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Abstract

This article explores a Proof-of-Stake mining algorithm in an environment where amounts
are hidden with homomorphic commitments, in particular, using confidential transactions. Our
goal was to avoid revealing amounts and other sensitive information (like which output was used
to stake a given block) to blockchain observers when doing staking.

Our contribution is a Proof-of-Stake mining scheme that does not reveal amounts and is
compatible with ring confidential transactions.

1 Notation

Let G denote the main subgroup of the Ed25519 curve ([1]) and Zp denote a ring of integers
modulo p.

l is the order of G: l = #G = 2252 + 27742317777372353535851937790883648493.

For any set X, x
$← X means uniform sampling of x at random from X.

For any integers x, y,
⌊
x
y

⌋
denotes the integer part of integer arithmetic division.

2 Classic PoS scheme (open amounts)

In this section we describe how PoS mining was originally implemented in Zano1.

Suppose Alice has some unspent outputs and wants to mine a PoS block using one of them as
a stake. In such a scenario she acts as follows (Fig. 2.1):

∗Version 4.3. Last update: 2021-10-06. Check here for the latest version.
1This scheme is based on ideas from the PeerCoin project [3].
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1. Gets the hash identifier of the last PoW block in the blockchain, last pow id.

2. Gets the last PoS block in the blockchain and gets the stake kernel hash identifier from it,
last pos kernel id. Together with last pow id they are called the “stake modifier”. It changes
each time a new block is added to the blockchain.

3. Makes set T of all possible timestamps for the new PoS block:

T = {t : tmin ≤ t ≤ tmax, t ≡ 0 mod 15}

where tmin and tmax are bound to the current blockchain conditions. For the sake of simplicity
we can assume that

tmin = τ − T, tmax = τ + T

where T is a constant and τ is the current timestamp established in such a way that it is the
same across all the network’s nodes.

4. Makes set U of all her unspent transaction outputs (UTXO) that are eligible for staking (i.e.
not locked, mature enough, etc.). For each output u from U she also precalculates the key
image Iu.

5. Each pair (t, u) ∈ T × U is checked against the PoS winning condition as follows:

(a) For output u build stake kernel Ku as a concatenation:

Ku = last pow id ‖ last pos kernel id ‖ t ‖ Iu

where Iu is the key image of the stake output u;

(b) Calculate hash hu = cn fast hash(Ku)2;

(c) Finally, check the main condition:

huD

au

?
≤ 2256 (1)

where D is the current PoS difficulty, and au is the amount of the stake output u.

If inequality (1) holds then it means the success of PoS mining! A block with timestamp t and
a stake input spending output u can be constructed and broadcast to the network.

If for all pairs (t, u) inequality (1) does not hold, Alice needs to wait until one of the following
happens:

• a new block is added to the blockchain (this will change either last pow id or last pos kernel id);

• some time passes (this will change tmin and tmax).

Once this happens, Alice can attempt mining again (items 1-5), as all Ku, and thus hu, will
have different values, giving new opportunities to meet the main condition.

We’d like to note the following important property of (1): as hu is the result of a cryptographic
hash function and can be considered as distributed evenly over the interval [0, 2256), the probability
of meeting the main condition is proportional to output amount au.

2cn fast hash is an alias for the Keccak-256 hash function, which is similar to SHA3-256 but differs in padding
bits.
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Fig. 2.1. Scheme of the PoS mining process, as originally implemented in Zano

3 Hidden amounts: the problem and the solution

Consider a hidden amount scheme3, where amount a of an output is hidden using Pedersen4

commitment A:
A = aH + fG (a < 264, f 6= 0)

where H and G are generators in G for which DL relation is unknown, and f is a random hiding
mask.

It’s easy to see that (1) can’t be used by verifiers anymore because it requires a to be non-hidden.
Let’s see how the main inequality could be modified.

Suppose Alice has already prepared sets of timestamps (T ) and outputs (U) eligible for staking
as mentioned in Section 2. She then considers each pair (t, u) ∈ T × U against the PoS winning
condition. She calculates (this time using the hash function Hs, which produces scalars in Zl)

h = Hs(last pow id ‖ last pos kernel id ‖ t ‖ Iu)

The use of a hash function means h can be considered as uniform randomness distributed evenly
over Zl. Moreover, since the mask f is 6= 0 and fixed for the selected output u (i.e. defined before
h can be computed), the multiplication hf (mod l) can also be considered as uniform randomness
over Zl.

Taking this into account, Alice checks the slightly adjusted PoS winning condition:

hf mod l <

⌊
l

D

⌋
a (2)

where l is the order of the main subgroup. Here we moved from 2256 (used originally in (1)) to l, as
all scalar operations in all the following equations hold modulo l except the division

⌊
l
D

⌋
.

3E.g., Confidential Transactions (CT) by Gregory Maxwell [4].
4More information in the original paper by T.P. Pedersen [6].
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Note that as soon as D ≥ 264 and a < 264, the right side of (2) never exceeds l.

Now we transform the inequality to equality:

hf mod l = da− ba , 1 ≤ d ≤
⌊
l

D

⌋
, ba < 264 (3)

Once (2) holds, Alice needs to calculate d and ba such that (3) holds. If she can convince verifiers
that she knows d and ba, and that those values are in the correct ranges, she can also convince them
that the PoS winning condition (2) holds5 for a particular h, and thus, for a pair (u, t) (assuming
she also convinces them that Iu is the key image of an output u that exists in the ledger).

In the following sections we construct such a proof in a NIZK-manner.

4 Criteria

Let us make a list of criteria for an ideal PoS mining scheme with hidden amounts to help
understand the differences between approaches.

1. (stake proportionality) The probability of meeting the winning condition is proportional to the
stake amount.

2. (resistantness) A miner is unable to tamper with the protocol for their benefit.

3. (amount privacy) Amounts are kept private; hence observers are not able to calculate amounts
from public data.

4. (sender-recipient anonymity) The original sender of an output cannot accurately guess when
a miner stakes that output and creates a new PoS block.

5. (untraceability) It is unreasonably difficult for observers to determine which output was really
used as a stake (e.g. when a ring of decoy outputs are used).

It is easy to see that the classic PoS scheme described above in Section 2 satisfies criteria 1, 2
and 5.6

5 Direct-spend PoS

In this section, for the sake of clarity, we show how to construct a proof for the winning condition
in the simplest case, when there are no decoy outputs, i.e., the stake output is directly referenced in
a mining transaction.

Suppose the stake output amount a is committed to in publicly known A = aH + fG.

5Except with negligible probability in the case when da < ba (see the discussion in Appendix E.2, setting z = 1).
6Criterion 5 could be met by using a ring signature to show the key image Iu corresponds to a real output u,

and also that a pseudo-output commitment corresponds to that output’s amount commitment. Then the prover can
open the pseudo-commitment to reveal the amount au, without needing to expose the blinding factor of the original
amount commitment (which would break Criterion 5).
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Rewriting (3) slightly (all scalar equations hold modulo l):

(3) ⇔ hf − da+ ba = 0, 1 ≤ d ≤
⌊
l

D

⌋
, ba < 264 (4)

Let bf = df − ha. The following equality holds:

ha− df + bf = 0 (5)

Use (4) and (5) as scalar parts for scalar multiplication with H and G correspondingly:

(4), (5)⇒

{
hf − da+ ba = 0 | ×H
ha− df + bf = 0 | ×G

(6)

Considering commitments A′ = fH + aG, A = aH + fG, and B = baH + bfG, we can rewrite
(6) in terms of group element operations:

hA′ − dA+B = 0 (7)

where 0 is the identity element of G.

Now to satisfy range requirements in (3), Alice needs to reveal d and A′, prove that A′ is the
mirror commitment of A, and provide a range proof for B (i.e. show that ba < 264).

Proving the correctness of A′ can be done by proving that A+ A′ = k0(H +G) and A− A′ =
k1(H −G) for some k0 and k1 known to Alice, as shown in Appendix A.1.

This approach satisfies stake proportionality, resistantness, and amount privacy from (4), but
the criteria of sender-recipient anonymity and untraceability are not met.

6 Ring-friendly PoS hidden amount scheme

If Alice would like to improve her mining anonymity and use a ring of decoy outputs to hide
her stake, she cannot use the approach in Section 5, because in a RingCT-like mining transaction
with a non-empty decoy set [5], the stake input would refer to a set of outputs, and thus a pseudo
output commitment would be used to represent the amount a in the input. Therefore, verifiers on
the network would not be able to check (7) as they don’t know which A from the set of outputs to
use.

This problem can be solved if Alice provides another commitment to the same stake amount
that verifiers can use in an equation similar to (7), but that can’t be used to link to any amount
commitment from the ledger.

6.1 Ring-friendly proof construction

Let (V, S) = (vG, sG) be Alice’s public address, where v and s are her view and spend secret
keys correspondingly.

Suppose Alice already went through steps 1-4 in Section 2 and found a pair (t, u) for which the
PoS winning condition (2) is met. Assume it was Bob who had previously sent output u to Alice.
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Following the CryptoNote protocol, Bob calculated a one-time address P for output u:7

P = Hs(rV )G+ S

where r is the transaction’s secret key. Suppose that for each output Bob also computed group
element Q and made it public in addition to P :

Q = Hs(rV )V = qG, q = vHs(rV )

Note that only Alice and those who get secret view key v from her can calculate secret q, as
q = vHs(vR), where R is the transaction’s public key.

Recalling equation (3), suppose Alice has calculated d and ba such that the PoS winning equality
holds.

Also suppose that, following the standard procedure, she randomly selected a set of apparently
unspent decoy outputs {ui} from the blockchain and put her output, which met the PoS main
condition (2), at random index π of that set.

Let the i-th decoy output’s commitment be denoted Ai (and Aπ is the commitment to her own
output). Note that in general Alice doesn’t know amounts ai and masks fi for the outputs she
selected as decoys.

Let X be a generator in G for which the DL relations with G and H are unknown.

Consider extended commitment C to the same stake amount a:

C = xX + aH + (f + q)G, x
$← Zl (8)

Here x is a secret randomness chosen by Alice.

Extended commitment C can be linked to the stake commitment Aπ (without revealing index
π) by adding two additional layers8 to the main ring signature:9

1. a proof of knowing the DL x of C −Aπ −Qπ with respect to X;

2. a proof of knowing the DL q of Qπ with respect to G.

We can extend the ring signature by adding two group elements to the calculation of the non-
interactive challenge as follows:

cπ+1 = Hs(. . . , α0X, α1G)

ci+1 = Hs(. . . , r
0
iX + ci(C −Ai+1 −Qi+1), r1iG+ ciQi+1)

r0π = α0 − cπx
r1π = α1 − cπq

Note that using randomness x in (8) implies that an external observer would not be able to
easily link C with any of Ai, even if a and f are known (which is the case for the sender of Aπ).

7In CryptoNote, a one-time address is calculated as Pj = Hs(rV, j)G+S, where j is the index of an output. Here
we skip j in Hs(rV, j) for the sake of clarity.

8Here we’re using terminology and ideas from Multi-layered Linkable Spontaneous Anonymous Group signatures
proposed in [5].

9If Aπ has a range proof, as it required for confidential transaction amount commitments stored in a ledger, then,
taking into account these ring signature layers, observers can be confident that C is composed of the generators
X,H,G, and that the amount a in C equals the amount a in Aπ .
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Consider the mirror extended commitment C ′:

C ′ = x′X + (f + q)H + aG, x′
$← Zl, x′ 6= x (9)

Let us introduce randomness x′′
$← Zl, x′′ 6= 0 which is freely chosen by Alice.

Let bx = x′′ − hx′ + dx. Then the following equation holds:

hx′ − dx+ bx = x′′ (10)

Use (4), (5), and (10) as scalar parts for scalar multiplication with H, G, and X correspondingly.
Note that we now use h(f + q) instead of hf for (4) and (5).10

(4), (5), (10)⇒


h(f + q)− da+ ba = 0 | ×H
ha− d(f + q) + bf = 0 | ×G

hx′ − dx+ bx = x′′ | ×X
(11)

Considering E = baH + bfG + bxX and equations for C and C ′ above, we can rewrite (11) in
terms of group element operations:

hC ′ − dC + E = x′′X = F (12)

To convince verifiers that (12) holds, Alice discloses C, C ′, and E, and provides a Schnorr proof
for F = x′′X. Disclosing C, C ′, and E is safe as each of them are guarded with its own randomness
x, x′, and x′′ respectively. Alice also needs to prove that C ′ is in fact the mirror commitment of C,
and provide a range proof for E to finish proving (12). Proving that (12) holds implies that (4) also
holds, and thus the PoS winning condition holds as well.

Let us consider these steps in detail.

1. Assume the correctness of C is proven by modification of the ring signature (see above).

2. For proving C ′ = x′X + (f + q)H + aG we use the following relations:

C + C ′ = (x+ x′)X + (a+ f + q)(H +G)

C − C ′ = (x− x′)X + (a− f − q)(H −G)

According to Lemma 2, it is enough to prove that C + C ′ = k0X + k1(H +G) and C − C ′ =
k2X + k3(H − G) for some k0, k1, k2, k3 ∈ Zl. This can be done by using linear composition
proofs, described in Appendix A.2.

3. A range proof for ba < 264 committed to in E = baH + bfG + bxX can be done directly by
extending an existing range proof signature, like Bulletproofs+[2], to support two blinding
factors in commitments.

10If we do not include q in h(f + q), and instead just have hf , then the staked output’s sender could check
inequality (3) for all staking events in the ledger (d and h are public knowledge, and an output’s sender knows f and
a): da − hf < 264 (mod l). The likelihood of that test succeeding yet a different output was staked is negligible, so
senders could trivially identify when their outputs are staked by recipients. Including the recipient’s secret value q
makes that test impossible, preserving sender-recipient anonymity.
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However, this can be achieved using a standard range proof if Alice provides a range proof for

commitment B = baH + eG on value ba, where e
$← Zl, and also proves that B and E are

commitments to the same value ba. The latter can be accomplished by proving that

E −B = k0G+ k1X

for some k0, k1 using linear composition proof (A.2). Indeed: k0 = bf − e, k1 = bx.

Note that, if Alice needs to spend her stake output u in the same transaction, which is the case
for the PoS protocol used in Zano, she can construct a pseudo output commitment W = aH + wG

to the same value a (with w
$← Zl) and provide a linear composition proof for the fact that C−W =

k0G+ k1X for some k0 and k1.11

We believe this approach satisfies all criteria mentioned in Section 4 above.

6.2 Ring-friendly scheme outline

Let’s summarize the whole PoS mining process.

1. Alice prepares a set T of possible block timestamps and set U of outputs eligible for staking.

2. For each pair (t, u) she calculates h = Hs(. . . ) and q = vHs(vRu), and checks the slightly
adjusted winning condition (2), using h(f + q) instead of hf :

h(f + q) mod l <

⌊
l

D

⌋
a (13)

3. If (13) holds, she generates random non-zero x, x′, x′′ and e in Zl, and calculates:

d =

⌊
h(f + q) mod l

a

⌋
+ 1

ba = da− h(f + q)

bf = d(f + q)− ha
bx = x′′ − hx′ + dx

C = xX + aH + (f + q)G

C ′ = x′X + (f + q)H + aG

E = baH + bfG+ bxX

B = baH + eG

4. To prove correctness of C she adds a proof that C −Aπ −Qπ = xX and proof that Qπ = qG
as additional layers to the main ring signature.

11Such a linear composition proof would only show that W = aH + n1G + n2X, where n1, n2 ≥ 0. It is acceptable
for n2 > 0 to be true, because any amount balance proof involving W would have to show that a on generator H is
canceled out by any new amounts (in the case of a PoS mining transaction, the block reward plus staked output’s
amount), regardless of statements about values attached to other generators. In practice, setting n2 > 0 may be
either impossible (incompatible with balance proofs) or cause new outputs to be unspendable (incompatible with
range proofs).
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5. To prove correctness of C ′ she generates two linear composition proofs (c, y0, y1), (c, y2, y3) for
the fact that C + C ′ = k0X + k1(H +G) and C − C ′ = k2X + k3(H −G) (Section A.2).

6. She generates a Schnorr proof (c, y4) with respect to base X for the fact that hC ′− dC +E =
x′′X.

7. She generates a range proof RB showing ba < 264 in commitment B.

8. She generates a linear composition proof (c, y5, y6) for the fact that E −B = k0G+ k1X.

9. She makes a PoS block with timestamp t, containing a mining transaction with stake output
u and extended ring signature, and adds the PoS signature σ to the block’s data:

σ = {d,C,C ′, E,B, (c, y0, y1, y2, y3, y4, y5, y6),RB} (14)

Note that all the discrete logarithm proofs can share a Fiat-Shamir challenge c.

6.3 Verification of ring-friendly PoS scheme

Verifiers on the network check a PoS block as follows.

1. Check 0 < d ≤
⌊
l
D

⌋
.

2. Calculate h = Hs(. . . ) and F = hC ′ − dC + E.

3. Check the stake input’s ring signature, which has additional layers for C −Ai −Qi and Qi.

4. Check linear composition proofs (c, y0, y1, y2, y3) for the fact that C +C ′ = k0X + k1(H +G)
and C − C ′ = k2X + k3(H −G).

5. Check Schnorr signature (c, y4) for the fact that F = x′′X.

6. Check linear composition proof (c, y5, y6) for the fact E −B = k0G+ k1X.

7. Check range proof RB .

6.4 Limitations

The proposed scheme works only under the following conditions:

• Proof-of-stake difficulty: D > 264.

• Output’s amount: a < 264.

• Commitment’s mask: f 6= −q (in Appendix D we consider this in detail).
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6.5 Optional sender-recipient anonymity

If the sender-recipient anonymity criterion mentioned in Section 4 is considered optional in a
particular implementation, the protocol can be simplified as follows:

• get rid of Q in outputs’ data;

• get rid of the additional layer for Qπ = qG in the ring signature;

• let q = 0 in all equations with q above.

This data-saving approach can also be used when sender-recipient anonymity is important but
it is ensured by other means. For instance, Alice could stake only outputs received from trusted
parties (e.g. herself), and make other outputs eligible for staking by sending them to herself using a
chain of trusted parties.

6.6 Size of ring-friendly PoS proof

Let’s estimate the size of the proof for n − 1 decoy outputs, where the total size of the
ring is n. Assume we’re using Bulletproofs+ for range proofing. According to [2] it requires
2 · dlog2(m) + log2(k)e + 3 elements in G and 3 elements in Zl, where m = 64 for range 264, and
k = 1 as we only need it for one element ba

12.

For the ring signature extension we need to store, presumably, only two extra Zl elements per
ring member (r0i , r

1
i ).

Additionally, we need to store 9 elements in Zl (d, c, y0, . . . , y6) and 4 elements in G (C,C ′, E,B)
per PoS signature, and one group element per each output in the blockchain (Q).

In total we have 19 group elements and 2n+ 12 field elements. If both field and group elements
have a compressed size of 32 bytes, which is the case for Ed25519 used in Zano, then the total size
of additional PoS data can be estimated as 2n + 31 elements per PoS signature and 1 element per
output, or 64n+ 992 bytes per PoS signature and 32 bytes per output.

If the sender-recipient anonymity is ensured by other means and the protocol is simplified as
explained in subsection 6.5, the total size of additional data is 19 group elements and n + 12 field
elements per PoS block. Or, in case of Ed25519, the total size is n + 31 elements or 32n + 992 per
PoS block.
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A Basic proofs

A.1 A′ proof

Assume Alice needs to convince a verifier that A′ = fH + aG is the mirror commitment of
public A = aH + fG without revealing a and f . We can construct a Schnorr-like proof as follows:

1. Alice generates randomnesses r0, r1
$← Zl

2. Calculates R0 = r0(H +G), R1 = r1(H −G)

3. Calculates non-interactive challenge c = Hs(R0, R1, A
′, A)

4. Calculates y0 = r0 + c(a+ f), y1 = r1 + c(a− f)

5. Sends (c, y0, y1) to the verifier.

6. Verifier makes sure that

c
?
= Hs(y0(H +G)− c(A+A′), y1(H −G)− c(A−A′), A′, A)

If the above equation holds, the verifier is convinced that A+ A′ = k0(H +G) and A− A′ =
k1(H −G) for some k0 and k1, and thus due to Lemma 1 he is convinced that A′ = fH + aG.

In appendix C we give an intuition for the fact that this proof does not reveal parts of commit-
ments.

A.2 Linear composition proof

Assume Alice needs to convince a verifier that C = aA + bB, where A,B ∈ G are public, and
a, b ∈ Zl should not be revealed. For this purpose, we can construct a Schnorr-like proof as follows:

1. Alice generates randomnesses r0, r1
$← Zl

2. Calculates R = r0A+ r1B

3. Calculates non-interactive challenge c = Hs(R,A,B,C)

4. Calculates y0 = r0 + ca, y1 = r1 + cb

5. Sends (c, y0, y1) to the verifier.

6. Verifier makes sure that
c

?
= Hs(y0A+ y1B − cC,A,B,C)

If the above equation holds, the verifier is convinced that C = k0A+ k1B for some k0 and k1.
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B Lemmas

Lemma 1. Let a, f ∈ Zl and A = aH + fG, where G and H are public generators in cyclic group
G of prime order l such that the DL relation between them is unknown. The Prover knows a and f .
The Verifier knows only A. If the Prover wants to convince the Verifier that the given A′ = fH+aG
without revealing secrets a and f , it is enough to provide a proof to the fact that he knows y0 and
y1 such that:

A+A′ = y0(H +G)

A−A′ = y1(H −G)

Proof. Suppose the Verifier is convinced that the Prover knows y0 and y1 such that the equations
above hold. Also suppose that, contrary to the lemma’s statement, A′ = cH + dG 6= fH + aG,
where c, d ∈ Zl.

Substitute equations for A and A′:{
aH + fG+ cH + dG = y0(H +G)

aH + fG− cH − dG = y1(H −G)

As DL relation between G and H is unknown, we can split the equations:


(a+ c)H = y0H

(f + d)G = y0G

(a− c)H = y1H

(f − d)G = −y1G

⇒

{
a+ c = f + d

a− c = d− f

⇔

{
2a = 2d

2c = 2f
⇒ A′ = cH + dG = fH + aG

This contradiction concludes the proof.

Lemma 2. Let a, f, x ∈ Zl and C = xX + aH + fG, where G, H, X are public generators in cyclic
group G of prime order l such that the DL relation between each pair is unknown. The Prover knows
a, f , and x. The Verifier knows only C. If the Prover wants to convince the Verifier that the given
C ′ = x′X + fH + aG where x′ ∈ Zl without revealing secrets a, f , x and x′, it is enough to prove
the fact that he knows k0, k1, y0, y1 such that:

C + C ′ = k0X + y0(H +G)

C − C ′ = k1X + y1(H −G)

Proof. The proof is the same as for Lemma 1.
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C Intuition for A′ proof

Let us give an intuition for the fact that the A′ proof given in subsection A.1 (for the fact that
A′ = fH + aG) does not reveal aH, fG, fH or aG to the Verifier.

The Verifier gets {y0, y1, c} from the Prover and thus can construct the following system:

A = aH + fG

A′ = fH + aG

y0 = r0 + c(a+ f)

y1 = r1 + c(a− f)

c = Hs(r0(H +G), r1(H −G), A,A′)

where all the known values are on the left (except the generators). As c is the result of the crypto-
graphic hash function Hs applied to fixed arguments, it can be treated by the Verifier as a known
constant, so we’ll exclude the equation for c.

Let’s multiply all terms in equations for y0 and y1 by H and G, and make a substitution:



y0H = r0H + α+ γ

y0G = r0G+ δ + β

y1H = r1H + α− γ
y1G = r1G+ δ − β
cA = α+ β

cA′ = δ + γ

(15)

where
α = caH β = cfG γ = cfH δ = caG

We would like to show that it’s impossible for the Verifier to calculate α, β, γ, δ.

There are six linearly independent equations in (15) and also six unknown values: α, β, γ, δ, r0, r1.
It looks like (15) could be solved.

However, due to the discrete logarithm assumption, scalar multiplications r0H, r0G, r1H and
r1G should be considered as four independent unknowns rather than two r0, r1. Therefore, there
are eight unknowns in (15) and it can not be solved.

Note that if we assume that r0 = r1 or at least r0k = r1, where k ∈ Zl is a known value, the
number of unknowns would be reduced to six and the system could be solved, so the Verifier would
be able to calculate α, β, γ, δ.

However, the Prover generates r0 and r1 uniformly at random in Zl.
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D How to ensure f 6= −q

In subsection 6.4 we mentioned that the proposed PoS scheme works only under certain con-
ditions, and one of them is the sum f + q must be non-zero for all staking outputs. The reasoning
behind that is simple: suppose Alice prepared a UTXO with amount a committed in A with mask
f = −q: A = aH − qG. Such an output can be staked instantly as the winning condition is met
regardless of h:

hC ′ − dC + E = x′′X (12)
f=−q
=⇒ (ba − da)H + (bf + ha)G+ (hx′ − dx+ bx)X = x′′X

This implies that for any given h, Alice can pick arbitrary ba < 264, d, bf such that ba = da and
bf = −ha, and thus all conditions mentioned in subsection 6.3 will be satisfied.

Below we show two solutions for this problem: the blockchain-independent method by con-
structing a special proof and a blockchain-specific method.

D.1 Proof for f + q 6= 0

Here we construct a proof for f+q 6= 0 taking into account criteria from section 4. In particular,
sender-recipient anonymity must be preserved. We should not allow the sender, who knows a and
f , to identify the prover.

Consider the following:
C = xX + aH + (f + q)G

K = x−1(C − aH) = X + x−1(f + q)G

The idea of the proof is to show that k0C + k1H = kG+X for non-zero k.

The prover acts as follows:

1. Calculates K = x−1(C − aH).

2. Generates a linear composition proof (c, y0, y1) for the fact that K = k0C + k1H for some
k0, k1 ∈ Zl.

3. Generates a Schnorr proof (c, y2) for the fact that K −X = kG for some k ∈ Zl. Note that
f + q 6= 0 implies k 6= 0.

4. The proof is σ = {K, c, y0, y1, y2}.
Note that both discrete logarithm proofs can share a Fiat-Shamir challenge c.

Verifier acts as follows:

1. Checks K 6= X (this check ensures that C has a non-zero component of G).

2. Checks the Schnorr proof (c, y2).

3. Checks the linear composition proof (c, y0, y1).

The size of the proof can be estimated as 1 group element and 4 field elements. If both field and
group elements have a compressed size of 32 bytes, which is the case for Ed25519 used in Zano, then
the total size of additional data is 5 elements, or 160 bytes. Note that the Fiat-Shamir challenge
can be shared with other discrete logarithm proofs.
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D.2 Blockchain-specific solution

Let’s require adding f ′H and f ′G to commitments C and C ′ respectively before using them
in the PoS protocol, where f ′ is a non-zero public constant that is unknown to a sender when he
generates hiding mask f for the output (so he has no way to define f such that f + q + f ′ = 0).

In the case of the Zano blockchain, which has a hybrid PoW/PoS consensus13, f ′ can be
calculated as f ′ = Hs(last pow id), where last pow id is the hash identifier of the last PoW block
in the blockchain14. That way, a malicious miner would have no chance to choose f for his benefit
by building an alternative PoS subchain.

Consequently, substituting f+q+f ′ for f+q in (2) we get this modified PoS winning condition:

h(f + q + f ′) mod l <

⌊
l

D

⌋
a

Doing the same for (11) we get:
h(f + q + f ′)− da+ ba = 0 | ×H
ha− d(f + q + f ′) + bf = 0 | ×G

hx′ − dx+ bx = x′′ | ×X

Now for (12) we obtain:

hC ′ − dC + E + f ′(hH − dG) = x′′X

With such a modification, neither Alice nor the staked output’s sender will be able to gain an
advantage when choosing f .

13More info in the Zano whitepaper [7].
14This would also require that the real output and all the decoy outputs in the staking ring signature to be

either older than, or the same age as, the most recent PoW block. Verifiers on the network can easily check such a
requirement. Note that last pow id is also used as part of the stake modifier as described in Section 2.
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E Brute-force attack, its complexity, and mitigation

The weak point of the scheme proposed in Section 6 is the relation between public scalars d and
h, sender-known scalars a and f , and secret scalar q:

d =

⌊
h(f + q) mod l

a

⌋
+ 1

An adversarial sender can reveal secret q by guessing k ∈ [0; a− 1] as follows:

q = h−1((d− 1)a+ k)− f

And then reveal Alice’s secret view key: v = (Hs(rV ))−1q, where r is the transaction’s secret key
which is known to the sender.

E.1 Complexity

An adversarial sender would need to scan the blockchain and for each PoS block that is refer-
encing his output in the miner transaction, guess k and check Qj

?
= qG for each attempt. The most

expensive operation here is EC scalar multiplication, and each attempt would require one such op-
eration. The average number of attempts when testing an output that was staked is upper-bounded
at 1

2a.

Let us use the Zano blockchain as a reference for estimation. As the vast majority of PoS blocks
in Zano now have their stake value in [100 · 1012; 600 · 1015], the expected number of attempts can
be roughly estimated as 250 in practice, which arguably isn’t secure enough given that the reward
is Alice’s secret view key v.

Below we suggest two ways of mitigation: by increasing the complexity of the attack and by
eliminating all risk to secret v.

E.2 Solution 1: increasing complexity

We start with a modification of the direct-spend scheme (Section 5). Let z = const. Consider
the following modification to (4) and (7):

hf − dza+ ba = 0, 1 ≤ d ≤
⌊
l

zD

⌋
, ba < z264 (16)

hA′ − dzA+B = 0

As the range of ba is z times bigger, it would require the range proof for B to be extended
correspondingly.

For the ring-friendly scheme variant, equation (12) can be modified like this:

hC ′ − dzC + E = x′′X = F

and similarly B = baH + eG would require a wider range proof.
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With this modification, the expected number of attempts to guess the correct q or v is z times
bigger. At the same time, z cannot be arbitrarily big, because the bigger z is, the more likely (16)
will hold without satisfying the main PoS condition (2) due to the rounding error15.

This approach is certainly a trade off. In the case of the Zano blockchain, values of 264 ≤ z ≤ 2106

look reasonable because the complexity of a brute force attack will rise up to 2114 . . . 2156 without
increasing rounding error too much16. If using Bulletproofs+ for range proofs, the additional data
for increasing the range’s upper boundary to 265 . . . 2128 is 2 group elements and for increasing it to
2129 . . . 2256 is only 4 group elements, comparing to the standard 264 range17.

E.3 Solution 2: eliminating all risk to secret key v

If secret key v shouldn’t be put even at negligible risk, the following solution can be used.

• All addresses are 3-key tuples: (V, S, T ) = (vG, sG, tG);

• Sender calculates Q for each output along with one-time address P :

Q = Hs(rV )T

Note that only Alice and those who get secret keys v and t from her can calculate secret
q = Hs(vR)t, where R is the transaction’s public key.

• Follow the rest of the protocol using the calculated q.

A brute force attack in this case would only reveal secret key t, which is not used in balance
calculation nor for transferring coins. If a sender exposes a recipient’s t using a staked output they
sent to that person, it would only allow them to identify when other outputs they sent to that person
are staked.

15From (16) we get:

(hf mod l + ba) mod l ≤
⌊

l

zD

⌋
za

Note that the right side never exceeds l. As ba can be arbitrary chosen in [0; z264), this inequality also holds for
hf mod l > l − z(264 − a) (if d = 1), resulting in an overall acceptable interval for hf (mod l) of[

0;

⌊
l

zD

⌋
za

]
∪
(
l − z(264 − a); l

)
Now we can estimate the relative increase in possible values of hf (mod l) that satisfy the PoS winning condition due
to this ‘rounding error’ as the ‘length’ of the rounding-zone compared to the ‘length’ of the intended PoS zone (note
real arithmetic division):

P% =
z(264 − a)− 1⌊

l
zD

⌋
za + 1

· 100%

16Assuming maximum difficulty D ≈ 270 for the Zano blockchain, and a� 264, we can approximate P%:

P% ≈
z

a
2−118 · 100%

For z = 2106 using the smallest possible stake amount of 1, we get a P% ≈ 2−12 · 100% ≈ 0.024% increase in the
probability of satisfying the PoS winning condition (compared to what we intend). However, meeting the PoS winning
condition for a = 1 and D ≈ 270 is already very unlikely, and for greater values of a the value of P% will be even
smaller. Therefore, if z / 2106, a < 264, and D / 270, then the rounding error will be negligible.

17According to [2], Bulletproofs+ requires 2 · dlog2(m) + log2(k)e+ 3 elements in G and 3 elements in Zl, where 2m

is the upper boundary, and k = 1 as we only need it for one element B.
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