids G0 through Gn, where G0 is identical to ExpmmIND-RCCA
mmPKE,N,0 , Gn is identical to

ExpmmIND-RCCA
mmPKE,N,1 and in Gi, the first i challenge ciphertexts contain encryptions of ~m1 and the others from

~m0.
Additionally, for i ∈ [n], we define the four hybrids Gi,0 to Gi,3. Gi,0 and Gi,3 are identical to Gi and

Gi+1 respectively. In Gi,1, we set the i-th DEM key to a random key and in Gi,2 we swap the plaintext in
the i-th challenge ciphertext from ~m0[i] to ~m1[i].

We will split the proofs into the following lemmas.

Lemma 1. Let n ∈ N. Then for all 1 ≤ i ≤ n, there exists an adversary B1 against the DSSDH
assumption s.t. for all adversaries A

|Pr[Gi,0(A)⇒ 1]− Pr[Gi,1(A) = 1]| ≤ e2qC ·AdvDSSDH
G (B1) + qD1

p
+ qH

p
,

where qH , qC and qD1 denote the number of hash queries, corruption queries and decryption queries in
phase 1 respectively made by A.

Remark 8. Since the changes from Gi,2 to Gi,3 are the same as from Gi,0 to Gi,1, Lemma 1 applies there
as well.

Lemma 2. Let n ∈ N. Then for all 1 ≤ i ≤ n, there exists an adversary B2 against the IND-RCCA
security of DEM s.t. for all adversaries A

|Pr[GAi,1 ⇒ 1]− Pr[GAi,2 ⇒ 1]| ≤ AdvIND-RCCA
DEM (B2)

Combining the two lemmas and the remark yields Corollary 1 and the theorem follows from a standard
hybrid argument over the games Gi.

Corollary 1. Let n ∈ N. Then for all 1 ≤ i ≤ n, there exist adversaries B1, B2 against the DSSDH
assumption and the IND-RCCA security of DEM respectively s.t. for all adversaries A

|Pr
[
GAi ⇒ 1

]
− Pr

[
GAi+1 ⇒ 1

]
| ≤ 2(e2qC ·AdvDSSDH

G (B1) + qD1
p + qH

p )
+AdvIND-RCCA

DEM (B2)

with qD1 , qC and qH from Lemma 1.

So all that is left is proving the lemmas.
We will start by proving Lemma 1. Consider the formal definition of Gi,1 in Fig. 11.
Next, we describe adversary B1 against the DSSDH assumption in Fig. 12 First, we argue that B1

simulates the game Gi,1 perfectly, unless one of the events Bad1 or Bad2 occurs. We will bound the
probabilities of these events happening. The games differ only in the secret key of the i-th message,
therefore Gi,0 and Gi,1 are identical to A, unless it queries the hash oracle on (Z,U, i) as in line 1 of H. If
the corresponding public key was a key in which the challenge was embedded, i.e. Bad3 is false, B1 breaks
the DSSDH assumption.

Bad1 and Bad2 prevent that A already knows the challenge randomness before its challenge query. If
it doesn’t know this value, all answers of B1 to both oracles are distributed as in the real games Gi,0 and
Gi,1. Specifically, the oracles are kept consistent and the hash oracle is programmed such that the keys
chosen for the adversaries challenge are included at the right points.

Bad3 occurs if A tries to corrupt a public key for which B1 doesn’t know the corresponding secret key
or A chooses a key without the challenge embedded for the i-th message. If the first part doesn’t happen,
the corruption oracle is simulated perfectly. The adversary doesn’t notice the second part in this case, but
if it occurs, B1 isn’t successful, so it is still a bad case for the simulation.

Now we bound the probability of these events occurring. Since Y is completely hidden from A, it
can only find it by guessing. Therefore, for an adversary A making at most qH (resp. qD1) hash (resp.
decryption) queries,

Pr[Bad1 = True] ≤ qH
p

Pr[Bad2 = True] ≤ qD1

p
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Game Gi,1

Game Gi,1
for i ∈ [N ] do

(eki, dki)← KG
Corrupted← ∅,HL← ∅
(~ek
∗
, ~m∗0, ~m

∗
1, st)← ADec1,Cor,H

1 (g, ek1, . . . , ekN )
Parse ~ek

∗
as êki1 , . . . , êkil , ek∗l+1, . . . , ek∗n for l ∈ [n]

s.t. ∀j ∈ [l] : ~m0[ij ] 6= ~m1[ij ] ∧ êkij ∈ ~ek
req |~m∗0| = |~m∗1| = |~ek

∗
| = n

r $← Zp, c
∗
0 ← gr

for 1 ≤ j ≤ n do
Kj ← H(ekrj , ekj , j)

K∗ $← K
Ki ← K∗

for 1 ≤ j ≤ i do
c∗j = D(Kj , ~m

∗
1[j])

for i ≤ j ≤ n do
c∗j = D(Kj , ~m

∗
0[j])

c∗ ← (c∗0, . . . , c∗n)
b← ADec2,Cor,H(c∗, st)
req ∀j ∈ [n] : ~ek

∗
[j] /∈ {ek : i ∈ [N ] \ Corrupted} =⇒ m∗0[j] = m∗1[j]

return b

Oracle Dec1(i, (c0, ci))

req i ∈ [N ]
K ← H(cdki

0 , eki, i)
return D−1(K, ci)

Oracle Dec2(j, c = (c0, (ck, k)))

req j ∈ [N ]
K ← H(c~dk[j]

0 , ~ek[j], k)
if c0 = c∗0 ∧ ~ek

∗
[k] = ~ek[j] ∧ i ≤ l then

K ← K∗j
m← D−1(K, ck)
if ∃k : ~ek

∗
[j] = ekk ∧m ∈ {~m∗0[j], ~m∗1[j]}

then
return test

else
return m

Oracle Cor(i)

req i ∈ [N ]
Corrupted +← i
return dki

Oracle H(Z,W, i)

if HL[Z,W, i] = ⊥ then
HL[Z,W, i] $← K

return HL[Z,W, i]

Fig. 11: Description of the hybrid Gi,1

For Bad3, consider the probability with which b[j] = 1. This is independent for each public key ekj , so
the probability that Bad3 does not occur is the case that for qC public keys eki1 , . . . , ekiqC b[ij ] = 0 and
for one public key the bit is 1, so

Pr[Bad3 = False] = (1− 1
qC

)qC · 1
qC

(1)
≤ 1
e2qC

For (1), we use that ln(1+x) ≥ x
x+1 for all x ≥ −1 and rewrite (1− 1

qC
)qC = e

ln((1− 1
qC

)qC ) = e
qC ·ln(1− 1

qC
) ≥

e
−1/(1− 1

qC
) ≥ e−2 for qC > 1. Combining the probabilities yields the lemma.

The proof of Lemma 2 is a straight forward application of the IND-RCCA security of the DEM. Since
the key at position i is random, an IND-RCCA adversary can simulate encryptions for this position with
its encryption oracle and embeds its own challenge at the i-th challenge ciphertext for the adversary A. If
A can distinguish between Gi,1 and Gi,2 then B2 distinguishes its challenges as well.

C.2 Proof of Theorem 2

Theorem 2. Let Huf-wAcc[Hash] denote the accumulator from Fig. 3 instantiated with a function Hash :
{0, 1}∗ → {0, 1}κ. For any adversary A, there exists an adversary B such that

AdvUF
Huf-wAcc[Hash](A) ≤ AdvCR

Hash(B).

Proof. Let A be any adversary against the unforgeability of wAcc. We construct an adversary B against
the collision resistance of Hash with roughly the same runtime and the same success probability as A.
B simulates the unforgeability game for A by simply forwarding the description of its hash func-

tion. Upon receiving a successful forgery ( ~X∗, ~w∗, π∗, x∗), B recomputes the accumulator value acc∗ =
Eval( ~X∗, ~w∗), which rebuilds the Huffman tree τ and computes the hashes along its paths. Since we
assume that A outputs a valid forgery, Vrfy(acc∗, x∗, π∗) = 1 but x∗ 6∈ ~X∗. Let ĥ1, . . . ĥ` denote the
hashes computed during Vrfy. Since Vrfy returns 1, we have ĥ` = τ.root.label. Since alsox∗ 6∈ ~X∗, there
exists a node v in τ and i s.t. ĥi = v.label and either v is a leaf or for vl, vr ∈ v.children : ĥi−1 6=
vl.label ∧ ĥi−1 6= vr.label. If v is an internal node, then B outputs (‘int’, vl.label, vr.label), (‘int’, ĥi−1, π[i])
(resp. (‘int’, vl.label, vr.label), (‘int’, π[i], ĥi−1)) as its forgery. If v is the leaf corresponding to xi ∈ ~X∗,
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Algorithm Adversary B1 on DSSDH

Adversary B1(G, p, g, U, V )
Corrupted← ∅,HL← ∅,DL← ∅
for j ∈ [N ] do

Pick b[j]← {0, 1} with Pr[b[j] = 1] = 1
qC

αj
$← Zp \ {0}

if b[i] = 1 then

ekj ← V αj // Embed the challenge
else

ekj ← gαj // Allow corruption
Phase← 1
(~m∗0, ~m∗1, ~ek

∗
, st) $← AH,D1,Cor(ek1, . . . , ekN )

req |~m0| = |~m1| = |~ek
∗
| = n

Parse ~ek
∗

as êki1 , . . . , êkil , ek∗l+1, . . . , ek∗n for l ∈ [n]
s.t. ∀j ∈ [l] : ~m0[ij ] 6= ~m1[ij ] ∧ êkij ∈ ~ek
if b[ii] = 0 then

Bad3 ← True
abort

c∗0 ← U
for j ∈ [n] do

Kj
$← K

c∗j ← D(Kj , ~mb[j])
if ∃k ∈ [N ] : ekk = ~ek

∗
[j] ∧ k < i ∧ b[k] = 1 then

DL[j, U, (cj , j)] = Kj

if j > i ∧ b[j] = 0 then
HL[Uαj , ek∗[j], j]← Kj

Phase← 2
b′ $← AH,D2,Cor(c∗0, . . . , c∗n, st)
return ⊥

Oracle H(Z,W, j)

if ∃k ∈ [N ] : W = ekk ∧ ekk = ek∗[i] ∧ b[k] = 1 ∧
Ov(Uαk , Z) = 1 then

return Z
1
αk

if Phase = 1 ∧Ou(W,Z) = 1 then
Bad2 ← 1
abort

if Phase = 2 ∧ j ∈ [n] ∧W = ek∗[j] ∧Ou(W,Z) =
1 ∧ j > i then

return Kj

if ∃j ∈ [N ], c ∈ G, t ∈ K : W = ekj ∧
DL[i, (c, (∗, j))] = t ∧Ov(cαj , Z) = 1 then

return t
if HL[Z,W, j] = ⊥ then

HL[Z,W, j] $← K
return HL[Z,W, j]

Oracle DPhase(i, (c0, (c, j)))

req i ∈ [N ]
if Phase = 1 ∧ c0 = U then

Bad1 ← 1
abort

if ∃Z ∈ G, t ∈ K : HL[Z, ekj , j] = t ∧ (b[j] = 0 =⇒
Z = ekαjj ∧ b[j] = 1 =⇒ Ov(cαj , Z) = 1) then

m← D−1(t, c)
if ∃k ∈ [N ] : ~ek

∗
[j] = ekk ∧m ∈ {~m∗0[j], ~m∗1[j]}

then
return test

else
return m

if DL[i, (c0(c, j))] = ⊥ then
DL[i, (c0, (c, j))] $← K

m← D−1(DL[i, (c0, j)], c)
if ∃k ∈ [N ] : ~ek

∗
[j] = ekk ∧m ∈ {~m∗0[j], ~m∗1[j]} then

return test
else

return m

Oracle Cor(j)

Corrupted +← j
if b[j] = 1 then

Bad3 ← True
abort

return αj

Fig. 12: Description of adversary B1 from Theorem 1.
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then B outputs (‘leaf’, xi), (‘int’, ĥi−1, π[i]) (respectively, (‘leaf’, xi), (‘int’, π[i], ĥi−1)) as its forgery, if
i 6= 0 or (‘leaf’, xi), (‘leaf’, x∗) otherwise. In either case, B finds a collision if A outputs a valid forgery. �

C.3 Proof for Theorem 3

Theorem 3. Let HRS = BGM-HRS[Hash, Acc,Sig,MAC] denote the scheme from Fig. 5 instantiated with
a hash Hash, a signature scheme Sig, a cryptographic accumulator Acc and a MAC. For any adversary A,
there exist adversaries B1, B2 and B3, and B′1, B′2 and B′3, all with roughly the same runtime as A, s.t.

AdvAEUF-RCMA
HRS (A) ≤ AdvEUF-CMA

Sig (B1) + AdvCR
Hash(B2) + AdvUF

Acc(B3) and

AdvSEUF-RCMA
HRS (A) ≤ AdvEUF-CMA

MAC (B′1) + AdvCR
Hash(B′2) + AdvUF

Acc(B′3).

Proof. The proof for Theorem 3 is analogue to Theorem 3, therefore we will only describe the latter. Let
A1 be an adversary against the AEUF-RCMA security of HRS. We construct the adversaries B1,B2,B3
against the respective primitives as follows:

B1 against EUF-CMA of Sig: B1 receives a verification key spk as input and has access to a signing
oracle Osign. B1 forwards spk to A1 and simulates its signing queries by executing the regular signing
algorithm with the exception of getting the signature by querying its signing oracle on the final hash
and the tag (h(i)||tag(i)) (for the i-th signing query) with the verification key and uses the symmetric
keys provided by the adversary. Eventually, A1 outputs a (potentially reduced) forgery ( ~m∗, σ∗ =
(σ′∗, tag∗, acc∗(, π∗, h∗i )), spk∗, k∗, rp∗ = (`∗, ∗, ∗). B1 computes the hash h∗ = Hash(`∗||acc||h∗1) and
outputs (h∗||tag∗), σ∗ as its forgery.
We analyse B1’s winning probability: Since A1 outputs a valid forgery, ~m∗ is distinct from all previous
message vectors queried to the sign oracle. A1 controls the symmetric key k∗, so we can’t assume that
tag∗ is fresh, so h∗ has to be a new hash value in order for B1 to be successful. However for h∗ to be a
previous hash while ~m∗ is different from all previous queries, A1 has to produce either a hash collision
or an accumulator forgery. So B1 wins exactly if B2 and B3 don’t win their respective games.
B2 against collision resistance of Hash: B2 generates a signature keypair
(ssk, spk) $← Sig.kg and then runs A1 on input spk. B2 answers signing queries using ssk and
for all signing queries (k(i), ~m(i),RPC(i)) records (~m(i), σ(i) = (σ′(i), tag(i), acc(i)), h(i), `(i)) in a list
L, where σ(i) is the reducible signature and h(i) is the signed hash. When A1 outputs a forgery
(~m∗, σ∗ = (σ′∗, tag∗, acc∗(, π∗, h∗j∗)), k∗, spk∗, rp∗ = (`∗, i∗, j∗), B2 recomputes h∗ = Hash(`∗, acc, ĥ∗)
as in the verification algorithm and checks its list L for a corresponding pair (~m, (σ′, tag, acc), h∗, `)
with the same signed hash h∗. If none is found, A1 produced a signature forgery and B2 aborts (in
this case, B1 would win). So assume there is such a pair.
If acc = acc∗ and ` = `∗ and ~m[i] = ~m∗[i] for 2 ≤ i ≤ `, then A1 produced and accumulator forgery
and B2 aborts. Note that B3 is successful in this case.
So assume that acc 6= acc∗ or ĥ∗ 6= ĥ, i.e. the final hash in the chain differs. Then (l, acc, ĥ), (`∗, acc∗, ĥ∗)
is a collision in Hash and B2 wins.
Now assume that acc = acc∗ and ĥ∗ 6= ĥ but there exists an i > 1 s.t. ~m∗[i] 6= ~m[i]. Then there exists
an i∗ ≤ i s.t. Hash(~m[i∗], ĥ) = Hash(~m∗[i∗], ĥ∗) but ĥ∗ 6= ĥ or ~m∗[i∗] 6= ~m[i∗], which again yields a
collision in Hash. Note that said i∗ necessarily exists since we assume that ĥ and ĥ∗ coincide before
the computation of the signed hash h∗.
B3 against unforgeability of Acc: B3 generates a signature key pair (ssk, spk) $← Sig.kg and then calls
A1 on input spk. Signing queries by A1 are answered honestly with the signature key ssk and for every
signing query, B3 records the pairs (~m(i), acc(i)) in a list L.
Eventually, A1 outputs a forgery ~m∗ = (m∗1,m∗2, . . . ,m∗j∗+1),
σ∗ = (σ′∗, tag∗, acc∗, π∗, h∗j∗), k∗, spk∗, rp∗ = (`∗, i∗, j∗)). We assume that A1 didn’t output a signature
forgery or found a hash collision, because in those cases, B1 and B2 win their respective games.
Therefore, there exists an t∗ s.t. acc(t∗) = acc∗. Since no hash collision occurred, ~m(t∗)[j] = ~m∗[j] for
j ≥ `∗ but since A1 produced a valid forgery, ~m(t∗)[i∗] 6= ~m∗[i∗], because otherwise ~m∗ would be a
valid reduction from ~m(t∗). A1’s forgery can only be valid if the accumulator proof verifies and then
~m(t∗), ~m∗[i∗], π∗ is a valid accumulator forgery.

It is easy to check that in every case one of the adversaries B1,B2, B3 aborts, another would win. So we
can bound the success probability of A by the sum of their success probabilities.

For A2, we replace all generations of asymmetric signing keys with sampling a symmetric key and
replacing the first adversary with one against the MAC, which works in exactly the same way.
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Game mmOW-RCCA

ExpmmIND-RCCA
mmPKE,N (A = (A1,A2))

for i ∈ [N ] do
(eki, dki)← mmPKE.KG()

Corrupted← ∅
(~ek, ~m, S, st)← ADec1,Cor

1 (ek1, . . . , ekN )
req |~m| = |~ek| ∧ S ⊆ [|~m|]
EK∗ ← {~ek[j] : j ∈ S}
m∗ $←M
for j ∈ S do ~m[j]← m∗

m′ ← ADec2,Cor(mmPKE.Enc(~ek, ~m), st)
req EK∗ ⊆ {eki : i ∈ [N ] \ Corrupted}
return m∗ = m′

Oracle Dec1(i, c)

req i ∈ [N ]
return Dec( ~dki, c)

Oracle Cor(i)

req i ∈ [N ]
Corrupted +← i
return dki

Oracle Dec2(i, c)

req i ∈ [N ]
m← mmPKE.Dec( ~dki, c)
if eki ∈ EK∗ ∧m = m∗ then

return ‘test’
else return m

Fig. 13: Experiment defining mmOW-RCCA security of mmPKE schemes.

C.4 HRS is RKC secure

Theorem 6. Let MAC be a KC secure mac. Then the Reducible Signature scheme described in Fig. 5 is
RKC secure. Specifically for any adversary A, there exists an adversary B with roughly the same runtime
as A, s.t.

AdvRKC
HRS(A) ≤ AdvKC

MAC(B)

Proof. First, note that since the adversary outputs one message and signature, which has to be valid for
two keys, the security of the accumulator isn’t relevant for exclusive ownership security.

Let A be an adversary against the MS-sCEO security of HRS. We construct adversary B as follows:
B samples a keypair (vk, sk) and runs A on input vk. Signing queries are answered using sk and the
provided secret key. Eventually, A outputs its solution (k∗1 , k2,m

∗, σ∗) with σ∗ = (σ′, tag∗, acc, π, h). B
then computes h∗ (the root hash that is tagged by tag∗) and outputs (k∗1 , k∗2 ,m∗ := h∗, tag∗) as its solution.
It is easy to see that B is successful, if A is successful.

D One-Wayness Security of mmPKE

In this section, we define One-Wayness under Relaxed Chosen Ciphertext Attacks security of mmPKE
schemes, mmOW-RCCA. Moreover, we prove that mmOW-RCCA security is implied by mmIND-RCCA
security for schemes with large message spaces.

Motivation. We note that one-wayness security for mmPKE is less straightforward to define than for
standard PKE schemes. Roughly, for standard PKE, one-wayness requires that given an encryption of a
random message chosen by the challenger, no adversary can find the encrypted message. For mmPKE,
the input to encryption is not a single message but a vector of messages. Moreover, even if the adversary
corrupts recipients of some messages in the vector, it still should not be able to find the remaining messages.
Therefore, it is now less clear how the challenge message vector should be chosen. The definition presented
in this section is precisely what is needed for the security proof of ITK. We do not claim that it is the
“right” notion, as it may not be suited to other applications.

The game. The mmOW-RCCA game is defined in Fig. 13, the challenge ciphertext is computed as follows:
The adversary sends a public-key vector, as well as a message vector ~m and a set of indices S within this
vector. The challenger then inserts the same random message m∗ into all positions in ~m indicated by S.
(the previous values of ~m at these positions are ignored). It encrypts the result and sends the ciphertext
to the adversary’s, whose goal is to find m∗.

Remarks. First, we note that the mmOW-RCCA game has no notion of leakage. Instead, the leakage
is implicit in how the vector encrypted by the challenger is chosen — the “leakage” is everything the
adversary knows about that vector, such as whether two slots contain the same message or not.

Second, the game allows the adversary to verify if some message m′ is the correct solution m∗. This can
be done by sending m′ to the decrypt oracle and checking if it returns ‘test’. This additional ability makes
the notion stronger (i.e., more difficult to achieve). We show that mmIND-RCCA security is sufficient to
achieve it.
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Definition 23 (mmOW-RCCA). For a scheme mmPKE with message space M, we define the advantage
of an adversary A against One-Wayness Against Replayable Chosen Ciphertext Attacks (mmOW-RCCA)
security of mmPKE as

AdvmmOW-RCCA
mmPKE,N (A) = Pr

[
ExpmmOW-RCCA

mmPKE,N (A)⇒ 1
]
,

where ExpmmOW-RCCA
mmPKE,N (A) is defined in Fig. 13.

Relation to mmIND-CCA security. We next prove that mmOW-RCCA security is implied by mmIND-RCCA
for schemes with large message spaces.

Theorem 7. Let mmPKE be an mmPKE scheme with message space M. For any adversary A, there
exists an adversary B such that

AdvmmOW-RCCA
mmPKE,N (A) ≤ AdvmmIND-RCCA

mmPKE,N (B) + 2
M

.

Proof. The proof closely follows the typical proofs showing that IND security implies OW security for
standard encryption. In particular, given an adversary A against mmOW-RCCA security, the reduction B
attacking mmIND-RCCA simply runs A on the public keys it receives in the mmIND-RCCA experiment
and forwards all A’s oracle queries to its mmIND-RCCA oracles. When A outputs the triple (~ek, ~m, S), B
computes the challenge ciphertext as follows. First, it initializes ~m∗0, ~m∗1 ← ~m. Then, it picks two random
messages m∗0 and m∗1 and for each j ∈ S sets ~m∗0[j]← m∗0 and ~m∗1[j]← m∗1. It sends ~ek together with ~m∗0
and ~m∗1 to the mmIND-RCCA experiment, receives the challenge ciphertext c∗ and sends it to A. At the
end of the experiment, A outputs a guess m′. If m′ = m∗1, then B outputs 1. Else, it outputs 0.

First, it is easy to see that if A does not violate any req statements in the emulation, then B does not
violate any req statements in the mmIND-RCCA game. In particular, ~m∗0 and ~m∗1 clearly have the same
leakage. It is also easy to see that if A does not trivially win by corruptions then B does not either.

Second, observe that if B’s challenger uses the bit b = 1, then B emulates A’s experiment perfectly,
unless A inputs to Dec2 something that decrypts to m∗0. The reason is that in this case B replies with
‘test’ (forwarded from its oracle), while A should receive m∗0. Since m∗0 is random and independent of A’s
view, this happens with probability at most 1/M. Therefore, it is easy to see that

Pr
[
ExpmmIND-RCCA

mmPKE,N,n,1(B)⇒ 1
]
≤ AdvmmIND-RCCA

mmPKE,N,n (A) + 1
M

.

If B is in the experiment with the bit b = 0, then m∗1 is independent of A’s view, so the probability
that it outputs m′ = m∗1 and hence also that B outputs 1 is at most 1

M . �

E Details of the SAIK Protocol

SAIK is heavily based on ITK. We recall the whole protocol here for completeness. The major difference
between SAIK and ITK is the use of mmPKE and HRS. There are also some smaller differences, such as
the use of q-ary trees. Another small difference is that ITK ensures agreement on the “transcript hash”,
binding all past messages, while SAIK ensures agreement only on all past group modifications. Indeed, a
transcript hash does not make sense for saCGKA, since parties see different messages.

E.1 Authenticated Key Service (AKS)

SAIK relies on an Authenticated Key Service (AKS) which authentically distributes so-called key packages
(also called key bundles or pre-keys) used to add new members to the group without interacting with them.
A key package should only be used once. For simplicity, we use an idealized AKS which guarantees that a
fresh, authentic and honestly generated key package of any party is always available to any other party.

Formally, the AKS is modelled as the functionality Faks defined in Fig. 14. SAIK works in the *pk-
hybrids model. This means that Faks is available in the real world and emulated by the simulator in the
ideal world. Faks works as follows. When a party id wants to fetch a key package of another party id′,
Faks generates a new key package for id′ using SAIK’s key-package generation algorithm (formally, the
algorithm is a parameter of Faks). It sends (the public part of) the package to id and to the adversary.
Note that since Faks exists in the real world, the adversary should be thought of as the environment. The
secrets for the key package can be fetched by idt later, when it decides to join the group. Once fetched,
secrets are deleted, which means that Faks cannot be used as secure storage.
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Functionality Faks

Parameters: a key-package generation algorithm *AKS-kgen().

Initialization

SK[·, ·]← ⊥

Inputs

Input (GetPK, id′) from id
(PK,SK)← *AKS-kgen()
SK[id′, PK]← SK
Send (id′, PK) to the adversary.
return PK

Input GetSK(PK) from id
sk← SK[id, PK]
SK[id, PK]← ⊥
return SK

Fig. 14: The Authenticated Key service Functionality.

To conclude, we mention the most important aspects in which Faks differs from a more realistic AKS.
First, in a typical implementation of an AKS, parties generate key packages themselves and upload them
to an untrusted server, authenticated with long-term so-called identity keys. This means that a realistic
attacker model is one where parties can be corrupted before they join, in which case the secrets for their
key packages and long-term keys leak. This allows an active adversary to inject arbitrary key packages
on their behalf. Such abilities are not considered in our model. However, we stress that we do consider
attacks where the adversary injects on behalf of current group members messages that add parties with
arbitrary key packages.

Further, Faks identifies key packages by public keys. Looking ahead, this means that a party adding
id′ has to send the whole public part of the package so that id′ can identify it when it joins. In reality, this
would be implemented by hashes.

E.2 High-level Description

Ratchet trees. The operation of SAIK, as well as of ITK, crucially relies on a data structure called ratchet
trees. A ratchet tree τ is a tree where each leaf is assigned to a group member. A leaf stores information
about its member’s identity and their HRS key pair. Moreover, most non-root nodes in τ , and all leaves,
have assigned an mmPKE key pair. Nodes without a key pair are called blank.

The protocol maintains the tree invariant saying that each group member knows all public keys in the
tree, as well as the secret keys of the nodes on the path from their leaf to the root, and only those. This
allows to efficiently encrypt messages to subgroups: If a node v is not blank, then a message m can be
encrypted to all parties in the subtree of a node v by encrypting it under v’s public key. If v is blank,
then the same can be achieved by encrypting m under each key in v’s resolution, i.e., the minimal set of
non-blank nodes covering all leaves in v’s subtree.

SAIK uses generalized q-ary ratchet trees, generalizing binary trees used by ITK (and all its variants).
While in most applications q = 2 is optimal, choosing q > 2 is more efficient if SAIK is instantiated with
(an mmPKE built from) a post-quantum secure mKEM [46].

Ratchet tree evolution. Each epoch change triggers a number of modifications in the ratchet tree τ . First,
if the epoch removes a party idt, then all keys known to idt are removed. That is, all nodes on the path
from idt’s leaf to the root are blanked. If instead the epoch adds a party idt, then a new leaf is inserted
into τ . The new leaf’s HRS and mmPKE public keys are fetched from the AKS. Moreover, all nodes from
the new leaf to the root are blanked, because for FS idt should not know any secrets from before it joined.

Further, in order to achieve PCS, the party ids creating the epoch refreshes all key pairs in τ for which
it knows secret keys. Specifically, ids generates a new HRS key pair and a sequence of mmPKE key pairs
for all nodes v1, . . . , vt on the path from their leaf to the root.

To maintain the tree invariant, ids must communicate the new secret key of vi to all members in vi’s
subtree, for each i > 1 (the leaf’s secret is only known to ids). To minimize the communication complexity,
ids generates the key pairs as follows:

1. Generate a sequence of path secrets s2, . . . , st: s2 is random and si+1 = Hash(si, ‘path’).
2. Generate a fresh key pair for v1. For each i > 1, generate the key pair of vi using randomness

Hash(si, ‘rand’).
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Now ids encrypts each si to all nodes in τ which are in the resolution of vi but not in the resolution of
vi−1. This way, a group member in the subtree of vi learns si, . . . , st but not s2, . . . , si−1 and the tree
invariant is maintained. The encryption is done efficiently using mmPKE. In particular, ids sends out a
single mmPKE ciphertext.
Key schedule. Apart from the ratchet tree, all group members store a number of shared secrets:

– The application secret — the group key exported to the E2E application
– The membership key — a symmetric HRS key used to authenticate all sent messages
– The init key — mixed in the next epoch’s application secret for FS

When a new epoch is created, its secrets are derived as follows: First a fresh commit secret is derived from
the last path secret sent by the epoch’s creator. Then, the init and commit secrets are hashed together to
obtain the joiner secret. Then, the epoch secret is obtained by hashing the joiner with the new epoch’s
context, which we explain next. (The context is not mixed directly with init and commit secrets, because
the joiner secret is needed by new members; see below.) Finally, the new epoch’s application, membership
and init secrets are obtained by hashing the epoch secret with different labels.

The context of an epoch includes all relevant information about it, such as (the hash of) the ratchet
tree (which includes the member set). Intuitively, the purpose of mixing it into the key schedule is ensuring
that if parties are in different epochs with different contexts, then they derive independent epoch secrets.
Authenticating packets. When an ids creates an epoch, it authenticates the data using HRS with the
asymmetric key from its leaf and the current epoch’s membership key. The reduction pattern class allows
to authenticate a single individual mmPKE ciphertext and a subsequence of public keys.

Importantly, each receiver also verifies which individual mmPKE ciphertext they received. Without this
check, the adversary could, without corrupting ids, make one receiver idr accept a ciphertext meant for a
different receiver id′r. Depending on mmPKE, idr may decrypt a different but still valid looking ciphertext.
In this case, the adversary carries out a successful attack against authenticity.

Observe that the adversary should not be able to impersonate ids even if it corrupted idr. If this is the
case, the adversary knows the value idr would decrypt. This breaks attempts to prevent the above attack
by adding confirmation tags proving knowledge of the encrypted secrets.
Joining. If an ids creates an epoch adding a new member idt, then in order to join idt needs two secrets:
its path secret needed to maintain the tree invariant and the new epoch’s joiner secret needed to compute
the key schedule. Importantly, the new member hashes the joiner with the context, which means that it
agrees on the epoch’s state with all current members transitioning to it. Both path and joiner secret are
included in the single mmPKE ciphertext uploaded by ids to the mailboxing service. They are encrypted
under an mmPKE public key fetched from the AKS and used only for this purpose (after joining, idt
deletes the secret key).

E.3 Ratchet Trees
In this section, we formally define ratchet trees. A ratchet tree is a left-balanced q-ary tree, defined as
follows.
Balanced trees.
Definition 24 (Left-Balanced Tree). For q, n ∈ N with q > 1, the nth left-balanced q-ary tree
(LBT), denoted LBTq,n, is defined as follows. LBTq,1 is the tree consisting of one node. For n > 1, if
m = max{qp : p ∈ N∧ qp < n} and k = bn/mc, then LBTq,n is the tree whose root has the first k children
equal to LBTq,m and, if n−mk > 0, the (m+ 1)-st child equal to LBTq,n−mk.
Definition 25 (Full Left-Balanced Tree). For q, n ∈ N, LBTq,n is full if n is a power of q.

Node labels. A ratchet tree has all tree-related labels defined in Sec. 3, as well as additional labels listed in
Table 2. We also define a number of helper methods in Table 3. Observe that the direct path of a leaf
consists of the (ordered list) of all nodes on the path from the leaf to the root, without the leaf itself. The
resolution of a node v is the minimal set of descendant non-blank nodes that covers the whole sub-tree
rooted at v, i.e., such that for every descendant u of v there exists node w in the resolution such that w is
non-blank and w an ancestor of u
Adding leaves. Node indices v.nodeIdx in ratchet trees are computed as follows: all nodes are numbered
left to right — i.e., according to an in-order depth-first traversal of the tree — starting with 0. See Fig. 15
for an example. Operation of SAIK requires adding leaves to a ratchet tree in a way that preserves node
indices. We describe the algorithm addLeaf(τ, v) which inserts v into τ in this way.
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v.ek The encryption (public) key of an mmPKE scheme.
v.dk The corresponding decryption (secret) key.
v.vk If v.isleaf: the verification (public) key of an HRS scheme.
v.sk If v.isleaf: the corresponding signing (secret) key of an HRS scheme.

v.unmergedLvs The set of indices of those leaves below v for which the party id does not know v.sk.
v.id If v.isleaf: the identity associated with that leaf.

Table 2: Protocol-related labels of a ratchet-tree node v.

τ.clone() Returns and (independent) copy of τ .
τ.public() Returns a copy of τ for which all private labels (v.sk) are set to ⊥.
τ.roster() Returns the identities of all parties in the tree.
τ.leaves() Returns the list of all leaves in the tree, sorted from left to right.
τ.leafof(id) Returns the leaf v for which v.id = id (or ⊥ if no such v exists).
τ.getLeaf() Returns the first leaf v from the left for which ¬v.inuse(). If no such leaf exists, adds a new

leaf using addLeaf and returns that.
τ.directPath(v) Returns the direct path, excluding the leaf, as an ordered list from the leaf to root.
τ.isInSubtree(u, v) Returns true if u is in v’s subtree.

τ.lca(u, v) Returns the lowest common ancestor of the two leafs.
τ.blankPath(v) Calls u.blank() on all u ∈ τ.directPath(leaf).
τ.mergeLeaves(v) Sets u.unmergedLvs← ∅ for all u ∈ τ.directPath(v)
τ.unmergeLeaf(v) Sets u.unmergedLvs +← v for all u returned by τ.directPath(v)

v.inuse() Returns false iff all labels are ⊥.
v.blank() Sets all labels to ⊥.

v.resolution() Return


(v) ++ v.unmergedLvs if v.inuse()
concatChildResolution(v) else if ¬v.isleaf
() else,

where concatChildResolution(v) = v.children[1].resolution() ++ · · · ++.
v.children[n].resolution()

v.resolvent(u) For a descendant u of v, returns the (unique) node in v.resolution() \ (v) which is an ancestor
of u.

Table 3: Helper methods defined on the ratchet tree τ and its nodes v.
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Fig. 15: The trees LBT3,7 (left) and LBT3,8 (right) with node indices.

Definition 26 (addLeaf). The algorithm addLeaf(τ, v) takes as input a q-ary tree τ with root r and n
nodes, and a fresh leaf v and returns a new tree τ ′ with v inserted and v.nodeIdx = n+ 1.

a) If τ is full, then create a new root r′ for τ ′. Attach r as the first child of r′ and v as the second child.
b) Else if r.children contains only nodes with full subtrees, let τ ′ = τ except v is attached as the next child

of r.
c) Else, let u be the first in r.children s.t. its subtree τu is not full. Let τ ′ = τ except τu is replaced by

addLeaf(τu, v).

Lemma 3. τ = LBTq,n =⇒ addLeaf(τ, v) = LBTq,n+1.

Proof. The proof is by strong induction on n. If n < q, then the statement easily follows by inspection
(only cases a) and b) of addLeaf apply). Fix n ≥ q and assume the statement holds for all k < n. Let r be
the root of τ and let max-pow(n) = max{qp + 1 : p ∈ N ∧ qp < n}.

If τ is full, then max-pow(n+ 1) = n. Furthermore, the root of τ ′ has only two children: τ = LBTq,n =
LBTq,max-pow(n+1) and LBTq,1, so τ ′ = LBTq,n+1 per definition.

Else, max-pow(n) = max-pow(n+ 1) (this holds since n ≥ q). Moreover, it is easy to see that only the
last node in r.children can be non-full. This means that the root r′ of τ ′ has the following children (in
order):

– All children of the root r of τ which have full subtrees. These subtrees are equal to LBTq,max-pow(n) =
LBTq,max-pow(n+1).

– If r has no non-full subtrees, then the last child of r′ is v with subtree LBTq,1.
– Else if the last child u of r is non-full and equals to LBTq,x for x < max-pow(n), then the last child of
r′ is LBTq,x+1 by induction hypothesis.

Clearly, τ ′ = LBTq,n+1 in all cases. �

E.4 Protocol State

The state of SAIK consists of a number of variables, outlined in Table 4. The protocol will ensure that
states of any two parties in the same epoch differ at most in labels of nodes of γ.τ that describe secret
keys and the label γ.leaf. This means that they agree on the secrets γ.appSec and γ.initSec, as well as on
the public context, computed by the helper method in Table 4.

γ.grpId The identifier of the group.
γ.τ The ratchet tree.
γ.leaf The party’s leaf in τ .

γ.treeHash A hash of the public part of τ .
γ.lastAct The last modification of the group state and the user who initiated it.
γ.appSec The current epoch’s CGKA key.
γ.initSec The next epoch’s init secret.

γ.membKey The next epoch’s membership secret for authenticating messages.

γ.groupCtxt() Returns (γ.grpId, γ.treeHash, γ.lastAct).

Table 4: The protocol state and the helper method for computing the context.

E.5 Protocol Algorithms

The protocol algorithms are defined in Fig. 17 with some additional helper functions outsourced to Fig. 18.
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SAIK: Algorithms

Initialization

if id = idcreator then
γ ← *new-state()
γ.grpId, γ.initSec, γ.membKey, γ.appSec $← {0, 1}κ
γ.τ ← *new-LBT()
γ.leaf ← γ.τ.leaves[0]
(γ.leaf.vk, γ.leaf.sk)← RS.KeyGen()

Inputs
Input (Send, act), act ∈ {up, rem-idt, add-idt}

req γ 6= ⊥
// In case of add, fetch idt’s keys from AKS and store them in act
(AKS runs *AKS-kgen).
if act = add-idt then

(ekt, vkt, ek′t)← query (GetPk, idt) to Fks
act← add-idt-(ekt, vkt, ek′t)

// Create the state and secrets for the new epoch.
try (γ′, pathSecs, joinerSec)← *create-epoch(act)
// Encrypt the path secrets using the new epoch’s ratchet tree. In
case of add, also encrypt the joiner secret for idt.
if act ∈ {up, rem-idt} then

Ctxt← *encrypt(γ′, pathSecs,⊥,⊥,⊥)
else if act = add-idt-(ekt, vkt, ek′t) then

Ctxt← *encrypt(γ′, pathSecs, idt, ek′t, joinerSec)
// Sign data under current epoch’s secrets.
updEKs← ((γ′.leaf.ek, γ′.leaf.vk))
updEKs← updEKs ++ (v.ek : v ∈ γ′.τ.directPath(γ′.leaf))
( ~tbs,RPC)← *to-be-signed(Ctxt, updEKs, act)
sig← RS.Sign(γ.τ.leafof(id).sk, γ.membKey, ~tbs,RPC)
γ ← γ′

// In case of add, send additional data for idt.
if act = add-idt-(ekt, vkt, ek′t) then

welcomeData← (γ.grpId, γ.τ.public(), ek′t)
return (id, act,Ctxt, updEKs, sig,welcomeData)

return (id, act,Ctxt, updEKs, sig)

Input Key
req γ 6= ⊥
k ← γ.appSec
γ.appSec← ⊥
return k

Input (Receive, (ids, rem, sig′))
// Receiver is removed.

~tbv← ((ids, rem-id, γ.grpId))
// Check if removing allowed and compute the reduction pattern
rp = (`, 0, 1).
try γ′ ← *apply-act(γ.clone(), ids, rem-id)
`← *weights(γ′, ids)
vk← γ.τ.leafof(ids).vk
req RS.Vrfy(vk, γ.membKey, ~tbv, (`, 0, 1), sig′)
γ ← ⊥
return (ids, rem-id)

Input (Receive, (ids, act, ctxt, updEKs′, sig′))
// Receiver is a member.

try γ′ ← *apply-act(γ.clone(), ids, act)
// Get the expected reduction pattern using the new state.
try rp← *my-reduction-pattern(γ′.τ, ids)
~tbv← (ctxt) ++ ((ids, act, γ.grpId)) ++ updEKs′

vk← γ.τ.leafof(ids).vk
req RS.Vrfy(vk, γ.membKey, ~tbv, rp, sig′)
// Transition to next epoch.
try γ ← *transition(γ′, ctxt, updEKs′, ids, act)
// Compute the output.
if act = add-idt-(ekt, vkt) then return (ids, add-idt)
else return (ids, act)

Input (Receive, (ids, act, ctxt1, ctxt2,welcomeData)))
// Receiver joins.

req γ = ⊥
parse grpId, τ, ek′ ← welcomeData
γ ← *new-state
(γ.grpId, γ.τ, γ.lastAct)← (grpId, τ, (ids, add-id))
v ← γ.τ.leafof(id)
try (v.dk, v.sk, dk′)← query GetSk((v.ek, v.vk, ek′)) to Fks
γ ← *set-tree-hash(γ)
try γ ← *populate-secrets(γ, dk′, ctxtj , ctxtn+1, ids)
return (γ.τ.roster(), ids)

Fig. 16: The algorithms of SAIK.

SAIK: Helpers for encryption and authentication

helper *encrypt(γ′, pathSecs, idt, ek′t, joinerSec)
L← *rcvrs-of-path-secs(γ′.τ, id)
~m, ~ek← ()
for j = 1 to len(L) do

(i, v)← L[j]
~m ++← pathSecs[i]
if idt 6= ⊥ ∧ v = γ′.τ.leafof(idt) then ~ek ++← ek′t
else ~ek ++← ~v.ek

if idt 6= ⊥ then
~m ++← joinerSec
~ek ++← ek′t

return (mmPKE.Enc(~ek, ~m))

helper *decrypt-path-secret(γ′, ids, ctxt)
v ← lca(γ′.τ.leafof(ids), γ′.leaf).resolvent(γ′.leaf)
return mmPKE.Dec(v.dk, ctxt)

helper *to-be-signed(γ′,Ctxt, updEKs, act)
~w ← *weights(γ′.τ, id)
~tbs← ()
for j = 1 to |~w| do

~tbs ++← mmPKE.Ext(Ctxt, j)
~tbs ++← (id, act, γ.grpId)
~tbs ++← updEKs
return ( ~tbs,RPCSAIK

|~w|, ~w)

helper *my-reduction-pattern(τ ′, ids)
L← *rcvrs-of-path-secs(τ ′, ids)
for j = 1 to len(L) do

(i, v)← L[j]
if γ′.τ.isInSubtree(τ ′.leafof(id), v) then

// We want the j-th ciphertext out of len(L) and the first i+ 1 items on
the prefix list: the aux data, the leaf ek and i−1 ek’s on ids’s direct path.
return (len(L), j, i)

return ⊥

helper *rcvrs-of-path-secs(τ ′, ids)
// Returns a list of tuples (i, v), denoting that when ids commits in τ ′, the i-th
path secret is encrypted under node v’s keys.
L← ()
path← (τ ′.leafof(ids)) ++ τ ′.directPath(τ ′.leafof(ids))
for i = 1 to len(path)− 1 do

~v ← path[i+ 1].resolution() \ path[i].resolution()
for j = 1 to |~v| do

L ++← (i, ~v[j])
return L

helper *weights(τ ′, ids)
// Returns a list of weights for RPCSAIK

`,~w when ids commits in τ ′. Also allows to
compute ` = |~w|.
~w ← ()
path← (τ ′.leafof(ids)) ++ τ ′.directPath(τ ′.leafof(ids))
for i = 2 to len(path) do

~v ← path[i].resolution() \ path[i− 1].resolution()
for j = 1 to |~w| do

~w ++←
∣∣{u ∈ τ ′.leaves | u.inuse() ∧ τ ′.isInSubtree(u,~v[j])}

∣∣
return ~w

Fig. 17: The algorithms of SAIK.
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SAIK: Creating epochs

helper *create-epoch(γ, id, act)
γ′ ← γ.clone()
// Apply the action to the tree. Fails if the action is not allowed.
try γ′ ← *apply-act(γ′, id, act)
// Re-key the direct path.
directPath← γ′.τ.directPath(γ′.leaf)
pathSecs[∗]← ⊥
pathSecs[1] $← {0, 1}κ
for i = 1 to len(directPath)− 1 do

v ← directPath[i]
r ← HKDF.Expand(pathSecs[i], ‘node’)
(v.ek, v.dk)← mmPKE.KG(r)
pathSecs[i+ 1]← HKDF.Expand(pathSec[i], ‘path’)

γ′.τ.mergeLeaves(γ′.leaf)
// Re-key the leaf.
(γ′.leaf.ek, γ′.leaf.dk)← mmPKE.KG()
(γ′.leaf.vk, γ′.leaf.sk)← RS.KeyGen()
// Set all context variables and then derive epoch secrets.
γ′.lastAct← (id, act)
γ′ ← *set-tree-hash(γ′)
commitSec← pathSecs[len(pathSecs)]
(γ′, joinerSec)← *derive-keys(γ′, commitSec)
return (γ′, pathSecs, joinerSec)

helper *apply-act(γ′, ids, act)
req ids ∈ γ′.τ.roster()
if act = rem-idt then

req ids 6= idt ∧ idt ∈ γ′.τ.roster()
γ′.τ.blankPath(γ′.τ.leafof(idt))
γ′.τ.leafof(idt).blank()

else if act = add-idt-(ekt, vkt) then
req idt /∈ γ′.τ.roster()
v ← γ′.τ.getLeaf()
(v.id, v.ek, v.vk)← (idt, ekt, vkt)
γ.τ.unmergeLeaf(v)

helper *transition(γ′, ctxt, updEKs′, ids, act)
// Set keys on the re-keyed path.
vs ← γ′.τ.leafof(ids)
directPath← γ′.τ.directPath(vs)
(vs.ek, vs.vk)← updEKs′[1]
i← 1
while directPath[i] /∈ {γ′.τ.lca(γ′.leaf, vs), γ′.τ.root} do

// If message contains too few ek’s, reject it.
req i+ 1 ≤ len(updEKs′)
directPath[i].ek← updEKs′[i+ 1]
i++

// Decrypt the path secret using the updated tree.
try pathSec← *decrypt-path-secret(γ′, ids, ctxt)
while i < len(directPath) do

v ← directPath[i]
r ← HKDF.Expand(pathSecs[i], ‘node’)
(v.ek, v.dk)← mmPKE.KG(r)
pathSec← HKDF.Expand(pathSec, ‘path’)
i++

commitSec← pathSec
γ′.τ.mergeLeaves(vs)
// Set all context variables and then derive epoch secrets.
γ′.lastAct← (ids, act)
γ′ ← *set-tree-hash(γ′)
(γ′, joinerSec)← *derive-keys(γ′, commitSec)
return γ′

helper *populate-secrets(γ′, dk′, ctxt1, ctxt2, ids)
try pathSec← mmPKE.Dec(dk, ctxt1)
try joinerSec← mmPKE.Dec(dk, ctxt2)
v ← γ′.τ.lca(γ′.leaf, γ′.τ.leafof(ids))
while v 6= γ′.τ.root do

r ← HKDF.Expand(pathSec, ‘node’)
(ek, v.dk)← mmPKE.KG(r)
req v.ek = ek
pathSec← HKDF.Expand(pathSec, ‘path’)
v ← v.parent

γ′ ← *derive-epoch-keys(γ′, joinerSec)
return γ′

SAIK: Generating keys for Faks

helper *AKS-kgen()
(ek, dk)← mmPKE.KG()
(vk, sk)← RS.KeyGen()
(ek′, dk′)← mmPKE.KG()
return ((ek, vk, ek′), (dk, sk, dk′))

SAIK: Key schedule

helper *derive-keys(γ, γ′, commitSec)
joinerSec← HKDF.Extract(γ.initSec, commitSec)
γ′ ← *derive-epoch-keys(γ′, joinerSec)
return (γ′, joinerSec)

helper *derive-epoch-keys(γ′, joinerSec)
epSec← HKDF.Extract(joinerSec, γ′.groupCtxt())
γ′.appSec← HKDF.Expand(epSec, ‘app’)
γ′.membKey← HKDF.Expand(epSec, ‘membership’)
γ′.initSec← HKDF.Expand(epSec, ‘init’)
return γ′

SAIK: Tree hash

helper *set-tree-hash(γ′)
γ′.treeHash← *tree-hash(γ′.τ.root)
return γ′

helper *tree-hash(v)
if v.isleaf then

return Hash(v.nodeIdx, v.ek, v.vk)
else

`← len(v.children)
for i ∈ [`] do hi ← *tree-hash(v.children[i])
h← (h1, . . . , h`)
return Hash(v.nodeIdx, v.ek, v.unmergedLvs, h)

Fig. 18: Additional helper methods for SAIK.
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E.6 Extraction Procedure for the Mailboxing Service

In this section, we describe how in practice the mailboxing service can compute SAIK messages delivered
to parties. Recall that this is not formally part of our model, but it is a part of SAIK.

Recall that according SAIK, a party ids performing operation act sends to the mailboxing service
(ids, act,Ctxt, updEKs, sig), where Ctxt is a multi-recipient ciphertext encrypting path secrets and updEKs
is a list of new keys for ids’s path. In case of an add, ids also sends welcomeData for the joiner.

When a receiver idr wants to download its message, the service first sends ids and act to idr. Then, we
have three cases:

idr is removed: First, idr sends to the service the reduction pattern rp = (`, 0, 1) it expects, ids’s
verification key vk and grpId (to compute them, it executes the first 4 lines of Receive). The service
computes the message ~tbs = (ctxt1, . . . , ctxt`) ++ ((ids, act, grpId)) ++ updEKs signed by ids (Fig. 16
describes how ids computes the signed value), where ctxti = mmPKE.Ext(Ctxt, i) for all i.17 Then, it
sends to idr its signature sig′ = Reduce(vk, sig, ~tbv, rp).

idr joins: The service sends welcomeData to idr. Recall that idr acts as two receivers of Ctxt: the i-th one
for its path secret and the last, n-th one for its joiner secret. Therefore, idr sends to the service i and
n computed based on the ratchet tree τ in welcomeData and ids. (In detail, idr executes the helper
method *my-reduction-pattern(τ, ids) from Fig. 17 which outputs (n, i, ∗).) The service sends back
ctxt1 = mmPKE.Ext(Ctxt, i) and ctxt2 = mmPKE.Ext(Ctxt, n).

else: idr sends to the service the reduction pattern rp = (`, i, j) it expects, ids’s verification key vk and
grpId (to compute them, it executes the first 4 lines of Receive). The service computes ~tbs as in the
case where idr is removed and sends to idr its individual ciphertext ctxt = mmPKE.Ext(Ctxt, i), its
public keys updEKs[1], . . . , updEKs[j] and signature sig′ = Reduce(vk, sig, ~tbs, rp).

An alternative solution. In the solution described above, receiving a message requires interaction between
the delivery service and idr. This is not a problem in typical scenarios, because they are both online at
that moment. However, we note that there is an alternative solution which does not require interaction.
Specifically, the messages sent by SAIK contain enough information for the service to compute the public
part of the ratchet tree in any epoch. The tree, in turn, is sufficient to compute the message delivered to
any party. The downside of this solution is that it requires the mailboxing service to store many ratchet
trees (or many messages to re-compute them) for parties in different epochs.

F Proof of Theorem 4 (Security of SAIK)

Theorem 4. Let Fcgka be the CGKA functionality with predicates confidential and authentic defined
in Fig. 7. Let SAIK be instantiated with schemes mmPKE, HRS and the HKDF functions modelled as a
hash Hash. Let A be any environment. Denote the output of A from the real-world execution with SAIK
and the hybrid setup functionality Faks from Fig. 14 as realSAIK,Faks(A). Further, we denote the output
of A from an ideal-world execution with Fcgka and a simulator S as idealFcgka,S(A). There exists a
simulator S and adversaries B1 to B5 such that

Pr [idealFcgka,S(A) = 1]−Pr [realSAIK,Faks(A) = 1] ≤ AdvCR
Hash(B1)

+ q2
e(qe + 1) log(qn) ·AdvmmOW-RCCA

mmPKE,qe log(qn),qn(B2)

+ 3qhq2
e(qe + 1)/2κ + 2qe ·AdvAEUF-RCMA

HRS (B3)
+ 2qe ·AdvRKC

HRS(B4) + qe ·AdvSEUF-RCMA
HRS (B5),

where qe, qn and qh denote bounds on the number of epochs, the group size and the number of A’s queries
to the random oracle modelling the Hash, respectively.

The proof proceeds in a sequence of hybrids, transitioning from the real to the ideal world. Hybrid
1 differs from the real world only syntactically. That is, the environment A interacts with a dummy
CGKA functionality F1

cgka which allows the simulator to set all outputs. This means that F1
cgka gives

no security guarantees. The next three hybrids introduce the guarantees of consistency, confidentiality
and authenticity, one by one. More precisely, in hybrid 2, A interacts with F2

cgka which is the same as
Fcgka, except it uses confidential and authentic set to false. In particular, this means that F2

cgka builds
17 In typical constructions, including ours, this is very efficient.
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a history graph, enforces its consistency and uses it to compute outputs. In hybrid 3, A interacts with
F3

cgka which uses the original confidential predicate, and in hybrid 4 it interacts with F4
cgka which also

uses the original authentic predicate. Notice that F4
cgka is Fcgka.

In the next subsections, we define the hybrids and show that each pair of consecutive hybrids is
indistinguishable for A. Intuitively, each such statement means that SAIK provides the introduced security
guarantee.

Hybrid 1. This is the experiment idealF1
cgka,S1 where the dummy functionality F1

cgka sends all inputs
to the simulator S1 and allows it to set all outputs. S1 executes SAIK.

F.1 SAIK Guarantees Consistency

The following hybrid introduces consistency.

Hybrid 2: idealF2
cgka,S2 . The functionality F2

cgka is the same as Fcgka except it uses confidential =
authentic = false. The simulator S2 is described later in this section.

In the reminder of this section, we construct the simulator S2 and show that hybrids 1 and 2 are
indistinguishable.

Theorem 8. For any environment A, there exists an adversary B such that

Pr
[
idealF2

cgka,S2(A)⇒ 1
]
− Pr

[
idealF1

cgka,S1(A)⇒ 1
]
≤ AdvCR

Hash(B) + qe/2κ,

where Hash models the HKDF.Expand and HKDF.Extract functions and qe denotes an upper bound on the
number of epochs.

The simulator. We first describe S2. In general, it runs SAIK just like S1, only its interaction with the
functionality is different. Most importantly, F2

cgka requires that S2 identifies epochs into which parties
transition. Doing this correctly is crucial for proving that SAIK guarantees consistency, because F2

cgka
enforces it by computing outputs and asserting conditions relative to parties’ current epochs. (It must
also be done so that we can later prove that SAIK guarantees confidentiality and authenticity.)
S2 identifies epochs by their epoch secrets epSec, computed by SAIK on Receive and Send. Recall that

a party id transitioning from an epoch E1 to E2 computes E2’s epSec by hashing E1’s init secret, the new
commit secret (combined into the joiner) generated by E2’s creator and E2’s context. We will show that
these values contain enough information for epSec to uniquely identify E2. Recall also that the group and
init key of E2 are derived from epSec.

Simulator S2

S2 keeps a list EpSecs, where EpSecs[epid] stores the epoch secret identifying epoch epid. It runs SAIK and interacts with F2
cgka as follows:

– If SAIK outputs ⊥ on Send or Receive, S2 sends ack set to false.
– On each Send, S2 computes the new epoch’s epSec and appends it to EpSecs. It sends to Fcgka the message C computed according to SAIK.
– On each Receive, S2 first sends to Fcgka the values sndr′, act′ from the message. If the receiver is not removed, S2 sends epid into which id

transitions chosen as follows:
• If there is a epid s.t. EpSecs[epid] = epSec, then S2 sends this (unique) epid to F2

cgka.
• Else, S2 appends epid to EpSecs and sends epid = ⊥ to F2

cgka.
Finally, if a detached root is created and F2

cgka asks for the member set mem′, S2 computes it from the new member’s ratchet tree.

Proof. We next prove Theorem 8. Observe that hybrids 1 and 2 are identical unless one of the following
two events occurs in hybrid 2:

BreaksCons : Either the output of a party on Receive or Key computed according to F2
cgka and S2 is

different than the output S1 would compute according to SAIK in hybrid 1, or an assert condition is
false.

EpidColl : An honestly created epoch has the same epSec as an existing epoch.

Observe that since an honest sender mixes a fresh commitSec into the derivation of epSec, the probability
of EpidColl is at most qe/2κ (where κ is the length of all secrets). It remains to show that if A triggers
BreaksCons, then a reduction B can extract from a hash collision. (Theorem 8 follows by the standard
difference lemma.)

Let A be any environment and assume that at the end of hybrid 2 with A there are no hash between
values hashed by S2 while running SAIK on behalf of honest parties. We show that in this case BreaksCons
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cannot occur. This proves the claim, because if there was a hash collision between values hashed by honest
parties, then B could extract them by emulating S1.

Observe that if two parties transition to the same epoch epid, then by definition of S2 they compute
the same epSec. Recall that the parties compute epSec ← Hash(joinerSec, groupCtxt) (Fig. 18), where
groupCtxt = (grpId, treeHash, ids-act) (Table 4). Since there are no hash collisions, this means that the
parties also agree on the following values:

a) The creator HGs of epid, the action act it performed and the public part of the ratchet tree, included
in treeHash. This implies agreement on the roster, which is encoded in the tree leaves.

b) The group key in epid which is derived as Hash(epSec, ‘app’).

Moreover, let epSec′ denote the epoch secret of epid’s parent. We have joinerSec = Hash(initSec′, commitSec),
where initSec′ = Hash(epSec′, ‘init’) and commitSec is freshly chosen for epid by its creator. Therefore,
parties in epid also agree on:

c) The parent epoch epid′ identified by epSec′.

Observe that the equation joinerSec = Hash(initSec′, commitSec) is verified by current members transi-
tioning to epid but not by joiners. However, joiners implicitly agree with current members on the parent
epid′. That is, if an idr joins into epid, then epid has parent epid′ (unknown to idr) or no parent at all (for
detached roots).

We next show that agreement on a), b) and c) implies that BreaksCons does not occur. First, a) and b)
imply that all parties joining an epoch epid output the same value, all parties transitioning there output
the same, and afterwards all output the same key. Second, c) implies that HG is a forest, i.e., each epoch
has one parent.

Third, we have to argue that parties’ outputs are the same as computed by F2
cgka. This is obvious

for the key (always chosen by S2 to match), sender and action. For the member set, we will show that
the ratchet tree of parties in an epoch epid is consistent with HG[epid].mem computed by F2

cgka. We use
induction on the distance of epid to the root. If epid is the main root, then the statement is true by
definition and if it is a detached roots, then S2 chooses mem to match the ratchet tree. For any non-root
epid, some party id must have transitioned there from its parent epid′ (on Receive or Send). By induction
hypothesis, the ratchet tree in epid′ is consistent with HG[epid].mem. By agreement on act in a), id modifies
the tree the same way as F2

cgka modifies HG[epid].mem, which proves the statement.

F.2 SAIK Guarantees Confidentiality

The third hybrid introduces confidentiality of group keys, which is formalized by restoring the original
confidentiality predicate of Fcgka.

Hybrid 3: idealF3
cgka,S3 . The functionaliy F3

cgka uses the original confidential predicate from Fcgka.
The simulator S3 is the same as S2.

In the remainder of this section, we show that if mmPKE is mmOW-RCCA secure, then SAIK guarantees
confidentiality, that is, that hybrids 2 and 3 are indistinguishable. Formally, we prove the following theorem.

Theorem 9. For any environment A, there exists an adversary B such that

Pr
[
idealF3

cgka,S3(A)⇒ 1
]
− Pr

[
idealF2

cgka,S2(A)⇒ 1
]

≤ 4q2
eqh/2κ + q2

e log(qn) ·AdvmmOW-RCCA
mmPKE,qe log(qn),qn(B),

where the HKDF functions are modeled as a random oracle and where qn, qh and qe are upper bounds on,
respectively, the group size, the number of A’s hash queries and the number of epochs.

Game-based perspective. For better intuition, observe that hybrids 2 and 3 are almost identical. In
both experiments, the environment interacts with the CGKA functionality and the same simulator. The
only difference is that group keys in confidential epochs are real in hybrid 2 (technically, computed by
the simulator according to SAIK) and random and independent in hybrid 3 (technically, sampled by
F3

cgka). This means that distinguishing between hybrids 2 and 3 can be seen as a typical confidentiality
game for CGKA schemes. The adversary in the game corresponds to the environment A. The adversary’s
challenge queries correspond to A’s GetKey inputs on behalf of parties in confidential epochs and its
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reveal-session key queries correspond to A’s GetKey inputs in non-confidential epochs. To disable trivial
wins, confidential epochs where a random key has been outputted are marked by setting a flag chall. A
and the adversary in the game are not allowed to corrupt if this makes such an epoch non-confidential.
Key Graphs. A key graph visualizes different secrets created in an execution of SAIK and hash relations
between them. Each node in the graph corresponds to a secret, e.g. the group key in epoch 5, and has
assigned its value. The directed edges are interpreted as follows: the value of a node is the hash of the
values of all its in-neighbors with an appropriate label. If a node has many out-neighbors, then the value
of each out-neighbor is computed by hashing with a different label (i.e., the values of out-neighbors are
domain-separated). Values of source nodes are either chosen at random by the protocol or injected by
the adversary. The key-graph nodes are partitioned by epochs: Secrets of an epoch epid are those created
when epid is created. We distinguish two types of secrets: group secrets which include the init, joiner and
epoch secrets as well as the group key, and individual secrets, which include path secrets, the last being
the commit secret. An example key graph is given below. We removed membership secrets for simplicity.
Note that the epochs 6 and 7 are created in parallel, that is, we have a group fork.

Note that in case of injections the values of nodes may not be unique. However, the values of epoch
secrets uniquely identify epochs. Note also that the values of group secrets of epid appear only in the
states of parties in epid. On the other hand, mmPKE keys derived from path secrets of epid appear in
ratchet trees stored by parties in multiple epochs.

joiner epoch

group key

init

commit

path

path epoch 5

joiner epoch

group key

init

commit

path epoch 7

joiner epoch

group key

init

commit

path epoch 6

Bad events. Let A be any environment. The goal is to show that A cannot distinguish the real group
keys of confidential epochs it sees in hybrid 2 from random and independent keys in hybrid 3. Since epochs
in detached trees are not confidential, in the remainder of the proof we only consider epochs in the main
history-graph tree.

Observe that there are only two dependencies between the real group key appSec of an epoch epid
and the rest of the experiment: appSec is stored by parties in epid and it is the hash of epid’s unique
epoch secret epSec. If epid is confidential, then no party in epid, i.e., no party storing appSec is corrupted.
Therefore, unless A inputs epSec to the RO, the real group key is independent of the rest of the experiment.
In other words, unless A inputs epSec to the RO, the real group key outputted in hybrid 2 is distributed
identically as the random key in hybrid 3.

Therefore, A’s distinguishing advantage is upper-bounded by the probability that the following event
SecsHashedepid occurs for at least one epoch epid. For convenience, the event is more general and also
considers init and joiner secrets.

Event SecsHashedepid : At the end of the experiment, epid is confidential and epid’s init, epoch or joiner
secret is contained in a value inputted by A to the RO.

Formally, it is left to prove the following lemma.

Lemma 4. There exists a reduction B such that

Pr[∃epid : SecsHashedepid] ≤ 4q2
eqh/2κ + q2

e log(qn) ·AdvmmIND-RCCA
mmPKE,qe log(qn),qn(B).

Bounding the probability of bad events. Recall that an epoch epid is confidential if *grp-secs-secure(epid)
is true (all predicates are defined in Fig. 7). The latter predicate is recursive, starting at the root epoch
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with epid = 0. Accordingly, we will prove a recursive upper bound on the probability of SecsHashedepid.
Formally, Lemma 4 is implied by the following lemma.

Lemma 5. There exists a reduction B and some events BreaksRCCAepid
18 for epid ∈ N such that

a) Pr[∃epid : SecsHashed0] ≤ 4qh/2κ.
b) For each epid > 0 with parent epidp,

Pr[SecsHashedepid] ≤ 4qh/2κ + Pr[SecsHashedepidp ] + Pr[BreaksRCCAepid].

c) Pr[∃epid : BreaksRCCAepid] ≤ qe log(qn) ·AdvmmIND-RCCA
mmPKE,qe log(qn),qn(B).

To see that Lemma 5 implies Lemma 4, observe that Lemma 5 implies

Pr[SecsHashedepid] ≤
epid−1∑
i=0

(4qh/2κ + Pr[BreaksRCCAi])

≤ 4qeqh/2κ + Pr[∃epid : BreaksRCCAepid]
≤ 4qeqh/2κ + qe log(qn) ·AdvmmIND-RCCA

mmPKE,qe log(qn),qn(B),

where the first step follows from a) and b) in Lemma 5. Since by the union bound, Pr[∃epid : SecsHashedepid] ≤
qe ·maxepid Pr[SecsHashedepid], we get Lemma 4.
Proof of Lemma 5 a). The root epoch does not have joiner and epoch secrets. The init secret of epoch 0
is chosen at random by the group creator idcreator. Moreover, it is independent of the rest of the experiment
apart from being stored by idcreator in epoch 0. The reason is that any other values are derived by first
hashing it, and outputs of the RO are independent of the inputs. If epoch 0 is confidential, then idcreator
is not corrupted in epoch 0, so A has no information about the init secret. Therefore, the best strategy
for A to trigger SecsHashed0 is by guessing the init secret, which succeeds with probability at most
qh/2κ < 4qh/2κ.
Proof of Lemma 5 b). Take any non-root epoch epid > 0 with parent epidp. Let initSec, epSec, joinerSec
and commitSec denote epid’s init, epoch, joiner and commit secrets. Let initSecp denote epidp’s init secret.

Observe that the only dependencies between initSec, epSec, joinerSec and the rest of the experiment are
as follows: 1) initSec is stored by parties in epid, 2) joinerSec is the output of the RO on input commitSec
together with initSecp, 3) joinerSec is encrypted to new members. (Note that any other values are derived
by first hashing it, and outputs of the RO are independent of the inputs.)

Assume for a moment that epid is confidential. Then, no party in epid is corrupted, so depen-
dency 1) does not exist. Recall that confidentiality requires that either *grp-secs-secure(epidp) or
*all-ind-secs-secure(epid) is true. Observe that dependency 2) does not exist either unless one of the
following events occurs:

Event InitHashedepidp : At the end of the experiment, *grp-secs-secure(epidp) is true and initSecp (of
epidp) is contained in some value inputted by A to the RO.

Event CommHashedepid : At the end of the experiment, *all-ind-secs-secure( epid) is true and
commitSec (of epid) is contained in some value inputted by A to the RO.

This means that unless InitHashedepidp or CommHashedepid occurs, A has no information about initSec
and epSec. Therefore, the best strategy for A to trigger SecsHashedepid is to either guess initSec or epSec
at random, or trigger one of the above events, or input the joiner secret based only on dependency 3). We
capture the last event by

Event joinerSecepid : At the end of the experiment, none of the values inputted by A to the RO includes
initSecp (of epidp) and commitSec (of epid) together, but some value contains joinerSec (of epid).

Therefore, we have

Pr [SecsHashedepid] ≤ 2qh/2κ + Pr[InitHashedepidp ] + Pr [CommHashedepid] .

By definition, Pr[InitHashedepidp ] ≤ Pr[SecsHashedepidp ]. Moreover, we define

18 The lemma implies Lemma 4 no matter what BreaksRCCAepid is. The name will become clear later in the proof.
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Event BreaksRCCAepid : Either CommHashedepid or JoinHashedepid occurs.19

This proves the claim.
Proof of Lemma 5 c). We construct two reductions B1 and B2 whose advantages bound the probability
of ∃epid : JoinHashedepid and of ∃epid : CommHashedepid, respectively.

Lemma 6. There exists a reduction B1 such that

Pr(∃epid : JoinHashedepid) ≤ qe ·AdvmmIND-RCCA
mmPKE,1,qn (B1).

Proof. Take any epoch epid with parent epidp (the root does not have a joiner secret). Observe that the
joiner secret of epid is never stored in the state of SAIK. Moreover, the only message that may include it is
the message creating epid which potentially encrypts it to a new member. This means that if A does not
input to the RO the init secret of epidp together with the commit secret of epid, then the only part of its
view that may depend on the joiner of epid is the ciphertext in the message creating epid. In particular, if
epid is honestly created and adds a party idr, then the ciphertext encrypts the joiner under idr’s key from
the AKS (i.e., our PKI). Since the AKS is uncorruptible and idr deletes the secret key immediately after
using it, this means that inputting the joiner to the RO implies breaking security of mmPKE.

More formally, consider the following reduction B1 playing the mmOW-RCCA game with 1 user. B1
guesses an epoch epid∗ ∈ [qe] and runs A, emulating the CGKA functionality and the simulator as in
hybrid 2. If epid∗ is injected or not created on an add, B1’s emulation is identical to hybrid 2. Otherwise,
B1’s emulation will be identical to hybrid 2 but where the joiner secret joinerSec∗ of epid∗ is replaced the
mmOW-RCCA challenge message m∗. B1 will use a special symbos ‘test’ to denote this unknown value of
m∗ in the emulation.

In particular, when an ids creates epid∗ while adding an idr, B1 embeds the single public key ek∗
from its game as the key generated for idr by the AKS (recall that the AKS generates the key pair
(ek∗, dk∗) at the moment ids requests it to create the epoch). Further, B1 computes SAIK’s state for epid∗
according to the protocol. It then replaces the (fresh) joiner secret generated by SAIK by ‘test’ in all
places, including the programmed RO inputs and outputs. Finally, B1 sends to the challenger the message
vector ~m encrypted by ids and the last index in this vector, denoting the (only) position of the joiner
secret. The challenger sends back a ciphertext C∗, which B1 uses in the message sent by ids.

If idr uses dk∗, B1 uses the Dec oracle. Note that Dec may output ‘test’, which is used consistently
with the symbol for the unknown joiner m∗. If A inputs to tje RO the init secret initSec∗ of epid∗’s parent
together with the commit commitSec∗ of epid∗, B1 halts and gives up. At the end of the experiment, B1
searches all A’s queries to the RO for an m∗ that allows it to win.

We first claim that, until B1 gives up or the experiment ends, its emulation is perfect. In particular, since
A does not input initSec∗ with commitSec∗ to the RO, which means that, apart from C∗, its experiment
is independent of joinerSec∗. This means that B1 simulates it perfectly by using ‘test’ instead of joinerSec∗.
Second, we claim that if JoinHashedepid∗ occurs, then B1 wins. Indeed, the event guarantees that A inputs
m∗ to the RO and B1 does not give up A does not input initSec∗ with commitSec∗ to the RO.

Therefore, we have

AdvmmIND-RCCA
mmPKE,1,qn (B1) ≥ Pr(JoinHashedepid∗) ≥ 1/qe Pr(∃epid : JoinHashedepid).

�

Lemma 7. There exists a reduction B2 such that

Pr(∃epid : CommHashedepid) ≤ qe ·AdvmmIND-RCCA
mmPKE,qe log(qn),qn(B2).

Proof. We start by describing the reduction B. Recall that SAIK generates mmPKE key pairs and
ciphertexts when epochs are created: When a party ids creates an epoch, it generates a hash chain of
secrets, consisting of log(qn) path secrets and the commit secret. Each path secret is then hashed to obtain
randomness used to generate a single key pair. Moreover, if a new member is added, its new mmPKE key
pair is generated by the AKS. Then, ids sends out all new public keys and a single ciphertext encrypting
secrets to different recipients.

The reduction B runs A, emulating the functionality and the simulator executing SAIK as in hybrid 2
with the following differences. First B embeds public keys from the mmOW-RCCA game as public keys
19 Intuitively, the only dependency between the commit and joiner secrets comes from encryptions, so inputting

the secrets to the RO requires breaking IND-RCCA.
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sent when epochs are created. It generates all secrets itself independently of the key pairs. Further, it picks
a random epoch epid∗ and a random index i∗ ∈ [log(qn)]. When epid∗ is created, B asks the challenger for
an encryption C∗ of the secrets B generated, but with the i∗-th secret replaced by the challenge message
s∗ B is supposed to compute. C∗ is then embedded in the sent message. For the the unknown value of the
i∗-th secret, Bepid uses a special symbol ‘test’ (it is used for bookkeeping, e.g. to consistently program the
RO).20

When a party is corrupted, B corrupts all receivers whose secret keys are in the party’s state. When A
sends a new value to the RO, B checks if it contains its solution s∗ and, if so, sends it to the challenger
and halts. Otherwise, B programs the RO consistently with already generated values. Importantly, if the
output is key-generation randomness for an mmOW-RCCA receiver, B corrupts this receiver to obtain it.
(Here we use programmability to deal with adaptive corruptions.)

When a party idr receives a message, B runs idr’s protocol with the help of the Dec oracle. Note that
Dec may output ‘test’, which B uses for the unknown value of the i∗-th secret.
Precise description of B. At the beginning, B guesses an epoch epid∗ ∈ [qe] and an index i∗ ∈ [log(an)].
Then, it runs A, emulating for it the functionality and the simulator by running their code with the
following differences.

Recall that the simulator stores a single ratchet tree per epoch. B modifies these trees by assigning
to each node two additional labels: one storing a receiver in the mmOW-RCCA game and one storing a
secret. The root’s secret stores the epoch’s commit secret. The secret of any other internal node stores the
path secret from which its key pair was derived. The leaf’s secrets are not used. Alternatively, a secret
can be set to ⊥ in case of injections or ‘test’ to denote the unknown mmOW-RCCA challenge s∗. A joiner
secret can also take value ‘test’. Secret keys in the ratchet tree will not be used.

To emulate the RO, B keeps a table of programmed input-output pairs. Some inputs and outputs may
contain a special symbol ‘test’. The symbol is not in the RO input domain, so it cannot be inputted by A
(but it will be used by B when the protocol evaluates hashes). Whenever A sends a new input, B first
checks if it contains its solution and halts if this is the case. Else, it checks if the output should be equal
to key-generation randomness derived from a path secret in some ratchet tree node. If so, B corrupts the
node’s receiver to obtain the RO output. Else, it programs a fresh value.

Further, B makes the following changes to how the functionality and simulator process different inputs
of A.

– ids sends. B generates the new epoch and the message handed to A as follows:
1. Generate the new epoch’s path secrets, as well as all secrets in the key schedule at random. If the

created epoch is epid∗, replace the i∗-th secret (a path, commit or joiner secret) by ‘test’. Program
the RO according to how the secrets are derived.

2. Generate the new epoch’s ratchet tree: Copy the ratchet tree from ids’s epoch, apply the action
and (re-)assign node labels as follows: For each node on ids’s path and, in case of an add, the
node of the new member, set the mmOW-RCCA receiver to the next receiver not appearing in any
ratchet tree, and set the public key to the public key of its receivers. The path secret of ids leaf is
⊥ (since its key pair is generated using fresh randomness) and the path secret of each node above
it is set to the secret chosen in Step 1.

3. Generate the ciphertext included in the sent packet: If the created epoch is not epid∗, then simply
encrypt the secrets. Else, compute the public key vector ~ek and message vector ~m with the secrets
as in the protocol. Let S be the set of all i such that ~m[i] = ‘test’. B sends ~ek, ~m and S to the
challenger to obtain the sent ciphertext.

4. Use the above values to complete emulating the functionality and the simulator as in their code.
– idr receives a message removing it. If the message removes idr, then it carries no secrets, so B

simply runs idr’s protocol.
– A current member idr receives a message not removing it. B first decrypts the path secret s

from the packet. Say idr uses the keys in a ratchet-tree node v to decrypt. If v has an mmOW-RCCA
receiver assigned, B sets s to the output of the decryption oracle. Else, if v has no receiver but it has
a path secret, B derives v’s key pair by hashing the secret, programming the RO if necessary, and
decrypts s. Else, it rejects the packet on behalf of the simulator.
After decrypting, B checks if s is the solution s∗ and halts if this is the case. If not, it proceeds as
follows.

20 One may expect that if CommHashedepid occurs, then the challenge can be embedded in the commit secret
inputted by A to the RO. Intuitively, this cannot work, because confidentiality of the commit secret clearly relies
on the confidentiality of path secrets before it and of path secrets from which encryption keys were derived.

52



B computes the epoch secret epSec that identifies the epoch into which idr transitions. The value of
epSec is derived from s the same way as in the protocol, where hashes are evaluated using the RO
table and the RO is programmed to a fresh value if necessary. Note that some evaluations may involve
the symbol ‘test’.
If id transitions to an injected epoch, B creates or updates the epoch as follows:
1. If the epoch does not exist, create its ratchet tree by applying the action specified in the packet to

the ratchet tree from id’s current epoch and set public keys, secrets and mmOW-RCCA receivers
of all nodes on the re-keyed path to ⊥. Set the init, epoch and joiner secrets to those derived from
epSec.

2. Let u be the least common ancestor of the sender’s and id’s leaves in the ratchet tree. Use the
decrypted secret s to derive and assign the path secrets and public keys for u and each node
above it by evaluating the RO, programming if necessary. (In case the tree already existed, this
potentially adds missing secrets to it.)

3. Assign to each node below u the public key from the packet.
Finally, B verifies if idr accepts the packet, as in the simulator. If it does, then B transitions idr. Else,
it undoes all changes.

– A new member idr receives a message. In this case idr receives two ciphertexts, one with its path
secret and one with the joiner secret. B decrypts these secrets as in case a current member receives a
message. If one of them is the solution s∗, B sends it to the challenger and halts.
Then, B computes the epoch secret of the epoch into which idr transitions by hashing the decrypted
joiner secret. If this epoch is injected, B creates or updates it the same way as when current member
receives. Note that if the epoch does not exist, B uses the public part of the ratchet tree from idr’s
packet.

– Expose. When id is exposed, B computes its mmPKE secret keys by hashing the path secrets from
the ratchet tree in id’s current epoch. B corrupts the mmOW-RCCA receivers if necessary.

The reduction wins. Assume CommHashedepid occurs. We show that there exist epid∗ and i∗ such that
B wins. We start with a simple observation.

Lemma 8. If *all-ind-secs-secure(epid) is true, then for each v in τ , v.ek is generated during an
honest send.

Proof. Take any v in τ . Let epid0 be the epoch which introduces v.ek and let ids be its (alleged) creator.
Assume towards a contradiction that epid0 is injected. If epid0 = epid, then we immediately get a
contradiction with CommHashedepid. Else, this means that *ind-secs-bad(epid0, ids) is true. Moreover, no
epoch between epid0 and epid, including epid, is created by ids or removes it, since this would replace v’s
keys. Therefore, *ind-secs-secure(epid, ids) is false and *all-ind-secs-secure(epid) is false, which
contradicts CommHashedepid. �

Let τ be the ratchet tree in epid. By Lemma 8, we can assign to each internal node v in τ a secret:
each non-root node is assigned the path secret s encrypted by B when v’s public key was introduced and
the root is assigned the commit secret of epid. CommHashedepid guarantees that A inputs to the RO the
secret of at least one node, namely the root. Let v∗ be a node in τ with the maximal distance from the
root whose secret s∗ is inputted by A to the RO. Let epid∗ be the epoch before epid which creates v∗’s
secret s∗. We claim that B wins with the guess epid∗ and i∗ set to v∗’s index.

Indeed, epid∗ is honestly created (by Lemma 8), so B can embed the challenge. It is left to show that
each public key used to encrypt s∗ belongs to an uncorrupted mmOW-RCCA receiver. For this, observe
that each such key belongs to a node v in v∗’s sub-tree in the ratchet tree τ∗ of epid∗. Moreover, v’s key
does not change between epid∗ and epid, since this would replace v∗’s keys as well. By Lemma 8, this
means that v’s key belongs to some mmOW-RCCA receiver.

It remains to show that this receiver is not corrupted. This can happen in two cases: 1) if A inputs to
the RO the path secret from which v’s key pair was derived or 2) A corrupts a party holding v’s secret
key. Case 1) cannot occur for the following reason: v’s key pair can only be derived from the secret of
an internal node u below v in τ∗. Note that u is also below v∗ in τ∗. Therefore, u’s secret (and keys) do
not change between epid∗ and epid, since this would replace v∗’s keys as well. Since v∗ has the maximal
distance among nodes with secrets inputted to the RO, A does not input u’s secret. Finally, we show that
case 2) cannot occur as well.

Lemma 9. If *all-ind-secs-secure(epid) is true, then for each v in τ , no party holding v.dk is
corrupted.
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Proof. Take any node v in τ . Further, let epid0 be the epoch which introduces v.ek and let epid1, . . . , epid`
be the epochs after epid0 that can be reached from it without v’s keys being replaced. Note that these
epochs form a tree rooted at epid0.

We first observe that v’s subtree is the same in the ratchet trees of all epochs epid0, . . . , epid`, because
any modification replaces v’s keys. Moreover, epid is one of these epochs, so this subtree is the same as in
τ . Let id1, . . . , idn be the parties in v’s subtree in τ .

Second, we observe that if *all-ind-secs-secure(epid) is true, then no idi is corrupted in any epoch
epidj . The reason is that for any idi, each epidj is connected to epid, which is one of epid0, . . . , epid`, by a
sequence of epochs not created by idi and not removing or adding it. This is because any such operation
would replace v’s keys. Therefore, if idi was corrupted in some epidj , then *ind-secs-secure(epid, idi)
would be false and *all-ind-secs-secure(epid) would be false, which contradicts CommitHashedepid.

Finally, it is left to show that v.dk is held only by id1, . . . , idn in epochs epid0, . . . , epid`. It is easy to
see that this is implied by the following statement:

Statement : Assume an id⊥ in an epoch epid⊥ stores a secret key for a ratchet tree node v⊥ such that
v⊥.dk = v.ek for some v in τ . Then, there is party idi and a path between epid and epid⊥ that does
not heal idi, i.e., no epoch on the path is created by idi, removes it or adds it.

We next prove the above statement by induction on the height of v⊥. For the base case where v⊥ is a leaf,
observe that v⊥’s keys are not generated from a seed and that v⊥.dk is only stored by v⊥’s owner after it
generates it while creating an epoch. So, v⊥.dk = v.dk can only happen if v⊥.dk is generated by an idi
when it creates an epoch epid0 before epid. Therefore, epid0 is a common ancestor of epid⊥ and epid and
can be reached from both epochs by a path that does not heal idi.

Now assume v⊥ is an internal node and the statement holds for any node with smaller height. Let
epid⊥0 be the epoch before epid⊥ that introduces v⊥.dk into the state of id⊥. Further, let epid0 be the
epoch that introduces v.dk into τ .

We have two cases: First, if epid⊥0 is not injected, then we must have epid⊥0 = epid0. The reason is that
the only non-injected epoch introducing v.ek is epid0. Moreover, all parties transitioning to epid⊥0 = epid0
agree on the public ratchet tree, so v⊥ = v and the subtree of v⊥ = v is the same in epid and epid⊥.
Therefore, the statement is obvious in this case.

Second, assume epid⊥0 is injected. Let u⊥ be the node in the ratchet tree of epid⊥0 used by id⊥ to
decrypt v⊥’s path secret s. For this proof sketch, we assume that there exists a node u such that u.ek
corresponds to u⊥.dk and u.ek was used to encrypt s when epid0 was created.21 This means that u is in
the subtree of v in epid0 and, since this tree is the same as in τ , also in the subtree of v in epid. Further,
u⊥ is in the subtree of v⊥ in epid⊥0 and, since this tree is the same as in v⊥’s subtree in epid⊥, also in the
subtree of v⊥ in epid⊥. Moreover, u⊥ is strictly below v⊥ and u⊥.dk = u.dk, so by induction hypothesis,
there is anidi and a path between epid and epid⊥ that does not heal idi. �

F.3 SAIK Guarantees Authenticity

The fourth and final Hybrid introduces authenticity, which is formalized by restoring the authentic
predicate. It is the ideal experiment with Fcgka.

Hybrid 4: idealF4
cgka,S4 . The functionality F4

cgka uses the original authentic predicate from Fcgka.
The simulator S4 is the same as S4.

In the remainder of this section, we show that if HRS is unforgeable (SEUF-RCMA and AEUF-RCMA)
and key committing (RKC) and if mmPKE is mmOW-RCCA secure, then SAIK guarantees authenticity,
that is, hybrids 3 and 4 are indistinguishable. (Security of mmPKE is used to guarantee secrecy of the
symmetric membership keys used by HRS.)
Game-based perspective. Observe that hybrids 3 and 4 are identical unless an authentic epoch is
created by a message injected by A. We call this bad event Forges. It is easy to see that A’s advantage in
distinguishing the hybrids is upper bounded by the probability of Forges. This means that distinguishing
hybrids 3 and 4 can be seen as a typical authenticity game, where the adversary wins by forging messages
accepted by the protocol, as expressed by Forges.
21 This is only false if A manages to re-encrypt a securely encrypted s under a different key. Being able to do so

implies breaking security of mmPKE. Formally, the reduction Bepid in the full proof searches for the solution s∗

in both A’s RO queries and injected messages that it decrypts using the Dec oracle or some other known keys.
Accordingly, v∗ is taken to be the lowest whose secret is not inputted to the RO or re-encrypted and injected.
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Two bad events. Let A be any environment. As stated above, hybrids 3 and 4 are identical unless A
triggers Forges, so the goal is to upper bound the probability that it occurs. Since epochs in detached trees
are not authentic and the root epoch with epid = 0 cannot be injected by definition, in the remainder of
the proof we only consider non-root epochs in the main history-graph tree. Such epochs are authentic in
two cases: if in their parent epochs either the group secrets or the individual secrets of their creators are
secure. Accordingly, we define two sub-events of Forges depending on which secrets are secure:

Event ForgesAsym: There exists an epoch epid with parent epidp and creator ids such that HG[epid].inj
and *ind-secs-secure(epidp, ids) are both true.

Event ForgesSym: There exists an epoch epid with parent epidp such that HG[epid].inj and *grp-secs-secure(epidp)
are both true.

It remains to bound the probability of each ForgesAsym and ForgesSym.
Notation. In case ForgesAsym or ForgesSym occurs for epoch epid with parent epidp, we denote by ids the
creator of epid. Further, we let idr be the group member accepting the injected message creating epid and
we let vkr, kr, ~mr, rpr and σr be the values inputted by idr to HRS.Vrfy when accepting the message.
Asymmetric forgery. We next prove the following lemma

Lemma 10. There exist reductions B1 and B2 such that

Pr[ForgesAsym] ≤ 2qe ·AdvAEUF-RCMA
HRS (B1) + 2qe ·AdvRKC

HRS(B2).

Both B1 and B2 run A identically; the only difference between them is in how they find forgeries.
Specifically, the reductions emulate hybrid 3 for A and embed the challenge key vk∗ as one of the verification
keys honestly generated during the execution. Keys are honestly generated when group members create
epochs during send: each send introduces one new key pair for the sender and, in case of an add, one for
the added member (in this case, it is generated by the AKS at the moment of send). Therefore, there are
at most 2qe key pairs. Which key is replaced by vk∗ is chosen at random. The reductions use the Sign
oracle to sign honestly sent messages that verify with vk∗. If a party holding the corresponding sk∗ is
corrupted, they give up.

The next three claims show that with probability at least Pr[ForgesAsym]/(2qe), both ForgesAsym occurs
and vkr = vk∗ (see notation above). Moreover, if this happens, then one of the reductions wins.

Claim. The probability of vkr = vk∗ is at least Pr[ForgesAsym]/(2qe)

Proof. We will show that if ForgesAsym occurs, then vkr is honestly generated. Since there are at most 2qe
honestly generated keys, this proves the claim.

Assume ForgesAsym occurs. Notice that vkr is introduced into idr’s state when it accepts a message from
ids that transitions it into an ancestor epid0 of epids. Observe first that epid0 is not injected. The reason is
that no epoch between epid0 and epids is created by ids or removes it, since this would remove vkr from idr’s
state. So, if epid0 was injected, *ind-secs-bad(epid0, ids) would be true and *ind-secs-secure(epids, ids)
would be false, which contradicts ForgesAsym.

This means that ids created epid0 during a send operation and at that point generated an honest
verification key vks for itself. We know (from the proof that SAIK guarantees consistency) that parties in
the same epoch agree on the ratchet tree, which contains all verification keys. Therefore, vkr = vks, so vkr
is honestly generated. �

Both reductions lose in case a party holding sk∗ is corrupted. We next show that under right conditions
this does not happen.

Claim. If ForgesAsym occurs and vkr = vk∗, then no party holding sk∗ is corrupted.

Proof. Assume towards a contradiction that ForgesAsym occurs, vk = vk∗ and a party holding sk∗ is
corrupted in some epoch epid⊥. Let epid⊥0 be the epoch before epid⊥ which introduces sk∗ into its state.

Observe that (honest) parties only store the signing keys that they generate themselves while creating
epochs or that the AKS generates for them when they are added. Moreover, such honestly generated keys
are not re-computed and the AKS generates a fresh key pair each time a party is added. This means that
the corrupted party is ids. Moreover, if epid⊥0 is not injected, then it is the epoch epid0 which introduces
vk∗ into the state of idr. If, on the other hand, epid⊥0 is injected, then it must add ids (and not be created
by it).
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Observe further that epid⊥0 and epid⊥ are connected by a path of epochs all of which were not
created by ids and not removing it, as this would remove sk∗. The epochs epid0 and epids are con-
nected by a path with the same property. Therefore, if epid⊥0 is not injected, then epids can be reached,
through epid⊥0 = epid0, from epid⊥ where ids is corrupted via a path with above property. This makes
*ind-secs-secure(epids, ids) false, contradicting ForgesAsym. Moreover, it is easy to see that if epid⊥0
is injected, then *exposed-ind-secs-weak(epids, ids) would be true, which again makes the predicate
*ind-secs-secure(epids, ids) false. �

It is left to explain how B1 or B2 can find a forgery with which it wins.

Claim. If ForgesAsym occurs and vkr = vk∗, then either B1 wins with the forgery kr, ~mr, rpr and σr, or
there are k′ and ~m′ such that B2 wins with k′, kr, ~m′, rpr and σr.

Proof. Assume ForgesAsym occurs and vk = vk∗. Further, assume that B1 does not win with kr, ~mr, rpr
and σr. This can only happen if the req statement in the AEUF-RCMA game is violated, i.e., there exists
an ~m′ sent to the Sign oracle such that ~mr = rpr(~m′). B1 only sends ~m′ to the Sign oracle when ids creates
epochs (since this is the only party signing with the honest sk∗). Let epid′ denote the epoch created when
~m′ was sent to Sign, and let epid′p denote the parent of epid′.

If epidp 6= epid′p, then k 6= k′, because membership keys k and k′ are derived from epoch keys, which
uniquely identify epochs. Therefore, in this case B2 wins.

Finally, we show that epidp = epid′p leads to a contradiction. Observe that in this case, the group state
in epid′ is computed by ids who modifies the state in epidp consistently with ~m′. Further, the group state
in epid is computed by idr who also modifies the state in epidp, this time consistently with ~mr and rpr.
Since ~mr = rpr(~m′), these modifications are the same. Therefore, epid = epid′. However, epid is injected
and epid′ is honest, which is a contradiction. �

Symmetric forgery. We next prove the following lemma

Lemma 11. There exist reductions B3 and B4 such that

Pr[ForgesSym] ≤ qe ·AdvSEUF-RCMA
HRS (B3)

+ 3q2
eqh/2κ + q3

e log(qn) ·AdvmmOW-RCCA
mmPKE,qe log(qn),qn(B4).

At a high level, B3 first guesses the epochs epid and epidp that make ForgesSym occur. Then, it emulates
hybrid 3 for A, except instead of the membership key in epidp, B3 uses its SEUF-RCMA Sign and Verify
oracles. The fact that *grp-secs-secure(epidp) is true will ensure that if A distinguishes B3’s emulation
from hybrid 3, then a reduction B4 wins the mmOW-RCCA game. Further, the fact that epid is injected
will ensure that B3 wins. A formal proof follows.

Consider the following experiments.

Hybrid 3.1 : The same as hybrid 3, except at the beginning A announces an epoch epidp and the
experiment stops as soon as confidential(epidp) becomes false.

Hybrid 3.2 : The same as hybrid 3.1, except the membership key membKey in epidp announced by A
is random and independent.

Further, we define events analogous to ForgesSym but in hybrids 3.1 and 3.2:

Events ForgesSymi for i ∈ {1, 2} : At the end of hybrid i, there exists an epoch epid with parent epidp
announced by A such that HG[epid].inj is true.

Clearly, for the environment A′ that guesses epidp, we have Pr[ForgesSym1] ≥ 1/qe · Pr[ForgesSym]. It
remains to upper bound Pr[ForgesSym1]. We do this in two steps, formalized by the next two claims.

Claim. There exists a reduction B2 such that

Pr(ForgesSym2)− Pr(ForgesSym1)
≤ q2

e log(qn) ·AdvmmOW-RCCA
mmPKE,qe,qe log(qn),qn(B2) + 3q2

eqn/2κ.

Proof. Observe that the membership key is derived the same way as the group key — each key is the
result of hashing the epoch secret with a different label. Therefore, the proof is analogous to the proof of
Theorem 9. �
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Claim. There exists a reduction B1 such that

Pr(ForgesSym2) ≤ AdvSEUF-RCMA
HRS (B1).

Proof. B1 emulates hybrid 3.2 for A′, except instead of the membership key in epidp announced by A′,
B1 uses its SEUF-RCMA Sign and Verify oracles. Observe that confidential(epids) is always true, so no
party is corrupted in epidp. Membership keys are unique per epochs, so this means that the key from B1’s
game is not leaked upon corruption. Therefore, B1 simulates the experiment perfectly.

If ForgesSym2 occurs for a child epid of epidp, B1 halts and sends to the challenger vk, ~m, rp and σ
inputted by an idr who transitioned to epid from epidp as a current group member (i.e., idr does not join
into epid). Note that there must be such a member, because epidp is injected, so it is created when an
idr receives a message and it is not in a detached tree, so it must have been attached when some idr
transitioned there from the main tree.

Assume towards a contradiction that B1 does not win with the above solution. Since idr checked
that the HRS verification outputs 1, this can only happen if B1 sent to the Sign oracle a ~m′ such that
~m = rp(~m′). B1 uses the oracle only for messages sent by parties in epidp (since membership keys are
unique). Therefore, ~m′ was sent to the oracle when some ids created an epoch epid′ as a child of epidp.
Observe that the group state in epid′ is computed by ids who modifies the state in epidp consistently
with ~m′. Further, the group state in epid is computed by idr who also modifies the state in epidp, this
time consistently with ~mr and rpr. Since ~mr = rpr(~m′), these modifications are the same. Therefore,
epid = epid′. However, epid is injected and epid′ is honest, which is a contradiction. �
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