
Improving Cryptography Based On Entropoids

Anisha Mukherjee1 and Saibal K. Pal2

1University of Delhi, New Delhi
2DRDO & University of Delhi, New Delhi

November 4, 2021

Abstract
Entropic quasigroups or entropoids provide an attractive option for development of post-quantum cryptographic schemes.

We elaborate on the mathematical properties of entropoids with modifications in the initial operation. The starting entropic
quasigroups obtained by this process can be applied to generate higher-order structures suitable for cryptography. We also propose
an encryption/decryption scheme analogous to the ElGamal scheme with quasigroup string transformations in the entropoid setting.
We then move on to enumerate important properties that are beneficial in cryptographic use together with algorithms for their
verification.

Introduction

It is a never-ending race to be one step ahead of adversaries in the pursuit of secure cryptographic algorithms and
protocols. As quantum computing gains momentum, a number of cryptographic protocols relying on the mathemat-
ical concepts of number theory, group and field theory and Boolean algebra have become vulnerable to attacks. The
focus is therefore shifting towards non-associative and non-commutative algebraic structures that may be able to
withstand these attacks. In this paper, we discuss one such non-commutative and non-associative algebraic structure
known as entropic groupoids [1] satisfying the palintropic property which is also a quasigroup. Quasigroups [15] have
the ability to accommodate many cryptographically suitable properties (non-associativity, polynomial completeness
to name a few) and especially, the number of possible quasigroups increases exponentially with an increase in their
order, thus providing ample options to a cryptographer to choose the suitable ones for a particular cryptographic
scheme. Quasigroup operations [17] are also useful in defining easy, fast and secure cryptographic functions.
First, we introduce the readers to the concept of entropoids and then describe a succint notation for exponentially
large non-associative power indices as proposed by Gligoroski [1]. This is particularly interesting because it aids
swift exponentiation and mimics the usual ’Logarithmetic’ (arithmetic of power indices) rules. We also give a list
of a few cryptographic algorithms that can be formulated using this knowledge. Next, we mention Panny’s work
[2] on formulating a possible attack on the structure of entropoids by means of a hidden group structure contained
in it. We also elaborate on the modifications introduced by Gligoroski [7] in order to refute the claims in [2]. In
addition, we enumerate important properties that are desired in the newly generated entropic quasigroups to make
them suitable for cryptographic implementations.

Our contribution: Section I provides definitions and concepts of entropic quasigroups along with their construc-
tion. In Section II, the process of power index computation is explained with the help of an example. Sections III
and IV elaborate on the computational hard problems and cryptographic schemes based on entrapoid. The scheme
analogous to the ElGamal cryptosystem and based on quasigroup string transformations in the entropoid setting
is also presented in Section IV. Section V highlights the attacks published in literature. Modifications proposed in
the initial structure of entropoids are highlighted in Section VI. Dealing with modifications in the initial operation,
starting entropic quasigroups are presented that can be applied to generate higher order structures suitable for cryp-
tography. Important properties that are beneficial in cryptographic use along with algorithms for their verification
are also enumerated in this Section. The theory is supported by simple worked-out examples for the sake of clarity.
All notations are consistent with those of the referred literature.

I. Some definitions and concepts

1. Entropic binary operation:A binary operation ′∗′ of the groupoid (G, ∗) is called entropic if for every four
elements x, y, z, w of G, the following condition holds true:

If x ∗ y = z ∗ w ⇒ x ∗ z = y ∗ w (1a)

Parallely, many authors also describe it as the medial or restricted-commutativity[16] identity and express it as

1

follows:

(x ∗ y) ∗ (z ∗ w) = (x ∗ z) ∗ (y ∗ w) (1b)

Quasigroup: A quasigroup (Q, ∗) is a set with binary operation ’∗’ : Q2 → Q , satisfying the law,
for all u, v ∈ Q, there exists unique x, y ∈ Q such that

u ∗ x = v and y ∗ u = v (1c)

To each quasigroup of finite order given by its multiplication table, one can associate a Latin square, L. A
Latin Square on a finite set Q of cardinality n is an n × n matrix with elements from Q such that each row
and each column is actually a permutation of Q.

Isotopy in quasigroups: Two quasigroups (K, ∗) and (Q, •) are said to be isotopic if there exists bijections
α, β, γ from K to Q such that

γ (x ∗ y) = α(x) • β(y) (1d)

for each x, y ∈ K.
The triple (α, β, γ) is called an isotopism from (K, ∗) to (Q, •)
Given a quasigroup (Q, ∗) five new operations (called parastrophes) denoted by \, /, •, \\, // can be derived
from ∗ .
We can define the operations according to the relations,

x ∗ y = z ⇔ y = x \ z ⇔ x = z/y ⇔ y • x = z ⇔ y = z \ \x⇔ x = y//z (1e)

Thus (Q, \) , (Q, /), (Q, •) ,(Q, \\), (Q, //) are quasigroups too.

Quasigroup e− and d− type string transformations: We give here a type of string transformation [17]
that we will make use of in a later section. Consider a finite set (called the alphabet) Q, and denote by
Q+ = {a1, a2, · · · , an|ai ∈ Q} to be the set of all finite strings formed by the elements of Q. Let us also
consider a quasigroup (Q, ∗). For each a ∈ Q we define two functions ea,∗, da,∗ : Q+ → Q+ as:
Let ai ∈ Q, α = a1a2 · · · an. Then,

ea,∗(α) = b1b2 · · · bn ⇔ b1 = a ∗ a1, b2 = b1 ∗ a2, · · · , bn = bn−1 ∗ an (1f)

da,∗(α) = c1c2 · · · cn ⇔ c1 = a ∗ a1, c2 = a1 ∗ a2, · · · , cn = an−1 ∗ an (1g)

.
These functions ea,∗, da,∗ are called e- and d-transformation of Q+ with respect to the quasigroup operation ∗
and a is called the leader.
As a generalisation, we may define more than one quasigroup operation, say, a sequence of opearations
∗1, ∗2, · · · , ∗k such that for a sequence of leaders a1, a2, · · · , ak in Q, the composition maps Ek, Dk and Tk

are the given by,

Ek = Ea1···ak
= ea1

◦ ea2
◦ · · · ◦ eak

(1h)
Dk = Da1···ak

= da1
◦ da2

◦ · · · ◦ dak
(1i)

Tk = Ta1···ak
= ta1

◦ ta2
◦ · · · ◦ tak

(1j)

where tai is either an e- or a d-transformation determined according to some rule specific to a cryptographic
primitive. We must also note here that eai

is actually eai∗1
.

The transformations Ek, Dk and Tk are clearly transformations on Q+ and any Ek or Dk is essentially a Tk

transformation.
Next we mention here an important theorem from [17] as a fact:

2

For a finite quasigroup, (Q, ∗, \, /), each string α in the alphabet Q+ and each leader l in Q, the el,∗ and dl,\
transformations turn out to be inverse transformation of each other. In other words,

dl,\(el,∗(α)) = α = el,∗(dl,\(α)). (1k)

2. Bracketing shapes: When a binary operation is associative, the number or combination of brackets in an
expression involving the operation has no effect on its evaluation. However, in algebraic structures where the
property of associativity is not inherent, the placement of brackets in the expression is crucial, and may give
different results.
Let us consider an element x of the groupoid (G, ∗) (recall that the binary operation in a groupoid is not
assumed to have any additional properties) and let a ∈ N. A bracketing shape/pattern for multiplying x by
itself, ′a′ times is denoted by as i.e.,

as : (x ∗ · · · (x ∗ x) · · ·)︸ ︷︷ ︸
′a′ copies of x

(2)

We call the pair, A = (a, as) a power index. Writing xA will refer to the expression (2) for some bracketing
shape as.

2.1 The set of all possible bracketing shapes as of an element x multiplied a times with itself is given by,

Sa(x) = {as | as is a bracketing shape with a instances of an element x}. (3)

2.2 Let A = (a, as) be a bracketing shape. The cardinality of the set Sa has the following expression in terms
of the (a− 1)th Catalan number, Ca−1,

|Sa(x)| = Ca−1 =
1

a

(
2a− 2

a− 1

)
(4)

Two members of the set Sa of bracketing shapes are intuitive or primary: they can be visualised with an
iterative process strarting with x ∗ x and sequentially absorbing the rest of the factors x at a time either
from left to right or from right to left.

2.3 The left-to-right bracketing shape of ′a′ instances of an element x with power index, A = (a, as) is given by,

as : ((· · · ((x∗x) ∗ x) · · ·)∗x)︸ ︷︷ ︸
a copies of x

(5)

In compact from, it is denoted by, A ≡ x(a−1,x)to−right (starting with x and following a sequnce of a− 1
right multiplications by x).
For a generic bracketing shape s the notation used is, s(k,x)to−right and it denotes a sequential extension
of s by k right multiplications by x. Thus, s ≡ s(0,x)to−right would mean the shape s itself extended with
zero right multiplications by x.
Similarly, the right-to-left bracketing shape of a power index, A = (a, as) is given by,

as : (x∗(· · · (x ∗ (x ∗ x) · · ·))︸ ︷︷ ︸
a copies of x

(6)

In compact from, it is denoted by, A ≡ x(x,a−1)to−left.
With a generic bracketing shape s we use the short notation s(x,k)to−left to denote a sequential extension
of s by k left multiplications by x and the notation s ≡ s(x,0)to−right means the shape s itself extended
with zero left multiplications by x.

3

2.4 The sum and product of power indices: Since ia a groupoid operation ∗ in (G, ∗) is a (closed) binary
operation, therefore every power index A = (a, as) may be considered as an endomorphism on G,

A : x→ xA. (7)

Let us consider two power indices, A = (a, as) and B = (b, bs), then their sum, A +B is defined as the
power index of the product of two powers,

xA+B = xA ∗ xB (8)

and, their product, A × B (or simply AB) is defined as the power index of an expression obtained by
replacing every factor in the expression of the shape bs by a complete shape as,

xAB = (xA)B (9)

Take for example, A ≡ x(x,a−1)to−left and B ≡ x(b−1,x)to−right, then, (xA)B is just,

((· · · ((x(x,a−1)to−left∗x(x,a−1)to−left) ∗ x(x,a−1)to−left) · · ·)∗x(x,a−1)to−left)︸ ︷︷ ︸
b copies of x(x,a−1)to−left

which would in turn mean,

((· · · ((

a copies of x︷ ︸︸ ︷
(x ∗ (· · · (x ∗ (x ∗ x) · · ·)) ∗

a copies of x︷ ︸︸ ︷
(x ∗ (· · · (x ∗ (x ∗ x) · · ·))) ∗

a copies of x︷ ︸︸ ︷
(x ∗ (· · · (x ∗ (x ∗ x) · · ·))) · · ·)∗

a copies of x︷ ︸︸ ︷
(x ∗ (· · · (x ∗ (x ∗ x) · · ·)))

2.5 Two power indices, A = (a, as) and B = (b, bs) are equal iff xA = xB for all x ∈ (G, ∗).
The Logarithmetic, (L(G),+,×) is the algebra over the equated indices from 2.5 with operations + and
× as defined in 2.4.

2.6 Palintropic groupoids: If xAB = xBA for all x ∈ G and for all power indices A and B, then the groupoid
(G, ∗) is called palintropic.

2.7 (Theorem 2, [1]) If the groupoid (G, ∗) is entropic, then for every x, y ∈ G

(x ∗ y)A = xA ∗ yA (10)

and,

xAB = (xA)B = (xB)A (11)

Since the operation ∗ is entropic, the corresponding operands of every factor (x ∗ y) in the expression
of (x ∗ y)A can be clubbed together, that is, the x′s are multiplied with themselves and so are the y′s
according to the power index A and this gives us the expression on the RHS of (10).

2.8 Generator: g ∈ G is a generator of the groupoid (G, ∗) if for all x ∈ G, there exists a power index A, such
that

x = gA (12)

We may write G in terms of its generator g as, G = ⟨g⟩.

4

The notation (Fp)
L: Let us denote by (Fp)

L the direct product G of L, (L ≥ 2) copies of a finite field Fp,
i.e.,

G = F× · · · × F︸ ︷︷ ︸
L times

, G = (Fp)
L, L ≥ 2

3. Criteria for constructing entropic groupoids over (Fp)
L :

Let the elements x, y, z, w ∈ G = (Fp)
L be represented by the tuples x = (x1, · · · , xL), y = (y1, · · · , yL),

z = (z1, · · · , zL) and w = (w1, · · ·wL).

3.1 The binary operation ∗ over G should be, (i) entropic as per definition (1), (ii) non-linear with repsect
to the operations of addition and multiplication of the finite field Fp, (iii) non-commutative and (iv)
non-associative.
As suggested in (Gligoroski), defining an operation ∗ for L = 2 with the help of general quadratic 2L-
variate polynomials and choosing suitable coefficients from Fp such that all the conditions (i)-(iv) are
met could be one possible way. However, in their most general form, these 2L-variate polynomials would
possess almost 30 coefficients and determining feasible relations among them will become herculean.
A simplified form of defining ∗ for L = 2 is given as follows:

x ∗ y = (x1, x2) ∗ (y1, y2) = (P1(x1, x2, y1, y2), P2(x1, x2, y1, y2))

P1(x1, x2, y1, y2) = a1 + a2x1 + a3x2 + a4y1 + a6x1y1 + a8x2y1

P2(x1, x2, y1, y2) = b1 + b2x1 + b3x2 + b5y2 + b7x1y2 + b9x2y2

(13)

where, P1 and P2 are 2L-variate polynomials with some monomial terms removed so as to make the defi-
nition of ∗ simpler.

3.2 The following can be viewed as a solution of the system (13):

(x1, x2) ∗ (y1, y2) =
(a3(a8b2 − b7)

a8b7
+ a3x2 +

a8b2
b7

y1 + a8x2y1,

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

y2 + b2x1 + b7x1y2

) (14)

where a3, a8, b2, b7 ∈ Fp, a8 ̸= 0 and b7 ̸= 0, and ′−′ and ′/′ are the operations of subtraction and division
in Fp.

3.3 A few observations for a groupoid (G, ∗) with the operation ∗ as defined in (14) :
• (14) satisfies all the design criteria from (i)-(iv). It is clearly non-linear, non-commutative and non-

associative. A closer inspection and some replacements, we can verify that the operation is entropic
too.

• Let us take into account the additive inverses of the constants a3, a8, b2 and b7, that is, since for
observational purposes we have considered the operations in the underlying field F∗

p to be modulo n,
so we may write the additive inverses as p− k where k = {a3, a8, b2, b7}. Using their inverses in (14)
in place of the constants, the first coordinate of the equation takes the form,

(p− a3)((p− a8)(p− b2)− (p− b7))

(p− a8)(p− b7)
+ (p− a3)x2 +

(p− a8)(p− b2)

(p− b7)
y1 + (p− a8)x2y1

(p− a3)[
p2 − pb2 − pa8b2a8 − p− b7

p2 − pb7 − ppa8 + a8b7
] + px2 − a3x2+

[
p2 − pb2 − pa8 + b2a8

p− b7
]y1 + px2y1 − a8x2y1

Since all operations in the field are modulo n, so, further simplification will yield,

5

(pb2a8 − p2 − pb7)− (a3b2a8 + pa3 + a3b7)

a8b7
− a3x2 +

b2a8
(p− a7)

y1 − a8x2y1

=
−a3b2a8 + a3b7

a8b7
− a3x2 +

b2a8
(p− b7)

y1 − a8x2y1

=
−a3(b2a8 − b7)

a8b7
− a3x2 −

b2a8
b7

y1 − a8x2y1

Similarly, for the second coordinate, we have the following expression,

−b2(a8 + a3b7)

a8b7
− a3b7

a8
y2 − b2x1 − b7x1y2

So finally we have,

(x1, x2) ∗ (y1, y2) =
(−a3(a8b2 − b7)

a8b7
− a3x2 −

a8b2
b7

y1 − a8x2y1,

−b2(a8 + a3b7)

a8b7
− a3b7

a8
y2 − b2x1 − b7x1y2

)
This expression is very similar to (14) and satisfies the design criteria (i)-(iv) just like it. Hence we
can say that whenever (14) is a solution of the system (13), the expression obtained by replacing the
constants with their respective additive inverses is also a solution of (13).

• Let us consider the element,
(

−a3

a8
, −b2

b7

)
and let x = (x1, x2) be an arbitrary element of G.

Using (14),

(x1, x2) ∗
(−a3

a8
,
−b2
b7

)
=

(
a3(a8b2 − b7)

a8b7
+ a3x2 +

a8b2
b7

(−a3
a8

)
+ a8

(−a3
a8

)
x2,

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

(−b2
b7

)
+ b2x1 + b7

(−b2
b7

)
x1

)

=

(
a3b2
b7
− a3

a8
+
(−a3b2

b7

)
,
−b2
b7

+
b2a3
a8

+
(−a3b2

a8

))

=
(−a3

a8
,
−b2
b7

)
Similarly,

(
−a3

a8
, −b2

b7

)
∗ (x1, x2) =

(
−a3

a8
, −b2

b7

)
.

Hence, the element,
(

−a3

a8
, −b2

b7

)
is the multiplicative zero of the groupoid, (G, ∗) and we denote it by,

0∗ =
(

−a3

a8
, −b2

b7

)
.

x ∗ 0∗ = 0∗ ∗ x = 0∗ ∀x ∈ G. (15)

• Next, consider the element,
(

1
b7
− a3

a8
, 1
a8
− b2

b7

)
and an arbitrary element x = (x1, x2) of G.

Using (14),

(1

b7
− a3

a8
,
1

a8
− b2

b7

)
∗ (x1, x2) =

(
a3(a8b2 − b7)

a8b7
+ a3

(1

a8
− −b2

b7

)
+

a8b2
b7

x1 + a8

(1

a8
− b2

b7

)
x1,

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

x2 + b2

(1

b7
− −a3

a8

)
+ b7

(1

b7
− −a3

a8

)
x2

)

=

(
a8b2
b7

x1 + x1 −
a8b2
b7

x1,
a3b7
a8

x2 + x2 −
a3b7
a8

x2

)
= (x1, x2) = x

6

Hence, 1∗ =
(

1
b7
− a3

a8
, 1
a8
− b2

b7

)
is called the multiplicative left unit of the groupoid (G, ∗) and,

1∗ ∗ x = x ∀x ∈ G. (16)

There are (p− 1) distinct square roots of the left unity 1∗,

S(p) = {x | x ∗ x = 1∗} and |S(p)| = p− 1 (17)

• For every x = (x1, x2) ̸= (0, 0) in G, its inverse multiplicative element, x−1
∗ with repect to the left

unit 1∗ is given by,

x−1
∗ =

(1− a3b2 − a3b7x2

a8(b2 + b7x2)
,
1− a3b2 − a8b2x1

b7(a3 + a8x1)

)
(18)

for which,

x ∗ x−1
∗ = x−1

∗ ∗ x = 1∗. (19)

3.4 Operations in (Fp)
L when L = 2, that is, for G = Fp × Fp :

Let x = (x1, x2), y = (y1, y2) be two elements of the set G = Fp×Fp. The additive operation, �, i.e., x�y
is defined as:

(x1, x2)� (y1, y2) =
(
x1 + y1 +

a3
a8

, x2 + y2 +
b2
b7

)
(20)

where a3, a8, b2, b7 ∈ Fp, are defined as in (14).
Let � denote the corresponding inverse of the additive operation �. Then it can be defined as,

(x1, x2)� (y1, y2) =
(
x1 − y1 −

a3
a8

, x2 − y2 −
b2
b7

)
. (21)

We may use � as a unary operation and the notation �x would then mean,

� x = 0∗ � x =
(
− a3

a8
− x1,−

b2
b7
− x2

)
. (22)

3.5 The algebraic structure (G,�, ∗) thus obtained as a result of 3.3 and (20) is a ringoid where (G,�) is an
Abelian group with a neutral element 0∗, (G, ∗) is a non-commutative and non-associative groupoid with
a zero element 0∗, a left unit element 1∗ and ∗ is distributive over � i.e.,

x ∗ (y � z) = (x ∗ y)� (x ∗ z) and (x� y) ∗ z = (x ∗ z)� (y ∗ z). (23)

3.6 The ringoid (G,�, ∗) is denoted by Ep2 and is called the Finite Entropic ring or Finite Entropoid.
Clearly it has p2 elements.
For given values of p, a3, a8, b2 and b7, a3 ̸= 0, b2 ̸= 0 it will be denoted as Ep2(a3, a8, b2, b7) or just by Ep2

if the specification of the consants is not important.

4. Maximal multiplicative subgroupoid, E∗
(p−1)2 :

The subset E∗
(p−1)2 of E∗

p2 is defined as,

E∗
(p−1)2 =

((
Fp \

{
−a3
a8

})
×
(
Fp \

{
−b2
b7

}))
(24)

7

The groupoid E∗
(p−1)2 is called the maximal multiplicative subgroupoid of Ep2 .

4.1 E∗
(p−1)2 has (p − 1)2 elements of the form (x1, x2) where, clearly from the sets of definition of the sub-

groupoid, x1 cannot be the first component and x2 cannot be the second component of the multiplicative
zero 0∗. Based on (14), we can say that (E∗

(p−1)2 , ∗) is non-commutative and non-associative and has a
left unit element, 1∗.
Now, for every c = (c1, c2) and every d = (d1, d2), the equations, x ∗ c = d and c ∗ x = d my be written
using (14) as,

c ∗ x = (c1, c2) ∗ (x1, x2) =
(a3(a8b2 − b7)

a8b7
+ a3c2 +

a8b2
b7

x1 + a8c2x1,

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

x2 + b2c1 + b7c1x2

)
= (d1, d2)

Comparing components,

a3(a8b2 − b7)

a8b7
+ a3c2 +

a8b2
b7

x1 + a8c2x1 = d1

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

x2 + b2c1 + b7c1x2 = d2

and,

x ∗ c = (x1, x2) ∗ (c1, c2) =
(a3(a8b2 − b7)

a8b7
+ a3x2 +

a8b2
b7

c1 + a8x2c1,

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

x2 + b2c1 + b7c1x2

)
= (d1, d2)

Comparing components,

a3(a8b2 − b7)

a8b7
+ a3x2 +

a8b2
b7

c1 + a8x2c1 = d1

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

x2 + b2c1 + b7c1x2 = d2

A bit further simplification will yield,

(a8b2
b7

+ a8c2

)
x1 − (a3 + a8c1)x2 =

(a8b2
b7

c1 − a3c2

)
(a3b7

a8
+ b7c1

)
x2 − (b2 + b7c2)x1 =

(a3b7
a8

c2 − b2c1

)
So, we have two equations in order to solve two variables x1 and x2. This implies that we will get a unique
solution x = (x1, x2) and therefore, the equations,

x ∗ c = d and c ∗ x = d (25)

will always have solutions.
This precisely proves that (E∗

(p−1)2 , ∗) is a quasigroup. It is entropic.

4.2 Subquasigroups of (E∗
(p−1)2 , ∗) :

Let (E∗
ν , ∗) denote a subquasigroup of (E∗

(p−1)2 , ∗) such that |E∗
ν | = ν. All subquasigroups of the quasigroup

8

(E∗
(p−1)2 , ∗) are entropic and, the order of the subquasigroups divides the order of the quasigroup, that is,

ν|(p− 1)2.
Let Fp be the finite field over which an entropoid Ep2 is defined. Let Γ ⊆ F∗

p be a cyclic subgroup of order
|Γ| of the multiplicative group F∗

p and let γ ̸= −a3

a8
and γ ̸= − b2

b7
is its generator, then g = (γ, γ) is a

generator of a subgroupoid (E∗
ν , ∗) and ν divides |Γ|2.

4.3 Sylow qi-subquasigroups : Let (E∗
(p−1)2 , ∗) be an entropic quasigroup such that (p− 1)2 be represented as

product of the powers of its prime factors i.e., (p − 1)2 = 2e1qe22 · · · q
ek
k . Then, the subquasigroup (E∗

ν , ∗)
is called a Sylow qi-subquasigroup if ν = qeii for i ∈ {2, · · · , k}.

5. The list of associative class representatives, Ra(x) :
An ordered list Ra(x)o of a − 1, 2 ≤ a bracketing shapes is called the list of associative class representatives.
It is defined as,

Ra(x) = [Ra(x)[0], Ra(x)[1], · · · , Ra(x)[a− 3], Ra(x)[a− 2]] (26)

where,

Ra(x)[0] = x(x,a−1)to−left,

Ra(x)[1] = (x(x,1)to−left ∗ x)(x,a−3)to−left,

Ra(x)[2] = (x(x,2)to−left ∗ x)(x,a−4)to−left,

· · · ,
Ra(x)[a− 3] = (x(x,a−3)to−left ∗ x)(x,0)to−left,

Ra(x)[a− 2] = (x(x,a−2)to−left ∗ x)

(27)

Hence, any given a ≥ 2, the a− 1 bracketing shapes would be a member of any one of these classes.

5.1 For a = 2 the only class representative would be, R2(x) = [R2(x)[0]] = (x ∗ x).
For a = 3, R3(x) = [R3(x)[0], R3(x)[1]], where, according to (27),

R3(x)[0] = x(x,3−1)to−left = (x ∗ (x ∗ x))
R3(x)[1] = (x(x,3−2)to−left ∗ x) = ((x ∗ x) ∗ x)

Now, we observe that, (x∗(x∗x)) = (x∗(R2(x)[0])) = (x∗R2(x)) and, ((x∗x)∗x) = ((R2(x)[0])∗x). This
means, for a = 3, we have, R3(x)[0] = (x ∗R2(x)[0]) and, R3(x)[1] = (R2(x)[0] ∗ x). This may intuitively
point towards possible recurrent relations between the class representatives of a and a+ 1. Indeed, with
the help of induction, we can prove that the following recurrent relations hold true:

Ra+1(x)[0] = (x ∗Ra(x)[0]),

Ra+1(x)[1] = (x ∗Ra(x)[1]),

Ra+1(x)[2] = (x ∗Ra(x)[2]),

· · · ,
Ra+1(x)[a− 2] = (x ∗Ra(x)[a− 2]),

Ra+1(x)[a− 1] = (Ra(x)[0] ∗ x)

(28)

5.2 Equivalent classes and their representatives:
It was mentioned earlier in (4) that for a given a the set Sa(x) of all bracketing shapes A = (a, as) has
cardinality equal to the (a − 1)th Catalan number, Ca1. But for entropic groupoids E∗

p2 the size of the
set {xA} is actually limited to a − 1. The corresponding sets of these a − 1 types of bracketing shapes
partition the set Sa(g) into equivalent classes.
(Theorem 3, [1]) Let Ep2 be given, and let g be a generator of its maximal multiplicative subgroupoid
(E∗

(p−1)2 , ∗), where ∗ is defined as in 3.1 and equation (14). For every 3 ≤ a < bmax, evaluating the bracket-
ing shapes of the set Sa(g) gives a partitioning in a−1 equivalent classes S1,a(g), S2,a(g), · · · , Sa−2,a(g), Sa−1,a(g),
whose corresponding representatives are given by the corresponding elements of Ra(g) as defined in (27)

9

and the cardinality of the sets Si,a(g) for i = 1, · · · , a− 1 is given by the following expression:

∣∣Si,a(g)

∣∣ = N(a− 1, i) =
1

a− 1

(
a− 1

i

)(
a− 1

i− 1

)
(29)

where N(a− 1, i) are the Narayana numbers.
Definition of the integer bmax: Let Ep2 be a given finite entropoid. An integer bmax is defined as follows:

bmax = min
{
b | 1

b

(
2b− 2

b− 1

)
> (p− 1)2

}
(30)

The value bmax is the smallest integer for which the Catalan number Cb−1 = 1
b

(
2b−2
b−1

)
exceeds the number

of elements in the maximal multiplicative subgroupoid (E∗
(p−1)2 , ∗).

6. Representing (exponentially) large bracketing shapes:
In order to better distinguish between power indices in this context, we use b ≥ 2 for smaller bracketing pat-
terns. A power index (A, b) may also be represented as, (a, as, b).

6.1 Let integer b ≥ 2 be a base. The power index (A, b) = (a, as, b) is defined as a triplet consisting of two
lists and an integer b. Let a ∈ Z+ be represented in base b as a = A0+A1b+ · · ·+Akb

k, or in little-endian
notation with the list of digits 0 ≤ Ai ≤ b− 1, as a = [A0, A1, · · · , Ak]b. Let the bracketing pattern as be
represented with a list of digits as = [P0, P1, · · · , Pk]b−1 where 0 ≤ Pi ≤ b− 2 for i = 0, · · · , k. For base
b and a = [A0, A1, · · · , Ak]b ∈ Z+ the set of all possible patterns is given by,

L[a, b] = {as | as = [P0, · · · , Pk]b−1}, (31)

for all Pj ∈ Zb−1, j = {0, · · · , k}.
Once we have a way to represent (possibly large) a, we would want to know how exactly to define the
sequential multiplication of factors for any given bracketing shape.

6.2 Defining x(A,b) : For any x ∈ Ep2 , (A, b) is defined as follows:

w0 = x,

wi = Rb(wi−1)[Pi], fori = 1, · · · , k,
(32)

If j =index of the first nonzero digit Aj ,

xj =

{
wj , ifAj = 1,

RAj
(wj)[Pj mod (Aj − 1)], ifAj > 1

(33)

for i = j + 1, · · · , k,

xi =

xi−1, ifAi = 0,

wi ∗ xi−1, if Ai = 1 and Pi−1 is even,
xi−1 ∗ wi, if Ai = 1 and Pi−1 is odd,
RAi(wi)[Pi mod (Ai − 1)] ∗ xi−1, if Ai > 1 and Pi−1 is even,
xi−1 ∗RAi(wi)[Pi mod (Ai − 1)], if Ai > 1 and Pi−1 is odd,

(34)

x(A,b) = xk. (35)

Note that the non-associativity and non-commutativity of the operation ∗ is reflected in the above equa-
tions.
Next, let us try to calculate the total number of multiplications required to achieve x(A,b). In (32), accord-
ing to the definition of Ra(x) (here, a is replaced by the base b), the number of times x has been multiplied
would be k(b − 1). From the cases in (33), if Aj > 0, then the number of multiplications will be Aj − 1
and, lastly, in (34) for i = j+1, · · · , k we will need one multiplication with xi−1 and Ai−1 multiplications

10

as per the expression RAi(wi)[Pi mod (Ai− 1)]. An expression for the total multiplications of x required
is summarised in the following:

6.3 For every base b ≤ 2, every x ∈ Ep2 , every a ∈ Z+ and every bracketing pattern as = [P0, P1, · · · , Pk]b−1,
the value x(A,b) is a product of ′a′ multiplications of x,

x(A,b) = x(a,as,b) = (x ∗ · · · (x ∗ x) · · ·)︸ ︷︷ ︸
a copies of x

(36)

If O∗
b denotes the number of operations (multiplications) ∗ used to compute the result x(A,b), then its

value is given by the following expression,

O∗
b = k(b− 1)− 1 +

∑
Ai ̸=0

Ai (37)

.

6.4 (Theorem 4, [1]) Let x, y ∈ E∗
(p−1)2 . For every (A, b1) and (B, b2) chosen at random from the set L of

bracketing shapes,

(x ∗ y)(A,b1) = x(A,b1) ∗ y(A,b1) (38)

and,

x(A,b1)(B,b2) =
(
x(A,b1)

)(B,b2)
=
(
x(B,b2)

)(A,b1)
= x(B,b2)(A,b1) (39)

.

6.5 As a consequence of (10) and (11), the Logarithmetic of power indices (A, b1) = (a, as, b1) and (B, b2) =
(b, bs, b2), a, b ∈ Z+ can be defined as, (C, b3) = (A, b1) + (B, b2) iff x(C,b3) = x(A,b1) ∗ x(B,b2) for all
x ∈ Ep2 and, if (C, b3) = (c, cs, b3) then, c = a + b. And, (d, ds, b4) = (D, b4) = (A, b1)(B, b2) iff,
x(D,b4) =

(
x(A,b1)

)(B,b2) for all x ∈ Ep2 , d = ab.

6.6 For base b = 2, the bracketing pattern as = [P0, P1, · · · , Pk]b−1 where 0 ≤ Pi ≤ b − 2 for i = 0, · · · , k
becomes a constant pattern, as = [0, 0, · · · , 0]. Thus a power index (A, 2) can be written as, (a, [0], 2).
The elements of Ep2 raised to such power indices form subgroupoids given by,

⟨x⟩2 = {x(A,2) | (A, 2) = (a, [0], 2), a ∈ Z+} (40)

The subgroupoid (⟨x⟩2, ∗) of (E∗
|⟨x⟩2|, ∗) is called a cyclic subgroupoid of Ep2 of order |⟨x⟩2|.

The set,

⟨x⟩ = {xA | A = (a, as), a ∈ Z+, as is a bracketing shape} (41)

is called a a multiplicative subgroupoid, (⟨x⟩, ∗) = (E|⟨x⟩|, ∗) of Ep2 of order |⟨x⟩|.
Let us denote the order of ⟨x⟩2 as, s(x)2 = |⟨x⟩2| and order of ⟨x⟩ as, s(x) = |⟨x⟩|, then we have the
following relations:

s(x)2 | 2(p− 1)

and smax(x)2 = max
x∈Ep2

(s(x)2) = 2(p− 1). (42)

and,

s(x)|(p− 1)2 (43)
and smax(x) = max

x∈Ep2

s(x) = (p− 1)2. (44)

11

6.7 Generators of E∗
(p−1)2 :

(Conjecture 1, [1]) Let Ep2 be an entropoid defined with a safe prime p (a prime p is called a safe prime
if it is of the form p = 2q+1 where q is a prime) of λ bits, and let g ∈ E∗

(p−1)2 . If the following conditions
are true,

g ̸= g(p,[0],2) (45)
g ∗ g ̸= g(p−1,[0],2) (46)

(g ∗ (g ∗ g)) ̸= g(p−2,[0],2) (47)
(g ∗ (g ∗ g)) ̸= ((g ∗ g) ∗ g) (48)

(g ∗ (g ∗ (g ∗ g))) ̸= ((g ∗ (g ∗ g)) ∗ g), (49)

then the probability that g is a generator of E∗
(p−1)2 is,

Pr[g is a generator of G∗] > 1− ϵ (50)

where, ϵ < 1
2λ

.
The, the probablity that an element of the maximal multiplicative subgroupoid, E∗

(p−1)2 can be represented
in terms of the powers of the generator g:
Let g be a generator of E∗

(p−1)2 (where p is a safe prime) obtained using the process described in the above
mentioned conjecture. Let y be an arbitrary element of E∗

(p−1)2 . Then the probability that there exists a
power index (A, 2) such that y = g(A,2) is,

Pr[{∃(A, 2) and y = g(A,2)}] = 1

q
. (51)

Recall from 6.6 that the elements of Ep2 raised to the power of indices (A, b) with base b = 2 form a cyclic
subgroupoid of Ep2 . For a generator g of E∗

(p−1)2 , if x = g(A,2) then from (42), the order of x would be
2(p− 1) and so, the order of an element y = x(p−1,[0],2) would be 2 which means y2 = 1∗ (implying that
y is a square root of 1∗). So, y can be either 1∗ or �1∗ beause otherwise the order of x will exceed the
upper bound, 2(p− 1). Thus, we have the following:
Let g be a generator of E∗

(p−1)2 . Then for every bracketing shape (A, b) = (a, as, b) ∈ L,

(
g(A,b)

)(p−1,[0],2)

=

{
1∗, if a is even,
�1∗, if a is odd.

(52)

(Conjecture 2, [1]) Let g be a generator of E∗
(p−1)2 , where p ≤ 11. Then,

gq = (g ∗ (g ∗ (g ∗ ((g ∗ g) ∗ g)))), (53)

is the generator of the Sylow q-subquasigroup E∗
p2 .

Let gq be a generator of the Sylow q-quasigroup E∗
q2 . Then for every bracketing shape (A, b) = (a, as, b) ∈

L the following relations hold:

(
g(A,b)
q

)(p−1,[0],2)

= 1∗ (54)(
g(A,b)
q

)(q,[0],2)
= y, (55)

where y belongs in a subset of the set of square roots of the left unit,i.e., y ∈ Sq(p) ⊆ S(p), such that
| Sq(p) | = q.

12

II. Examples

1. The entropoid, E72 :
Let, E72 = F7 × F7 where F7 is the field of integers modulo 7. We take, a3 = 6, a8 = 3, b2 = 3, b7 = 4. Then,
according to equation (14), the operation ∗ is defined as,

x ∗ y = (x1, x2) ∗ (y1, y2) =
(6((3)(3)− 4)

(3)(4)
+ 6x2 +

(3)(3)

4
y1 + 3x2y1,

− 3(3− (6)(4))

(3)(4)
+

(6)(4)

3
y2 + 3x1 + 4x1y2

)
=
(30
12

+ 6x2 +
9

4
y1 + 3x2y2,

− 3(−21)
12

+
24

3
y2 + 3x1 + 4x1y2

)
≡ (6 + 6x2 + 4y1 + 3x2y1, y2 + 3x1 + 4x1y2)

(56)

as the operations are modulo 7 in the field.

1.1 The multiplicative zero is, 0∗ =
(
− 6

3 ,−
3
4

)
≡ (5, 1) and the multiplicative left unit is, 1∗ =

(
1
4−

6
3 ,

1
3−

3
4

)
≡

(0, 6).

E72 0 1 2 3 4 5 6

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)
1 (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

6 (6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Table 1: Elements of E72

1.2 In Table 1, the row and column corresponding to the zero element, 0∗ = (5, 1) have been highlighted to
indicate their exclusion from F7 \ {− 6

3} × F7 \ {− 3
4} ≡ F7 \ {5} × F7 \ {1} = E∗

62 .
Next, as an illustration of how different bracketing shapes may give different outputs when applied to the
same element, we give the following table for a = 2, 3 and 4.

a bracketing shape as (0,0) (0,6) (5,1) (6,6)

2 (x ∗ x) (6, 0) (0, 6) (5, 1) (6, 0)

3 (x ∗ (x ∗ x)) (2, 0) (0, 6) (5, 1) (6, 4)
((x ∗ x) ∗ x) (6, 4) (0, 6) (5, 1) (2, 0)

(x ∗ (x ∗ (x ∗ x))) (0, 0) (0, 6) (5, 1) (6, 6)
(x ∗ ((x ∗ x) ∗ x)) (2, 4) (0, 6) (5, 1) (2, 4)

4 ((x ∗ x) ∗ (x ∗ x)) (2, 4) (0, 6) (5, 1) (2, 4)
((x ∗ (x ∗ x)) ∗ x) (6, 6) (0, 6) (5, 1) (0, 0)
(((x ∗ x) ∗ x) ∗ x) (2, 4) (0, 6) (5, 1) (2, 4)

Table 2: Raising different elements ′x′ of E72 to the powers a = 2, 3, 4 with different brackting shapes as

1.3 Notice the columns corresponding to the zero element, 0∗ = (5, 1) and the multiplicative left unit,
1∗ = (0, 6). We find that both retain their fixed value even when raised to different powers a, that
is, 0a

∗ = 0∗ and, 1a
∗ = 1∗.

13

0 1 2 3 4 5 6

0 9 2 36 4 9 36 1
1 12 2 6 18 12 6 36
2 3 2 12 36 3 12 9
3 36 2 18 2 36 18 4
4 12 2 6 18 12 6 36
5 2 1 2 2 2 2 2
6 3 2 12 36 3 12 9

Table 3: size of the sets ⟨x1, x2⟩ denoted above by #

1.4 The elements of E72 can belong to different classes with cardinalities that are divisors of (p − 1)2 where
p = 7. So, the cardinalities divide, 2232, i.e, they have possibilities, {1, 2, 3, 4, 6, 9, 18, 36}. All represen-
tatives of sets in Table 3 with 36 elements serve as generators for the maximal multiplicative groupoid,
(E∗

62 , ∗).

2. The entropoid E112 :
Let the entropoid E112 be defined over the field of integers modulo 11 with a3 = 9, a8 = 1, b2 = 8, b7 = 9. Then,
according to equation (14), the operation ∗ is defined as,

x ∗ y = (x1, x2) ∗ (y1, y2) =
(9((1)(8)− 9)

(1)(9)
+ 9x2 +

(1)(8)

9
y1 + 1x2y1,

− 8(1− (9)(9))

(1)(9)
+

(9)(9)

1
y2 + 8x1 + 9x1y2

)
≡ (10 + 9x2 + 7y1 + x2y1, 10 + 4y2 + 8x1 + 9x1y2)

(57)

as the operations are modulo 11 in the field.
The multiplicative zero is, 0∗ =

(
− 9

1 ,−
8
9

)
≡ (2, 4) and the multiplicative left unit is, 1∗ =

(
1
9−

9
1 ,

1
1−

8
9

)
≡ (7, 5).

3. We now demonstrate the computation of a power index in an entropoid:
Let us consider the entropoid E72 with operation ∗ as defined in (56).
Here, p = 7 so, (p − 1)2 = 36 = 22 · 32. Let, ν = qe21 . Then a Sylow 3-quasigroup of (E∗

(p−1)2 , ∗) = (E∗
36, ∗) is

(E∗
9, ∗).

A generator gqi of this 3-Sylow subquasigroup is (6, 6) (figure 3). We choose two power indices, (A, b1) =

(a, as, b1) = (5, 4, 3) and (B, b2) = (b, bs, b2) = (6, 7, 4) and compute g
(A,b1)
qi and g

(B,b2)
qi .

Using definitions in 6.1,
for base, b1 = 3, a = 5 = [A0, A1, · · · , Ak]b1

= [2, 1, 0]3 and, as = 4 = [P0, P1, · · · , Pk]b1−1 = [0, 0, 1]2.
Using equations (32)-(35),

w0 = x = (6, 6)

i = 1 : w1 = R3(w0)[P1] = R3(x)[0]

= x(x,2)to−left =
(
(6, 6) ∗

(
(6, 6) ∗ (6, 6)

))
= (6, 4)

i = 2 : w2 = R3(w1)[P2] = R3(w1)[1]

= w1(w1,1)to−left ∗ w1 =
(
(6, 4) ∗ (6, 4)

)
∗ (6, 4)

= (6, 4)

Now, the first non-zero index of Aj , j is 0 (A0 ̸= 0).
Since Aj = A0 = 2 > 1, hence,

x0 = R2(w0)[0] = x ∗ x = (6, 6) ∗ (6, 6) = (6, 0)

For i ∈ {j + 1, · · · , k},

14

i = 1 : x1 = w1 ∗ x0, as Ai = A1 = 1 and Pi−1 = P0 = 0 is even
= (6, 4) ∗ (6, 0)
= (0, 0)

i = 2 : x2 = x1, as Ai = A2 = 0

Hence, x(A,b1) = (6, 6)(A,b1) = x2 = (0, 0).
Similarly, we proceed for the power index (B, b2) = (b, bs, b2) = (6, 7, 4).
b = 6 = [2, 1]4 and, bs = [1, 2]3.
Again, with the help of (32)-(35),

w0 = x = (6, 6)

i = 1 : w1 = R4(w0)[P1] = R4(x)[0]

= R4(x)[0] ∗ x =
(
(6, 6) ∗

(
(6, 6) ∗ (6, 6)

))
∗ (6, 6)

= (0, 0)

Now, the first non-zero index of Aj , j is 0 (A0 ̸= 0).
Since Aj = A0 = 2 > 1, hence,

x0 = R2(w0)[1 mod 1] = x ∗ x = (6, 6) ∗ (6, 6) = (6, 0)

For i ∈ {j + 1, · · · , k},

i = 1 : x1 = x0 ∗ w1, as Ai = A1 = 1 and Pi−1 = P0 = 1 is odd
= (6, 0) ∗ (0, 0)
= (6, 4)

Hence, x(B,b2) = (6, 6)(B,b2) = x1 = (6, 4).

4. Some observations:
Suppose that the generator gqi) and the value, g(A,b)

qi is publicly known. In our case, let the generator (6, 6)

and the value, (0, 0)
(
= (6, 6)(a,as,b1)

)
be known. Note that any attempt to retrieve the exact power index

(A, b1) would need a lot of computation power because, first, there may be multiple power indices that give
the same value when raised to the power of (6, 6) and second, the exact pattern or an explicit bracketing shape
cannot be determined just by analysing the known value.
This serves as a motivation to look for problems that may be perceived as ’hard’ in an entropoid setting [1].

III. Entropoid based hard problems

In cryptography, an algorithm is said to be polynomial time if its running time has an upper bound in the form of
a polynomial expression in the size of the input arguments, that is, running time T (n) ≈ O(nk) for some positive
constant k. If an algorithm or a computational problem cannot be solved efficiently, i.e., in polynomial time then
that particular problem is termed as cryptographically hard.
One of the best known hard problems is the Discrete Logarithmic Problem, DLP. In a group setting, it can be stated
as: ’Given α ∈ group G and β ∈ ⟨α⟩, find the least positive integer x such that αx = β.’ The Diffie-Hellman Key
Exchange protocol in a group setting is precisely based on the hardness of DLP.
Often, the hardness of a new or complicated problem is related to the computational hardness assumption of a better
understood problem.
Here, we briefly state a few cryptographically hard problems in an entropoid setting [1].

1. Discrete Entropoid Logarithmic Problem, DELP: An entropoid Ep2 and a generator gqi of one of its
Sylow subquasigroups E∗

ν are publicly known. Given an element y ∈ E∗
ν the problem is to find a power index

(A, b) such that y = g
(A,b)
qi .

The DLP is defined for groups whose operations are commutative and associative, unlike the DELP which is
based on entropoid operations and hence donot have these additonal properties. Also, note here that a com-
mon approach to solve the DLP would make use of the cyclic group structure in group G say of order N with

15

generator g. Thus, G will have a unique index i ∈ {1, 2, · · · , N} such that for every element y ∈ G, gi = y.
However it is not the case in entropoids. E∗

(p−1)2 is not cyclic, for every y ∈ E∗
(p−1)2 , there may exist multiple

indices (A, b) such that y = g(A,b). Being able to find any one of these indices will solve the DELP.
Any quantum algorithm for solving will need quantum circuits that implement non-commutative operations of
multiplication and also perform unknown patterns of bracketing shapes of non-commutative and non-associative
operations. This poses a tough challenge especially because the number of such patterns can be exponentially
high. The DLP is no harder to solve than the DELP, meaning, DLP ≤ DELP .

2. Computational Entropoid Diffie-Hellman Problem, CEDHP: An entropoid Ep2 and a generator gqi of
one of its Sylow subquasigroups E∗

ν are publicly known. Given g
(A,b1)
qi and g

(B,b2)
qi , where (A, b1), (B, b2) are

chosen at random from L, the problem is to compute g
(A,b1)(B,b2)
qi .

If an adversary can solve the DELP then it can also solve the CEDHP, i.e, if the power indices (A, b1) and
(B, b2) can be extracted from the knowledge of the values of g(A,b1) and g(B,b2) then the value of g(A,b1)(B,b2)

can be computed efficiently.
Thus, CEDHP is no harder to solve than DELP, that is, CEDHP ≤ DELP .

3. Decisional Entropoid Diffie-Hellman Problem, DEDHP: An entropoid Ep2 and a generator gqi of one of
its Sylow subquasigroups E∗

ν are publicly known. Given g
(A,b1)
qi , g(B,b2)

qi and g
(C,b3)
qi , where (A, b1), (B, b2), (C, b3)

are chosen at random from L, the problem is to decide if (C, b3) = (A, b1)(B, b2) or if (C, b3) is just chosen at
random from L.
The classical Decisional Diffie-Hellman, DDH is an easy problem for the multiplicative group F∗

p (for example,
in Z∗

p where p is prime, the Legendre symbol of ga helps to identify if a is even or odd and thus one can
compare and compute significant bits of ga, gb and gab where g is a generator) but not for quadratic residue
groups QR(p) of Z∗

p.
On similar lines, for an entropoid Ep2 and a generator g of its maximal quasigroup E∗

(p−1)2 , then there is an
efficient algorithm that solves DEDHP in E∗

(p−1)2 .
However, we also have the following:
Let Ep2 be an entropoid, where p = 2q+1 is a safe prime and gq is the generator of its Sylow q-subquasigroup
E∗
q2 . Then there is no algorithm A that solves DEDHP in E∗

q2 with significantly higher advantage over the
strategy of uniformly random guesses for making the decisions.
If the CEDHP can be solved efficiently then one can compute the value of g(A,b1)(B,b2)

qi and hence verify the
nature of (C, b3) thereby also solving the DEDHP. Hence, the DEDHP is no harder to solve than CEDHP,
that is, DEDHP ≤ CEDHP .

4. Computational Discrete Entropoid Root Problem, CDERP: An entropoid Ep2 and a generator g of
its multiplicative quasigroups E∗

(p−1)2 are publicly known. Given y = x(B,b) and (B, b), where x, y ∈ E∗
(p−1)2

and (B, b) chosen at random from L, the problem is to compute x = (B,b)√y.
The CDERP is no harder than DELP, i.e., CDERP ≤ DELP .

16

IV. Cryptographic schemes

Post quantum cryptography is constantly looking for variations in DLP so as to regain its security. A natural im-
plementation of DELP therefore is the following key exchange:

1. Key Exchange Algorithm: Let the underlying entropoid be Ep2 with suitable (a3, a8, b2, b7) ∈ Fp. The
prime p is a safe prime, p = 2q + 1 for some integer q.
Parameters agreed upon by both parties: The prime q and hence the safe prime p of λ = 128 or 256 bits, a
generator gq = GenQ(λ, p, a3, a8, b2, b7) and an odd base b for the exponentiation operation.
The key exchange algorithm is as follows:

(i) Alice chooses a (random) power index (A, b) = (a, as, b), a ∈ Z∗
p so as to compute Ka = g

(A,b)
q and send

it to Bob.

(ii) Bob chooses a (random) power index (B, b) = (b, bs, b), b ∈ Z∗
p so as to compute Kb = g

(B,b)
q and send it

to Alice.

(iii) Alice then computes Kab = K
(A,b)
b whereas Bob calculates Kba = K

(B,b)
a .

(iv) The public key is Kab = Kba.

2. An ElGamal-like en(de)cryption algorithm: An ElGamal scheme also uses the hardness of a DLP. We
propose here an algorithm for encoding and decoding along this line but in an entropoid setting.
Consider the following public parameters:

(i) A safe prime p = 2q + 1 for some integer p and the quasigroup E∗
(p−1)2 which is also the maximal multi-

plicative subgroupoid of the entropoid Ep2 with suitable (a3, a8, b2, b7) ∈ Fp.

(ii) A generator gq of E∗
(p−1)2 .

The algorithm is as follows:

(i) Alice chooses a random power index (A, b1) = (a, as, b1), a ∈ Z∗
p so as to compute Ka = g

(A,b1)
q . The

private key is the power index (A, b1) = (a, as, b1)

(ii) Alice sends the pair (gq,Ka) to Bob.

(iii) Bob chooses a random power index (B, b2) = (b, bs, b2), b ∈ Z∗
p and computes:

• Kb = g
(B,b2)
q , and,

• l = K
(B,b2)
a .

The power index (B, b2) = (b, bs, b2) serves as Bob’s private key.

(iv) Bob then carries out the encryption as follows:

• First notice the fact that each element of the quasigroup E∗
(p−1)2 is a two-tuple which means Ka, Kb

and l are all two tuple. For ease of implementation, we may take the help of a bijection that assigns
to each ordered pair (x1, x2) of elements of E∗

(p−1)2 (in the sequence in which they appear in the
Cartesian product of F∗

p × F∗
p) an integer d in the range {0, 1, · · · , p − 2}. So, for example if we are

dealing with the maximal multiplicative subgroupoid E∗
62 in section II, Table 1, we may number the

elements,

17

(0,0) (0,2) (0,3) (0,4) (0,5) (0,6)
(1,0) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,0) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,0) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,0) (4,2) (4,3) (4,4) (4,5) (4,6)
(6,0) (6,2) (6,3) (6,4) (6,5) (6,6)

as,

0 1 2 · · · 5

6 7 · · · · · · 11

12 · · · · · · · · · 17
...

...
...

...
...

30 · · · · · · · · · 35

Hence E∗
(p−1)2 may be represented as a quasigroup Q = {0, 1, · · · , p−2} with the entropic operation ∗.

• Consider the message, M = {m1,m2, · · · ,mk} to be encrypted. Recall the definition of e− transfor-
mation from section I, equation (1f). The ciphertext C = {c1, c2, · · · , ck} is given by,

c1 = l ∗m1

cn = cn−1 ∗mn, n ∈ {2, 3, · · · , k}

(v) Bob then sends the pair (Kb, C) to Alice.
Now the quasigroup operation ∗ will have a corresponding parastrophe operation \ (equation 1e, section
I). Then, using the theorem in section I, equation (1k) the decryption of the ciphertext can be carried out
as follows:

(vi) Alice recovers the leader, l = K
(A,b1)
b .

(vii) The message M is retrieved by,

m1 = l \ c1
mn = cn−1 \ cn, n ∈ {2, 3, · · · , k}

For reasons we gave in example 3 and 4 of section II, the private keys (the exact power indices) of both Alice
and Bob cannot be recovered from knowledge of the public parameters alone. Next, an important advantage of
the quasigroup string transformation is that all substrings of the transformed string are uniformly distributed
[18]. Also, as a post-quantum cryptographic scheme, the computational load of the scheme seems to be within
acceptable limits.
Note that this is just an intial design. The quasigroup e− and d− transformations and the operations have
ample scope for improvement in order to adapt the scheme for specific applications.

Next, consider the Computational Discrete Entropoid Root Problem, CDERP. The hardness of the CDERP
can be used in an identification scheme as follows:

3. A Digital Signature Scheme: Let the underlying entropoid be Ep2 with suitable (a3, a8, b2, b7) ∈ Fp. The
prime p is a safe prime, p = 2q + 1 for some integer q and the size of p is λ ∈ {128, 192, 256}. The base for
exponentiation may be taken to be b = 257 such that the power index (B, 257) = (b, bs, 257) be denoted by B.
The NIST standardized cryptographic hash function, SHAXXX where, XXX ∈ {256, 384, 512} has been
used. Let SHAXXX(M) = h1||h2 where |h1| = |h2| = XXX

2 bits and M denote any message. Define
truncateL(SHAXXX(M)) = (h, hs) where h = h1 and the sequence of bits of h1 are interpreted as a little-
endian encoding for a number h ∈ Z

2
XXX

2
. The bits of h2 are partitioned as h2 = [P0, · · · , Pkmax−1]256 where

kmax belongs to the list of {16, 24, 32} bytes. Compute k = log257h − 1. hs is taken to be a list of the first
k + 1 bytes, hs = [P0, · · · , Pk]256. If k < kmax − 1 we truncate the remaining bytes.
Let the set of all such power indices L[h, 257] be denoted here by L257. Define a map,

18

HashXXX : {0, 1}∗ → L257 as,
HashXXX(M) = truncateL(SHAXXX(M)) = (h, hs, 257).

2.1 Key Generation:
1: Set random x← E∗

(p−1)2

2: Set PrivateKey = x.
3: Set y = xB.
4: Set PublicKey = y.
5: Return (PrivateKey, PublicKey)

2.2 Signing a message, M:
1: Set random r ← E∗

(p−1)2 .
2: Set I = rB.
3: Set H = HashXXX(I||M).
4: Set s = (x ∗ r)H.
5: Set σ = (I, s).
6: Return (M,σ).

2.3 Verification of digital signature:
1: Set H = HashXXX(I||M).
2: if
sB = (y ∗ I)H then
Return ’True’
4: else
Return ’False’
end if

Note that, sB = ((x ∗ r)H)B = (xH)B ∗ (rH)B = (xB)H ∗ (rB)H = yH ∗ IH = (y ∗ I)H, which verifies the correctness
signature scheme.

V. A proposed attack
So far the structure of the entropoids and the operations defined on them have seem advantageous over the more
traditional and now vulnerable algebraic structures like groups and fields. While entropic operations allow us to
perform feasible exponentiations of large indices, the absence of non-associativity makes it difficult to reverse the
process. But what if there was a hidden group structure in them? We give here a brief overview of how [2] explores
this question.

1. The hidden group structure:
We state here the first theorem from [3] that [2] uses to retrieve a group structure from entropoids.

1.1 Theorem: Let G = {a, b, c, · · · } satisfy the following axioms:
(i) There exists an operation in G which associates with each pair a, b of G an element c of G, i.e., a∗b = c.
(ii) The operation ∗ satisfies, (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d).
(iii) If for a, b, c in G, there exists unique solution x for each of the equations, a ∗ x = c and x ∗ b = c.
Then, G forms an abelian group with respect to the new operation, x · y = z which is defined by the
equation,

a ∗ s · r ∗ b = a ∗ b, (58)

where r and s denote two fixed elements in G.
Looking closely, we find that the conditions (i)-(iii) resemble those of the entropoids, Ep2 and more specif-
ically of the maximal multiplicative quasigroup (E∗

(p−1)2 , ∗). Then, according to the theorem, it will form
an abelian group with respect to a new operation, ′·′. If s is replaced by the left multipicative unit 1∗ in
(58), then the new abelian group operation · can be characterised by the property,

(x ∗ 1∗) · y = x ∗ y (59)

19

x, y ∈ E∗
(p−1)2 .

1.2 The abelian group structure, (E∗
(p−1)2 , ·) will have the identity element 1∗ and let us denote it as 1 and

E∗
(p−1)2 := E in the group setting.

The map, σ : E→ E given by, σ(x) = x ∗ 1 is an automorphism on (E, ∗) as well as (E, ·).
Then from the definition of ∗ in (14),

σ(x) = x ∗ 1 = (x1, x2) ∗
(1

b7
− a3

a8
,
1

a8
− b2

b7

)
=

(
a3(a8b2 − b7)

a8b7
+ a3x2 +

a8b2
b7

(1

b7
− a3

a8

)
+ a8x2

(1

b7
− a3

a8

)
,

− b2(b7a3 − a8)

a8b7
+

a3b7
a8

(1

a8
− b2

b7

)
+ b2x1 + b7x1

(1

a8
− b2

b7

))

=
(a28b2 − a3b

2
7

a8b27
+ a8b7x

2,
a3b

2
7 − a28b2
a28b7

+ b7a8x1

)
(60)

The order of the automorphism σ is 2.

1.3 (59) can now be written as,

(x ∗ 1∗) · y = (x ∗ 1) · y = σ(x) · y = x ∗ y (61)

The abelian group operation · can be defined as,

(x1, x2) · (y1, y2) =
(
b7x1y1 +

a3b7
a8

x1 +
a3b7
a8

y1 +
a23b7 − a3a8

a28
,

a8x2y2 +
a8b2
b7

x2 +
a8b2
b7

y2 +
a8b

2
2 − b2b7
b27

)
.

(62)

Each component of (E, ·) is isomorphic to a direct product of (F×
p , ·) with itself, given by

ι : E→ (F×
p)

2, (x1, x2)→
(
b7x1 +

a3b7
a8

, a8x2 +
a8b2
b7

)
. (63)

1.4 Equation (61) has the potential to reduce the non-associative exponentiations in (E∗
(p−1)2 , ∗) into exponen-

tiations in the abelian group (E, ·). Thus the choice of non-associative bracketing shapes while operating
an element x with itself with respect to ∗ would no longer matter.
We observe that, for an element x in E, x ∗ x = σ(x) · x and, σ2 = id on E. Then x raised to any
non-associative power index A, that is, xA can have the form,

(σ(x))i · xj , i, j ∈ Z≥0

or, using the notation xσ for σ(x) as in [2],

(xσ)i · xj , i, j ∈ Z≥0 and σ2 = id (64)

1.5 Reducing DELP into a specific case of DLP:
The problem of finding a power index A in DELP now reduces to recovering the constants i, j correspond-
ing to the private key, x→ xA. Following are the steps involved:

20

• Using the isomorphism in (63), the generator g of E, gσ and gA are mapped as given below:

ι(g) = (α1, α2), ι(gσ) = (β1, β2), ι(gA) = (γ1, γ2)

where αi, βi, γi are in Fp, i = 1, 2.

• Next, a generator κ of the group F×
p is chosen and the following are calculated:

ri = logκ(αi) si = logκ(βi) ti = logκ(γi) i = 1, 2 in Fp

• The linear system,
(
i j

)(ri r2
si s2

)
=
(
ti t2

)
mod (p− 1),

(i, j) ∈ Z2.

• The private key x→ xA is evaluated as, x→ ι−1((xσ)i · xj).

Thus, a total of six discrete logarithm problems in Fp and a 2×2 linear system in Z2 is solved and the final
outcome used to construct an equivalent private key to xA. We say equivalent because it is not strictly
necessary to recover the exact power index of the private key as the map from a public to a private key
is not injective.

2. The general case: A general attack on entropoid relies on a theorem composed from the works of Murdock[5],
Toyoda[3] and Bruck[6].
(Theorem 1, [2]) For every entropic quasigroup (G, ∗), there exists an abelian group (G, ·), commuting auto-
morphisms σ, τ of (G, ·), and an element c ∈ G, such that,

x ∗ y = xσ · yτ · c (65)

Note that (61) was a particular case with τ = id and c = 1.
This theorem reveals that the composition law in any entropic quasigroup actually comes from a multiplication
in an abelian group where the elements have been mapped under automorphisms and translated by constants.

2.1 The proposed attack attempts to find ways to write the public key gA in the form, gξ · gγ (ξ, γ ∈ Z[σ, τ])
for a generator g such that xA may be computed for any arbitrary x ∈ G. But, there are multiple solutions
(ξ, γ) and not all result in equivalent private keys.

2.2 Redundancy in (ξ, γ) :
(Lemma 2, [2]) For a binary operation, x ∗ y = xσ · yτ · c and any non-associative constant A, there exists
γ ∈ Z[γ, τ] such that, for all x ∈ G,

xA = x1+(σ+τ−1)γ · cγ (66)

If this equation holds for some x = g ∈ G then it holds for every x ∈ ⟨g⟩∗.

VI. Drawbacks in the attack and modifications proposed in the initial structure of entropoids

Theorem 1 of [2] and hence the ’attack’ is based on the assumption that the underlying entropic structures are always
quasigroups. [7] constructs a multi-dimensional entropic operation that is not always a quasigroup operation.

1. Let the quasigroup operation ∗ defined in (14) be considered as a one-dimensional operation in the sense
that, E = (F×

p)
2 is taken to be one-dimensional entropoid (thus an m-dimensional entropoid would be

21

Em = ((F×
p)

2)m). So,

(x1, x2) ∗1 (y1, y2) =
(a3(a8b2 − b7)

a8b7
+ a3x2 +

a8b2
b7

y1 + a8x2y1,

−b2(a8 − a3b7)

a8b7
+

a3b7
a8

y2 + b2x1 + b7x1y2

) (67)

1.1 Product of m-dimensional elements of E)m:
For x, y ∈ Em, i.e., x = (x0, · · · , xm−1) and y = (y0, · · · , ym−1), the component-wise product

∏
of x and

y is defined as:

z =
∏

(x, y) = (z0, · · · , zm−1) (68)

where zi = xi ∗1 yi for i ∈ Zm.
Note that, xi ∗1 y1 = (xi1, xi2) ∗1 (yi1, yi2), where each xij , yij ∈ F×

p , 0 ≤ i ≤ m− 1, j = 1, 2.

1.2 D-transformation of an element in Em:
For an element x = (x0, · · · , xm−1) ∈ Em, and a non-zero element l of E, i.e., l ∈ E∗, a D-transformation
of x with respect to the leader element l is defined as:

z = Dl(x) = (z0, · · · , zm−1) (69)

where z0 = l ∗ x0, and zi = xi−1 ∗1 xi for i ∈ {1, · · · ,m− 1}.

1.3 Derangement permutation: A derangement permutation is one in which there is no fixed element. A
derangement permutation ∆m of an element x = (x0, · · · , xm−1) ∈ Em is defined as,

∆m(x) = (x0, · · · , xm−1) = (xδ(0), · · · , xδ(m−1)) (70)

such that, δ(i) ̸= i for all i ∈ Zm.

1.4 Generalised Feistel transformation:
A one round generalized Feistel transformation Fm,l : Em → Em of an element x ∈ Em with respect to a
leader l is defined as follows:

Fm,l(x) := ∆m(Dl(x)), (71)

and, on similar lines, a multiple rounds, ′Rounds′ generalized Feistel transformation, F (Rounds)
m,L : Em → Em

with respect to the list of leaders, L = {l1, l2, · · · , lRounds} is defined as:

F (Rounds)
m,L (x) := Fm,lRounds

(x) ◦ · · · ◦ Fm,l1(x) (72)

Thus, a Rounds generalised Feistel transformation can be viewed as a composition of Rounds number of
one round general Feistel transformations with leaders lRounds, · · · , l1.

1.5 Defining ∗ := ∗m with the help of (68)-(72):
Let m ≥ 2, Rounds ≥ 1, and let x, y ∈ Em. The operation ∗ := ∗m,Rounds is defined as:

x ∗ y =
∏(

y,F (Rounds)
m,L

(∏
(x, y)

))
(73)

So, if
∏
(x, y) = (z0, · · · , zm−1) = z, then, x ∗ y =

∏(
y,F (Rounds)

m,L (z)
)
=
∏(

y,∆m

(
DL(z)

))
.

2. Observations:

22

2.1 The multi-dimensional operation ∗ is entropic as defined in equation (1).
If, ∏

(p, q) = k

= (k0, · · · , km−1)

=
∏

(r, s) = (t0, · · · , tm−1)

= t,

then it means,

ki = ti∀i ∈ Zm

⇒ pi ∗1 qi = ri ∗1 si∀i ∈ Zm.

Since ∗1 is entropic so, pi ∗1 ri = qi ∗1 si∀i ∈ Zm, hence, the operation ∗m,Rounds := ∗ is also entropic.

2.2 The operation ∗ is not always a quasigroup operation. For m = 2 and Rounds = 1, there are leader values
l, such that operation ∗ := ∗m,Rounds := ∗2,1 has neither left nor right unit elements, that is, there exists
no e ∈ E2 such that, e ∗ x = x holds or x ∗ e = x holds.

2.3 As the dimension m increases, the degree of the multivariate polynomials describing the operation ∗ grows
even faster. Thus, the approach of constructing commuting automorphisms, σ, τ and infact the abelian
operation · of (G, ·) becomes tough.
For m = 2, the minimal degree of the multivariate polynomial describing the operation ∗, internally having
Rounds Feistel rounds, is a(Rounds+ 3); the maximal degree is a(Rounds+ 4), where,
a(n) = 2Fibonacci(n) + 1, where, Fibonacci(n) is the n-th Fibonacci number.
Without a feasible algorithm to determine the automorphisms σ, τ or even the isomorphism ι, describing
the structure of the hidden abelian group is not efficient.

3. Examples:

3.1 Let the following Cayley table represent a 4× 4 medial quasigroup operation ∗1:
∗1 0 1 2 3
0 3 2 1 0
1 1 0 3 2
2 2 3 0 1
3 0 1 2 3

We experimented with a few sets of leaders, L1 = {0, 0}, L2 = {0, 1}, L3 = {1, 0}, L4 = {0, 0, 1, 1}.

L1 = {0, 0}:
∗1 0 1 2 · · · 5 · · · 15
0 · · · · · · · · · · ·
1 · 0 · · · · 0 · · · ·
...

...
...

...
...

...
...

...
15 · · · · · · · · · · ·

L2 = {0, 1}:
∗1 0 · · · 8 · · · 12 · · · 15
0 · · · · 12 · · · 12 · · · ·
1 · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
15 · · · · · · · · · · · · ·

None of the above structures are Latin squares and hence donot correspond to quasigroups. Even those
generated using L3 and L4 were not quasigroups. In such a case, the threat that the presence of the

23

hidden abelian group structure posed could be averted.

3.2 Next, let us discuss the example of the entropic quasigroup that [7] gives:
∗1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 3 2 1 0
3 2 0 3 1

The set of leaders L = {2, 3, 1, 1, 0, 1, 0, 0, 1} again didnot produce a quasigroup.
However, when the operation ∗ was applied to the set L = {2, 3, 1, 1, 0, 1, 0, 0} it produced the following
entropic quasigroup:
∗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 9 13 1 5 0 8 4 12 15 7 11 3 6 2 14 10
1 0 8 4 12 6 2 14 10 9 13 1 5 15 7 11 3
2 15 7 11 3 9 13 1 5 6 2 14 10 0 8 4 12
3 6 2 14 10 15 7 11 3 0 8 4 12 9 13 1 5
4 7 3 15 11 13 5 9 1 2 10 6 14 8 12 0 4
5 13 5 9 1 8 12 0 4 7 3 15 11 2 10 6 14
6 2 10 6 14 7 3 15 11 8 12 0 4 13 5 9 1
7 8 12 0 4 2 10 6 14 13 5 9 1 7 3 15 11
8 4 0 12 8 14 6 10 2 1 9 5 13 11 15 3 7
9 14 6 10 2 11 15 3 7 4 0 12 8 1 9 5 13
10 1 9 5 13 4 0 12 8 11 15 3 7 14 6 10 2
11 11 15 3 7 1 9 5 13 14 6 10 2 4 0 12 8
12 10 14 2 6 3 11 7 15 12 4 8 0 5 1 13 9
13 3 11 7 15 5 1 13 9 10 14 2 6 12 4 8 0
14 12 4 8 0 10 14 2 6 5 1 13 9 3 11 7 15
15 5 1 13 9 12 4 8 0 3 11 7 15 10 14 2 6

The examples given above make use of a 4 × 4 starting entropoid. In terms of complexity, these structures
may still be susceptible to brute-force attacks. It should therefore be noted that implementing larger order
quasigroups may be beneficial to resist these attacks. The order of the quasigroups will infact be dictated by
the current capabilities of the equation solvers and high performance computing systems.

4. Investigation of properties:
Next, as and when the multi-dimensional entropic operation (73) produces a quasigroup, a natural progression
is to look for some definitive properties that ensure that the quasigroup formed is suitable for cryptographic
use. [8], [9], [10], [11], [12], [13] state some such properties that have been found useful.

4.1 Polynomial completeness: The problem of verifying solutions of equations is NP-complete over polyno-
mially complete quasigroups. A finite quasigroup is polynomially complete iff it is simple and non-affine.
While there is no dearth of ways to check simplicity or non-affiness, it is the nature and size of the quasi-
group that determines which way to go.

(i) Simplicity: One of the ways is to take into account the equivalence relations of the quasigroup (Q, f).
A quasigroup is simple if f preserves no non-trivial equivalence relations on Q. In other words, a
quasigroup is simple if it has only trivial congruences. This motivates us for an algorithm [14] to
check for simplicity given in the next page.
Consider the quasigroup (Q, f) with Q = {0, 1, · · · , k − 1}, k ∈ N. For implementation purposes
and complexity analysis, let the quasigroup be represenated by its Cayley table and its operations be
represenated by the arithmetic operations in Zk.
The complexity of the algorithm is O(|Q|3).

24

Input: Pairs (0, i)
Output: Classification: simple/non-simple

1. for i = 1 to k − 1
(i) cycle through all pairs (0, i)
(ii) build the transitive closures of the relation 0 ∼ i under the action of f
2. if (relation is non-trivial)
return ”non-simple”
endif
endcycle
return ”simple”

Algorithm: Checking simplicity

(ii) Non-affineness: A universal algebra A is called affine iff A is equipped with a structure of an ad-
ditive abelian group such that each basic n-ary operation f of A has the form f(x1, · · · , xn) =
α1(x1) + · · ·+ αn(xn)+, where c ∈ A and α1, · · · , αn are group endomorphisms of (A,+). In case of
quasigroups, it is called a T -quasigroup or ’affine’ if the abelian group (Q,+, 0,−) is such that α and
β in x · y = α(x) + β(y) + c are both automorphisms of (Q,+, 0,−) for some c ∈ Q.
Suppose that the T -quasigroup Q is defined on a cyclic group (Q,+) of order n. Then each automor-
phisms has the form x→ ax, where a is an invertible element of the ring Zn. Thus, xy = ax+ by+ c,
a, b are invertible elements in Zn. In such a T -quasigroup with n = pq, the relation x ∼ y ⇔ x ∼= y(
mod q) is a congruence. If n is not a prime then this congruence will be non-trivial and hence Q
non-simple.
An algorithm to check non-affineness [12] is given below:
The complexity of the algorithm is O(|Q|3).

Input: n× n Cayley table corresponding to the quasigroup
Output: Classification: affine/non-affine

1. Reorder the rows and columns of the Cayley table so that:
the first row and the first column specify the identical permutation.
2. check: whether the resulting table specifies an Abelian group
3. if no,
return ”non-affine”
4. A← column of the original Cayley table starting with 0
B ← row of the original Cayley table starting with 0
5. if
A or B are not automorphisms with respect to +,
return ”non-affine”
6. C ← upper left element of the original Cayley table
check: the identity f(x, y) = A(x) +B(y) + C holds
if yes,
return ”affine”
else
return ”non-affine”

Algorithm: Verifying affineness

Notice that the ’attack’ described in the previous section was possible precisely because of the hidden
abelian group structure in the initial entropoids.
As a different approach, we can also check for the polynomial completeness of a quasigroup of order n > 5
with the help of the algorithm given below.
Consider a quasigroup Q of order n represented by its n × n Latin square. Let the row permutations be
defined by σi and the column permutations by τi.
While it may seem like checking for polynomial completeness is more efficient than checking for simplicity

and non-affiness separately, it should be noted that there are instances when the above algorithm will not
be able to identify the nature of the quasigroup.
As an example, consider the first row permutation of the 16× 16 Cayley table in section 3.2 give by,

25

Input: n× n Latin square corresponding to the quasigroup Q of order n
Output: Classification: quasigroup is polynomially complete/unidentified

1. flag=0
2. for i = 1 to n

Decompose row permutation σi of Q into disjoint cycles;
Check: existence of a sub-cycle of σi of prime length

p ∈ (⌊n2 ⌋+ 1, n− 2);
• if yes, then check whether (n− p ≥ 3) or (n− p = 2 and n ̸= 2t for

t ∈ N);
if yes then flag=1; break; endif
endif
endfor

3. if flag=0 then repeat step 2 for column permutation τj , 1 ≤ j ≤ n of Q
endif 4. if flag=1 print : Polynomially Complete
else print : unidentified
endif

Algorithm: Verifying polynomial completeness

σ1 = (1 5 7 13 8 10)(2 3 14)(4 12 11 16 9 6)(15). Here n = 16 so according to the algorithm given above, to
classify the quasigroup as polynomially complete, σ1 would need to have a sub-cycle of length p which
must be prime and hence belong to one of the following, {11, 13}. Since none of the sub-cycles of σ1 has
this length, the decision cannot be made. So we need to move on to the next row permutation,
σ2 = (1)(2 11 8 14 10 9)(3 6 12 15 7 5)(4 16 13). Again, we fail to make a decision. So we continue with the
next row permutation.
It can be seen that all row permutations have sub-cycles of the same lengths, that is, of lengths 1, 3, 6. So
we will not be able to reach a decision even after we go through all the 16 row permutations. We therefore
have to move on to the column permutations:
τ1 = (1 2 11 13 15 10)(3 7 4 14 6 16)(5 9 8)(12). We are once again faced with unclear markers. Since all the
other column permutations also have a similar sub-cycle structure, the algorithm given above will not be
helpful in deciding the polynomial completeness of the said quaisgroup.

4.2 Non-associativity and associative triples: Let the row and column permutations of the corresponding
Cayley table of a quasigroup Q of order n be denoted by σi and τi respectively. Then,the subgroup of
permutations in Q generated by,
σ1, · · · , σn, τ1, · · · , τn is known as the Multiplication group, MultQ.
The subgroup of MultQ generated by the permutations,

σjσ
−1
1 , τjτ

−1
1 , i, j = 2, · · · , n

is denoted by G(Q).
A quasigroup is called highly non-associative if MultQ = Sym(Q), the symmetric group of permutations
[10]. A highly non-associative quasigroup of any order is simple.
In an algebra A , the associator [15],

(x, y, z) = (xy)z − x(yz)

of any three elements is a measure of associativity or for that matter a lack of it, in A. The associator
(x, y, z) is linear in each argument.
For a quasigroup Q, a triple (a, b, c), a, b, c ∈ Q, is called associative if

(ab)c = a(bc)

that is, in terms of the associator,
(a, b, c) = 0

The total number of associative triples in Q is denoted by a(Q).

26

a(Q) is called the associativity index of Q. Infact, for an associative triple (x, a, y) of the quasigroup Q,
the expression, x(ay) = (xa)y can be written in terms of the left multiplication (by x) map Lx and right
multiplication (by y) map Ry as, LxRya = RyLxa.
Now, let x = xi, y = xj . So, in terms of the row and column permutations σ1, · · · , σn and τ1, · · · , τn
repectively,
Lx = σi, Ry = τj . Thus, LxRya = σiτja,RyLxa = τjσia.This implies that a triple (xi, a, xj) is associative
if and only if σiτja = τjσia. Or, equivalently, σ−1

i τ−1
j σiτja = a.

An algorithm to check for associative triples:
Let [σ−1

i , τ−1
j] = σ−1

i τ−1
j σiτj denote a group commutator.

For example, again consider the quasigroup in 3.2:

Input: n× n Cayley table corresponding to the quasigroup
Output: Associative triples and their total numbers in Q

1. List all the row and column permutations as well as their inverses, that
is,
σ1, · · · , σn and τ1, · · · , τn and correspondingly, σ−1

1 , · · · , σ−1
n and

τ−1
1 , · · · , τ−1

n .
2. for i = 1 to n
for j = 1 to n
(i) Calculate the commutator, [σ−1

i , τ−1
j] = σ−1

i τ−1
j σiτj

(ii) Represent the calculated permutation above in cycle form
3. List all elements xk in Q that donot belong to any non-trivial cycle of
[σ−1

i , τ−1
j] and let it be denoted by x̄k.

4. for each [σ−1
i , τ−1

j],
assoiative triples are (xi, x̄k, xj) ∀x̄k.
5. Total number of associative triples =

∑
#x̄k for each i, j.

Algorithm: Associative triples

We had determined the first row and first column permutation as, σ1 = (1 5 7 13 8 10)(2 3 14)(4 12 11 16 9 6)(15)
and
τ1 = (1 2 11 13 15 10)(3 7 4 14 6 16)(5 9 8)(12) respectively.
Their inverses are: σ−1

1 = (1 2 11 13 15 10)(3 7 4 14 6 16)(5 9 8)(12) and τ−1
1 = (1 10 15 13 11 2)(3 16 6 14 4 7)(5 8 9)(12).

Then, [σ−1
1 , τ−1

1] = σ−1
1 τ−1

1 σ1τ1 = (1 3 13 15)(2 16 14 4)(5 6 9 10)(7 12 11 8). Since this permutation has no
fixed elements so no xk ∈ Q is a part of any non-trivial cycle. Thus there are no associative triples with
respect to σ1 and τ1.
Next, let us calculate [σ−1

2 , τ−1
1]. We have,

σ2 = (1)(2 11 8 14 10 9)(3 6 12 15 7 5)(4 16 13) and hence,
σ−1
2 = (1)(2 9 101 4 8 11)(3 5 7 15 12 6)(4 13 16).

Then, [σ−1
2 , τ−1

1] = (1 9 13 5)(2 10 14 6)(3 11 15 7)(4 12 16 8). Again, no associative triples with respect to
σ2 and τ1.
In this way we can check for associative triples taking into account the rest of the row and column per-
mutations. Note that quasigroups with a small associativity index are preferred as they prevent second
pre-image based attacks in certain types of cryptographic schemes.

4.3 Existence of subquasigroups [12, 13]: Being able to identify subquasigroups (clearly of lesser orders) within
the chosen quasigroup could make it susceptible to less complex brute-force attacks or even lead to the
attacker being able to exploit hidden patterns in these structures.
A method to check for existence of subquasigroups:
Consider any subset Q′ of the quasigroup (Q, f) and let, [Q′] denote the set of all constants generated by
the quasigroup operation f from Q′. Then Q′ is a subset of a proper subquasigroup of Q iff [Q′] ̸= Q.
To verify if there exists proper subquasigroups of size say, atleast k one can list all k-element subsets Q′

of Q and compute [Q′] for all of them. The complexity of this procedure is O(|Q|k+2) and to improve this
bound, one could additionally do the following:
1. compute the ’partial closures’ of all Q′ upto a specified size.
2. if
a subquasigroup is found, stop
3. else
build a system of representatives that generate minimum elements in the set of ’partial closures’ and then

27

compute the ’full closures’ of all representatives.
(Note that a set of represenatatives can be found because the operation [Q′] is monotonous).
(Theorem 3, [12]) The algorithm proposed decides whether there exists a non-trivial subquasigroup with
temporal complexity O(|Q|3 log |Q|) and spatial complexity O(|Q|5/2). Existence of arbitrary proper sub-
quasigroups is decided with temporal complexity O(|Q|7/3 · (log |Q|)2/3) and spatial complexity O(|Q|2).

Conclusion

While the absence of commutativity and associativity in entropoids prevent group-theoretic attacks, the scope for fast
exponentiation of non-associative power indices make them suitable for use in various cryptographic primitives. The
knowledge of a hidden abelian group within the structure of entropoids does pose threats and demands some alter-
ation in its operations. The construction of multi-dimensional entropic operations (which are not always quasigroup
operations) serves as a better shield. One way to make use of these algebraic structures or higher-order quasigroups
generated as a result of these modifications is to use our proposed list of cryptographically important properties as a
cheat-sheet to check for their compatibility in real-life applications. Additionally, it would be an interesting research
problem to develop new cryptanalytic attacks that can be applied with the aim of improving the security of these
schemes. We propose to take this as a part of our future work. We expect this paper and its elaborate discussions
to be a useful tool for advancing the area of quasigroup-based cryptography.

28

Bibliography

1. D. Gligoroski, Entropoid Based Cryptography, IACR Cryptology ePrint Archive 2021/469, 2021, https://ia.
cr/2021/469.

2. L. Panny, Entropoid-based cryptography is group exponentiation in disguise, 2021, https://eprint.iacr.org/
2021/583.

3. K. Toyoda, On axioms of linear functions, In: Proceedings of the Imperial Academy 17.7(1941), pp. 221–227.

4. K. Toyoda, On Axioms of Mean Transformations and Automorphic Transformations of Abelian Groups, Tôhoku
Math. Journal, 47 (1940), pp. 239-251.

5. D. C. Murdoch, Quasi-Groups Which Satisfy Certain Generalized Associative Laws, In: American Journal of
Mathematics 61.2 (1939), pp. 509–522.

6. R. H. Bruck, Some Results in the Theory of Quasigroups, In: Transactions of the American Mathematical
Society 55.1 (1944), pp. 19-52.

7. D. Gligoroski, Rebuttal to claims in Section 2.1 of the ePrint report 2021/583 “Entropoid-based cryptography
is group exponentiation in disguise”, https://ia.cr/2021/896, 2021.

8. V. A. Artamonov, Applications of Quasigroups to Cryptography, Sarajevo Journal of Mathematics, Vol.14 (27),
No.2, (2018), pp. 191-205, https://www.anubih.ba/Journals/vol.14,no-2,y18/08_1303_V.A.%20Artamonov.
pdf.

9. V. A. Artamonov, Quasigroups and their applications, Chebyshevskii Sb., 2018, Volume 19 (2), pp.111-122.

10. V. A. Artamonov, On n-ary Polynomially Complete Quasigroups, New Trends in Algebras and Combinatorics,
(2020), pp. 34-40.

11. A. V. Galatentko, A. E. Pankratiev, S. B. Rodin, Polynomially Complete Quasigroups of Prime Order, Algebra
and Logic, Vol. 57, (2018), pp. 327-335, https://link.springer.com/article/10.1007/s10469-018-9505-6.

12. A.V. Galatenko, A.E. Pankratiev, V.M. Staroverov, Deciding Cryptographically Important Properties of Finite
Quasigroups, Computer Algebra, 4th International Conference, Moscow 2021, pp. 53-56.

13. V. A. Artamonov, A. Viacheslav, Automorphisms of Finite Quasigroups with No Subquasigroups, Vestnik of
St Petersburg University. Mathematics. Mechanics. Astronomy, Vol. 7 (65), Issue 2, (2020), pp. 197-209,
http://hdl.handle.net/11701/17927.

14. A.V. Galatenko, A.E. Pankratiev, V.M. Staroverov, Efficient verification of polynomial completeness of quasi-
groups, Lobachevskii Journal of Mathematics. 2020. Vol. 41, No. 8., pp. 1444-1453.

15. R. D. Schafer, An Introduction to Nonassociative Algebras, The Project Gutenberg EBook (2008), EBook
#25156.

16. D. Nager, ”Danny” N. Jianfang, Xifrat - Compact Public-Key Cryptosystems based on Quasigroups, Cryptology
Eprint Archive, 2021/444, ia.cr/2021/444.

29

https://ia.cr/2021/469
https://ia.cr/2021/469
https://eprint.iacr.org/2021/583
https://eprint.iacr.org/2021/583
https://ia.cr/2021/896
https://www.anubih.ba/Journals/vol.14,no-2,y18/08_1303_V.A.%20Artamonov.pdf
https://www.anubih.ba/Journals/vol.14,no-2,y18/08_1303_V.A.%20Artamonov.pdf
https://link.springer.com/article/10.1007/s10469-018-9505-6
http://hdl.handle.net/11701/17927
ia.cr/2021/444

17. S. Markovski, Design of crypto primitives based on quasigroups, Quasigroups and Related Systems, 23(2015),
pp. 41 - 90.

18. S. Markovski, D. Gligoroski, V. Bakeva, Quasigroup String Processing, AMS Mathematics Subject Classifica-
tion, (1991), 20N05, 60J10, 60J20.

30

