
On methods of shortening ElGamal-type signatures

Liliya Akhmetzyanova, Evgeny Alekseev, Alexandra Babueva
and Stanislav Smyshlyaev

CryptoPro LLC, Russia
{lah, alekseev, babueva, svs}@cryptopro.ru

Abstract

Development of signature schemes providing short signatures is a quite relevant
non-trivial challenge for cryptographers. Since the late 1980's many short signa-
ture schemes have been proposed. The most perspective schemes are multivariate
schemes and schemes based on Weil pairing. Unfortunately, the cryptographic tools
used in these schemes are still not supported by most cryptographic software that
complicates their e�ortless use in practice.

In the current paper we investigate the opportunity of shortening the standard
ElGamal-type signatures. We propose three methods of shortening signatures (for
any ElGamal-type schemes such as ECDSA, GOST and SM2) and analyze how
applying these methods a�ects the security. Applying all three methods to the GOST
signature scheme with elliptic curve subgroup order q, 2255 < q < 2256, can reduce
the signature size from 512 to 320 bits. The modi�ed scheme provides su�cient
security and acceptable (for non-interactive protocols) signing and verifying time.

Keywords: short signature scheme, ElGamal-type signature scheme, GOST, provable security.

1 Introduction

A signature scheme is one of the most widely used cryptographic protocol
in practice. It is a self-supporting protocol replacing a handwritten signature
and is used as a primitive in a huge amount of multiple protocols (e.g. TLS
Handshake [1] and IKEv2 [2]). Therefore, the operational characteristics of
signature scheme such as sizes of keys and signature, time complexity of
signing and verifying, are crucial for applications. Although all parameters
are important, in the current paper we focus only on the size of signature
values.

One of the applications requiring short signatures is the systems where a
human is asked to manually key in the signature. For example, product regis-
tration systems often ask users to key in a signature provided on a CD label.
Also, the size of signature in�uences the requirements on a channel capacity
which may be essential for low-bandwidth communication environments (e.g.
Internet of Things and QR codes).

1



1.1 Related works

Due to the relevance of the considered issues many short signature
schemes have been proposed since the late 1980's. One of these schemes
is known as a BLS signature scheme [3] based on Weil pairing and providing
160 bits signatures with su�cient for practice security.

Other type of short signature schemes is multivariate schemes based on
Hidden Field Equations (HFE) such as Quartz [5], Gui [10], SFLASH [4],
UOV [12], Rainbow [13]. Although several of these schemes have been bro-
ken due to newly developed attacks (see [6, 7]), a number of multivariate
schemes such as UOV, Rainbow withstood cryptanalysis (for suitable pa-
rameter sets) for more than 20 years. Also in 2016 the work [11] proposed
technique reducing the signature size of almost every multivariate signature
scheme by 10 to 15 % without increasing the key sizes or slowing down the
scheme signi�cantly. The authors claim that by applying their technique to
the Gui signature scheme they obtain signatures of size only 110 bits, ¾which
are the shortest signatures of all existing digital signature schemes¿. How-
ever, the scheme has relatively large public key (about 100 KByte) and slow
veri�cation time for the smallest signatures.

In light of the above, the BLS signature scheme is treated as a most
favourable solution. Unfortunately, currently Weil pairing is still a non-typical
cryptographic tool requiring generation and consequent deep analysis of so
called ¾pairing-friendly¿ curves. Hence, not any cryptographic software sup-
ports this type of curves (unlike typical well-investigated elliptic curves used
in standard signature schemes such as ECDSA and GOST). Therefore, the
task to provide shorter signatures using typical cryptographic primitives is
relevant.

1.2 Our contribution

In the current paper we consider the standard ElGamal-type signature
schemes [14] (particularly GOST [19, 20, 21, 22]) with two-component signa-
tures r‖s, where r and s are dlog2 qe-bit strings (here q is the prime order of
the used elliptic curve subgroup), and propose three methods of shortening
this type of signature:

� The �rst method is to replace an internal function f (a mapping from a
random elliptic curve point to an integer r ∈ Zq) by the hash function
with truncated output that implies the reduction of the r component
size.

2



� The main idea behind the second method is to make the certain bits
of the r signature component to be constant and then to cut out them.
This method leads to increasing signing time.

� The last method is to directly truncate signature (r and/or s compo-
nent). This methods leads to increasing veri�cation time.

All these methods are independent and can be applied together in any com-
bination.

The idea to use hash function for the ElGamal-type signature shorten-
ing is also brie�y mentioned in [29]. Unlike our �rst method, the method
presented in [29] modi�es the original signature scheme signi�cantly due to
hashing the message and the r-component together. Moreover, from what we
understand, the authors propose to use the same hash function as for message
processing in the original signature scheme. Therefore, it is not clear by what
exact means signature shortening is made since the hash function output is
usually as long as the original components. Even if truncation of the hash
output is implicitly supposed to be done, authors present only asymptotic
security results (in terms of polynomial adversaries and negligible success
probabilities). However, such a result cannot be used for choosing hash out-
put length securely for practical application and concrete security bounds
should be presented. The paper [11] proposes similar technique as in the
last method but for multivariate signature schemes speci�cally. Unlike our
method, signature veri�cation in [11] does not imply signature recovering.

We analyse how applying the methods a�ects the security by obtain-
ing concrete SUF-CMA-security bounds for modi�ed schemes in the random
oracle model. The �rst method changes the internal structure of the base
scheme (function f) and in fact provides a new instance of the ElGamal-
type signature scheme. For presentation purposes we obtain security bounds
for the modi�ed GOST signature scheme (named GOST-H) only, although
we believe that the proof can be easily generalized. Using standard tech-
niques we show that the hardness of elliptic curve discrete logarithm prob-
lem (ECDLP) and standard security properties of the hash function implies
SUF-CMA-security of the GOST-H signature scheme. The second and the
third methods are considered in general: for them we reduce the security
of the base unmodi�ed scheme to the security of the corresponding modi�ed
signature scheme. Applying all three methods to the GOST signature scheme
with EC subgroup order q, 2255 < q < 2256, can reduce the signature size
from 512 to 320 bits. The modi�ed scheme provides su�cient security and
acceptable for non-interactive protocols signing (≈ 6 seconds) and verifying

3



(≈ 3 seconds) time.

1.3 Paper organization

The remainder of the paper is organized as follows. In Section 2 basic
de�nitions and notations are introduced. Section 3 introduces ElGamal-type
signature schemes and describes the main object of the research � three
methods of shortening signatures of such type. In Section 4 we formally
de�ne basic security notions for signature schemes and accompanying primi-
tives. Section 5 is devoted to the security analysis of the proposed methods.
We draw our conclusions in Section 6. Detailed proofs of our theorems are
relegated to the appendices due to space limitations.

2 Basic notations and de�nitions

By {0, 1}s we denote the set of s-component bit strings and by {0, 1}∗
we denote the set of all bit strings of �nite length including the empty string.
For bit strings a and b we denote by a‖b their concatenation. Let |a| be the
bit length of the string a.

For a bit string u and a positive integer l 6 |u| let msbl(u) (lsbl(u)) be
the string consisting of the l rightmost (leftmost) bits of u. For integer r > 0
let str(r) (or just r) be the (blog2(r)c + 1)-bit representation of r > 0 with
the least signi�cant bit on the left and zero bit if r = 0. For a bit string u
let int(u) be the integer r such that str(r) = u.

If p is a prime number then the set Zp is a �nite �eld with characteristic
p. We assume the canonic representation of the elements in Zp as a natural
number in the interval [0 . . . p − 1]. Each non-zero element x in Zp has an
inverse 1/x. We de�ne Z∗p as the set Zp without zero element.

We denote the group of points of elliptic curve over the �eld Zp as G, the
order of the prime subgroup of G as q and elliptic curve point of order q as
P . We denote the group generated by P as 〈P 〉 and neutral element in G as
O.

For any set A and B let Func(A,B) be the set of all mappings from A
to B. If the value s is chosen from a set S uniformly at random, then we

denote s
U←− S.

If the variable x gets the value val then we denote x←− val. Similarly, if
the variable x gets the value of the variable y then we denote x←− y. If the

variable x gets the result of a probabilistic algorithm A we denote A
$−→ x

(x
$←− A). If we need to emphasize that A is deterministic than we denote

4



it by A −→ x (x ←− A). The event when A returned value val as a result is
denoted by A→ val.

We de�ne security properties using the notion of ¾experiment¿ played
between a challenger and an adversary. The adversary and challenger are
modelled using consistent interactive probabilistic algorithms. The challenger
simulates the functioning of the analysed cryptographic scheme for the ad-
versary and may provide him access to one or more oracles. The parameters
of an adversary A are its computational resources (for a �xed model of com-
putation and a method of encoding) and oracles query complexity. The query
complexity usually includes the number of queries. Denote by AdvMS (A) the
measure of the success of the adversary A in realizing a certain threat, de-
�ned by the security notion M for the cryptographic scheme S. The formal
de�nition of this measure will be given in each speci�c case.

3 Three methods of shortening

A signature scheme consists of three algorithms KGen, Sig,Vf such that:
algorithm KGen generates secret signing key sk and public signature veri�-
cation key pk; algorithm Sig takes as input a signing key sk and message
m and generates a signature sgn for message m; deterministic algorithm Vf
takes as input veri�cation key pk, message m and candidate signature sgn
and outputs 1 (accept) or 0 (reject). It is required that for every (pk, sk)
outputted by KGen and every message m it holds that

Vf(pk,m, Sig(sk,m)) = 1.

The GenElGamal framework is introduced in [14].
We follow the notations of [19] and change the de�nition in [14] in the

following way: we represent the signature as the concatenation of vectors t
and s instead of pair of elements in Zq, we denote r as k, h as e, t as r, x as d,
X as Q. Moreover, we denote the GenElGamal signature scheme as GenEG.

The signature generated by the GenEG scheme is represented as r‖s,
where r, s ∈ Zq, thus, its size is at most 2 dlog qe. The following sections
introduce three methods of shortening signature size, we call the schemes
obtained by applying these methods GenEG-H, GenEGS and GenEGV respec-
tively.

3.1 GenEG-H scheme

The r component in all GenEG schemes is computed as the result of ap-
plying function f to point R. The idea behind the �rst method of shortening

5



signature is to modify function f by splitting it into two functions. At �rst we
apply the compression function H2 to the x-coordinate of point R and then
we represent the result as an element in Z∗q. Note that the bit representation
of r will be shorter due to compression.

The modi�ed function f is de�ned in the following way.

f(R) = φ(H2(R.x)),

where H2 maps Zp to {0, 1}b, b < dlog qe , and φ maps {0, 1}b to Z∗q. The
function H2 can be instantiated by the function H(1‖x) mod 2b, where H
is the hash function that maps {0, 1}∗ to Z2256. The function φ is de�ned
as follows: it maps x ∈ {0, 1}b \ {0} to int(x) and maps zero to 2b. This
de�nition of the φ function is always correct due to the fact that b < dlog qe.

In order to separate domains of the hash function used for di�erent cases,
we rede�ne the hash function used for hashing messages as H1(x) = H(0‖x)
mod q.

We illustrate our method applying it to the GOST scheme which is a
special case of the GenEG scheme. The formal de�nition of the GOST scheme
is relegated to Appendix A. Note that function f in the GOST scheme (as
well as in the ECDSA scheme) is de�ned as

f(R) = R.x mod q.

We de�ne the GOST-H scheme as follows.

KGen( )

1 : d
U←− Z∗q

2 : Q← dP

3 : return (d,Q)

Sig(d,m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : if k = 0 : return ⊥
5 : R← kP

6 : r ← φ(H2(R.x))

7 : s← ke+ dr

8 : if s = 0 : return ⊥
9 : return r‖s

Vf(Q,m, r‖s)
1 : if s = 0 : return 0

2 : e← H1(m)

3 : if e = 0 : e← 1

4 : R← e−1sP − e−1rQ
5 : if φ(H2(R.x)) 6= r : return 0

6 : return 1

This method allows us to shorten the size of the signature from (2 dlog qe)
bits to at most (dlog qe+ b+ 1) bits. For instance, for b = dlog qe /2 we can
cut out one quarter of the size.

Note that we do not check the condition r = 0 in the GOST-H scheme,
because the function φ is de�ned in a such way that it does not map any
argument to zero.

6



3.2 GenEGS scheme

The idea behind the second method is to ¾mine¿ during the signature
generation procedure. We generate signature until it meets certain additional
conditions: the �rst l bits of r should match the constant vector. Thus, we
can exclude these bits from the signature and reduce the signature size by l
bits.

The GenEGS.KGen algorithm is similar to the GenEG.KGen algorithm.
The GenEGS.Sig and GenEGS.Vf procedures are de�ned as follows.

Sig(d,m)

1 : cnt← 0

2 : if cnt > thr : return ⊥
3 : cnt← cnt+ 1

4 : r‖s← GenEG.Sig(d,m)

5 : if r‖s = ⊥ : goto 2

6 : if lsbl(r) 6= const : goto 2

7 : r∗ = msb|r|−l(r)

8 : return r∗‖s

Vf(Q,m, r∗‖s)
1 : r ← r∗‖const
2 : res← GenEG.Vf(Q,m, r‖s)
3 : return res

The scheme de�ned above has two new parameters: l � number of �xed
bits in r and thr � number of attempts to generate valid signature. These
parameters are not independent from each other and they are strictly related
to the generation time and probability of outputting the valid signature by
the GenEGS.Sig procedure. Thus, they should be chosen in accordance with
the generating mechanism computing power. We will discuss the appropriate
values for these parameters in Section 5. The constant vector is an additional
scheme parameter, it can be set to l zero bits for simplicity.

Note that the number of loop iterations needed to generate the valid
signature depends on the probability of �nding r satisfying the condition
lsbl(r) = const. In case of applying the method to the GenEG-H scheme, we
can estimate this probability as 2−l since the distribution of hash function
output is close to uniform. We claim that the situation will not change in case
of applying the method to schemes with function f(R) equal to R.x mod q
since function lsbl is proven to be good entropy extractor for x-coordinate of
point R (see [18] for more details).

3.3 GenEGV scheme

The idea behind the third method is to truncate the signature (either r
or s component) by t bits and search them during veri�cation procedure.

7



The GenEGV.KGen algorithm is similar to the GenEG.KGen algorithm.
The GenEGV.Sig and GenEGV.Vf procedures are de�ned as follows.

Sig(d,m)

1 : r‖s← GenEG.Sig(d,m)

2 : if r‖s = ⊥ : return ⊥
3 : s∗ ← msb|s|−t(s)

4 : return r‖s∗

Vf(Q,m, r‖s∗)
1 : i← 0

2 : if i ≥ 2t : return 0

3 : s← s∗‖strt(i)
4 : i← i+ 1

5 : res← GenEG.Vf(Q,m, r‖s)
6 : if res = 0 : goto 2

7 : return 1

The construction de�ned above assumes truncating the s component of
the signature, however we can de�ne this scheme similarly up to truncat-
ing the r component. The decision which part of the signature should be
truncated could depend on the possible optimization of veri�cation process.

This method allows us to reduce the signature size by t bits. The value of
parameter t is strictly related to the signature veri�cation time and should
be chosen in accordance with the veri�er's computing power.

Note that the proposed method is general and can be applied not only
to the GenEG signature scheme but also to any scheme with signature repre-
sented as a concatenation of two bit vectors. In particular, it can be applied
to the GenEGS scheme by replacing the GenEG.Sig and GenEG.Vf calls with
the corresponding GenEGS procedure calls.

4 Security notions

In this section we formally de�ne basic security models used for signature
schemes and the assumptions on primitives.

De�nition 1. For a signature scheme SS

AdvSUF-CMASS (A) = Pr
[
ExpSUF-CMASS (A)→ 1

]
,

where the experiment ExpSUF-CMASS (A) is de�ned in the following way:

ExpSUF-CMASS (A)

1 : (pk, sk)← SS.KGen( )

2 : L ← ∅

3 : (m, sgn)
$←− ASign(pk)

4 : if (m, sgn) ∈ L : return 0

5 : res← SS.Vf(pk,m, sgn)

6 : return res

Oracle Sign(m)

1 : sgn← SS.Sig(sk,m)

2 : L ← L ∪ {(m, sgn)}
3 : return sgn

8



We analyse the security of the GOST-H scheme assuming the function H2

to be a random oracle. The random oracle model was introduced in [27] and
is an idealized model that assumes the existence of a public random function
H such that all parties can obtain H(x) (for any desired input value x) only
by interacting with an oracle computing H; parties cannot compute H (for
any input) on their own. Using a random oracle is a common way to ease the
cryptographic analysis by making it modular. However, one should always
keep in mind that a random oracle cannot be instantiated by any real hash
function and, therefore, one should use it very carefully, trying to interpret
the obtained security results. We discuss the meaning of random oracle model
for our proof in the next section.

De�nition 2 (ECDLP problem).

AdvECDLPG (A) = Pr
[
Q
U←− 〈P 〉 ; d $←− A(Q,P ) : dP = Q

]
Similar to [16] for the family H1 of hash fuctions we de�ne signum-relative

collision resistance property (see De�nition 3) and signum-relative division
resistance property (see De�nition 4). Throughout the paper we consider
implicitly keyed hash functions H1: {0, 1}∗ 7→ Zq with initialization vector
assumed to be an implicit key. The experiments of the up-coming security
de�nitions should be understood as implicitly �rst picking a random initial-
ization vector IV ∈ IV and giving it to the adversary.

De�nition 3 (SCR property). For the family of hash functions H1

AdvSCRH1
(A) = Pr

[
(m1,m2)

$←− A : H1(m1) = ±H1(m2) ∧m1 6= m2

]
De�nition 4 (SDR property). For the family of hash functions H1

AdvSDRH1
(A) =

Pr

[
β1, β2

U←− {0, 1}b; (m1,Γ)
$←− A1(β1),m2

$←− A2(Γ, β2) :
H1(m1)

φ(β1)
= ±H1(m2)

φ(β2)

]
The SDR property is implied by the standard assumptions: zero resistance

and signum-relative preimage resistance properties of H1 (see Appendix B.4
for formal proof and de�nitions of these properties).

We estimate the advantages de�ned above based on the best known meth-
ods of solving the corresponding security tasks. For the ECDLP problem it
is the Pollard's ρ-algorithm (see [28]), for the SCR notion it is the attack
based on birthday paradox and for the SDR notion (implied by the preimage

9



resistance) it is the exhaustive search. So for the group G and for the fam-
ily of hash functions H1 we assume that for any adversary A with the time
complexity at most T

AdvECDLPG (A) ≈ T 2

q
; AdvSCRH1

(A) ≈ T 2

q
; AdvSDRH1

(A) ≈ T

q
.

5 Security bounds

In this section we provide the security bounds for the schemes de�ned in
Section 3.

For the GOST-H scheme we provide the reduction from the ECDLP prob-
lem. We claim that the proof for the other GenEG-H schemes can be obtained
using the same technique.

Theorem 1. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GOST-H scheme, making at most QS queries to
the Sign oracle and at most QO queries to the H2 oracle. Then there exists
an adversary D that solves the ECDLP problem for the used elliptic curve
group G, an adversary C that breaks the signum-relative collision resistant
property of H1 and an adversaryM that breaks the signum-relative division
resistant property of H1, such that:

AdvSUF-CMAGOST-H (A) 6
√

(QO + 2)
(
AdvSDRH1

(M) · (QO + 2) + AdvECDLPG (D)
)
+

+
QO + 3

2b
+ AdvSCRH1

(C) +
(2QO +QS + 1)QS

q − 1
.

Furthermore, the time complexity of C is at most T+c((QS+3)T VGOST-H+QO),
the time complexities of D andM are at most 2T + 2c((QS + 4)T VGOST-H +
2QO + 4), where T VGOST-H is computational resources needed to verify one
signature by the GOST-H.Vf procedure, c is a constant that depends only on
a model of computation and a method of encoding.

Here QS and Q0 should be interpreted as a maximum number of signa-
tures known to the adversary and as a maximum number of the hash function
calls made by the adversary with the computational resources T respectively.
The QS value is set in accordance with application requirements and the QO

value depends on computational model and resources T . Usually we set QO

to

⌈
T

TH

⌉
, where TH is the resources needed to compute one hash value for

one-block message in the chosen computational model. It is correct as soon

10



as we assume sequential computational model, however we note that any
parallel model of computations is equivalent to the corresponding sequential
computational model with more resources [26].

Proof sketch. The idea behind the proof is similar to the idea used in [15].
The proof consists of two steps. During the �rst one we show that the notions
of existential unforgeability under chosen message attack and under key-
only attack are nearly equivalent, assuming H1 is signum-relative collision
resistant. Next, using the forking lemma we show that the hardness of the
ECDLP in the group G and the signum-relative division resistance of H1

imply unforgeability under key-only attack. The full proof can be found in
Appendix B.

Note that for several steps we provide more accurate reductions than ar-
ticle [15] does (there are several unclari�ed places which seem to be incorrect,
for details see Appendix B). Note that providing accurate reductions is quite
important since potential mistakes can lead to practical vulnerabilities (see
e.g. [23, 24]).

The interpretation of the random oracle model in our case is as follows. If
the signature scheme turns out to be insecure, then, due to the proof sketch,
the ECDLP problem is solved or the used hash function does not su�ciently
disrupt the link between the domain and the range.

Remark 1. Note that the obtained reduction is not tight: there are no known
cryptanalytic attacks breaking the signature scheme with the speci�ed proba-
bility and computational resources. This is the common problem of reductions
obtained using forking lemma. Moreover, several negative results are known.
Paillier and Vergnaud [25] show that the forgeability of several discrete log
based signatures cannot be equivalent to solving the discrete log problem in
the standard model, assuming the so-called one-more discrete log assumption
and algebraic reductions.

The only term depening on b is
QO + 3

2b
. Applying the assumed bounds

for AdvSDRH1
, AdvSCRH1

and AdvECDLPG we have the biggest term in the bound

of order

√
QO · T√
q

. Thus, assuming T >
√
QO (that is reasonable due to

QO 6 T ) we obtain the following surprising result: reducing b up to
dlog2 qe

2
does not signi�cantly change the �nal bound. Thus, this method allows to

shorten the size of the signature from 2 dlog2 qe bits to
3

2
dlog2 qe bits without

harming security.

11



Theorem 2. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GenEGS scheme, making at most QS queries to the
Sign oracle. Then there exists an adversary B for the GenEG scheme in the
SUF-CMA model that makes at most QS · thr queries to the Sign oracle,
such that:

AdvSUF-CMAGenEGS
(A) = AdvSUF-CMAGenEG (B).

Furthermore, the time complexity of B is at most T + cQSthr, where c is
a constant that depends only on a model of computation and a method of
encoding.

The proof can be found in Appendix C.
Consider the QS parameter in detail. Unlike the previous theorem, here

QS cannot be interpreted as a number of signatures known to the adversary,
since the scheme can return the failure indicator very often (depending on the
parameters l and thr). Therefore, if N is a required for application number of

signatures, then QS should be set to
N

pr
, where pr is the probability to return

valid signature for one signing call. We assume that pr ≈ 1− (1− 2−l)thr.
Note that thr parameter should be chosen in such a way that the error

probability is small enough for practice. The optimal way is to choose thr = 2l

(in this case the error probability is less than e−1 for all l).

Theorem 3. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GenEGV scheme, making at most QS queries to the
Sign oracle. Then there exists an adversary B for the GenEG scheme in the
SUF-CMA model that makes at most QS queries to the Sign oracle, such
that:

AdvSUF-CMAGenEGV (A) = AdvSUF-CMAGenEG (B).

Furthermore, the time complexity of B is at most T + c · 2t · T VGenEG, where
T VGenEG is computational resources needed to verify one signature by the
GenEG.Vf procedure, c is a constant that depends only on a model of com-
putation and a method of encoding.

The proof can be found in Appendix D.
Note that parameter t a�ects the security bound via the time complexity

of the adversary B. If we consider this parameter to be very large then the
computational resources of B become too large, the GenEG scheme breaks
and, as a result, the security bound degenerates.

The Theorems 2 and 3 are presented not in the random oracle model.
However, if the security bound for the GenEG scheme is provided in the ran-
dom oracle model we can change the theorems accordingly. If the adversary

12



A makes at most QO queries to H2 oracle, then in case of the Theorem 2 the
adversary B makes the same number of queries to its own H2 oracle and in
case of the Theorem 3 the adversary B makes at most QO + 2t queries to its
own H2 oracle.

The GOST-HV
S scheme. Let us introduce the GOST-HV

S scheme � the result
of applying all three methods to the GOST scheme which is the special
case of the GenEG scheme. The GOST-HV

S .KGen algorithm is similar to the
GOST.KGen algorithm. The GOST-HV

S .Sig and GOST-HV
S .Vf procedures are

de�ned as follows.

Sig(d,m)

1 : cnt← 0

2 : if cnt > thr : return ⊥
3 : cnt← cnt+ 1

4 : r‖s← GOST-H.Sig(d,m)

5 : if r‖s = ⊥ : goto 2

6 : if lsbl(r) 6= const : goto 2

7 : r∗ ← msb|r|−l(r)

8 : s∗ ← msb|s|−t(s)

9 : return r∗‖s∗

Vf(Q,m, r∗‖s∗)
1 : r ← r∗‖const
2 : i← 0

3 : if i ≥ 2t : return 0

4 : i← i+ 1

5 : s← s∗‖strt(i)
6 : res← GOST-H.Vf(Q,m, r‖s)
7 : if res = 0 : goto 2

8 : return 1

Summarizing the results of Theorems 1, 2, 3 and the bounds presented in
Section 4 we obtain the following security bound for the GOST-HV

S scheme:

AdvSUF-CMAGOST-HV
S

(A) 6

√
2(QO + 2t + 2) · (QO + 2t + 2)T1 + 2T 2

1

q
+

+
QO + 2t + 3

2b
+

(2QO + 2t+1 +QS · thr + 1)QS · thr + T 2
1

q − 1
,

where
T1 6 T + 2T VGOST-H(QS · thr + 2t + 2) + 2QO + 4,

T VGOST-H is computational resources needed to verify one signature by the
GOST-H.Vf procedure.

The size of the short signature generated by the GOST-HV
S scheme is equal

to at most (dlog qe+ b+ 1− l − t), where parameters b, l and t characterize
three methods of shortening respectively. We provide the bounds for the
GOST-HV

S scheme for particular values of N, q, thr, T,QO: we set N to 106 as
it is reasonable number of signatures for our application, we use curve with
prime subgroup order q such that 2255 < q < 2256, we set thr to 2l by reasons

13



Fixed parameters Variable parameter and corresponding security bound

l = 18, t = 18
b 128 100 80 70 60

AdvSUF-CMA

GOST-HV
S

(A) 2−35 2−35 2−19 2−9 1

b = 100, t = 18
l 10 18 35 50 77

AdvSUF-CMA

GOST-HV
S

(A) 2−35 2−35 2−34 2−19 1

b = 100, l = 18
t 10 18 30 64 80

AdvSUF-CMA

GOST-HV
S

(A) 2−35 2−35 2−35 2−27 1

Table 1: Security bounds for the GOST-HV
S scheme

discussed above and we set T to 260 assuming such computational power of
potential adversary for our application. Moreover, for simplicity we estimate
QO as T . The GOST-H.Vf procedure assumes two hash and two multiple
point calculation, we estimate T VGOST-H as 32 assuming the computational
resources measured in hash calculations.

Table 1 presents the evolution of security bound with changing one of
the scheme parameter as long as other two parameters are �xed. We choose
l and t equal to 18 in the �rst step based on the appropriate signing (≈ 6
seconds) and verifying (≈ 3 seconds) time. The computer with the following
characteristics was used: Intel Core i5-8600K CPU 3.60GHz, L1 D-Cache 32
KB x 6, L1 I-Cache 32 KB x 6, L2 Cache 256 KB x 6. We set b to 100 based
on the security bound obtained in the �rst step.

By choosing the optimal values of methods parameters (b = 100, l = 18
and t = 18) we reduce the signature size from 512 to 320 bits providing the
su�cient security for our application.

6 Conclusion

This paper introduces three methods of shortening ElGamal-type signa-
tures. The proposed methods do not imply increasing the key sizes and can be
applied together in any combination. Applying second and/or third method
leads to increasing signing and/or verifying time. The implementation of
these methods do not require any special cryptographic tools.

We apply these methods to ElGamal-type signature schemes and obtain
security bounds in the random oracle model. The presented theorems allow
us to estimate the security of the modi�ed scheme by the security of the used
cryptographic primitives (elliptic curve group and hash function family) in

14



case of the �rst method and by the security of the original scheme in case of
the second and the third methods. The paper presents the security bounds
for the GOST-HV

S scheme with elliptic curve subgroup order q, 2255 < q <
2256 with di�erent parameter values (see Table 1). Choosing the optimal
parameter values for our application allows to reduce the signature size from
512 to 320 bits.

References

[1] Rescorla, E., The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446, DOI
10.17487/RFC8446, 2018, https://www.rfc-editor.org/info/rfc8446.

[2] Kaufman, C., Ho�man P., Nir Y., Eronen P., Kivinen T., Internet Key Exchange Pro-
tocol Version 2 (IKEv2), RFC 7296, DOI 10.17487/RFC7296, 2014, https://www.rfc-
editor.org/info/rfc7296.

[3] Boneh D., Lynn B., Shacham H., �Short Signatures from the Weil Pairing�, LNCS, Advances
in Cryptology � ASIACRYPT 2001, 2248, ed. Boyd C., Springer, Berlin, Heidelberg, 2001.

[4] Patarin J., Courtois N., Goubin L., �FLASH, a Fast Multivariate Signature Algorithm�,
LNCS, Topics in Cryptology � CT-RSA 2001, 2020, ed. Naccache D., Springer, Berlin,
Heidelberg, 2001.

[5] Patarin J., Courtois N., Goubin L., �QUARTZ, 128-Bit Long Digital Signatures�, LNCS,
Topics in Cryptology � CT-RSA 2001, 2020, ed. Naccache D., Springer, Berlin, Heidelberg,
2001.

[6] Dubois V., Fouque PA., Shamir A., Stern J., �Practical Cryptanalysis of SFLASH�, LNCS,
Advances in Cryptology - CRYPTO 2007, 4622, ed. Menezes A., Springer, Berlin, Heidel-
berg, 2007.

[7] Courtois N.T., Daum M., Felke P., �On the Security of HFE, HFEv- and Quartz�, LNCS,
Public Key Cryptography � PKC 2003, 2567, ed. Desmedt Y.G., Springer, Berlin, Heidel-
berg, 2003.

[8] Courtois N.T., Finiasz M., Sendrier N., �How to Achieve a McEliece-Based Digital Signature
Scheme�, LNCS, Advances in Cryptology � ASIACRYPT 2001, 2248, ed. Boyd C., Springer,
Berlin, Heidelberg, 2001.

[9] Koblitz N., �Hidden Monomial Cryptosystems�, Algebraic Aspects of Cryptography, Algo-
rithms and Computation in Mathematics, 3, Springer, Berlin, Heidelberg, 1998, 80�102.

[10] Petzoldt A., Chen MS., Yang BY., Tao C., Ding J., �Design Principles for HFEv- Based
Multivariate Signature Schemes�, LNCS, Advances in Cryptology � ASIACRYPT 2015,
9452, ed. Iwata T., Cheon J., Springer, Berlin, Heidelberg, 2015.

[11] Mohamed M.S.E., Petzoldt A., �The Shortest Signatures Ever�, LNCS, Progress in Cryp-
tology � INDOCRYPT 2016, 10095, ed. Dunkelman O., Sanadhya S., Springer, Cham,
2016.

[12] Kipnis A., Patarin J., Goubin L., �Unbalanced Oil and Vinegar Signature Schemes�, LNCS,
Advances in Cryptology � EUROCRYPT'99, 1592, ed. Stern J., Springer, Berlin, Heidel-
berg, 1999.

[13] Ding J., Schmidt D., �Rainbow, a New Multivariable Polynomial Signature Scheme�, LNCS,
Applied Cryptography and Network Security. ACNS 2005, 3531, ed. Ioannidis J., Keromytis
A., Yung M., Springer, Berlin, Heidelberg, 2005.

[14] Fersch, M., Kiltz, E., Poettering, B., �On the One-Per-Message Unforgeability of (EC)DSA
and Its Variants�, LNCS, Theory of Cryptography. TCC 2017, 10678, ed. Kalai Y., Reyzin
L., Springer, Cham, 2017.

[15] Fersch M., Kiltz E., Poettering B., �On the provable security of (EC) DSA signatures�, Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
2016, 1651�1662.

[16] Fersch, M., The provable security of Elgamal-type signature schemes, Diss. Bochum, Ruhr-
Universit�at Bochum, 2018.

15



[17] Bellare M., Rogaway P., �The Security of Triple Encryption and a Framework for Code-
Based Game-Playing Proofs�, LNCS, Advances in Cryptology - EUROCRYPT 2006, 4004,
ed. Vaudenay S., Springer, Berlin, Heidelberg, 2006.

[18] Chevalier C., Fouque PA., Pointcheval D., Zimmer S., �Optimal Randomness Extraction
from a Di�e-Hellman Element�, LNCS, Advances in Cryptology - EUROCRYPT 2009,
5479, ed. Joux A., Springer, Berlin, Heidelberg, 2009.

[19] GOST R 34.10-2012. Information technology. Cryptographic data security. Signature and
veri�cation processes of electronic digital signature. National standard of the Russian Fed-
eration, STANDARTINFORM, 2012, In Russian.

[20] GOST 34.10-2018. Information technology. Cryptographic data security. Signature and ver-
i�cation processes of electronic digital signature. Interstate standard, Interstate Council for
Standardization, Metrology and Certi�cation (ISC), 2018, In Russian.

[21] ISO/IEC 14888-3:2018, IT Security techniques � Digital signatures with appendix � Part
3: Discrete logarithm based mechanisms � Section 6: Certi�cate-based mechanisms � 6.9:
ECRDSA, 2018.

[22] Dolmatov V., Degtyarev A., GOST R 34.10-2012: Digital Signature Algorithm, RFC 7091,
DOI 10.17487/RFC7091, 2013, https://www.rfc-editor.org/info/rfc7091.

[23] Inoue A., Iwata T., Minematsu K., Poettering B., �Cryptanalysis of OCB2: Attacks on
Authenticity and Con�dentiality�, LNCS, Advances in Cryptology � CRYPTO 2019, 11692,
ed. Boldyreva A., Micciancio D., Springer, Berlin, Heidelberg, 2019.

[24] Koblitz N., Menezes A., Critical Perspectives on Provable Security: Fifteen Years of �Another
Look� Papers, Cryptology ePrint Archive: Report 2019/1336, 2019.

[25] Paillier P., Vergnaud D., �Discrete-Log-Based Signatures May Not Be Equivalent to Discrete
Log�, LNCS, Advances in Cryptology - ASIACRYPT 2005, 3788, ed. Roy B., Springer,
Berlin, Heidelberg, 2005.

[26] Savage J.E., Models of Computation: Exploring the Power of Computing, Addison-Wesley
Longman Publishing Co, Boston, 1998.

[27] Bellare M., Rogaway P., �Random oracles are practical: A paradigm for designing e�cient
protocols�, Proceedings of the 1st ACM conference on Computer and communications secu-
rity, 1993, 62�73.

[28] Pollard, J.M., �A monte carlo method for factorization�, BIT, 15 (1975), 331�334.

[29] Zheng Y., �Digital signcryption or how to achieve cost(signature & encryption) �
cost(signature) + cost(encryption)�, LNCS, Advances in Cryptology � CRYPTO'97, 1294,
ed. Kaliski B.S., Springer, Berlin, Heidelberg, 1997.

16



A GOST de�nition

The GOST signature scheme is a special case of the GenEG scheme. We
de�ne it relative to functions H, f and group G.

KGen( )

1 : d
U←− Z∗q

2 : Q← dP

3 : return (d,Q)

Sig(d,m)

1 : e← H(m) mod q

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : if k = 0 : return ⊥
5 : R← kP

6 : r ← f(R)

7 : if r = 0 : return ⊥
8 : s← ke+ dr

9 : if s = 0 : return ⊥
10 : return r‖s

Vf(Q,m, r‖s)
1 : if (r = 0 ∨ s = 0) : return 0

2 : e← H(m)

3 : if e = 0 : e← 1

4 : R← e−1sP − e−1rQ
5 : if f(R) 6= r : return 0

6 : return 1

The function f maps G∗ to Zq and for the GOST scheme is de�ned as
follows:

f(R) = R.x mod q.

There are some di�erences between the scheme de�ned above and the
standardized scheme de�ned in [19]. First, our version of the scheme can
output failure indicator ⊥. In contrast, function Sig in standardized scheme
always output a valid signature, going to line 3 in case of all ¾bad¿ events.
The second di�erence is that k is chosen randomly from the set Z∗q in the
standardized scheme, but in our scheme it is chosen from the set Zq, and the
procedure Sig outputs ⊥ in case of k = 0. We claim that these two di�erences
do not a�ect the security and correctness of the scheme.

B GOST-H security

B.1 Proof details

We provide the proof in the random oracle model, i.e. we replace function
H2 with the random oracle. Family of hash functions H1 is required to be
signum-relative collision resistant and signum-relative division resistant in
the sense of De�nitions 3, 4.

Let us introduce SUF-KO security model for the signature scheme since
we use it during the proof.

17



De�nition 5. For a signature scheme SS

AdvSUF-KOSS (A) = Pr
[
ExpSUF-KOSS (A)→ 1

]
,

where the experiment ExpSUF-KOSS (A) is de�ned in the following way:

ExpSUF-KOSS (A)

1 : (pk, sk)← SS.KGen( )

2 : (m, sgn)
$←− A(pk)

3 : res← SS.Vf(pk,m, sgn)

4 : return res

The idea behind the proof is similar to the idea used in [15], however
several steps in [15] are unclear and seem to be incorrect. We provide more
accurate reduction than [15] does and point out the di�erences from [15]
throughout the proof. We split the proof into two parts. In Section B.2 we
show that if the adversary can forge the GOST-H scheme using some valid
pairs message-signature (i.e. in the SUF-CMA model), then we can construct
two adversaries: one of them breaks the signum-relative collision resistance
property of H1 and the other one makes forgery without any valid pairs
message-signature (i.e. in the SUF-KO model). In Section B.3 we construct
the adversary that breaks the signum-relative division resistance property
of H1 and the adversary that solves the ECDLP problem using the key-only
adversary constructed at the �rst step. The forking lemma (see [15]) is our key
tool on the second step. Both steps of the proof are organized as follows: at
�rst, we construct the sequence of experiments for the adversary and estimate
the di�erence between them (in some cases by constructing the adversaries
for H1 properties), after that we build another adversary who uses the �rst
adversary as a black box and implements the last experiment for him. We
highlight the changes in the experiment pseudocode.

We write abort in the experiment pseudocode as a shortcut for
¾return 0¿ and in the oracle pseudocode to denote that experiment should
stop and return 0. We use lemma 2 from [17] to estimate the di�erence be-
tween two experiments Expi and Expj that are ¾identical-until-bad¿, i.e.
one experiment is derived from the other by adding the abort condition.
According to this lemma

Pr
[
Expi ⇒ 1

]
− Pr

[
Expj ⇒ 1

]
6 Pr[abort condition is met ] .

For presentation purposes we introduce the internal result of function f
and denote it as r′. More particularly, we denote H2(R.x) as r′ and thus
r = φ(r′). We assume that r′ is the element in {0, 1}b. Moreover, we assume

18



throughout the proof that the GenEG signature is represented not like the
vector's concatenation but as the pair of corresponding elements in Zq.

B.2 SUF-KO to SUF-CMA reduction

Theorem 4. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GOST-H scheme, making at most QS queries to the
Sign oracle and at most QO queries to the H2 oracle. Then there exists an
adversary B in the SUF-KO model for the GOST-H scheme making at most
(QO + 2) queries to the H2 oracle and exists an adversary C that breaks the
signum-relative collision resistant property of H1, such that:

AdvSUF-CMAGOST-H (A) 6 AdvSUF-KOGOST-H (B) + AdvSCRH1
(C) +

(2QO +QS + 1)QS

q − 1
.

Furthermore, the time complexities of B and C are at most T + c((QS +
3)T VGOST-H +QO), where T VGOST-H is computational resources needed to verify
one signature by the GOST-H.Vf procedure, c is a constant that depends only
on a model of computation and a method of encoding.

Construction of adversary C. Let Exp0 denote the original security exper-
iment as de�ned in the SUF-CMA security model de�nition (see Figure 1).
We �x A � the adversary that makes forgery for the GOST-H scheme in the
SUF-CMA model. The adversary has the access to the random oracle H2 and
to the signing oracle Sign. We assume that adversary can make at most QO

queries to the oracle H2 and QS queries to the oracle Sign. Our goal is to
upper-bound Pr

[
ExpSUF-CMAGOST-H (A)⇒ 1

]
= Pr

[
Exp0(A)⇒ 1

]
.

Note that we change the check for k being equal to zero (see line 4 in the
GOST-H.Sig procedure, Section 3.1) to the check for R being equal to zero
point (see line 5 in the Sign oracle). This change does not a�ect the scheme
but simpli�es the proof.

Exp1 is the modi�cation of the Exp0 obtained by implementingH2 using
¾lazy sampling¿ (see Figure 2). The idea is to ¾open¿ new pairs (x,H2(x))
as soon as the adversary asks for it. We introduce the set Π � the subset
of (Zp, {0, 1}b), which is de�ned by the union of two sets ΠS and ΠO. We
store the pairs obtained from queries to the H2 oracle in ΠO set and the pairs
obtained from queries to the Sign oracle in ΠS set. If (α, β) ∈ Π, we denote
β as Π(α). We write (α, ·) ∈ Π shorthand for the condition that there exists
β such that (α, β) ∈ Π.

This modi�cation does not a�ect the distribution ofH2 and Sign outputs.
Thus, Pr

[
Exp0(A)⇒ 1

]
= Pr

[
Exp1(A)⇒ 1

]
.

19



Proof. Exp0(A) = ExpSUF-CMA

GOST-H (A)

1 : d
U←− Z∗q

2 : Q← dP

3 : H2
U←− Func(Zp, {0, 1}b)

4 : L ← ∅

. . . . . . . .Setup completed . . . . . . . .

5 : (m, 〈r, s〉) $←− ASign,H2(Q)

6 : if (m, 〈r, s〉) ∈ L : abort

7 : if s = 0 : abort

8 : e← H1(m)

9 : if e = 0 : e← 1

10 : R← e−1sP − e−1rQ
11 : if φ(H2(R.x)) 6= r : abort

12 : return 1

Oracle Sign(m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : R← kP

5 : if R = 0 : return ⊥
6 : r′ ← H2(R.x)

7 : r ← φ(r′)

8 : s← ke+ dr

9 : if s = 0 : return ⊥
10 : L ← L ∪ {(m, 〈r, s〉)}
11 : return 〈r, s〉

Oracle H2(α)

1 : return H2(α)

Figure 1: The Exp0 for the adversary A for the GOST-H scheme in the SUF-CMA model

Exp2 is the modi�cation of the Exp1 in which forgeries obtained by
�nding a signum-relative collision are not counted (see Figure 2, lines 7, 8, 9
are added). The Sign and H2 oracles do not change from the Exp1.

To estimate the di�erence between the Exp1 and Exp2, we should esti-
mate the probability that the Exp2 aborts in line 9.

Let construct an adversary C that breaks the signum-relative collision
resistant property of H1. The adversary C implements the Exp2 for A. Note
that he is able to do this as soon as we replace H2 implementation with
lazy sampling. Otherwise, the polynomial-time bounded adversary could not
choose function H2 randomly from the set Func(Zp, {0, 1}b) cause the den-
sity of this set is exponential. A delivers a forgery to C, and C �nds the
signum-relative collision i� the condition in lines 7-8 is met.

Thus, we obtain the following bound:

Pr
[
Exp1(A)⇒ 1

]
− Pr

[
Exp2(A)⇒ 1

]
6 AdvSCRH1

(C).

The adversary C implements Exp2 and thus processes at most QS queries
to Sign oracle and at most QO queries to H2 oracle, checks the collision con-
dition and veri�es the forgery obtained from A. Taking into account that
signature generation procedure and hash computation are faster than veri�-
cation procedure, C uses at most c((QS +2)T VGOST-H+QO) additional compu-
tational resources, where T VGOST-H is computational resources needed to verify

20



Exp1(A)

1 : d
U←− Z∗q

2 : Q← dP

3 : (ΠO,ΠS)← (∅, ∅)
4 : Π← ΠO ∪ΠS

5 : L ← ∅

. . . . . . . .Setup completed . . . . . . . .

6 : (m, 〈r, s〉) $←− ASign,H2(Q)

7 : if (m, 〈r, s〉) ∈ L : abort

8 : if s = 0 : abort

9 : e← H1(m)

10 : if e = 0 : e← 1

11 : R← e−1sP − e−1rQ
12 : if φ(H2(R.x)) 6= r : abort

13 : return 1

Exp2(A)

1 : d
U←− Z∗q

2 : Q← dP

3 : (ΠO,ΠS)← (∅, ∅)
4 : Π← ΠO ∪ΠS

5 : L ← ∅

. . . . . . . .Setup completed . . . . . . . .

6 : (m, 〈r, s〉) $←− ASign,H2(Q)

7 : ∀(m∗, ·) ∈ L,m∗ 6= m :

8 : if H1(m
∗) = ±H1(m) :

9 : abort

10 : if (m, 〈r, s〉) ∈ L : abort

11 : if s = 0 : abort

12 : e← H1(m)

13 : if e = 0 : e← 1

14 : R← e−1sP − e−1rQ
15 : if φ(H2(R.x)) 6= r : abort

16 : return 1

Oracle Sign(m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : R← kP

5 : if R = 0 : return ⊥
6 : if (R.x, ·) ∈ Π :

7 : r′ ← Π(R.x)

8 : else :

9 : r′
U←− {0, 1}b

10 : ΠS ← ΠS ∪ {(R.x, r′)}
11 : Π← ΠO ∪ΠS

12 : r ← φ(r′)

13 : s← ke+ dr

14 : if s = 0 : return ⊥
15 : L ← L ∪ {(m, 〈r, s〉)}
16 : return 〈r, s〉

Oracle H2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : β
U←− {0, 1}b

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

Figure 2: The Exp1 and Exp2 for the adversary A for the GOST-H scheme in the

SUF-CMA model. The Sign and H2 oracles are the same in the Exp1 and Exp2

21



one signature by the GOST-H.Vf procedure, c is a constant that depends only
on a model of computation and a method of encoding.

Note that if we �nd signum-relative collision then we immediately con-
struct a forgery for the GOST-H scheme (it is also true for the GOST scheme)
in the SUF-CMA model. It is the interesting property of the GOST signa-
ture scheme implied by its construction, namely the equation for s component
computation. The probability of such collision event is part of the resulting
security bound.

Construction of adversary B. In the further experiments we change the Sign
oracle behaviour only (see Figure 3).

Oracle Sign(m) (Exp3)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : R← kP

5 : if R = 0 : return ⊥
6 : if (R.x, ·) ∈ Π :

7 : abort

8 : r′
U←− {0, 1}b

9 : ΠS ← ΠS ∪ {(R.x, r′)}
10 : Π← ΠO ∪ΠS

11 : r ← φ(r′)

12 : s← ke+ dr

13 : if s = 0 : return ⊥
14 : L ← L ∪ {(m, 〈r, s〉)}
15 : return 〈r, s〉

Oracle Sign(m) (Exp4)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : r′
U←− {0, 1}b

4 : r ← φ(r′)

5 : s
U←− Zq

6 : R← e−1sP − e−1rQ
7 : if R = 0 : return ⊥
8 : if (R.x, ·) ∈ Π :

9 : abort

10 : ΠS ← ΠS ∪ {(R.x, r′)}
11 : Π← ΠO ∪ΠS

12 : if s = 0 : return ⊥
13 : L ← L ∪ {(m, 〈r, s〉)}
14 : return 〈r, s〉

Oracle Sign(m) (Exp5)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : r′
U←− {0, 1}b

4 : r ← φ(r′)

5 : s
U←− Zq

6 : if s = 0: abort

7 : R← e−1sP − e−1rQ
8 : if R = 0 : return ⊥
9 : if (R.x, ·) ∈ Π :

10 : abort

11 : ΠS ← ΠS ∪ {(R.x, r′)}
12 : Π← ΠO ∪ΠS

13 : if s = 0 : return ⊥
14 : L ← L ∪ {(m, 〈r, s〉)}
15 : return 〈r, s〉

Figure 3: The Sign oracles in the Exp3, Exp4, Exp5

The Sign oracle in the Exp3 is the modi�cation of the Sign oracle in
the Exp2 by adding the abort condition in case of choosing R.x that already
belongs to set Π (lines 6-7). We should estimate the probability of this event
to estimate the di�erence between the Exp2 and Exp3.

The value k is uniformly distributed in a set Z∗q of cardinality (q − 1).
Thus, R.x is uniformly distributed in a set of cardinality (q − 1)/2. In the
worst case the adversary A has already made all queries to the H2 oracle
and thus Π contains at least QO elements. The abort condition is met if the
value R.x hits one of elements in Π. We can estimate this probability as

22



QO +QS/2

(q − 1)/2
=

2QO +QS

q − 1
. As these lines are executed at most QS times, the

overall probability can be bounded by
(2QO +QS)QS

q − 1
.

We obtain the following bound:

Pr
[
Exp2(A)⇒ 1

]
− Pr

[
Exp3(A)⇒ 1

]
6

(2QO +QS)QS

q − 1
.

The signature oracle in the Exp4 gets along with only public information.
Values r′ and s are randomly chosen from the relevant sets and then point
R is constructed. We de�ne the corresponding pair in H2 implementation
by saving this pair in the ΠS set. Note that if we couldn't do so (i.e., R.x
already belongs to the Π), the abort condition is met like in the Exp3. This
step di�ers from [15] in the order of ⊥ outputs and abort conditions.

Consider the distribution on r′, s and ⊥. Note that if the distributions
on r′ are identical in both experiments then the distributions on r are iden-
tical too. In the Exp3 r′ is distributed uniformly in {0, 1}b, k is distributed
uniformly in Z∗q except of the values that lead to R.x that already belongs to
Π. k and r are independent from each over in the equation for s, therefore
s is distributed uniformly in Zq except of the values corresponding to ¾bad¿
values of k. In the Exp4 r′ and s are also distributed uniformly on the cor-
responding sets and s values that lead to the same ¾bad¿ events as in the
Exp3 are excluded. The probability of returning ⊥ is also the same in these
experiments.

The probability of abort in the Exp3 and Exp4 is the same because R
is uniformly distributed in the set of cardinality q in both experiments and
zero point is excluded.

Thus, we conclude that

Pr
[
Exp3(A)⇒ 1

]
= Pr

[
Exp4(A)⇒ 1

]
.

Finally we are moving to the Exp5. The abort condition in line 6 is added
to the signing oracle. Note that line 13 is redundant now, however we keep it
for clarity. The qualitative signi�cance of this modi�cation is following: the
set ΠS contains only those pairs (R.x, r′) that lead to valid signatures now,
because the condition in line 13 can never be met. Note that there is no such
step in [15].

We estimate the di�erence between the Exp4 and Exp5 by estimating
the probability of abort condition in line 6. Per each execution it is equal to
1/q, so the overall probability can be bounded by QS/q.

23



We obtain the following bound:

Pr
[
Exp4(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

]
6
QS

q
.

Before constructing the adversary B we summarize the obtained bounds:

Pr
[
Exp0(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

]
= (Pr

[
Exp0(A)⇒ 1

]
−

− Pr
[
Exp1(A)⇒ 1

]
) +

(
Pr
[
Exp1(A)⇒ 1

]
− Pr

[
Exp2(A)⇒ 1

])
+

+
(
Pr
[
Exp2(A)⇒ 1

]
− Pr

[
Exp3(A)⇒ 1

])
+ (Pr

[
Exp3(A)⇒ 1

]
−

− Pr
[
Exp4(A)⇒ 1

]
) +

(
Pr
[
Exp4(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

])
6

6 AdvSCRH1
(C)+

(2QO +QS)QS

q − 1
+
QS

q
6 AdvSCRH1

(C)+
(2QO +QS + 1)QS

q − 1
.

Let construct the adversary B for the GOST-H scheme in the SUF-KO
model that uses A as the black box (see Figure 4).

BH∗
2 (Q)

1 : (ΠO,ΠS)← (∅, ∅)
2 : Π← ΠO ∪ΠS

3 : L ← ∅

4 : (m, 〈r, s〉) $←− ASimSign,SimH2(Q)

5 : ∀(m∗, ·) ∈ L,m∗ 6= m :

6 : if H1(m
∗) = ±H1(m) :

7 : abort

8 : if (m, 〈r, s〉) ∈ L : abort

9 : if s = 0 : abort

10 : e← H1(m)

11 : if e = 0 : e← 1

12 : R← e−1sP − e−1rQ
13 : if φ(SimH2(R.x)) 6= r : abort

14 : r′ ← φ−1(r)

15 : if (R.x, r′) ∈ ΠS :

16 : Find corresponding (m1, 〈r1, s1〉) ∈ L
17 : Compute d

18 : (m, 〈r, s〉) $←− SignB(d,m)

19 : return (m, 〈r, s〉)

SimH2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : β ← H∗2 (α)

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

SignB(d,m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Z∗q

4 : R← kP

5 : r ← φ(H∗2 (R.x))

6 : s← ke+ dr

7 : if s = 0 :

8 : e1 ← H1(m1)

9 : if e1 = 0 : e1 ← 1

10 : s1 ← ke1 + dr

11 : return m1, 〈r, s1〉

Figure 4: The adversary B for the GOST-H scheme in the SUF-KO model that uses the

adversary A for the GOST-H scheme in the SUF-CMA model

24



Adversary B simulates the Sign and H2 oracles using SimSign and
SimH2 to answer the A queries. The SimSign algorithm is similar to the
oracle Sign in the Exp5.

After receiving the forgery fromA, B veri�es this forgery by itself. Assume
that A delivers a valid forgery (m, 〈r, s〉) (we denote it as (m̃, 〈r̃, s̃〉)), i.e.
the line 15 is reached. This means that the set Π contains the pair (R̃.x, r̃′):
either this pair was already in the Π before veri�cation check in line 13 or it
was saved after SimH2 call during this check. There are two possible cases.
If (R̃.x, r̃′) ∈ ΠO, the forgery is already valid with respect to the oracle H∗2
and B can simply forward it to its own challenger. If (R̃.x, r̃′) ∈ ΠS, B can
recover the signing key d as described below and construct the new forgery
with the SignB algorithm.

Note that the set ΠS contains only such pairs (R.x, r′) that result in
the valid signatures 〈r, s〉. This is provided by the Exp5 modi�cation of the
Sign oracle. Thus, if (R.x, r′) ∈ ΠS the adversary B can search through
L and �nd element (m1, 〈r1, s1〉), which was established during A signing
queries, meanwhile r′1 and R1 corresponding to (m1, 〈r1, s1〉) satisfy: r′1 = r̃′,
R1.x = R̃.x. This search can be realized since it's possible to �nd all elements
in L with r1 = φ(r̃′), compute e1 = H1(m1) and R1 = e−1

1 s1P − e−1
1 r1Q and

check whether R1.x = R̃.x.
The R1.x = R̃.x implies R1 = ±R̃ and thus k1 = ±k̃. So the following

linear equation system holds:{
s̃ = k̃ẽ+ dφ(r̃′);

s1 = ±k̃e1 + dφ(r̃′);

for ẽ = H1(m̃), e1 = H1(m1). There are two unknown variables k̃ and d in
the system above. Moreover, φ(r̃′) 6= 0 due to the de�nition of φ. This system
has a unique solution whenever ẽ 6= ±e1. Observe that case ẽ = ±e1 and
thus H1(m̃) = ±H1(m1) is excluded by lines 5, 6, 7 if m̃ 6= m1. The m̃ = m1

condition (together with r̃ = r1 condition) implies (m̃, 〈r̃, s̃〉) = (m1, 〈r1, s1〉)
and thus is excluded by line 8. Summing all, we can always compute d if the
pair (R̃.x, r̃′) belongs to ΠS.

The only remaining challenge is constructing valid forgery by B using
signing key d. B invokes SignB procedure for the message m̃ that merely
repeats the GOST-H.Sig procedure except for s = 0 case. In this case B
constructs the forgery for message m1, found on the previous step, using the
same value of k (and r consequently). We claim that s1 is always nonzero.
This follows from the fact that ẽ 6= ±e1 as discussed above and thus s1 =

25



ke1 + dr = ke1 + (s− kẽ) = k(e1 − ẽ) 6= 0. Note that [15] does not consider
s = 0 case.

We conclude that if A delivers a valid forgery (m̃, 〈r̃, s̃〉) to B, B delivers
a valid forgery to its own challenger and

Pr
[
Exp5(A)⇒ 1

]
= Pr

[
ExpSUF-KOGOST-H (B)⇒ 1

]
.

All in all we proved:

AdvSUF-CMAGOST-H (A)− AdvSUF-KOGOST-H (B) = Pr
[
ExpSUF-CMAGOST-H (A)⇒ 1

]
−

−Pr
[
ExpSUF-KOGOST-H (B)⇒ 1

]
=
(
Pr
[
Exp0(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

])
+

+
(
Pr
[
Exp5(A)⇒ 1

]
− Pr

[
ExpSUF-KOGOST-H (B)⇒ 1

])
6

6 AdvSCRH1
(C) +

(2QO +QS + 1)QS

q − 1
.

Note that the number of queries made by B to the H∗2 oracle is at most
QO + 2.

The adversary B needs the same amount of computational resources as
C, but it also generates new signature in some cases. Thus, B uses at most
c((QS + 3)T VGOST-H +QO) additional computational resources.

B.3 ECDLP to SUF-KO reduction

Theorem 5. Let B be an adversary with time complexity at most T in the
SUF-KO model for the GOST-H scheme, making at most QO queries to the
H2 oracle. Then there exists an adversary D that solves the ECDLP problem
and exists an adversaryM that breaks the signum-relative division resistant
property of H1, such that:

AdvSUF-KOGOST-H (B) 6
√
QO

(
QO · AdvSDRH1

(M) + AdvECDLPG (D)
)

+
QO + 1

2b
.

Furthermore, the time complexities of D andM are at most 2T + 2c(QO +
T VGOST-H), where T VGOST-H is computational resources needed to verify one sig-
nature by the GOST-H.Vf procedure, c is a constant that depends only on a
model of computation and a method of encoding.

Proof. Let Exp0 denote the original security experiment as de�ned in the
SUF-KO security model de�nition (see Figure 5). We �x B � the adversary
that makes forgery for the GOST-H scheme in the SUF-KO model. The
adversary has the access to the random oracle H2, we assume that adversary
can make at most QO queries to this oracle.

26



Using the same trick as in Section B.2, we de�ne Exp1 similar to the
Exp0 but with the H2 implemented by ¾lazy sampling¿ (see Figure 5). As
before,

Pr
[
Exp0(B)⇒ 1

]
= Pr

[
Exp1(B)⇒ 1

]
.

The Exp2 is the modi�cation of the Exp1 in the following way: values
βj, j = 1, . . . , QO + 1, are sampled during experiment initializing phase
and H2 oracle just translates them one by one responding to the queries
(see Figure 5). Note that additional βQO+1 value is sampled since challenger
queries the H2 oracle on the �nalization step and one more β is used if
Π doesn't contain (R.x, ·) element (see line 13). We introduce �ag flg to
indicate (R.x, ·) /∈ Π and abort experiment in case when βQO+1 matches
φ−1(r) (see line 14). We estimate the di�erence between Exp1 and Exp2 by
estimating the probability of this event. Note that this step di�ers from [15].

Pr
[
βQO+1

U←− {0, 1}b; βQO+1 = φ−1(r)
]
6

1

2b
.

Therefore, we obtain the following bound:

Pr
[
Exp1(B)⇒ 1

]
− Pr

[
Exp2(B)⇒ 1

]
6

1

2b
.

Construction of algorithm C. We construct a deterministic algorithm C that
takes a vector (Q, β1, . . . , βQO

; ρ) as input, invokes the adversary B on input
Q and a random tape derived from ρ and processes the queries to the H2

oracle as they are processed in the Exp2 (see Figure 6). Note that random
choice in line 4 is made with randomness derived from ρ. Here and after we
write ¾abort ¿ as a shortcut for ¾return ⊥¿. If B aborts also C aborts. As
B returns a forgery to C, C validates it and �nds the index j ∈ {1, . . . , QO}
of the corresponding query to the H2 oracle. Note that this index always
exists cause C aborts if (R.x, ·) /∈ Π before the veri�cation check in line 11.
Based on the above,

acc = Pr
[
Q
U←− G∗, β1, . . . , βQO

U←− {0, 1}b; C(Q, β1, . . . , βQO
) ; ⊥

]
=

= Pr
[
Exp2(B)⇒ 1

]
.

Therefore,

Pr
[
ExpSUF-KOGOST-H (B)⇒ 1

]
−acc =

(
Pr
[
Exp0(B)⇒ 1

]
− Pr

[
Exp1(B)⇒ 1

])
+

+
(
Pr
[
Exp1(B)⇒ 1

]
− Pr

[
Exp2(B)⇒ 1

])
+
(
Pr
[
Exp2(B)⇒ 1

]
− acc

)
6

1

2b
.

27



Exp0(B) = ExpSUF-KOGOST-H (B)

1 : d
U←− Z∗q

2 : Q← dP

3 : H2
U←− Func(Zp, {0, 1}b)

. . . . . . . .Setup completed . . . . . . . .

4 : (m, 〈r, s〉) $←− BH2(Q)

5 : if s = 0 : abort

6 : e← H1(m)

7 : if e = 0 : e← 1

8 : R← e−1sP − e−1rQ
9 : if φ(H2(R.x)) 6= r : abort

10 : return 1

Oracle H2(α)

1 : return H2(α)

Exp1(B)

1 : d
U←− Z∗q

2 : Q← dP

3 : Π← ∅

. . . . . . . .Setup completed . . . . . . . .

4 : (m, 〈r, s〉) $←− BH2(Q)

5 : if s = 0 : abort

6 : e← H1(m)

7 : if e = 0 : e← 1

8 : R← e−1sP − e−1rQ
9 : if φ(H2(R.x)) 6= r : abort

10 : return 1

Oracle H2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : β
U←− {0, 1}b

4 : Π← Π ∪ {(α, β)}
5 : return β

Exp2(B)

1 : d
U←− Z∗q

2 : Q← dP

3 : Π← ∅
4 : flg ← false

5 : i← 0

6 : β1, . . . , βQO+1
U←− {0, 1}b

. . . . . . . .Setup completed . . . . . . . .

7 : (m, 〈r, s〉) $←− BH2(Q)

8 : if s = 0 : abort

9 : e← H1(m)

10 : if e = 0 : e← 1

11 : R← e−1sP − e−1rQ
12 : if (R.x, ·) ∈ Π : flg ← true

13 : if φ(H2(R.x)) 6= r : abort

14 : if flg = false : abort

15 : return 1

Oracle H2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : i← i+ 1

4 : β ← βi

5 : Π← Π ∪ {(α, β)}
6 : return β

Figure 5: The Exp0, Exp1 and Exp2 for the adversary B for the GOST-H scheme in the

SUF-KO model

28



C(Q, β1, . . . , βQO
; ρ)

1 : Π← ∅
2 : flg ← false

3 : i← 0

4 : βQO+1
U←− {0, 1}b

5 : (m, 〈r, s〉)← BSimH2(Q; ρ)

6 : if s = 0 : abort

7 : e← H1(m)

8 : if e = 0 : e← 1

9 : R← e−1sP − e−1rQ
10 : if (R.x, ·) ∈ Π : flg ← true

11 : if φ(SimH2(R.x)) 6= r : abort

12 : if flg = false : abort

13 : r′ ← φ−1(r)

14 : �nd j ∈ {1, . . . , QO} : r′ = βj

15 : return (j,m, 〈r, s〉)

ForkC(Q)

1 : Pick random coins ρ for C

2 : β1, . . . , βQO

U←− {0, 1}b

3 : (j,m1, 〈r1, s1〉)← C(Q, β1, . . . , βQO
; ρ)

4 : β′j , . . . , β
′
QO

U←− {0, 1}b

5 : if βj = β′j : abort

6 :
(
j′,m2, 〈r2, s2〉

)
← C(Q, β1, . . . , βj−1, β

′
j , . . . , β

′
QO

; ρ)

7 : if j 6= j′ : abort

8 : return (m1, 〈r1, s1〉 ,m2, 〈r2, s2〉)

D(Q)

1 : (m1, 〈r1, s1〉 ,m2, 〈r2, s2〉)← ForkC(Q)

2 : if H1(m1)/r1 = ±H1(m1)/r2 : abort

3 : compute d

4 : return d

Figure 6: The C algorithm that uses the adversary B for the GOST-H scheme in the

SUF-KO model; the ForkC algorithm that uses C algorithm and the adversary D that

solves ECDLP problem using ForkC algorithm

29



The algorithm C invokes the adversary B, processes at most QO queries
to H2 oracle and veri�es the forgery obtained from B. Thus, computational
complexity of C is at most T + c(QO + T VGOST-H), where T is the computa-
tional resources of B, T VGOST-H is computational resources needed to verify one
signature by the GOST-H.Vf procedure, c is a constant that depends only on
a model of computation and a method of encoding.

We apply the forking lemma (see [15]) and construct the forking algorithm
ForkC (see Figure 6). If C aborts also ForkC aborts. According to the forking
lemma the probability frk that ForkC terminates without aborting can be
estimated as

Pr
[
Q
U←− G∗; ForkC(Q) ; ⊥

]
= frk ≥ acc

(
acc

QO
− 1

2b

)
.

Construction of adversary D. Finally we construct the adversary D that
solves the ECDLP problem (see Figure 6). At �rst D invokes ForkC algorithm
with the same input as its own input. If ForkC aborts alsoD aborts. Obtaining
two pairs (message, signature) from ForkC, D checks whether the condition
in line 2 holds and otherwise computes d with the algorithm described below.

Using the pairs obtained from ForkC adversary D computes e1 =
H1(m1), e2 = H1(m2) and constructs the following linear system of equa-
tions: 

R1 = e−1
1 s1P − e−1

1 r1Q;

R2 = e−1
2 s2P − e−1

2 r2Q;

r1 6= r2.

By construction of ForkC second execution of C di�ers only since the j-th
query of B to the H2 oracle. Therefore the j-th input α = R.x to the H2

oracle was the same in two executions and we claim that R1.x = R2.x and
thus R1 = ±R2. We transform the system above to the following equation

e−1
1 s1P − e−1

1 r1Q = ±e−1
2 s2P ∓ e−1

2 r2Q;

and compute d by the following formula:

d =
e−1

1 s1 ∓ e−1
2 s2

e−1
1 r1 ∓ e−1

2 r2

.

Note that condition e−1
1 r1∓ e−1

2 r2 6= 0 holds due to abort in line 2. Summing
all, D computes d as soon as ForkC does not abort and condition in line 2 is
not met.

30



Construction of adversaryM. We can estimate the probability of aborting in
line 2 by constructing an adversaryM = (M1,M2) for the signum-relative
division resistance property (see Figure 7).

The construction of adversary M1 is quite similar to lines 1-3 of
ForkC algorithm up to the following di�erence: adversary M1 guesses j∗ ∈
{1, . . . , QO} (see line 3 of M1) and puts needed value β to the j∗-position
in the C input. If C aborts, also M1 aborts. Obtaining (j1,m1, 〈r1, s1〉),
adversary M1 checks whether j∗ is guessed correctly, and, if so, returns
its internal state Γ and m1 to its own challenger. Adversary M2 is in-
voked on input (Γ, β′) and simulates lines 4-7 of ForkC algorithm up to
the following di�erence: it puts β′ to the j∗-position in the C input. If C
aborts, also M2 aborts. Once M2 gets (j2,m2, 〈r2, s2〉), it checks whether
j1 = j2 and, if so, returns m2 to its own challenger. Adversary M wins if
H1(m1)/φ(β) = ±H1(m2)/φ(β′).

M1(β)

1 : d
U←− Z∗q

2 : Q← dP

3 : j∗ ← {1, . . . , QO}
4 : Pick random coins ρ for C

5 : β1, . . . , βQO

U←− {0, 1}b

6 : βj∗ ← β

7 : (j1,m1, 〈r1, s1〉)← C(Q, β1, . . . , βQO
; ρ)

8 : if j1 6= j∗ : abort

9 : Γ← (Q, β1, . . . , βj∗ , ρ)

10 : return (m1,Γ)

M2(Γ, β
′)

1 : (Q, β1, . . . , βj∗ , ρ)← Γ

2 : β′j∗ , . . . , β
′
QO

U←− {0, 1}b

3 : β′j∗ ← β′

4 : if β′j∗ = βj∗ : abort

5 : (j2,m2, 〈r2, s2〉)← C(Q, β1, . . . , βj∗−1, β
′
j∗ , . . . , β

′
QO

; ρ)

6 : if j1 6= j2 : abort

7 : return m2

Figure 7: The adversaryM for the SDR property that uses algorithm C

Let denote AdvSDRH1
(M) as εSDRH1

. Note that the adversary M wins if it
guesses j∗ correctly and the abort condition (see line 2 in D's pseudocode)
is met. Then we can estimate the probability of abort condition as

Pr[H1(m1)/r1 = ±H1(m1)/r2 ] 6 QOε
SDR

H1
.

31



Therefore we obtain the following bound:

δ = Pr[D solves ECDLP ] = Pr

[
(ForkC(Q) ; ⊥) ∧

(
H1(m1)

r1
6= ±H1(m2)

r2

)]
=

= Pr[ForkC(Q) ; ⊥ ]−Pr

[
(ForkC(Q) ; ⊥) ∧

(
H1(m1)

r1
= ±H1(m2)

r2

)]
≥

≥ frk−QOε
SDR

H1
≥ acc

(
acc

QO
− 1

2b

)
−QOε

SDR

H1
=

1

QO
acc2− 1

2b
acc−QOε

SDR

H1
.

By decision of the following inequation:

1

QO
acc2 − 1

2b
acc− (QOε

SDR

H1
+ δ) 6 0.

we can bound the acc value as:

acc 6
QO

2b
+
√
QO

(
QOεSDRH1

+ δ
)
.

Summarizing all the results, we obtain the �nal bound to complete the
proof:

AdvSUF-KOGOST-H (B) = Pr
[
ExpSUF-KOGOST-H (B)⇒ 1

]
6 acc+

1

2b
6

6
√
QO

(
QO · AdvSDRH1

(M) + AdvECDLPG (D)
)

+
QO + 1

2b
.

Both D andM invoke the algorithm C twice, thus their computational
complexities are at most 2T + 2c(QO + T VGOST-H).

B.4 Signum-relative division resistance property

In this section we consider the signum-relative division resistance property
of H1 and show that this notion is implied by the standard assumptions: zero
resistance and signum-relative preimage resistance properties of H1.

Let us formally introduce these two properties.

De�nition 6 (Zero-resistance property). For the family of hash functions
H1

AdvZRH1
(A) = Pr

[
m

$←− A : H1(m) = 0
]

De�nition 7 (Signum-relative preimage resistance property). For the family
of hash functions H1

AdvSPRH1
(A) = Pr

[
y
U←− Z∗q;m

$←− A(y) : H1(m) = ±y
]

32



We construct the adversary S that breaks the signum-relative preimage
property and uses the adversary M = (M1,M2) that breaks the signum-
relative division resistance property as a black box (see Figure 8).

S(y)

1 : β1
U←− {0, 1}b

2 : (m1,Γ)
$←−M1(β1)

3 : if H1(m1) = 0 : abort

4 : β2 ← φ−1(y · φ(β1) · (H1(m1))
−1)

5 : m2
$←−M2(Γ, β2)

6 : return m2

Figure 8: The adversary S for the SPR property that uses the adversaryM for the SDR

property

Let denote H1(m1) = 0 condition as Event. We can estimate the prob-
ability of Event by constructing an adversary P that breaks the zero-
resistance property. Adversary P simply simulates lines 1-2 of S pseudocode
and wins if the Event takes place. Thus,

Pr[Event ] = AdvZRH1
(P).

Consider the distribution on β2 values. Let denote(
y · φ(β1) · (H1(m1))

−1
)

as γ. As y is chosen randomly from Z∗q, we
claim that γ is distributed uniformly on Z∗q. Note that Z∗q contains less
elements than Z2dlog qe and thus for di�erent values of β2 the probability

Pr
[
γ
U←− Z∗q; φ−1(γ) = β2

]
may not be the same. However, we claim that for

di�erent values of β2 this probability will not di�er more than by 1/(q − 1).
We �nd this di�erence negligible and consider the distribution on β2 as close
to uniform.

If abort condition in line 3 is not met and β2 is distributed uniformly on
{0, 1}b, the adversary S realizes the same experiment for M as in De�ni-
tion 4. Thus, we can estimate the probability of S success as

Pr[S breaks SPR-property ] = Pr
[
Event ∧ (M breaks SDR-property)

]
=

= Pr[M breaks SDR-property ]−Pr[Event ∧ (M breaks SDR-property)] >

> Pr[M breaks SDR-property ]− Pr[Event ] .

Consequently,

AdvSDRH1
(M) 6 AdvSPRH1

(S) + AdvZRH1
(P).

33



C GenEGS security

Let A be an adversary for the GenEGS scheme in the SUF-CMA model.
We construct the adversary B for the GenEG scheme in the SUF-CMA model
that uses A as the black box (see Figure 9). Note that B has the access to
its own signing oracle Sign∗.

BSign∗
(Q)

1 : L ← ∅

2 : (m, r∗‖s) $←− ASimSign(Q)

3 : if (m, r∗‖s) ∈ L : abort

4 : r ← r∗‖const
5 : return (m, r‖s)

SimSign(m)

1 : cnt← 0

2 : if cnt > thr : return ⊥
3 : cnt← cnt+ 1

4 : r‖s← Sign∗(m)

5 : if r‖s = ⊥ : goto 2

6 : if lsbl(r) 6= const : goto 2

7 : r∗ = msb|r|−l(r)

8 : L ← L ∪ {(m, r∗‖s)}
9 : return r∗‖s

Figure 9: The adversary B for the GenEG scheme in the SUF-CMA model that uses the

adversary A for the GenEGS scheme in the SUF-CMA model

Adversary B invokes A as a subroutine. B simulates the Sign oracle
for A with SimSign procedure. Similarly to the GenEGS.Sig procedure, B
generates ¾full¿ signatures with its own oracle until the r component matches
the constant vector and truncates r before outputting the signature.

Obtaining the forgery from A, B recovers r component by concatenation
it with constant vector and forwards it to its own challenger.

If A makes a valid forgery, B also makes it. Thus,

Pr
[
ExpSUF-CMAGenEGS

(A)⇒ 1
]

= Pr
[
ExpSUF-CMAGenEG (B)⇒ 1

]
.

Assume that A makes at most QS queries to the signing oracle. Then B
by construction makes at most QS · thr queries to its own signing oracle.

D GenEGV security

Let A be an adversary for the GenEGV scheme in the SUF-CMA model.
We construct the adversary B for the GenEG scheme in the SUF-CMA model
that uses A as the black box (see Figure 10). Note that B has the access to
its own signing oracle Sign∗.

34



BSign∗
(Q)

1 : L ← ∅

2 : (m, r‖s∗) $←− ASimSign(Q)

3 : if (m, r‖s∗) ∈ L : abort

4 : i← 0

5 : if i ≥ 2t : abort

6 : s← s∗‖strt(i)
7 : i← i+ 1

8 : res← GenEG.Vf(Q,m, r‖s)
9 : if res = 0 : goto 5

10 : return (m, r‖s)

SimSign(m)

1 : r‖s← Sign∗(m)

2 : if r‖s = ⊥ : return ⊥
3 : s∗ ← msb|s|−t(s)

4 : L ← L ∪ {(m, r‖s∗)}
5 : return r‖s∗

Figure 10: The adversary B for the GenEG scheme in the SUF-CMA model that uses the

adversary A for the GenEGV scheme in the SUF-CMA model

Adversary B invokes A as a subroutine. B simulates the Sign oracle
for A with SimSign procedure. Similarly to the GenEGV.Sig procedure, B
truncates s component before outputting the signature.

Obtaining the forgery from A, adversary B iterates through all possible
variants of s and veri�es signature until the veri�cation procedure stops with
1. Note that B needs at most 2t · T VGenEG additional computational resources
to recover the s component, where T VGenEG is computational resources needed
to verify one signature by the GenEG.Vf procedure.

If A makes a valid forgery, B also makes it. Thus,

Pr
[
ExpSUF-CMAGenEGV (A)⇒ 1

]
= Pr

[
ExpSUF-CMAGenEG (B)⇒ 1

]
.

Adversary B by construction makes the same as A number of queries to
its own signing oracle.

35


