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Abstract. We give a new algorithm for finding an isogeny from a given supersingular elliptic
curve E/Fp2 to a subfield elliptic curve E′/Fp, which is the bottleneck step of the Delfs–
Galbraith algorithm for the general supersingular isogeny problem. Our core ingredient is
a novel method of rapidly determining whether a polynomial f ∈ L[X] has any roots in
a subfield K ⊂ L, while avoiding expensive root-finding algorithms. In the special case
when f = Φ`,p(X, j) ∈ Fp2 [X], i.e., when f is the `-th modular polynomial evaluated at a
supersingular j-invariant, this provides a means of efficiently determining whether there is
an `-isogeny connecting the corresponding elliptic curve to a subfield curve. Together with
the traditional Delfs–Galbraith walk, inspecting many `-isogenous neighbours in this way
allows us to search through a larger proportion of the supersingular set per unit of time.
Though the asymptotic Õ(p1/2) complexity of our improved algorithm remains unchanged
from that of the original Delfs–Galbraith algorithm, our theoretical analysis and practical
implementation both show a significant reduction in the runtime of the subfield search. This
sheds new light on the concrete hardness of the general supersingular isogeny problem, the
foundational problem underlying isogeny-based cryptography.

Keywords: Isogeny-based cryptography, supersingular isogeny problem, Delfs–Galbraith
algorithm.

1 Introduction

In its most general form, the supersingular isogeny problem asks to find an isogeny

φ : E1 → E2

between two given supersingular curves, E1/F̄p and E2/F̄p. The best known classical attack against
the supersingular isogeny problem is the Delfs–Galbraith algorithm [9], which, in the general case
where E1 and E2 are curves defined over Fp2 , has two steps. The first step computes random walks
in the `-isogeny graph (for some choice of `) to find isogenies φ1 : E1 → E′1 and φ2 : E2 → E′2,
such that E′1/Fp and E′2/Fp are subfield curves. There are around bp/12c supersingular curves up

to isomorphism and O(p1/2) of them are subfield curves, therefore this step runs in Õ(p1/2) bit
operations. The second step searches for a subfield isogeny φ′ : E′1 → E′2 that connects φ1 and
φ2, and it requires Õ(p1/4) bit operations [9]. It follows that the entire algorithm runs in Õ(p1/2)
operations on average, with the cost dominated by the first step, i.e., the search for paths to
subfield curves.
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Solver. To our knowledge, a precise complexity analysis of the Delfs–Galbraith algorithm has
not been conducted. We fill this gap by presenting an optimised implementation of the Delfs–
Galbraith algorithm, called Solver, and conducting experiments over many thousands of instances
of the subfield search problem to determine its concrete complexity. Though Solver finds the full
path, we focus on the optimisation and complexity of the bottleneck step: finding subfield curves.
These optimisations include:

– Choice of `. In their high-level description of the algorithm, Delfs and Galbraith do not specify
which `-isogeny graph to walk in. Framing the problem of taking a step in the `-isogeny graph
as computing the roots of a polynomial of degree `, in Solver we chose the simplest and most
efficient choice: ` = 2.

– Fast square root finding in Fp2 . We use the techniques presented in [21, §5.3] to construct an
optimised algorithm for finding square roots in Fp2 , which only requires two Fp exponentiations
and a few Fp multiplications and additions.

– Random walks in the 2-isogeny graph. We implement a depth-first search to find subfield nodes
in the 2-isogeny graph and give a precise complexity analysis on the number of Fp operations
required.

SuperSolver. The main contribution of this paper is a new state-of-the-art algorithm for solving
the general supersingular isogeny problem, called SuperSolver. This is a variant of the Delfs–
Galbraith algorithm that exploits a combination of our new subfield root detection algorithm and
the use of modular polynomials. We show that we can efficiently determine whether a polynomial
f ∈ L[X] has a root in a subfield K ⊂ L, without finding any roots explicitly. Though this
algorithm works for general fields and polynomials (and may be of use in other contexts), we
apply it to the case where f = Φ`,p(X, j) ∈ Fp2 [X], i.e., where f is the `-th modular polynomial
evaluated at a supersingular j-invariant. This provides a means of quickly determining whether
there is an `-isogeny connecting the corresponding elliptic curve to a subfield curve: we develop
this NeighbourInFp subroutine in Section 4, and use it as the core of our SuperSolver algorithm in
Section 5.

In Section 7, we conduct extensive experiments using both our Solver and SuperSolver libraries,
all of which show that SuperSolver performs much faster than Solver. In Table 1, we give a taste of
the types of improvements we see in searching for subfield nodes over supersingular sets of various
sizes, taking a number of primes from the isogeny-based literature. These primes were specifically
chosen because the Delfs–Galbraith algorithm for the general supersingular isogeny problem is the
best known classical attack against the cryptosystems they target.

Our Solver and SuperSolver algorithms are written in Sage [26] and Python and can be found
at

https://github.com/microsoft/SuperSolver.

Cryptographic implications. This paper has implications on the classical bit-security of any
supersingular isogeny-based scheme for which the Delfs-Galbraith algorithm is the best known
attack; this includes the key exchange scheme B-SIDH [6], the signature scheme in [12, §4], and
the signature scheme SQISign [11]. For any proposed instantiation of such schemes, our SuperSolver
suite allows the analysis in Section 7 to be conducted on input of any prime p, and determines
a precise estimate on the number of operations required (on average) to solve the corresponding
supersingular isogeny problem. This is especially accurate when the cardinality of the class group
is known, which has recently been shown to be feasible for primes up to 512 bits [3]. On the
other hand, we point out that the improvements in this paper have no direct impact on the
classical security of SIDH [10] and SIKE [15]. Though the Delfs–Galbraith algorithm can be
used to attack any supersingular isogeny-based cryptosystem, there are much faster claw-finding
algorithms (see [10]) for solving the special instances of isogeny problems that arise in those
schemes.
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prime p Solver SuperSolver

B-SIDH-p247 [6] 246,461 (406)
{3,5,7,11,13} {3,5,7,11,13,9} {3,5,7,11}

1,726,427 (58.0) 1,723,345 (58.1) 1,711,713 (58.5)

TwinSmooth-p250 [8] 233,511 (430)
{3,5,7,11,13,9} {3,5,7,11,13} {3,5,7,11,9}

1,699,825 (59.1) 1,697,769 (59.1) 1,680,379 (59.8)

SQISign-p256 [11] 246,459 (407)
{3,7,5,11,13} {3,7,5,11,13,9} {3,7,5,11}

1,726,427 (58.0) 1,723,345 (58.1) 1,711,713 (58.5)

TwinSmooth-p384 [8] 163,331 (610)
{3,5,7,11,13,9} {3,5,7,11,13} {3,5,7,11,13,9,17}

1,529,025 (65.2) 1,494,725 (66.6) 1,487,919 (67.0)

TwinSmooth-p512 [8] 127,511 (786)
{3,5,4,7,11,13,9,8} {3,5,4,7,11,13,9} {3,5,4,7,11,13,9,8,17}
1397761 (71.7) 1391645 (72.0) 1355575 (73.9)

Table 1. The number of nodes inspected per 108 field multiplications for primes targeting schemes where
Delfs–Galbraith is the best known classical attack. The Solver column corresponds to optimised Delfs–
Galbraith walks in X (F̄p, 2) – see Section 3. The SuperSolver columns correspond to enabling our fast
subfield root detection algorithm with the three fastest sets of `’s (left to right) – see Section 5. Numbers
in round brackets are the approximate number of Fp multiplications per node inspected at each step, as
computed during the precomputation phase that predicts which sets of `’s will perform fastest.

.

Roadmap. We give the preliminaries in Section 2. In Section 3, we present our optimised instan-
tiation of the traditional Delfs–Galbraith algorithm, called Solver. In Section 4, we construct an
efficient algorithm to detect whether a polynomial has a root in a subfield. We use this algorithm
to build SuperSolver in Section 5. In Section 6, we present a worked example to highlight the
differences between both algorithms, and in Section 7 we present a number of implementation
results that illustrate the concrete improvements offered by SuperSolver.

2 Preliminaries

In this section we briefly set notation and give the requisite background for this paper. Readers
familiar with the paragraph headings below are welcome to skip to the final two paragraphs.

Modular polynomials. We will use Φ`(X,Y ) ∈ Z[X,Y ] to denote the classical modular poly-
nomial (see [25]) that parameterises pairs of elliptic curves with cyclic `-isogeny in terms of their
j-invariants: Φ`(j1, j2) = 0 if and only if j1 and j2 are the j-invariants of `-isogenous elliptic curves.
Readers unfamiliar with modular polynomials are encouraged to look at Sutherland’s database4,
which contains Φ`(X,Y ) for all ` ≤ 300 and for all primes ` ≤ 1000. The polynomial Φ` is sym-
metric in X and Y , i.e., Φ`(X,Y ) = Φ`(Y,X), and if ` =

∏n
i=1 `

ei
i is `’s prime decomposition, the

degree of Φ`(X,Y ) in both X and Y is

N` := deg (Φ`(X,Y )) =

n∏
i=1

(`i + 1)`ei−1i . (1)

The difficulty in computing Φ`(X,Y ) is in the size, rather than the number, of its coefficients.
As discussed in [25], storing Φ`(X,Y ) requires O(`3 log `) bits, which corresponds to several giga-
bytes for ` ≈ 1000 and many terabytes for ` ≈ 104. Fortunately, for our purposes, the modular
polynomials already contained in Sutherland’s database are more than sufficient. Moreover, we
will be using them in the context of cryptanalysing instances of the supersingular isogeny problem
over a fixed finite field Fp2 , meaning we can reduce all of the large coefficients modulo p as a
precomputation. Indeed, even before the target j-invariants are known, Φ`(X,Y ) ∈ Z[X,Y ] will
be preprocessed into

Φ`,p(X,Y ) ∈ Fp[X,Y ],

where we note the additional subscript, defined by reducing all coefficients of Φ`(X,Y ) modulo p.
By the symmetry of Φ`(X,Y ), this means we must store around N2

` /2 coefficients in Fp, requiring
only O(`2 log p) bits.

4See [24], a database computed using techniques from various joint works of his [25,4].
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Supersingular isogeny graphs. Following [9, §1], let p > 3 be a prime and let Sp2 denote the
set of all supersingular j-invariants in Fp2 . The number of such j-invariants is #Sp2 = bp/12c+ b,
where b ∈ {0, 1, 2} is determined by the value of p mod 12 [23, Theorem V.4.1(c)]. For any ` with
p - `, we use X (F̄p, `) to denote the supersingular isogeny graph whose nodes correspond to the j-
invariants in Sp2 and whose edges are `-isogenies defined over F̄p. These graphs are fully connected
for every prime ` [19], and (with the possible exception of a few nodes) are (`+1)-regular expander
graphs that satisfy the Ramanujan property [20]. Crucial to both the Delfs–Galbraith algorithm
and this paper is the subset Sp of supersingular j-invariants defined over Fp. The size of this set is

#Sp = Õ(p1/2) [9, Equation 1], and since #Sp2 = O(p), the expected number of randomly chosen

elements in Sp2 we would have to take before finding one in Sp is in Õ(p1/2).

The Delfs–Galbraith algorithm. The Delfs–Galbraith paper largely focusses on the problem
of finding an isogeny φ′ : E′1 → E′2 between two supersingular curves, E′1/Fp and E′2/Fp, whose
j-invariants are in Sp. One of their main results is an algorithm [9, Algorithm 1] that computes

such a φ′ in Õ(p1/4) bit operations. At the end of their paper [9, Section 4], they show how this
can be used as a subroutine to give an algorithm for the general supersingular isogeny problem,
which asks to find an isogeny

φ : E1 → E2

between two supersingular curves, E1/Fp2 and E2/Fp2 , whose j-invariants are in Sp2 . The idea
is to perform simple self-avoiding random walks in X (F̄p, `) until hitting an elliptic curve with a
j-invariant defined over Fp. Finding a walk from E1/Fp2 to E′1/Fp yields an isogeny ψ1 : E1 → E′1,
and finding a walk from E2/Fp2 to E′2/Fp yields an isogeny ψ2 : E2 → E′2. A full isogeny φ : E1 →
E2 is then found as the composition φ = (ψ̂2 ◦ φ′ ◦ψ1), where ψ̂2 : E′2 → E2 is the dual of ψ2, and
φ′ : E′1 → E′2 is the subfield isogeny above that can be computed in Õ(p1/4) bit operations. The
bottleneck in the Delfs–Galbraith algorithm is finding the paths from the curves with j ∈ Sp2 \Sp
to the curves with j ∈ Sp. From the above discussion, the number of j-invariants in Sp2 we expect

to search over before finding one in Sp is Õ(p1/2). Following [9, Section 4], the steps taken in
X (F̄p, `) are self-avoiding, meaning that one stores the current j-invariant, jc, and the previous
j-invariant jp. To take the next step, one then chooses one of the N`− 1 roots (see Equation 1) of

Φ`(X, jc)/(X − jp)

at random. Since ` and N` are fixed and small, it follows that the asymptotic complexity of the
search for subfield j-invariants is Õ(p1/2). Before presenting our improved search for subfield j-
invariants, in Section 3 we present an optimised version of this algorithm, and subsequently replace
the Õ above with a precise, concrete complexity.

Factoring polynomials in finite fields. Let f(X) ∈ Fq[X] be a monic polynomial of degree `
with q = pk for a prime p, and for the purposes of this paper, assume that p is very large (i.e.,
cryptographically sized) and ` is relatively small (i.e., ` < 100). The literature contains a number of
methods for finding the irreducible factors of f in Fq[x], and we briefly mention the most applicable
and well-known algorithms for our scenario. Berlekamp’s algorithm [2] factors f using an expected
number of O(`3 + `2 log ` log q) operations in Fq [22, Theorem 20.12]. This appears to be superior
to the Cantor-Zassenhaus algorithm [5], which uses an expected number of O(`3 log q) operations
in Fq [22, Theorem 20.9], however one can take advantage of certain time-memory trade-offs to
implement Cantor-Zassenhaus so that it requires O(`3 + `2 log q) operations in Fq [22, Exercise
20.13]. Note that both of these big-O complexities hide a number of subtleties, that Fq-inversions
are included as Fq operations, and moreover that both of these algorithms are probabilistic. Their
deterministic variants have worse complexities [22, §20.6].

Polynomial GCD. Euclid’s integer GCD algorithm is easily adapted to compute polynomial
GCD’s [22, §17.3]. Computing the GCD of two polynomials g, h ∈ Fq[x] requires O(deg(g) ·deg(h))
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operations in Fq. Again, here each Fq inversion is counted as an Fq operation. In order to make
our algorithms run as fast as possible, one of the necessary subroutines we derive in Section 4 is an
inversion-free polynomial GCD algorithm, for which we state a tight upper bound on the concrete
complexity.

Measuring complexity. Throughout this paper we will avoid stating asymptotic (i.e., big-O-
style) complexities in favour of stating concrete ones. One of our goals in Section 3 is to replace the
Õ(p1/2) complexity of the original Delfs–Galbraith algorithm with a closed formula that can be
used to give precise estimates on the classical security of the relevant cryptographic instantiations.
We will use the metric of Fp multiplications as convention, noting that it is relatively straightfor-
ward to convert this into a more fine-grained metric (e.g. bit operations, machine operations, cycle
counts, gate counts, circuit depth, etc.) depending on the context and on the implementation of
the Fp arithmetic. For simplicity, we will count Fp squarings as multiplications and ignore addi-
tions. We justify this by noting that, roughly speaking, the ratio of multiplications to additions in
all of the algorithms in this work are similar, and the complexity of Fp additions have a minimal
impact on any of the aforementioned metrics.

Subfield search complexity determines concrete bit security. Both the Solver implemen-
tation detailed in Section 3 and the SuperSolver implementation detailed in Section 5 solve all
instances of the general supersingular isogeny problem. On input of any prime p and any two
supersingular j-invariants in Sp2 , both implementations will always terminate with an isogeny
that solves the corresponding problem. We emphasise that henceforth our sole focus is on the
Õ(p1/2) subfield search phase of the Delfs–Galbraith algorithm. Finding a path between subfield
nodes requires Õ(p1/4) operations, which is negligible in both the asymptotic sense and in the
sense of obtaining cryptographic security estimates. To see this, suppose the asymptotic Õ(p1/2)
complexity of the first phase is replaced by a concrete complexity of cp · p1/2, and the asymptotic

Õ(p1/4) complexity of the second phase is replaced by a concrete complexity of dp · p1/2, where cp
and dp are polynomials in log p. The total complexity of the Delfs-Galbraith algorithm is then

cp · p1/2 + dp · p1/4.

For primes of cryptographic size, small changes in cp have an immediate influence on the total
runtime of the algorithm, while much larger changes in dp will not play a part in the bit security
of the problem. For p > 2200, a factor 2 change in cp changes the bit security of the problem by
1, while dp would have to change by a factor of at least 250 to have the same impact on the bit
security.

3 Solver: optimised Delfs–Galbraith subfield searching in X (F̄p, 2)

Recall from the previous section that the self-avoiding walks in X (F̄p, `) store the current j-
invariant, jc, and the previous j-invariant jp, and then take a step in X (F̄p, `) by choosing one

of the N` − 1 roots of Φ`(X, jc)/(X − jp). In determining the asymptotic Õ(p1/2) complexity of
these walks, Delfs and Galbraith did not need to analyse the cost of a single step. However, to
set the stage for our improved search in Section 5, we must optimise this process and determine
its concrete cost. The first parameter that must be specified is `, i.e.,, the isogeny graph to walk
around in. Considering both Equation (1) and the complexity of the factorisation algorithms in
Section 2, we chose ` = 2 to obtain most efficient and simplest choice where we are able to take
advantage of fast explicit methods for computing square roots in Fp2 .

Scott’s fast square roots in Fp2 . Optimal computation of square roots in extension fields
of large characteristic requires careful attention to detail. A 2013 paper by Adj and Rodŕıguez-
Henŕıquez [1] cost the process of computing square roots in Fp2 at two Fp residuosity tests, two
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Fp square roots, and one Fp inversion, for a total of five exponentiations in Fp. In [21, §5.3], Scott
shows that these operations can be combined in a clever way to significantly reduce this cost. The
inputs into the Tonelli-Shanks Fp square root algorithm [18, Algorithm 3.34] can be tweaked in
such a way that the two residuosity tests are absorbed into the two square roots. Moreover, he
shows that most of the inversion cost can also be absorbed by application of Hamburg’s combined
‘square-root-and-inversion’ trick [13]. This reduces the bulk of cost of an Fp2 square root from five
Fp exponentiations to just two. In addition, there are a handful of Fp multiplications and additions
that either update the Tonelli-Shanks outputs depending on the residuosity outcomes or collect
and combine the results according to the “complex” formula in [21, §5.3]. We use this to construct
a general square root algorithm in our implementation that is highly optimised with respect to
the number of Fp operations it incurs5.

Taking a step in X (F̄p, 2). After stepping from jp ∈ Fp2 to jc ∈ Fp2 , a self-avoiding walk in
X (F̄p, 2) will step to one of two new nodes: j0 and j1. These are computed by solving the quadratic
equation that arises from the modular polynomial Φ`(X,Y ) with ` = 2:

Φ2(X,Y ) = −X2Y 2 +X3 + Y 3 + 1488 · (X2Y + Y 2X)− 162000 · (X2 + Y 2)

+ 40773375 ·XY + 8748000000 · (X + Y )− 157464000000000.

The three neighbours of jc in X (F̄p, 2) are jp, j0, and j1, meaning that Φ2(X, jc) factorises as

Φ2(X, jc) = (X − jp)(X − j0)(X − j1).

This yields a quadratic equation, whose solutions are j0, j1, defined by AX2 +BX +C = 0 where

A = −(jp + j0 + j1) + j2c − 1488jc + 162000,

B = −1488j2c − 40773375jc + (j1 + jp)j0 + j1jp − 8748000000, and

C = −j0j1jp − j3c + 162000j2c − 8748000000jc + 157464000000000.

Computing these coefficients costs a small, constant number of Fp operations, so the process of
computing j0 and j1 from jp and jc boils down to solving the quadratic equation, which essentially
requires one Fp2 square root. Since this square root incurs two Fp exponentiations and a few
additional Fp operations, it follows that the cost of computing each new j ∈ Sp2 during the walks
in X (F̄p, 2) is (on average) approximately one Fp exponentiation.

The depth first search in X (F̄p, 2). Repeating the process described above allows us to perform
the search for subfield nodes using a depth first search in a binary tree with d levels as follows.
We write jm,n for the n-th node at level m, where 0 ≤ m ≤ d and 0 ≤ n ≤ 2m − 1. The first
three levels are depicted in Figure 1. We initialise the root node j0,0 as the target j ∈ Sp2 , and set
j1,0 and j1,1 as two of its three neighbours6 in X (F̄p, 2). The depth first search starts by setting
jc = j1,0 and jp = j0,0. We then solve the quadratic equation above to obtain j2,0 and j2,1, and
repeat this procedure with jc = ji+1,0 and jp = ji,0 for 1 ≤ i ≤ d− 1 until the leftmost leaf jd,0 is
computed and the path stack is fully initialised as

path = [j0,0, j1,0, . . . , jd−1,0, jd,0].

To avoid any waste, we also maintain a stack of the other solution to the quadratic equations that
were computed along the way, which we call sibling nodes

siblings = [j1,1, . . . , jd−1,1, jd,1].

5Note that the fixed exponentiations that take place in the calls to Tonelli-Shanks could be further
optimised for a specific p by tailoring a larger window or a different addition chain, but the impact (for
our purposes and comparisons) of this improvement would be minor.

6Initially we do not have a jp, so all three neighbours can be computed using generic root finding; our
code does this during the setup phase.
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j0,0

j1,0

j2,0 j2,1

j1,1

j2,2 j2,3

Fig. 1. Levels 0, 1, and 2 of the binary tree in the depth first search of X (F̄p, 2).

The algorithm then proceeds back up the levels by popping path until its last element is the root
of a subtree that has not been checked in its entirety. At this point siblings is popped and pushed
into path. When the last element of path is the root of a subtree that has not been exhausted,
we initialise the process of solving quadratic equations, pushing one of the two solutions into path

and the other into siblings until path contains d+ 1 elements. Each time the quadratic equation
solver is called, the two roots (i.e., j-invariants) are immediately checked; if either of them lie in Fp,
it is added to path and the process is terminated. Otherwise, the process is repeated recursively
until path = [j0,0], in which case the 2d+1 − 1 nodes in the tree have been exhausted without
finding a solution. To guarantee that a solution is found, one could increase d and start again, but
our code proceeds by simply storing the first (leftmost) leaf and its parent in separate memory
so that the process can restart here and avoid recomputing any prior j’s. As Delfs and Galbraith
point out, setting the depth d = 1

2 log2 p should be enough. Since the number of nodes in the tree
is 2d, increasing d by ε makes the failure probability diminish by 1/2ε. Setting ε = 10 was sufficient
in all of our experiments. Finally, as pointed out by Delfs and Galbraith in [9, §4], this process
parallelises perfectly. For P processors, one can simply compute a binary tree of depth dlog2 P e
during setup and distribute P of the leaf nodes as individual starting points.

The concrete complexity of Delfs–Galbraith. Table 2 reports on experiments conducted
using Solver, the optimised instantiation of the traditional Delfs–Galbraith walk. For each bitlength
between 21 and 40, we solved 10,000 instances of the subfield search. In each case we chose 100
random primes and, for each prime, 100 pseudo-random j-invariants in Sp2 . The numbers in each
column report the averages (as base-2 logarithms) of these search complexities. In all cases the

bitlengths of primes p 21 22 23 24 25 26 27 28 29 30

av. number of nodes visited 8.8 9.4 10.0 10.3 10.9 11.4 11.9 12.3 13.1 13.5

av. number of Fp multiplications 14.5 15.0 15.7 16.0 16.7 17.2 17.8 18.2 19.0 19.5

bitlengths of primes p 31 32 33 34 35 36 37 38 39 40

av. number of nodes visited 13.5 14.2 14.7 15.3 15.8 16.3 17.1 17.3 17.6 18.1

av. number of Fp multiplications 19.5 20.5 20.8 21.3 21.9 22.4 23.2 23.6 24.1 24.6

Table 2. The concrete cost of the subfield search phase of the Delfs–Galbraith over small fields of various
bitlengths. Further explanation in text.

number of Fp multiplications is found to be

#(Fp muls.) = c · √p · log2 p,

with 0.75 ≤ c ≤ 1.05. In Section 7, we shed more light on the concrete complexity of both Solver
and SuperSolver.
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Remark 1. There is no traditional elliptic curve arithmetic found in either Solver or SuperSolver. All
of the steps taken within X (F̄p, 2) and the rapid inspections conducted in X (F̄p, `) use the modular
polynomials. We point out there may be specific instances of p where one could perform walks
faster than repeatedly solving the Φ2,p(X, j) quadratic by, say, employing Vélu’s formulas [27]
with the optimal strategies of De Feo–Jao–Plût [10]. For example, with a prime p = 2e3f − 1, the
price of computing a 2e-isogeny (i.e., walking through e nodes in X (F̄p, 2)) in this way may be
cheaper than the price of computing e square roots in Fp2 (note that the latter reveals 2 nodes
each time). However, we argue that these scenarios are likely to only exist for special instances
of the supersingular isogeny problem that are geared towards cryptosystems like SIDH [10] and
SIKE [15]. As discussed in Section 1, here there are claw-finding algorithms that are much faster
than the Delfs–Galbraith algorithm (though the number of Fp operations required to compute an
`e-isogeny still grows with p, and therefore our fast subfield root detection would also be useful in
that context). In the case of both general primes and the types of primes in Table 1, it is highly
unlikely that using Vélu’s formulas [27] will be competitive with the binary tree depth-first search
in X (F̄p, 2). Computing general (

∏
`eii )-isogenies from kernel elements is much more expensive

than `e-isogenies when ` ∈ {2, 3}, and one covers fewer nodes in Sp2 per isogeny when the `i grow
larger.

4 Fast subfield root detection

In this section we derive a method for determining whether a polynomial f(X) = anX
n + ... +

a1X + a0 ∈ Fqd [X] with d ≥ 2 has a root lying in the subfield Fq, where q is a power of prime
p. Though this can be achieved by factoring the polynomial, the methods described in Section 2
become too costly for our purposes; the number of Fq operations required depends on the size of
q, which hampers their relative efficiency as q grows large. Our aim in this section is to detail a
much faster algorithm that detects whether a root lies in a subfield and show that the number of
Fq operations required by our algorithm only depends on the degree of f and the degree of the
extension d.

As the algorithms in this section may be of independent interest, we leave them as general
as possible before specialising back to the application at hand in Section 5. The results up to
Proposition 1 are presented for general finite field extensions of the form Fqd/Fq, but we will later
specialise to the quadratic extensions of prime fields, i.e., where q = p and d = 2. The inversion-free
GCD in Algorithm 1 is derived for an arbitrary polynomial ring K[x], but we will only need to
use it in Fp[x].

In this section, for a polynomial in Fqd [X], we will reduce the the problem of detecting a root
in Fq to computing the greatest common divisor of d related polynomials g1, ..., gd. In the case
where d > 2, we will need to compute the GCD of more than two polynomials. This can be done
by recursively computing the GCD of two polynomials and using the following identity:

gcd(g1, g2, ..., gd) = gcd(g1, gcd(g2, ..., gd)). (2)

We aim to minimise the number of Fq multiplications needed to compute the GCD and so we
construct these polyomials so that they are defined over Fq. To achieve this, we will will need two
results. The first is a theorem by Lidl and Niederreiter [17, Theorem 2.24].

Theorem 1. Let F be a finite extension of a finite field K, both considered as vector spaces over
K. Then the linear transformations from F into K are exactly the mappings Lβ(α), for β ∈ F ,
where Lβ(α) = TrF/K(βα) for all α ∈ F . Furthermore, we have Lβ 6= Lγ whenever β, γ are
distinct elements of F .

The second result we will need is the following lemma.

Lemma 1. Let f1, ..., fd ∈ Fqd [X] be polynomials and A ∈ GLd(Fqd). Defining (g1, ..., gd) :=
A · (f1, ..., fd), we have

gcd(f1, ..., fd) = gcd(g1, ..., gd).
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Proof. If a polynomial h ∈ Fqd [X] divides f1, ..., fd, then h divides any linear combination of the
f1, ..., fd. Therefore, h divides g1, ..., gd. Since A is invertible, by swapping the roles of gi and fi
we see that the converse holds. ut

We are now ready to present the main result of this section.

Proposition 1. For some d ≥ 2, let π be the q-power Frobenius endomorphism in Gal(Fqd/Fq)
and consider a polynomial f(X) = anX

n + ...+ a1X + a0 ∈ Fqd [X]. Let β be a primitive element
of the extension Fqd/Fq, i.e., Fq(β) = Fqd . For i = 0, .., d − 1, define the following polynomials
over Fqd :

gi :=

d−1∑
j=0

πj(βif).

Then gi(X) ∈ Fq[X], and gcd(g1, ..., gd) divides f . In particular, if gcd(g1, ..., gd) is of degree 1,
then f has a root in Fq, and if gcd(g1, ..., gd) = 1, then f(X) does not have any roots in Fq.
Proof. Using the notation in Theorem 1, we have

gi(X) = [(βian + π(βian) + ...+ πd−1(βian))Xn + ...+ (βia0 + ...+ πd−1(βia0))]

=

n∑
m=0

Lβi(am)Xm.

By Theorem 1, for all i = 0, ..., d− 1 we have Lβi(ai) ∈ Fq, implying that gi(X) ∈ Fq[X]. Setting
A ∈ GLd(Fqd) to be

A =


1 1 . . . 1
β π(β) . . . πd−1(β)
...

...
. . .

...
βd−1 π(βd−1) . . . πd−1(βd−1)

 =


1 1 . . . 1

β βq . . . βq
d−1

...
...

. . .
...

βd−1 (βd−1)q . . . (βd−1)q
d−1

 ,
we have (g1, ..., gd) := A · (f, π(f)..., πd−1(f)). As for Vandermonde matrices [14, §6.2], we find

det(A) =
∏

0≤i<j≤d−1(βq
j − βqi), which is non-zero for β a primitive element of the extension

Fqd/Fq. By Lemma 1, we have

gcd(f, π(f), ..., πd−1(f)) = gcd(g1, ..., gd),

which gives that gcd(g1, ..., gd) | f . ut

Applying Proposition 1 to detect subfield nodes. Proposition 1 tells us that gcd(g1, ..., gd)
is precisely the largest divisor of f ∈ Fqd [X] that is defined over Fq[X]. In our target application of
searching for subfield nodes in large supersingular isogeny graphs, i.e., when d = 2 and q = p, we
will most commonly encounter gcd(g1, g2) = 1, which immediately rules out subfield neighbours in
the `-isogeny graph. Non-trivial GCD’s will, with overwhelmingly high probability, be of degree 1
and reveal a single subfield node; this is why our implementation of Algorithm 1 below terminates
and returns true when the degree of the GCD is 1.

For large supersingular isogeny graphs, the only way for the degree of gcd(g1, g2) to be larger
than 1 is when a given j-invariant is `-isogenous to multiple subfield nodes, or when a given
j-invariant is `-isogenous to conjugate j-invariants in Fp2 .7

In our scenario where d = 2, we see that π(β) + β = 0, meaning that πk(β) = (−1)kβ. As a
result, to detect a subfield root, we compute gcd(g1, βg2) where g1 = f + π(f) and g2 = f − π(f).
In this case we do not need to calculate any more powers of β and we only need to do one GCD
computation.

7A real-world attack should check any non-trivial GCD, since either of these scenarios are a win for
the cryptanalyst; the latter case reveals information about the secret endomorphism ring of the target
isomorphism class (see [16, §5.3]), and the former case gives multiple solutions to the subfield search
problem.
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Inversion-free polynomial GCD. To complete the detection of roots in a subfield, we must
compute the GCD of polynomials in K[X]. In Algorithm 1, we modify Euclid’s polynomial-adapted
algorithm [22, §17.3] to compute the GCD of two polynomials g, h ∈ K[X] while avoiding inversions
in K. We use LC(f) to denote the leading coefficient of the polynomial f . Note that, for the
purposes of incorporating it into our target application of subfield searching in the next section,
the algorithm outputs the boolean true when the GCD has degree 1 in K[X].

Algorithm 1 InvFreeGCD(): Inversion-free GCD

Input: Polynomials g, h ∈ K[X], such that deg g ≥ deg h

1: Initialise r, s← LC(h) · g,LC(g) · h
2: while deg r ≥ 1 and r 6= s do
3: r ← r −Xdeg r−deg s · s
4: r, s← LC(s) · r,LC(r) · s
5: if deg r < deg s then
6: r, s← s, r
7: end if
8: end while
9: return ¬(deg r = 1 and r 6= s)

Proposition 2. Given input g, h ∈ K[X] such that deg g ≥ deg h, Algorithm 1 terminates using
at most

1

2
(deg g + deg h+ 2)(deg g + deg h+ 3)− 6

multiplications in K.

Proof. Line 1 incurs at most deg g + deg h + 2 multiplications in K. Setting r0 := r, s0 := s, we
define this to be loop 0. For i ≥ 1, we denote by ri, si (where deg si ≥ deg ri) the polynomials in
loop i of Lines 2-8. Using this notation, we move to Line 9 when deg ri ≤ 1 or ri = si. Now, in loop
i ≥ 1 we replace ri by ri−Xdeg ri−deg sisi, meaning deg ri−1−deg ri ≥ 1, and compute ri ·LC(si)
and si · LC(ri). This requires deg ri + deg si + 2 multiplications in K. In the worst case, we have
deg ri−1−deg ri = 1 for i ≥ 1, where the number of multiplications will decrease by exactly 1 after
each loop. In the final loop we have deg ri,deg si = 1, so we compute 4 multiplications in K. In
summary, in the worst case we begin with deg g + deg h+ 2 multiplications, decreasing by 1 until
we get to 4. Therefore, the total number of multiplications is at most

∑deg g+deg h+2
n=4 n, which is

the bound above. ut

In summary, Proposition 1 shows that detecting subfield roots of f ∈ Fqd [X] amounts to computing
the GCD of d related polynomials in Fq[X]. We showed that computing this GCD is simpler when
d = 2. Proposition 2 gives an upper bound on the number of Fq multiplications required to compute
such a GCD in Fq[X]. In the next section we use these tools to build a faster algorithm for finding
subfield nodes in supersingular isogeny graphs.

5 SuperSolver: optimised subfield searching with fast subfield root
detection in X (F̄p, `)

SuperSolver is an algorithm which, given two j-invariants in Sp2 corresponding to two supersingular
curves E1/Fp2 and E2/Fp2 , will, on average, solve the supersingular isogeny problem with lower
concrete complexity than the traditional Delfs–Galbraith Solver algorithm described in Section
3. As in the Delfs–Galbraith algorithm, SuperSolver takes self-avoiding walks in X (F̄p, 2) until
they hit a j-invariant in Fp. However, at each step of the random walk, SuperSolver also inspects

10



X (F̄p, `), for carefully chosen ` > 2, to efficiently detect whether j has any `-isogenous neighbours
in Fp. Traditionally, inspecting X (F̄p, `) for a subfield neighbour requires fully factoring a degree-
N` polynomial and determining whether any of the roots lie in Fp. Performing this for each ` would
require O(`3 + 2`2 log p) operations in Fp2 using the modified Cantor-Zassenhaus algorithm (see
Section 2), which is prohibitively costly. Following the results from Section 4, however, SuperSolver
conducts the inspection of X (F̄p, `) with O(`2) multiplications in Fp. We make this count precise
later in this section. Crucially, the number of Fp operations is no longer dependent on the size of
p, and this means that as p grows large, the set of `’s that are optimal to use also grows, and the
more profitable (relatively speaking) SuperSolver becomes. We reiterate that, although both Solver
and SuperSolver return the full isogeny between E1/Fp2 and E2/Fp2 , our discussion focusses on the
bottleneck problem of finding an isogeny from E1/Fp2 (resp. E2/Fp2) to E′1/Fp (resp. E2/Fp). If, at
some node j, we detect an `-isogenous neighbour in Fp, SuperSolver will then factorise the degree-`
polynomial Φ`,p(X, j) to determine the subfield j-invariant. We view this as a post-computation
step, since we are only interested in the concrete complexity of the average step taken in the walk
(which we assume does not find a subfield node). Note that the paths between E1/Fp2 and E2/Fp2
returned by both Solver and SuperSolver both look the same: in general, both start and finish with
a chain of 2-isogenies that is connected in the middle by a chain of different prime-degree isogenies.
The main difference, as the results in Section 7 illustrate, is that 2-isogeny chains at each end are
much shorter. Recall that in the original Delfs–Galbraith algorithm, each step consists of finding
the roots of a quadratic equation in Fp2 [X], which reveals two neighbouring nodes in X (F̄p, 2).
In SuperSolver, after forming a list of carefully chosen ` > 2, each step will also include the rapid
inspection of X (F̄p, `) for every ` in this list. Though the inspection of the neighbours in X (F̄p, `)
increases the total number of Fp multiplications at each step, more nodes are checked. We first
describe the process of taking a step in SuperSolver, and then move to describing how to choose
the list of ` > 2 in order to minimise the number of Fp multiplications per node inspected.

Remark 2 (Odd ` only). With the exception of the leaf nodes in the last level of the binary tree,
it is redundant to perform rapid node inspections in X (F̄p, 2`) if rapid inspections in X (F̄p, `) are
also part of the routine, since the latter inspections will detect (or exclude) subfield nodes at the
next level of the walk down the tree. We therefore find it optimal to only include odd `i in the
lists constructed at the end of this section. Note that there is no redundancy in including odd
composite `i’s in our lists, even if they have proper divisors that are also in the list.

Rapid inspection of the `-isogenous neighbours. Here we describe Algorithm 2: Neighbour-
InFp. On input of `, j ∈ Fp2 and p, it outputs true if j is `-isogenous to a j′ ∈ Fp, and false

otherwise. Recall from Equation (1) that the degree of Φ`,p in X and Y is N`. The first sub-
routine of NeighbourInFp is EvalModPolyj(`, j, p): it evaluates Φ`,p(X,Y ) at Y = j by computing
j2, ..., jN` , and then multiplying these by the corresponding coefficients of Φ`,p, returning the co-
efficients aN`

, ..., a0 of X in Φ`,p(X, j). Note that, since we typically have a list of multiple `, i.e.,
`1 < · · · < `t, the powers of j (up to N`t) are computed once-and-for-all at every j, and recycled
among the `i < `t. We follow Section 4 to detect whether Φ`,p(X, j) ∈ Fp2 [X] has a root in Fp.
Letting α ∈ Fp2 be such that Fp2 = Fp(α), we first compute the related polynomials

g := (1/2) · [Φ`,p(X, j) + π(Φ`,p(X, j))] and

h := (−α/2) · [Φ`,p(X, j)− π(Φ`,p(X, j))],

where π ∈ Gal(Fp2/Fp) is the Frobenius endomorphism. By Proposition 1, we have g, h ∈ Fp[X]
and

deg (gcd(g, h)) = 1 =⇒ Φ`,p(X, j) has a root in Fp.

We then complete the inspection of X (F̄p, `) by using Algorithm 1 to calculate gcd(g, h). If
gcd(g, h) 6= 1, then (for large enough p) it is overwhelmingly likely that deg (gcd(g, h)) = 1,
which is why our implementation uses the degree of the GCD as the criterion for terminating the
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subfield search. Another possibility is to terminate whenever gcd(g, h) is non-constant, and then
to inspect the higher degree GCD according to the two possible scenarios discussed in Section 4.

Note that if we have a polynomial f(X) = anX
n + an−1X

n−1 + ...+ a1X + a0 ∈ Fp2 [X] then

1

2
[f + π(f)] = Re(an)Xn + Re(an−1)Xn−1 + ...+ Re(a1)X + Re(a0) ∈ Fp[X],

−α
2

[f − π(f)] = Im(an)Xn + Im(an−1)Xn−1 + ...+ Im(a1)X + Im(a0) ∈ Fp[X],

where, for a + bα ∈ Fp2 , Re(a + bα) = a and Im(a + bα) = b, in analogy with the notation used
for complex numbers. As a result, we can obtain g and h directly from f by computing

g = XN` + ...+ Re(a0), and h = Im(aN`−1)XN`−1 + ...+ Im(a0).

This avoids having to compute any Fp2 multiplications to calculate the related polynomials g, h.

Algorithm 2 NeighbourInFp(): Detect whether j ∈ Fp2 is `-isogenous to a j′ ∈ Fp
Input: `, j, p

1: a`+1, ..., a0 ← EvalModPolyj(`, j, p)
2: g ← XN` + ...+ Re(a0)
3: h← Im(aN`−1)XN`−1 + ...+ Im(a0)
4: return InvFreeGCD(g, h)

Cost of Inspecting the `-isogeny Graph. Evaluating Φ`,p(X,Y ) at Y = j with EvalModPolyj
requires at most 9N`(N`−1) multiplications in Fp, noting that one Fp2 multiplication is equivalent
to 3 Fp multiplications. By Proposition 2, we compute InvFreeGCD(g, h) with at most (2N`+1)(N`+
1)− 6 Fp multiplications. Therefore, for a fixed `, the cost of inspecting X (F̄p, `) is

cost` =
1

N`
[#Fp multiplications needed to inspect `-isogenous neighbours]

≤ 1

N`
[11N2

` − 6N` − 5],

which depends only on `. This means that, for each `, cost` can be computed once for all primes.
In Table 3 we present the ` with the lowest cost, ordering them by increasing cost` from left to
right.

` 3 5 7 11 13 9 17 19 23 29

N` 4 6 8 12 14 12 18 21 24 30

Fp muls per node 16.3 24.5 32.6 48.8 56.8 58.5 72.8 80.9 96.9 120.9

` 31 25 15 37 41 43 27 21 47 53

N` 32 30 24 38 42 44 36 32 48 54

Fp muls per node 128.9 139.5 145.3 152.9 168.9 176.9 186.3 187.5 192.4 216.9

Table 3. The cost of inspecting `-isogenous neighbours, cost`, for ` ordered by increasing cost from left
to right.

The important takeaway from Table 3 is that the number of Fp multiplications incurred by
our algorithm does not grow with p. This count is fixed and depends only on `. Looking back at
the root solving algorithms in Section 2, we see a stark difference in expected performance. Those
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algorithms have many constants hidden by the big-O, have a leading `3 term (compared to our
`2 term), and, importantly, the number of field operations they incur grows as the field grows
due to their implicit dependency on log p. Moreover, as mentioned in Section 2, the complexities
cited are for probabilistic root finding algorithms. Their deterministic variants have even worse
complexities [22, §20.6].

Choosing the `i to minimise the cost of a step. We consider the cost of each step in
SuperSolver, which we denote by the ratio

cost =
total # of Fp multiplications

total # of nodes revealed
. (3)

The aim of this section is to describe how to chose to construct a list of `i that minimises the cost.
Recall from in Table 3 that the `’s that give the cheapest cost per node inspected are (from left
to right)

[3, 5, 7, 11, 13, 9, 17, 19 . . . ]. (4)

We will use Lb to denote each list of `i and costLb
to denote the corresponding cost, where the bit

representation of b specifies the set of `’s from Equation (4); the least significant bit of b determines
if 3 is included, the second least significant bit of b determines if 5 is included, and so on. For
example, L0 = {}, L2 = {5}, and and L11 = {3, 5, 7}. As each step will always include revealing 2
neighbours in X (F̄p, 2). For a node j we have

total # of Fp muls. ≥ #Fp muls. needed to find roots of Φ2,p(X, j);

total # of nodes revealed ≥ 2.

Here, equality holds only when we take the list to be L0, which corresponds to the original Delfs–
Galbraith algorithm. Minimising the cost in Equation (3) is a non-trivial task. We first restrict
the Lb to only contain ` such that cost` < costL0

, otherwise it would be more advantageous to
take another step by moving to a neighbouring node in X (F̄p, 2). We emphasise that costL0

grows
with p, whereas cost` stays fixed. This signifies that the condition on ` becomes less restrictive
as p increases. Suppose that, imposing this condition we get Lb ⊆ [`1, ..., `n]. We then exhaust all
b < 2n, corresponding to subsets of [`1, ..., `n], to determine the Lb that minimise Equation (3). It
is important to note that, as this optimisation depends only on the prime p, Lb can be determined
in the precomputation.

6 A worked example

We now use a worked example to illustrate how the Solver and SuperSolver programs solve the
supersingular isogeny problem, and to highlight the differences between them. Our SuperSolver
suite is written in Sage/Python and a boolean variable supersolver specifies whether Solver or
SuperSolver is used. For a prime p, and two supersingular j-invariants j1 and j2 defined over
Fp2 = Fp(α), Solver is run by entering

Solver(p, j10, j11, j20, j21, false)

and SuperSolver is run by calling

Solver(p, j10, j11, j20, j21, true),

where j10 = Re(j1), j11 = Im(j1) and similary for j20, j21.
We picked

p = 220 − 3,

the smallest of the primes from Table 4 (of Section 7), and generated two pseudo-random8 j-
invariants in Sp2 \ Sp:

j1 = 129007α+ 818380 and j2 = 97589α+ 660383.
8We do this by taking long walks in X (F̄p, 3) away from a known subfield curve.
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Preprocessing. The preprocessing phase of both programs starts by constructing the extension
field Fp2 = Fp(α), where α2 is the first non-square in the sequence −1,−2,2,−3,3,. . . . It then
computes a list of constants for the Tonelli-Shanks subroutine, most notably the exponent (p −
2e − 1)/2e+1, where e is the maximum integer such that 2e | (p − 1). This exponent is Scott’s
‘progenitor’ [21, p. 3], which essentially determines the complexity of Fp square roots, and therefore
of Fp2 square roots. As a result, it determines the cost of taking a step in X (F̄p, 2) – see Section 3.
The preprocessing phase then computes a set of integers ` ≥ 3 (according to the optimisations in
Section 5 and the relevant heuristics in [9]), fetches the associated files (originally from Sutherland’s
database [24]) containing Φ`(X,Y ) ∈ Z[X,Y ] and reduces all of the coefficients to store a set of
new, more compact files containing elements of Fp that define each of the Φ`,p(X,Y ) ∈ Fp[X,Y ].
Note that this is done for both Solver and SuperSolver, since both of these programs use the
original Delfs–Galbraith subfield path algorithm [9, Algorithm 1] after the searches for subfield
nodes is complete. It is important to note, especially in the cryptanalytic context, that all of these
preprocessing steps only depend on p and can therefore be done without knowledge of j1 and j2.

Solver. The optimised walk in X (F̄p, 2) proceeds exactly as described in Section 3, i.e., using
the depth first search through the binary trees rooted at j1 and j2, until both searches find the
subfield nodes j′1 ∈ Fp and j′2 ∈ Fp. In the case of our example, paths were found to j′1 = 760776
and j′2 = 946405, depicted in Figure 2 and Figure 3. They correspond to φ1 : E1 → E′1 and
φ2 : E2 → E′2, where j(E1) = j1, j(E′1) = j′1, j(E2) = j2, and j(E′2) = j′2.

φ1 : j1 219247α+ 863507 489342α+ 132142

174188α+ 794346 291380α+ 146098 148602α+ 24450

263095α+ 184707 37438α+ 90559 1027930α+ 498080

612554α+ 208821 994015α+ 681197 206051α+ 982009

649416α+ 751358 203489α+ 43055 393773α+ 1028490

318158α+ 140927 175225α+ 937858 971263α+ 725197

348684α+ 935077 341898α+ 405481 274229α+ 367729

j′1 = 760776

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Fig. 2. A walk through X (F̄p, 2) for p = 220−3 during Solver. The walk starts at j1 = 129007α+818380 ∈
Sp2 and finds the subfield node j′1 = 760776 ∈ Sp after 21 steps.

Solver then computes a connecting path between the subfield nodes following Delfs–Galbraith [9,
Algorithm 1]. This is depicted in Figure 4. Solver simply reverses the steps in φ2 to obtain its dual,

φ̂2, and outputs the full path as φ : E1 → E2 as φ = φ̂2 ◦ φ′ ◦ φ1.

SuperSolver. With p = 220 − 3, the preprocessing phase determined that SuperSolver is optimal
with L3 = {3, 5} (see also Table 4 in the next section). Before departing the starting node j1 =
129007α+ 818380, SuperSolver performs the rapid inspection of its 3- and 5-isogenous neighbours
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φ2 : j2 867493α+ 220256 252807α+ 1011175

657423α+ 286117 440840α+ 706619 953362α+ 11601

734841α+ 660440 919529α+ 442520 219960α+ 646080

638727α+ 940073 219719α+ 594710 619876α+ 961666

407014α+ 868179 535787α+ 1046047 138865α+ 8726

1016378α+ 696447 289439α+ 170877 665078α+ 700037

895198α+ 793471 562302α+ 547814 68076α+ 946405

j′2 = 35387

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Fig. 3. A walk through X (F̄p, 2) for p = 220− 3 during Solver. The walk starts at j2 = 97589α+ 660383 ∈
Sp2 and finds the subfield node j′2 = 35387 ∈ Sp after 21 steps.

φ′ : j′1 815910 848568 157399 451011 820763

j′2 286978 76159

31 17 31 29 31

31

17 37

Fig. 4. A path connecting two subfield j-invariants by taking steps in X (F̄p, `) with ` ∈ {17, 29, 31, 37}.
The walk starts at j′1 = 760776 ∈ Sp and connects to j′2 = 35387 ∈ Sp after 8 steps.
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as described in Section 5. It then takes steps in X (F̄p, 2) as in Section 3, but at each new node it
performs the rapid inspection of the 3- and 5-isogenous neighbours. In our example, both walks
found a subfield node after 2 steps in X (F̄p, 2). The walk from j1 found a 3-isogenous neighbour
and the walk from j2 found a 5-isogenous neighbour. The final step that finds φ′ is implemented
in SuperSolver exactly as it was for Solver. The three isogenies φ1, φ2, and φ′, comprising the full
isogeny φ = φ̂2 ◦ φ′ ◦ φ1, are depicted in Figure 5.

φ1 : j1 219247α+ 863507 489342α+ 132142 j′1 = 35387

φ2 : j2 867493α+ 220256 252807α+ 1011175 j′2 = 292917

φ′ : j′1 658300 343840 560315

j′2 439276

2 2 3

2 2 5

17 29 31

17

37

Fig. 5. The three paths found comprising an isogeny from E1 to E2 as found by SuperSolver.

To illustrate the core idea in this paper, we focus on the isogeny φ1 depicted at the top of
Figure 5 and walk through the steps of the NeighbourInFp algorithm. Evaluating the third modular
polynomial at the intermediate j-invariants (Step 1 of Algorithm 2) yields

Φ3,p(X, 219247α+ 863507) = X4 + (212814α+ 479338)X3 + (408250α+ 920025)X2

+ (811739α+ 93038)X + 942336α+ 847782;

Φ3,p(X, 489342α+ 132142) = X4 + (872004α+ 13960)X3 + (1031755α+ 822066)X2

+ (969683α+ 747785)X + 813010α+ 255391.

Though the theory tells us that these two polynomials split over Fp2 [X], to the naked eye there is
no way to distinguish which (if any) of these polynomials has a root in Fp. In both cases, setting
g = 1/2 · (Φ3,p + π(Φ3,p)) (Step 2 of Algorithm 2) and h = −α/2 · (Φ3,p − π(Φ3,p)) (Step 3 of
Algorithm 2) respectively yields

g = X4 + 479338X3 + 920025X2 + 93038X + 847782;

h = 425628X3 + 816500X2 + 574905X + 836099,

and

g = X4 + 13960X3 + 822066X2 + 747785X + 255391;

h = 695435X3 + 1014937X2 + 890793X + 577447.

In the first case, Step 4 of Algorithm 2 outputs gcd(g, h) = 1, meaning that Φ3,p(X, 219247α +
863507) has no subfield roots. In the second case, we see gcd(g, h) = X + 1013186, meaning that
−1013186 = 35387 is a subfield root. In our example, we note that the total number of steps
between j1 and j2 returned by SuperSolver is 10, which is much shorter than the 50 steps taken
by Solver. Since the middle subfield path finding algorithm is the same in both routines, there is
no guarantee that the total path will always be smaller for SuperSolver. It is worth pointing out,
however, that the two outer paths from elements in Sp2 \ Sp to Sp (i.e., φ1 and φ2) returned by
SuperSolver will never be longer than those returned by Solver. Indeed, Solver can be viewed as
a special case of SuperSolver where the list of `’s is chosen to be L0. Finally, we note that both
Solver and SuperSolver always conclude by checking the correctness of the full path from j1 to j2.

16



7 Implementation results

In this section we present some experimental results highlighting the efficacy of SuperSolver. The
experiments focus solely on the search for subfield nodes (i.e., the bottleneck step of Delfs–
Galbraith) and come in two flavours: many j-invariants over small primes, and one j-invariant
over a large, cryptographic prime.

Small primes and many walks. Table 4 and Table 5 report experiments that were run on the
largest primes of the 30 bitlengths from 20 to 49. We started at 5000 pseudo-random9 supersingular
j-invariants in Sp2 \ Sp for the primes of bitlengths 20-24, at 1000 j’s for the primes of bitlengths
25-29, at 500 j’s for the primes of bitlengths 30-34, at 100 j’s for the primes of bitlengths 35-39,
at 50 j’s for the primes of bitlengths 40-44, and at 10 j’s for the primes of bitlengths 45-49.
For every j, we ran both Solver and SuperSolver (with the five sets of `’s that were predicted to
perform best during preprocessing) until all walks hit a subfield j-invariant. Throughout, we will
denote these fast sets of `’s by Lb, as in Section 5. In all cases we counted the exact number of Fp
multiplications, squarings and additions required to find the subfield node. Following our metric
in Section 2, Table 5 reports the average number of Fp multiplications by counting squarings as
multiplications, and highlights in red which of the five predicted sets of `’s performed best on
average.

Table 4 reports the average number of nodes visited in each of the walks, along with
⌈
#Sp2/#Sp

⌉
,

the expected number of random elements in Sp2 that would need to be sampled to find a sub-
field element in Sp. Here, the primes are small enough that Sp can be computed precisely (see
Section 2). For each prime, Table 4 highlights in red the column that matches up with the least
multiplications reported in Table 5. Note that, for SuperSolver, the number of nodes visited is the
number of nodes that are actually walked onto in X (F̄p, 2), not the number of nodes inspected
using our fast subfield detection algorithm. Thus, in general, the lowest average number of nodes
visited does not correspond to the lowest average number of multiplications. Indeed, the walks
with fewer `’s spend less compute inspecting `-isogenous neighbours and therefore move onto new
nodes faster, but do not cover as much of the supersingular set during the fast inspection.

The key trend to highlight is that, relatively speaking, SuperSolver gains more advantage over
Solver as the primes get larger. This is not as evident for the small primes in Tables 4 and 5 as it
is for the larger primes below.

Remark 3 (X (Fp, 2) clusters in X (F̄p, 2)). An interesting trend to highlight in Table 4 is that
the average number of nodes visited in the optimised Delfs–Galbraith walk through X (F̄p, 2) is
significantly more than the expected number of elements one would need to select randomly from
Sp2 in order to find an element of Sp. The reason for this is that components of X (Fp, 2) cluster
together in X (F̄p, 2) (see [7, Figure 3] for more details and a depiction). Thus, with respect to
finding subfield nodes, walks in X (F̄p, 2) are significantly different from selecting nodes at random
from Sp2 . In general, this clustering does not happen in X (F̄p, `) for ` > 2, which seems to suggest
that it may be preferable to perform the Delfs–Galbraith walk in a graph other than X (F̄p, 2).
However, we do not deem the difference between the number of nodes visited in X (F̄p, 2) in

practice and the theoretical expectation of
⌈
#Sp2

#Sp

⌉
great enough to incur the significant overhead

of computing `-th roots for any ` > 2. In any case, the method of fast subfield root detection
proposed in this paper will work regardless of the `-isogenies that are used to take steps in a given
walk. In fact, if it turns out that there is a larger ` that makes the original Delfs–Galbraith walk
in X (F̄p, `) perform faster than that of X (F̄p, 2), the greater cost of taking a step in X (F̄p, `) will
increase the relative efficacy of invoking subfield root detection, and therefore the size of the set
of fast `’s.

9Just as in Section 6, we used long walks in X (F̄p, 3) away from a known starting curve to achieve
uniformity in Sp2 .
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prime ⌈
#S

p2

#Sp

⌉ muls fastest Lj ’s Average number of nodes visited

per Solver SuperSolver
p step [L(i) . . . , L(v)] DG L(i) L(ii) L(iii) L(iv) L(v)

220 − 3 530 54 [L3, L7, L11, L1, L15] 812 127 257 76 107 193

221 − 9 156 53 [L3, L7, L1, L5, L11] 459 86 218 53 87 111

222 − 3 584 60 [L3, L7, L15, L11, L5] 885 170 108 288 146 145

223 − 15 583 71 [L7, L3, L15, L11, L5] 838 172 106 169 121 430

224 − 3 1277 64 [L3, L7, L15, L11, L5] 1897 318 209 311 618 273

225 − 39 1231 71 [L7, L3, L15, L11, L5] 1873 360 223 359 933 259

226 − 5 732 62 [L3, L7, L15, L11, L5] 1362 352 194 691 271 233

227 − 39 2348 73 [L7, L3, L15, L11, L5] 3455 917 438 579 497 1766

228 − 57 2965 64 [L3, L7, L15, L11, L5] 9748 1788 1022 3065 1314 1306

229 − 3 2953 74 [L7, L3, L15, L11, L13] 4384 1053 526 712 603 2161

230 − 35 3965 75 [L7, L3, L15, L11, L13] 5555 1443 749 961 849 2825

231 − 1 9009 75 [L7, L3, L15, L11, L13] 27103 4501 2602 3755 3136 8794

232 − 5 5142 75 [L7, L3, L15, L11, L13] 10149 2520 1445 2108 1702 5335

233 − 9 6638 77 [L7, L3, L15, L11, L13] 20387 3832 2342 3756 2676 10562

234 − 41 10526 78 [L7, L3, L15, L11, L13] 32640 6443 3790 6094 4531 16320

235 − 31 117571 99 [L15, L7, L11, L3, L13] 150101 14893 27873 23076 20921 9850

236 − 5 29040 83 [L7, L15, L3, L11, L13] 63384 15929 9127 11974 10807 5249

237 − 25 70328 84 [L7, L15, L3, L11, L13] 218775 26241 16098 29226 24153 10405

238 − 45 100268 86 [L7, L15, L3, L11, L13] 217145 43595 21343 27187 26982 14897

239 − 7 174817 96 [L7, L15, L11, L3, L13] 230235 28802 48488 36770 38318 19677

240 − 87 266662 95 [L7, L3, L5, L6, L23] 394908 49855 80764 66646 56901 28016

241 − 21 205227 92 [L7, L3, L5, L6, L23] 44888 52656 105639 69940 62212 27395

242 − 11 557046 99 [L7, L3, L5, L6, L23] 720206 93920 189498 147651 102116 64309

243 − 57 198777 95 [L7, L3, L5, L6, L23] 705224 69021 153095 95778 81922 44112

244 − 17 307870 98 [L7, L3, L5, L6, L23] 808057 131220 285136 145263 142750 72964

245 − 55 3120225 108 [L7, L3, L5, L6, L23] 2298828 301730 410169 579449 404520 226542

246 − 21 2759728 102 [L7, L3, L5, L6, L23] 9075335 516826 788898 957832 730020 382101

247 − 115 4234340 108 [L7, L3, L5, L6, L23] 5182631 650377 866413 650377 801837 781907

248 − 59 2706129 111 [L7, L3, L5, L6, L23] 6739857 546014 899553 756358 651990 491312

249 − 81 1239417 107 [L7, L3, L5, L6, L23] 3582205 288124 660449 326050 319641 252270

Table 4. The average number of nodes visited in the search for subfield j-invariants in Solver and Super-
Solver. Further explanation in text.

Large primes and optimal node coverage. Table 6 illustrates the increased efficacy of Su-
perSolver over Solver as the supersingular isogeny graphs get larger. Recall that we reported some
of the results from this table up front in Section 1, namely from the experiments using primes
from the isogeny literature. We chose the largest prime below 2k for k ∈ {50, 100, . . . 800}, and
started from a pseudorandom j-invariant in Sp2 \ Sp as usual. Since these instances are too large
to actually run the full subfield search until it terminates, in each case we ran both Solver and
SuperSolver (for the three sets of `’s that were predicted to perform best during preprocessing)
until the number of Fp multiplications used exceeded 108, and then immediately stopped. The
numbers reported in bold in Table 6 are the total number of nodes covered (i.e., both walked
onto and inspected) during these walks. For the smallest prime p = 250 − 27, SuperSolver covers
between 3 and 4 times the number of nodes that Solver does; for the largest prime p = 2800− 105,
SuperSolver covers between 18 and 19 times the number of nodes. Though primes beyond this size
are unlikely to be of cryptographic interest, it is worth pointing out that this trend continues: the
larger p grows, the more profitable it becomes to keep adding `’s in the fast subfield inspection
algorithm.

Storing and accessing the reduced modular polynomials. The unreduced modular polyno-
mials Φ`(X,Y ) ∈ Z[X,Y ] require a significant amount of storage, but recall that the preprocessing
phase immediately reduces all of the coefficients into Fp to produce Φ`,p(X,Y ) ∈ Fp[X,Y ]. This
can be done once-and-for-all for a specific prime, and this makes the storage and access of the
Φ`,p(X,Y ) a non-issue. Storing Φ`,p(X,Y ) requires at most (N2

` /2) · log2(p) bits. For example,
the largest Φ`,p(X,Y ) for the 250-bit prime above is Φ13,p(X,Y ), which requires the storage of
at most N2

13/2 = 142/2 = 98 elements of Fp, around 3KB. The largest Φ`,p(X,Y ) for the 800-bit
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prime ⌈
#S

p2

#Sp

⌉ muls fastest Lj ’s Average number of Fp multiplications

per Solver SuperSolver
p step [L(i) . . . , L(v)] DG L(i) L(ii) L(iii) L(iv) L(v)

220 − 3 530 54 [L3, L7, L11, L1, L15] 44848 20601 22585 22235 23459 24951

221 − 9 156 53 [L3, L7, L1, L5, L11] 24187 13648 18578 15453 18770 14064

222 − 3 584 60 [L3, L7, L15, L11, L5] 52385 28062 31962 26410 32555 38348

223 − 15 583 71 [L7, L3, L15, L11, L5] 59691 30508 32883 39703 33370 44556

224 − 3 1277 64 [L3, L7, L15, L11, L5] 112878 53900 62725 70482 59206 73117

225 − 39 1231 71 [L7, L3, L15, L11, L5] 128703 63021 68210 83333 94434 70878

226 − 5 732 62 [L3, L7, L15, L11, L5] 85437 59484 58286 65813 61261 62216

227 − 39 2348 73 [L7, L3, L15, L11, L5] 251304 164036 135672 136633 137780 185819

228 − 57 2965 64 [L3, L7, L15, L11, L5] 631157 305345 308003 298049 299314 351102

229 − 3 2953 74 [L7, L3, L15, L11, L13] 326888 199985 171489 173335 177986 235902

230 − 35 3965 75 [L7, L3, L15, L11, L13] 412457 260188 232753 228089 236360 301541

231 − 1 9009 75 [L7, L3, L15, L11, L13] 1998840 809040 807306 889210 871068 934319

232 − 5 5142 75 [L7, L3, L15, L11, L13] 758637 455571 449889 501335 474549 572203

233 − 9 6638 77 [L7, L3, L15, L11, L13] 1564701 700390 733705 900515 751310 1153911

234 − 41 10526 78 [L7, L3, L15, L11, L13] 2537688 1184024 1191084 1467113 1276654 1799292

235 − 31 117571 99 [L15, L7, L11, L3, L13] 15272705 5037679 5790782 6109529 6396752 6213090

236 − 5 29040 83 [L7, L15, L3, L11, L13] 5244914 3006618 2913909 2942626 3099020 3211580

237 − 25 70328 84 [L7, L15, L3, L11, L13] 18322417 4979176 5155517 7211517 6950196 6375918

238 − 45 100268 86 [L7, L15, L3, L11, L13] 18402937 8315681 6856578 6735588 7791309 9143526

239 − 7 174817 96 [L7, L15, L11, L3, L13] 22505327 9627241 9879376 9587856 11562406 12332858

240 − 87 266662 95 [L7, L3, L5, L6, L23] 38602102 16664021 16455546 17377853 17169885 17559520

241 − 21 205227 92 [L7, L3, L5, L6, L23] 41185437 17284297 20890068 17817383 18399209 17006068

242 − 11 557046 99 [L7, L3, L5, L6, L23] 70760036 31439715 38704883 38573868 30864574 40337712

243 − 57 198777 95 [L7, L3, L5, L6, L23] 66820000 22863425 30733754 24686759 24474388 27514948

244 − 17 307870 98 [L7, L3, L5, L6, L23] 79795521 43991657 58381667 38022655 43217829 45803624

245 − 55 3120225 108 [L7, L3, L5, L6, L23] 247697962 103871110 87674099 156886333 126109617 144250917

246 − 21 2759728 102 [L7, L3, L5, L6, L23] 923415913 174816651 163893709 198006728 205399202 220786555

247 − 115 4234340 108 [L7, L3, L5, L6, L23] 550653552 222915969 183895536 175113230 248769348 272706341

248 − 59 2706129 111 [L7, L3, L5, L6, L23] 729589278 188237971 192728454 205161765 251091015 310387211

249 − 81 1239417 107 [L7, L3, L5, L6, L23] 385982057 99186957 141171527 88278361 99648273 160633132

Table 5. The average number of Fp multiplications used to search for subfield j-invariants in Solver and
SuperSolver. Further explanation in text.

prime above requires the storage of at most N2
19/2 = 202/2 = 200 elements of Fp, around 20KB.

Any of these would comfortably fit into the L1 cache on a modern CPU.

Concrete security of the supersingular isogeny problem. Our SuperSolver suite makes it
straightforward to obtain precise estimates on the concrete classical security offered by the general
supersingular isogeny problem in Sp2 , for any prime p. Combining a small experiment (like those
reported in Table 6) with the expected number of nodes one must cover before reaching a subfield
node allows us to obtain accurate counts on the expected number of Fp multiplications, squarings
and additions that must be carried out during a full cryptanalytic attack. It is then a matter of
costing these Fp operations with respect to the appropriate metric, whether that be bit operations,
cycle counts, gate counts, or circuit depth.

Acknowledgements. Thanks to Sam Frengley, Michael Naehrig, Krijn Reijnders, Benjamin
Smith, and Greg Zaverucha for their valuable comments on an earlier version of this paper, and
to Drew Sutherland for answering our questions about alternative modular functions.
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Table 6. The number of nodes inspected per 108 field multiplications for the largest primes of various
bitlengths. The Solver column corresponds to optimised Delfs–Galbraith walks in X (F̄p, 2) – see Section 3.
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