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Abstract

The Oblivious Cross-Tags (OXT) protocol due to Cash et al. (CRYPTO’13) is a highly
scalable searchable symmetric encryption (SSE) scheme that allows fast processing of conjunctive
and more general Boolean queries over encrypted relational databases. A longstanding open
question has been to extend OXT to also support queries over joins of tables without pre-
computing the joins. In this paper, we solve this open question without compromising on the
nice properties of OXT with respect to both security and efficiency. We propose Join Cross-
Tags (JXT) - a purely symmetric-key solution that supports efficient conjunctive queries over
(equi) joins of encrypted tables without any pre-computation at setup. JXT is fully compatible
with OXT, and can be used in conjunction with OXT to support a wide class of SQL queries
directly over encrypted relational databases. We prove the (adaptive) simulation-based security
of JXT with respect to a rigorously defined leakage profile.

1 Introduction

The advent of cloud computing potentially allows individuals and organizations to outsource storage
and processing of large volumes of data to third party servers. However, this leads to privacy
concerns - clients typically do not trust service providers to respect the confidentiality of their
data [CZH+13]. This lack of trust is often reinforced by threats from malicious insiders and external
attackers.

Consider a client that offloads an encrypted relational database of (potentially sensitive) credit-
card transactions to an untrusted server. At a later point of time, the client might want to issue
a query of the form retrieve all transactions for a particular merchantID for a given time. Ideally,
we want the client to be able to perform this task without revealing any sensitive information
to the server, such as the actual transactions, the merchantID underlying the given query, etc.
Moreover, one could consider even more complicated Boolean queries over more attribute-value
pairs. Unfortunately, techniques such as fully homomorphic encryption [Gen09], that potentially
allow achieving such an “ideal” notion of privacy, are unsuitable for practical deployment due to
large performance overheads.

Searchable Symmetric Encryption. Searchable symmetric encryption (SSE) [SWP00, Goh03,
CGKO06, CK10, PRZB11a, CJJ+13, CJJ+14, FJK+15, SLS+16, KM17, LPS+18, KM18, KM19,
CNR21, PM21] is the study of provisioning symmetric-key encryption schemes with search capa-
bilities. The most general notion of SSE with optimal security guarantees can be achieved using
the work of Ostrovsky and Goldreich on Oblivious RAMs [GO96]. More precisely, using these tech-
niques, one can evaluate a functionally rich class of queries on encrypted data without leaking any

*Work done while the author was affiliated with ETH Zürich.
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information to the server. However, such an ideal notion of privacy comes at the cost of significant
computational or communication overhead.

A large number of existing SSE schemes prefer to trade-off security for practical efficiency by
allowing the server to learn “some” information during query execution. The information learnt by
the server is referred to as leakage. Some examples of leakage include the database size, the query
pattern (which queries have the same attribute-value pair) and the access pattern. Practical imple-
mentations of such schemes can be made surprisingly efficient and scalable using specially designed
data structures. This line of works on efficient SSE schemes that trade-off leakage for efficiency was
initiated by Curtmola et al. [CGKO06], who introduced and formalized the simulation-based frame-
work for proving the security of SSE schemes with respect to a given leakage function. Subsequently,
Chase and Kamara [CK10] introduced the concept of “structured encryption” - a generalization of
SSE to structured databases, along with the corresponding security definitions.

For any SSE scheme to be truly practical, it should at least support conjunctive queries, i.e.,
given a set of attribute-value pairs (w1, . . . ,wn), it should be able to find and return the set of
records that match all of these attribute-value pairs. The example query above, namely, “retrieve
all transactions for a particular merchantID for a given time” is an instance of a conjunctive query.
There exist dedicated SSE schemes that can support conjunctive, disjunctive and general Boolean
queries over attribute-value pairs in relational databases [CJJ+13, CJJ+14, KM17, LPS+18, PM21].
Unfortunately, these schemes are unable to handle queries on joins of tables in relational databases
without prohibitive pre-computation of joins. This inability to efficiently support queries over joins
of tables is indeed a major impediment to actual deployment of these schemes. Only a handful of
recent works on SSE [KM18, CNR21] address search queries over joins of tables, and we will review
their techniques subsequently.

Oblivious Cross-Tags (OXT). The work of Cash et al. [CJJ+13] showed for the first time how
to design an SSE scheme for conjunctive (and more general Boolean) queries, for which (i) the
encrypted database has memory requirement that is linear in the size of the database, (ii) searches
require a single round of communication (query followed by response), and (iii) the leakage to
the server is low. Their scheme, called Oblivious Cross-Tags (OXT), relies on specially structured
pseudorandom functions (PRFs), such as those that can be enabled using hard discrete-log groups.

Since our work is closely related to OXT, we give a brief overview. In its simplest embodiment,
the SSE scheme OXT precomputes an encrypted version of a database (using a secret symmetric
key) and stores it at a server that is presumed to be honest-but-curious. A client with access to
this symmetric key, breaks a (2-) conjunctive query into two search tokens for the server. The
first search token yields all entries for the first conjunct and the second search token is used to
search for exactly the conjunct using a “cross-tag helper token” stored as part of the entries for
the first conjunct. The cross-tag helper is independent of the second attribute and hence only one
cross-tag helper per record-attribute pair is stored. Since there is one data element anyway for each
record-attribute pair, this at most doubles the total space requirement. For example, consider the
conjunctive query above: (time hhmm and merchantID mid). The client computes two PRF values
(using its secret key): one for (time; hhmm), say p1, and another for (merchantID; mid), say p2.
It sends to the server a key k1 derived from p1, and a token = hp2/p1 (in a DDH-hard group). The
attributes (time, merchantID) are also revealed to the server.

The server uses k1 to search for an encrypted set (stored in the encrypted database) corre-
sponding to (time; hhmm) as well as uses k1 to decrypt it. Next, for each record, in this decrypted
set D, the server can also find a “cross-tag helper token” Z = p1 ∗ rind (where, rind stands for
randomized-record-index). The search token hp2/p1 raised to the power Z yields a cross-tag hp2∗rind,
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which is then checked in a lookup-table called XSet. This lookup-table XSet stored with the server
has every valid member of the form hp2∗rind, and hence this check allows the server to confirm the
record in D to satisfy the conjunct. Note, the size of this set XSet is exactly the number of records
times the number of attributes (as in each record, for each attribute there is exactly one value such
as mid). This is exactly the size of the database. That this lookup-table reveals no information, a
priori, is proved under the DDH assumption; hence the name oblivious cross-tag (OXT).

The actual protocol is slightly more complicated so as to maintain security under DDH, but
the above description gives the main gist of OXT. Note that, both the client and the server have
to perform exponentiations (in the DDH-hard group) during this search protocol. Moreover, the
number of these exponentiations can be large, as there will be one such exponentiation per entry
in the decrypted set D. Similarly, during the setup stage, i.e. when the database is encrypted and
the XSet is computed, an exponentiation is required for every attribute-value pair in the database.
Hence, the setup maybe computationally intensive for large databases.

The New JXT Protocol. A first contribution of our work is to show that if the number of
attributes in a table is small, say m, then the encrypted database with a size blowup by a factor
m, can achieve the same security as OXT without the use of DDH, and more precisely using only
symmetric-key primitives such as PRFs and symmetric-key encryption in the standard model. As a
result, the search computation becomes considerably faster as there is no exponentiation (by either
the client or the server). Further, the setup becomes much faster, as the XSet computation requires
no exponentiations.

Next, as a main contribution of this work, we show that the above modification to OXT also
allows us to search over (equi) joins of tables without any pre-computation of joins1. We refer
to this new protocol as Join Cross-Tags (abbreviated as JXT). Moreover, since joins are usually
performed over a limited set of attributes (e.g. primary keys or high-entropy attributes2), the size
blowup to the encrypted database is small; more precisely, a t fold blowup, where t is the number
of attributes in a table over which joins are allowed. Continuing with the above example, consider
the scenario where the credit-card processor has two tables: (Table A) a transactions table and
(Table B) a merchants information table. Instead of the earlier query “retrieve all transactions for
a particular merchantID for a given time” in Table A, the new query maybe “retrieve all records
for a given time hhmm in a given city cc” in the join of Table A and Table B, where the join is
over the attribute merchantID. More formally, the result of such a query is

{(⟨A; r1⟩, ⟨B; r2⟩) | ∃merchantID mid :

(recordID= ⟨A; r1⟩, time= hhmm, merchantID = mid) ∈ Table A and

(recordID= ⟨B; r2⟩, city= cc, merchantID = mid) ∈ Table B}

The JXT protocol can support this query (over encrypted databases) without any pre-computation
of joins of the two tables. The only requirement is that both encrypted tables must be configured to
support join over the attribute merchantID3. As mentioned previously, if merchantID is amongst the
few attributes (say, t many) that a table supports for join, the space requirement for that encrypted
table only increases t-fold. Some other tables may not even have the attribute merchantID, but
these may have other small number of attributes over which join is allowed.

1Throughout this paper, when we refer to joins, we mean equi joins.
2By high entropy attribute we mean the information-theoretic entropy of the column corresponding to the at-

tribute. For example, the attribute gender has low entropy, whereas the attribute name can have high entropy in a
table.

3By configuration we mean the (pre-) computation of the encrypted table. We remind the reader that this
pre-computation does not involve join pre-computation, as each table is encrypted independently.
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Comparison with Pre-Computation of Joins. It is worth contrasting this approach to one
where joins are pre-computed, and this is best exhibited by considering the above example. The
transactions table A is likely to be tall and skinny, i.e. have many records and few attributes. On
the other hand, the merchant information table B is likely to be short and wide. However, their
join will be have at least as many records as table A and at least as many attributes as table B,
i.e. tall and wide. This can cause a considerable blowup in storage requirement. Since JXT does
not pre-compute joins, it avoids such blowups, as well other blowups caused by the possibilities of
pair-wise joins of many tables. We also remark that the JXT approach allows for a modular setup
stage. Some tables are updated much faster than others, and hence can be re-setup on their own
without the need to re-setup tables that are more or less constant4.

Storage and Search Overheads. We provide a high-level summary of the overheads incurred by
JXT in terms of storage and search processing. Suppose that a table has a total of n attributes, with
t ≤ n amongst these being “join attributes”; i.e. attributes over which the table can be joined with
other tables in the database. Also, assume that the table has a total of m records (equivalently,
rows). Then, in JXT, the corresponding encrypted table incurs a storage overhead of O(mnt),
which is O(t)-fold blowup to the storage required for the plaintext table. Also, given a 2-conjunctive
query over the join of two tables that involves an attribute-value pair w1 from the first table and an
attribute-value pair w2 from the second table, the computational overhead at the server is O(ℓ1ℓ2),
where ℓ1 and ℓ2 are the numbers of records matching the attribute-value pairs w1 and w2 in the
first and second table, respectively.

Compatibility with OXT. An important feature of JXT is that it is fully compatible with
OXT. For example, consider the two tables A and B above and suppose table A has few attributes
(say e.g. four) and table B has many attributes (say, e.g. twenty). Also, suppose that some of these
attributes are the attributes over which joins can be performed. Then, the OXT protocol can be
used to support Boolean queries within each table (spanning many attributes), as well as Boolean
queries across tables using the JXT part for the join. So for example, the query maybe a 4-conjunct
“retrieve all records for a given time and a given amount in a given city and a given merchant
category” in the join of Table A and Table B, where the join is over the attribute merchantID.

Further, there is a “multi-client” extension of OXT where the client does not own the secret
key; instead, an authority owns the secret key and the client computes its PRF based search tokens
using an oblivious-PRF (OPRF) protocol with the authority [JJK+13]. JXT is also fully compatible
with this multi-client extension of OXT. In fact, JXT can be easily extended to the scenario where
different databases are owned by different entities operating under a single authority, and a client
can perform a search query over join of tables owned by different entities; this requires that the
entities setup their respective encrypted databases using “oblivious” help from the authority.

The Leakage Profile of JXT. An astute reader may wonder about the leakage of JXT and how
it compares to the leakage profile of the OXT protocol. The leakage profile of OXT (i.e. leakage to
the server) is known to be technically abstruse, but at the same time a careful analysis also shows
that in practice the leakage of OXT is benign given that much of this leakage can also be obtained
a priori by auxiliary means. We remark that the OXT leakage profile is abstruse mainly because
the OXT protocol achieves high scalability while supporting Boolean search queries. Further, the

4We remark here that the transactions database is encrypted for post-transactional audit, fraud detection, money-
laundering detection, machine learning etc. The real-time transactions database is usually updated and used without
encryption, as it runs in a secure domain. It is later encrypted on a periodic basis for above additional functionalities.
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Figure 1: We illustrate here how the leakage across join queries depends on the ordering of the attribute-value
pairs and/or the join ordering. Query 1 is “select * from (Transactions join Merchants on merchantID)
where time = 4PM and city = LA.” Query 2 is “select * from (Transactions join Merchants on
merchantID) where amount = 50 and city = LA.” The conditional intersection pattern leakage reveals
that yind1 is same in the two queries. Even though xind16 maybe same as xind7, this information is not
leaked. The join-distribution pattern leakage also reveals that in the Transactions table, there are additional
sets of records, each record in the set sharing the same merchantID (i.e., (redacted) 5GUYS from Query 1 has
two records and (redacted) Taxi from Query 2 has two records as well). However, if the order in which the
tables are joined is reversed, i.e., the query is over “Merchants join Transactions”, then the join-distribution
leakage is null. This is because merchantID is the primary key in the Merchants table. For more details, see
Section 5.1.

rigorous definition of the leakage profile allows for a simulation-based security proof of OXT. The
leakage profile for JXT also follows the same model, with some additional leakage over OXT leakage,
which is to be expected because the queries are across tables and express an existential quantifier
over the join attribute. Nevertheless, we describe below that in practice the leakage is still benign.
In this Introduction section, this is best illustrated using an example as in Figure 1. A rigorous
definition of the leakage profile is given in Section 5.1.

The leakage of JXT can be split into six main categories: (a) database size, (b) result pattern of
the queries, (c) equality pattern across the queries, (d) size pattern of the queries, (e) conditional
intersection pattern across queries, and (f) join-attribute distribution pattern of the queries. While
the first five are more or less similar to OXT leakage (but, see Section 5.1 for subtle differences),
the last one is obviously new to JXT. Now, just as in OXT, the client has the choice to order
the conjuncts in a query, as well as the order in which the tables are joined. The way OXT is
designed is that the first conjunct usually leaks the most information (as the server gets to decrypt
information related to the the first conjunct). Thus, usually, the attribute that has lesser entropy
is not made the first conjunct in a query, as the size pattern leakage has the potential to un-blind
the attribute-value pair for a low-entropy attribute (such as gender). A similar design principle
is followed in JXT, and the order of the tables being joined can make a difference to the leakage,
as illustrated in Figure 1. In particular, the table in which the join attribute is the primary-key
(or high-entropy attribute) should be made the first table in a join query. If such an ordering is
always possible, then the additional join-attribute distribution pattern leakage can be null (in case
of primary-keys) or minimal (in case of high-entropy attributes). Thus, the overall leakage of JXT
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remains benign in practice.

Security Proofs for JXT. We formally prove the (adaptive) simulation-based security of JXT
with respect to the above leakage profile (formally defined in Section 5.1). Our proofs follow the
same simulation-based framework that was originally proposed by Curtmola et al. in [CGKO06] (and
is widely adopted in the SSE literature [CK10, CJJ+13]). As mentioned earlier, our proofs em-
ploy purely symmetric-key primitives such as PRFs and symmetric-key encryption in the standard
model.

Related Work. In [KM18], Kamara and Moataz showed how to encrypt a relational database
in such a way that it can efficiently support a large class of SQL queries, including join queries.
However, their proposed protocol (called SPX) crucially relies on explicitly pre-computing joins over
all attributes that share a common domain. In our context, SPX essentially pre-computes joins
of tables over all attributes configured for joins. On the other hand, our proposed JXT protocol
avoids all such pre-computation of joins (and the associated storage overheads as discussed earlier).

In a more recent work [CNR21], Cash et al. introduced the interesting concept of partially
pre-computed joins, which potentially has a lower result pattern leakage than is usually expected.
In particular, the server only learns the projection of the actual result set onto the two tables,
and the client has to do extra work to extract the exact set of records matching the join query.
However, the storage requirement for their scheme is at least as much as would be required in a
scheme that pre-computes joins of tables at setup. Finally, it is not immediately obvious if their
scheme is compatible with OXT, which is the state-of-the-art for conjunctive (and more general
Boolean) queries.

Finally, there exist alternative solutions based on property-preserving encryption (PPE) that
allow handling a large class of SQL queries over encrypted relational databases. However, these
schemes are known to be vulnerable to a wide class of leakage-abuse attacks [IKK12, NKW15,
CGPR15, ZKP16, BKM20]. For example, PPE-based schemes such as CryptDB [PRZB11b] typ-
ically use deterministic encryption and its variants to support conjunctive (and other Boolean
queries), as well as join queries. These techniques typically leak frequency information about the
underlying plaintext data, which can be potentially exploited in certain settings to completely
break query privacy [NKW15]. Our proposed JXT protocol, on the other hand, does not use any
PPE-like techniques, and only incurs benign leakages (similar to those in OXT) that are resistant
to leakage-abuse attacks (see [BKM20] for an overview of why leakages incurred by schemes such
as OXT are not exploitable via leakage-abuse attacks in practice).

Discussion and Open Questions. While it is true that JXT does not support joins over arbi-
trary attributes (in particular, the attributes over which the encrypted database was not configured
to support joins), in practice, it is indeed the case that the designer of the tables knows in advance
which attributes are likely candidates for joins. We leave it as an open problem to analyze the
leakage of the JXT protocol when a join is performed over an attribute which has “low-entropy”
in both the tables. We also leave it as an open question to extend JXT to support queries over
joins of three or more tables (without pre-computation). Finally, we leave it open to extend JXT
to support dynamic addition/deletion of records directly to the encrypted database (e.g., in the
spirit of [PM21], which extends OXT to the dynamic setting). Another open problem is to extend
JXT to achieve lower result pattern leakage, as in the scheme due to Cash et al. [CNR21] discussed
above.
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2 Definitions and Tools

Notation. We write [n] for the set {1, . . . , n}. For a vector v we write |v| for the dimension
(length) of v and for i ∈ [|v|] we write v[i] for the i-th component of v. All algorithms (including
adversaries) are assumed to be probabilistic polynomial-time (PPT) unless otherwise specified. If
A is an algorithm, then y ← A(x) means that the y is the output of A when run on input x. If A is
randomized then y is a random variable. We refer to λ ∈ N as the security parameter, and denote
by poly(λ) and neg(λ) any generic (unspecified) polynomial function and negligible function in λ,
respectively. 5

2.1 Relational Databases and Join Queries

Syntax. A relational database DB = {Tabi}i∈[N ] is represented as a collection of tables. Each
table Tabi is in turn composed of records over a set of attribute-value pairs Wi. For simplicity, we
represent Tabi as a list of tuples of the form {(indi,ℓ,wi,ℓ)}ℓ∈[L], where each record-identifier indi,ℓ is

a bit-string in {0, 1}λ and each attribute-value-pair wi,ℓ ∈ Wi is an (arbitrary-length) bit-string in
{0, 1}∗. For the sake of search it is sufficient to represent a record as its associated attribute-value
pair set Wi.

Identifiers. An identifier indi,ℓ is a value that can be revealed to the server storing the database (for
instance, a permutation of the original record indices). It can be used by the server to efficiently
retrieve the corresponding (encrypted) record and send it to the client. We assume throughout the
paper that any identifier ind corresponding to a record in a table Tabi is appended with the table
number i. In other words, two distinct tables Tabi and Tabj cannot have a record identifier ind in
common.

Join Attributes. We assume that for each table Ti, the set of all attributes {attr∗i,t}t∈[T ] that
it shares with other tables in the database DB is fixed at setup and has size upper-bounded by
some constant in the security parameter. We refer to such attributes as “join attributes”. Looking
ahead, these join attributes are used to perform join queries across tables.

Inverted Index. For an attribute-value pair w ∈Wi, we define DBTabi(w) as the set of identifiers
of records that contain an entry matching w. In other words, DBTabi(w) is a set of the form:

DBTabi(w) = {(ind | (ind,w) ∈ Tabi}.

We refer to the collection of sets {DBTabi(wℓ)}wℓ∈Wi
as the “inverted index” for the table Tabi.

Inverted Join Index. For an attribute-value pair w ∈ Wi, we additionally define DBJoin
Tabi

(w) as
the set of identifiers of records that contain an entry matching w, along with the attribute-value
pairs corresponding to the join attributes for the same record. In other words, DBJoin

Tabi
(w) is a set

of the form:

DBJoin
Tabi(w) = {(ind, {w

∗
t }t∈[T ]) | (ind,w) ∈ Tabi ∧ ∀t ∈ [T ](ind,w∗

t ) ∈ Tabi}.

We refer to the collection of sets {DBJoin
Tabi

(wℓ)}wℓ∈Wi
as the “inverted join index” for the table

Tabi.

5Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ)
when λ is sufficiently large.
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Join query. A join query over a pair of tables Tabi1 and Tabi2 with corresponding attribute-value
pair sets W1 and W2, respectively, is specified by a tuple

q = (i1, i2,w1,w2, attr
∗),

where w1 ∈ W1, w2 ∈ W2, and attr∗ is a special “join attribute” that defines the join relation
between the tables Tabi1 and Tabi2 for the query q.

We write DB(q) to be the set of tuples of the form (ind1, ind2) that “satisfy” the query q, where
ind1 and ind2 are identifiers corresponding to records in the tables Tabi1 and Tabi2 , respectively.
Formally, this means that for each (ind1, ind2) ∈ DB(q), the following conditions hold simultane-
ously:

1. The following Boolean formula evaluates to true: ((ind1,w1) ∈ Tabi1) ∧ ((ind2,w2) ∈ Tabi2).

2. There exists some value γ such that the following Boolean formula also evaluates to true:
((ind1, ⟨attr∗, γ⟩) ∈ Tabi1) ∧ ((ind2, ⟨attr∗, γ⟩) ∈ Tabi2).

2.2 SSE Syntax and Security Model

In this section, we formally define searchable symmetric encryption (SSE). Before presenting the
formal definition, we present certain assumptions we make in the rest of the paper.

� In the rest of the paper, we assume that any plaintext record is identified by its index ind
while, the corresponding encrypted version of the record is identified by a “randomized index”
rind (computed as a pseudorandom mapping applied on the original index ind).

� We also assume that the output from the SSE protocol for a given search query are the indices
(or identifiers) ind corresponding to the records that satisfy the query. A client program can
then use these indices to retrieve the encrypted records and decrypt them. We adopt this
formulation because it allows us to decouple the storage of payloads (which can be done in
a variety of ways, with varying types of leakage) from the storage of metadata, which is the
focus of our protocol (e.g., a client may retrieve the encrypted records from the same server
running the query or from a different server, or may only retrieve records not previously
cached, etc.)

We note here that a similar formulation is used by almost all existing works on SSE, and more
generally structured encryption [CGKO06, CK10, CJJ+13, CJJ+14].

Formal Definition of SSE. A searchable symmetric encryption (SSE) scheme Π consists of an
algorithm EDBSetup and a protocol Search between the client and server, all fitting the following
syntax:

� EDBSetup takes as input a database DB, and outputs a secret key K along with an encrypted
database EDB.

� The Search protocol is between a client and server, where the client takes as input the secret
key K and a query q and the server takes as input EDB. At the end of the protocol the client
outputs a set of identifiers and the server has no output.
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Correctness. We say that an SSE scheme is correct if for all inputs DB and queries q, if

(K,EDB)
$← EDBSetup(DB), after running Search with client input (K, q) and server input EDB,

the client outputs the set of indices DB(q).
We also consider a computational relaxation of this correctness notion, expressed via the fol-

lowing game. For an adversary A and an SSE scheme Σ, we define the game CorΠA(λ), which lets
A choose DB, generates (K,EDB) ← EDBSetup(DB), gives EDB to A, which adaptively chooses
queries q, for each of which the game runs the Search protocol with client input (K, q) and server
input EDB. If in any execution the client outputs something other than DB(q), the game outputs
1, and otherwise it outputs 0.

We say that an SSE scheme Π is computationally correct if for all PPT adversaries A, we have
Pr[CorΠA(λ) = 1] ≤ neg(λ).

Security of SSE. We recall the semantic security definitions of SSE from [CGKO06, CK10]. The
definition is parameterized by a leakage function L, which describes what an adversary (the server)
is allowed to learn about the database and queries. Formally, security says that the server’s view
during an adaptive attack (where the server selects the database and queries) can be simulated
given only the output of L.

Definition 1. Let Π = (EDBSetup,Search) be an SSE scheme and let L be a stateful algorithm.
For algorithms A and S, we define experiments (algorithms) RealΠA(λ) and IdealΠA,S(λ) as follows:

RealΠA(λ) : A(1λ) chooses DB. The experiment then runs (K,EDB)← EDBSetup(DB), and gives
EDB to A. Then A repeatedly chooses a query q. To respond, the game runs the Search
protocol with client input (K, q) and server input EDB and gives the transcript and client
output to A. Eventually A returns a bit that the game uses as its own output.

IdealΠA,S(λ) : The game initializes a counter cnt = 0 and an empty list q. A(1λ) chooses DB.
The experiment runs EDB ← S(L(DB)) and gives EDB to A. Then A repeatedly chooses a
query q. To respond, the game records this as q[i], increments i, and gives to A the output
of S(L(DB,q)). (Note that here, q consists of all previous queries in addition to the latest
query issued by A.) Eventually A returns a bit that the game uses as its own output.

We say that Π is L-semantically-secure against adaptive attacks if for all adversaries A there exists
an algorithm S such that

| Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] |≤ neg(λ).

We note that in the security analysis of our SSE schemes we include the client’s output, the set
of indices DB(ψ(w̄)), in the adversary’s view in the real game, to model the fact that these ind’s
will be used for retrieval of encrypted record payloads.

Additional Background. We refer the reader to Appendix A for additional background mate-
rial, including definitions of standard cryptographic primitives, as well as a special primitive called
a TSet that was introduced in [CJJ+13].

3 Join Cross-Tags (JXT): SSE for Joins

In this section, we formally describe our new JXT protocol for searching over joins of tables in
encrypted relational databases. The JXT protocol consists of two protocols:
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� The EDBSetup protocol is a randomized algorithm executed locally at the client. This protocol
takes as input the plaintext database and generates the encrypted database EDB, which is to
be outsourced to the (untrusted) server. The encrypted database EDB consists of two data
structures - the TSet and the XSet. The EDBSetup protocol also generates a secret key K,
which is stored locally at the client and is used subsequently to generate query tokens.

� The Search protocol is used to execute queries over joins of encrypted tables in the encrypted
database EDB. At a high level, it is a two-party protocol executed jointly by the client and
the server, where the client’s input is the query to be executed and the server’s input is the
encrypted database EDB. It consists of a single round of communication (i.e. a query message
from the client to the server, followed by a response message from the server to the client).
At the end of the protocol, the client is expected to learn the set of record indices (across the
two tables) matching the join query.

We now expand in more details on how each of the aforementioned protocols function. In what
follows, we assume that:

� F : {0, 1}λ × {0, 1}∗ → {0, 1}λ is a family of pseudorandom functions as defined in Ap-
pendix A.1.

� SKE = (Gen,Enc,Dec) is an IND-CPA secure symmetric-key encryption algorithm with λ-bit
keys as defined in Appendix A.

� Σ = (TSetSetup,TSetGetTag,TSetRetrieve) is a secure TSet as defined in Appendix A.2.

3.1 The EDBSetup Algorithm of JXT

We now describe how the EDBSetup algorithm processes a plaintext database DB to generate the
corresponding encrypted database EDB. A concise summary of how the algorithm works appears
in Figure 2.

We note that in JXT, each table Tab is processed independently; so we focus on the processing
for a single table. Given a table Tab, let W denote the set of attribute-value pairs across this table
Tab. Also, let {attr∗t }t∈[T ] denote the set of T special attributes over which we allow the table Tab
to be joined with other tables in the database. We begin by describing how the XSet component
of the encrypted database is generated for a given table.

Generating the XSet Table-wise. For each record with identifier ind in the table Tab, let
{w∗

t }t∈[T ] denote the set of attribute-value pairs for this record with identifier ind corresponding to
the T special “join attributes”. For each t ∈ [T ], the EDBSetup algorithm computes the values

xindt = F (KI , t, ind), xwt = F (K(2),w∗
t ),

where KI ,K
(2) ∈ {0, 1}λ are uniformly sampled keys for the PRF family F . Additionally, the

EDBSetup algorithm computes the “cross-tag”

xtagt = xwt + xindt,

where xwt and xindt are as described above. The XSet corresponding to the table Tab is then
populated with all such xtag values.

10



EDBSetup(DB)

1. Sample uniformly random keysKI ,K
(2),KZ ,KZ′ ,Kenc for the PRF F and parse the database

as DB = {Tabi,Wi}i∈[N ].

2. For each table Tabi, proceed as follows:

(a) For each pair of record index and join attribute-values of the form (ind, {w∗
t }t∈[T ]) in

Tabi, build the set XSet[i] as follows:

i. Set the following (for each t ∈ [T ]):

xindt = F (KI , t, ind) , xwt = F (K(2),w∗
t ) , xtagt = xwt + xindt.

ii. Add the entries xtagt (one for each t ∈ [T ]) to XSet[i].

(b) For each w ∈Wi, build the tuple list Ti[w] as follows:

i. Set z0 = F (KZ ,w ∥ 0) , z′0 = F (KZ′ ,w ∥ 0).
ii. For all (ind, {w∗

t }t∈[T ]) ∈ DBJoin
Tabi

(w) in random order, initialize a counter cnt = 1,
and proceed as follows:

A. Set zcnt = F (KZ ,w ∥ cnt) , z′cnt = F (KZ′ ,w ∥ cnt).
B. For each t ∈ [T ]:

� Set xindt = F (KI , t, ind), and xwt = F (K(2),w∗
t ).

� Set yt = xindt − (z0 + zcnt), and y
′
t = xwt − (z′0 + z′cnt).

C. Set Kenc,w = F (Kenc,w) and compute ct← Enc(Kenc,w, ind).

D. Append (ct, {yt, y′t}t∈[T ]) to t.

E. Set cnt← cnt+ 1.

iii. Set Ti[w] = t.

3. (TSet,KT )← TSetSetup(T1∥ . . . ∥TN ).

4. Output the key K = (KI ,K
(2),KZ ,KZ′ ,Kenc,KT ) and EDB = (TSet,XSet).

Figure 2: The setup algorithm of Join Cross-Tags (JXT.EDBSetup). We assume that each record
index ind in a table Tabi is appended with the table number i.

Remark. Looking ahead, the XSet is used primarily for membership-testing, hence we can im-
plement this using a Bloom filter to save storage (this is essentially similar to what is done for the
XSet in the OXT protocol).

Generating the TSet Table-wise. We now describe how to generate the TSet component for the
table Tab. For each attribute-value pair w in the set W for the table Tab, the EDBSetup algorithm
does the following:
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� It generates a pair of “padding elements” of the form

z0 = F (KZ ,w ∥ 0) , z′0 = F (KZ′ ,w ∥ 0),

where KZ and KZ′ are again uniformly sampled keys for the PRF family F .

� Suppose that the attribute-value pair w occurs in a record with identifier ind, and let {w∗
t }t∈[T ]

denote the set of attribute-value pairs for this record with identifier ind corresponding to the
T special “join attributes”. To each such record, the EDBSetup algorithm assigns a unique
counter value cnt ≥ 1 and computes the following additional “padding elements”:

zcnt = F (KZ ,w ∥ cnt), z′cnt = F (KZ′ ,w ∥ cnt).

� In addition, for each t ∈ [T ], the EDBSetup algorithm computes

xindt = F (KI , t, ind), xwt = F (K(2),w∗
t ),

yt = xindt − (z0 + zcnt), y′t = xwt − (z′0 + z′cnt).

Remark. Note that xindt and xwt are generated identically as in the computation of the
TSet. In fact, while we duplicate the generation of these elements for ease of understanding,
in a real execution of the algorithm, these values can be generated exactly once and re-used
for the generation of the XSet and the TSet.

� Finally, the EDBSetup algorithm computes the randomized index ct for the index ind as

Kenc,w = F (Kenc,w), ct = Enc(Kenc,w, ind),

where Kenc is again a uniformly sampled key for the PRF family F .

Overall, the TSet entry corresponding to the attribute-value pair w consists of an entry corre-
sponding to each record ind containing w, where each such entry is a tuple of the form (ct, {yt, y′t}t∈[T ]),
generated as described above. The actual TSet is then generated using the secure T-Set implemen-
tation Σ.

3.2 The Search Protocol of JXT

We now describe how the Search protocol works on a join query of the form

q =
(
i, j,w(1),w(2), attr∗i,j

)
,

which essentially denotes a query over the join of the tables Tabi and Tabj , where the join is
computed with respect to the special attribute attr∗i,j , which is a designated “join attribute” for
both tables Tabi and Tabj . A concise summary of how the protocol works appears in Figure 3.

At a high level, the search protocol can be divided into three parts:

� [Round-1 (Client→ Server)]: The client generates a “query message” and sends it across
to the server.

� [Round-2 (Server → Client)]: The server generates a “response message” and sends it
across to the client.

12



Search protocol

1. The client has input the key K and a join query q = (i, j,w(1),w(2), attr∗i,j), and proceeds as follows:

� Send to the server (i, j, attr∗i,j). Locally compute and store

Kenc,w(1) = F (Kenc,w
(1)), Kenc,w(2) = F (Kenc,w

(2)).

� Set
stag(1) ← TSetGetTag(KT , (i,w

(1))), stag(2) ← TSetGetTag(KT , (j,w
(2))).

� For cnt(1) = 1, 2 . . . and until server sends stop(1), send to the server

xjointoken(1)[cnt(1)] = F (KZ′ ,w(1) ∥ cnt(1)) + F (KZ ,w
(2) ∥ 0).

� For cnt(2) = 1, 2 . . . and until server sends stop(2), send to the server

xjointoken(2)[cnt(2)] = F (KZ′ ,w(1) ∥ 0) + F (KZ ,w
(2) ∥ cnt(2)).

2. The server has input (TSet,XSet) and responds to the messages from the client as follows.

(a) It sets:

t(1) ← TSetRetrieve(TSet, (i, stag(1))), t(2) ← TSetRetrieve(TSet, (j, stag(2))).

(b) For cnt(1) = 1, . . . , |t(1)|, the server does the following:

i. Retrieve (ct(1), {y(1)t , y′
(1)
t }t∈[T ]) from the cnt(1)-th tuple in t(1). Let y′

(1)
t∗ be the entry from

among {y′(1)t }t∈[T ] corresponding to the attribute attr∗i,j .

ii. Set xtoken
(1)
t∗ = xjointoken(1)[cnt(1)] + y′

(1)
t∗ .

(c) When last tuple in t(1) is reached, send stop(1) to the client.

(d) for cnt(2) = 1, . . . , |t(2)|:

i. Retrieve (ct(2), {y(2)t , y′
(2)
t }t∈[T ]) from the cnt(2)-th tuple in t(2). Let y

(2)
t∗ be the entry from

among {y(2)t }t∈[T ] corresponding to the attribute attr∗i,j .

ii. Set xtoken
(2)
t∗ = xjointoken(2)[cnt(2)] + y

(2)
t∗ .

(e) Send stop(2) to the client.

(f) For cnt(1) = 1, . . . , |t(1)| and cnt(2) = 1, . . . , |t(2)|:
If (xtoken

(1)
t∗ + xtoken(2))t∗ ∈ XSet[j], then send (ct(1), ct(2)) to the client.

3. For each (ct(1), ct(2)) received from the server, the client recovers and outputs:

ind(1) = Dec(Kenc,w(1) , ct(1)), ind(2) = Dec(Kenc,w(2) , ct(2)),

Figure 3: The search protocol of Join Cross-Tags (JXT.Search).
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� [Local Computation (Client)]: The client performs some local computation to retrieve
the final set of record identifiers matching the query.

We describe how each of these parts work.

[Round-1:] Query Message (Client→Server). The client sends to the server the table indices
i and j, along with the join attribute attr∗i,j over which the query is to be executed. The client

also sends to the server the stag values stag(1) and stag(2), which allow the server to recover the
TSet entries corresponding to the attribute value pairs w(1) and w(2), respectively. In addition,
corresponding to each TSet entry for the attribute value pairs w(1) and w(2), the client sends across
to the server a sequence of terms of the form

xjointoken(1)[1], xjointoken(1)[2], . . .

xjointoken(2)[1], xjointoken(1)[2], . . .

until the server sends the signals stop(1) and stop(2), respectively, indicating that there are no more
TSet entries to process for either attribute-value pair. These terms are generated as follows: for a
given counter value cnt(1) ∈ {1, 2, . . .}, the term xjointoken(1)[cnt(1)] is generated as:

xjointoken(1)[cnt(1)] = F (KZ′ ,w(1) ∥ cnt(1)) + F (KZ ,w
(2) ∥ 0).

Similarly, for a given counter value cnt(2) ∈ {1, 2, . . .}, the term xjointoken(2)[cnt(2)] is generated as:

xjointoken(2)[cnt(2)] = F (KZ′ ,w(1) ∥ 0) + F (KZ ,w
(2) ∥ cnt(2)).

[Round-2:] Response Message (Server→Client). The server uses the stag values sent across
by the client to recover the TSet entries corresponding to the attribute-value pairs w(1) and w(2).
More specifically:

� The server uses stag(1) (received from the client as part of the first round message) to recover
the TSet entries corresponding to the attribute-value pair w(1) from the T-Set corresponding
to table Tabi. Suppose that each such entry is a tuple of the form

(ct(1), {y(1)t , y′
(1)
t }t∈[T ]).

Also, let y′
(1)
t∗ be the entry from among {y′(1)t }t∈[T ] corresponding to the attribute attr∗i,j over

which the query is being executed. The server computes

xtoken
(1)
t∗ = xjointoken(1)[cnt(1)] + y′

(1)
t∗ .

� Similarly, the server uses stag(2) (also received from the client as part of the first round
message) to recover the TSet entries corresponding to the attribute-value pair w(2) from the
T-Set corresponding to table Tabj . Suppose that each such entry is a tuple of the form

(ct(2), {y(2)t , y′
(2)
t }t∈[T ]).

Again, let y
(2)
t∗ be the entry from among {y(2)t }t∈[T ] corresponding to the attribute attr∗i,j over

which the query is being executed. The server computes

xtoken
(2)
t∗ = xjointoken(2)[cnt(2)] + y

(2)
t∗ .
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Now, for each such pair of TSet entries (where the first entry corresponds to the attribute-value
pair w(1) from the T-Set for table Tabi, and the second corresponds to the attribute-value pair w(2)

from the T-Set for table Tabj), the server computes a candidate xtag value of the form

xtag(1,2) = xtoken
(1)
t∗ + xtoken

(2)
t∗ ),

and checks the membership of xtag(1,2) in the XSet corresponding to the table Tabj .

� If the membership-test returns true, then the server infers that the pair of records match con-
stitute a matching record in the join of the two tables; hence it sends back the corresponding
randomized identifiers (ct(1), ct(2)) to the client.

� If the membership test returns false, then the server discards the corresponding randomized
identifiers.

Local Computation (Client): Finally, the client decrypts the set of randomized record identi-
fiers (i.e., the tuples of the form (ct(1), ct(2))) sent across by the client, and decrypts them to retrieve
the set of plaintext record identifiers matching the query q.

Remark. We note here that an implementation of JXT can use the same selectively/adaptively
secure implementations of TSet (built from purely symmetric-key cryptographic primitives) as used
by OXT [CJJ+13]. Also note that during the search protocol, the server uses the XSet purely for
membership-testing. This allows implementing the XSet using a Bloom filter, as in OXT. These
observations provide evidence for the overall compatibility of JXT with OXT.

Correctness. We now formally argue that the JXT protocol is correct. More concretely, we state
and prove the following theorem:

Theorem 2. Assuming that SKE satisfies decryption correctness and Σ is a correct TSet imple-
mentation, the JXT protocol satisfies correctness.

Proof. Consider a query of the form q = (i, j,w(1),w(2), attr∗i,j), and suppose that there exists
an index-pair (ind1, ind2) ∈ DB(q). In other words, for the index pair (ind1, ind2), the following
conditions must hold simultaneously:

1. The following Boolean formula evaluates to true:(
(ind1,w

(1)) ∈ Tabi
)
∧
(
(ind2,w

(2)) ∈ Tabj
)
.

2. There exists some value γ such that the following Boolean formula also evaluates to true:(
(ind1, ⟨attr∗i,j , γ⟩) ∈ Tabi

)
∧
(
(ind2, ⟨attr∗i,j , γ⟩) ∈ Tabj

)
.

We now argue that the client recovers (ind1, ind2) as an outcome of the Search protocol. To see
this, observe the following:
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� Since the aforementioned conditions hold true, the server must retrieve the following TSet
entries corresponding to w(1) and w(2) (this follows from the correctness of the TSet imple-
mentation σ):

(ct(1), {y(1)t , y′
(1)
t }t∈[T ]), (ct(2), {y(2)t , y′

(2)
t }t∈[T ]),

where
ct(1) = Enc(Kenc,w, ind1), ct(2) = Enc(Kenc,w, ind2),

and letting y′
(1)
t∗ and y

(2)
t∗ be the respective entries corresponding to the attribute attr∗i,j , we

must have

y′
(1)
t∗ = F (K(2), ⟨attr∗i,j , γ⟩)− (F (KZ′ ,w(1) ∥ 0) + F (KZ′ ,w(1) ∥ cnt(1))),

y
(2)
t∗ = F (KI , t

∗ind2)− (F (KZ ,w
(2) ∥ 0) + F (KZ ,w

(2) ∥ cnt(2))),

for some appropriate counter values cnt(1) and cnt(2).

� In addition, the client sends across to the server the values xjointoken(1)[cnt(1)] and xjointoken(2)[cnt(2)]
where

xjointoken(1)[cnt(1)] = F (KZ′ ,w(1) ∥ cnt(1)) + F (KZ ,w
(2) ∥ 0),

xjointoken(2)[cnt(2)] = F (KZ′ ,w(1) ∥ 0) + F (KZ ,w
(2) ∥ cnt(2)).

Consequently, as per the Search protocol, the server computes

xtoken
(1)
t∗ = xjointoken(1)[cnt(1)] + y′

(1)
t∗

= F (K(2), ⟨attr∗i,j , γ⟩)− F (KZ′ ,w(1) ∥ 0) + F (KZ ,w
(2) ∥ 0),

and

xtoken
(2)
t∗ = xjointoken(2)[cnt(2)] + y

(2)
t∗

= F (KI , t
∗ind2)− F (KZ ,w

(2) ∥ 0) + F (KZ′ ,w(1) ∥ 0).

� Next, the server computes the candidate xtag as

xtag(1,2) = xtoken
(1)
t∗ + xtoken

(2)
t∗ = F (KI , t

∗ind2) + F (K(2), ⟨attr∗i,j , γ⟩).

Note that this is nothing but the xtag corresponding to the index-attribute value pair (ind2,w
∗ =

⟨attr∗i,j , γ⟩). Also recall that since (ind1, ind2) ∈ DB(q), we must have

(ind2,w
∗ = ⟨attr∗i,j , γ⟩) ∈ Tabj .

Hence, by construction, the xtag corresponding to this index-attribute value pair must occur
in the XSet for table Tabj . Hence, the server’s membership-test returns true, and it sends to
the client the pair of randomized/encrypted indices (ct(1), ct(2)).

� Finally, assuming that the symmetric-key encryption scheme SKE satisfies correctness of
decryption, the client recovers the index-pair (ind1, ind2), as desired.

A similar argument can be used to show that the client does not recover any index-pair
(ind′1, ind

′
2) /∈ DB(q). This completes the proof of correctness for the JXT protocol.
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4 Complexity Analysis of JXT

In this section, we analyze the asymptotic complexity of JXT. More specifically, we present an
asymptotic analysis for the storage overhead at the server for storing the encrypted database. We
also present an asymptotic analysis for the computational and communication overheads when
executing a JXT search query over the join of two tables.

Storage Overhead. We first discuss the storage overhead for each table. Recall that in JXT, the
TSet and XSet for the encrypted database are built table-wise. Hence, the total storage overhead
for JXT is essentially the sum of the overheads for each individual table.

Suppose that a table Tab has a total of n attributes, with T ≤ n amongst these being “join
attributes”; i.e. attributes over which the table can be joined with other tables in the database.
Also, assume that Tab has a total of m records (equivalently, rows). We enumerate below the
number of entries in the TSet and XSet corresponding to Tab.

Recall that for each attribute-value pair w in the set W for the table Tab, the TSet stores as
many entries as the number of records containing the attribute-value pair w, where each such entry
is a tuple of the form: (ct, {yt, y′t}t∈[T ]). In other words, each entry is a collection of (2T + 1)
objects. Hence, the total number of entries in the TSet corresponding to the table Tab is∑

w∈W
(2T + 1)|DBTab(w)|

But note that
∑

w∈W |DBTab(w)| = m · n, where m and n are the total number of records and
attributes in the table Tab, respectively. Hence, we have |TSet(Tab)| = m · n · (2T + 1). In other
words, the TSet incurs an O(T )-fold overhead over the storage required for the plaintext table Tab.

Next, recall that the XSet for the table Tab has T entries corresponding to each record index
ind. More concretely, for each record with identifier ind in the table Tab, let {w∗

t }t∈[T ] denote
the set of attribute-value pairs for this record with identifier ind corresponding to the T special
“join attributes”. Then, for each t ∈ [T ], the EDBSetup algorithm stores a unique xtagt entry
corresponding to the pair (ind,w∗

t ). Thus, we have |XSet(Tab)| = m · T .
We note, however, that the XSet is implemented using a Bloom filter; consequently, the storage

overhead for the XSet is significantly lower. As in OXT, we expect the overhead for the XSet in
JXT to be low enough for the server to be able to store it in the RAM. The TSet, on the other
hand, will typically be stored on the disk.

Computational and Communication Overheads. We now present an asymptotic analysis
for the computational and communication overheads when executing a search query over the joins
of two tables Tab1 and Tab2. Suppose that the query involves two attribute-value pairs w1 and w2,
and is to be executed over the join of Tab1 and Tab2 w.r.t. the attribute attr∗. We first recall some
notation that is relevant to our analysis:

� Let DBTab1(w1) denote the set of records matching the attribute-value pair w1 in the table
Tab1.

� Similarly, let DBTab2(w2) denote the set of records matching the attribute-value pair w2 in
the table Tab2.

� Finally, let DB(q) denote the set of all records matching the query q, as defined in Section 2.
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Computational Overhead (Client). The client computes the stag values corresponding to w1 and w2

using O(1) invocations of the stag-generation algorithm for the TSet (the exact overhead depends
on the implementation of the TSet; however, for efficient implementations such as the one for
OXT [CJJ+13], this is a constant overhead). The client also computes xjointoken(1) and xjointoken(2)

values; the number of such computations is

|DBTab1(w1)|+ |DBTab2(w2)|.

Hence, the computational overhead at the client is O(|DBTab1(w1)|+ |DBTab2(w2)|).

Computational Overhead (Server). The server’s computation can be broadly divided into two cate-
gories: (a) TSet lookups (using the stag values sent across by the client), and (b) xtag computations
and membership-checks. The total number of TSet lookups performed by the server corresponding
to w1 and w2 is again

|DBTab1(w1)|+ |DBTab2(w2)|.

However, the number of xtag computations is larger; in particular, the server computes (and checks
membership of) a candidate xtag entry corresponding to each pair of the form

(xjointoken(1)[cnt(1)], xjointoken(2)[cnt(2)]),

where the xjointoken(1) and xjointoken(2) values are sent across by the client. Hence, the total
number of xtag computations performed by the server is

|DBTab1(w1)| · |DBTab2(w2)|.

Hence, the computational overhead at the server is O(|DBTab1(w1)| · |DBTab2(w2)|). Note that this
computational overhead is unavoidable since in the worst case, we have

|DB(q)| = |DBTab1(w1)| · |DBTab2(w2)|,

and the server must perform at least as much computation as is required to compute and send
across to the client the final result set pertaining to the join query.

Communication Overhead. Finally, the message sent across by the client to the server consists of
O(DBTab1(w1)| + DBTab2(w2)|) terms, while the message sent across by the server to the client is
the final result and hence consists of |DB(q)| terms. Hence, the overall communication complexity
is given by O(|DBTab1(w1)|+ |DBTab2(w2)|+ |DB(q)|).

5 Leakage Profile and Security of JXT

In this section, we formally describe the leakage profile of our JXT protocol(i.e. leakage to the
server) for join queries, and prove its security with respect to this leakage profile.

5.1 The Leakage Profile of JXT

We represent a sequence of Q join queries by q = (i1, i2, s1, s2, attr∗), where an individual join
query is represented (as per the definition of join queries introduced in Section 2) as a five-tuple of
the form:

q[ℓ] = (i1[ℓ], i2[ℓ], s1[ℓ], s2[ℓ], attr
∗[ℓ]).

The leakage profile of JXT is a tuple L = (n,RP,EP1,EP2,SP1,SP2, JD, IP) where:

18



� n is an N -sized list, where for each i ∈ [N ], n[i] represents the total number of occurrences
of all attribute-value pairs in Wi across records in table Tabi.

� RP is the result pattern leakage, i.e. the set of records matching each query. Formally, we
represent RP as a Q-sized list, where for each ℓ ∈ [Q], we have RP[ℓ] = DB(q[ℓ]). Here, DB(q)
for q = q[ℓ] is as defined in Section 2.

� EP1 is the equality pattern over s1 indicating which queries have equal attribute-value pairs
in the first coordinate. Formally, we represent EP1 as a Q × Q table with entries in {0, 1},
where EP1[ℓ, ℓ

′] = 1 if s1[ℓ] = s1[ℓ
′], and 0 otherwise.

� Similarly, EP2 is the equality pattern over s2 indicating which queries have equal attribute-
value pairs in the second coordinate. Formally, we represent EP2 as a Q×Q table with entries
in {0, 1}, where EP2[ℓ, ℓ

′] = 1 if s2[ℓ] = s2[ℓ
′], and 0 otherwise.

� SP1 is the size pattern over s1, i.e. the number of records matching the first attribute-value
pair in each join query. Formally, we represent SP1 as a Q-sized list, where for each ℓ ∈ [Q],
we have SP1[ℓ] = |DBTabi1[ℓ]

(s1[ℓ])|.

� Similarly, SP2 is the size pattern over s2, i.e. the number of records matching the second
attribute-value pair in each join query. Formally, we represent SP2 as a Q-sized list, where
for each ℓ ∈ [Q], we have SP2[ℓ] = |DBTabi2[ℓ]

(s2[ℓ])|.

� JD is the join attribute distribution pattern over s1, which is represented as a collection of
Q multi-sets. The ℓth entry in this collection, i.e., JD[ℓ] is a multi-set of (global) randomized
encodings of the join attribute values corresponding to the join attribute attr∗[ℓ] in the records
matching the attribute-value pair s1[ℓ] in the table Tabi1[ℓ]. More formally, for each ℓ ∈ [Q],
we have the multi-set 6

JD[ℓ] =
{
encode(val∗) : (ind, s1[ℓ]) ∈ Tabi1[ℓ] ∧ (ind, ⟨attr∗[ℓ], val∗⟩) ∈ Tabi1[ℓ]

}
.

� IP is the conditional intersection pattern, which is a Q × Q table with entries defined as
explained next. For each ℓ, ℓ′ ∈ [Q], IP[ℓ, ℓ′] is an empty set if one of the following conditions
holds:

– (i1[ℓ], i2[ℓ], attr∗[ℓ]) ̸= (i1[ℓ
′], i2[ℓ

′], attr∗[ℓ′]).

– JD[ℓ] ∩ JD[ℓ′] is empty.

Otherwise, IP[ℓ, ℓ′] is non-empty, and is defined as the intersection of all record identifiers
matching the keywords s2[ℓ] and s2[ℓ

′] in the table Tabi2[ℓ]. More formally

IP[ℓ, ℓ′] = DBTabi2[ℓ]
(s2[ℓ]) ∩ DBTabi2[ℓ]

(s2[ℓ
′]).

5.2 The Security Theorems for JXT

Let L be a leakage profile of JXT, i.e. let L = (n,RP,EP1,EP2,SP1,SP2, JD, IP) as described in
Section 5.1. We state and prove the following theorems.

6Note that a multi-set additionally reveals the frequency of each entry.
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Theorem 3. Assuming that F is a secure PRF family, SKE is an IND-CPA secure symmetric-
key encryption scheme, and Σ is a n-selectively secure TSet implementation, the JXT protocol is
L-semantically simulation-secure against selective attacks.

Proof. We defer the proof of this theorem to Appendix B.

Theorem 4. Assuming that F is a secure PRF family, SKE is an IND-CPA secure symmetric-
key encryption scheme, and Σ is a n-adaptively secure TSet implementation, the JXT protocol is
L-semantically simulation-secure against adaptive attacks.

Proof. We defer the proof of this theorem to Appendix C.

5.3 Discussion on Leakage Components and Comparison with OXT

In this section, we present a discussion on the various components in the leakage profile of JXT, and
also compare the same with OXT. Note that one fundamental difference between JXT and OXT
is that while JXT supports queries over joins of multiple tables, OXT only supports “unilateral
queries”, where each such query is defined over a single table. This difference manifests in subtle
distinctions between the leakage profiles for JXT and OXT, as described below.

The n-Leakage. Suppose that a table Tabi has a total of ni attributes (equivalently, columns) and
a total of mi records (equivalently, rows). We note here that n[i] is nothing but ni ·mi, i.e., the total
number of entries in the table. We note that this information (or an upper bound thereof) is leaked
by almost all existing SSE schemes in the literature with efficient search capabilities [CGKO06,
CJJ+13, CJJ+14, LPS+18], including OXT.

Result Pattern. The RP leakage allows the server to learn the set of identifiers corresponding to
records in the result set for the query. Such a leakage is considered benign and is incurred by nearly
all existing SSE schemes (notably [CGKO06, CK10, CJJ+13, CJJ+14]), including OXT. However,
one subtle difference with OXT is that in JXT, the RP leakage spans across multiple tables, while
in OXT, the RP leakage is confined to a single table. This, of course, is a direct consequence of the
fact that JXT handles queries over the join of multiple tables, which OXT does not support.

Remark. We note here that our analysis of the result pattern leakage of JXT is rather conser-
vative; an astute reader may observe that during the Search protocol in JXT, the server does not
learn the actual plaintext identifiers for the records in the result set; it only learns the random-
ized/encrypted versions of these identifiers, which are then locally decrypted at the client. Thus
our analysis provides a conservative upper bound on the result pattern leakage incurred by JXT.

Equality and Size Patterns. The EP leakage reveals repetitions of attribute-value pairs across
join queries (including the “coordinate” of the join query where the repetition occurs). This leakage
can be potentially mitigated by having more than one TSet entry per attribute-value pair, and the
client using stag values that point to different entries for the same attribute-value pair across
multiple queries.

The SP leakage reveals the individual frequency of each attribute-value pair in a given join
query. This leakage can be potentially mitigated by artificially “padding” the number of TSet
entries corresponding to each attribute-value pair; this would leak an upper bound rather than the
exact frequency of the attribute-value pair.
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The EP and SP leakage can be viewed as consequences of our strategy of avoiding join pre-
computations in the setup phase (and the corresponding blowup in storage overheads); since JXT
processes each table individually rather than pre-computing their joins, processing a query over the
join of two tables inevitably requires some independent searches over the individual TSet entries
for each table. While these constitute “more-than-ideal” leakage, they are usually benign in prac-
tice (similar leakage is incurred by existing SSE schemes in [CGKO06, CK10, CJJ+13, CJJ+14,
LPS+18]).

In particular, the EP and SP leakage of JXT are conceptually similar to the EP and SP leakage in
OXT, albeit with the difference that in OXT, a unilateral search query over two conjuncts (referred
to in OXT as the s-term and the x-term) incurs these leakage for only one of the terms (the s-
term). We view the additional leakage in JXT as a necessary tradeoff for the additional capability
of handling join queries (or more concretely, existential quantifiers over the join attributes) with
comparable efficiency.

Join Attribute Distribution Pattern. The JD leakage is new to JXT and is a direct conse-
quence of the fact that it handles queries over joins of tables. For a given query over the join of two
tables with respect to a common attribute (say attr∗), it reveals the frequency distribution of values
taken by attr∗ across records matching the attribute-value pair in the “first slot”. The extent of
this leakage depends on the “entropy” of the join attribute in the first table. For example, consider
the case where the join-attribute is a primary key or a “high-entropy” key in the first table. In
this case, it is likely to take a unique value for each record, and hence the JD leakage is essentially
query-invariant (as each possible value occurs with frequency close to 1), and hence, benign. Thus
the JD leakage can be mitigated by planning join queries (i.e., by ordering the attribute-value pairs
in the “first” and “second” slots) such that join attribute is a primary/“high-entropy” key in the
first table.

Conditional Intersection Pattern. The IP leakage of JXT is quite subtle; for a pair of queries
over the join of the same tables over the same common attribute attr∗, it reveals the intersection
of records matching the attribute-value pairs in the “second slot” provided that the attribute-value
pairs in the “first slot” have matching records with identical ⟨attr∗, val∗⟩ entries. In other words,
this leakage is conditioned on the fact that the attribute-value pairs in the “first slot” have such
matching records; if such matching records do not exist, then this leakage is empty.

We note that the IP leakage is essentially guaranteed to be empty in either of the following
scenarios:

� The join-attribute is a primary key or a “high-entropy” key in the first table, in which case,
it is likely to take a unique value for each record.

� The attribute-value pairs in the “second slot” share the same attribute but different values,
in which case, they cannot match with the same record.

In particular, similar to the JD leakage, the IP leakage can also be mitigated by planning join queries
such that join attribute is a primary/“high-entropy” key in the first table. This bears similarities
with the IP leakage of OXT, where the leakage can be minimized by re-arranging the conjuncts in
each unilateral query such that the s-term has low frequency.

To summarize, the overall leakage profile of JXT bears many similarities with the leakage
profile of OXT, and can be made benign in practice by simple query-planning strategies that do
not compromise on practical search performance in any way.
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A Additional Background Material

A.1 Cryptographic Primitives

This section presents the definitions and security notions for various cryptographic primitives used
throughout the paper.

Pseudorandom Function (PRF). A pseudorandom function (PRF) is a polynomial-time com-
putable function

F : {0, 1}λ × {0, 1}ℓ −→ {0, 1}ℓ′ ,

such that for any security parameter λ and any PPT algorithm A, we have∣∣∣Pr [AF (K,·) = 1
]
− Pr

[
AG(·) = 1

]∣∣∣ ≤ neg(λ),

where K ← {0, 1}λ and G is uniformly sampled from the set of all functions that map {0, 1}ℓ to
{0, 1}ℓ′ .
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Symmetric-Key Encryption (SKE). A symmetric-key encryption scheme SKE consists of the
following polynomial-time algorithms:

� Gen(λ): A probabilistic algorithm that takes the security parameter λ as input and outputs
a secret-key sk.

� Enc(sk, x): A probabilistic algorithm that takes as input a key sk and a plaintext x. Outputs
a ciphertext ct.

� Dec(sk, ct): A deterministic algorithm that takes as input a key sk and a ciphertext ct.
Outputs the decrypted plaintext x.

Correctness. A symmetric-key encryption scheme is said to be correct if for any security parameter
λ and any plaintext message x, we have (with overwhelmingly large probability)

Dec(sk,Enc(sk, x)) = x,

where sk ← Gen(λ).

IND-CPA Security. A symmetric-key encryption scheme is said to be IND-CPA secure if for
any security parameter λ, for any two arbitrary plaintext messages x0 and x1, and for any PPT
algorithm A, we have∣∣∣Pr [AEnc(sk,·) (Enc(sk, x0)) = 1

]
− Pr

[
AEnc(sk,·) (Enc(sk, x1)) = 1

]∣∣∣ ≤ neg(λ),

where sk ← Gen(λ).

A.2 TSets

We recall the definition of syntax and security for a tuple set, or TSet. Intuitively, a TSet allows
one to associate a list of fixed-sized data tuples with each attribute-value pair in the database, and
later issue related tokens to retrieve these lists. We will use it in our SSE protocols for join queries
as an “expanded inverted join index”.

TSet syntax. Formally, a TSet implementation Σ = (TSetSetup,TSetGetTag,TSetRetrieve) will
consist of three algorithms with the following syntax:

� TSetSetup takes as input T = (T1, . . . ,TN ), where each Ti for i ∈ [N ] is an array of lists of
equal-length bit strings indexed by the elements of Wi, and outputs (TSet,KT ).

� TSetGetTag takes as input the key KT and a tuple (i,w) and outputs stagi.

� TSetRetrieve takes as input TSet and stagi, and returns a list of strings.

TSet correctness. We say that Σ is correct if for all {Wi}i∈[N ], all T = (T1, . . . ,TN ), and any
w ∈Wi, we have

TSetRetrieve(TSet, stag) = Ti[w],

when (TSet,KT )← TSetSetup(T) and stag← TSetGetTag(KT , (i,w)).
Intuitively, T holds lists of tuples associated with attribute-value pairs and correctness guar-

antees that the TSetRetrieve algorithm returns the data associated with the given attribute-value
pair.
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TSet security. The security goal of a TSet implementation is to hide as much as possible about
the tuples in T = (T1, . . . ,TN ) and the attribute-value pairs these tuples are associated to, except
for the vectors Ti[w1],Ti[w2], . . . of tuples revealed by the client’s queried attribute-value pairs
w1,w2, . . .. (For the purpose of TSet implementation we equate client’s query with a single attribute-
value pair.)

The formal definition of security is similar to that of keyword-search based SSE for single-
keyword queries. Since the list of tuples associated to searched attribute-value pairs can be viewed
as information provided to the server, this information is also provided to the simulator in the
security definition below.

We parameterize the TSet security definition with a leakage function LT that describes what else
the adversary is allowed to learn by looking at the TSet and stag values. For most implementations
this leakage will reveal something about the structure of T, and consequently also the structure of
DB.

Definition 5. Let Σ = (TSetSetup,TSetGetTag,TSetRetrieve) be a TSet implementation, and let
A, S be an adversary and a simulator, and let LT be a stateful algorithm. We define two games,
RealΣA and IdealΣA as follows.

RealΣA(λ) : A(1λ) outputs {Wi}i∈[N ],T = (T1, . . . ,TN ) with the above syntax. The game computes
(TSet,KT ) ← TSetSetup(T) and gives TSet to A. Then A repeatedly issues queries q ∈ W,
and for each q the game gives stag ← TSetGetTag(K, q) to A. Eventually A outputs a bit
which the game uses as its output.

IdealΣA,S(λ) : The game initializes a counter i = 0 and an empty list q. A(1λ) outputs {Wi}i∈[N ],T =
(T1, . . . ,TN ) as above. The game runs TSet← S(LT (T)) and gives TSet to A. Then A re-
peatedly issues queries q ∈ W, and for each q the game stores q in q[i], increments i, and
gives to A the output of S(LT (T,q),T[q]). Eventually A outputs a bit which the game uses
as its output.

We say that Σ is a LT -adaptively-secure TSet implementation if for all adversaries A there exists
an algorithm S such that

| Pr[RealΣA(λ) = 1]− Pr[IdealΣA,S(λ) = 1] |≤ neg(λ).

B Proof of Selective Security for JXT

We prove Theorem 3, i.e. the selective security of our proposed SSE scheme JXT. We assume that:

� F : {0, 1}λ × {0, 1}∗ → {0, 1}λ is a family of pseudorandom functions as defined in Ap-
pendix A.1.

� SKE = (Gen,Enc,Dec) is an IND-CPA secure symmetric-key encryption algorithm with λ-bit
keys as defined in Appendix A.

� Σ = (TSetSetup,TSetGetTag,TSetRetrieve) is a n-selectively simulation-secure TSet imple-
mentation as defined in Appendix A.2.

Proof. The proof proceeds via a sequence of games between a challenger and an adversary A,
where the first game is identical to the “ideal-world” game played between the challenger and the
adversary, while the final game is identical to the “real-world” game played between the challenger
and the adversary A. We establish formally that the view of the adversary A in each pair of
consecutive games is computationally indistinguishable.

25



Game-0. In this game, the challenger prepares two lists based on the result pattern leakage and
the join attribute distribution pattern for each join query qℓ for ℓ ∈ [Q]:

� A set of randomized encoding pairs of the form {(indℓ,1, t∗ℓ,1), . . . , (indℓ,1, t∗ℓ,R))} for the set of
record identifiers matching the second s-term s2[ℓ] appearing in the final result, along with
their corresponding join attribute values. This is created from the result pattern leakage.

For example, in Fig 1, we have the set {(yind1, t1), (yind2, t2)} for the first join query (QUERY
1), and the same set for the second join query (QUERY 2).

� A multi-set of randomized encodings {t∗ℓ,1, . . . , t∗ℓ,R′} corresponding to the join attribute values
that appear across records matching the first s-term s1[ℓ]. This is created from the multi-set
JD[ℓ] available as part of the leakage. Note that this set subsumes the set of join attribute
encodings available as part of the result pattern leakage.

For example, in Fig 1, we have the multi-set {t1, t1, t1, t1, t2, t2, t3, t3} for the first join query (QUERY
1), and the multi-set {t1, t2, t2, t2, t3, t6, t6} for the second join query (QUERY 2).

Let Gxind be a uniformly sampled function from the set of all functions mapping λ-bit strings to
λ-bit strings (realized by the challenger as a table). The challenger additionally maintains a local
table Tab∗0 and Tab∗1 (initially empty) and proceeds as follows:

� For each term of the form t∗ℓ,j (in the second list of multi-sets), it checks whether a corre-
sponding entry already exists in the table. If not, it samples a uniformly random value xwℓ,j ,
and adds the tuple (t∗ℓ,j , xwℓ,j) to the table Tab∗0.

� For each pair of the form (indℓ,j , t
∗
ℓ,j) computed from the result-set, it checks if this entry is

already in the table Tab∗1. If yes, it does nothing. Otherwise, it replaces this entry in the
XSet with a term of the form

xtagℓ,j = Gxind(indℓ,j , attr
∗[ℓ]) + xwℓ,j ,

where xwℓ,j is looked up from the table Tab∗0 (the corresponding entry in Tab∗0 would be of
the form (t∗ℓ,j , xwℓ,j)). It also adds an entry of the form

(indℓ,j , t
∗
ℓ,j , xtagℓ,j)

to the table Tab∗1. Note that this entry is tagged with the query number ℓ.

� For each pair of the form (indℓ,j , t
∗
ℓ,j′) that does not appear in the result set (where each

indℓ,j is available from the result pattern leakage and each join attribute t∗ℓ,j′ is available
from the JD, i.e., the join attribute distribution pattern over s1), the challenger checks if an
entry corresponding to this pair already appears in the table Tab∗1. If yes, it does nothing.
Otherwise, it creates a term of the form

xtagextraℓ,j,j′ = Gxind(indℓ,j , attr
∗[ℓ]) + xwℓ,j′ ,

where xwℓ,j′ is again looked up from the aforementioned table Tab∗0, and adds an entry of the
form

(ℓ, indℓ,j , t
∗
ℓ,j′ , xtag

extra
ℓ,j,j′)

to the table Tab∗1. Note that this entry is also tagged with query number ℓ.
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Next, for each pair of queries (qℓ, qℓ′) for ℓ, ℓ′ ∈ [Q], it does the following based on the join
attribute distribution pattern and the conditional intersection pattern:

� For each index encoding of the form indℓ,ℓ′,j in IP[ℓ, ℓ′] and each common attribute encoding
of the form t∗ℓ,ℓ′,j′ in JD[ℓ]∩ JD[ℓ′], the challenger checks if an entry corresponding to this pair
already appears in the table Tab∗1. If yes, it tags this entry with the query number-pair (ℓ, ℓ′).

� Otherwise, it creates a term of the form

xtagextraℓ,ℓ′,j,j′ = Gxind(indℓ,ℓ′,j , attr
∗[ℓ]) + xwℓ,ℓ′,j′ ,

where xwℓ,ℓ′,j′ is looked up from the aforementioned table Tab∗0, and adds an entry of the form

((ℓ, ℓ′), indℓ,j , t
∗
ℓ,j′ , xtag

extra
ℓ,ℓ′,j,j′)

to the table Tab∗1. Note that this entry is tagged with the query number-pair (ℓ, ℓ′).

Any remaining XSet entry that has not been set already is generated uniformly at random. At
this point, the simulation for the XSet is complete. For the XSet, the challenger sets each yt and
y′t entry in the TSet to be uniformly random and each ct to be an encryption of 0λ. It then invoke
the (selective) simulator for the TSet to generate the simulated TSet.

It remains to simulate the client’s messages to the server for each query qℓ for ℓ ∈ [Q], which
the challenger handles as follows:

� Set z0,ℓ as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s1[ℓ
′] = s1[ℓ].

If yes, set z0,ℓ = z0,ℓ′ .

– Otherwise, set z0,ℓ = GZ(ℓ||0), where GZ is a uniformly sampled function from the set
of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger as a
table with unique and uniformly random entries).

� Similarly, set z′0,ℓ as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s1[ℓ
′] = s1[ℓ].

If yes, set z′0,ℓ = z′0,ℓ′ .

– Otherwise, set z′0,ℓ = GZ′(ℓ||0), where GZ′ is a uniformly sampled function from the set
of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger as a
table with unique and uniformly random entries).

� For each cntℓ,i (in range available from the size pattern leakage SP1[ℓ]), let t
∗
ℓ,i be random-

ized encoding for the associated join attribute (identified from the join attribute distribution
pattern JD[ℓ]), and let xwℓ,i be the associated entry in the table Tab∗0. Set

xjointokenℓ,i[cntℓ,i] := xwℓ,i + z0,ℓ − z′0,ℓ − y′t∗ℓ,i,i,

where y′t∗ℓ,i,i
is the corresponding (uniformly random) entry in the TSet.
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� For each cntℓ,j (in range available from the size pattern leakage SP2[ℓ]), check if there exists
an already identified pair (indℓ,j , t

∗
ℓ,j) (identified from the closure of the result pattern leakage

and the conditional intersection pattern leakage). If yes, let xwℓ,j be the associated entry in
the table Tab∗0, and let xtagℓ,j be the corresponding entry in the table Tab∗1 (which is either
an xtag entry in the simulated XSet or is an extra entry of the form xtagextra). Otherwise,
sample xwℓ,j and xtagℓ,j uniformly at random, add the corresponding entries to the tables
Tab∗0 and Tab∗1, and set

xjointokenℓ,j [cntℓ,j ] := (xtagℓ,j − xwℓ,j)− z0,ℓ + z′0,ℓ − yt∗ℓ,j ,j ,

where yt∗ℓ,j ,j is the corresponding (uniformly random) entry in the TSet.

Game-1. This game is identical to game-0 except that not all yt and y
′
t entries in the TSet are

set uniformly at random. In particular, for the yt and y
′
t entries that appear as part of TSet entries

“touched” by the adversary are no longer set uniformly at random. Instead, for each query qℓ for
ℓ ∈ [Q], the challenger sets the following:

� For each cntℓ,i (in range available from the size pattern leakage SP1[ℓ]), set z
′
cntℓ,i,ℓ

as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s1[ℓ
′] = s1[ℓ].

If yes, set z′cntℓ,i,ℓ = z′cntℓ′,i,ℓ′
.

– Otherwise, set z′cntℓ,i,ℓ = GZ′(ℓ||cntℓ,i), where GZ′ is a uniformly sampled function from

the set of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger
as a table with unique and uniformly random entries).

� For each cntℓ,j (in range available from the size pattern leakage SP2[ℓ]), set zcntℓ,j ,ℓ as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s2[ℓ
′] = s2[ℓ].

If yes, set zcntℓ,j ,ℓ = zcntℓ′,j ,ℓ′ .

– Otherwise, set zcntℓ,j ,ℓ = GZ(ℓ||cntℓ,j), where GZ is a uniformly sampled function from
the set of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger
as a table with unique and uniformly random entries).

� For each cntℓ,i, let t
∗
ℓ,i be randomized encoding for the associated join attribute (identified

from the join attribute distribution pattern JD[ℓ]), and let xwℓ,i be the associated entry in
the table Tab∗0. If the associated yt∗ℓ,i,i has not been set before, set:

y′t∗ℓ,i,i
:= xwℓ,i −

(
z′0,ℓ − z′cntℓ,i,ℓ

)
.

Also, set:
xjointokenℓ,i[cntℓ,i] := z0,ℓ + z′cntℓ,i,ℓ.
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� For each cntℓ,j , check if there exists an already identified pair (indℓ,j , t
∗
ℓ,j) (identified from the

closure of the result pattern leakage and the conditional intersection pattern leakage). If yes,
let xwℓ,j be the associated entry in the table Tab∗0, and let xtagℓ,j be the corresponding entry
in the table Tab∗1 (which is either an xtag entry in the simulated XSet or is an extra entry of
the form xtagextra). Otherwise, sample xtagℓ,j uniformly at random. If the associated yt∗ℓ,i,i
has not been set before, set:

yt∗ℓ,j ,j := (xtagℓ,j − xwℓ,j)−
(
z0,ℓ − zcntℓ,j ,ℓ

)
.

Also, set:
xjointokenℓ,j [cntℓ,j ] := z′0,ℓ + zcntℓ,j ,ℓ.

Note that the xjointoken values created in response to the join queries issued by the adversary
are now exactly in the real protocol.

Remark. The view of the adversary A is identical in Games 1 and 2.

Game-2. This game is identical to game-1 except that:

� The z0 and zcnt terms in the aforementioned simulation are set as in the real protocol (i.e.
using the PRF F (KZ , ·) as opposed to the random function GZ(·) realized as a table with
uniformly random entries.

� The z′0 and z′cnt terms in the aforementioned simulation are set as in the real protocol (i.e.
using the PRF F (K ′

Z , ·) as opposed to the random function GZ′(·) realized as a table with
uniformly random entries.

Once the z0, zcnt, z
′
0 and z′cnt terms are set as described above, the corresponding yt and y′t

entries that appear as part of TSet entries “touched” by the adversary are still set exactly as in
game-1.

Remark. The views of the adversary A in Games 1 and 2 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.

Game-3. This game is identical to game-2 except that the xtagt entries in the XSet that are
“touched” by the adversary during the interaction with the challenger (i.e., the entries relevant to
the queries issued by the adversary) are set as in the real protocol.

Remark. The views of the adversary A in Games 2 and 3 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.

Game-4. This game is identical to game-3 except that the xindt values and the corresponding
ct entries in the TSet that are “touched” by the adversary during the interaction with the chal-
lenger (i.e., the xindt values and the ct entries pertaining to the record identifiers relevant to the
result sets for the queries issued by the adversary) are set as in the real protocol.

Remark. The views of the adversary A in Games 3 and 4 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.
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Game-5. This game is identical to game-4 except that the remaining XSet entries (that are
not “touched” by the adversary during the interaction with the challenger) are set as in the real
protocol.

Remark. The views of the adversary A in Games 4 and 5 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.

Game-6. This game is identical to game-5 except that the remaining entries in the TSet (that
are not “touched” by the adversary during the interaction with the challenger) are set as in the
real protocol.

Remark. The views of the adversary A in Games 5 and 6 are computationally indistinguishable
under the assumptions that: (a) F is a secure PRF-family as defined in Appendix A.1, and (b)
SKE is an IND-CPA secure symmetric-key encryption scheme as defined in Appendix A.1.

Game-7. This game is identical to game-6 except that the TSet is created as in the real protocol,
and not using the selective TSet simulator.

Remark. The views of the adversary A in Games 6 and 7 are computationally indistinguishable
under the assumption that Σ is a n-selectively simulation-secure TSet implementation as defined
in Appendix A.2.

Game-8. This game is identical to the “real-world” game. In other words, the challenger gener-
ates the encrypted database (corresponding to a database chosen by the adversary A) exactly as
described in the protocol. Additionally, the join tokens corresponding to each join query using the
real search algorithm as described in the protocol.

Remark. The views of the adversary A in Games 7 and 8 are identical.

This completes the proof of selective security for the JXT protocol.

C Proof of Adaptive Security for JXT

We now prove Theorem 4, i.e. we prove that our proposed SSE scheme JXT is, in fact, adaptively
secure. We assume that:

� F : {0, 1}λ × {0, 1}∗ → {0, 1}λ is a family of pseudorandom functions as defined in Ap-
pendix A.1.

� SKE = (Gen,Enc,Dec) is an IND-CPA secure symmetric-key encryption algorithm with λ-bit
keys as defined in Appendix A.

� Σ = (TSetSetup,TSetGetTag,TSetRetrieve) is a n-adaptively simulation-secure TSet imple-
mentation as defined in Appendix A.2.

Proof. The proof proceeds via a sequence of games between a challenger and an adversary A,
where the first game is identical to the “ideal-world” game played between the challenger and the
adversary, while the final game is identical to the “real-world” game played between the challenger
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and the adversary A. We establish formally that the view of the adversary A in each pair of
consecutive games is computationally indistinguishable. The main difference from the selective
proof arises in how the challenger in the ideal world game simulates the entries in the XSet, and
answers the queries issued by the adversary.

Game-0. In this game, the challenger starts off by preparing the TSet and the XSet. Note that
in the adaptive security game, this needs to be done at setup before the adversary has issued any
queries to the challenger. Also note that, at setup, the only information available to the challenger
is n - an N -sized list, where for each i ∈ [N ], n[i] represents the total number of occurrences of
all attribute-value pairs in Wi across records in table Tabi. Given this leakage information, the
challenger proceeds as follows:

� The challenger invokes the simulator in the adaptive security game for the TSet to simulate
the entries of the TSet. The simulator takes as input the list n and outputs a simulated TSet.

� For each table Tabi, the challenger creates the XSet[i] as follows. Let |Tabi| denote the number
of records in Tabi, and let T denote the number of join attributes in Tabi. The challenger
creates XSet[i] as a set of size |Tabi|T , where each entry is sampled uniformly at random from
{0, 1}λ (note that {0, 1}λ is the output space of the PRF Fp).

We now move to the query phase. In this phase, the challenger prepares and maintains two
tables table Tab∗0 and Tab∗1 (initially empty) and updates them based on the result pattern leakage
and the join attribute distribution pattern for each join query qℓ for ℓ ∈ [Q]. Note that these
leakages are only available to the challenger adaptively, unlike in the selective security game where
the challenger had access to the leakage from all queries simultaneously. Naturally, the main
difference from the selective security game is in how the challenger manages and updates these
tables adaptively based on the leakages from the adversary’s queries.

Suppose that the challenger has access to the leakage on queries q1, . . . , qℓ, and needs to respond
to the query qℓ. Note that based on the result pattern leakage and the join attribute distribution
pattern corresponding to the query qℓ, the challenger can prepare the following lists:

� List-1: A set of randomized encoding pairs of the form

{(indℓ,1, t∗ℓ,1), . . . , (indℓ,1, t∗ℓ,R)},

for the set of record identifiers matching the second s-term s2[ℓ] appearing in the final result,
along with their corresponding join attribute values. This is created from the result pattern
leakage.

� List-2: A multi-set of randomized encodings {t∗ℓ,1, . . . , t∗ℓ,R′} corresponding to the join at-
tribute values that appear across records matching the first s-term s1[ℓ]. This is created from
the multi-set JD[ℓ] available as part of the leakage. Note that this set subsumes the set of
join attribute encodings available as part of the result pattern leakage.

Next, the challenger proceeds as follows:
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� For each term of the form t∗ℓ,j (in the second list of multi-sets), it checks whether a corre-
sponding entry already exists in the table. If not, it samples a uniformly random value xwℓ,j ,
and adds the tuple (t∗ℓ,j , xwℓ,j) to the table Tab∗0.

� For each pair of the form (indℓ,j , t
∗
ℓ,j) computed from the result-set, it checks if this entry is

already in the table Tab∗1. If yes, it does nothing. Otherwise, it looks up xwℓ,j from the table
Tab∗0 (the corresponding entry in Tab∗0 would be of the form (t∗ℓ,j , xwℓ,j)), identifies (uniformly
randomly) a “fresh” entry corresponding to the pair (indℓ,j , attr

∗[ℓ]) in the simulated XSet (let
this entry be xtagℓ,j), and adds an entry of the form

(indℓ,j , t
∗
ℓ,j , xtagℓ,j , xwℓ,j),

to the table Tab∗1. Note that this entry is tagged with the query number ℓ.

� For each pair of the form (indℓ,j , t
∗
ℓ,j′) that does not appear in the result set (where each

indℓ,j is available from the result pattern leakage and each join attribute t∗ℓ,j′ is available
from the JD, i.e., the join attribute distribution pattern over s1), the challenger checks if an
entry corresponding to this pair already appears in the table Tab∗1. If yes, it does nothing.
Otherwise, it looks up xwℓ,j′ from the table Tab∗0 (the corresponding entry in Tab∗0 would be
of the form (t∗ℓ,j , xwℓ,j′)), identifies (uniformly randomly) a “fresh” entry corresponding to the
pair (indℓ,j , attr

∗[ℓ]) in the simulated XSet (let this entry be xtagextraℓ,j,j′), and adds an entry of
the form

(indℓ,j , t
∗
ℓ,j , xtag

extra
ℓ,j,j′ , xwℓ,j′),

to the table Tab∗1. Note that this entry is also tagged with the query number ℓ.

Next, for each previously encountered query qℓ′ (i.e., for each ℓ′ < ℓ), the challenger does the
following based on the join attribute distribution pattern and the conditional intersection pattern:

� For each index encoding of the form indℓ,ℓ′,j in IP[ℓ, ℓ′] and each common attribute encoding
of the form t∗ℓ,ℓ′,j′ in JD[ℓ]∩ JD[ℓ′], the challenger checks if an entry corresponding to this pair
already appears in the table Tab∗1. If yes, it tags this entry with the query number-pair (ℓ, ℓ′).

� Otherwise, it looks up xwℓ,ℓ′,j′ from the aforementioned table Tab∗0, identifies (uniformly ran-
domly) a “fresh” entry corresponding to the pair (indℓ,ℓ′,j , attr

∗[ℓ]) in the simulated XSet (let
this entry be xtagextraℓ,ℓ′,j,j′), and adds an entry of the form

(indℓ,j , t
∗
ℓ,j , xtag

extra
ℓ,ℓ′,j,j′ , xwℓ,ℓ′,j′),

to the table Tab∗1. Note that this entry is tagged with the query number-pair (ℓ, ℓ′).

At this point, the challenger sets the following:

� Set z0,ℓ as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s1[ℓ
′] = s1[ℓ].

If yes, set z0,ℓ = z0,ℓ′ .
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– Otherwise, set z0,ℓ = GZ(ℓ||0), where GZ is a uniformly sampled function from the set
of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger as a
table with unique and uniformly random entries).

� Similarly, set z′0,ℓ as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s1[ℓ
′] = s1[ℓ].

If yes, set z′0,ℓ = z′0,ℓ′ .

– Otherwise, set z′0,ℓ = GZ′(ℓ||0), where GZ′ is a uniformly sampled function from the set
of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger as a
table with unique and uniformly random entries).

� For each cntℓ,i (in range available from the size pattern leakage SP1[ℓ]), let t
∗
ℓ,i be random-

ized encoding for the associated join attribute (identified from the join attribute distribution
pattern JD[ℓ]), and let xwℓ,i be the associated entry in the table Tab∗0. Set

xjointokenℓ,i[cntℓ,i] := xwℓ,i + z0,ℓ − z′0,ℓ − y′t∗ℓ,i,i,

where y′t∗ℓ,i,i
is the appropriate (uniformly random) entry in the simulated TSet.

� For each cntℓ,j (in range available from the size pattern leakage SP2[ℓ]), check if there exists
an already identified pair (indℓ,j , t

∗
ℓ,j) (identified from the closure of the result pattern leakage

and the conditional intersection pattern leakage). If yes, let xwℓ,j be the associated entry in
the table Tab∗0, and let xtagℓ,j be the corresponding entry in the table Tab∗1 (which is either
an xtag entry in the simulated XSet or is an extra entry of the form xtagextra). Otherwise,
sample xwℓ,j and xtagℓ,j uniformly at random, add the corresponding entries to the tables
Tab∗0 and Tab∗1, and set

xjointokenℓ,j [cntℓ,j ] := (xtagℓ,j − xwℓ,j)− z0,ℓ + z′0,ℓ − yt∗ℓ,j ,j ,

where yt∗ℓ,i,i is the appropriate (uniformly random) entry in the simulated TSet.

Game-1. This game is identical to game-0 except that not all yt and y
′
t entries in the TSet are

set uniformly at random. In particular, for yt and y′t entries that appear as part of TSet entries
“opened” by the adversary are no longer set uniformly at random. Instead, for each query qℓ for
ℓ ∈ [Q], the challenger sets the following:

� For each cntℓ,i (in range available from the size pattern leakage SP1[ℓ]), set z
′
cntℓ,i,ℓ

as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s1[ℓ
′] = s1[ℓ].

If yes, set z′cntℓ,i,ℓ = z′cntℓ′,i,ℓ′
.

– Otherwise, set z′cntℓ,i,ℓ = GZ′(ℓ||cntℓ,i), where GZ′ is a uniformly sampled function from

the set of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger
as a table with unique and uniformly random entries).
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� For each cntℓ,j (in range available from the size pattern leakage SP2[ℓ]), set zcntℓ,j ,ℓ as follows:

– Use the query equality pattern to check if there exists an ℓ′ < ℓ such that s2[ℓ
′] = s2[ℓ].

If yes, set zcntℓ,j ,ℓ = zcntℓ′,j ,ℓ′ .

– Otherwise, set zcntℓ,j ,ℓ = GZ(ℓ||cntℓ,j), where GZ is a uniformly sampled function from
the set of all functions mapping λ-bit strings to λ-bit strings (realized by the challenger
as a table with unique and uniformly random entries).

� For each cntℓ,i, let t
∗
ℓ,i be randomized encoding for the associated join attribute (identified

from the join attribute distribution pattern JD[ℓ]), and let xwℓ,i be the associated entry in
the table Tab∗0. If the associated y′t∗ℓ,i,i

has not been set before, set:

y′t∗ℓ,i,i
:= xwℓ,i −

(
z′0,ℓ − z′cntℓ,i,ℓ

)
.

Also, set:
xjointokenℓ,i[cntℓ,i] := z0,ℓ + z′cntℓ,i,ℓ.

� For each cntℓ,j , check if there exists an already identified pair (indℓ,j , t
∗
ℓ,j) (identified from the

closure of the result pattern leakage and the conditional intersection pattern leakage). If yes,
let xwℓ,j be the associated entry in the table Tab∗0, and let xtagℓ,j be the corresponding entry
in the table Tab∗1 (which is either an xtag entry in the simulated XSet or is an extra entry of
the form xtagextra). Otherwise, sample xtagℓ,j uniformly at random. If the associated yt∗ℓ,i,i
has not been set before, set:

yt∗ℓ,j ,j := (xtagℓ,j − xwℓ,j)−
(
z0,ℓ − zcntℓ,j ,ℓ

)
.

Also, set:
xjointokenℓ,j [cntℓ,j ] := z′0,ℓ + zcntℓ,j ,ℓ.

In this hybrid, the challenger relies on the adaptive simulator for TSet to generate an stag that
effectively ensures that the entries yt and y

′
t entries that appear as part of TSet entries “opened” by

the adversary are set consistently as per the simulation strategy described above. Note that apart
from this, the challenger in game-1 behaves exactly as the challenger in game-1 of the selective
security proof.

Remark. The view of the adversary A is identical in Games 1 and 2.

Game-2. This game is identical to game-1 except that:

� The z0 and zcnt terms in the aforementioned simulation are set as in the real protocol (i.e.
using the PRF F (KZ , ·) as opposed to the random function GZ(·) realized as a table with
uniformly random entries.

� The z′0 and z′cnt terms in the aforementioned simulation are set as in the real protocol (i.e.
using the PRF F (K ′

Z , ·) as opposed to the random function GZ′(·) realized as a table with
uniformly random entries.
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Once the z0, zcnt, z
′
0 and z

′
cnt terms are set as described above, the corresponding yt and y

′
t entries

that appear as part of TSet entries “opened” by the adversary are set as in game-1. Once again, the
challenger relies on the adaptive simulator for TSet the challenger relies on the adaptive simulator
for TSet to generate an stag that effectively ensures that the yt and y

′
t entries that appear as part

of TSet entries “opened” by the adversary are consistent with the simulation strategy described
above. Note that apart from this, the challenger in game-2 behaves exactly as the challenger in
game-2 of the selective security proof.

Remark. The views of the adversary A in Games 1 and 2 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.

Game-3. This game is identical to game-2 except that the xtagt entries in the XSet that are
“touched” by the adversary during the interaction with the challenger (i.e., the entries relevant to
the queries issued by the adversary) are set as in the real protocol.

Remark. The views of the adversary A in Games 2 and 3 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.

Game-4. This game is identical to game-3 except that the xindt values in the TSet that are
“opened” by the adversary during the interaction with the challenger (i.e., the xindt values that
appear in the TSet entries relevant to the result sets for the queries issued by the adversary) are
set as in the real protocol. Once again, the challenger relies on the adaptive simulator for TSet to
generate an stag that effectively ensures that the xindt values that appear as part of TSet entries
“opened” by the adversary are consistent with this simulation strategy. Note that apart from this,
the challenger in game-4 behaves exactly as the challenger in game-4 of the selective security proof.

Remark. The views of the adversary A in Games 3 and 4 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.

Game-5. This game is identical to game-4 except that the remaining XSet entries (that are
not “touched” by the adversary during the interaction with the challenger) are set as in the real
protocol.

Remark. The views of the adversary A in Games 4 and 5 are computationally indistinguishable
under the assumption that F is a secure PRF-family as defined in Appendix A.1.

Game-6. This game is identical to game-5 except that the remaining entries in the TSet (that
are not “opened” by the adversary during the interaction with the challenger) are set as in the
real protocol. Once again, the challenger relies on the adaptive simulator for TSet to ensure that
the TSet entries not “opened” by the adversary are consistent with this simulation strategy. Note
that apart from this, the challenger in game-6 behaves exactly as the challenger in game-6 of the
selective security proof.

Remark. The views of the adversary A in Games 5 and 6 are computationally indistinguishable
under the assumptions that: (a) F is a secure PRF-family as defined in Appendix A.1, and (b)
SKE is an IND-CPA secure symmetric-key encryption scheme as defined in Appendix A.1.
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Game-7. This game is identical to game-5 except that, during the setup phase of the game, the
TSet is created as in the real protocol, and not using the adaptive TSet simulator.

Remark. The views of the adversary A in Games 6 and 7 are computationally indistinguishable
under the assumption that Σ is a n-adaptively simulation-secure TSet implementation as defined
in Appendix A.2.

Game-8. This game is identical to the “real-world” game. In other words, the challenger gener-
ates the encrypted database (corresponding to a database chosen by the adversary A) exactly as
described in the protocol. Additionally, the join tokens corresponding to each join query using the
real search algorithm as described in the protocol.

Remark. The views of the adversary A in Games 7 and 8 are identical.

This completes the proof of adaptive security for the JXT protocol.
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