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ABSTRACT
We propose a compact, unified and instruction-set cryptoproces-
sor for performing both lattice-based digital signature (Crystals-
Dilithium) and key exchange (Saber). The implementation lever-
ages from algorithmic and structural synergies in the two schemes
to realize a unified high-speed post-quantum key-exchange and
digital signature engine within a compact area. On a Xilinx Ultra-
scale+ FPGA, the cryptoprocessor consumes 19,140 LUTs, 9,351
FFs, 4 DSPs, and 24 BRAMs. It meets 200 MHz clock frequency and
finishes CCA-secure key-generation, encapsulation, and decapsula-
tion operations for Saber in 54.9, 69.7, and 94.9`s, respectively. For
Dilithium-3, key-generation, signing, and verification take 114.7,
237 and 127.6`s, respectively, for the best-case scenario.
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1 INTRODUCTION
Shor’s quantum algorithm solves the integer factorization and dis-
crete logarithm problems using quantum computers in polynomial
time. These number theoretic problems are the foundations of the
two most widely used public-key cryptosystems, namely the RSA
and Elliptic Curve cryptosystems. Hence, if a sufficiently power-
ful quantum computer is ever constructed, then the present-day
public-key cryptographic schemes can be broken using Shor’s algo-
rithm. Post-quantum cryptography aims at developing new crypto-
graphic protocols that will remain secure even after the quantum
computers are built. National Institute of Standards and Technol-
ogy (NIST) initiated a project ‘Post-Quantum Cryptography (PQC)
Standardization’ in 2016 to develop and standardize post-quantum
public-key cryptography algorithms. After the first two rounds,
NIST initiated the final round in July 2020 and announced the final-
ists. There are four finalists (including lattice-based Saber [8]) in
the key encapsulation mechanism (KEM) category and three final-
ists (including lattice-based Crystals-Dilithium [2]) in the digital
signature category. NIST encouraged more research on improving
the implementation and physical security aspects of all the final-
ist and alternate candidates. Making post-quantum cryptography
ready for deployment on a wide range of platforms is a challenging
task. Hence, significant research on the implementation aspects of
post-quantum cryptography is needed to make it practical, efficient,
and secure on a wide range of platforms.

Our Contribution: In this paper, we propose a compact and fast
cryptoprocessor architecture for performing both lattice-based sig-
nature and key-exchange operations. We realized this unified cryp-
toprocessor architecture by exploring synergies in the lattice-based
finalist PKE/KEM candidate Saber [8] and the signature candidate
Dilithium [2]. In detail, we make the following contributions:

• As a first step, we identify several algorithmic and structural
synergies in Saber and Dilithium. Polynomial multiplication
is a central, time- and area-consuming arithmetic operation
in both schemes. While Dilithium [2] uses a prime modu-
lus and Number Theoretic Transform (NTT)-based polyno-
mial multiplication, Saber [8] uses power-of-two moduli and
keeps the choice of a polynomial multiplication algorithm
open to implementers. To design a unified cryptoprocessor
for the two schemes, we use the NTT-based polynomial mul-
tiplication method for Saber too and design a common NTT
multiplier in minimum area overhead.
• Both Saber and Dilithium make use of Keccak-based pseudo-
random number generations and hash calculations. How-
ever, as the two schemes use different parameter sets, pre-
and post-processing of the data at the input and output of
the Keccak function happen in different ways. To make our
cryptoprocessor compact and at the same time fast, we im-
plement an optimized wrapper around the Keccak block for
performing scheme-specific processing of data on-the-fly.
This reduces both area and cycle counts significantly.
• We realize a programmable (thus flexible) instruction-set
cryptoprocessor to perform Saber KEM and Dilithium signa-
ture. Furthermore, the cryptoprocessor is capable of execut-
ing several data-independent instructions in parallel, thus
overcoming a major shortcoming of ISA-based sequential
post-quantum cryptoprocessors.

2 PRELIMINARIES
This section gives the specifications of Saber andDilithium. Saber [8]
is an IND-CCA secure KEM and its security relies on the hardness
of the Module Learning With Rounding (MLWR) problem. It has
three variants: LightSaber, Saber, and FireSaber targeting differ-
ent security levels. All of these variants use the same polynomial
rings 𝑅𝑞 = Z𝑞 [𝑥]/⟨𝑥256 + 1⟩ and 𝑅𝑝 = Z𝑝 [𝑥]/⟨𝑥256 + 1⟩ with the
power-of-two moduli 𝑞 = 213 and 𝑝 = 210. The three variants use
different module-dimensions and secret-distributions. Dilithium [2]
is a digital signature scheme and its security is based on the compu-
tational hardness of the Module Learning With Errors (MLWE) and
Module Short Integer Solution (MSIS) problems. Depending on the
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size of the module 𝑅𝑘×ℓ𝑞 with 𝑘, ℓ > 1, Dilithium also comes with
three variants, namely Dilithium-2, 3, and 5 for the NIST-specified
security levels 2, 3, and 5 respectively [2]. All the three variants
of Dilithium use the polynomial ring 𝑅𝑞 = Z𝑞 [𝑥]/⟨𝑥256 + 1⟩ with
𝑞 = 223 − 213 − 1, a prime modulus.

2.1 Saber modules
• gen(): It expands a uniform seed 𝜌 ∈ {0, 1}256 using the
Keccak-based expandable output function (XOF) SHAKE-
128 and generates the public matrix𝐴𝐴𝐴 ∈ 𝑅𝑙×𝑙𝑞 .
• 𝛽` (): It samples a secret polynomial vector (𝑠𝑠𝑠) from a bino-
mial distribution with the parameter `.
• Hash functions: Saber uses three hash functions: F (),H()
and G(). The F () and H() are implemented using SHA3-
256 while G() is implemented using SHA3-512. All hash
functions are Keccak-based.
• Polynomial arithmetic: They include polynomial multiplica-
tion, polynomial addition/subtraction, coefficient-wise round-
ing using bit-shifting, equality checking of two polynomials,
etc.

2.2 Dilithium modules
• ExpandA(): This function uses SHAKE-128 to generate the
polynomials of the public matrix𝐴𝐴𝐴 ∈ 𝑅𝑘×ℓ𝑞 in parallel by ex-
panding the common seed 𝜌 ∈ {0, 1}256 along with different
16-bit nonce values.
• ExpandS(): It is used to generate the secret polynomial vec-
tors 𝑠𝑠𝑠1 and 𝑠𝑠𝑠2 ∈ 𝑆ℓ[ × 𝑆𝑘[ . For each polynomial the seed 𝜍

and a 16-bit nonce are fed to SHAKE-256 and the squeezed
output is given to the rejection sampler for sampling the
signed values in the range {−[, [}.
• Power2Round𝑞 (): This function takes an element 𝑟 = 𝑟1 ·

2𝑑 + 𝑟0 and returns 𝑟0 and 𝑟1, where 𝑟0 = 𝑟 mod ±2𝑑 and
𝑟1 = (𝑟 − 𝑟0)/2𝑑 .
• HighBits𝑞 () and LowBits𝑞 (): Let 𝛼 be a divisor of 𝑞 − 1.
The function Decompose𝑞 () is defined in the same way as
Power2Round() with 𝛼 replacing 2𝑑 in Power2Round().
• MakeHint𝑞 (): It uses Decompose𝑞 () to produce a hint ℎℎℎ.
• UseHint𝑞 (): It use the hint ℎℎℎ produced by MakeHint𝑞 () to
recover the high-bits.
• CRH(): This is a collision resistant hash function which uti-
lizes 384 bits of the output of SHAKE-256.
• SampleInBall(): It fills a polynomial with only 𝜏 coefficients
set to +1 or −1 and the remaining coefficients as 0.
• ExpandMask(): This function expands (𝜌 ∥ ^) string to gen-
erate a polynomial vector. The SHAKE output is broken into
a sequence of positive integers in the range [0, 2𝛾1 − 1] and
these are processed using a rejection sampling.
• Polynomial Arithmetic and NTT(): Polynomial multiplica-
tions are performed using the NTT method.

The signing operation generates a potential signature and checks
a set of constraints on the generated signature. If satisfied, a valid
signature is produced as the output; otherwise, the loop continues
with generating another potential signature.

3 SYNERGIES AND DESIGN DECISIONS
Both Saber and Dilithium are based onmodule lattices and therefore
they share structural similarities to some extent. For example, both
schemes operate on matrices and vectors of polynomials where the
polynomials are always of 256 coefficients. Hence, the underlying
elementary polynomial arithmetic operators are common to Saber
and Dilithium. Furthermore, both schemes use Keccak-based hash
functions and pseudorandom number generators. Note that in mod-
ule lattice-based public-key schemes, polynomial multiplications
and pseudorandom number generations are the most expensive
operations as shown in [14].

3.1 Polynomial multiplication & Hash functions
When implementing a unified cryptoprocessor for both Dilithium
and Saber, we have two options. The first option is to instantiate
an NTT-based multiplier for Dilithium (with prime modulo) and a
schoolbook or Toom-Cook multiplier for Saber (with power-of-two
modulo) so that both schemes can be executed at their optimal
speeds. This approach requires a large area in hardware and could
potentially slowdown the clock frequency of the implementation.
The other option will be to instantiate a common polynomial mul-
tiplier for both schemes. In this case, the common multiplier must
be NTT-based as the Dilithium protocol makes the use of NTT an
integral part of the protocol, and an implementation of Saber [8]
could use any type of polynomial multiplication algorithm.

Keccak-based SHA3 and SHAKE are used in both Dilithium and
Saber. Hence, a commonKeccak core alongwith awrapper around it
is used to implement all different SHA3 and SHAKE functionalities
needed by the two schemes.

3.2 Remaining scheme-specific building blocks
The remaining building blocks in the two schemes do not share
many similarities. They mostly perform simple operations (i.e.,
additions, packing) of linear time-complexity. To reduce the area
consumption further an option could be to resource-share a com-
mon set of arithmetic circuits (e.g., addition and subtraction) with
algorithm-specific finite state machines for generating the control
signals. This design-decision might decrease the area and at the
same time might make the overall design complex and serial in-
stead of parallel. Therefore, to make the design simple and easily
configurable, we decide to keep the scheme-specific blocks separate
in the implementation.

4 OPTIMIZED IMPLEMENTATION
The proposed unified cryptoprocessor for Saber and Dilithium has
an NTT-based polynomial multiplier, a Keccak-core (with a wrapper
around it), and several scheme-specific building blocks. The first
two are the most expensive in terms of both computation time and
area requirements, and thus they must be well optimized in our
unified cryptoprocessor.

4.1 NTT-based unified polynomial multiplier
This section describes the implementation decisions we make for
designing the NTT-based polynomial multiplier for both Saber and
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Dilithium. To correctly perform NTT-based polynomial multiplica-
tions in Saber, we need to use a sufficiently large prime 𝑝 ′ so that
no true modular reductions happen [5].
Prime selection for NTT in Saber: Saber’s secret polynomial coeffi-
cients are signed values in the range [-3,3], [-4,4], and [-5,5] depend-
ing on the security level. When all the coefficients are positive, a
prime modulus close to 23 × 213 × 256 = 224 is sufficient to prevent
any true modular reduction by 𝑞 = 213. If negative coefficients
are turned into unsigned coefficients by adding 𝑞 to each of them,
then the required modulus size increases to 213 × 213 × 28 = 234.
In [5, 9], the authors discuss a similar problem and mention that a
24-bit modulus can be used along with special provision for signed
number representation.

In Saber, matrix-vector and vector-vector multiplications per-
form accumulation of polynomial multiplication results. If a 25-bit
prime, such as 225 − 214 + 1, is used as the NTT-modulus in Saber,
then there no true modular reduction will ever happen and thus
the result will always be correct. Experimentally we observe that
if slightly smaller primes are used, then true modular reductions
happen with very low probabilities. For example, with the 24-bit
prime 224 − 214 + 1 and the 23-bit prime of Dilithium, a true modu-
lar reduction happens with the probabilities ≈ 2−100 and ≈ 2−350

respectively.
Using Dilithium’s prime for the NTTs of Saber gives us the

special advantage that we need just one 23-bit NTT unit for both
schemes, thus making the implementation really compact. For the
other two primes, data-path extensions become essential.
Efficient modular reduction unit and Post-processing elimination: If
the two primes have similar structures, then their modular reduc-
tion circuits can be unified very well to reduce the area overhead.
Therefore, after carefully choosing sparse and reduction-friendly
primes for Saber, we followed the add-shift-based method [22] and
used a similar fast modular reduction technique.We use 224 ≡ 214−1
(mod 𝑞)/225 ≡ 214 − 1 (mod 𝑞) or 223 ≡ 213 − 1 (mod 𝑞) recur-
sively, generate six partial results and add them to perform modular
reduction. Finally, a correction is performed to bring the result to
the range {0, . . . , 𝑞 − 1}. Fig. 1 shows the modular reduction unit
which uses a carry-save adder tree to reduce the critical path. In the
Inverse NTT (INTT) operation the resulting coefficients are scaled
by 1/𝑛, which requires extra 𝑛 multiplications. In our design, these
extra scaling is removed by processing the coefficients using the
equation 𝑥/2 mod 𝑞 = (𝑥 ≫ 1) + (𝑥 & 0x1) × ((𝑞 + 1)/2) during
the INTT [22], where 𝑥 is the output of the butterfly operation
during INTT. This way both the NTT and INTT are of the same
cost and require no post-processing.

Figure 1: Unified modular reduction unit

Algorithm 1: The Cooley-Tukey NTT algorithm [20]
Input :A vector 𝒙 = [𝑥0, · · · , 𝑥𝑛 − 1] where 𝑥𝑖 ∈ Z𝑝 , 𝑛,𝑞 ∈ Z𝑞
Input :Table of 2n𝑡ℎ roots of unity 𝒈, in bit reversed order
Output : �̂� ← 𝑁𝑇𝑇 (𝒙) , 𝑥𝑖 ∈ Z𝑞 , in bit-reversed order

1 𝑡,𝑚 ← (𝑛/2), 1;
2 while (𝑚 < 𝑛) do
3 𝑘 ← 0;
4 for (𝑖 = 0; 𝑖 <𝑚; 𝑖 = 𝑖 + 1) do
5 for (𝑗 = 𝑘 ; 𝑗 < (𝑘 + 𝑙) ; 𝑗 = 𝑗 + 1) do
6 𝑉 ← 𝒙 [ 𝑗 + 𝑡 ] × 𝒈 [𝑚 + 𝑖 ] (mod 𝑞) ;
7 𝒙 [ 𝑗 + 𝑡 ] ← 𝒙 [ 𝑗 ] −𝑉 (mod 𝑞) ;
8 𝒙 [ 𝑗 ] ← 𝒙 [ 𝑗 ] +𝑉 (mod 𝑞) ;
9 𝑘 ← 𝑘 + 2𝑡 ;

10 𝑡,𝑚 ← 𝑡/2, 2𝑚;
11 return 𝒙

Internal architecture of NTT: Following the official reference code of
Dilithium, we use the Cooley-Tukey (Alg. 1) and Gentleman-Sande
butterfly configurations for the NTT and INTT respectively. Both
butterfly configurations are implemented in a unified butterfly core.
The circuits are all pipelined to achieve high clock frequency.

As one butterfly core consumes two coefficients and simultane-
ously produces two coefficients every cycle, we always keep two
coefficients in a single memory-word following [19]. This enables
accessing two coefficients by just one memory-read and storing
two coefficients by just one memory-write. Our NTT unit has two
such butterfly cores in parallel to reduce the cycle count of NTT.
To feed the two butterfly cores, we spread the coefficients into two
BRAM sets. In this way, a polynomial of 256 coefficients occupies a
total of 128 memory words of which 64 are in the first BRAM set
and the remaining 64 are in the other BRAM set. When the two
butterfly cores load the 𝑗𝑡ℎ and ( 𝑗 + 𝑙/2)𝑡ℎ coefficients, they also
get the ( 𝑗 + 1)𝑡ℎ and ( 𝑗 + 𝑙/2 + 1)𝑡ℎ coefficients automatically. One
NTT or INTT operations take 512 clock cycles only. During the
NTT loops, the newly generated coefficients are written back in the
BRAMs in such as way that during the next iteration of the NTT
loop, the required coefficients for each butterfly can be read as a
pair from the memory.

4.2 SHA3-256/512 and SHAKE-128/256
For implementing the Keccak-based hash and expandable output
functions, we instantiate a single high-speed Keccak core in the
proposed cryptoprocessor architecture. Implementation of the Kec-
cak core is similar to the high-speed Keccak core available on the
website of Keccak-team [21]. We use a wrapper module around
the Keccak core to perform parsing of input and output data bits.
Additionally, the state buffer has been changed so that the pseudo-
random polynomial coefficients can be generated in scheme-specific
optimal representations and then stored immediately in the mem-
ory of the cryptoprocessor. This strategy helps reduce the overall
cycle counts for both Dilithium and Saber.

Saber’s public polynomials, generated using SHAKE-128, have a
13-bit coefficient size. Before these polynomials are multiplied, they
are converted into the NTT representation in our unified cryptopro-
cessor. As described in Sec. 4.1, the NTT unit requires its operand
data to be present in ‘two coefficients per BRAM word’ format,
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for reading and writing the coefficients efficiently. One option for
processing the public polynomials will be to generate a continu-
ous bitstream in 64-bit words (which is the default output format
of Keccak), then write them in BRAMs, and later parse them into
13-bit coefficients using separate parser hardware. This approach is
sequential by nature and results in a bloated cycle count and area
consumption due to required buffers. To avoid such a redundant
memory read/write step, we modify the output buffer of Keccak to
directly produce a pair of 13-bit coefficients during the generation
of the public matrix 𝐴𝐴𝐴. However, this strategy requires a book-
keeping mechanism as the output length of a SHAKE-128 squeeze
operation is 1,344 bits which is not a multiple of 13. Therefore, after
each squeeze of SHAKE-128, there will be leftover bits that must be
prepended to the output string generated by the next SHAKE-128
squeeze operation. We observe that during the generation of𝐴𝐴𝐴 in
Saber, the number of leftover bits is always an even number in [0,
24]. We use this observation to simplify the implementation of the
Keccak-output buffer.

The prepending of the leftover bits to a newly generated SHAKE-
128 squeeze output requires shifting and filling of the buffer bits. As
the size of the Keccak output buffer (when operated as SHAKE-128)
is 1,344 bits which is quite large, we investigated efficient implemen-
tation techniques that reduce the area-overhead without affecting
the cycle count. The first and very naive method that comes to our
mind is to implement a simple multiplexer that assigns the output
buffer with 1344 bits of the Keccak state and the leftover bits. But
since there can be 13 (even numbers in [0, 24]) such possibilities
we will require a 12-to-1 multiplexer for assigning to a buffer of
size 1,368 (=1344+24) bits. With this implementation option, there
are 13 shift possibilities and as a consequence, the multiplexing
overhead is ≈8000 LUTs, which is large. We aim to make a very
efficient and lightweight design on hardware, therefore we need a
much better solution.

The leftover bits are handled using a small ‘left-over-bits buffer’.
The content of this left-over-bits buffer is then concatenated at the
beginning of the output buffer. We decide to just make three inter-
meditate buffers for zero, two, and four shifts, for both the output
buffer and left-over-bits buffer, as shown in Fig. 2. After the Keccak
squeeze is done we write the remaining bits to the left-over-bits
buffer. To avoid using a multiplexer to decide on the number of
remaining bits we need to pick, we just write the 24 bits as the
remaining bits. Then based on the count of remaining bits we shift
the left-over-bits buffer by four or two bits towards the left. Once
the left-over-bits buffer is aligned, we start shifting both the output
buffer and left-over-bits buffer towards the left by four or two. The
values pushed out by the left-over-bits buffer are put in front of the
output buffer. Since we run Keccak in parallel with NTT, the extra
cycle count for this bookkeeping does not account for an increase
in the total cycle count.

4.3 Samplers
Saber uses a binomial sampler as described in Sec. 2.1 and it needs
to read 13-bit from the Keccak output buffer. Dilithium requires
three different kinds of rejection sampling units for a coefficient
generation: uniform, [, and 𝛾 sampling. For the uniform and [

sampling, we need to extract 24 and 4 bits from the Keccak output

Figure 2: Example of book-keeping with 18 remaining bits

buffer, respectively, and we can utilize Keccak output fully after
every squeeze. On the other hand, the𝛾 sampling needs 18 or 20 bits
from the Keccak output and it does not utilize the Keccak output
fully after every squeeze with some leftover bits. The same approach
of shifting the output buffer and leftover bit buffer as described in
the previous section can be used here as well. However, this leads
to a Keccak output buffer outputting six different types of outputs 4,
13, 18, 20, 24, and 64 bits. This can be controlled using a multiplexer,
which in hardware is very expensive. In order to reduce the cost, we
take an intermediate smaller buffer of size 192 bits (=lcm(4, 24, 64))
and use it for squeezing the results for 4, 24, and 64 bits. The Keccak
output buffer then outputs only four different types of outputs 13,
18, 20, and 192 bits. Thus saving around ≈1200 LUTs.

4.4 Memory
For the Dilithium variant with the NIST security level 5, the public
matrix𝐴𝐴𝐴 has dimensions (8 × 7). During sign operation, we need
to precompute and store the secret vectors 𝑠𝑠𝑠7×1

1 , 𝑠𝑠𝑠8×1
2 , and 𝑡𝑡𝑡8×1

0 in
the NTT domain, thus requiring storage for at least 23 polynomi-
als. Storing the entire public matrix 𝐴𝐴𝐴 in the memory makes the
signing operation faster as𝐴𝐴𝐴 is used in the loop several times. If we
pre-compute and store all polynomials, we require to store 79 poly-
nomials before the signing loop starts along with seeds and hash
values. Also, we need to store intermediate results during the sign-
ing operation, which further increases the memory requirement. In
the proposed work, we use the ability of our cryptoprocessor to pro-
cess data-independent instructions in parallel. Instead of generating
and storing the public matrix at once, we generate it on-the-fly with
parallel to the polynomial multiplication operation, thus reducing
more than half the memory requirement without compromising
the performance. Since Dilithium-5 has a much larger public matrix
and secret vector than Saber with security level 5 (4 × 4), the over-
all memory requirement of the cryptoprocessor is determined by
Dilithium. With all the constraints in consideration and flexibility
requirements in place, the implementation of Saber requires only
four BRAM36K units while Dilithium requires 20 BRAM36K.

The proposed cryptoprocessor uses parallel memory organiza-
tion to ensure efficient load and storage of polynomials. This is
especially important for the parallel execution of NTT and Keccak
operations. To that end, the memory was split across four major
blocks, with each of them having five BRAM36K elements, which
enables the parallel execution of NTT and Keccak. The constants
for NTT and inverse NTT computations are kept in a ROM which
is also interpreted using one BRAMs in our implementation. Along
with this, the program controller which is used to load all instruc-
tions at once and then handle all the data-independent executions
in parallel requires three BRAM36K.
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4.5 Parallel processing
In [7, 11], overlapping of data-independent computations at the
block level is used to reduce the clock cycle counts of several lattice-
based post-quantum schemes. Overlapping of computations in an
instruction-set cryptoprocessor is relatively more challenging than
overlapping computations in a block-unrolled architecture. In [18],
all the instructions, including data-independent instructions, are
executed in a series to compute the Saber protocol. In our work, we
apply overlapping of data-independent computations in the con-
text of an instruction-set architecture and execute data-independent
Keccak-based and polynomial arithmetic-based operations in paral-
lel. This strategy effectively reduces the overall cycle count at the
cost of a negligible area overhead. To support the parallel execution
of Keccak and polynomial arithmetic, we split the memory unit into
four BRAM sets. While the NTT unit occupies read and write ports
of any two BRAM sets, the Keccak unit works with the remaining
two sets. We also add a program controller unit that loads all the
instructions in an instruction RAM and then sends them one by
one to the compute core for processing in parallel or sequence as
specified in the instruction.

5 RESULTS
The proposed unified cryptoprocessor architecture is described
entirely in Verilog and it is implemented for FPGA and ASIC plat-
forms. For FPGA, the proposed architectures with 23-bit, 24-bit, and
25-bit primes for Saber’s NTT are synthesized and implemented
using Vivado 2019.1 tool suite for the target platform Zynq Ultra-
scale+ ZCU102 with an area-optimized implementation strategy.
The FPGA implementations achieve a 200 MHz clock frequency.
The implementation with only 23-bit prime uses 19,146 LUTs (6.9%),
9,338 DFFs (1.7%), 4 DSPs (0.1%) and 24 BRAMs (2.6%) only. The
implementation with 24-bit Saber prime uses 19,140 LUTs (6.9%),
9,351 DFFs (1.7%), 4 DSPs (0.1%) and 24 BRAMs (2.6%) only. The
implementation with 25-bit Saber prime uses 19,042 LUTs (6.9%),
9,479 DFFs (1.7%), 4 DSPs (0.1%) and 24 BRAMs (2.6%) only. The
number of BRAMs in our cryptoprocessor is determined by the
memory requirement of Dilithium since it is significantly more
memory-consuming than Saber. The Keccak and multiplier units
together consume more than half of the overall area. For the sake of
simplicity, we will use the implementation with 24-bit Saber prime
for the rest of this section. For ASIC, the proposed architecture
is synthesized with UMC 65nm library and it achieves 400 MHz
clock frequency with 0.317mm2 area (≈220 kGE) excluding on-chip
memory.

In Table 1, we present the cycle count and latency (in `s) for the
operations of Saber and Dilithium for different security levels in
FPGA.With 200MHz clock frequency in FPGA, the CCA-secure key
generation, encapsulation, and decapsulation operations for Saber
take 54.9, 69.7, and 94.9 `s, respectively. The Dilithium signature
generation operation has a loop and it iterates until a valid signature
is generated. In Table 1, we report the performance for the best-
case scenario where the valid signature is generated after the first
loop iteration. We also divide signature generation operation into
three parts (pre-sign, sign, post-sign) and report their performances
separately. For a signature generation, the pre-sign and post-sign
parts are performed only once while the sign part is repeated until

Table 1: Performance results for Saber-KEM and Dilithium

Operation LS/D-2 S/D-3 FS/D-5
Cycle Lat. Cycle Lat. Cycle Lat.

Sab.Keygen 5,935 29.6 10,980 54.9 17,523 87.6
Sab.Encaps 8,081 40.4 13,941 69.7 21,603 108.0
Sab.Decaps 11,678 58.3 18,991 94.9 27,890 139.4
Dil.Gen 14,183 70.9 22,957 114.7 38,841 194.2
Dil.Sign𝑝𝑟𝑒 7,554 37.7 9,273 46.3 12,448 62.2
Dil.Sign 21,115 105.5 35,865 179.3 52,955 264.7
Dil.Sign𝑝𝑜𝑠𝑡 1,689 8.4 2,280 11.4 3,057 15.2
Dil.Verify 15,044 75.2 25,535 127.6 45,789 228.9

a valid signature is generated. For the best-case scenario, the key
generation, signing ,and verification operations for Dilithium-3
take 114.7, 237, and 127.6 `s, respectively, in the FPGA.

5.1 Comparison with the existing results
The proposed cryptoprocessor is compared with related works in
the literature in terms of area, performance, and flexibility for Saber
and Dilithium-3 as shown in Table 2 and Table 3, respectively. In
the literature, only a few works are targeting a unified architecture
that supports multiple PQC schemes [3, 9, 10]. In [3], the authors
present Sapphire, a cryptoprocessor coupled with RISC-V processor
implemented in ASIC for various lattice-based Round 2 schemes in
NIST’s PQC standardization. It does not support or provide perfor-
mance results for Saber while the results provided for Dilithium are
using Round-2 specifications. In [9], the authors present a RISC-V
architecture coupled with optimized hardware accelerators. It pro-
vides support for Crystals-Kyber, NewHope, and Saber schemes and
targets the ASIC platform. Compared to the Saber implementation
in [9], our FPGA and ASIC implementations show up to 304× and
564× better performance, respectively. The work in [10] presents
a HW/SW co-design of Crystals-Kyber and Saber schemes. Our
implementation shows superior performance in terms of both per-
formance and area consumption as we target an implementation
entirely in hardware.

There are several works in the literature implementing Saber in
hardware for FPGA [1, 6, 12, 16, 18] and ASIC [13, 24] platforms.
Our unified cryptoprocessor outperforms the works in [1, 16] and
shows similar performance compared to the architectures in [6, 12].
The high-performance implementations in [13, 18, 24] shows better
performance than our design. However, their implementations are
optimized for the Saber scheme as our work targets a compact
design supporting multiple schemes.

There are few FPGA-based implementations of Dilithium [4, 15,
17, 23] in the literature. Zhou et al. [23] propose a HW/SW co-design
solution by offloading computationally intensive operations such as
SHA3/SHAKE and polynomial multiplication to the hardware while
keeping the rest of the operation in the software. Although their
implementation has small area, our pure-hardware solution shows
almost up to two orders of magnitude better performance compared
to their HW/SW co-design solution. In [17], the authors present
three high-performance architectures for key generation, sign, and
verification operations of Dilithium scheme targeting FPGA. Their
implementations can perform key generation, sign, and verification
operations in 51.9, 63.1, and 95.1 `s, respectively. Although they
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Table 2: Comparison Table for Saber-KEM

Ref. Plat. Performance Freq. Area (mm2 or
(in `s) (MHz) LUT/FF/DSP/BRAM)

[9]𝑏 65nm 16K/21K/26K 45.47 0.914 mm2

[13] 65nm 7.1/7.1/9.3 1000 0.314 mm2

[24] 40nm 2.7/3.6/4.3 400 0.380 mm2

[10]†,𝑏 Ar.-7 3.6K/4.9K/5.5K 62.5 20K/11K/13/36.5
[16]† Ar.-7 3.2K/4.1K/3.8K 125 7.4K/7.3K/28/2
[1] Ar.-7 –/467.1/527.6 100 6.7K/7.3K/32/0
[12] US+ 48.9/63.2/78.5 250 10.1K/7.7K/0/3
[6]† US+ -/60/65 322 12.5K/11.6K/256/4
[18] US+ 21.8/26.5/32.1 250 23.6K/9.8K/0/2

Our𝑎,𝑏
US+ 54.9/69.7/94.9 200 19.1K/9.3K/4/24
65nm ≈27.5/34.9/47.5 400 ≈0.317+1.230 mm2

𝑎 :On-chip memory area is estimated as ≈1.230 mm2.
𝑏 :Supports multiple schemes. †: HW/SW co-design.

Table 3: Comparison Table for Dilithium-3

Ref. Plat. Performance Freq. Area (mm2 or
(in `s) (MHz) LUT/FF/DSP/BRAM)

[23]† Zynq -/8.8K/9.9K 100 2.6K/-/-/-
[17]𝑎

US+
51.9/-/- 350 54.1K/25.2K/182/15

[17]𝑏,𝑑 -/63.1/- 333 68.4K/86.2K/965/145
[17]𝑐 -/-/95.1 158 61.7K/34.9K/316/18
[15]𝑑 Ar.-7 229/311.1/221.5 145 30.9K/11.3K/45/21[15]𝑒 229/852.3/221.5
[4]𝑑 US+ 32/63/39 145 55.9K/28.4K/16/29[4]𝑒 32/193/39

Our𝑑,𝑓
US+ 114.7/237/127.6 200 19.1K/9.3K/4/24
65nm ≈57.4/118.5/63.8 400 ≈0.317+1.230 mm2

𝑎 : Works for K.Gen. 𝑏 : Works for Sign. 𝑐 : Works for Verify.
𝑑 : Reports best-case scenario. 𝑒 : Reports average-case scenario.
𝑓 : Supports multiple schemes. †: HW/SW co-design.

show better performance than our implementation, their implemen-
tation for sign operation- consumes 3.5×, 9.2×, 241.2× and 6×more
LUTs, DFFs, DSPs and BRAMs compared to our implementation.
Moreover, our work can perform all three operations in a single
implementation and it provides support for the Saber scheme as
well. The work in [15] presents a Dilithium implementation for
FPGA. They target reducing LUT utilization by employing extra
DSP units for computations. Our implementation shows better
performance and uses fewer hardware resources. In [4], a high per-
formance Dilithium implementation is presented. It shows better
performance than our implementation at the expense of 3× and 4×
more LUT/DFF and DSP, respectively.

6 CONCLUSION
In this work, we designed and implemented a unified hardware
architecture for the two finalists Crystals-Dilithium and Saber of
the NIST PQC Standardization. The optimized cryptoprocessor
architecture greatly benefits from the algorithmic and structural
similarities in the two implemented cryptographic schemes. To
that end, we showed that it is possible to realize a compact yet
fast cryptoprocessor for performing both post-quantum KEM and
digital signature on ASIC and FPGA platforms.
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