
On the Timing Leakage of the Deterministic
Re-encryption in HQC KEM

Clemens Hlauschek1, Norman Lahr2 and Robin Leander Schröder1

1 Technische Universität Wien, {clemens.hlauschek,leander.schroeder}@inso.tuwien.ac.at
2 Fraunhofer SIT, Darmstadt, Germany, norman@lahr.email

Abstract. Well before large-scale quantum computers will be available, traditional
cryptosystems must be transitioned to post-quantum secure schemes. The NIST
PQC competition aims to standardize suitable cryptographic schemes. Candidates
are evaluated not only on their formal security strengths, but are also judged based on
the security of the optimized implementation, for example, with regard to resistance
against side-channel attacks.
HQC is a promising code-based key encapsulation scheme and selected as an alternate
candidate in the third round of the competition, which puts it on track for getting
standardized separately to the finalists, in a fourth round.
Despite having already received heavy scrutiny with regard to side channel attacks,
in this paper, we show a novel timing vulnerability in the optimized implementations
of HQC, leading to a full secret key recovery. The attack is both practical, requiring
only approx. 866,000 idealized decapsulation timing oracle queries in the 128-bit
security setting, and structurally different from previously identified attacks on HQC:
Previously, exploitable side-channel leakages have been identified in the BCH decoder
of a previously submitted version, in the ciphertext check as well as in the PRF of
the Fujisaki-Okamoto (FO) transformation employed by several NIST PQC KEM
candidates. In contrast, our attack uses the fact that the rejection sampling routine
invoked during the deterministic re-encryption of the KEM decapsulation leaks secret-
dependent timing information. These timing leaks can be efficiently exploited to
recover the secret key when HQC is instantiated with the (now constant-time) BCH
decoder, as well as with the RMRS decoder of the current submission. Besides a
detailed analysis of the new attack, we discuss possible countermeasures and their
limits.
Keywords: Side-channel attack · Rejection sampling · FO transformation · Post-
quantum cryptography · HQC

1 Introduction
The progress in the research field of quantum computing weakens the previously estimated
security guarantees of most currently deployed cryptographic primitives. In 2017, Michele
Mosca [Mos17] estimated that the chance of having a large-scale quantum computer that
breaks RSA-2048 to be 1/6 within a decade and 1/2 within 15 years; or even faster (6-12
years) by having massive investment, following Simon Benjamin [Ben17]. While such
estimates and predictions are contested [Dya18, Kal20], it is important that the transition
to post-quantum secure cryptographic algorithms happens well before an actual large-scale
quantum computer is being built, as sensitive data might be stored for cryptanalysis at a
later time, for example by surveillance infrastructure such the NSA’s 3-12 exabytes data
center in Utah [Hog15].

The security strengths of the new cryptographic primitives need to be evaluated with
regard to possible attacks from classical as well as from quantum adversaries. But not

mailto:{clemens.hlauschek,leander.schroeder}@inso.tuwien.ac.at
mailto:norman@lahr.email

2 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

only the algorithmic design need to withstand possible (theoretical) attacks, deployed
schemes need to have secure implementations that withstand practical implementations
attacks [HPA21], such as side-channel [Koc96, KJJ99, KLM+04] and fault attacks [BDL97,
BDL01]. Not every cryptographic design has a straightforward elegant implementation that
can be easily secured against all relevant implementation attacks. Daniel Bernstein and
Tanja Lange repeatedly (e.g. in their analysis of NIST ECC standards [BL15]) emphasize
that a good cryptographic design requires simplicity of a secure implementation, and
recommend that standardization bodies such as NIST should require simplicity for secure
implementations.

Timing attacks, first described by Kocher [Koc96], are arguably one of the most
dangerous implementation attacks (right after more trivial, but still hard to spot, leakages
such as the Heartbleed vulnerability [DKA+14]): An adversary just needs a communication
channel to the target device and a precise timing measurement. It is often possible to mount
an attack even remotely over the network [BB05, BT11, KPVV16, MSEH20, MBA+21],
without physical access. Crosby et al. [CWR09] explore the limits of remote timing attacks.
Often, timing leaks that have been mitigated against remote exploitation, such as the Lucky
Thirteen attack [AP13] on TLS, can still be exploited in a Cloud/Cross-VM setup [IIES15].
These attacks exploit the timing variations which depend on the secret key material. When
the timing variations include enough information the recovery of the secret key becomes
possible.

In December 2016, the National Institute of Standards and Technology (NIST) an-
nounced a competition [oSN16] which aims to standardize schemes for Post-Quantum
Cryptography (PQC) and requests the authors to submit a reference implementation that
addresses side-channel attacks in addition to the specification.

Hamming Quasi-Cylic (HQC) [AAB+21] is a promising code-based key encapsulation
scheme and an alternate candidate in the third round of the competition. As alternate
candidate, HQC might be standardized by NIST in addition to the competition final-
ists in a fourth round. The Public Key Encryption (PKE) variant of HQC is secure
under the Indistinguishability under Chosen Plaintext Attack (IND-CPA) notion. The
Key Encapsulation Mechanism (KEM) variant of HQC utilizes the generic quantum-
secure Fujisaki-Okamoto (FO) transformation proposed by Hofheinz, Hövelmanns, and
Kiltz [HHK17]. It converts the PKE variant to be secure with regard to Indistinguisha-
bility under Chosen Ciphertext Attack (IND-CCA). The authors of HQC selected this
transformation because it is resistant to the decryption errors which can occur in the HQC
decryption procedure. It is also the reason why this transformation is utilized by most
NIST PQC lattice-based schemes.

Recently, Wafo-Tapa et al. [WTBB+19] and Paiva et al. [PT19] present timing attacks
on the non-constant time implementation of the Bose-Chaudhuri-Hocquenghem (BCH)-
decoder. Both approaches exploit the dependence between the running time of the decoding
procedure and the number of decoded errors. Paiva et al. require 400 · 106 decryption runs
for the 128-bit security parameters. Wafo-Tapa et al. reach a key recovery after just 5441
calls with 93% success rate for the same security level. They proposed a constant-time
BCH decoding to fix this issue.

Guo et al. [GJN20] show that the FO transformation of various proposed schemes
is vulnerable to a timing attack by exploiting the comparison step in the decapsulation
function, which is usually non-constant time (for example, when implemented via the
memcmp function of the standard C library). The authors apply this timing attack to
the lattice-based scheme FrodoKEM [NAB+20]. The attack requires 230 decapsulation
calls. They state that their attack is applicable to other proposed PQC schemes, among
others, to HQC. They show the applicability to LAC [LLJ+19] in the appendix but do
not explicitly show the effectiveness to HQC. The countermeasure to avoid the leakage of
the comparison step is to use another constant-time comparison, for example, as provided

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 3

Table 1: The HQC parameter sets [AAB+21]. The base Reed-Muller code is defined by
[128, 8, 64].

RS-S Duplicated RM
Instance n1 k dRS Mult. n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17,664 17,669 66 75
hqc-192 56 24 33 5 640 320 35,840 35,851 100 114
hqc-256 90 32 49 5 640 320 57,600 57,637 131 149

by OpenSSL1.
Most recently, Ueno et al. [UXT+21] explore a generic side-channel attack of the FO

transformation commonly used in many PQC schemes: By exploiting side-channel leakage
during non-protected Pseudorandom Function (PRF) execution in the re-encryption of
the KEM decapsulation, they demonstrate that Kyber, Saber, FrodoKEM, NTRU, NTRU
Prime, BIKE, SIKE, as well as HQC are vulnerable. The current reference implementation
of HQC uses non-protected SHAKE as the relevant PRF.

The current HQC specification states that the optimized reference implementation
using the vectorized Single Instruction Multiple Data (SIMD) instructions on an x86
machine is now constant-time, and the source code is well analyzed concerning the leakage
of any sensitive information.

Contributions. In this work, we analyze the current KEM variant of HQC and show that
it is still vulnerable to timing attacks. More specifically, we present

• an hitherto unconsidered timing variation dependent on the secret key in the deter-
ministic re-encryption of the KEM decapsulation of HQC due to the non-constant
time rejection sampling function,

• a novel timing attack on the optimized reference implementation of HQC achieving
full secret key recovery with high probability, and

• a discussion of possible countermeasure to avoid the identified leakage in the deter-
ministic re-encryption step.

2 Hamming Quasi Cyclic – HQC
HQC is a code-based post-quantum IND-CCA secure KEM. It is an alternate candidate
in the third round of the NIST PQC competition [AAB+21]. Our work refers to the recent
specification from June 2021. The HQC framework from which HQC stems was introduced
in [ABD+16]. Its security is reduced to problems related to the hardness of decoding
random quasi-cyclic codes in the Hamming metric. The scheme uses a concatenated code
C. An internal duplicated Reed-Muller code with a publicly known generator matrix
G ∈ Fk×n2 . Further, the scheme uses a random double-circulant Reed-Solomon code as
external code.

The parameters are listed in Table 1 and we explain them in the following. The
inner duplicated Reed-Muller code is defined by [n2, 8, n2/2] and the outer, shortened
Reed-Solomon code (RS-S) by [n1, k, n1 − k + 1], with k ∈ {16, 24, 32} depending on the
corresponding security level. The concatenated code C is of length n1n2. To avoid algebraic
attacks the ambient space of vector elements is of length n which is the first primitive
prime greater than n1n2. It defines the polynomial quotient ring R = F2[X]/(Xn − 1).

1https://www.openssl.org/docs/man1.1.1/man3/CRYPTO_memcmp.html

https://www.openssl.org/docs/man1.1.1/man3/CRYPTO_memcmp.html

4 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

Algorithm 1:
KeyGen

Input: params
Output: sk, pk

1 h = Sample(R)
2 x = Sample(R, ω)
3 y = Sample(R, ω)
4 sk = (x,y)
5 pk = (h, s = x + h · y)

Algorithm 2:
Encrypt

Input: pk, m, θ
Output: c = (u,v)

1 SampleInit(θ)
2 r1 = Sample(R, ωr)
3 r2 = Sample(R, ωr)
4 e = Sample(R, ωe)
5 u = r1 + h · r2
6 v = mG + s · r2 + e

Algorithm 3:
Decrypt

Input: sk = (x,y),
c = (u,v)

Output: m
1 m = C.Decode(v−u ·y)

2.1 HQC.PKE
The PKE variant of HQC consists of the Algorithms 1 to 3. The key generation in
Algorithm 1 samples the elements h, x, and y from R uniformly at random where the
Hamming weights of x and y are ω. The secret key sk consists of x and y. The public key
pk includes h and s = x + h · y. The encryption function Algorithm 2 first samples the
vectors e of weight ωe as well as r1 and r2 of weight ωr. The randomness of the sampling
is seeded by the additional input θ. Therewith, the sampling becomes deterministic which
is desired for the verification in the later decapsulation function. The ciphertext is a tuple
with u = r1 + h · r2 and v = mG + s · r2 + e. The term mG in Line 6 corresponds to the
encoding procedure of the concatenated code C. It begins with the external Reed-Solomon
code which encodes a message m ∈ Fk2 into m1 ∈ Fn1

28 . Then the inner Reed-Muller
code encodes each coordinate/byte m1,i into m̄1,i ∈ F128

2 using RM(1, 7). Finally, m̄1,i is
repeated 3 or 5 times depending on the security parameter to obtain m̃1,i ∈ Fn2

2 . Thus,
we get mG = m̃ = (m̃1,0, . . . , m̃1,n1−1) ∈ Fn1n2

2 . The decryption function in Algorithm 3
is to decode the term v− u · y which results in

(mG + s · r2 + e)− (r1 + h · r2) · y
= mG + (x + h · y) · r2 − (r1 + h · r2) · y + e
= mG + x · r2 − r1 · y + e.

Thus, the decoder has to correct the error

e′ = x · r2 − r1 · y + e.

The decoding succeeds if ω(e′) ≤ δ. The Decryption Failure Rate (DFR) denotes the
probability when the weight exceeds the decoder’s capacity.

2.2 HQC.KEM
The authors of HQC decided to use the Hofheinz-Hövelmanns-Kiltz (HHK) transforma-
tion [HHK17] to obtain an IND-CCA secure Key Encapsulation Mechanism from the
IND-CPA secure PKE scheme described before. In contrast to the original FO transforma-
tion, the HHK approach is able to handle decryption failures. The KEM scheme may be
used to share securely a random symmetric key K between two parties. The key generation
is the same as for the PKE. The sender of a message applies the encapsulation function in
Algorithm 4 to wrap a randomly chosen K and the receiver executes the decapsulation
function in Algorithm 5 to obtain the same key or aborts if a decryption failure occurs.

The KEM construction requires the three independent cryptographic hash functions
G, K, and H. To encapsulate a randomly chosen message m the randomness θ for the

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 5

Algorithm 4: Encaps
Input: pk
Output: K, (c, d)

1 m = Sample(F2)
2 θ = G(m)
3 c = Encrypt(pk,m; θ)
4 K = K(m, c)
5 d = H(m)

Algorithm 5: Decaps
Input: sk = (x,y), (c = (u,v), d)
Output: K

1 m′ = Decrypt(sk, c)
2 θ′ = G(m′)
3 c′ = Encrypt(pk,m′; θ′)
4 if c 6= c′ ∨ d 6= H(m′) then
5 K =⊥
6 K = K(m′, c)

encryption is derived by G(m). The shared key K is a linkage of both the message m and
the ciphertext c and is computed by K(m, c). Finally, d is derived by computing the hash
H(m).

In the decapsulation, the decryption function is invoked with the secret key sk and
the ciphertext c to obtain the message m′. To verify the ciphertext for integrity, a re-
encryption of the message m′ is performed using the randomness θ′ derived from m′. Then,
the procedure checks whether the re-encrypted ciphertext c′ matches the received c and
whether the sent digest d equals the hash value of the decrypted message m′. If this check
succeeds, K(m, c) is output, otherwise failure.

3 Timing Attack on HQC
In the following, we show how the current optimized HQC implementation [AAB+] from
June 2021 which is specified in [AAB+21] leaks timing information which enables the
construction of a plaintext distinguisher. Then, this distinguisher is used as a plaintext-
checking oracle within existing attacks described in [BDH+19] to achieve the key-recovery on
the, now, deprecated version of HQC using BCH and repetition codes. Further, we propose
an attack that enables the key-recovery on the current version using Reed-Solomon (RS)
and Reed-Muller (RM) codes.

3.1 Vulnerability in HQC Implementations
As described in Section 2, the encryption procedure described in Algorithm 2 requires to
sample bit vectors of a specified Hamming weight ω. The implementation of the sampling
function uses rejection sampling to comply to the security properties, e.g., if a position
is sampled twice. The runtime of the rejection sampling algorithm depends on the given
seed θ. In the KEM version the en- and decapsulation procedures derive the seed for the
Encrypt function from the message m by G(m). The dependence on the message in the
decapsulation allows us to construct a plaintext distinguisher which we use to mount a
timing attack afterwards.

The Sample function. The considered implementation of HQC implements the weighted
vector sampling in the function vect_set_random_fixed_weight. For brevity we refer to
this function as Sample. In each iteration the function generates random positions from
the range {0, . . . , n − 1} to set a bit at that position to 1 until w distinct bit positions
have been sampled. Concretely, if the sampled bit position has already been sampled
before the sample is rejected. Otherwise, the bit position is stored in an array. At the end,
the vector of weight w is constructed by setting the bits at the w distinct positions that
were sampled. The number of times a bit position collides with a previously sampled bit
position is directly proportional to the runtime of the algorithm.

6 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

crypto kem dec

hqc pke decrypt m
SHA3 θ

hqc pke encrypt

vect set random fixed weight

(Sample)

×3

seedexpander

×[1,∞)

Legend:

function f

function g

×3
f calls g 3 times

input
output

Figure 1: Visualization of the information flow in the decapsulation function of the current
HQC KEM implementation [AAB+].

The randomness in the Sample function is deterministic and determined by an eXtendable-
Output Function (XOF) implemented by the seedexpander function. For our analyses
we assume that the outputs of the XOF are uniformly, independent and identically dis-
tributed (iid). The XOF influences the path that is taken through the function and
is initialized with the seed θ = G(m). The message m is obtained from the decoding
of the ciphertext c, c.f., Line 1 in Algorithm 3. This data flow is illustrated in Fig. 1.
Therefore, the message m controls how many iterations the rejection sampling algorithm
takes. Further, a rejection leads to another call of the seedexpander function and, thus,
to a large timing gap.

Additional seedexpander calls. We refer to seedexpander calls which are executed con-
ditionally within the loop in the Sample function, c.f. Fig. 1, as additional seedexpander
calls. For details, we refer to the original source code which can be found in the file vector.c,
line 31, in [AAB+]. In general, unless otherwise specified, we only count the number of ad-
ditional seedexpander calls and skip the default initial call. The seedexpander is initially
used to produce 3 · ωr bytes of randomness and store it into a buffer. If this randomness
is sufficient to generate ωr distinct bit positions, no additional seedexpander calls are
issued. However, if even a single sample is rejected the algorithm will need to produce
additional randomness by issuing another seedexpander call. The sampled bit positions
are in the range of {0, . . . , n − 1}. To generate these positions, the algorithm performs
an inner rejection sampling algorithm. The inner rejection sampling algorithm samples a
position from {0, . . . , 224 − 1} that is to be reduced modulo n, where n < 224. However,
the position is rejected if it is above the largest multiple of n that is smaller than 224 which
is defined by η :=

⌊
224/n

⌋
n or UTILS_REJECTION_THRESHOLD in the implementation. This

is to avoid biasing the distribution and discussed in detail in Section 5.2.
Thus, sampling distinct bit positions can fail in two ways: (1) The sampled position in

{0, . . . , 224 − 1} is larger than η or (2) it collides with a previously sampled one. We can
model rejection sampling of a position as a Bernoulli variable with the success probability
p = η/224. Each attempt to generate a valid bit position below n consumes 3 bytes of
randomness. If the algorithm succeeds in picking a distinct bit position in every iteration,
it does not need additional randomness. In this case seedexpander is not called within
the for loop. However, if even a single sample fails or collides the algorithm will need to
produce additional randomness, as it now requires more than 3 · ωr bytes. The probability

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 7

Table 2: The approximated probabilities p for successfully sampling a bit position in the
range required for unbiased modulo reduction, p̃ for completing the rejection sampling
routine without exhausting the initially generated randomness, and for a message that
causes at least 3 additional seedexpander invocations.

Instance p (in %) p̃ (in %) (1− p̃)3 (in %)

hqc-128 99.94 81.95 0.58
hqc-192 99.79 65.93 3.95
hqc-256 99.97 79.09 0.91

5.2× 105 5.3× 105 5.4× 105 5.5× 105 5.6× 105 5.7× 105

0.000000

0.000025

0.000050

0.000075

0.000100

cycles

de
ns

ity

(a) Probability density.

5.2× 105 5.3× 105 5.4× 105 5.5× 105 5.6× 105 5.7× 105

0.00000

0.00005

0.00010

0.00015

0.00020

cycles

de
ns

ity

0 seedxpander calls
1 seedxpander calls
2 seedxpander calls
3 seedxpander calls

(b) Conditioned probability density.

Figure 2: The probability density and the conditioned probability density, from no to
three additional seedexpander calls, of the running time of the decapsulation function.
The vertical bars are the medians of the runtime of the specific numbers of seedexpander
calls.

of all ωr samples succeeding and picking distinct positions out of n bit positions is

p̃ =
ωr−1∏
i=0

(
p
n− i
n

)
which evaluates, for instance, to approx. 81.95% for the hqc-128 parameter set. Thus,
only 1 − p̃ ≈ 18.05% of all possible seeds θ result in at least one additional call to the
seedexpander function. The probabilities for all parameter sets are listed in Table 2.

Decapsulation timing. To confirm the previously postulated hypothesis on the timing
behavior we did a leakage assessment by measuring the CPU cycles on a dedicated machine
with no other load of the entire decapsulation function in the hqc-128 setting for ten
million random ciphertexts. Fig. 2a shows the corresponding probability density. There
are four local maxima, highlighted by the vertical bars which point to the medians of the
number of cycles of triggering no additional, but one by default, seedexpander call up
to three additional seedexpander calls. If we condition the probability density to the
specific number of seedexpander calls, as we show in Fig. 2b, it gets even more clear that
the running time of the decapsulation depends on the number of seedexpander calls. As
expected, the frequency decreases when the number of additional calls increases. Further,
the rate of three additional calls is low enough to be distinguishable to the other three
cases. The probability of four additional calls is negligible and do not emerge in practice.

Inspecting the decapsulation function in Algorithm 5 the timing variation is caused by
the invocation of the encryption function using the seed θ = G(m). Viewing the encryption

8 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

function in Algorithm 2 we observe three calls to the previously discussed Sample function.
One for each of the random vectors: r1, r2, e, where the weight parameters ωr and ωe are
equal. Each of these calls is using the same seedexpander instance, whose randomness
depends upon the seed θ. In each of these three invocations there is a 1− p̃ chance that
seedexpander is called at least once within the for loop. Thus, (1− p̃)3 of messages result
in three or more calls to seedexpander.

3.2 Distinguisher
Given a ciphertext c we can distinguish whether the decrypted message m yields the same
timing behavior during the encryption as another ciphertext. We define a distinguisher D
as:

DO(c1, c2) = O(c1) ?= O(c2) (1)

where O = TB(sk, ·) is the decapsulation timing oracle and yields the timing behavior –
the number of seedexpander calls – of the provided ciphertext under the secret key sk
and · ?= · returns whether the two arguments are equal or not. The advantage of D when
distinguishing a given ciphertext c1 that decrypts to m1 from another ciphertext c2 that
decrypts to a uniform randomly chosen message m2 is given by:

| Pr
c2 ←$ C

[DTB(sk,·)(c1, c2) = 1 | Decrypt(sk, c1) = Decrypt(sk, c2)]−

Pr
c2 ←$ C

[DTB(sk,·)(c1, c2) = 1 | Decrypt(sk, c1) 6= Decrypt(sk, c2)]|

= | Pr
c2 ←$ C

[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) = Decrypt(sk, c2)]−

Pr
c2 ←$ C

[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) 6= Decrypt(sk, c2)]|

= 1− Pr
c2 ←$ C

[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) 6= Decrypt(sk, c2)]

where C is the ciphertext space. The last formula shows that the advantage is at a maximum
when the probability of obtaining the same timing behavior for another ciphertext c2 that
decrypts to a different message is at a minimum. We can achieve this by minimizing the
probability of the timing behavior of c1 by picking a suitable message m1.

3.3 Key Recovery Attack
By using the observations in Section 3.1 to get a distinguisher described in Section 3.2 for
a secret key recovery we propose the following attack idea. We pick a message m that has
the property of resulting in 3 additional calls to the seedexpander function. Regarding the
low probabilities in Table 2, we know that most of the messages do not share this property
with our chosen message m. Therefore, since we can determine whether a decryption has
resulted in exactly 3 calls or not through the timing behavior, we can distinguish whether a
ciphertext decrypts to the message m with high advantage. Next, we compute a ciphertext
c = (u,v) by manually setting r1 to 1 ∈ R, and r2 and e to 0 ∈ R during the encryption
of m. This ciphertext has the desirable property, that the error that the decoder has to
correct during the decryption is just y, a part of the secret key:

v− u · y = mG + s · r2 + e− (r1 + h · r2) · y = mG− r1 · y = mG− y. (2)

If we are able to find the error −y = y, we can compute the remaining part of the secret key
as x = s− h · y. Note, that we do not need x as it is never used during the decapsulation.
Further, note that this ciphertext is not valid, since we cannot fully control r1, r2, or e
during the encryption. For valid ciphertexts, these are derived from m via the XOF and

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 9

the Sample function. We do not require a valid ciphertext, as our timing-side channel will
reveal information, even if the ciphertext is rejected by the decapsulation oracle.

To recover the error y we follow the basic principles outlined by Hall et al. [HGS99].
The authors propose adding an error e′ to the ciphertext c until we detect that the modified
ciphertext c′ decrypts to a different message m′. Then, we test for every bit b in the
ciphertext c′, whether flipping it causes the ciphertext to decrypt back to the original
message m. If it does, we know that the bit b is an error bit in the modified ciphertext c′.
Otherwise, b is not an error.

Unfortunately, we cannot directly apply this method to HQC for several reasons: (1)
Instead of correcting errors we need to determine the error e of our original ciphertext
c = mG + e. (2) Further, when flipping erroneous bits in the modified ciphertext it does
not decrypt back to the original message in most cases. Thus, we would not detect that the
bit is an error. (3) Finally, the timing side-channel can not distinguish pairs of messages
that induce the same number of seedexpander calls. Therefore, we sometimes do not
detect that our modified ciphertext does not decrypt to the same message m anymore.

The first issue can be solved by keeping track of the error e′ that we add to c to obtain
c′. If we flip a bit b in the ciphertext c′ and it decrypts back to the original message m,
we know that b is an error in c′ = c + e + e′. Let e′′ = e + e′. If the bit b is an error in
e′′, then b is an error in e if and only if the b-th bit of e′ is not set. Or in other words, if
we did not introduce the error ourselves, we know that the bit is an error. Otherwise, we
know that the bit is correct. The second issue vastly increases the number of timing oracle
calls since it introduces a very high false negative rate. We do not gain any information if
the ciphertext does not decrypt back to the original message. To address this issue, we
retry the entire function multiple times, with many different e′. Eventually, we obtain a
decision for every bit. The third issue may be solved by obtaining three or more decisions
for every bit, and then obtaining a final decision with a majority vote.

Our resulting attack approach is detailed in Algorithm 6. First, we need to find a
proper message m which yields 3 additional seedexpander calls. Therefor, we perform an
exhaustive but low effort search. According to Eq. (2), we apply the modified encryption
to m to obtain the initial ciphertext c = (u,v). Further, we define a proper majority
threshold N . Afterwards, we apply Algorithm 7 to find another ciphertext c′ = (u,y + e′)
and the corresponding m′ that differs from m. We only add e′ to v because the input to
the decoder evaluates to additional errors just in the secret key part y, c.f., Eq. (3).

Decrypt(sk, (u,v + e′)) = C.Decode(v + e′ − u · y) = C.Decode(mG + e′ − y) (3)

In particular c′ should have exactly one more error bit than the decoder could correct.
From this state, flipping any bit in c′ and checking whether the ciphertext decodes again
reveals whether that bit was an error bit in c or not. We can exploit this property to
recover y later on. Starting from c and an error of e′ = 0, we iteratively increase the weight
of e′ by flipping single, random bits. After each flip, we send the modified ciphertext to
the decapsulation timing oracle DTB(sk,·) and check if the ciphertext causes a different
amount of time in the decryption operation than our original ciphertext. If it does, we
have found a ciphertext c′ that decrypts to a different message m′.

Then, for each bit position b in v + e′, we flip the bit and send (u,v + e′ + 2b) to
the decapsulation timing oracle, where 2b is a vector with the bth bit set. If we detect
that the timing is again equal to the timing of our original ciphertext, we assume that
the decryption yields back the original message m and that the corresponding bit in the
secret key part y is set. Otherwise, we assume that the ciphertext decrypts to a different
message and that there is no error bit set at this position.

Finally, Algorithm 6 performs Algorithms 7 and 8 multiple times until a majority is
revealed at each bit position for a 0- or 1-bit. To determine the majorities the counters
in t record the total number of votes that have been cast for each bit b. The counters in

10 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

Algorithm 6: KeyRecovery
Input: Ciphertext c and majority of N .
Output: y.

1 for b = 0 to n1n2 − 1 do y[b]← 0, t[b]← 0, r[b]← 0
2 repeat
3 (c′, bs)← FindDiffMsg(c)
4 e′ ← RecoverError(c′)
5 majority ← true
6 T ←

⌊
N
2
⌋

+ 1
7 for b = 0 to n1n2 − 1 do
8 if e′[b] = 1 then
9 t[b]← t[b] + 1

10 if b 6∈ bs then r[b]← r[b] + 1
11 end
12 if r[b] < T and t[b]− r[b] < T then
13 majority ← false
14 end
15 end
16 until majority = true
17 for b = 0 to n1n2 − 1 do y[b]← r[b] ≥ T
18 return e

Algorithm 7: FindDiffMsg
Input: c
Output: c′, flipped bits bs

1 c′ ← c
2 bs← RandomPermutation([0, . . . , n1n2− 1])
3 for i = 0 to n1n2 − 1 do
4 Flip bit bs[i] in v of c′
5 if DTB(sk,·)(c, c′) = 0 then
6 return (c′, bs[0, . . . , i])
7 end
8 end

Algorithm 8: RecoverError
Input: Modified ciphertext c′
Output: Combined error e

1 e← 0
2 for i = 0 to n1n2 − 1 do
3 Flip bit i in v of c′
4 if DTB(sk,·)(c, c′) = 1 then
5 Set bit i in e
6 end
7 Flip bit i in v of c′
8 end

r record the number of 1-votes for each bit b, i.e., the number of votes that the bit b is
set. The number of 0-votes for a bit b is computed by t[b]− r[b]. For a majority either the
number of 1-votes or the number of 0-votes has to exceed bN/2c+ 1.

3.4 Reducing the Number of Oracle Queries
We can improve the attack by targeting a specific word of the duplicated RM code.
Specifically, consider that the code used in HQC is a concatenated code combining an
outer RS code with an inner duplicated RM code. During encoding, each element in the
alphabet Fq from a word of the outer code is mapped to a message that the inner code
can encode. We can obtain an oracle whether a word of the inner code decoded correctly
by corrupting v such that a single additional corrupted inner code word would result in a
decoding failure. We achieve this by corrupting δ – the error correction capacity of the
outer code – elements of the outer code. We then may add an error e′ to a single element
of words of the RS code. A similar procedure has been previously described [BDH+19,

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 11

· · ·

n1n2

n2

n− n1n2

Figure 3: An element of F2[x]/〈xn − 1〉 and its segmentation into codewords of the inner
code.

Ex.15] to attack Lepton [YZ17] which uses BCH and repetition codes.
The oracle we construct here may also enable faster attacks [WTBB+19] if the noise

learning problem [BDH+19] is solved for duplicated RM codes. We do not implement such
a version of the attack as we are not aware of a solution to this problem.

3.5 Recovering the Entire Secret Key

Using the methods described so far we can recover n1n2 bits of the secret key y. However,
we are missing n−n1n2 bits, that are required for using y during decryption. In Fig. 3 the
structure of HQC codewords is displayed. Depending on the codes used, there are n1 RM
or repetition code codewords. However, n− n1n2 bits of the n bits in total are never used
during decoding. Thus, these bits cannot be obtained using the methods described so far.
We now show how this situation can be remediated, and how it does not have a significant
impact on the success probability, when the attack accounts for it. This issue was not
addressed in some other attacks against HQC [WTBB+19]. Fortunately, the difference
between n and n1n2 is small for most parameters. However, for some parameters the
difference could dominate the attack’s complexity, if we were to brute force every possible
combination. The largest difference with the new parameter sets is 37 bits in hqc-256. We
can check whether a combination of bits is correct by checking whether we can decrypt an
honestly encrypted message successfully. Fortunately, we can drastically reduce the search
space while retaining a very high success probability. Assuming the number of bits set in
the remaining bits is ≤ 2, the number of ways to pick these bits is

∑2
i=0
(
n−n1n2

i

)
. This

number is low enough for all parameter choices to enumerate using a brute force search.
We now investigate the success probability given this dramatic search space reduction.

We define Yi,o,w to be the number of elements that land inside a region of i elements when
sampling w distinct elements uniformly from a region of i+ o elements. The region i (or
“inside”) corresponds to the bits that are set in the remaining n− n1n2 bits. The region o
(or “outside”) corresponds to the n1n2 bits that we have already obtained using the attack.
Then the probability that x of the w distinct elements land inside the region of i elements
is:

Pr[Yi,o,w = x] =
(
i
x

)(
o

w−x
)(

o+i
w

)
We now let Z = Yn−n1n2,n1n2,ω. Assuming the attack was successful for all n1n2 bits, the
success probability is approx. 98.1% for hqc-128 when we guess that all remaining bits are
zero, represented by the column Pr[Z = 0] in Table 3. However, this loss is preventable by
brute-forcing the remaining bits. We can come very close to a success probability of 1,
even for a modest search of only ≤ 2 set bits.

12 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

Table 3: Remaining n − n1n2 bits that must be recovered for each parameter set, the
number of ways to pick the remaining bits with a weight of up to 2, the probability that
the weight is 0, and the probability that the weight is ≤ 2.

Instance n1n2 n ω n− n1n2
∑2

i=0

(
n−n1n2

i

)
Pr[Z = 0] Pr[Z ≤ 2]

hqc-128 17,664 17,669 66 5 16 ≈ 98.1 % ≈ 100.0 %
hqc-192 35,840 35,851 100 11 67 ≈ 97.0 % ≈ 100.0 %
hqc-256 57,600 57,637 131 37 704 ≈ 91.9 % ≈ 100.0 %

4 Evaluation
We have empirically verified the existence of the timing variation by generating random
ciphertexts under a single keypair and measuring the number of cycles that the decapsula-
tion algorithm required for 100 random ciphertexts. To measure the number of cycles that
an operation takes we use the rdtsc instruction on x86 as recommended by Intel [Gab].
Section 5.5 shows whether there is a difference in decapsulation time between pairs of 100
ciphertexts generated for a single keypair. We determine whether there is a statistically
significant difference using Welch’s t-test [WEL47] (α = 0.1%). The t-statistic for two
distributions X1 and X2 in Welch’s t-test is computed as:

X̄1 − X̄2√
s2

X1
N1

+
s2

X2
N2

(4)

where X̄i, s2
Xi

and Ni are the sample mean, variance and size of Xi, respectively. The
degrees of freedom are estimated by the Welch-Satterthwaite equation:

ν =

(
s2

X1
N1

+ s2
X2
N2

)2

(
s2

X1
N1

)2

N1−1 +

(
s2

X2
N2

)2

N2−1

. (5)

The results show that many pairs of ciphertexts emit a statistically significant difference
in decapsulation time. We have performed the same test again focussing only on the
seedexpander function and achieve very similar results.

We implemented the optimized attack against hqc-128 using an idealized timing oracle
that reveals the number of seedexpander calls during the decapsulation. The attack may
be implemented analogously for the other parameter sets. We set N = 5 for the number
of samples from which a majority must be formed for each bit. We performed the attack
6096 times in 114 CPU core hours on a Ryzen 5900X with 64 GiB DDR4 3600 MT/s CL18
RAM. Each attack required a median of 866,143 idealized timing oracle calls. Of the
6096 attacks 5315 were successful, yielding a success rate of more than 87 %. Among the
failed attacks, approx. 26 % terminated with less than 3 incorrect bits in the secret key
component y. An additional brute-force step comprised of approx.

∑3
i=0
(17,669

i

)
≈ 240

offline decapsulations could therefore further boost the success probability. Furthermore,
approx. 86 % of the failed attacks terminated with less than 20 incorrect bits and could
therefore drastically reduce the security level of HQC. Thus, even if we are not able to
recover all bits of the secret key we deem it likely that one can apply the known attacks
to the HQC scheme which are listed in [AAB+21] as it will become feasible to solve the
syndrome decoding problem or to mount structural attacks. We empirically determined
the probability distribution of the number incorrect bits after an attack and show the
cumulative distribution function in Fig. 4.

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 13

0 25 50 75 100 125
0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

x

Pr
[in

co
rr

ec
t

bi
ts

≤
x]

Figure 4: Empirical cumulative distribution function of the number of incorrect bits
during the attacks. Approx. 87 % succeeded immediately. For those that failed additional
post-processing steps could further improve the success probability. The vertical line
indicates the weight of the secret key y. Less than 1 % of cases the attack terminated with
more incorrect bits than bits are set in the secret key.

5 Discussion on Countermeasures

To counter our proposed attack and to remove the exploitable leakage, we see two basic
ways: Either the reencryption step in the decapsulation can be avoided completely or the
sampling of a fixed weight bit vector can be implemented in constant time.

Avoiding the reencryption must not harm the Chosen Ciphertext Attack (CCA) security
of the KEM. We are not aware of any generic alternative approach that uniquely binds a
ciphertext to a message as it is guaranteed by the reencryption step.

We identify two main avenues for implementing a constant-time fixed weight vector
sampling algorithm. For the first one we initialize the vector of length n starting with
a run of w set bits. Then we shuffle the array. This will result in a random vector of
weight w. To shuffle the array one could use, e.g., the Fisher-Yates shuffling algorithm as
described in [Knu, p.145] or reverse sorting, using an established sorting algorithm like
merge-sort, as it is proposed in [WSN18] for a ClassicMcEliece hardware implementation.
However, the Fisher-Yates shuffling may leak timing information, as it is using secret-
dependent array accesses and naïve methods to make these array accesses constant-time
result in an unacceptable asymptotic time complexity. The reverse merge-sort induces
a slight bias which is solved by a rejection and is therefore not suitable for a constant-
time implementation. The Beneŝ-network used in the C reference implementation of
ClassicMcEliece is aligned to a vector size of a power of 2 which is not the case in HQC.
We are not aware of a suitable random permutation approach for HQC.

Alternatively, we sample the specified number of distinct bit positions in constant-time
and set the bits in the vector in constant-time. This method is already implemented for the
most part in HQC, except that the distinct position sampling is not constant-time. While
we are not aware of an efficient algorithm that implements this method fully correct and
in constant-time we propose a way to modify HQC’s algorithm to make it constant-time.
Our modification results in an algorithm that is only probabilistically correct and may
sample too few distinct bit positions. The probability of this failure mode can be chosen
arbitrarily small and made negligible.

14 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

Algorithm 9: Inner Rejection Sampling Algorithm
Result: Random number in [0, . . . ,m− 1]

1 repeat
2 i←$ [0, 2k)
3 until i <

⌊
2k

m

⌋
m

4 return i mod m

5.1 Remove Additional seedexpander Calls

The first attempt we make to get a countermeasure is to eradicate the concrete side-channel
that we use for the attack: The rejection sampling algorithm that generates new random
data using the seedexpander function on demand. It is vanishingly unlikely that a single
Sample invocation induces more than one additional seedexpander call. Therefore, our
first, obvious countermeasure is to increase the number of bytes that are generated initially
to double the previous amount. This results in the following patch to the sampling function:

void vect_set_random_fixed_weight(
seedexpander_state *ctx,
__m256i *v256, uint16_t weight) {

- size_t random_bytes_size = 3 * weight;
+ size_t random_bytes_size = 2 * 3 * weight;
- uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0};
+ uint8_t rand_bytes[2 * 3 * PARAM_OMEGA_R] = {0};

However, the algorithm is not constant-time: rejection sampling still performs a different
number of iterations depending on the message. While the countermeasure increases the
effort required to perform the attack, it could still allow a local attacker to recover the key.

5.2 Constant-Time Random Number Generation

To further improve our countermeasure we can remove the inner rejection sampling used
for generating random indices into the vector. The inner rejection sampling is detailed in
Algorithm 9. Instead of rejection sampling integers in the range 0 ≤ x <

⌊
2k/m

⌋
m, we

generate b� log2m random bits and then reduce the generated integer modulo m to the
desired range. This will bias the resulting distribution if m does not divide 2b, which is
the case here. Therefore, we need to pick a sufficiently large b for the statistical distance
to be negligible. In particular we are interested in minimizing the statistical distance (SD)
between the uniform distribution over {0, . . . ,m− 1} and the distribution generated by
x mod m where x is drawn uniformly random random from {0, . . . , 2b − 1}. We define
the statistical distance between two probability distributions X and Y over some discrete
domain Ω to be:

SDX,Y = 1
2 ·
∑
z∈Ω
|Pr[X = z]− Pr[Y = z]| (6)

Let Um be the uniform probability distribution over {0, . . . ,m− 1}:

Pr[Um = z] =
{

1
z if 0 ≤ z < m

0 otherwise
(7)

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 15

Table 4: Statistical distance between the uniform distribution over {0, . . . ,m− 1} and the
distribution of random integers from 0 to 2b−1 reduced modulom for hqc-128 (n = 17,669).

b log2 SDUm,M2b (approx.)

16 −4
32 −20
64 −52
128 −116
256 −244
512 −502

Additionally, we define the probability distribution Mn which reduces an integer in
{0, . . . , n− 1} modulo m. Its probability distribution is given by:

Pr[Mn = z] =

bn/mc+1

n if 0 ≤ z < n mod m
bn/mc
n if n mod m ≤ z < m

0 otherwise
(8)

The statistical distance between these two distributions is:

SDUm,Mn = 1
2 ·

∑
z∈{0,...,m−1}

|Pr[Um = z]− Pr[Mb = z]| (9)

= 1
2 ·
(

(n mod m) ·
∣∣∣∣∣ 1
m
−
⌊
n
m

⌋
+ 1
n

∣∣∣∣∣+ (10)

(m− (n mod m)) ·
∣∣∣∣∣ 1
m
−
⌊
n
m

⌋
n

∣∣∣∣∣
)

In Table 4 we computed the statistical distance between the uniform distribution and
the modular reduction technique for various numbers of bits b. The parameter m is the
length of the vector in HQC. We leave the choice of an acceptable statistical distance to
the designers of the scheme. For our further testing we use b = 128.

We can implement a modular reduction of a 512 bit non-negative number x modulo
a small number efficiently using basic rules of modular arithmetic. We can represent x
in base 28 as x = x0 + 28 · x1 + 28·2 · x2 + · · ·+ 28·(`−1)x`−1 + 28·` · x`. We split up the
computation of x mod m in the following way:

x mod m =

· · ·
z1︷ ︸︸ ︷x`−1 + 28 · (x` mod m︸ ︷︷ ︸
z0

)

 mod m · · ·

 mod m (11)

Generalizing this, we can write an iterative algorithm that computes in iteration i:

zi =
{
x` mod m if i = 0
(x`−i + 28 · zi−1) mod m otherwise

(12)

and z` = x mod m. We can implement this algorithm for a random number x where each
xi is drawn from rand_bytes by the following lines of C:

16 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

#include <stdint.h>

uint32_t f(uint32_t a) {
return a % 23869;

}

f:
mov eax, edi
mov ecx, edi
mov edx, 2948122845
imul rdx, rcx
shr rdx, 46
imul ecx, edx, 23869
sub eax, ecx
ret

Figure 5: Modular reduction of an integer a modulo a constant in C and the resulting
Intel-style x86 assembly with optimization level 2 using clang.

uint32_t random_data = 0;
for (uint32_t k = 0; k < BYTES_PER_INDEX; ++k) {

random_data = ((uint32_t)rand_bytes[j++] | (random_data << 8));
random_data %= PARAM_N;

}

where GEN_BYTES is b
8 .

Additionally, while a divide instruction is not constant-time in general on most Instruc-
tion Set Architectures (ISAs), reducing modulo a constant is optimized by the compiler
into a sequence of instructions that can be executed in constant time. The optimization
performed by the compiler is a Barrett reduction [MVOV, p.603]. This can be observed in
Fig. 5. Here the compiler replaced the idiv instruction by a series of shifts, additions and
multiplications. All of these instructions complete with a fixed latency on the Zen 3 ISA
according to Agner’s instruction tables2. To ensure that the compiled result always uses
these instructions, which we have verified to be constant-time, we can copy the compilation
result into an __asm__ volatile block.

5.3 Performance Optimization
We wish to minimize the number of random bytes generated, while still ensuring that we
only have to call the seedexpander function once, and never inside the for-loop of the
Sample function. To this end, we analyze the probability of requiring a certain number of
iterations in the rejection sampling algorithm. We introduce the random variable Xn,i,ps

,
which is the number of distinct elements after attempting to sample i elements from
{1, . . . , n} with each sample succeeding with the probability ps. The success probability ps
can be used to model the case where the inner rejection sampling algorithm has to retry
sampling an element from {1, . . . , n}, because the sampled element was not in the required
range. Therefore, if a sample fails, it increases the number of iterations, but no element is
sampled. This yields the following recursive relation:

Pr[Xn,i,ps
= w] =

0 if i < w

1 if w = i = 0
ps if w = i = 1

ps
w

n
Pr[Xn,i−1,ps

= w] +

(1− ps max(0, w − 1
n

)) Pr[Xn,i−1,ps
= w − 1]

otherwise

(13)

We are now sufficiently equipped to compute the probability that the rejection sampling
algorithm requires ≤ i iterations to sample w distinct bit positions. This query is equivalent

2https://www.agner.org/optimize/instruction_tables.pdf, accessed on 2021-11-05.

https://www.agner.org/optimize/instruction_tables.pdf

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 17

Table 5: Number of indices κ that must be derivable from the generated randomness
reservoir to achieve a probability on the order of the security parameter of a message
emitting multiple seedexpander calls. Here, ps is set to

⌊
2k/m

⌋
m/2k for when the original

rejection sampling is used or 1 when the bit position sampling cannot fail due to the use
of the constant-time random number generation scheme.
Instance κps log2(1 − (Pr[Un,ωr,ps ≤ κps])3) κ1 log2(1 − (Pr[Un,ωr,1 ≤ κ1])3)

hqc-128 99 ≈ −134 97 ≈ −129
hqc-192 152 ≈ −193 146 ≈ −195
hqc-256 192 ≈ −261 190 ≈ −259

to the probability, that after i iterations ≥ w distinct bit positions have been sampled. We
can compute this by simply summing over the number of distinct positions:

Pr[Xn,i,ps
≥ w] =

i∑
x=w

Pr[Xn,i,ps
= x] (14)

Finally, we define the random variable Un,w,ps
to be the number of iterations required to

sample w distinct elements out of {1, . . . , n} with each sample succeeding with probability
ps. Then, the probability of requiring ≤ i iterations is:

Pr[Un,w,ps ≤ i] = Pr[Xn,i,ps ≥ w] (15)

We can use the random variable Un,w,ps
to minimize the number of random bytes that

we need to sample. The probability that a message emits ≥ 1 additional seedexpander
calls when the randomness reservoir provides sufficient entropy for κ random indices is:

1− (Pr[Un,ωr,ps
≤ κ])3

. (16)

We would like this probability to be negligible. We can compute a suitable κ for which
the probability is ≤ 2−λ where λ is the security parameter. This is done by increasing
κ until the probability is low enough. The number of iterations depends on the success
probability of sampling a random index. When we retain the original inner rejection
sampling algorithm we use the success probability ps to compute κps

. For the constant-
time random number generation we use a success probability of 1 to compute κ1. Note
that these probabilities are high enough for these messages to feasibly exist. However, we
deem it infeasible to compute such messages, as they are so rare.

The results of these computations can be seen in Table 5. Using κ we can optimize
the countermeasure to generate the least amount of randomness to eradicate additional
seedexpander calls. Note that κ1 ≤ κps , since the rejection sampling algorithm requires
less iterations when every random number generation succeeds. However, the constant-time
Random Number Generator (RNG) still requires much more random bytes to be generated,
since it requires 16 bytes per index, instead of approx. 3 in expectation.

We can further optimize the RNG by using the full width of the registers. Instead
of reducing one byte at a time we can reduce 4 bytes at once by using 64 bit registers
and multiplying each intermediate result zi−1 by 28·4, as we detail in Listing 1. Further
performance improvements may be achievable through the use of even wider registers or
SIMD instructions to produce multiple positions at once.

5.4 Constant-Time Monte-Carlo
We can now forge a constant-time algorithm that is approximately correct using minimal
modifications. It fails to produce a correct result with an error-probability that we can

18 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

choose to be arbitrarily low. The first step is to always produce the same number of
random positions into the generated vector. Additionally, for each position we keep track
of whether it is needed, i.e., whether the generated index has already been sampled before
and whether we have already sampled enough unique indices. Using this information, we
can then set the bit only if it is needed – in constant time. However, if we fail to sample
enough unique indices, the algorithm may produce a vector of too low weight. We cannot
catch this error and try again, as that would introduce a timing-variability. Therefore, we
must sample enough positions such that this case does not happen with overwhelming
probability. We can reuse the κ1 listed in Table 5 for this purpose. Using these parameters
the probability that we sample a vector of too low weight is ≤ 2−λ, where λ is the security
parameter.

Concretely, we keep track of the number of unique positions sampled and whether we
need each position by:

uint32_t count = 0;
uint8_t take[K_1];

We then sample κ1 positions from {0, . . . , n− 1}. Instead of trying to sample a position
again when a position is not unique, we store it unconditionally but keep track of whether
we need the position:

tmp[i] = random_data;
uint8_t not_enough = count < weight;
uint8_t needed = (!exist) & not_enough;
take[i] = needed;
count += needed;

where exist is 1 iff the position has not been sampled before and i is the iteration count
in {0, . . . , κ1 − 1}. To avoid naming ambiguities in this section we henceforth refer to the
vector of n bits that is modified by the algorithm as the bit-array.

The next phase of the algorithm uses Advanced Vector Extensions (AVX2) instructions
to set the sampled bit positions in the bit-array. This algorithm is vectorized to process
the bit-array in 256 bit chunks. We modify this algorithm to only include a position if
take[i] is set by computing a bit mask that is 1256 if take[i] == 1 and 0256 otherwise.
We then modify the first loop to compute the bitwise and of bit256[i] and the mask
stored in take256:

__m256i take256 = _mm256_set1_epi64x(take[i]) == 1;
bit256[i] = bloc256&mask256&take256;

This results in bit256[i] being 0256 if the bit is not needed. When this 256 bit vector is
later xor-ed with the aux variable, it will have no impact, since 0⊕ x = x.

uint32_t rand_bytes[BYTES_PER_INDEX * K_1 / 4] = {0};
// [...]
uint64_t random_data = 0;
for (uint32_t k = 0; k < BYTES_PER_INDEX / 4; ++k) {

random_data = (uint64_t) rand_bytes[j++] + (random_data << 32);
random_data %= PARAM_N;

}

Listing 1: Optimization in the random number generation by reducing 4 bytes at once.

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 19

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(a) Original

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(b) seedexpander fix

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(c) seedexpander + RNG fix

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(d) seedexpander + RNG fix + constant iters

Figure 6: P-values for Welch’s t-test testing whether there is a statistically significant
difference between the computation time of the part invoking the Sample function in the
re-encryption of the decapsulation for each pair in 100 ciphertexts generated for a single
keypair. Orange indicates that a statistically significant difference was detected. The
final countermeasure eradicates all statistically significant timing differences in the Sample
function.

5.5 Evaluation of the Proposed Countermeasures
The results can be viewed in Fig. 6. The number of the detected difference clearly diminishes
as more of the suggested modifications are applied. In particular, the final countermeasure
eradicates all statistically significant timing differences in the Sample function as can be
seen in Fig. 6d. We conclude that the final countermeasure eradicates all timing-leakage
that we could detect from the algorithm with respect to the seed used by the XOF.

We measure the number of cycles the Sample function requires for random messages
for the original and the two patched versions to evaluate the performance impact of the
additional instructions. We obtained 1 million measurements and removed outliers that
deviate more than 3 standard deviations from the mean. Additionally, we gave the process
a niceness of −20 on a dedicated machine. The process is pinned to a single core, and
all other processes are pinned to different cores. The results may be seen in Table 6.
We collected the mean and median number of cycles. The median number of cycles is
increasing with more patches applied. We can see that the RNG fix is extremely costly in
terms of cycle count and together with the seedexpander fix induces a 22.8 % increase in
the median number of cycles. The main fault is likely that the constant-time RNG method
generates and processes approximately 5 times the number of random bytes. Furthermore,
we observe that the seedexpander patch alone is extremely cheap and only incurs a 1 %
increase in the number of cycles.

While fixing the seedexpander side-channel is cheap, it is not sufficient to obtain
constant-time code. We were able to use the constant-time RNG in the design of further

20 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

Table 6: Benchmark results in number of cycles for the modifications of the rejection
sampling algorithm. Modifications tested on hqc-128. Cycle counts include the entirety of
the decapsulation function.
Version Median Cycles
original 259,370 (+ 0.0%)
seedexpander fix 261,849 (+ 1.0%)
seedexpander + RNG fix 318,533 (+22.8%)
seedexpander + RNG fix + constant number of iterations 334,628 (+29.0%)

algorithms. Unfortunately, the constant-time RNG comes with a heavy performance hit,
and it is not trivial to decide on a number of bytes to consume for each generated position.
The final modification is constant-time, however it has a non-zero probability of returning
an incorrect result. We choose this probability low enough for this to likely not be a
practical issue.

6 Conclusions, Lessons, and Future Work
We have presented a novel timing attack on the optimized implementation of HQC’s KEM.
The considered implementation in this work has been found vulnerable despite the claim
of the authors of HQC “to have thoroughly analyzed the code to check that only unused
randomness (i.e. rejected based on public criteria) or otherwise nonsensitive data may be
leaked.” [AAB+21].

The identified vulnerability probably has been hidden from scrutiny because the modular
design of the HQC KEM employing the FO transformation conceals the dependence of the
secret key to the rejection sampling function, due to a subtle error in the specification: In
the IND-CPA version of HQC, encryption is non-deterministic, and thus the variations of
the employed rejection sampling function is of no concern. The KEM/DEM version of
HQC, as specified in Figure 3 in the specification, invokes a slightly different HQC.PKE
encryption scheme than the one described in Figure 2 of the specification: one that fixes the
randomness to make encryption deterministic. Only because the re-encryption in the KEM
decapsulation is deterministic, non-constant time rejection sampling becomes a problem.
This highlights the problem of providing high level definitions of a cryptosystem: The
definition is good enough for an implementor to get the functionality correct, but hides from
manual inspection the ominous dependence identified and exploited in this work. However,
in the case of HQC the specification encourages the use of the exploited rejection sampling
algorithm [AAB+21]. Therefore, the flaw we identify would likely be implemented by any
implementor. This problem also highlights the need for automated, possibly standardized
tools to check implementations for secret-dependent timing variations.

Our proposed countermeasure does incur a heavy performance degradation. However,
it does eliminate all timing-variation that we could detect from the analyzed function.
Future work could focus on improving the performance of said countermeasure through
the use of SIMD instructions or different algorithms.

Our attack completely breaks the security guarantees that HQC attempts to uphold.
Designers of other schemes should ensure that their cryptosystem does not make use of
rejection sampling seeded with values that depend on secrets. In general it is advisable to
verify that any values that are derived from secrets such as the secret key or the message
do not cause a timing variation in any of the schemes’ algorithms. We have identified that
a timing variation very similar to the one discovered in HQC exists in BIKE [ABB+20].
However, it is unclear whether the timing variation in BIKE is also exploitable, especially
given the constraint that BIKE considers timing attacks out of scope as keys are not meant

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 21

to be reused [ABB+20].

References
[AAB+] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux,

Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo
Persichetti, Gilles Zémor, and Jurjen Bos. Optimized implementa-
tion of HQC. https://pqc-hqc.org/download.php?file=hqc-optimized-
implementation_2021-06-06.zip.

[AAB+21] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and Jurjen Bos. HQC. Technical report, National Institute
of Standards and Technology, 2021. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[ABB+20] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas
Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, and Santosh
Ghosh. BIKE. Technical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions.

[ABD+16] Carlos Aguilar, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
and Gilles Zémor. Efficient encryption from random quasi-cyclic codes.
Cryptology ePrint Archive, Report 2016/1194, 2016. https://eprint.iacr.
org/2016/1194.

[AP13] N. J. Al Fardan and Kenneth G. Paterson. Lucky Thirteen: Breaking the
TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Security
and Privacy, pages 526–540. IEEE, may 2013.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

[BDH+19] Ciprian Băetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talay-
han, and Serge Vaudenay. Misuse attacks on post-quantum cryptosystems.
In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science,
pages 747–776, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg,
Germany.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults. In EUROCRYPT 1997:
Advances in Cryptology — EUROCRYPT ’97, volume 1233, pages 37–51.
1997.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Eliminating Errors in Cryptographic Computations. Journal of Cryptology,
14(2):101–119, mar 2001.

[Ben17] Simon Benjamin. Perspectives on the state of affairs for scalable fault-
tolerant quantum computers and prospects for the future. Presented at the
5th ETSI-IQC Workshop on Quantum-Safe Cryptography, 2017.

https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2016/1194
https://eprint.iacr.org/2016/1194

22 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

[BL15] Daniel J Bernstein and Tanja Lange. Failures in NIST’s ECC standards.
pages 1–27, 2015.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are Still
Practical. In ESORICS 2011: Computer Security – ESORICS 2011, volume
6879 LNCS, pages 355–371. 2011.

[CWR09] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities and
Limits of Remote Timing Attacks. ACM Transactions on Information and
System Security, 12(3):1–29, jan 2009.

[DKA+14] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael
Bailey, Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beekman, Math-
ias Payer, and Vern Paxson. The matter of heartbleed. Proceedings of the
ACM SIGCOMM Internet Measurement Conference, IMC, pages 475–488,
2014.

[Dya18] Mikhail Dyakonov. The case against quantum computing. IEEE Spectrum,
2018.

[Gab] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel® IA-32
and IA-64 Instruction Set Architectures.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II, vol-
ume 12171 of Lecture Notes in Computer Science, pages 359–386, Santa
Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[HGS99] Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction attacks against
several public-key cryptosystems. In Vijay Varadharajan and Yi Mu, editors,
ICICS 99: 2nd International Conference on Information and Communication
Security, volume 1726 of Lecture Notes in Computer Science, pages 2–12,
Sydney, Australia, November 9–11, 1999. Springer, Heidelberg, Germany.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume
10677 of Lecture Notes in Computer Science, pages 341–371, Baltimore, MD,
USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[Hog15] Mél Hogan. Data flows and water woes: The Utah Data Center. Big Data &
Society, 2(2):205395171559242, dec 2015.

[HPA21] James Howe, Thomas Prest, and Daniel Apon. Sok: How (not) to design
and implement post-quantum cryptography. In Kenneth G. Paterson, editor,
Topics in Cryptology – CT-RSA 2021, pages 444–477, Cham, 2021. Springer
International Publishing.

[IIES15] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar.
Lucky 13 strikes back. ASIACCS 2015 - Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security, pages
85–96, 2015.

[Kal20] Gil Kalai. The Argument against Quantum Computers, the Quantum Laws
of Nature, and Google’s Supremacy Claims. pages 1–33, 2020.

Clemens Hlauschek, Norman Lahr and Robin Leander Schröder 23

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, pages 388–397. Springer US, Boston, MA, 1999.

[KLM+04] Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan, and Srivaths
Ravi. Security as a new dimension in embedded system design. Proceedings -
Design Automation Conference, pages 753–760, 2004.

[Knu] Donald E Knuth. The Art of Computer Programming. Addison-Wesley.

[Koc96] Paul C Kocher. Timing Attacks on Implementations of Diffie-Hellman.
CRYPTO - Annual International Cryptology Conference, pages 104–113,
1996.

[KPVV16] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Ville-
gas. When Constant-Time Source Yields Variable-Time Binary: Exploiting
Curve25519-donna Built with MSVC 2015. In CANS 2016: Cryptology and
Network Security, volume 10052 LNCS, pages 573–582. 2016.

[LLJ+19] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He,
Zhenfei Zhang, Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang.
LAC. Technical report, National Institute of Standards and Technol-
ogy, 2019. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions.

[MBA+21] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky,
Johannes Mittmann, and Jörg Schwenk. Raccoon attack: Finding and
exploiting most-significant-bit-oracles in TLS-DH(E). Proceedings of the 30th
USENIX Security Symposium, pages 213–230, 2021.

[Mos17] Michele Mosca. The quantum threat to cybersecurity (for cxos). Presented
at the 5th ETSI-IQC Workshop on Quantum-Safe Cryptography, 2017.

[MSEH20] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets timing and lattice attacks. Proceedings of the 29th
USENIX Security Symposium, pages 2057–2073, 2020.

[MVOV] A. J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press Series on Discrete Mathematics and Its
Applications. CRC Press.

[NAB+20] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen East-
erbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Niko-
laenko, Christopher Peikert, Ananth Raghunathan, and Douglas Stebila.
FrodoKEM. Technical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions.

[oSN16] National Institute of Standards and Technology (NIST). Submission require-
ments and evaluation criteria for the post-quantum cryptography standardiza-
tion process, 2016. https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf.

[PT19] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In Kenneth G. Paterson and Douglas Stebila, editors, SAC
2019: 26th Annual International Workshop on Selected Areas in Cryptography,
volume 11959 of Lecture Notes in Computer Science, pages 551–573, Waterloo,
ON, Canada, August 12–16, 2019. Springer, Heidelberg, Germany.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

24 On the Timing Leakage of the Deterministic Re-encryption in HQC KEM

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of Re-encryption: A Generic Power/EM Analysis
on Post-Quantum KEMs. In IACR-TCHES-2022, pages 1–26, 2021.

[WEL47] B. L. WELCH. THE GENERALIZATION OF ‘STUDENT’S’ PROBLEM
WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE IN-
VOLVED. Biometrika, 34(1-2):28–35, 01 1947.

[WSN18] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based niederre-
iter cryptosystem using binary goppa codes. In Tanja Lange and Rainer
Steinwandt, editors, Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, pages 77–98, Fort Lauderdale, Florida, United States,
April 9–11 2018. Springer, Heidelberg, Germany.

[WTBB+19] Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit,
and Etienne Marcatel. A practicable timing attack against HQC and
its countermeasure. Cryptology ePrint Archive, Report 2019/909, 2019.
https://eprint.iacr.org/2019/909.

[YZ17] Yu Yu and Jiang Zhang. Lepton. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

https://eprint.iacr.org/2019/909
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

	Introduction
	Hamming Quasi Cyclic – HQC
	HQC.PKE
	HQC.KEM

	Timing Attack on HQC
	Vulnerability in HQC Implementations
	Distinguisher
	Key Recovery Attack
	Reducing the Number of Oracle Queries
	Recovering the Entire Secret Key

	Evaluation
	Discussion on Countermeasures
	Remove Additional seedexpander Calls
	Constant-Time Random Number Generation
	Performance Optimization
	Constant-Time Monte-Carlo
	Evaluation of the Proposed Countermeasures

	Conclusions, Lessons, and Future Work

