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Abstract

With an eye towards applications in cryptography, we consider the problem of evaluating boolean
functions through affine-linear arithmetic functionals. We show that each subset of the discrete unit cube
admits an exact covering by affine hyperplanes (over a sufficiently large prime field). We study the com-
plexity class consisting of boolean functions whose on-sets and off-sets admit coverings by polynomially
many hyperplanes. This extends and improves upon a framework of Ishai and Kushilevitz (FOCS ’00).
We also investigate a number of concrete examples.

We moreover study the concrete construction of compact coverings, and provide new geometric algo-
rithms. Our logic synthesizer constructs affine coverings of cube subsets using a recursive backtracking
procedure, and minimizes the total number of flats used; it may be of independent interest. This repre-
sents a new paradigm in boolean logic minimization. We relate this paradigm to classical logic synthesis.

Applying our paradigm, we present a general protocol for commitment-consistent secure two-party
computation with an untrusted third party, generalizing a construction of Wagh, Gupta, and Chandran
(PETS ’19). Our generalization supports the secure evaluation of arbitrary boolean functionalities; we
also add commitment-consistency and malicious security under one corruption. We report on a highly
efficient implementation of a specialization of this general protocol to a certain natural boolean function.

1 Introduction

There remains a “chasm” between secure protocols designed for boolean circuits (see e.g. [FLNW17,
KRRW18]) and protocols for arithmetic circuits over large prime fields (see e.g. [DKL+13, FPY18]). The
crucial role of boolean functions—for equality and comparison, for example—has impelled the development
of accommodations in the arithmetic setting, typically involving either “bit-decomposition” protocols (see
e.g. [DFK+06, NO07]) or ad-hoc techniques for specific functions (see [NO07]).

Even once secrets are bit-decomposed—represented as shared bits 〈x0〉 , . . . , 〈xn−1〉 over a prime p, say—it
remains necessary to evaluate the desired boolean function over the shares. Techniques for this task typically
“arithmetize” the requisite circuit in an ad-hoc manner, often using subprotocols for the computation of AND
and OR gates (see for example [DFK+06, §5], [DEF+19, Fig. 6], [WGC19, Alg. 3]).

In parallel, a long line of theoretical work has studied the representation of boolean functions f : {0, 1}n →
{0, 1} by algebraic objects, such as multivariate polynomials F : Fnp → Fp. Shamir’s classic paper [Sha92]
represents the particular class of quantified boolean formulas f on n variables as polynomial-degree multi-
variate polynomials over primes p of polynomially many bits; [Sha92] does not study the concrete sizes of
these representations or of their primes, and does not study efficient representations of particular functions.
Ishai and Kushilevitz [IK00, IK02]’s randomizing polynomials represent boolean functions f as vectors of
constant-degree polynomials with additional random inputs, which map input values to output distributions.

In this paper, we treat systematically the evaluation of boolean functions on bit-decomposed prime shares.
In fact, our techniques apply not just to secret-sharing schemes, but to arbitrary settings—like homomorphic
encryption and commitment schemes—which admit the natural structure of Fp-vector spaces.

∗With an appendix by Benjamin Diamond and Jason Long.
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Our paradigm unifies and improves upon several prior approaches. Significantly, we propose the use
of reducible multivariate polynomials F : Fnp → Fp, which fully split into linear factors over Fp. That is,
we represent boolean functions f : {0, 1}n → {0, 1} as products of affine-linear functionals Hi : Fnp → Fp.
Polynomials of this form “delay” all field multiplication to the end, and work extremely naturally and
efficiently in cryptographic schemes. In particular (see Definition 3.1 below):

Definition 1.1. We say that hyperplanes {Hi}m−1
i=0 disjointly cover S ⊂ {0, 1}n if S =

⊔m−1
i=0 Hi ∩ {0, 1}n.

Remarkably, any affine covering of this form immediately leads to a polynomial randomization of f , in a
sense made precise by Ishai and Kushilevitz [IK00]. Roughly speaking (see Theorem 3.11 below):

Theorem 1.2. Fix f : {0, 1}n → {0, 1} and a disjoint covering {Hi}m−1
i=0 of f−1(1). Then there are distinct

distributions D0 and D1 on Fnp and a random matrix R such that R·[Hi(x)]
m−1
i=0 = Df(x) for every x ∈ {0, 1}n.

That is, for each fixed input x ∈ {0, 1}, the distribution R · [Hi(x)]
m−1
i=0 = Df(x) depends only on f(x),

and not on x itself; moreover, the distributions D0 and D1 are efficiently sampleable and distinguishable.
In the language of [IK00], we show that degree-2 “randomizing polynomials”—[IK00] count random scalar
multipliers towards the function’s degree—suffice to compute arbitrary boolean functions. Crucially, we
circumvent the impossibility result of [IK00, Cor. 5.9] by slightly relaxing the main definition [IK00, Def. 2.1].
Specifically, we allow that the polynomials use “random inputs” (see [IK00, §2.1]) which are not necessarily
uniform and independent. (In particular, our matrix R does not have independently random components.)
This relaxation allows us to attain optimally-efficient—that is, degree-2—randomizing polynomials. This is
a major advance over [IK00]; we discuss it in detail in Subsection 3.2 below.

We spend much of Section 3 studying the existence and efficiency of hyperplane coverings. Corollary
3.15 below shows that any boolean function f : {0, 1}n → {0, 1} admits a hyperplane covering in the sense
of Definition 1.1 (though perhaps an exponentially large one). It appears that there is no obvious general
“compiler” from boolean circuits to (relatedly-sized) hyperplane coverings, though certain particular circuit
families admit efficient conversion procedures (see Corollaries 3.14 and 3.21 below). On the other hand,
certain functions which are not efficiently representable by (constant-depth) boolean circuits—like majority
and parity—admit highly efficient hyperplane coverings (see Examples 3.28 and 3.31 below). For example:

Example 1.3. Consider as f : {0, 1}n → {0, 1} (where n is even):

• The comparison function on two n
2 -bit unsigned integers.

• The Hamming-weight comparator function on two length-n2 bit strings.

• The majority function on n bits.

Then the off-sets and on-sets f−1(0) and f−1(1) respectively admit coverings using n
2 and n

2 +1 hyperplanes.

We moreover initiate the theoretical study of “hyperplane complexity”. We introduce the boolean com-
plexity class consisting of functions whose off-sets and on-sets can be covered using only polynomially many
hyperplanes (see Definition 3.3 below):

Definition 1.4. A sequence of functions {fn : {0, 1}n → {0, 1}}n∈N is efficiently computable by affine hyper-

planes if, for each n ∈ N, there exists an n-bit prime p and disjoint coverings f−1(0) =
⊔m−1
i=0 H0,i ∩ {0, 1}n

and f−1(1) =
⊔m−1
i=0 H1,i ∩ {0, 1}n using Fp-hyperplanes, where m moreover grows polynomially in n.

Though we are not able to concretely exhibit a function family which is not efficiently computable by
hyperplanes, we prove non-constructively—in the spirit of Shannon—that the vast majority of functions
require exponentially many hyperplanes to compute (see Theorem 3.4 below).

Fascinatingly, our setting admits a rich combinatorial-geometric interpretation. That f : {0, 1}n →
{0, 1} satisfies the hypothesis of Theorem 1.2 entails exactly that the functionals Hi : Fnp → Fp—viewed
as affine hyperplanes in Fnp—cover f ’s “on-set” in the discrete n-cube. We thus show that to evaluate
f : {0, 1}n → {0, 1} by arithmetic means amounts to finding a covering of f ’s on-set using affine hyperplanes
(using minimally many moreover, for efficiency reasons). This problem admits important analogies with
classical problems in logic synthesis.

2



In lieu of an abstract compilation procedure between circuits and hyperplane coverings, we provide a
computation-geometric algorithm which constructs a compact hyperplane covering, given a prime p and an
arbitrary boolean function f : {0, 1}n → {0, 1} as input. We introduce a new randomized recursive back-
tracking algorithm to this problem, which grows “dimension by dimension” affine flats Ki which nonetheless
satisfy Ki ∩ {0, 1}n ⊂ f−1(1). Roughly speaking (see Theorem 4.1 below):

Theorem 1.5. Given n, a subset S ⊂ {0, 1}n, and a prime p ≥ 2n, Algorithm 4 below outputs a family of

affine hyperplanes H0, . . . ,Hm−1 in Fnp for which S =
⊔m−1
i=0 Hi ∩ {0, 1}n, and m is (heuristically) minimal.

We also report on a concrete implementation of this algorithm. Our implementation evaluates random
subsets S ⊂ {0, 1}8 optimally or near-optimally in well under a second. It may also handle higher-dimensional
subsets; for example, our algorithm evaluated a random subset S ⊂ {0, 1}14, of cardinality 8,112, in under
6 minutes, and produced a covering using m = 546 hyperplanes (see Subsection 4.5 below or more detail).
Our implementation is also useful for finding generalizable patterns; in fact, many coverings described in
this paper were discovered experimentally using our algorithm. We believe that this tool may be of general
interest for cryptographers seeking to evaluate boolean functions by affine-linear means.

Exhibiting our paradigm’s applicability, we present a general protocol for secure, homomorphic com-
mitment consistent two-party computation with an untrusted third party (see Protocol 5.8 below). We
give a “compiler” which translates any function f with a compact hyperplane covering into a secure proto-
col evaluating f , which itself requires only “linear” computation and communication and constantly many
rounds. Our technique can be viewed as a vast generalization of Wagh, Gupta, and Chandran [WGC19,
Alg. 3], which compares a secret-shared integer with a public integer. In our setting, both parties may
bring arbitrary secret inputs, and moreover may evaluate an arbitrary functionality f (given “pre-compiled”
affine hyperplane coverings of f ’s off- and on-sets). The number of hyperplanes used in these coverings—say,
m—controls the efficiency of the protocol’s online portion. Our protocol is secure up to one static malicious
corruption.

Importantly, our protocol is also homomorphically commitment-consistent. Our protocol consists of
separate “commit” and “compute” phases. In the “commit” phase, the parties publish homomorphic com-
mitments to their inputs (either to each other or to a public bulletin). In the “compute” phase, the parties
conduct a secure 2PC protocol which is maliciously secure and which reciprocally guarantees consistency
with the parties’ initial commitments. Our protocol works with any standard homomorphic commitment
scheme; for example, the Pedersen and El Gamal schemes suffice.

The only prior protocol which (possibly) achieves homomorphic commitment-consistency is, to our knowl-
edge, that of Frederiksen, Pinkas, and Yanai [FPY18]. We improve upon this latter protocol by supporting
boolean functions, and using only constantly many rounds. Moreover, our protocol is implemented, and is
plausibly much more efficient (we discuss this further in Section 5 below). We thus give the first constant-
round homomorphic commitment consistent protocol for general secure computation.

Homomorphic commitment-consistency is of eminent practical interest. For example, an organizing
party—say, a large institution—may simultaneously maintain many parties’ commitments, and orchestrate
sporadic or repeated executions of the protocol between various particular pairs of parties, homomorphically
incrementing or decrementing its commitments appropriately based on the results of each successive execu-
tion. This third party gains maliciously secure assurance regarding both the commitment-consistency and
output-correctness of each individual protocol execution. Each individual party, moreover, gains malicious
assurance as to its privacy (both from the third party and the other party), the correctness of the output,
and finally the commitment-consistency of the other party. We believe that this paradigm has many uses,
and could be of independent interest

We summarize our security and efficiency analyses in the following theorem (see also Theorems 5.9 and
5.18 below):

Theorem 1.6. Given a function f : {0, 1}n → {0, 1} and hyperplane coverings {H0,i}m−1
i=0 and {H1,i}m−1

i=0

of f ’s off-set and on-set, Protocol 5.8 securely computes f in the commitment-consistent model, under one
static malicious corruption, in O(n ·m) time, using O(n+m) communication, and in O(1) rounds.

Combined with Example 1.3 above, Theorem 1.6 already gives many natural cryptographic applications.
We report on a concrete implementation of a specialization of Protocol 5.8 to the integer comparison

function of Example 1.3, as well as applications to a secure volume-matching engine. Our implementation is
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multi-threaded for all parties, side-channel-resistant, and of production quality. For example, our implemen-
tation can orchestrate 64 total executions of the Protocol 5.8—with m = 32 hyperplanes and n = 62—over
a WAN network on commodity hardware in 8,188 milliseconds total, or under 130 miliseconds per execution
(amortized). We give details in Subsection 5.3 below.

We expend a significant amount of effort studying whether the requirement in Theorem 1.5 that p be
more than n bits can be weakened (cf. Definition 1.4, where p < 2n). That is, we study whether each
natural number n admits a prime p < 2n such that every proper affine flat K ⊂ Fnp has an affine hyperplane
H ⊂ Fnp for which K ∩ {0, 1}n = H ∩ {0, 1}n (this property holds trivially for primes p ≥ 2n, as we argue
in Subsection 4.4). This question presents a profound challenge in discrete geometry; we defer it to the
appendix, because of its technical complexity. In a series of results (see Corollaries A.4 and A.17 below), we
establish an essentially affirmative answer:

Theorem 1.7. For each large enough n, that a prime p satisfies p ≥ 2n − n
log logn ·

√
2n implies that each

proper affine flat K ⊂ Fnp admits an affine hyperplane H ⊂ Fnp for which K ∩ {0, 1}n = H ∩ {0, 1}n.

Primes which satisfy the hypothesis of this theorem and satisfy p < 2n are abundant in practice; their
existence would be guaranteed unconditionally by certain conjectures related to the Riemann hypothesis (see
Corollary A.18 below). It is thus highly likely that the n-bit requirement of Defintion 1.4 is not restrictive.

2 Definitions and Notation

We give an accelerated overview of terminology in this section, focusing on linear algebra and cryptography.
By the “natural numbers” (represented by the symbol N) we shall mean the positive integers.

2.1 Linear and affine algebra

We write p for an odd prime (unless otherwise specified), and Fp for the finite field of order p (see Cohn
[Coh74, §6.3] for basics). Most—though not all—of our results hold over arbitrary fields of odd characteristic;
we present our results only for prime fields (for simplicity). We work in the arithmetic complexity model, in
which each field operation takes constant time (see for example von zur Gathen and Gerhard [vzGG13, §2]).

We refer to Cohn [Coh74, §4] for preliminaries on linear algebra and affine spaces; in particular, see [Coh74,
§8]. We also refer to Meyer [Mey00] for basic computational methods in linear algebra. In particular, an
affine flat K ⊂ Fnp is vector susbpace (containing the origin) of Fnp , say U , together with an origin point
o ∈ Fnp . The dimension of K is the dimension of U . The flat K contains the set {o + x | x ∈ U}. We
say that K contains the origin if o = 0 ∈ Fnp . Affine flats are exactly the nullsets of affine-linear maps

K : Fnp → Fn−kp . We often freely identify these two representations (effectively, the two representations can
be interchanged using Lemmas 2.2 and 2.3).

The affine span of a set of k + 1 points x0, . . . ,xk in Fnp is the set of all combinations
∑k
i=0 αi · xi for

which
∑k
i=0 αi = 1. Each such combination can equally be expressed as x0 +

∑k
i=1 αi · (xi − x0). The affine

span of x0, . . . ,xk is equal to the flat with origin point o := x0 and U := 〈x1 − x0, . . . ,xk − x0〉.
By a “hyperplane”, we shall mean a flat whose dimension is one less than that of the space, and which in

particular need not contain the origin. A “subspace” necessarily contains the origin. Each flat K we study
satisfies K ∩ {0, 1}n 6= ∅. For each positive n, the n− 1-dimensional projective space PFn−1

p consists of the
set of lines (through the origin) in Fnp .

The following basic result essentially allows us to replace affine-linear algebra with linear algebra:

Lemma 2.1. For each x ∈ {0, 1}n, there exists an invertible affine Fp-linear map ox : Fnp → Fnp which maps
{0, 1}n to itself, and which sends x to the origin.

Proof. We write the coordinates of x as (x0, . . . , xn−1). The map ox defined on y = (y0, . . . , yn−1) ∈ Fnp by:

ox(y) :=

({
1− yi if xi = 1

yi if xi = 0

)n−1

i=0

clearly satisfies the desired properties.
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We note that, on the unit cube itself, ox restricts to the XOR-by-x map.
We take for granted the notion of reduced row-echelon form and the Gauss–Jordan elimination algorithm

(see e.g. Meyer [Mey00, p. 48]). We record the following formalization of an elementary technique in linear
algebra (see e.g. [Mey00, (4.2.9)]):

Lemma 2.2. Fix a full-rank, k × n matrix U in reduced row-echelon form. Write {b0, . . . , bk−1} and
{c0, . . . , cn−k−1} for U ’s “pivot” and “free” column indices, respectively, viewed as subsets of {0, . . . , n− 1}.
Define an (n− k)× n matrix A by setting:

A :=

[{
−Uci,h if j is a pivot, say bh,

i
?
= l if j is free, say cl.

]n−k−1,n−1

i,j=0

Then A’s rows give a linearly independent spanning set of U ’s kernel.

By “dualizing” the above lemma, we obtain the following result:

Lemma 2.3. Viewed as a linear map, A : Fnp → Fn−kp annihilates exactly U ’s row-space.

Proof. This follows trivially from the implication 0k×(n−k) = U ·AT =⇒ 0(n−k)×k = A · UT .

It is intuitively obvious that a line which passes through the cube can intersect at most two of its points.
Lemma 2.5 below generalizes this fact to k-dimensional subspaces. This result was first stated and proven
in a paper of Odlyzko [Odl81, Thm. 2]; the proof we give here is essentially identical.

Lemma 2.4. Suppose that a k × n matrix U is row-reduced over Fp. Then an Fp-linear combination

x =
∑k−1
i=0 αi · xi of U ’s rows can reside in {0, 1}n only if αi ∈ {0, 1} for each i ∈ {0, . . . , k − 1}.

Proof. Writing {b0, . . . , bk−1} ⊂ {0, . . . , n− 1} for U ’s pivot column indices, the definition of row-reduction
implies that each row xi, for i ∈ {0, . . . , k−1}, has a component—namely, bi—for which Ui,bi = 1; moreover,
Ui,bi = 1 is the sole nonzero element in its column. The condition x ∈ {0, 1}n implies in particular that x’s
bi

th component is in {0, 1}, and hence that αi ∈ {0, 1}.

Lemma 2.5. A k-dimensional affine flat K ⊂ Fnp can intersect {0, 1}n at at most 2k points.

Proof. After assuming that K contains the origin (by Lemma 2.1), picking an independent spanning set of K,
and row-reducing the resulting matrix, we may assume that K consists exactly of the Fp-linear combinations
of a row-reduced matrix U ’s rows. The result immediately follows from Lemma 2.4.

2.2 Basic security definitions

We give basic security definitions, following Katz and Lindell [KL21]. In experiment-based games involving
an adversary A, we occasionally use the notation outA (EA(λ)) to denote the output of A in the game EA(λ)
(as distinguished from whether A wins the experiment). We work throughout in the random oracle model
(see [KL21, §6.5]). Two distribution ensembles Y0 = {Y0(a, λ)}a∈{0,1}∗;λ∈N and Y1 = {Y1(a, λ)}a∈{0,1}∗;λ∈N
are computationally indistinguishable (see [KL21, §8.8] and [Lin17, §6.2]) if, for each nonuniform PPT dis-
tinguisher D, there is a negligible function µ for which, for each a ∈ {0, 1}∗ and λ ∈ N,

|Pr[D(Y0(a, λ)) = 1]− Pr[D(Y1(a, λ)) = 1]| ≤ µ(λ).

in this case, we write Y0
c≡ Y1.

We write Uλ for the uniform distribution on λ-bit strings. We have the classical notion of a pseudorandom
generator (see [KL21, §8.30]):

Definition 2.6. Consider a polynomial l(λ) for which l(λ) > λ for each λ, and a deterministic algorithm G
which, on any λ-bit input s ∈ {0, 1}λ, outputs an l(λ)-bit string G(s) ∈ {0, 1}l(λ). We say that G is a pseu-
dorandom generator if the distributions {G(Uλ)}λ∈N and

{
Ul(λ)

}
λ∈N are computationally indistinguishable.

We define the security of key-exchange protocols Ξ (see [KL21, §11.3]):
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Definition 2.7. The key-exchange experiment KEΞ,A(λ) is defined as:

1. Two parties execute Ξ(1λ), yielding a transcript trans and a key ξ obtained by both parties.

2. A uniform bit b ∈ {0, 1} is chosen. If b = 0, ξ̂ := ξ is assigned; if b = 1, ξ̂ ← {0, 1}λ is set to a random
λ-bit string.

3. A is given trans and ξ̂.

4. A outputs a bit b′. The output of the experiment is defined to be 1 if and only if b = b′.

The key-exchange protocol Ξ is said to be secure in the presence of an eavesdropper if, for each nonuniform
PPT adversary A, there exists a negligible function µ for which Pr[KEΞ,A(λ) = 1] ≤ 1

2 + µ(λ).

We now record security definitions pertaining to homomorphic commitment schemes, following Katz and
Lindell [KL21]. We recall the definition of a group-generation algorithm G, which, on input 1λ, outputs a
cyclic group G, its prime order p (with bit-length λ), and a generator g ∈ G (see [KL21, §9.3.2]). We recall
the notions whereby the discrete logarithm problem is hard relative to G (see [KL21, Def. 9.63]) and the
decisional Diffie–Hellman problem is hard relative to G (see [KL21, Def. 9.64]).

A commitment scheme is a pair of probabilistic algorithms (Gen,Com), for which, given public parameters
params ← Gen(1λ) and a message m, we have the commitment A := Com(params,m; r), as well as a
decommitment procedure (effected by sending m and r). For notational convenience, we often omit params.
We often write A← Com(m) to mean A := Com(m; r) for a uniformly random r ∈ Fp.

Definition 2.8. The commitment binding experiment BindingA,Com(λ) is defined as:

1. Parameters params← Gen(1λ) are generated.

2. A is given params and outputs (m0, r0) and (m1, r1).

3. The output of the experiment is defined to be 1 if and only if m0 6= m1 and Com(m0; r0) = Com(m1; r1).

We say that Com is computationally binding if, for each nonuniform PPT adversaryA, there exists a negligible
function µ for which Pr[BindingA,Com(λ) = 1] ≤ µ(λ). If µ = 0, w say that Com is perfectly binding.

Definition 2.9. The commitment hiding experiment HidingA,com(λ) is defined as:

1. Parameters params← Gen(1λ) are generated.

2. The adversary A is given input params. The experimenter chooses a uniform bit b ∈ {0, 1}.

3. A is given access to an oracle LRparams,b(·, ·), where LRparams,b(m0,m1) returns a random commitment
A← Com(mb).

4. The adversary A outputs a bit b′. The output of the experiment is 1 if and only if b = b′.

We say that Com is computationally hiding if, for each nonuniform PPT adversary A, there exists a negligible
function µ for which Pr[HidingA,Com(λ) = 1] ≤ 1

2 + µ(λ). If µ = 0, we say that Com is perfectly hiding.

A commitment scheme is homomorphic if, for each params, its message, randomness, and commitment
spaces are abelian groups, and the corresponding commitment function is a group homomorphism. We study
only homomorphic commitment schemes whose commitment spaces moreover have prime order.

Example 2.10. We recall the Pedersen commitment scheme (see e.g. Hazay and Lindell [HL10, Prot.
6.5.3]) with respect to a group-generation algorithm G. We use the variant in which (G, p, g, h) ← Gen(1λ)
outputs a global, fixed “Pedersen base” between whose elements g and h no discrete logarithm relation is
known (this can be done by assigning to h the output of a random oracle query). The resulting commitment
scheme is non-interactive. The Pedersen scheme is perfectly hiding. If the discrete logarithm problem is
hard with respect to G, then the scheme is also computationally binding.
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2.3 Secure three-party computation

We record security definitions for secure multi-party computation. We follow Evans, Kolesnikov, and Rosulek
[EKR18, §2.3] and Lindell [Lin17]. We have the formal notions of functionalities F and protocols Π, as in
[EKR18, §2.3.1]. Motivated by our particular application, we specialize to the case of three-party protocols—
involving players P0, P1, and P2—for deterministic, two-party functionalities, in which only P0 and P1

participate, and moreover all parties receive a single identical output bit v.
In fact, we consider only a single sort of functionality, which we presently describe. Our functionality

captures the commitment-consistent computation of some fixed boolean function f : {0, 1}n → {0, 1}. It
operates in two stages. In the first, it solicits inputs; in the second, it evaluates f on its inputs and reports
the output to all parties. Between the two phases, an arbitrary delay may occur. We this functionality now.
For notational simplicity, we treat only the case in which both parties have equally-sized inputs.

FUNCTIONALITY 2.11 (F—main functionality).
All parties have a function f : {0, 1}n → {0, 1}, where n is even. Consider two players, P0 and P1, and
a server P2.

• First phase: P0 and P1 send elements x0 and x1 of {0, 1}n/2 to F .

• Second phase: F concatenates x := x0 ‖ x1 and evaluates v := f(x). F then sends v to P0, P1,
and P2.

For notational convenience, we stipulate permanently in what follows that x2 = ∅.

Definition 2.12. Fix a functionality of the form F , a three-party protocol Π, and a simulator S. Fix a
corrupt party C ∈ {0, 1, 2}. Consider the distributions:

• RealΠ(λ,C; x0,x1): Generate a run of Π, with security parameter λ, in which all parties behave
honestly, and P0 and P1 use the inputs x0 and x1. Output PC ’s view VC .

• IdealF,S(λ,C; x0,x1): Compute v := F(x0,x1). Output S(1λ, C,xC , v).

We say that Π securely computes F in the presence of one semi-honest corruption if, for each choice of
corrupt party C ∈ {0, 1, 2}, there exists a probabilistic polynomial-time simulator S such that:

{RealΠ(λ,C; x0,x1)}(xν)ν∈{0,1};λ∈N
c≡ {IdealF,S(λ,C; x0,x1)}(xν)ν∈{0,1};λ∈N

,

where we require that x0 and x1 have equal lengths.

Definition 2.13. Fix a functionality of the form F , a three-party protocol Π, a real-world adversary A,
and a simulator S. Fix a corrupt party C ∈ {0, 1, 2}. Consider the distributions:

• RealΠ,A
(
λ,C, (xν)ν 6=C

)
: Generate a run of Π, with security parameter λ, in which each honest party

Pν , ν 6= C, uses the input xν and the messages of PC are controlled by A. Write vν , ν 6= C, for the

honest parties’ outputs, and VC for the view of PC . Output
(
VC , (vν)ν 6=C

)
.

• IdealF,S
(
λ,C, (xν)ν 6=C

)
: Run S(1λ, C) until it produces an input xC (or else outputs ⊥, in which case

F outputs ⊥ to all parties and terminates). Compute v := F(x0,x1). Give v to S. Writing VC for the

simulated view output by S, output
(
VC , (v)ν 6=C

)
z

We say that Π securely computes F in the presence of one static malicious corruption if, for each corrupt
party C ∈ {0, 1, 2} and real-world nonuniform PPT adversary A corrupting C, there exists an expected
polynomial-time simulator S corrupting C in the ideal world such that{

RealΠ,A
(
λ, (xν)ν 6=C

)}
(xν)ν 6=C ;λ∈N

c≡
{
IdealF,S

(
λ, (xν)ν 6=C

)}
(xν)ν 6=C ;λ∈N

,

where we require that all (nonempty) inputs xν , for ν ∈ {0, 1} − {C}, have equal lengths.
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Remark 2.14. Our formulation Definition 2.13 includes the “fairness” property whereby the corrupted
party receives its output if and only if the honest parties also receive theirs (see [HL10, §1.1] for further

discussion). In order to relax this guarantee, one would, in the definition of IdealF,S
(
λ, (xν)ν 6=C

)
, give S

the option—after it receives the result v—to output ⊥ to F , which in turn would output ⊥ to all honest

parties. The final output of IdealF,S
(
λ, (xν)ν 6=C

)
would then be (VC , (⊥)ν 6=C).

Remark 2.15. In the real world, we also allow that the adversary A be rushing, in the sense that, in each
round, it receives the other parties’ messages before sending its own (see [Lin17, §6.6.2] for discussion).

2.4 Zero-knowledge proofs

We present definitions for Σ-protocols and honest-verifier zero-knowledge proofs, following the monograph
of Hazay and Lindell [HL10, §6].

We fix a binary relation R ⊂ {0, 1}∗ × {0, 1}∗, whose elements (x,w) satisfy |w| = poly(|x|) for some
polynomial poly. If (x,w) ∈ R, we call x a statement and w its witness.

We recall the general notion of 3-move, public-coin interactive protocols between PPT machines P and
V , captured in the general template [HL10, Prot. 6.2.1]. We reproduce this template here:

PROTOCOL 2.16 (General protocol template for relation R).

• Common input. The prover P and the verifier V both have x.

• Private input. The prover P has a witness w such that (x,w) ∈ R.

• The protocol.

1. The prover P sends an initial message a to the verifier V .

2. The verifier V sends a random λ-bit string e to P .

3. P sends a reply z.

4. V chooses to accept or reject based only on the data (x, a, e, z).

We write 〈P (λ, x, w), V (λ, x)〉 for the transcript of a random such interaction between P and V . We have
the formal notion of Σ-protocols [HL10, Def. 6.2.2], which we reproduce here:

Definition 2.17. A protocol Π of the form Protocol 2.16 is said to be a Σ-protocol for the relation R if the
following conditions hold:

• Completeness. If P and V follow the protocol on inputs (x,w) and x, respectively, where (x,w) ∈ R,
then V always accepts.

• Special soundness. There exists a polynomial-time extractor X which, given any x and accepting
transcripts (a, e, z) and (a, e′, z′) on x where e 6= e′, outputs a witness w for which (x,w) ∈ R.

• Honest verifier zero knowledge. There exists a polynomial-time machine M which, on inputs λ
and x, outputs a random transcript (a, e, z) whose distribution equals that of an honest interaction
between P and V . That is, the distributions M(λ, x) and 〈P (λ, x, w), V (λ, x)〉 are identical.

Example 2.18. A simple Schnorr proof (see [KL21, Fig. 13.2] and [HL10, Prot. 6.1.1]) can be used to show
that two homomorphic commitments open to the same message. We have the relation:

RComEq = {(params, A0, A1;m0, r0,m1, r1) |A0 = Com(m0; r0) ∧A1 = Com(m1; r1) ∧m0 = m1}.

The protocol is essentially a Schnorr proof on the difference between A0 and A1:

8



PROTOCOL 2.19 (ComEq).

• Common input. The prover P and the verifier V both have params← Gen(1λ) and (A0, A1).

• Private input. The prover P has openings (m0, r0,m1, r1) such that A0 = Com(m0; r0) and
A1 = Com(m1; r1), and moreover m0 = m1.

• The protocol.

1. The prover P commits a← Com(0; r) (for random r ∈ Fp) and sends a to the verifier.

2. The verifier V samples e← Fp and sends e to the prover.

3. P sets z := (r1 − r0) · e+ r and sends z to the verifier.

4. V outputs 1 if and only if Com(0; z)
?
=
(
A1 ·A−1

0

)e · a.

The following theorem is essentially proven in [HL10, §§6.1–6.2]:

Theorem 2.20. The protocol ComEq is a Σ-protocol for the relation RComEq.

We now recall two important protocols introduced by Groth and Kohlweiss [GK15].

Example 2.21. We have “bit-commitment” proofs, which demonstrate knowledge of an opening (m, r) to
a public commitment V for which m is a bit. More precisely:

RBitProof = {(params, A;m, r) |A = Com(m; r) ∧m ∈ {0, 1}}.

We write BitProof for the protocol [GK15, Fig. 1]. We recall the following result:

Theorem 2.22 (Groth–Kohlweiss [GK15, Thm. 2]). BitProof is a Σ-protocol for the relation RBitProof .

We have the following slightly more sophisticated version of Definition 2.17:

Definition 2.23. A protocol Π of the form Protocol 2.16 is said to be a computational Σ-protocol for the
relation R if the following conditions hold:

• Completeness. If P and V follow the protocol on inputs (x,w) and x, respectively, where (x,w) ∈ R,
then V always accepts.

• Computational special τ(λ)-soundness. There exists a polynomial-time extractor X such that,
for each nonuniform PPT adversary A outputting statements x and sets of accepting transcripts

(a, ei, zi)
τ(λ)−1
i=0 on x with distinct challenges ei, there exists a negligible function µ(λ) such that X

outputs a witness w for x with probability at least 1− µ(λ).

• Computational honest verifier zero knowledge. There exists a polynomial-time ma-
chine M which, given inputs λ and x, outputs a random transcript (a, e, z) on x, for which

{M(λ, x)}(x,w)∈R;λ∈N
c≡ {〈P (λ, x, w), V (x)〉}(x,w)∈R;λ∈N.

Example 2.24. We recall “one-out-of-many” proofs, which demonstrate knowledge of a secret element of
a public list of commitments and an opening of that element to 0. More precisely:

ROneOutOfMany = {(params, (A0, . . . , Am−1); l, r) |Al = Com(0; r)},

We write OneOutOfMany for the protocol [GK15, Fig. 2]. We recall the following result:

Theorem 2.25 (Groth–Kohlweiss [GK15, Thm. 3]). Suppose that Com is hiding and binding. Then One-
OutOfMany is a computational Σ-protocol with logm+ 1-special soundness.
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Because we work in the random oracle model, we only consider instantiations of Protocol 2.16 to which
the Fiat–Shamir transform (see [KL21, Cons. 13.9]) has been applied. That is, P submits the initial message
a to the random oracle, and obtains the challenge e; the proof consists of (a, e, z). While verifying the proof,
V recomputes e from a using a second oracle query. We write π := (a, e, z)← P (x,w) for a (random) non-
interactive proof obtained by the prover on input (x,w), and write V (π, x) for the bit indicating whether V
accepts on π and x. We will call such protocols non-interactive Σ-protocols.

Because we use (non-interactive) Σ-protocols as subroutines of larger secure protocols, we need a stronger
security property than that guaranteed by Definitions 2.17 and 2.23. Indeed, it is not enough that the
extractor X be able to extract a witness given two (or more) accepting transcripts on the same initial
message; rather, a simulator S (in the sense of Definition 2.13) must first produce these transcripts from any
successful prover P ∗ (if P ∗ outputs a successful proof). This issue is discussed extensively in Hazay and
Lindell [HL10, §§6.5.2–6.5.3], who ultimately prove—in [HL10, Thm. 6.5.5] and [HL10, Thm. 6.5.6]—that
any Σ-protocol in the sense of Definition 2.17 admits a simulator S in the sense of Definition 2.13.

Additional difficulties arise in our non-interactive setting, in which a malicious prover can make many
queries to the random oracle. This issue is discussed in Pointcheval and Stern [PS00]. We end this section
with a number of results related to [PS00], which discuss witness-extraction in the random oracle model.

Lemma 2.26. Fix a computational Σ-protocol Π with τ(λ)-special-soundness, and an adversary A making
Q(λ) queries to the random oracle. If A outputs a statement x and a successful proof (a, e, z) on x with
probability ε ≥ 7 · Q(λ)/2λ within time T (λ), then there is a second machine M which runs in strict time
T ′ = 16 · τ(λ) · T (λ) ·Q(λ)/ε, and which outputs a witness w for x with probability at least 1

11 .

Proof. We adapt [PS00, Lem. 1] to the setting in which τ(λ) total transcripts are needed, as opposed
to just 2, and in which the Σ-protocol is only computationally sound. For conciseness, we do not fully
replicate the proof of [PS00, Lem. 1], but rather only indicate the places in which ours differs. We begin
by describing a machine A′ which extracts accepting transcripts from A. Exactly as in [PS00, Lem. 1],
after rerunning A 2/ε times, A′ may, with probability at least 1

5 , obtains a single successful proof with a
“likely query index” and an initial random tape which “often” yields successful proofs on that index (we
refer to [PS00, Lem. 1] for precise statements). By replaying A with identical random oracle queries up to
the appropriate query index, A′ may obtain a further proof on the same initial message with probability
at least ε/(14 · Q(λ)). Our proof differs from [PS00, Lem. 1] only in that A′ replays this latter procedure
14 · τ(λ) ·Q(λ)/ε times (we add the additional factor τ(λ)). Because the median of the binomial distribution
with success probability ε/14 · Q(λ) and 14 · τ(λ) · Q(λ)/ε trials is at least τ(λ) − 1, A′ thereby obtains,
throughout this process, at least τ(λ)− 1 additional signatures on the same initial message with probability

at least 1
2 . It follows that with probability at least 1

5 ·
1
2 = 1

10 , A′ obtains a full accepting tree (a, ei, zi)
τ(λ)−1
i=0

on x after 2/ε+ 4 · τ(λ) ·Q(λ)/ε ≤ 16 · τ(λ) ·Q(λ)/ε runs of A.
Finally, M may first run A′ on A. Because A′ is strictly polynomial-time, it satisfies hypothesis of

Definition 2.23’s soundness condition. We conclude that, conditioned on A′’s success, X outputs a witness w
for x with overwhelming probability;M’s success probability thus clearly exceeds 1

11 for large enough λ.

Lemma 2.27. Fix a Σ-protocol Π. Then given an arbitrary prover A, there is an expected polynomial-time
simulator S which generates statements x and proofs (a, e, z) whose distribution exactly matches that output
by of A, and which, if (a, e, z) is accepting, also outputs a witness w for x with overwhelming probability.

Proof. We essentially combine the ideas of [PS00, Lem. 1] and [HL10, Thm. 6.5.6]. S begins by running
A in a “straight-line” manner and obtaining x and (a, e, z). If the proof is not accepting, S terminates
immediately. Otherwise, S begins an “extraction” phase. As in [HL10, Thm. 6.5.6], S begins by estimating
A’s success probability ε(x). To do this, S repeatedly runs A with fresh coins until it obtains a total of
12 · λ accepting proofs, after a total of N total attempts, say; A then sets the estimate ε̃(x) := 12 · λ/N . If
ε̃(x) < 14 ·Q(λ)/2λ, S aborts. Otherwise, S runs the machine M of [PS00, Thm. 1] on A, with the caveat
that S aborts if its total runtime exceeds 2λ.

We first study the expected runtime of S. With probability at most 2λ, ε̃(x) 6∈
[

2
3 · ε(x), 2 · ε(x)

]
(this

is exactly as in [HL10, Thm. 6.5.6]). In this setting, S runs for at most 2λ steps in any case, so that at
most constant additional expected runtime is accrued. We thus assume that ε̃(x) ∈

[
2
3 · ε(x), 2 · ε(x)

]
. If S

aborts upon learning ε̃(x), then ε(x) ≤ 3
2 · ε̃(x) < 21 ·Q(λ)/2λ, which is negligible; in this setting S thus only
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enters the extraction phase in the first place with negligible probability, and so loses nothing by aborting.
Otherwise, ε(x) ≥ 1

2 · ε̃(x) ≥ 7 ·Q(λ)/2λ, so that the hypothesis of [PS00, Thm. 1] holds, and in particular
S obtains (a, e′, z′) on x after an expected 84480 · Q(λ) · T (λ)/ε steps, where T (λ) is A’s runtime. S thus
runs for expected time:

1 + ε(x) · 84480 ·Q(λ) · T (λ)

ε(x)
= 1 + 84480 ·Q(λ) · T (λ),

which is polynomial in λ.
Finally, among those runs in which A outputs a successful proof, S fails to output a witness only if

ε̃(x) 6∈
[

2
3 · ε(x), 2 · ε(x)

]
, if ε(x) < 21 ·Q(λ)/2λ, or else if S runs for a total of 2λ steps. Each of these events

happens with only negligible probability.

3 Theoretical Introduction

In this section, we introduce the theory of hyperplane coverings. This section plays the dual role of situating
our paradigm within existing literature and, simultaneously, of establishing many of its fundamental facts.
Indeed, departing from convention, we simultaneously survey prior literature and introduce new material—
much of which is theoretically challenging—in this section. We also include a handful of open problems and
conjectures, laying the ground for future work.

3.1 A perspective from arithmetic circuits

We begin with basic definitions.

Definition 3.1. Given an odd prime p, we say that a family of affine hyperplanes {Hi}m−1
i=0 in Fnp disjointly

cover a subset S ⊂ {0, 1}n if S =
⊔m−1
i=0 Hi ∩ {0, 1}n.

Example 3.2. Fix n = 3. We consider the subset S := {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} ⊂ {0, 1}3. We
observe that S can be covered by 2 hyperplanes over any odd prime p. Indeed, any 3 points of S can be
covered by a single hyperplane, and its 4th covered by a second. We illustrate this covering below:

Figure 1: A depiction of an example set S ⊂ {0, 1}3, as well as a covering of it by hyperplanes.

We will argue in Example 3.19 below that one hyperplane cannot suffice to cover S.

Upon representing each hyperplane “dually” Hi : Fnp → Fp as an affine-linear functional, we see that

the condition of Definition 3.1 implies that degree-m multivariate polynomial F :=
∏m−1
i=0 Hi(x0, . . . , xm−1)

evaluates to 0 exactly on S ⊂ {0, 1}n; that is, for each x ∈ {0, 1}n, x ∈ S if and only if F (x) = 0 (F can act
arbitrarily on elements x ∈ Fnp − {0, 1}n). This viewpoint yields the following schematic depiction of F :
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×
(field multiplication gate)

F

H0

(affine functional)
H1

(affine functional)
H2

(affine functional) · · ·
Hm−1

(affine functional)

x0 x1 · · · xn−1

Figure 2: An arithmetic-circuit-based depiction of a hyperplane covering.

In practice, we allow that common affine sub-expressions from within the “affine gates” Hi be shared
arbitrarily. In practical examples of interest, this can reduce the amortized cost of evaluating each individual
affine gate from O(n) to O(1) (see e.g. Example 3.26).

Inspired by arithmetic circuits, we will occasionally call polynomials F of this form affine circuits. Tech-
nically speaking, most formalizations of arithmetic circuits classify each constant scalar as a distinct “leaf”
of its circuit’s input, attached to an “honest” input through a regular multiplication gate (see e.g. Koiran
[Koi12, §2] and Wigderson [Wig19, §12.2]). Our circuits do not consider as “multiplication proper” the
multiplication of variable inputs by constant scalars. Instead, our circuits’ affine maps resemble Koiran’s
so-called “weighted addition” gates [Koi12, Def. 1], though also allow for constant-order scalar terms.

We are interested in disjoint hyperplane coverings S =
⊔m−1
i=0 Hi ∩ {0, 1}n for which m is small. In fact,

we define the following “complexity class”, consisting of functions whose on-sets and off-sets can both be
covered by polynomially many hyperplanes:

Definition 3.3. A sequence of functions {fn : {0, 1}n → {0, 1}}n∈N is efficiently computable by affine hyper-

planes if, for each n ∈ N, there exists an n-bit prime p and disjoint coverings f−1(0) =
⊔m−1
i=0 H0,i ∩ {0, 1}n

and f−1(1) =
⊔m−1
i=0 H1,i ∩ {0, 1}n using Fp-hyperplanes, where m moreover grows polynomially in n.

Many natural functions are efficiently computable by hyperplanes (see Subsection 3.3 below for a thorough
treatment). On the other hand, the following result in the spirit of Shannon [Weg87, §4] shows that the
vast majority of functions fn : {0, 1}n → {0, 1} require exponentially many affine hyperplanes to compute.
Following [Weg87, §1.2], we write Bn for the set of all subsets S ⊂ {0, 1}n; the magnitude of Bn is 22n .

Theorem 3.4. Fix an unbounded function ω(1). For each n ∈ N and each prime p of n bits, at least

|Bn| · (1− 2−
1
2 ·ω(1)) among Bn’s elements fail to be coverable using any fewer than 2n−ω(1)

n2 Fp-hyperplanes.

Proof. Following the general strategy of Wegener [Weg87, §4.2], we bound from above the total number
of distinct subsets S ⊂ {0, 1}n which can possibly be covered using m hyperplanes. For a fixed p, the
total number of distinct affine hyperplanes H ⊂ Fnp is given by the Gaussian binomial coefficient expression

p ·
[
n
n−1

]
p

(see Cameron [Cam95, Prop. 2.9]), which we bound as follows:

p ·
[

n

n− 1

]
p

= p ·
n−2∏
i=0

pn − pi

pn−1 − pi
≤ p ·

(
p

p− 1

)
·
n−2∏
i=0

pn

pn−1
=
pn+1

p− 1
.

Using the inequality p < 2n imposed by Definition 3.3, we see that the number of subsets of {0, 1}n coverable
by m hyperplanes is bounded from above by:

S(n,m) :=

(
(2n)n+1

2n − 1

)m
=

(
2n

2+n

2n − 1

)m
.
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For fixed ω(1) as in the hypothesis of the theorem, we see that for any m(n) < 2n−ω(1)
n2 ,

logS(n,m(n)) <

(
n2 +

1

2n

)
·
(

2n − ω(1)

n2

)
= O(1) + 2n − ω(1) < 2n − 1

2
· ω(1),

where in the first inequality we use log
(

2n
2+n

2n−1

)
= n2 + n − log(2n − 1) ≤ n2 + n −

(
log(2n)− 1

2n

)
, itself a

consequence of log(2n)− log(2n − 1) < 1
2n . The final inequality above holds for sufficiently large n.

We thus see m(n) hyperplanes or fewer eventually fail to exhaust the elements of any subset B∗n ⊂ Bn
for which 2n − 1

2 · ω(1) ≤ log |B∗n|. In particular, we may as well choose as B∗n the set consisting of those

22n− 1
2 ·ω(1) subsets of Bn which require the fewest hyperplanes to cover. But B∗n represents a vanishing

proportion of Bn, as:
|B∗n|
|Bn|

=
22n− 1

2 ·ω(1)

22n
= 2−

1
2 ·ω(1).

This completes the proof.

Question 3.5. Can we exhibit a concrete function family {fn : {0, 1}n → {0, 1}}n∈N each of whose elements
requires exponentially many hyperplanes to compute over any n-bit prime?

Corollary 3.15 below shows that 2n hyperplanes suffice to cover any set S ⊂ {0, 1}n. The following
conjecture would establish the “Shannon effect” (see [Weg87, §4, Def. 1.3]) for Definition 3.3:

Conjecture 3.6. Any subset S ⊂ {0, 1}n can be covered by 2n

n2 disjoint Fp-hyperplanes for an n-bit prime p.

We record the additional open questions:

Question 3.7. Would relaxing the requirement that the coverings {H0,i}m−1
i=0 and {H1,i}m−1

i=0 in Definition
3.3 be disjoint strictly enlarge the resulting complexity class?

Question 3.8. Would allowing that p have polynomially bits in Definition 3.3 strictly enlarge the resulting
complexity class?

Question 3.9. Would requiring that p have fewer than n bits in Definition 3.3 strictly shrink the resulting
complexity class?

3.2 Relation to the work of Ishai and Kushilevitz

We describe the relationship between our work and that of Ishai and Kushilveitz [IK00, IK02]. In fact, our
work admits a natural interpretation in their framework. In order to survey this relationship, we first record
here a slightly more general variant of [IK00, Def. 1], which we moreover specialize to the “perfect” case:

Definition 3.10 (Ishai–Kushilevitz). Given a function f : {0, 1}n → {0, 1}, a parameterized family of
random variables P (x) each with values in Fnp is said to randomize f if the following two conditions hold:

• Perfect privacy. There exists a polynomial-time simulator S such that, for each x ∈ {0, 1}n, the
distributions S(f(x)) and P (x) are identical.

• Perfect correctness. There exists a polynomial-time reconstruction algorithm X such that, for each
x ∈ {0, 1}n, Pr[X(P (x))) = f(x)] = 1.

We note that we do not require here that P (x) be given as a fixed vector of polynomials with additional
uniform random inputs (cf. [IK00, §2.1]).

We now fix a function f : {0, 1}n → {0, 1}, a prime p, and a family of hyperplanes {Hi}m−1
i=0 disjointly

covering f−1(1) (in the sense of Definition 3.1), which we view as affine functionals. We take the additional
step of sampling m random, nonzero scalars (αi)

m−1
i=0 in F∗p, as well as a random permutation ρ ← Sm.

(This idea is already implicit in [WGC19, Alg. 3].) Actually, it is enough that ρ be sampled uniformly
from the subgroup 〈(0, 1, . . . ,m− 1)〉 ⊂ Sm consisting of circular shift permutations (this order-m subgroup
is much smaller than Sm, and requires fewer random coins to sample from). We now consider, for each
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input x = (x0, . . . , xn−1) ∈ {0, 1}n, the distribution—over random choice of (αi)
m−1
i=0 and ρ—of the vector

P (x) :=
(
αi ·Hρ(i)(x)

)m−1

i=0
. That is, we evaluate Hi(x) for each i ∈ {0, . . . ,m − 1}, permute the resulting

evaluations using ρ, and then multiply each permuted output by a random nonzero scalar (these latter two
steps can also be reversed).

Remarkably, the resulting construction perfectly randomizes f :

Theorem 3.11. The construction P (x) :=
(
αi ·Hρ(i)(x)

)m−1

i=0
perfectly randomizes f as in Definition 3.10.

Proof. We describe a simulator S satisfying the criterion of Definition 3.10. S first samples m nonzero scalars
(yi)

m−1
i=0 in F∗p. If and only if its input v = 1, S samples a random index i∗ ∈ {0, . . . ,m− 1} and overwrites

yi∗ := 0. Directly by Definition 3.1, we see that, for each x ∈ {0, 1}n, f(x) = 1 if and only if Hi(x) = 0 for
one and only one index i ∈ {0, . . . ,m − 1}; otherwise, Hi(x) 6= 0 for each i ∈ {0, . . . ,m − 1}. It follows by
its construction that P (x) exactly matches S(0) or S(1), accordingly as f(x) equals 0 or 1.

The reconstructor X may, given a sample y = (y0, . . . , ym−1)← P (x), return 1 if and only if one of the
components yi = 0.

Moreover, our construction P (x) is of “degree 2” in the terminology of [IK00, §2.1] (products appear
only between input variables xi and random scalars), as we now argue. We show this by expressing P (x)
explicitly as a polynomial vector involving random elements. Indeed, it’s enough to multiply the initial
vector (Hi(x))

m−1
i=0 of standard linear polynomials by a certain random m×m matrix R, whose distribution

we presently describe. R can be constructed by first sampling a uniform index r∗ ∈ {0, . . . ,m − 1}, and
then setting, for each i and j in {0, . . . ,m − 1}, ri,j ← F∗p if and only if j − i ≡ r∗ (mod m) and ri,j := 0

otherwise. It is clear that P (x) = R · [Hi(x)]
m−1
i=0 ; we conclude that P (x) is of “degree 2” (in its combined

random and secret inputs). We thus obtain:

Corollary 3.12. Given f : {0, 1}n → {0, 1} and a hyperplane covering f−1(1) =
⊔m−1
i=0 Hi ∩ {0, 1}n over p

in the sense of Definition 3.1, f can be randomized by degree-2 polynomials over Fp with complexity O(m).

We now explain why Corollary 3.12 does not contradict the impossibility result [IK00, Cor. 5.9]. Essen-
tially, [IK00, Cor. 5.9] relies crucially on P (x)’s random scalars being uniform and independent, whereas
our random matrix R is certainly not uniform over Fm×mp (nor are its components even independent). In
fact, we point out explicitly what goes wrong in the proof of [IK00, Lem. 5.5]. Following that lemma’s proof
strategy, we obtain a single random polynomial

p(x) = r0 ·H0(x) + · · ·+ rm−1 ·Hm−1(x),

whose distribution depends only on f(x). In our setting, however, the scalars (ri)
m−1
i=0 are no longer uniform

and independent. For example, choosing a weighting scheme as in [IK00, Fact 5.2] with exactly one nonzero
weight wi∗ = 1, we obtain a p(x) as above for which a random ri is nonzero and uniform, whereas the rest
are zero. It is now simply false that any x ∈ {0, 1}n for which Hi(x) 6= 0 for some i (in fact, all x ∈ {0, 1}n
satisfy this property) induces a uniform distribution on Fp. Rather, the distribution of p(x) depends exactly
on whether Hi(x) 6= 0 for all i ∈ {0, . . . ,m − 1} or not; in these respective cases, p(x) is either uniform on
F∗p or else is uniform on F∗p with probability m−1

m and 0 with probability 1
m . In particular, case 1. of [IK00,

Lem. 5.5]’s assertion that any p(x) for which each x ∈ {0, 1}n satisfies Hi(x) 6= 0 for some i tests a linear
condition is false (those x satisfying Hi(x) 6= 0 for some i may nonetheless represent distinct distributions).

We now discuss the general applicability of Theorem 3.11 to secure computation, following [IK00, §4]. A
result like [IK00, Thm. 4.1] still holds in our setting, with the caveat that the parties’ randomnesses must
be correlated. Appropriate analogues of the corollaries [IK00, Cor.s 4.2 and 4.4] also hold. For example,
it is enough for the parties to be given element-wise additive shares of the (nonuniform) random matrix R
above. The role of correlated randomness in secure computation is discussed further in Ishai, Kushilevitz,
Meldgaard, Orlandi, and Paskin-Cherniavsky [IKM+13]; we do not undertake a thorough analysis here.

In our cryptographic application below, we adopt a slightly different approach, whereby the parties P0

and P1 simply generate identical samples of the random matrix R, using a shared secret key (see Section
5). They then allow an untrusted third party P2 to run the reconstructor X on their outputs (and, in the
maliciously secure setting of Protocol 5.8, to prove moreover that it did so correctly).
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We finally make a few additional comparative remarks. Though the construction of [IK00, Thm. 3.5]
is not particularly explicit, we believe that our Corollary 3.12 is significantly more efficient, not just in its
degree—our polynomials are of course degree 2, whereas those of [IK00, Thm. 3.5] are of degree 3—but
moreover in its size (i.e., its number of outputs and random inputs). For one, [IK00, Thm. 3.5] yields
polynomials whose complexity is quadratic in the size, say l, of the branching program representation of f
(see [IK00, Def. 2.5 and Thm. 3.5]). Though it is not straightforward even to determine the branching
program complexity of a given function f : {0, 1}n → {0, 1}, it seems plausible that most natural functions
satisfy m ≤ l2, where the inequality is moreover likely asymptotic in many cases. Finally, [IK00, Thm.
3.5] yields a rather low distinguishing probability—namely, of 0.08 (see [IK00, Lem. 3.4])—and so needs to
be repeated many times in order to achieve high distinguishing probabilities (our distinguisher is perfectly
correct). For example, even to achieve a distinguishing probability of 1

2 , at least log1−0.08( 1
2 ) ≈ 8.31 (i.e.,

9) copies of [IK00, Thm. 3.5]’s construction would have to be concatenated; 56 copies would be required
to achieved 0.01-correctness. Though these factors are constant in n, they would likely be significant in
practice. Thus Corollary 3.12 likely outperforms [IK00, Thm. 3.5] not just in the crucial degree metric but
also in the complexity metric.

3.3 A perspective from logic synthesis

Finding minimal-cardinality coverings of subsets S ⊂ {0, 1}n by hyperplane intersections Hi ∩ {0, 1}n rep-
resents, in practice, a non-trivial “logic synthesis” problem, which admits important analogies to classical
problems.

A highly classical problem seeks to cover sets S ⊂ {0, 1}n using minimally many subcubes, namely, subsets
of the form C =

{
(x0, . . . , xn−1) ∈ {0, 1}n

∣∣ xc0 = yc0 , . . . , xcn−k−1
= ycn−k−1

}
, where {c0, . . . , cn−k−1} ⊂

{0, . . . , n − 1} is a subsequence and yc0 , . . . , ycn−k−1
are binary constants. Equivalently, a k-dimensional

subcube is the solution set of an AND of n− k literals and negated literals. The original algorithm for this
problem is that of Quine and McCluskey [MJ56]. The “Espresso II” logic minimizer of Brayton, Hachtel,
McMullen and Sangiovanni-Vincentelli [BHMSV84] vastly advanced this field, and introduced many new
techniques.

The following result relates our paradigm to that of classical logic minimization:

Lemma 3.13. Suppose that p > n. Then for each proper subcube C ⊂ {0, 1}n, there exists an affine
hyperplane H : Fnp → Fp for which C = H ∩ {0, 1}n.

Proof. We write C =
{

(x0, . . . , xn−1) ∈ {0, 1}n
∣∣ xc0 = yc0 , . . . , xcn−k−1

= ycn−k−1

}
. By Lemma 2.1, it suf-

fices to assume that C contains the origin, and hence that each yci = 0. The affine map H : (x0, . . . , xn−1) 7→∑n−k−1
i=0 xci suffices to define C ⊂ {0, 1}n. Indeed, on each element x ∈ {0, 1}n, H(x) is a sum consisting of

n− k terms—each in {0, 1}—at least one of which is nonzero if and only if x 6∈ C. By hypothesis on p, each
nonzero such sum necessarily fails to overflow, and thus remains unequal to 0 even modulo p.

Corollary 3.14. If S ⊂ {0, 1}n has a disjoint sum-of-products expression with m summands, then, for any
p > n, S can be disjointly covered by m affine hyperplanes over Fp.

The following corollary can be viewed as a “completeness theorem” for hyperplane coverings:

Corollary 3.15. Given any subset S ⊂ {0, 1}n and any prime p > n, S can be disjointly covered by at most
2n affine hyperplanes over Fp.

Proof. S’s trivial “minterm representation” expresses it as the disjoint union of its at-most 2n points, each
of which is a subcube; the result follows from Corollary 3.14.

Example 3.16. The comparison algorithm of Wagh, Gupta, and Chandran [WGC19, Alg. 3] exploits this
basic property of subcubes. Indeed, [WGC19, Alg. 3] observes—though using different terminology—that
the function which compares an n-bit input integer (written in binary) to a fixed n-bit integer (“hardcoded”
in the function) evaluates to true exactly on a union of n disjoint subcubes of {0, 1}n. (This can be seen
directly by specializing one of the two inputs of the circuit of Fig. 3 below.) The protocol [WGC19, Alg. 3],
in particular, takes n = 64 and p = 67, and essentially applies Corollary 3.14.
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The following example shows that Lemma 3.13’s requirement that p > n can’t be completely dropped:

Example 3.17. We fix p = 2. Any hyperplane H ⊂ Fn2 satisfies H ∩ {0, 1}n = 2n−1. This shows that only
n− 1-dimensional subcubes can be represented as hyperplane intersections C = H ∩ {0, 1}n in Fn2 .

Question 3.18. Can the hypothesis p > n of Lemma 3.13 be weakened? If so, by how much?

A more general logic synthesis paradigm was initiated by Luccio and Pagli [LP99], who studied coverings
of subsets S ⊂ {0, 1}n by pseudocubes, and proposed appropriate generalizations of the Quine–McCluskey
algorithm. Though a number of equivalent characterizations exist, a k-dimensional pseudocube is—roughly—
a subset of the cube evaluated by an AND of n − k XOR expressions, each of which in turn may involve
arbitrarily many of the variables x0, . . . , xn−1. We refer to Luccio and Pagli [LP99] for further details.

The study of “sum-of-pseudoproducts” expressions was furthered by Ciriani [Cir01], culminating in the
work [Cir03], which identified pseudocubes C ⊂ {0, 1}n as exactly the affine subspaces of Fn2 . Ciriani [Cir03]
also characterized each pseudocube C ⊂ {0, 1}n by the maximal arity attained across its XOR-factors;
in particular, for j ∈ {1, . . . , n}, j-pseudocube is one each of whose XOR-factors is of arity at most j (a
1-pseudocube is just a subcube).

When p > 2, a general j-pseudocube C ⊂ {0, 1}n cannot be expressed as a hyperplane intersection
C = H ∩ {0, 1}n, as the following example shows:

Example 3.19. The set S ⊂ {0, 1}3 considered in Example 3.2 above is in fact a 2-dimensional 3-pseudocube,
given by the arity-3 “canonical expression” [Cir01, Def. 1] x0 ⊕ x1 ⊕ x2. Fix an arbitrary odd prime p > 2.
We argue that S can not be expressed as the intersection of a single Fp-hyperplane with the cube. Indeed,
any hyperplane H : F3

p → Fp containing S would also contain the difference (1, 1, 0) − (1, 0, 1) − (0, 1, 1) =
(0, 0,−2), hence also (0, 0, 1) (we use here that 2 6= 0). But (0, 0, 1) 6∈ S, so that S ( H ∩{0, 1}n. (A similar
argument shows that H would also contain (1, 0, 0) and (0, 1, 0).)

The following result shows that 2-pseudocubes are necessarily representable as hyperplane intersections:

Lemma 3.20. Suppose that p ≥ 2n−1. Then for each proper 2-pseudocube C ⊂ {0, 1}n, there exists an
affine hyperplane H : Fnp → Fp for which C = H ∩ {0, 1}n.

Proof. If C’s dimension k is 0, then C is a subcube, and we may use Lemma 3.13. We thus assume k > 0.
We prove the lemma constructively, by defining an appropriate functional. By hypothesis, C consists

of those points x ∈ {0, 1}n satisfying an AND of n − k XOR factors, each of whose arity is at most 2. To
simplify the proof, we assume by Lemma 2.1 that C contains the origin, and hence that each XOR-factor
takes the form xcl,0 ⊕ xcl,1 or xcl,0 ⊕ xcl,1 , for indices {cl,0, cl,1} ⊂ {0, . . . , n− 1} (or else xcl if the arity is 1).
We first claim that for each such factor, there exists an affine functional Hl which annihilates exactly those
x ∈ {0, 1}n satisfying the factor; indeed, Hl : (x0, . . . , xn−1) 7→ xcl,0 − xcl,1 suffices in both cases (we may
use Hl : (x0, . . . , xn−1) 7→ xcl in the arity-1 case). Moreover, Hl clearly takes values in {−1, 0, 1}.

The result follows from writing H(x) :=
∑n−k−1
i=0 2i · Hl(x). It is clear that H(x) = 0 for each x

which satisfies all of the expression’s XOR factors. Conversely, we claim that H(x) 6= 0 (mod p) for any
unsatisfying argument x ∈ {0, 1}n. Indeed, by assumption on x, Hl(x) 6= 0 for at least some XOR-factor
l ∈ {0, . . . , n− k − 1}; we write i∗ for the first such factor. Fixing an i ∈ {i∗ + 1, . . . , n− k − 1}, we assume

by induction that
∑i−1
j=0 2j ·Hj(x) is a nonzero element of the integer range {−2i − 1, . . . , 2i − 1}. We claim

that, regardless of Hi(x),
∑i
j=0 2j ·Hj(x) is a nonzero element of the integer range {−2i+1−1, . . . , 2i+1−1}.

Indeed, the top term 2i ·Hl(x) is either −2i, 0, or 2i; adding it to a nonzero element of {−2i− 1, . . . , 2i− 1}
cannot yield the sum 0. Finally,

∑i
j=0 2j ·Hj(x) cannot exceed (2i − 1) + 2i = 2i+1 − 1 in absolute value.

For any unsatisfying argument x ∈ {0, 1}n, the sum
∑n−k−1
i=0 2i ·Hl(x) is thus a nonzero element of the

integer range {−2n−k − 1, . . . , 2n−k − 1}. By hypothesis on p, this nonzero integer is also nonzero modulo p.
We conclude that x is not contained in the hyperplane H, and H satisfies the conclusion of the lemma.

Corollary 3.21. If S ⊂ {0, 1}n has a disjoint sum-of-2-pseudoproducts expression with m summands, then,
for any p ≥ 2n−1, S can be disjointly covered by m affine hyperplanes over Fp.

The following example shows that Lemma 3.20’s hypothesis p ≥ 2n−1 is necessary, at least when n = 3:
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Example 3.22. The subset C = {(0, 0, 0), (1, 1, 0)} ⊂ F3
3 is a 2-pseduocube, given by the expression (x0 ⊕

x1) ∧ x2. We argue that there is no hyperplane (i.e., plane) H ⊂ F3
3 for which C = H ∩ {0, 1}3. Any such

plane would be generated over F3 by (1, 1, 0) and some second element x ∈ F3
3 − {0, 1}3 for which 2 · x 6∈ C.

It can be checked manually that each such x satisfies either 2 · x ∈ {0, 1}3 −C or x + (1, 1, 0) ∈ {0, 1}3 −C.

Question 3.23. Can the hypothesis p ≥ 2n−1 of Lemma 3.20 be weakened for general n? If so, how much?

Question 3.24. Is the hypothesis j = 2 of Lemma 3.20 always necessary? That is, can there exist any
j-pseudocube C ⊂ {0, 1}n, with j > 2, for which C = H ∩ {0, 1}n for some Fp-hyperplane H with p odd?

Lemma 2.5 above shows that a k-dimensional affine flat K can intersect the cube in at most 2k points.
The following lemma shows that 2-pseudocubes C ⊂ {0, 1}n are uniquely characterized—among affine flat
intersections K ∩ {0, 1}n—as those for which this maximum is attained:

Lemma 3.25. Suppose that a k-dimensional affine flat K ⊂ Fnp over a prime p > n satisfies |K ∩ {0, 1}n| =
2k. Then K ∩ {0, 1}n is a 2-pseudocube.

Proof. Following the general strategy of Lemma 2.5 above, we assume that K contains the origin, and
moreover is generated over Fp by the rows of a k × n row-reduced matrix U . By Lemma 2.4, K ∩ {0, 1}n

contains only combinations
∑k−1
i=0 αi ·xi of U ’s rows for which each αi ∈ {0, 1}. The hypothesis on K implies

that each such combination yields a cube element. We conclude in particular that each individual row xi of
U resides in the cube. Moreover, each column of U can contain at most one 1 (or else we could construct a
combination outside of the cube; we use here that p > n). This fact implies in particular that K ∩ {0, 1}n is
equal to the F2-span of U ’s rows, and hence that K∩{0, 1}n is a pseudocube (by the characterization [Cir03,
Thm. 1]). In fact, the characterization [Cir03, Def. 10] implies that K ∩ {0, 1}n is a 2-pseudocube (each of
U ’s noncanonical columns is “connected” to at most one canonical column). This completes the proof.

Example 3.26. We consider the function family fn : {0, 1}n → {0, 1} (for even n) which compares the

integers represented in binary by its argument’s respective halves; that is, fn : (x0, . . . , xn−1) 7→
∑n/2−1
i=0 2i ·

xi ≤
∑n−1
i=n/2 2i−

n/2 · xi. Each fn is represented by the well-known boolean comparator circuit:

∨
fn

H0

xn−1xn/2−1 xn−2xn/2−2

H1

xn−3xn/2−3

H2

· · ·

xn/2x0

Hn/2−1 Hn/2

Figure 3: A standard boolean circuit evaluating the arithmetic comparison function fn.

Importantly, unlike the function of Example 3.16—one of whose inputs was permanently specialized—the
on-set evaluated by fn is not a union of subcubes. Indeed, each of this circuit’s OR gate’s inputs contains
AND as well as arity-2 XOR gates; each of its wires thus defines exactly a 2-pseudocube.
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This circuit’s ultimate OR gate has n
2 + 1 inputs. Applying Corollary 3.21, we see that f−1

n (1) can be

exactly annihilated by Fp-hyperplanes H0, . . . ,Hn/2 (provided that p ≥ 2
n/2−1). Evaluating each of these on

an input x ∈ {0, 1}n would thus take Ω(n2) time, näıvely.
Because the above circuit shares many common subexpressions, the values Hi(x) for i ∈ {0, . . . , n2 } can

be evaluated in O(n) total time under a slightly more careful scheme, which we presently describe. For
each i ∈ {0, . . . , n2 − 1}, the AND gate attached to the inputs xn−1−i and xn/2−1−i can be evaluated using
the expression 1 + xn/2−1−i − xn−1−i. The XNOR gate attached to xn−1−i and xn/2−1−i can be evaluated

using the expression 22+i ·
(
xn/2−1−i − xn−1−i

)
(we observe that the common subexpression xn/2−1−xn−1−i

can already be reused here, though the resulting savings are not asymptotic). Each remaining AND gate
can be evaluated simply by adding its two input wires. An argument similar to that of Lemma 3.20 shows
that—because we use powers of 2—these sums cannot spuriously yield 0. Putting these facts together, we
obtain the expressions:

Hi(x0, . . . , xn−1) =
(
1 + xn/2−1−i − xn−1−i

)
+
∑
j<i

2j+2 ·
(
xn/2−1−j − xn−1−j

)
.

Each functional Hi’s sum be evaluated in constant time, by incrementally adding one summand to that of
Hi−1. This completes the example.

The following example, due to Ciriani, shows that sum-of-pseudoproducts expressions can admit expo-
nentially fewer summands than the best sum-of-products expressions, even when j = 2:

Example 3.27. The function fn : (x0, . . . , xn−1) 7→ (x0 ⊕ x1) · (x2 ⊕ x3) · · · · · (xn−2 ⊕ xn−1) (for even n) is
obviously coverable by a single 2-pseudocube. On the other hand, the smallest sum-of-products expression
for f−1

n (1) requires 2
n/2 subcubes (each containing a single point) [Cir03, p. 1311].

Combined with Lemma 3.20, Example 3.27 already shows that hyperplane representations can be expo-
nentially more compact than sum-of-products expressions. In fact, the converse of Lemma 3.20 is false, and
sum-of-hyperplanes representations can be exponentially more compact still than sum-of-j-pseudoproducts
expressions, as the following example shows. This remains true even over logarithmically sized primes p,
when j is allowed to be arbitrary, when the hyperplanes are required to be disjoint, and when the pseudocubes
are not required to be disjoint.

Example 3.28. For even n, we consider the majority function fn : (x0, . . . , xn−1) 7→
(∑n−1

i=0 xi

)
≥ n

2 .

We claim that—provided p > n—both f−1
n (0) and f−1

n (1) admit coverings by linearly many disjoint Fp-
hyperplanes (in fact, by n

2 and n
2 + 1, respectively). To see this, we stratify {0, 1}n by Hamming weight;

that is, we write Sn,i :=
{

(x1, . . . , xn) ∈ {0, 1}n
∣∣∣ ∑n−1

j=0 xj = i
}

for each i ∈ {0, . . . , n}. In fact, it is evident

by inspection that each Sn,i is exactly equal to Hi ∩ {0, 1}n for an appropriate Fp-hyperplane Hi (here we
use the assumption p > n, to rule out overflows). We claim, on the other hand, that any covering of f−1

n (1)
by pseudocubes must use exponentially many (in fact, the same is true of f−1

n (0), but it’s slightly harder
to prove). To show this, we argue first that f−1

n (1) cannot contain any pseudocube of dimension strictly
greater than n

2 . Indeed, any such pseudocube C ⊂ {0, 1}n must have (at least) n
2 + 1 “canonical columns”

{b0, . . . , bn/2} ⊂ {0, . . . , n − 1}, each of whose possible combinations of values necessarily obtains in some
element of C (see e.g. Ciriani [Cir01, §2]). In particular, there exists an element (x0, . . . , xn−1) ∈ C for which

xbi = 0 for each i ∈ {0, . . . , n2 }. This implies that
∑n−1
i=0 xi < (n− n

2 ) = n
2 , so that (x0, . . . , xn−1) 6∈ f−1(1)

and C 6⊂ f−1(1). Thus any covering of f−1(1) by pseudocubes must employ only pseudocubes of dimension
at most n

2 , each of which contains at most 2
n/2 points. On the other hand, we claim that the set f−1(1)

contains at least 2n−1 points. Indeed, Sn,i clearly has cardinality
(
n
i

)
for each i ∈ {0, . . . , n}; it follows that

f−1(1) has cardinality
∑n
i=n/2 Sn,i =

∑n
i=n/2

(
n
i

)
, the sum of the last n/2 + 1 entries of Pascal’s triangle’s nth

row (i.e., including the central binomial coefficient
(
n
n/2

)
). In fact, we can bound this quantity from below as:

n∑
i=n/2

(
n

i

)
=

2n −
(
n
n/2

)
2

+

(
n
n/2

)
≥ 2n−1,
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using the fact that the nth row of Pascal’s triangle sums to 2n, and moreover is symmetric. We thus see that

to cover f−1(1) using pseudocubes—each of which covers at most 2
n/2 points—at least 2n−1

2n/2
= 2

n/2−1 pseu-
docubes would be required. We remark finally that evaluations {Hi(x)}ni=0 can—as in Example 3.26 above—
be evaluated in O(n) total time on any input x = (x0, . . . , xn−1) ∈ {0, 1}n, using a simple subexpression-

sharing scheme. Indeed, the expression
∑n−1
j=0 xj need only be evaluated once. The hyperplanes Hi differ only

in their constants terms, which can be added individually to this common subexpression. This completes
the example.

Remark 3.29. A deep result of H̊astad [Weg87, §11.4 Thm. 4.1] shows that any constant-depth circuit
family for the majority function must use exponentially many gates. Our linearly-sized affine circuit thus
exponentially beats any constant-depth boolean circuit (not just depth-three XOR-AND-OR-style circuits).

Remark 3.30. In light of Lemma 3.25, Example 3.31 show that the “interesting” affine flats necessarily
intersect the cube in fewer than the maximal number of points, and that this property, paradoxically, is
essential for their power.

Example 3.31. Again for even n, we consider the Hamming weight comparator function fn :

(x0, . . . , xn−1) 7→
∑n/2−1
i=0 xi ≤

∑n−1
i=n/2 xi (this function compares its argument’s two halves’ Hamming

weights). It is clear that the majority function of Example 3.28 differs from fn by precomposition with
the affine map (x0, . . . , xn−1) 7→ (x0, . . . , xn/2−1, 1 − xn/2, . . . , 1 − xn−1). We thus conclude directly that
f−1
n (0) and f−1

n (1) respectively admit coverings by n
2 and n

2 + 1 hyperplanes, and moreover that any cover-
ing of f−1

n (1) by pseudocubes must use exponentially many.

3.4 A perspective from the work of Alon and Füredi

In an aptly titled paper, Alon and Füredi [AF93] study a problem related to ours. They show that any
hyperplane configuration H0, . . . ,Hm−1 with m ≤ n which doesn’t cover the whole cube must “miss” at
least 2n−m points. Their results allow us study the role of fan-in in Definition 3.3.

Lemma 3.32. Fix a k-dimensional subcube C ⊂ {0, 1}n. The complement {0, 1}n − C can be covered by
n− k disjoint subcubes.

Proof. Omitted.

Theorem 3.33 (Alon–Füredi [AF93]). Given some fixed function g(n) : N → N for which 0 ≤ g(n) < n
for each n, define fn : {0, 1}n → {0, 1} by fn : (x0, . . . , xn−1) 7→

∨
i≤g(n) xi. Let p be arbitrary. The on-set

f−1
n (1) cannot be exactly covered by fewer than g(n) Fp-affine hyperplanes.

Proof. This is essentially a restatement and specialization of [AF93, Thm. 4].

Example 3.34. Setting g(n) = 0 in the above yields the “projection” family fn : (x0, . . . , xn−1) 7→ x0. For
each n ∈ N, fn’s off-sets and on-sets are each coverable by a single hyperplane. This shows that the covering
size m can be constant, even when {fn}n∈N is required to contain infinitely many nonconstant maps.

Example 3.35. Setting g(n) = n − 1 yields fn : {0, 1}n → {0, 1} by fn : (x0, . . . , xn−1) 7→
∨n−1
i=0 xi (i.e.,

fn(x) = 1 unless x is the origin). Let p > n. By Lemma 3.13, f−1(0) can be covered by a single hyperplane;
Lemma 3.32 further shows that f−1(1) can be covered by n disjoint Fp-affine hyperplanes. Finally, Theorem
3.33 shows that no fewer than n hyperplanes can cover f−1(1) (this certainly remains true if one moreover
restricts to disjoint collections).

We thus have the following corollary, which essentially re-expresses [AF93, Thm. 4] in our language:

Corollary 3.36. Requiring that m < n in Definition 3.3 would strictly shrink the resulting complexity class.

In fact, the above argument, together with Theorem 3.33, essentially yields an infinite “hierarchy” of
complexity classes—with strict inclusions—obtained by further restricting m in Definition 3.3.
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4 The Hyperplane Synthesis Algorithm

In this section, we give our main constructive algorithm, which generates, given an arbitrary subset S of the
cube (expressed as a list of minterms), a disjoint hyperplane covering of S. Roughly speaking:

Theorem 4.1. Fix a natural number n, and suppose that p ≥ 2n. Given a subset S ⊂ {0, 1}n, Algorithm 4

below correctly outputs a family of affine hyperplanes H0, . . . ,Hm−1 in Fnp for which S =
⊔m−1
i=0 Hi ∩{0, 1}n.

That is, the respective intersections of the hyperplanes H0, . . . ,Hm−1 with {0, 1}n disjointly cover S, and
cover no further elements of the cube. In fact, our algorithm attempts to find a such configuration for which
m is minimal, and moreover to do so efficiently.

Because the size of the input—that is, a minterm-representation of S—can be as large as 2n, it is
impossible a priori to achieve an algorithm whose runtime is polynomial in n. We therefore, following
the tradition of (for example) Espresso II [BHMSV84], seek to construct algorithms which are heuristically
efficient, and which yield good results in practice. Likewise, it seems essentially impossible to construct
necessarily minimal configurations H0, . . . ,Hm−1 with any reasonable efficiency; thus, the configurations our
algorithim outputs are only heuristically minimal (though they often wind up exactly minimal in practice).
We give concrete benchmarks—exhibiting both runtime and output quality—below, in Subsection 4.5.

Our primary strategy involves “recursive backtracking”. Our algorithm builds one flat at a time; it
constructs each individual such flat dimension-by-dimension. Given a “flat in progress” and a new candidate
basis vector, our algorithm computes the affine span of the extended basis, and checks whether this span
remains contained in S (and also disjoint from all flats previously constructed). For each such partially
constructed flat, a handful of linearly independent such extension vectors are considered. In this way, a
tree structure—each path through which corresponds to some particular sequence of extensions—is built;
the leaf which covers the most points is retained. This entire search process is then repeated iteratively; in
each iteration, additional flats are added to each configuration. Iteration proceeds until some configuration
manages to exhaust all of S. We describe our algorithm throughout a handful of subsections.

4.1 Computing a span

We begin with a concrete and efficient method by which to evaluate the affine span of k + 1 cube elements,
and in particular that portion of their span which intersects {0, 1}n. Lemma 2.4 above shows that, in order
to compute K ∩ {0, 1}n (where K is represented by a row-reduced matrix U), one must only check those

combinations
∑k−1
i=0 αi ·xi of U ’s rows for which each αi ∈ {0, 1}. In fact, we can further improve the efficiency

of this computation using the Gray code (see e.g. Knuth [Knu11, §7.2.1.1]), as we now demonstrate. In what
follows, we express K as a k × n matrix U , which we assume moreover is row-reduced over Fp.

Algorithm 1 ComputeSpan

Require: A row-reduced k × n matrix U over Fp.
Ensure: The intersection C of U ’s row-space with {0, 1}n.
1: C := ∅
2: Initialize x := 0.
3: for (α0, . . . , αk−1) = α ∈ {0, 1}k in Gray-code order: do

4: Incrementally adjust x so that x =
∑k−1
i=0 αi · xi. . xi here refers to U ’s ith row.

5: if x ∈ {0, 1}n then C ∪= {x}
6: return C

Lemma 4.2. Algorithm 1 terminates in O(n · 2k) time.

Proof. Because the coefficient combinations α = (α0, . . . , αk−1) ∈ {0, 1}k are considered in Gray code order,
upon each successive iteration, exactly one length-n basis vector must be added or subtracted from the
“running combination” x in order to determine the appropriate sum x =

∑k−1
i=0 αi · xi.

The analogue of Algorithm 1 in which the Gray code were not used would take O(k · n · 2k) time. In
any case, both methods significantly beat the näıve approach whereby KT is row-reduced and—for each
x ∈ {0, 1}n—the augmented system

[
KT | x

]
is checked for consistency; this would take Ω(2n) time.
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4.2 Fundamental datastructures

Slightly abusing notation, we write {0, 1}n for the datatype consisting of cube elements. (Practically, we
represent these as n-bit integers, using a little-endian conversion; in practice, we have n ≤ 64.) We also write
Fnp for the datatype consisting of n-tuples of Fp-elements. Through the natural inclusion, {0, 1}n ⊂ Fnp .

To avoid performing duplicate work, we use a transposition table construction in our tree search, together
with the Zobrist hashing method [Zob70] (typically used in computer game-playing programs). To each
element x ∈ {0, 1}n, we associate a random 64-bit key Z[x]. In fact, two distinct configurations may
nonetheless have the same union; to prevent unwarranted table false-positives in such settings, we actually
refresh the entire Zobrist table Zi between each iteration i of the main outer loop (see Algorithm 2 below).

Thus, to a configuration C, we associate the Zobrist key:

C.z :=
⊕

Ki∈C.F

 ⊕
x∈Ki∩{0,1}n

Zi[x]

 .

Because the flats we consider in this subsection’s algorithm are generated by cube elements, they are char-
acterized uniquely by their respective intersections with the cube, and this approach is correct.

We now describe our an “affine flat” datastructure, which encodes a partially constructed flat, and also
supports “extension” algorithms.

1: class Flat
2: {0, 1}n o . The origin point of the flat K this object represents.
3: Set 〈{0, 1}n〉 C . Tracks the intersection K ∩ {0, 1}n.
4: Vector

〈
Fnp
〉
U . A row-reduced, k × n matrix generating K with respect to o.

5: Int z . The Zobrist hash key of this configuration.
6: function Flat fresh({0, 1}n x) . Creates a fresh 0-flat containing just x.
7: return a fresh Flat K for which K.o := x, K.S := {x}, K.U := [], and K.z = Zi[x].

8: function Void extend({0, 1}n x) . Extends self using the new point x.
9: U += o⊕ x . Append the “relativized” point o⊕ x to the flat’s basis.

10: Row-reduce U . By induction, U ’s first k − 1 rows are already row-reduced.
11: C := {o⊕ x | x ∈ ComputeSpan(U)} . Stash the “re-relativized” output of Algorithm 1 above.
12: z :=

⊕
x∈C Z[x] . Update this flat’s Zobrist key. In practice, this can be done “incrementally”.

13: end class

Throughout our algorithm, we recursively explore various configurations of disjoint affine flats. To keep
track of the data associated with each such configuration, we define the following datastructure:

1: class Configuration
2: Set 〈{0, 1}n〉 R . Set tracking remaining points uncovered by the configuration.
3: Vector 〈Flat〉 F . A list of the flats constituting this configuration.
4: Set 〈Configuration〉 H . A list of “child” configurations, each featuring an extension.
5: Int z . The Zobrist hash key of this configuration.
6: function Void extend(Int i, {0, 1}n x) . Extends self’s ith flat, using x.
7: Copy-initialize a new Configuration c from self with c.H := []
8: if F.length = i then c.F += fresh(x) . This is the configuration’s first time in the ith cycle.
9: else c.F.back().extend(x) . The ith flat already exists; extend it.

10: if c.F.back().C 6⊂ R then return . New flat “leaked” outside R; abort early.

11: c.R −= c.F.back().C . Remove newly covered points from set of remaining points.
12: c.z :=

⊕
K∈c.F K.z . Update this configuration’s Zobrist key (done incrementally, in practice).

13: H += c . New child was successful; append it to this configuration’s list of children.

14: end class

21



In order to facilitate the discovery of good solutions which nonetheless appear suboptimal ini-
tially, we use a “leaderboard” construction, which caches a fixed number—say, l—of high-performing
configurations in between iterations of the main search routine. More specifically, we define an
OrderedSet 〈Configuration, l〉 datastructure L, which maintains at most l Configuration handles
C (in practice we use pointers), sorted in ascending order by the number of remaining uncovered points
C.R.size(). When an element is added to L—and if L.size() ≥ l—the new element is compared to L’s worst
element. If the new element beats the leaderboard’s worst element, then the new element is inserted and
the worst one is expunged; otherwise, no action is taken.

In our algorithm, we repeatedly explore a tree of configurations, each time modifying only each config-
uration’s ith flat throughout. When each round of exploration concludes (and in fact, in real time, as we
discuss below), we prune from the tree each element none of whose descendants are on the leaderboard. We
then increment i, clear the leaderboard, and perform a new recursive search. This process is repeated until
some configuration in the tree manages to exhaust all the initial input subset S. This paradigm has the
effect of retaining as leaves exactly those configurations whose first i − 1 flats “have performed well”, and
which stand to be propelled into the lead upon the conclusion of the ith search cycle.

The leaderboard construction makes our algorithm somewhat more complicated to describe. Indeed,
it makes the Configuration datastructure necessary; if the leaderboard were not used, then flats could
be considered in isolation, and the state refreshed after each tree search. (Nonetheless, setting l = 1 has
the effect of collapsing our algorithm back to this behavior.) In practice, the leaderboard construction
significantly improves our algorithm’s output quality, and imposes only a modest performance burden.

4.3 The flat-finding algorithm

We now explicitly describe our flat synthesis algorithm. We fix an integral branching factor, say b. We
emphasize that the flats output by Algorithm 2 below have arbitrary dimensions k ∈ {0, . . . , n− 1}, and are
not necessarily hyperplanes. We provide an algorithm for flat extension in the next subsection.

Algorithm 2 FlatFinder(Set 〈{0, 1}n〉S)

1: Initialize Map 〈{0, 1}n → Int〉 Z . Global random mapping between cube elements and Zobrist keys.
2: Initialize Set 〈Int〉 T . Transposition table, whose elements the keys of visited configurations.
3: Initialize Configuration C with C.R := S . C here is the root configuration.
4: Initialize OrderedSet 〈Configuration, l〉 L . Leaderboard, containing l configurations.
5: Initialize Bool s := false . The variable s tracks whether an exhausting configuration has been found.
6: function Void RecursiveSearch(Int i, Configuration C)
7: if C.z ∈ T then return . Configuration’s Zobrist key is present in the transposition table; abort.

8: if C.H = ∅ then . Node is a leaf; begin process of randomly generating children.
9: X := Sample(C.R, b) . Sample b distinct extension candidates from the remaining set C.R.

10: for {0, 1}n x ∈ X do C.extend(i,x) . Populate C’s children by attempting extensions.

11: for c in C.H do
12: if not s then RecursiveSearch(i, c) . Terminate early if s becomes true.

13: if C.H = ∅ then . This branch will execute only if all attempted extensions in line 10 failed.
14: L ∪= C . As this node is a leaf, we consider it for inclusion in the leaderboard.
15: if C.R = ∅ then s := true . Check whether our search is done; if so, mark s for termination.

16: T ∪= C.z . Add C’s Zobrist key to the hashtable.

17: for Int i ∈ {0, 1, 2, . . .} do
18: Freshly re-assign Z to a random mapping Map 〈{0, 1}n → Int〉.
19: RecursiveSearch(i, C)
20: Prune from the tree C each Configuration whose subtree contains no leaderboard elements.
21: Clear the transposition table T .
22: if s = true then break
23: Clear the leaderboard L.
24: Output Configuration L.best().
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Remark 4.3. To minimize our algorithm’s memory footprint, we actually prune from the tree in real time
configurations none of whose descendants reside in the leaderboard. Because the “bookkeeping” involved in
this process is fairly intricate, we suppress it from our account of our algorithm.

Remark 4.4. In practice, we employ an additional optimization whereby a set Y of “bad” points—that is,
of cube-elements x which cause line 10 above to fail—is retained as a class member in each Configuration
C and is inherited by C’s children. The idea is that a point x which causes C to “leak” outside of R will
necessarily have the same effect upon each of C’s descendants, and can be excluded from consideration when
subsequent candidates x for extension are considered; i.e., line 9 can instead execute X := Sample(C.R−Y, b).

Remark 4.5. The aspect of our algorithm wereby an “already-incorporated” set C, a “plausible” set R, and
a “problematic” set Y are simultaneously retained and recursively modified makes it analogous in certain
respects to the Bron–Kerbosch max-clique-finding algorithm (see e.g. Cazals and Karande [CK08, 2.1]).

4.4 The flat extension algorithm

In this section, we give an algorithmic procedure which extends flats into hyperplanes. This extension
capability is important in practice, as Algorithm 2 above generally delivers k-flats K for which k < n− 1.

Our algorithm proceeds in the following way; we assume for now that p ≥ 2n. Assuming by Lemma 2.1
that K contains the origin, the quotient map Fnp → Fnp/K—representable concretely by a matrix A : Fnp →
Fn−kp in the sense of Lemma 2.3—necessarily sends each element of {0, 1}n −K to a nonzero element. To
define a hyperplane H : Fnp → Fp satisfying the hypothesis of the question, it suffices to construct a chain of
one-dimensional quotients

H : Fnp
A−→ Fn−kp

An−k−1−−−−−→ Fn−k−1
p

An−k−2−−−−−→ · · · A2−−→ F2
p
A1−−→ Fp,

where, for each l ∈ {1, . . . , n − k − 1}, the map An−k−l sends each element of the image
(An−k−l−1 ◦ · · · ◦An−k−1 ◦A) ({0, 1}n −K) to a nonzero element. By induction, this in turn amount to
selecting a line in each space Fn−k−l+1

p —or equivalently, an element of PFn−k−lp —which avoids this image.

The image has at most 2n − 1 elements. On the other hand,
∣∣∣PFn−k−lp

∣∣∣ =
∑n−k−l
j=0 pj . By hypothesis on p,

this latter quantity strictly exceeds 2n − 1 for each l, even in the worst case l = n− k − 1.
We note that this approach remains correct (with minor modifications) even under certain weaker as-

sumptions on p, as we argue below in Appendix A (see e.g. Theorems A.4 and A.17 below). As the exposition
becomes significantly more complex under these weaker assumptions, and we restrict to the case p ≥ 2n in
this subsection.

For each projective space PFn−k−lp , we write U0 ⊂ PFn−k−lp for the affine coordinate chart consisting of

those elements (v0 : . . . : vn−k−l) ∈ PFn−k−lp for which v0 6= 0. Each such element has a unique representation

in the affine space U0
∼= Fn−k−lp , namely

(
v1
v0
, . . . , vn−k−lv0

)
(see for example Hartshorne [Har77, p. 10]).

Algorithm 3 FlatExtender

Require: An odd prime p such that p ≥ 2n. An k × n Fp-matrix U spanning K, where k < n− 2.
Ensure: A functional H : Fnp → Fp such that K ∩ {0, 1}n = H ∩ {0, 1}n.
1: Using Lemma 2.3, construct a full-rank (n− k)× n matrix A annihilating U .
2: Initialize im0 := A({0, 1}n −K) . Concretely, im0 is a (n− k)× |{0, 1}n −K| Fp-matrix.
3: Initialize H0 := A
4: for l ∈ {1, . . . , n− k − 1} do
5: Express the elements of U0 ∩ iml−1 ⊂ PFn−k−lp in affine coordinates, and store them in a hashtable.

6: do randomly sample (u1, . . . , un−k−l)← U0
∼= Fn−k−lp until (u1, . . . , un−k−l) 6∈ U0 ∩ imi−1

7: Construct a (n− k − l)× (n− k − l + 1) matrix An−k−l annihilating (1, u1, . . . , un−k−l)
8: Carry forward iml := An−k−l(iml−1) . Concretely, iml is an (n− k − l)× |{0, 1}n −K| Fp-matrix.
9: Set Hl := An−k−l ·Hl−1 . Hl is an (n− k − l)× n matrix.

10: return H := Hn−k−1
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Lemma 4.6. Algorithm 3 terminates in finite time almost surely. If p ≥ (1 + ε) · (2n − 1) for some fixed
constant ε, then Algorithm 3 terminates in expected O(n2 · 2n) time.

Proof. The initial multiplication im0 := A({0, 1}n−K) takes (n− k) ·n · |{0, 1}n −K| ∈ O(n2 · 2n) multipli-
cations. Each iteration of Algorithm 3’s main loop loop entails multiplying the (n− k − l)× (n− k − l+ 1)
matrix An−k−l by the matrices iml−1 and Hl−1, which respectively have |{0, 1}n −K| and n columns.
Moreover, An−k−1 consists of exactly one non-identity column, followed by the size-(n − k − l) identity
matrix. Both of these multiplications can thus be performed in O(n · 2n) time. Beyond this, the inner
do–until loop must sample an element (u1, . . . , un−k−l) ∈ Fn−k−lp which “misses” U0 ∩ iml−1. The set
U0 ∩ iml−1 contains at most |{0, 1}n −K| ≤ 2n − 1 elements. On the other hand, by hypothesis on p,∣∣Fn−k−lp

∣∣ ≥ p > 2n − 1 ≥ |{0, 1}n −K|. Each iteration of the inner loop thus succeeds with positive proba-
bility. In fact, under the additional hypothesis that p ≥ (1 + ε) · 2n, each iteration of the inner loop succeeds
with probability at least:

pn−k−l − |U0 ∩ iml − 1|
pn−k−l

≥ pn−k−l − (2n − 1)

pn−k−l
≥ p− (2n − 1)

p
= 1− 2n − 1

p
≥ 1− 2n − 1

(1 + ε) · (2n − 1)
=

ε

1 + ε
.

For each iteration of the outer loop, the inner loop thus succeeds after an expected 1+ε
ε iterations, and thus

imposes at most a constant (in n) expected multiplicative overhead. This completes the proof.

We conclude this section with the following “summary” algorithm:

Algorithm 4 HyperplaneFinder

Require: An arbitrary set S ⊂ {0, 1}n and a prime p ≥ 2n.

Ensure: Hyperplanes H0, . . . ,Hm−1 over Fp such that S =
⊔m−1
i=0 Hi ∩ {0, 1}n.

1: Obtain Configuration C := FlatFinder(S). . See Algorithm 2.
2: return {FlatExtender(K) |K ∈ C.F} . See Algorithm 3.

4.5 Implementation

In this subsection, we describe our implementation of the hyperplane-synethesing Algorithm 4. Our imple-
mentation is written in C++, and uses only the C++ Standard Library. We specialize p to the NIST P-256
prime p = 2256−2224 + 2192 + 296−1 [Inf13, D.2.3]. Our algorithm requires that output quality and runtime
be traded off. In particular, the branching factor b and the leaderboard size l are tunable parameters. We
run our benchmarks using a handful of different parameter choices, in order to demonstrate the nature of
the available tradeoffs.

We first focus on the case n = 8, and execute our algorithm on random subsets S ⊂ {0, 1}8. Each such
subset can be represented uniquely as a 256-bit string. For each among a handful of arbitrarily chosen such
strings—selected as “nothing-up-my-sleeve” hashes—we execute our algorithm 100 times, recording, in each
execution, the time taken by the algorithm and the cardinality m of the covering obtained.

We also show that our algorithm can empirically “learn” the covering families already exactly described
in Examples 3.26, 3.28, and 3.35 above. To this end, we add table entries for those functions, and run
analogous benchmarks for them. Our benchmarks show that Algorithm 4 finds the “right” covering (i.e.,
using 5 hyperplanes for the first two and 8 for the last) most or all of the time, at least for larger l and b
(setting both to 3 essentially suffices, with diminishing returns for higher values).

In each cell, we report average values over 100 runs. All benchmarks are run on an AWS instance of
c5.4xlarge type. Time values are all in milliseconds.

Algorithm 4 spends the vast majority of its time executing FlatFinder (Algorithm 2). In fact, each
individual call to FlatExtender (Algorithm 3) just takes a couple milliseconds, with lower -dimensional flats
more expensive to extend; a 0-dimensional flat, for example, takes as much as 16 milliseconds to extend (we
don’t implement the shortcut implicit in Lemma 3.13).

The flats Ki output by Algorithm 2 are typically relatively high-dimensional, with most between 5 and
7 dimensions in the case n = 8. Occasionally a single 0-dimensional flat also appears.
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Table 1: Performance of algorithm (in both time and output quality) over various parameter choices.

b = 2, l = 2 b = 3, l = 3 b = 4, l = 4

Choice of S ⊂ {0, 1}8 |S| Time Hyp.s Time Hyp.s Time Hyp.s

S := SHA-256(0x00) = 6e340b9c...17afa01d 127 99 17.29 550 13.64 3,651 12.17
S := SHA-256(0x01) = 4bf5122f...7785459a 130 104 17.35 621 13.66 4,414 12.13
S := SHA-256(0x02) = dbc1b4c9...6457d986 128 102 17.11 634 13.57 4,270 12.06
S := SHA-256(0x03) = 084fed08...adff29c5 126 98 16.95 589 13.39 3,916 11.86
S := SHA-256(0x04) = e52d9c50...81c89e71 119 91 16.51 527 12.91 3,613 11.61
S := SHA-256(0x05) = e77b9a9a...5ab743db 139 112 18.17 722 14.09 5,136 12.57
S := SHA-256(0x06) = 67586e98...08c5ecf6 133 106 17.64 698 13.97 4,596 12.33
S := SHA-256(0x07) = ca358758...005ee879 143 112 18.32 731 14.44 4,964 12.80

Example 3.26:
∑3
i=0 2i · xi ≤

∑7
l=4 2i−4 · xi 136 61 10.78 225 5.27 1,806 5.06

Example 3.28:
(∑7

i=0 xi

)
≥ 4 163 48 5.94 613 5.00 5,514 5.00

Example 3.35:
∨n−1
i=0 xi 255 134 8.00 2,268 8.00 21,505 8.00

Our algorithm of course can also handle larger subsets, though the runtimes get large. In the following
benchmarks, we fix the parameterization b = 2 and l = 1. In each benchmark, we run our algorithm on a
single random subset S ⊂ {0, 1}n. We report the time taken, and the number of hyperplanes used. All time
values here are in seconds.

Table 2: Performance of algorithm (in both time and output quality) on higher-dimensional sets.

Dimension n Cardinality |S| of random subset S ⊂ {0, 1}n Time Taken Hyperplanes Used

8 124 0.057 15
9 256 0.271 31
10 495 1.142 55
11 1,034 3.874 95
12 2,088 17.698 173
13 4,111 75.420 305
14 8,112 348.748 546

5 Commitment-Consistent 2PC

In this section, we provide our primary application of the “computation by hyperplanes” paradigm. Our
fundamental idea is a vast generalization of Wagh, Gupta, and Chandran’s Algorithm 3 [WGC19, Alg.
3]. Their protocol—though they don’t express it in these terms—essentially expresses the “fixed-threshold
comparator” function f : {0, 1}n → {0, 1} as an on-set S := f−1(1) ⊂ {0, 1}n, which, moreover, is covered
by disjoint Fp-hyperplanes over a fixed prime p. Because these hyperplanes are affine-linear, they can be
evaluated jointly on any input x ∈ {0, 1}n, even when x’s individual components are secret-shared over
Fp between two parties (secret-sharing is a linear operation). The share-holding parties may finally send
their output secret-shares—after permuting and re-randomizing them, using common randomness—to an
untrusted third party, who, upon reconstructing their values, learns only whether a 0 is present, and hence
whether the original input lay within one of the hyperplanes (equivalently, whether x ∈ f−1(1)). In other
terms, these hyperplanes facilitate a randomizing polynomial construction in the sense of Definition 3.10.

We generalize [WGC19, Alg. 3] in a number of directions. For one, we introduce the use of arbitrary
functionalities f : {0, 1}n → {0, 1}; these can be, in general, much more complex than that evaluated
by [WGC19, Alg. 3]. Indeed—as we observe in Example 3.16 above—the fixed-threshold comparator f :
{0, 1}n → {0, 1} evaluated by [WGC19, Alg. 3] has an on-set consisting of a union of subcubes, and thus
represents one of the simplest function-families computable by affine hyperplanes. Examples 3.27, 3.26,
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and 3.31 above demonstrate how significantly the power of hyperplanes can, in general, exceed that of
subcubes, even when only polynomially (indeed, linearly) many hyperplanes are allowed (using arbitrarily
many hyperplanes, one may of course evaluate arbitrary functions, as Corollary 3.15 demonstrates).

Separately, we show how to more fully exploit the affine-linearity of hyperplane representations, by adding
malicious security to [WGC19, Alg. 3]. Indeed, just as secret-sharing can be viewed as an Fp-linear operation,
so can commitment under an Fp-homomorphic scheme (such as the Pedersen scheme). We thus observe that
two parties may evaluate their affine circuit “in parallel” on secret-shares and on commitments, and so achieve
maclicious security under one corruption. At a high level, our approach shares with that of Frederiksen,
Pinkas, and Yanai [FPY18] the idea whereby the use of inconsistent or incorrect shares must ultimately
be detected upon opening. Importantly, [FPY18] evaluates arithmetic circuits, and uses classic “Beaver”
multiplication triples in order to evaluate field-multiplication gates. We instead express intrinsically boolean
functions as randomizing polynomials (see Subsection 3.2 above), and thus evaluate them with the aid of
Fp-linear operations. We handle non-linearity by evaluating (disjoint) unions of hyperplanes, as opposed to
individual ones, and by using an untrusted third party to reconstruct shares (and check openings).

Our use of commitments conveys additional advantages, beyond those associated with malicious secu-
rity. Indeed, a significant literature (see e.g. Groth and Kohlweiss [GK15], Bünz, et al. [BBB+18]) has
demonstrated the versatility and efficiency of zero-knowledge proof protocols which target languages con-
cerning commitments, and which, in particular, assert that certain commitments’ messages satisfy certain
properties. Indeed, each party may couple its evaluation of an affine circuit, under our protocol, with a proof
demonstrating that its input arguments belong to some particular language. As a natural example, each
party may demonstrate to the other that the input wires it uses in some execution of the protocol match
values committed to in a prior commitment. We call this feature commitment-consistency ; it is not easy to
achieve in standard protocols.

5.1 Semi-honest protocol

For completeness, and by way of introduction, we begin with a simpler, semi-honest variant of our protocol.
This variant is essentially a generalization of [WGC19, Alg. 3], in which an arbitrary function is evaluated.
We assume that all parties have agreed upon a key-exchange protocol Ξ and a pseudorandom generator G.

PROTOCOL 5.1 (Semi-honest protocol).
All parties have a function f : {0, 1}n → {0, 1}, where n is even.

• Setup: All parties agree on an odd prime p. All parties agree on a disjoint covering f−1(1) =⊔m−1
i=0 Hi ∩ {0, 1}n using Fp-hyperplanes.

P0 and P1 hold elements x0 and x1 of {0, 1}n/2.

• First phase: Empty.

• Second phase: P0 and P1 run Ξ, and so obtain a shared key ξ. Using ξ and G, P0 and P1

generate m shared nonzero random values (αi)
m−1
i=0 in F∗p, and a shared random circular shift

permutation ρ ∈ 〈(0, 1, . . . ,m− 1)〉 ⊂ Sm. Each party Pν , for ν ∈ {0, 1}, then proceeds as follows:

1. For each i ∈ {0, . . . , n2 − 1}, Pν computes a random secret-sharing xν,i = 〈xν,i〉0 + 〈xν,i〉1 in

Fp, where xν =
(
xν,0, . . . , xν,n/2−1

)
. Pν directly sends the shares

(
〈xν,i〉1−ν

)n/2−1

i=0
to P1−ν .

2. After receiving the shares
(
〈x1−ν,i〉ν

)n/2−1

i=0
, from P1−ν , Pν evaluates the hyperplanes (Hi)

m−1
i=0

on the appropriate shares; that is, it evaluates

(〈yi〉ν)
m−1
i=0

:=
(
Hi

(
〈x0,0〉ν , . . . ,

〈
x0,n/2−1

〉
ν
, 〈x1,0〉ν , . . . ,

〈
x1,n/2−1

〉
ν

))m−1

i=0
. (1)
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3. For each i ∈ {0, . . . ,m− 1}, Pν overwrites 〈yi〉ν := αi ·
〈
yρ(i)

〉
ν
. Finally, Pν sends the output

shares (〈yi〉ν)
m−1
i=0

to P2.

After receiving all shares, P2 reconstructs yi := 〈yi〉0 + 〈yi〉1 for each i ∈ {0, . . . ,m− 1}. P2 runs
the reconstructor X of Theorem 3.11 on the (yi)

m−1
i=0 ; that is, if any among the components yi is

equal to 0, P2 sets v := 1; otherwise, P2 sets v := 0. P2 sends v to P0 and P1 and outputs v.

Theorem 5.2. If Ξ is secure in the presence of an eavesdropper and G is a pseudorandom generator, then
Protocol 5.1 securely computes Functionality 2.11 in the presence of one semi-honest corruption.

Proof. The correctness of the protocol is self-evident, and follows from the correctness property of Theorem
3.11. We define a simulator S which satisfies the properties required by Definition 2.12. We fix a functionality
F in the sense of Functionality 2.11, with function f : {0, 1}n → {0, 1}, say, and a corrupt party C ∈ {0, 1, 2}.
On input (1λ, C,xC , v), S first runs the setup procedure of Protocol 5.1, and so obtains a prime p and a

covering f−1(1) =
⊔m−1
i=0 Hi ∩ {0, 1}n. We now treat separately the cases C ∈ {0, 1} and C = 2.

In the case C ∈ {0, 1}, PC receives only the secret-shares
(
〈x1−C,i〉C

)n/2−1

i=0
sent by P1−C . S may

simply simulate these as random Fp-elements. Regardless of the inputs x0 and x1, RealΠ(λ,C; x0,x1) and

IdealF,S(λ,C; x0,x1) are clearly identical; indeed, both the real and ideal worlds, the shares
(
〈x1−C,i〉C

)n/2−1

i=0
received from the honest party P1−C are uniformly random.

We suppose now that C = 2. S runs the randomizing polynomial simulator guaranteed to exist by
Theorem 3.10; in this way, it obtains a random vector y = (y0, . . . , ym−1) ← Dv. Finally, S generates a

random secret-sharing yi = 〈yi〉0 + 〈yi〉1, for each i ∈ {0, . . . ,m− 1}. S outputs the shares (〈yi〉ν)
1,m−1
ν,i=0

.

We now claim that the distributions RealΠ(λ, 2; x0,x1) and IdealF,S(λ, 2; x0,x1) are computationally
indistinguishable. In fact, we define a sequence of hybrid distributions which interpolate between these two:

D0: Corresponds to RealΠ(λ, 2; x0,x1), i.e., the view V2.

D1: Same as D0, except that instead of the computational shared secret key ξ, P0 and P1 are given a truly
random string ξ̂ ∈ {0, 1}λ.

D2: Same as D1, except instead of obtaining them through ξ̂ and G, P0 and P1 are given truly random
quantities (αi)

m−1
i=0 in F∗p and ρ ∈ Sm.

D3: Corresponds to IdealF,S(λ, 2; x0,x1), i.e., the output S(1λ, 2,∅, v).

Lemma 5.3. If Ξ is secure, then the distributions D0 and D1 are computationally indistinguishable.

Proof. If D0 and D1 were distinguishable, then there would be a distinguisher D and a polynomial p(λ)
for which, for a sequence of triples (λ,x0,x1) in which infinitely many distinct values λ are represented,
|Pr[D(D0(λ,x0,x1)) = 1]− Pr[D(D1(λ,x0,x1)) = 1]| ≥ 1

p(λ) . Without loss of generality—and after possibly

flipping D’s output bit—we may assume that Pr[D(D1(λ,x0,x1)) = 1]−Pr[D(D0(λ,x0,x1)) = 1] ≥ 1
p(λ) for

infinitely many λ and appropriate (x0,x1). We define a nonuniform adversary A attacking the key-exchange

experiment KEΞ,A. Upon receiving trans and ξ̂, using the “advice” (x0,x1), A simulates an execution of

Protocol 5.1 on inputs x0 and x1, in which the challenge ξ̂ is used in place of P0 and P1’s shared secret string
ξ. In this way, A obtains an output view V2. A then runs D on V2, and outputs whatever D outputs. We
observe that if ξ̂ is a computational shared secret, then the view V2 is distributed exactly as in D0(λ,x0,x1).

If ξ̂ is a random λ-bit string, then the view V2 is distributed exactly as in D1(λ,x0,x1). Writing b for the
key-exchange experimenter’s hidden bit, we have:

Pr[KEΞ,A(λ) = 1] =
1

2
· Pr[outA (KEΞ,A(λ)) = 0 | b = 0] +

1

2
· Pr[outA (KEΞ,A(λ)) = 1 | b = 1]

=
1

2
·
(

1− Pr
V2←D0(λ,x0,x1)

[D(V2) = 1] + Pr
V2←D1(λ,x0,x1)

[D(V2) = 1]

)
=

1

2
+

1

2
·
(

Pr
V2←D1(λ,x0,x1)

[D(V2) = 1]− Pr
V2←D0(λ,x0,x1)

[D(V2) = 1]

)
.
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Our assumption D would now show that Pr[KEΞ,A(λ) = 1]− 1
2 ≥

1
2·p(λ) for infinitely many λ, which would

contradict the security of Ξ.

Lemma 5.4. If G is pseudorandom, then the distributions D1 and D2 are computationally indistinguishable.

Proof. If D1 and D2 were distinguishable, then there would be a distinguisher D, a polynomial p(λ), and an
infinite sequence of triples (λ,x0,x1) for which |Pr[D(D1(λ,x0,x1)) = 1]− Pr[D(D2(λ,x0,x1)) = 1]| ≥ 1

p(λ) .

We define a PPT distinguisher D′ attacking G in the following way. On a l(λ)-bit input string t and advice
(x0,x1), D′ simulates an execution of Protocol 5.1 on x0 and x1, in which the string t is used by P0 and P1

to construct (αi)
m−1
i=0 and ρ. D′ then runs D on the resulting view V2, and outputs whatever D outputs. If

t = G(s) for a uniform seed s← {0, 1}λ, then the view V2 is distributed exactly as in D1(λ,x0,x1). If t = r
for a uniform string r ← {0, 1}l(λ), then V2 is distributed exactly as in D2(λ,x0,x1). It follows that:∣∣∣∣ Pr
s←{0,1}λ

[D′(G(s)) = 1]− Pr
r←{0,1}l(λ)

[D′(r) = 1]

∣∣∣∣ =

∣∣∣∣ Pr
V2←D1(λ,x0,x1)

[D(V2) = 1]− Pr
V2←D2(λ,x0,x1)

[D(V2) = 1]

∣∣∣∣ .
Our hypothesis on D would now show that G is not pseudorandom, contradicting the lemma’s hypothesis.

Lemma 5.5. The distributions D2 and D3 are identical.

Proof. This is an application of the the privacy property of Theorem 3.11. For each choice of inputs x0 and

x1, in the real world, and hence in all distributions, the initial shares
(
〈xν,i〉k

)n/2−1

i=0
, for each ν ∈ {0, 1} and

k ∈ {0, 1}, are uniformly random, subject to the condition 〈xν,i〉0 + 〈xν,i〉1 = xν,i for each ν ∈ {0, 1}
and i ∈ {0, . . . , n2 − 1}. It follows that the non-rerandomized output shares (〈yi〉ν)

m−1
i=0

are uniformly
random for each ν ∈ {0, 1}, subject to the condition 〈yi〉0 + 〈yi〉1 = yi for each i ∈ {0, . . . ,m − 1}, where

(y0, . . . , ym−1) := (Hi(x0, . . . , xn−1))
m−1
i=0 . The final randomized output shares 〈yi〉ν are thus also uniformly

random, subject to the condition yi = 〈yi〉0 + 〈yi〉1, where (yi)
m−1
i=0 =

(
αi ·Hρ(i)(x0, . . . , xn−1)m−1

i=0

)
.

In D2, it’s moreover true that the quantities (αi)
m−1
i=0 are independently random. By the perfect pri-

vacy property of Theorem 3.11 (and by construction of the hyperplanes (Hi)
m−1
i=0 ), this distribution exactly

matches that output by the simulator S.

If D0 and D3 were distinguishable, then there would be a distinguisher D, a polynomial p(λ), and an
infinite sequence (λ,x0,x1) for which |Pr[D(D0(λ,x0,x1)) = 1]− Pr[D(D3(λ,x0,x1)) = 1]| ≥ 1

p(λ) . Applying

the triangle inequality, we would obtain three distinguishers, at least one of whom—for infinitely many
values (λ,x0,x1)—distinguished between Di(λ,x0,x1) and Di+1(λ,x0,x1) with probability at least 1

3·p(λ)

(for i ∈ {0, 1, 2}). This would necessarily contradict at least one among the Lemmas 5.3, 5.4 and 5.5.

Remark 5.6. We note that commitment-consistency comes “for free” in the semi-honest setting; in this
setting, we simply trust that both P0 and P1 use consistent secret inputs.

Theorem 5.7. Suppose that {fn}n∈N is efficiently computable by disjoint hyperplanes, and in particular

admits coverings f−1
n (1) =

⊔m−1
i=0 Hi ∩ {0, 1}n for m = poly(n). Then Protocol 5.1 above evaluates fn in

O(n ·m) time, using O(n+m) communication, and in O(1) rounds.

Proof. The evaluation (1) of the hyperplanes can take as much as O(n) time per hyperplane, for a total of
O(n · m) time. The final output shares take O(m) time for P2 to reconstruct. Each party Pν must send
O(n) bits’ worth of shares to P1−ν , as well as O(m) bits’ worth of output shares to P2. The first phase of
Protocol 5.1 obviously takes one round; its second phase takes three (the key-exchange can be collapsed into
the second phase’s first round).
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5.2 Maliciously secure protocol

We now give our malicious protocol for Functionality 2.11. The rough idea is that P0 and P1 run the
semi-honest Protocol 5.1 simultaneously on shares which belong to them and on commitments to shares
which belong to the other party. That is, each player performs the other player’s calculation “through their
commitments” and “checks the other party’s work”. Finally, each party sends both its raw outputs and its
commitments to P2, who checks that each party’s outputs match the other party’s commitments to those
outputs. If at least one among the players P0 and P1 is honest, then any deviation from the protocol will be
caught by P2 during this step.

Each player uses efficient zero-knowledge proofs to convince the other that its inputs are actually bits
and moreover correspond to its initial commitment.

Finally, P2 must convince P0 and P1 that it reconstructed the output correctly. To do this, P2 generates
a one-out-of-many proof demonstrating that the appropriate array of commitments contains a commitment
to 0. Interestingly, this pre-existing zero-knowledge protocol exactly suits the randomizing polynomial
reconstructor of Theorem 3.11 (for which the existence of a 0 exactly reflects the boolean output value).
This proof reveals nothing about the raw reconstructed output values, and in particular about where the 0
resides (which would leak information to P0 and P1).

We assume that, globally, all parties have agreed on a group-generation algorithm G, a homomorphic
commitment scheme (Gen,Com), a key-exchange protocol Ξ, and a pseudorandom generator G. For Ξ, the
parties could use, for example, the Diffie–Hellman protocol (see [KL21, Cons. 11.2]), which is secure if the
decisional Diffie–Hellman problem is hard relative to G.

PROTOCOL 5.8 (Maliciously secure protocol).
All parties have a function f : {0, 1}n → {0, 1}, where n is even.

• Setup: All parties run (G, p, g) ← G(1λ) and generate commitment parameters params ←
Gen(1λ). All parties agree on disjoint coverings f−1(0) =

⊔m0−1
i=0 H0,i ∩ {0, 1}n and f−1(1) =⊔m1−1

i=0 H1,i ∩ {0, 1}n using Fp-hyperplanes (for notational convenience, we assume that m0 = m1

and write m for the common quantity).

P0 and P1 hold elements x0 and x1 of {0, 1}n/2.

• First phase: For each ν ∈ {0, 1}, Pν commits Aν ← Com
(∑n/2−1

i=0 2i · xν,i
)

, where xν =(
xν,0, . . . , xν,n/2−1

)
. Pν sends Aν to P1−ν .

• Second phase: P0 and P1 run Ξ, and so obtain a shared key ξ. Using ξ and G, P0 and P1 generate
shared random values (αj,i)

1,m−1
j,i=0 in F∗p, and two shared random circular shift permutations ρ0

and ρ1 in 〈(0, 1, . . . ,m− 1)〉 ⊂ Sm. Each party Pν , ν ∈ {0, 1}, then proceeds as follows:

1. For each i ∈ {0, . . . , n2−1}, Pν computes a random secret-sharing xν,i = 〈xν,i〉0+〈xν,i〉1 in Fp,
where xν =

(
xν,0, . . . , xν,n/2−1

)
. For i ∈ {0, . . . , n2 − 1} and j ∈ {0, 1}, Pν commits Aν,i,j :=

Com(〈xν,i〉j ; rν,i,j). Pi sends the full array (Aν,i,j)
n/2−1,1
i,j=0 to P1−ν . For each i ∈ {0, . . . , n2−1},

Pi opens Aν,i,1−ν by directly sending 〈xν,i〉1−ν and rν,i,1−ν to P1−ν . Pν also computes πν ←
ComEq.Prove

(
Aν ,

∏n/2−1
i=0 (Aν,i,0 ·Aν,i,1)

2i
)

, as well as πν,i ← BitProof.Prove (Aν,i,0 ·Aν,i,1)

for each i ∈ {0, . . . , n2 − 1}. Pν sends πν and (πν,i)
n/2−1
i=0 to P1−ν .

2. Symmetrically, Pν checks that the openings 〈x1−ν,i〉ν and r1−ν,i,ν indeed open A1−ν,i,ν , for i ∈
{0, . . . , n2 − 1}. Pν checks ComEq.Verify

(
π1−ν , A1−ν ,

∏n/2−1
i=0 (A1−ν,i,0 ·A1−ν,i,1)

2i
)

, as well

as BitProof.Verify (π1−ν,i, A1−ν,i,0 ·A1−ν,i,1) for each i ∈ {0, . . . , n2 − 1}. If any verifications
fail, Pν aborts.

3. Pν evaluates the hyperplanes (Hj,i)
1,m−1
j,i=0 , in parallel, on the shares 〈xj,i〉ν , the randomnesses
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rj,i,ν , and the commitments to the other party ’s shares Aj,i,1−ν . That is, Pν runs:(
〈yj,i〉ν

)1,m−1

j,i=0
:=
(
Hj,i

(
〈x0,0〉ν , . . . ,

〈
x0,n/2−1

〉
ν
, 〈x1,0〉ν , . . . ,

〈
x1,n/2−1

〉
ν

))1,m−1

j,i=0
, (2)

(sj,i,ν)
1,m−1
j,i=0 :=

(
Hj,i

(
r0,0,ν , . . . , r0,n/2−1,ν , r1,0,ν , . . . , r1,n/2−1,ν

))1,m−1

j,i=0
, (3)

(Dj,i,1−ν)
1,m−1
j,i=0 :=

(
Hj,i

(
A0,0,1−ν , . . . , A0,n/2−1,1−ν , A1,0,1−ν , . . . , A1,n/2−1,1−ν

))1,m−1

j,i=0
. (4)

Pν overwrites 〈yj,i〉ν := αj,i ·
〈
yj,ρj(i)

〉
ν
, sj,i,ν := αj,i ·sj,ρj(i),ν , and Dj,i,1−ν := αj,i ·Dj,ρj(i),1−ν

for each j ∈ {0, 1} and i ∈ {0, . . . ,m− 1}. Finally, Pi sends the output shares
(
〈yj,i〉ν

)1,m−1

j,i=0
,

the randomnesses (sj,i,ν)
1,m−1
j,i=0 , and the commitments (Dj,i,1−ν)

1,m−1
j,i=0 to P2.

After receiving all bits of information, P2 proceeds as follows:

4. For each ν ∈ {0, 1}, P2 checks that the openings
(
〈yj,i〉ν

)1,m−1

j,i=0
and (sj,i,ν)

1,m−1
j,i=0 indeed open

the commitments (Dj,i,ν)
1,m−1
j,i=0 sent to it by the opposite party. If any checks fail, P2 aborts.

5. P2 reconstructs yj,i := 〈yj,i〉0 + 〈yj,i〉1 and sj,i := sj,i,0 + sj,i,1 for each j ∈ {0, 1} and

i ∈ {0, . . . ,m− 1}. P2 runs the extractor X of Theorem 3.11 on both outputs (y0,i)
m−1
i=0 and

(y1,i)
m−1
i=0 . If these values are not distinct—that is, if there is not a unique value j ∈ {0, 1}

for which yj,i = 0 for exactly one i ∈ {0, . . . ,m− 1}—P2 aborts. Otherwise, P2 writes v for
this value. Finally, P2 sets Dv,i := Com(yv,i, sv,i) for each i ∈ {0, . . . ,m − 1} and computes

π ← OneOutOfMany.Prove
(

(Dv,i)
m−1
i=0

)
. P2 sends v and π to P0 and P1.

6. Each party Pν locally computes Dv,i := Com(〈yv,i〉ν ; sv,i,ν)·Dv,i,1−ν , for each i ∈ {0, . . . ,m−
1}, and then verifies OneOutOfMany.Verify

(
π, (Dv,i)

m−1
i=0

)
. If it passes, then Pν outputs v.

Theorem 5.9. If Ξ is secure in the presence of an eavesdropper, G is a pseudorandom generator, and
(Gen,Com) is both hiding and binding, then Protocol 5.8 securely computes Functionality 2.11 in the presence
of one static malicious corruption (with fairness if P0 or P1 is corrupted and without fairness if P2 is).

Proof. We define a simulator S satisfying the properties of Definition 2.13. We fix a functionality F (see
Functionality 2.11), with function f : {0, 1}n → {0, 1}, say. We let the corrupt party C ∈ {0, 1, 2} be fixed,
and fix a real-world adversary A corrupting C.

On input (1λ, C), S first runs the setup procedure of Protocol 5.8, and so obtains group parameters

(G, p, g) and commitment parameters params, as well as coverings f−1(0) =
⊔m−1
i=0 H0,i∩{0, 1}n and f−1(1) =⊔m−1

i=0 H1,i ∩ {0, 1}n. We now treat separately the cases C ∈ {0, 1} and C = 2.
We suppose first that C ∈ {0, 1}. S operates as follows:

1. In the first stage, S simulates the initial commitment A1−C sent by P1−C as a random commitment
to 0, and receives from A a commitment AC .

2. S simulates the openings
(
〈x1−C,i〉C , r1−C,i,C

)n/2−1

i=0
received from P1−C as random Fp-elements. S

constructs the commitments (A1−C,i,C)
n/2−1
i=0 directly from these openings, and simulates the remaining

commitments (A1−C,i,1−C)
n/2−1
i=0 as random commitments to 0. Using the simulator M guaranteed to

exist by Theorems 2.20 and 2.22 (see Definition 2.17), S simulates the proofs π1−C and (π1−C,i)
n/2−1
i=0

received from P1−C .

3. If AC,i,1−C 6= Com(〈xC,i〉1−C ; rC,i,1−C) holds for any i ∈ {0, . . . , n2 − 1}, then S sends ⊥ to F
and halts. Likewise, if ComEq.V

(
πC , AC ,

∏n/2−1
i=0 (AC,i,0 ·AC,i,1)2i

)
fails, or if any of the checks

BitProof.V (πC,i, AC,i,0 ·AC,i,1), for i ∈ {0, . . . , n2 − 1}, fails, then S outputs ⊥ and aborts.

4. If all of decommitments and proofs pass, then S runs the machine guaranteed to exist by Lemma
2.27 (see also Theorems 2.20 and 2.22) on A (we may as well view the parallel protocols ComEq and
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BitProof as a single Σ-protocol; see [HL10, §6.4]). Unless the machine outputs ⊥, S obtains a witness
(xC,i, rC,i) for AC,i,0 · AC,i,1, for each i ∈ {0, . . . , n2 − 1}—where each xC,i ∈ {0, 1}—and in particular
obtains the input string xC :=

(
xC,0, . . . , xC,n/2−1

)
(though does not yet give it to F). By subtracting

from the newly acquired openings (xC,i, rC,i)
n/2−1
i=0 the initial sent openings

(
〈xC,i〉1−C , rC,i,1−C

)n/2−1

i=0
,

S obtains further openings
(
〈xC,i〉C , rC,i,C

)n/2−1

i=0
(say) of the remaining commitments (AC,i,C)

n/2−1
i=0 .

5. When A outputs
(
〈yj,i〉C , sj,i,C

)1,m−1

j,i=0
and (Dj,i,1−C)

1,m−1
j,i=0 in 3., S recomputes the quantities

(Dj,i,1−C)
1,m−1
j,i=0 from the public commitments (Aj,i,1−C)

n/2−1
i=0 (using (4) above), and aborts unless

A’s output commitments (Dj,i,1−C)
1,m−1
j,i=0 match S’s reconstructions. Separately, S freshly computes

the quantities (Dj,i,C)
1,m−1
j,i=0 from the public commitments (Aj,i,C)

1,n/2−1
j,i=0 (as P1−C would in 4), and

aborts unless the A’s output openings
(
〈yj,i〉C , sj,i,C

)1,m−1

j,i=0
decommit to S’s reconstructions.

6. S finally gives xC to F , and obtains v := F(x0,x1) in return. S independently computes the local
quantities Dv,i := Com(〈yv,i〉C ; sv,i,C) ·Dv,i,1−C for i ∈ {0, . . . , n2 − 1}. Using the simulator M for the

protocol OneOutOfMany, S simulates the received proof on the statement (Dv,i)
n/2−1
i=0 . S outputs all

simulated quantities, together with v.

By Lemma 2.27, S runs in expected polynomial time. We now claim that the distributions

RealΠ,A
(
λ,C, (xν)ν 6=C

)
and IdealF,S

(
λ,C, (xν)ν 6=C

)
are indistinguishable. We describe a sequence of dis-

tributions which interpolates between them:

D0: Corresponds to RealΠ,A
(
λ,C, (xν)ν 6=C

)
, i.e., the pair (VC , (vν)ν 6=C).

D1: Same as D0, except P2’s final check at step 4. is replaced by that made by S in step 5. above. That is,

P2 is given all the initial commitments (Aj,i,ν)
1,n/2−1,1
j,i,ν=0 . P2 recomputes (Dj,i,1−C)

1,m−1
j,i=0 using (4), and

aborts unless A’s outputs (Dj,i,1−C)
1,m−1
j,i=0 match these. Likewise, P2 recomputes (Dj,i,C)

1,m−1
j,i=0 using

(4), and aborts unless A’s outputs
(
〈yj,i〉C , sj,i,C

)1,m−1

j,i=0
decommit to these.

D2: Same as D1, except P2 replaces the final one-out-of-many proof π by a simulation.

D3: Same as D2, except all commitments A1−C and (A1−C,i,1−C)
n/2−1
i=0 output by P1−C are replaced with

random commitments to 0, and all proofs π1−C , (π1−C,i)
n/2−1
i=0 , and π are replaced by simulations.

D4: Exactly IdealF,S
(
λ,C, (xν)ν 6=C

)
; i.e., (VC , (v)v 6=C), where VC is the simulated view output by S.

Lemma 5.10. The distributions D0 and D1 are identical.

Proof. When P1−C is honest, for any choice of honest input x1−C , the openings
(
〈yj,i〉1−C , sj,i,1−C

)1,m−1

j,i=0
it

outputs in step 3. necessarily commit to the correctly computed commitments (Dj,i,1−C)
1,m−1
j,i=0 . In both D0

and in D1, P2’s first abort condition thus amounts to checking whether A correctly computed (4), and these

conditions are identical. Separately, when P1−C is honest, the commitments (Dj,i,C)
1,m−1
j,i=0 it (correctly)

outputs in 3. can be immediately computed from the public initial commitments (Aj,i,C)
1,n/2−1
j,i=0 , and nothing

changes if P2 recomputes these freshly in its second abort condition.

Lemma 5.11. If (Gen,Com) is hiding, then the distributions D1 and D2 are indistinguishable.

Proof. We suppose that some distinguisher D satisfies |Pr[D(D1(λ,x1−C)) = 1]− Pr[D(D2(λ,x1−C)) = 1]| ≥
1

p(λ) for some polynomial p(λ) and an infinite sequence of pairs (λ,x1−C). It follows by a counting argument

that, for each such pair (λ,x1−C), there must exist at least one initial interaction V ∗C—including the ultimate

one-out-of-many statement (x,w) :=
(

(Dv,i)
m−1
i=0 , (yv,i, sv,i)

m−1
i=0

)
, say—for which, even conditioned on VC ’s
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initial portion equalling V ∗C , it remains true that |Pr[D(D1(λ,x1−C)) = 1]− Pr[D(D2(λ,x1−C)) = 1]| ≥ 1
p(λ) .

We now define a distinguisher D′ acting on proofs. For each among the infinitely many resulting such pairs
(λ, x, w), D′ may prepend the advice V ∗C to its received proof (a, e, z), run D on the resulting view, and
output whatever D outputs. It is clear that |Pr[D′ (〈P (λ, x, w) , V (x)〉) = 1]− Pr[D′(M(λ, x)) = 1]| equals
|Pr[D(D1(λ,x1−C)) = 1]− Pr[D(D2(λ,x1−C)) = 1]|, where again in the latter difference we condition on VC ’s
initial portion equalling V ∗C throughout. Our assumption on D would thus contradict the honest-verifier zero
knowledge property of OneOutOfMany, which holds whenever Com is hiding (see Theorem 2.25).

Lemma 5.12. If (Gen,Com) is hiding, then the distributions D2 and D3 are indistinguishable.

Proof. These distributions differ only in that certain commitments are simulated (we recall that ComEq and
BitProof are Σ-protocols, and admit perfect simulators). The lemma thus follows from a direct reduction to
Com’s hiding property. Indeed, we fix a distinguisher D between D2 and D3 and polynomial p(λ) for which
Pr[D(D3(λ,x1−C)) = 1]− Pr[D(D2(λ,x1−C)) = 1] ≥ 1

p(λ) for infinitely many (λ,x1−C) (we may remove the

absolute value bars without loss of generality, after possibly flippingD’s output bit and refining the infinite set
of λ). We define a nonuniform adversaryA′ attacking HidingA′,Com in the obvious way. Using the advice x1−C ,
on input params, A′ simulates an execution of D2 in which the parameters params are used. A′ generates

A1−C by calling LRparams,b

(∑n/2−1
i=0 2i · x1−C,i, 0

)
; likewise, A′ sets A1−C,i,1−C ← LRparams,b

(
〈x1−C,i〉1−C , 0

)
for each i ∈ {0, . . . , n2 − 1}. Finally, A′ simulates all proofs. Having constructed a view VC in this way, A′
runs D on VC , and outputs whatever D outputs.

It is clear that in the cases b = 0 and b = 1, VC is distributed exactly as in D2 and D3, respectively. It
follows exactly as in the proof of Lemma 5.3 that:

Pr
[
HidingCom,A′(λ) = 1

]
− 1

2
=

1

2
·
(

Pr
VC←D3(λ,x1−C)

[D(VC) = 1]− Pr
VC←D2(λ,x1−C)

[D(VC) = 1]

)
.

Our hypothesis on D would contradict the assumed hiding property of Com.

Lemma 5.13. If (Gen,Com) is binding, then the distributions D3 and D4 are indistinguishable.

Proof. We assume by contradiction that, for some distinguisher D, a polynomial p(λ) and infinitely many
pairs (λ,x1−C), it holds that |Pr[D(D3(λ,x1−C)) = 1]− Pr[D(D4(λ,x1−C)) = 1]| ≥ 1

p(λ) . The distributions

D3 and D4 differ only in the method by which the output v is determined. In the former, it’s determined
by P2 through the reconstructed output shares (yj,i)

1,m−1
j,i=0 ; in the latter, it’s determined by the extracted

input xC and F . The latter distribution differs from the former thus only in the event in which A’s proofs

pass, and its outputs
(
〈yj,i〉C , sj,i,C

)1,m−1

j,i=0
decommit to (Dj,i,C)

1,m−1
j,i=0 (see the check of step 5. above), and

yet these outputs differ from those which S, having extracted the values
(
〈xj,i〉C , rj,i,C

)1,n/2−1

j,i=0
(see step

4. above), may freshly compute from (2) and (3). Because correctly computing (2) and (3) also yields an

opening of (Dj,i,C)
1,m−1
j,i=0 , S thus obtains a binding violation in any instance in which D3 and D4 differ.

We now define an adversary A′ attacking BindingA′,Com. On advice x1−C and input params, A′ simulates
an execution of D3 on the honest input x1−C in which params are used. If A’s proofs pass, A′ then runs the
procedure of Lemma 2.26 on A (we may as well specialize this lemma to the case τ(λ) := 2). Because D3

and D4 can differ only when A’s proofs pass, our hypothesis on D implies a fortiori that A’s proofs pass

with probability at least 1
p(λ) . Because 1

p(λ) ≥
7·Q(λ)

2λ
(for large λ), the lemma’s hypothesis holds. Moreover,

A′ must run A at most 32 ·Q(λ) ·p(λ) times, which is strictly polynomial in λ. Finally, A′ extracts a witness
from A with probability at least 1

11 . Because the distribution of openings extracted by A′ (conditioned on
its success) is identical to that output by S, A′ witness yields a binding violation, in strict polynomial time,
with probability at least 1

11·p(λ) . This completes the proof.

Combining Lemmas 5.10, 5.11, 5.12, and 5.13, and using an obvious hybrid argument, completes the treat-
ment of the case C ∈ {0, 1}.

We now suppose that C = 2. S operates as follows:

1. Since P2 has no input, S immediately sends ∅ to F , and obtains the output v in return.
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2. S runs two instances of the simulator S of Theorem 3.11. That is, S samples the full array (yj,i, sj,i)
1,m
j,i=0

as random F∗p-elements. For a randomly chosen index i∗ ∈ {0, . . . ,m− 1}, S overwrites yv,i∗ := 0. At
this point, S generates random additive Fp-sharings yj,i := 〈yj,i〉0 + 〈yj,i〉1 and sj,i = sj,i,0 + sj,i,1 for
each j ∈ {0, 1} and i ∈ {0, . . . ,m − 1}; finally, S sets Dj,i,ν := Com(〈yj,i〉ν ; sj,i,ν) for each j ∈ {0, 1},
i ∈ {0, . . . ,m − 1}, and ν ∈ {0, 1}. S records the simulated messages

(
〈yj,i〉0 , sj,i,0, Dj,i,1

)1,m−1

j,i=0
and(

〈yj,i〉1 , sj,i,1, Dj,i,0

)1,m−1

j,i=0
sent by P0 and P1, respectively.

3. S gives these messages internally to A. When A outputs v and π, S independently verifies

OneOutOfMany.Verify
(

(Dv,i)
m−1
i=0

)
(this latter v output by A could differ, a priori, from that already

output by F). If the verification fails, then S sends ⊥ to F and aborts (this is S’s chance to “break
fairness”). Otherwise, S instructs F to continue and to report its output to P0 and P1.

We now claim that RealΠ,A
(
λ,C, (xν)ν∈{0,1}

)
and IdealF,S

(
λ,C, (xν)ν∈{0,1}

)
are indistinguishable. We

define a sequence of hybrid distributions.

D0: Corresponds to RealΠ,A
(
λ,C, (xν)ν∈{0,1}

)
, i.e., the pair (V2, (vν)ν∈{0,1}).

D1: Same as D0, except that instead of the computational shared secret key ξ, P0 and P1 are given a truly
random string ξ̂ ∈ {0, 1}λ.

D2: Same as D1, except instead of obtaining them through ξ̂ and G, P0 and P1 are given truly random
quantities (αi)

m−1
i=0 in F∗p and ρ ∈ Sm.

D3: Exactly IdealF,S
(
λ,C, (xν)ν∈{0,1}

)
; i.e., (V2, (v)v∈{0,1}), where V2 is the simulated view output by S.

Lemma 5.14. If Ξ is secure, then the distributions D0 and D1 are computationally indistinguishable.

Proof. This is exactly the same as the proof of Lemma 5.3.

Lemma 5.15. If G is pseudorandom, then the distributions D1 and D2 are computationally indistinguishable.

Proof. This is the same as Lemma 5.4.

Lemma 5.16. If (Gen,Com) is binding, then D2 and D3 are computationally indistinguishable.

Proof. Exactly as in the proof of Lemma 5.5, by the perfect privacy property established by Theorem 3.11,

the openings and commitments
(
〈yj,i〉0 , sj,i,0, Dj,i,1

)1,m−1

j,i=0
and

(
〈yj,i〉1 , sj,i,1, Dj,i,0

)1,m−1

j,i=0
sent by P0 and P1

in D2 exactly match those simulated by S in D3. The distributions D2 and D3 thus differ only perhaps in
their outputs. In the former, the parties’ outputs are derived from P2’s final message v; in the latter, P0 and
P1 receive v directly from F . These distributions thus differ only in the case that A outputs a successful
one-out-of-many proof on the “wrong” v. For notational consistency, we write v := F(x0,x1) in what follows
(as opposed to A’s final output).

For contradiction, we fix a distinguisherD, a polynomial p(λ), and an infinite sequence of triples (λ,x0,x1)
for which |Pr[D(D2(λ,x0,x1)) = 1]− Pr[D(D3(λ,x0,x1)) = 1]| ≥ 1

p(λ) . We define a nonuniform adversary

A′ attacking BindingA′,Com in the following way. On advice (x0,x1), A′ simulates an execution of D2 on the

inputs (x0,x1). If A outputs a successful one-out-of-many proof on the “wrong” statement (D1−v,i)
m−1
i=0 —

this happens with probability at least 1
p(λ) , by hypothesis on D—then A′ runs the machine M of Lemma

2.26 above (whose hypothesis necessarily holds for large λ) on A. In this way, in strict polynomial time and

with probability at least 1
11·p(λ) , A′ obtains a witness (y1−v,i, s1−v,i)

m−1
i=0 for (D1−v,i)

m−1
i=0 , where in particular

y1−v,i∗ = 0 for some i∗ ∈ {0, . . . ,m − 1}. The quantity y1−v,i∗ already reconstructed from P0 and P1 is
necessarily nonzero; the second opening (y1−v,i∗ , s1−v,i∗) with y1−v,i∗ = 0 thus immediately yields a binding
violation for D1−v,i∗ . A′ outputs this violation, and wins with probability at least 1

11·p(λ) .

Combining Lemmas 5.14, 5.15, and 5.16 completes the proof of the case C = 2 and of the theorem.
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Remark 5.17. Though we refrain from proving it here, we note that Protocol 5.8 remains secure even if P2

sees all the initial data exchanged between P0 and P1 in step 1. above. This fact strengthens the protocol’s
security. Indeed, it allows P0 and P1 to communicate with each other through P2—as opposed to directly—if
they prefer to do so. To thwart person-in-the-middle attacks, it is necessary only that P0 and P1 sign their
initial commitments A0 and A1 using known (i.e., authenticated) public keys.

Theorem 5.18. Suppose that {fn}n∈N is efficiently computable by disjoint hyperplanes, and in particular

admits coverings f−1
n (0) =

⊔m−1
i=0 H0,i ∩ {0, 1}n and f−1

n (1) =
⊔m−1
i=0 H1,i ∩ {0, 1}n for m = poly(n). Then

Protocol 5.8 above evaluates fn in O(n ·m) time, using O(n+m) communication, and in O(1) rounds.

Proof. As in Protocol 5.1, the evaluations (2), (3), and (4) take a total of O(n ·m) time to evaluate for each
party Pν , ν ∈ {0, 1}. When P2 receives all output shares and commitments, it must perform O(m) work to
reconstruct and check them. Finally, P2 must perform O(m · logm) work to generate the one-out-of-many
proof; P0 and P1 must perform O(m) work to verify it (see [GK15, p. 268]). By hypothesis on {fn}n∈N, we
have that m is polynomial in n, and hence that P0 and P1’s O(n ·m) to evaluate the hyperplanes dominates
P2’s O(m · logm) effort in generating the proof (and of course their own O(m) effort in verifying it).

Also as before, each party Pν must send O(n) bits’ worth of shares and commitments to P1−ν , as well
as O(m) bits’ worth of output shares and commitments to P2. The one-out-of-many proof sent back to P0

and P1 by P2 requires only O(logm) bits.
Again as in Protocol 5.1 (the main online phase of) the protocol clearly takes 3 rounds.

5.3 Implementation

In this subsection, we describe an implementation of the Protocol 5.8, and report on its performance. For
the sake of example, we specialize to the integer-comparison function of Example 3.26. Below, we describe
further applications to a secure “volume-matching” utility.

For our implementation, we use a slight variant of Example 3.26 in which both x0 ≤ x1 and x0 ≥ x1 are
computed, where x0 and x1 are n

2 -bit (unsigned, little-endian) arguments; in this setting, the two coverings
are not disjoint, but rather intersect at the locus x0 = x1. (We describe our rationale for this below.) We
use the concrete hyperplane covering already discussed in Example 3.26. Each set x0 ≤ x1 and x0 ≥ x1

requires n
2 +1 hyperplanes to compute (with one in common). We also use the subexpression-sharing scheme

described in Example 3.26, so that both coverings can be evaluated in O(n) total time.
We implement the case n = 62. In this setting, the number n

2 + 1 = 32 of hyperplanes required by each
covering is a power of 2, suitable for use in one-out-of-many proofs. The individual arguments x0 and x1

are thus 31-bit unsigned integers. We use the NIST P-256 prime p = 2256 − 2224 + 2192 + 296 − 1. We take
as (Gen,Com) the Pedersen commitment scheme over the NIST P-256 curve, whose order is p [Inf13, D.2.3].

Our implementation is targeted towards real-world use. We have separate dedicated components for
the “client” players P0 and P1 and for the “server” player P2. For the purposes of practical convenience
and portability, our client module is entirely browser-based, written in JavaScript. Its cryptographically
intensive components are written in efficient, side-channel-resistant C, compiled using Emscripten into We-
bAssembly (which also runs natively in the browser). Our server is written in Python, and also executes
its cryptographically intensive code in C. Both components are multi-threaded—using WebWorkers on the
client side and a thread pool on the server’s—and can execute arbitrarily many concurrent instances of the
protocol in parallel (i.e., constrained only by hardware). All players communicate by sending binary data
on WebSockets (all commitments, proofs, and messages are serialized).

We benchmark our protocol by executing multiple total instances of the protocol, with parallelism (see
the left-most column below). We run on commodity hardware throughout. Specifically, each of our clients
runs on an Intel Core i7 processor, with 6 cores, each 2.6Ghz. (One is a Mac; the other Windows.) Our server
runs in a Linux AWS instance of type c5.4xlarge, with 16 vCPUs. Our benchmarks include communication
time; all communication takes place over a WAN.

The field “Wall Time” is self-explanatory. The field “Server CPU” refers to the cumulative time spent by
all of the server’s CPU cores during its execution (and may be higher than the wall time). The fields “Client
Exchanged” and “Server Exchanged” reflect the total number of bytes—either sent or received—which travel
through an individual client’s and the server’s WebSockets, respectively. The field “Total Exchanged” gives
the total number of bytes which flow through all (combined) WebSockets.
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Table 3: Performance characteristics of Protocol 5.8 implementation.

Executions Wall Time Server CPU Client CPU Server Exch’d Client Exch’d Total Exch’d

(ms) (ms) (ms / worker) (kilobytes) (kilobytes) (kilobytes)

1 686 571 264 13 25 64
2 843 623 247 27 50 127
4 1,145 1,028 305 53 101 255
8 1,402 1,566 302 107 202 510

16 2,335 2,920 933 213 403 1,020
32 4,063 4,972 2,361 427 806 2,040
64 8,188 11,358 3,282 854 1,613 4,097

(asymp.) 1 O(n ·m) O(m · logm) O(n ·m) O(m) O(n+m) O(n+m)

We note the effect of parallelism on our measurements. For example, when 64 executions are conducted,
each individual execution takes under 130 milliseconds, amortized.

To exhibit the practical utility of our paradigm, we now exhibit a concrete application, in which our
protocol’s homomorphic commitment-consistency property plays an essential role. We consider the problem
of volume matching, sometimes called midpoint matching in the economic literature (see for example Zhu
[Zhu13]). A volume matching service accumulates—throughout its initial registration phase—a plurality
of orders, each specifying a security, a direction (either “long” or “short”) and a quantity (a non-negative
integer). When matching begins, orders pertaining to the same security and of opposite direction are
matched. After each particular match, the service decrements both orders’ volumes by the matched amount,
and dequeues whichever among the two orders is empty (necessarily at least one will be).

Abstractly, volume-matching is described by the following functionality.

FUNCTIONALITY 5.19 (Fmatch—volume-matching functionality).
Upon initialization, Fmatch initializes two empty first-in, first-out queues, Q0 and Q1.

• During the registration phase, Fmatch exposes the following function:

1: procedure Fmatch.Register(d,x) . Direction d ∈ {0, 1}, volume x ∈ {0, . . . , 2n/2 − 1}
2: Write Pν for the invoking party.
3: Qd.Enqueue({party : Pν , volume : x}).

• When the processing phase begins, Fmatch executes the following function:

1: procedure Fmatch.Process()
2: while not Q0.Empty() and not Q1.Empty() do
3: x := min(Q0.Front().volume,Q1.Front().volume)
4: Output x, Q0.Front().party, and Q1.Front().party
5: for d ∈ {0, 1} do
6: Qd.Front().volume −= x
7: if Qd.Front().volume = 0 then Qd.Dequeue()

Our matching engine simultaneously maintains many independent instances of Functionality 5.19 (one for
each security). During its registration phase, the engine solicits homomorphic (i.e., Pedersen) commitments.
During the processing phase, our engine orchestrates an instance of Protocol 5.8 (with f the comparison func-
tion discussed above) for each iteration of each instance of Functionality 5.19’s main while loop. The engine
uses the output values x0 ≤ x1 and x0 ≥ x1 to control its inner queues. We repeat that each player handles
all securities on a single process, which coordinates all scheduling and communication; the cryptographic
work is sped up using multi-threading (thus our implementation is not “embarassingly parallel”).
Fmatch’s commitment-consistency establishes an important “fairness” guarantee, whereby client’s can’t

register early, obtain desirable positions in the queues, and then only later decide which secret inputs to use.
Finally, the commitments’ homomorphic property allows the engine to appropriately decrement registrations
between matches. Our engine is being deployed live in production for real use at a large financial institution.
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A Extension of Flats

In this section, we theoretically treat the following challenging question:

Question A.1. Fix a natural number n. Does there exist an n-bit prime p such that each proper affine flat
K ⊂ Fnp admits an affine hyperplane H ⊂ Fnp for which K ∩ {0, 1}n = H ∩ {0, 1}n?

The condition of this question trivially holds when p ≥ 2n, as we demonstrated at the beginning of
Subsection 4.4 above. In fact, the thrust of that argument is captured by a classical result of Bose and
Burton [BB66, Thm. 2], which studies blocking sets in PFn−k−lp . Their main theorem states that any set

B ⊂ PFn−k−lp which intersects every projective hyperplane must satisfy |B| ≥ p + 1. Applying this result

directly to the image of {0, 1}n in Fn−kp —we recall that |A({0, 1}n)| ≤ 2n < p+ 1—we see immediately that
the required hyperplane must exist (under the same hypothesis).

Broadly speaking, we spend this section studying the existence of primes p < 2n which nonetheless satisfy
the condition of Question A.1. This is an important theoretical question, in light of Definition 3.3. (If larger
primes p were allowed, then the bound of Theorem 3.4 would be weakened.) This task presents serious
challenges. For technical reasons (discussed below), we treat separately the cases of low-dimensional and
high-dimensional flats K. Our primary difficulty resides in answering the following question:

Question A.2. Fix a natural number n, a prime p, and a k-dimensional affine flat K ⊂ Fnp generated by

cube elements, with quotient map A : Fnp → Fn−kp , say. How can we bound from above the size of A({0, 1}n)?

Our main result answering this question is given by Theorem A.14 below. This is an interesting com-
binatorial result in its own right. We do not know whether a tighter bound can be attained. In fact, (an
appropriate analogue of) Theorem A.14 holds when Fp is replaced by Q or R.

A.1 Lower-dimensional flats

Bose and Burton observe [BB66, Thm. 2] that their lower-bound |B| ≥ p+ 1 is tight, attained for example
when B is a projective line. This fact—at first—may appear to bode poorly for our efforts to reduce the
requirement on p in Question A.1. In fact, the further study of blocking sets, by Blockuis and Heim—surveyed
in Hirschfeld and Thas [HT15, §9]—demonstrates that, when one restricts to so-called nontrivial blocking
sets, which, by definition, fail to contain a projective line, one obtains stronger lower bounds. Theorem A.4
below exploits this fact, and settles the case of flats of dimension k < n − 2. We adopt the terminology of
[HT15, Def. 9.1] in this subsection.

Theorem A.3 (Blockhuis–Heim). Any nontrivial blocking set B ⊂ PFn−k−1
p satisfies |B| ≥ 3 · p+1

2 .

Proof. This is a combination of the results [HT15, Thm. 9.6 (i) and Thm. 9.7 (ii)]
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Corollary A.4. Suppose that n > 2 and 3 · p+1
2 ≥ 2n. Then any k-dimensional affine flat K ⊂ Fnp for which

k < n− 2 admits an affine hyperplane H ⊂ Fnp for which K ∩ {0, 1}n = H ∩ {0, 1}n.

Proof. We assume as usual that K contains the origin, and fix a quotient map A : Fnp → Fn−kp . It suffices to

show that A({0, 1}n −K)—or more precisely, its projectivization in PFn−k−1
p —is not a blocking set.

By hypothesis on p, |A({0, 1}n −K)| ≤ 2n − 1 < 3 · p+1
2 ; Theorem A.3 thus shows that A({0, 1}n −K)

cannot be a nontrivial blocking set. We must show therefore only that A({0, 1}n−K) is not a trivial blocking
set, or that, in other words, it does not contain a projective line.

We consider an arbitrary two-dimensional linear subspace L ⊂ Fn−kp (containing the origin). The pullback
of L along the quotient map A yields a k + 2-dimensional linear subspace of Fnp , which, by hypothesis on
k, is proper (of dimension less than n). The intersection {0, 1} ∩ A−1(L) can thus contain at most 2n−1

points, by Lemma 2.5. The same is thus true of this intersection’s image under A. We see that necessarily
|A ({0, 1}n −K) ∩ L| ≤ |A({0, 1}n) ∩ L| ≤ 2n−1 < p + 1 for any two-dimensional subspace L ⊂ Fn−kp ; this
implies that A ({0, 1}n −K) cannot contain a projective line, and completes the proof.

The following result answers Question A.1 affirmatively for flats whose dimension is less than n− 2:

Corollary A.5. For each n > 2, there exists an odd prime p < 2n such that each k-dimensional affine flat
K ⊂ Fnp of dimension k < n− 2 admits a hyperplane extension H ⊂ Fnp such that K ∩{0, 1}n = H ∩{0, 1}n.

Proof. By Theorem A.4, it suffices to produce a prime p < 2n which moreover satisfies 3 · p+1
2 ≥ 2n. An old

result of Nagura [Nag52, p. 180], which strengthens Bertrand’s postulate, states that the interval (x, 3
2 · x)

contains a prime p for each x ≥ 8. This result implies a fortiori that the interval {d 2n

3 − 1e, . . . , 2n} contains
an odd prime p for each n ≥ 2.

The above argument fails for subspaces K ⊂ Fnp of dimension n − 2; in this setting, A−1(L) is not a
proper subspace, and Lemma 2.5 fails to constrain ({0, 1} −K) ∩A−1(L).

A.2 Higher-dimensional flats

We develop a different strategy suitable for higher-dimensional flats. Our idea is to show that any subspace
K ⊂ Fnp of large dimension must contain “many” cube elements of “low” Hamming weight. By studying

the effects of these vectors on the quotient-by-K map, we may show that A : Fnp → Fn−kp exhibits sufficient
“collapsing” behavior on the cube as to reduce the size of the image A({0, 1}n). We begin with a handful of
definitions and introductory lemmas.

Definition A.6. We will call nonzero {−1, 0, 1}-vectors (with components taken in Z) cube displacements.

Each cube displacement can be translated in such a way—in fact, generally, in many ways—that both of
its endpoints reside in the cube.

Definition A.7. Fix a cube displacement y. We call X0(y) := {v0 ∈ {0, 1}n | v0 + y ∈ {0, 1}n} and
X1(y) := {v1 ∈ {0, 1}n | v1 − y ∈ {0, 1}n}, where all addition and subtraction takes place in Zn, the origi-
nating and terminating sets, respectively, of y.

Lemma A.8. Fix a cube displacement y, and write d for the number of components of y which are zero.
The originating and terminating sets X0(y) and X1(y) are proper subcubes of {0, 1}n, each of dimension d.

Proof. We write y = (y0, . . . , yn−1) and {c0, . . . , cn−d−1} ⊂ {0, . . . , n − 1} for the indices at which y is

nonzero. It is clear that X0(y) =
{

(x0, . . . , xn−1) ∈ {0, 1}n
∣∣∣ xc0 =

1−yc0
2 , . . . , xcn−d−1

=
1−ycn−d−1

2

}
and

X1(y) =
{

(x0, . . . , xn−1) ∈ {0, 1}n
∣∣∣ xc0 =

1+yc0
2 , . . . , xcn−d−1

=
1+ycn−d−1

2

}
.

We refer to Cohen, Honkala, Litsyn, and Lobstein [CHLL97, §2] for background on codes. We assume the
usual notion of Hamming distance d(xi,xj) for elements xi and xj of {0, 1}n, as well as that of the distance
of a code C ⊂ {0, 1}n, defined as the minxi 6=xj d(xi,xj) (where xi and xj are in C). We record the following
result of Tietäväinen; actually, we give a slight variant stated in Krasikov and Litsyn [KL97, (3)].
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Theorem A.9 (Tietäväinen [Tie80, Thm. 2]). Fix an integer sequence j = j(n) such that j ∈ o(n1/3). Then
for each large enough n, any code C ⊂ {0, 1}n of distance at least d = n−j

2 satisfies |C| < n·ln j
2 · (1 + o(1)).

We refer to [CLRS09, §B.4] for preliminaries on graphs. We write c(G) for the number of connected
components of an undirected graph G = (V,E).

Lemma A.10. If G = (V,E) is such that each vertex v of V has degree bounded by d, then c(G) ≤ |V |− |E|d .

Proof. We first argue that it suffices to assume that G is connected. Indeed, assuming that the claim were

true for connected graphs G = (V,E)—that is, that |V | − |E|d ≥ 1 for each such graph—we could partition
both V and E along G’s components, and apply the lemma component-wise. The degree bound d would
clearly continue to hold component-wise. Adding up the resulting inequalities would yield the lemma.

We thus assume that G is connected. If G is edgeless—that is, a single vertex—then the desired conclusion
trivially holds. We thus assume that G has at least one edge. We may freely replace d by the maximal degree
actually attained in G; indeed, doing so can only decrease d, and so strengthen the conclusion being proven.
It follows in particular that |E| ≥ d. By the handshaking lemma (see e.g. [CLRS09, Ex. B.4-1]), we also
have

∑
v∈V deg(v) = 2 · |E|, so that d · |V | ≥ 2 · |E|, by hypothesis on G’s degree. We thus finally have that

|V | ≥ 2·|E|
d , so that |V | − |E|d ≥

2·|E|
d − |E|d = |E|

d ≥ 1. This completes the proof.

We would like to thank the Mathematics StackExchange user Hagen von Eitzen for the above argument.

Definition A.11. Fix a set C = {x0, . . . ,xk−1} ⊂ {0, 1}n. The displacement graph G = (V,E) associated
with C has vertex set V = {0, 1}n and an undirected edge between nodes v0 and v1 if and only if v1−v0 =
xj − xi for some pair of distinct elements xi and xj of C.

Lemma A.12. Fix a set C ⊂ {0, 1}n with displacement graph G = (V,E). Given any particular pair of
elements xi and xj of C, the number of connected components c(G) ≤ 2n − 2n−d(xi,xj).

Proof. The cube displacement y := xj−xi has exactly n−d(xi,xj) 0-valued components; by Lemma A.8, the
originating and terminating sets X0(y) and X1(y) have dimension n−d(xi,xj). The reachability relation on
G thus identifies at least 2n−d(xi,xj) disjoint pairs of vertices; in fact, the sets X0(y) and X1(y) are identified
under G in one-to-one manner. This identification alone reduces the cardinality c(G) by 2n−d(xi,xj).

Lemma A.13. Fix a k-dimensional linear subspace K ⊂ Fnp , generated by cube elements {x0, . . . ,xk−1},
say. Write G = (V,E) for K’s displacement graph. Then if A : Fnp → Fn−kp annihilates exactly K, then

|A({0, 1}n)| ≤ c(G).

Proof. The idea is to show that the reachability relation in G is an (in general, strict) refinement of the
quotient-by-K relation. Indeed, any reachable elements v0 and v1 in {0, 1}n necessarily differ by a combi-
nation (with {−1, 1}-coefficients) of displacements xj − xj in K; this sum of course itself resides in K.

We now give the main technical result of this subsection. This theorem bounds from above the number
of connected components of displacement graphs G on linearly independent sets C ⊂ {0, 1}n.

Theorem A.14. Fix a constant c ∈ N. If n is large enough (depending only on c) then for each odd prime
p, dimension n− c ≤ k < n, and linear subspace K ⊂ Fnp generated over Fp by cube elements {x0, . . . ,xk−1},

|A({0, 1}n)| ≤ 2n − n

log log n
·
√

2n,

where A : Fnp → Fn−kp is any linear map annihilating exactly K.

Proof. We write G = (V,E) for the displacement graph on the set K ∩ {0, 1}n = {x0, . . . ,xk−1}. We begin
with the following sub-claim, which bounds from below the number of edges |E| in G.

Lemma A.15. For each ε > 0 and large enough n, the graph G = (V,E) has at least 7
10 ·

n2

2 · 2
n/2 edges.
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Proof. Each pair of elements xi and xj of C for which i < j contributes 2n−d(xi,xj) edges to E; indeed, the
edges induced by xi and xj identify pairs of elements in originating and terminating sets X0(xj − xi) and

X1(xj − xi) (see also Lemma A.8). Moreover, the
(
k
2

)
resulting such edge sets are disjoint; this is exactly

because the differences xj − xi (for i < j) are pairwise distinct (we use the linear independence here).
We now construct from each element xi = (xi,0, . . . , xi,n−1) of C the {−1, 1}-vector x′i :=

((−1)xi,0 , . . . , (−1)xi,n−1) ∈ Zn. It is clear that for any two elements xi and xj of C,
〈
x′i,x

′
j

〉
= n−2·d(xi,xj).

Interpreting all quantities over Zn, we have the inequality:

0 ≤

∣∣∣∣∣
k−1∑
i=0

x′i

∣∣∣∣∣
2

=

〈
k−1∑
i=0

x′i,

k−1∑
i=0

x′i

〉
=

k−1∑
i=0

|x′i|
2

+
∑
i<j

〈
x′i,x

′
j

〉
≤ k · n+ 2 ·

∑
i<j

(n− 2 · d(xi,xj)) ,

so that
∑
i<j d(xi,xj) ≤ 1

4 · (k · n+ k · (k − 1) · n) = k2·n
4 .

Putting these facts together, we see that the number of edges:

|E| =
∑
i<j

2n−d(xi,xj) ≥
(
k

2

)
· 2
n−

∑
i<j d(xi,xj)

(k2) ≥
(
k

2

)
· 2
n− k

2·n/4

(k2) =

(
k

2

)
· 2

k−2
k−1 ·

n
2 ,

where the first inequality is a direct consequence of (the simple form of) Jensen’s inequality ϕ
(∑

i xi
n

)
≤∑

i ϕ(xi)

n for any convex function ϕ (we take here ϕ : t 7→ 2n−t) and the second inequality follows from the
above discussion.

Because k ≥ n− c, for any ε > 0 and large enough n, it holds that(
k

2

)
· 2

k−2
k−1 ·

n
2 ≥ (1− ε) · n

2

2
· 2n/2− 1

2−ε =
(1− ε)
21/2+ε

· n
2

2
· 2n/2.

Because 1√
2
> 7

10 , it follows that (1−ε)
21/2+ε ≥ 7

10 for small enough ε.

The next lemma bounds from above the degree of any particular node x ∈ V :

Lemma A.16. For large enough n, we may assume that each node of V has degree at most 7
10 ·

n
2 · log log n.

Proof. Applying Lemma 2.1, we assume without loss of generality that v is the origin. Each edge incident
on v corresponds to a cube displacement y = xj − xi for which v ∈ X0(y) (where xi and xj are unequal
elements of K ∩ {0, 1}n). Any such y satisfies v + y = y ∈ {0, 1}n, so that y (under our assumption v) is a
{0, 1}-vector (as opposed to a {−1, 0, 1}-vector).

If any pair of displacements y0 and y1 originating from v satisfied d(y0,y1) < n
2 − log n, then the

difference y1−y0 would itself be a cube displacement, with n− d(y0,y1) > n
2 + log n 0-valued components.

Lemma A.12 would immediately then assert that c(G) < 2n − 2
n
2 +logn = 2n − n ·

√
2n, which would imply

the statement of the theorem by Lemma A.13.
We thus assume freely that each pair of displacements y0 and y1 originating from v satisfies d(y0,y1) ≥

n
2 − log n. By definition, the set of displacements y originating from v thus gives a code C ⊂ {0, 1}n of
minimum distance at least n

2 − log n. Applying Theorem A.9 with j(n) := 2 · log n, we see that C satisfies:

|C| ≤ n · ln (2 · log n)

2
· (1 + o(1))

= ln 2 · n
2
· (1 + log log n) · (1 + o(1))

= ln 2 · n
2
· log log n+

(
o(1) · ln 2 · n

2
· log log n+ ln 2 · n

2
· (1 + o(1))

)
.

Because ln 2 < 7
10 , we see that |C| ≤ 7

10 ·
n
2 · log log n (for large n). This implies the lemma.

Lemmas A.15 and A.16—together with Lemma A.10—finally give:

c(G) ≤ 2n −
7
10 ·

n2

2 · 2
n/2

7
10 ·

n
2 · log log n

= 2n − n

log log n
· 2n/2.

The proof of the theorem follows from Lemma A.13.
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We now have the following analogue of Corollary A.4:

Corollary A.17. For each large enough n, that a prime p satisfies p ≥ 2n − n
log logn ·

√
2n implies that any

n−2-dimensional affine flat K ⊂ Fnp admits an affine hyperplane H ⊂ Fnp for which K∩{0, 1}n = H∩{0, 1}n.

Proof. We fix a quotient map A : Fnp → F2
p of K. By Theorem A.14 (with c = 2), for large enough n the

image A({0, 1}n) ⊂ F2
p has cardinality at most 2n − n

log logn ·
√

2n. The image space F2
p contains p+ 1 lines

through the origin; by hypothesis on p, this number exceeds the cardinality of A({0, 1}n −K), and at least

one of these lines must “miss” the image. Annihilating this line yields a composition H : Fnp
A−→ F2

p
A1−−→ Fp,

which defines the desired hyperplane.

We discuss now whether an analogue of Corollary A.5 can be achieved in this setting; that is, whether
the existence of a prime p which satisfies the hypothesis of Corollary A.17 and satisfies p < 2n can be
guaranteed. Despite significant empirical evidence, even the existence of primes in intervals of the form
(x− (1 + ε) · log x ·

√
x, x) has not been unconditionally established; indeed, their existence is implied by the

Riemann hypothesis, as demonstrated by recent work of Dudek [Dud14, Thm. 1.3].
Thus Corollary A.17 alone fails to guarantee the existence of primes p < 2n which admit extensions in

the sense of Question A.1, even conditioned on the Riemann hypothesis. Nonetheless, the existence of such
primes would follow from certain stronger conjectures, like Montgomery’s pair correlation conjecture; we
refer to Heath-Brown and Goldston [HBG84]. We thus record the following analogue of Corollary A.5:

Corollary A.18. Assume Montgomery’s pair correlation conjecture. Then for each large enough n, there
exists a prime p < 2n such that every n − 2-dimensional affine flat K ⊂ Fnp admits a hyperplane extension
H ⊂ Fnp such that K ∩ {0, 1}n = H ∩ {0, 1}n.

Proof. Assuming the pair correlation conjecture, [HBG84] implies that primes eventually exist in the intervals
(2n −

√
n · 2n, 2n]. Because

√
n · 2n/2 is (eventually) smaller than n

log logn · 2
n/2, this in turn guarantees the

existence of primes p < 2n which also satisfy the hypothesis of Corollary A.17.
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