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Abstract

We introduce a secure histogram aggregates method which is suitable
for many applications such as ad conversion measurements. Our solution
relies on three-party computation with linear complexity and guarantees
differentially private histogram outputs. We formally analyse the security
and privacy of our method and compare it with existing proposals. Finally,
we conclude our report with a performance analysis.

1 Introduction

In today’s web, various entities perform cross-site tracking of user activity, e.g.,
to inform sites about where users are potentially experiencing issues and to
derive insights about a marketing campaign. This cross-site tracking is often
accomplished via third-party cookies, where website A loads content which gets
and sets a cookie tied to website F . When website F is also loaded across a
variety of other websites, it is thus able to track an individual user’s activities
for a variety of purposes and with varying privacy implications.

Due to these concern, browser vendors have started to move to greatly re-
strict when third-party cookies can be set. For instance, Apple Safari blocks all
third-party cookies by default. Similarly, Google Chrome’s Privacy Sandbox ef-
fort proposes to phase out third-party cookies as they exist today. Nearly every
other browser vendor is moving in the same direction. Analytics built on top
of third-party cookies, however, are a vital part of the current ad-funded web
ecosystem that helps provide many valuable sites and services free of charge to
users.

In many measurement-related scenarios, the most valuable information is
about what events happen most frequently, such as how often an ad placement
on a publisher site results in the user completing a purchase of a specific item.
These insights are currently derived by having an entity collect information
about each individual user and then aggregate insights across users. There’s
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no promise that the data about a specific user won’t be used for other, more
privacy-invasive purposes. By enabling aggregate measurements to be made
while providing technical guarantees against individual tracking, many of to-
day’s measurement scenarios can be handled in a privacy-preserving way that
avoids the concerns that apply to existing methods that utilize third-party cook-
ies.

In the ad conversion setting, a party called the Reporting Origin collects
reports from browsers. A report collected from the client is a (key, value) pair,
where the key is formed with set of predefined attributes such as user identifica-
tion, location, age, gender, device ID, or ad category. Each of these attributes
is allocated a certain number of bits; in practice, the total length of key is ex-
pected to be 32 to 40 bits. The value in the collected reports represents some
predefined values such as the dollar amount the user spent, or how much time
they spent browsing the advertised website. The Reporting Origin is designed
to run data analysis on collected reports, such as compute histograms of at-
tributes, or sums of values corresponding to specific attributes. The current
way to doing this is unnecessarily privacy-invasive, especially if the aim of the
Reporting Origin is to only do aggregate data analysis. An ideal solution would
protect individual users’ privacy, while allowing data analysis across many users.
In this work, we propose a privacy-preserving aggregate protocol based on se-
cure multi-party computation and differential privacy, which allows legitimate
institutes/individuals to analyze data collected from multiple browsers. A key
requirement is that the information they learn cannot be used to trace back
understanding to any specific user.

1.1 Related Work

There exists a big line of prior academic work to solve privacy-preserving aggre-
gate systems. The most intuitive ones are based on general purpose multi-party
computations [16, 20]; some are new primitives called Distributed Point Func-
tions (DPF) [14, 7, 8, 6]; and the rest has different flavour [10, 5]. In this report,
we mainly focus on DPF [6] and Prio [10], as these approaches are currently
being proposed for standardization by IETF [4, 13, 1]. We detail these proposals
in Section 5 and compare their complexities with our solution shortly.

There is another prior work for secure histogram computation, although it
is not the main focus of the paper [17]. However, this work tightly focuses on
access pattern hiding secure graph computation. More specifically, they work in
a model where each client can submit an arbitrary number of inputs and their
protocol can hide the number of submission by a specific client with differential
privacy. For the histogram computations, the protocol uses 2-party shuffling
and it only outputs the exact histogram with no differential privacy protection.

1.2 Overview

We focus on histogram aggregates on attributes of key and propose an effi-
cient (linear time and communication complexity in the number of reports)
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Figure 1: Our System Architecture.

privacy-preserving aggregation system, where the Reporting Origin learns only
the histograms of keys and does not learn any other data associated to a specific
client. It is based on honest-majority secure three-party computation, which is
efficient. The system architecture of our protocol is given in Figure 1. The
Reporting Origin can only query the aggregation system through an interface
that returns differentially private histogram results. At a high level, the clients
generate secret shares of reports for two servers; these two servers add dummy
reports for each attribute key, where the number of dummy reports is sampled
from a Laplace distribution. The original reports and dummy reports are per-
muted with the help of third server through an oblivious shuffling sub-routine.
Finally, shares are revealed to form the results.

1.2.1 Bucketization

Even though our protocol can enable aggregates over value’s, such as sum or
mean, we will specifically focus on histogram aggregates defined on key at-
tributes. Therefore, we will omit the value from reports from now on and will
add them back when we define other aggregate protocols in the next version of
this work. Furthermore, we will consider the full report with a key encoding
multiple attributes. For example, a 16-bit key in a single report could represent
two attributes: a 10-bit Ads Category and a 6-bit Client Region. Our protocol
allows running histogram aggregates on any attribute reported in a
single key even after a key is fully reported (as 16 bits from our example) with-
out needing to report each attribute separately. This enables us to compute
histograms in a layered manner. For example, we can run the histogram on
only Ads Category attribute first and continue building the histogram on Client
Region, when Ads Category is equal to a specific value (see Figure 2).

Due to secret sharing of the keys within the reports, we can achieve a higher
level of flexibility than the proposals in related work. We can also improve the
performance of our protocol when the size of the attributes becomes too large
to parse at once, as we will clarify later in Section 6.
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Figure 2: An example demonstrating the flexible functionality of our attribute
aggregation protocol. The outputs will be differentially private histogram
counts, i.e., the size of each bucket plus a noise term.

We refer to our histogram aggregate protocol as Bucketization, as it can be
seen as putting reports in buckets representing the attribute keys. Thus, we call
each aggregate point (an attribute in key) a bucket.

1.2.2 Security guarantees

We formally analyse the security and privacy guarantees of our protocol in
different threat models. First of all, our Bucketization protocol provides security
against malicious clients. Informally, it is achieved with no added cost when the
malicious browsers are limited to a small fraction of the total browsers.1 Second,
our protocol achieves (ϵ, δ = p eϵ

1−p ) differential privacy (DP) for a very small
p, meaning that the reported histograms reveal only noisy aggregate counts.
Third, we prove privacy against semi-honest servers in the aggregate system.2

A stronger notion of security assumes a malicious server who may deviate
from the protocol execution. The malicious server’s goal is to learn sensitive
information about the clients. Finally, we prove privacy against a malicious
server in an honest majority setting: when there are three servers, only one
server is allowed to be malicious. We can also extend our proof to provide
privacy against a Reporting Origin that colludes with one of the servers. Our
proofs are based on a leakage model.

As in [10, 6], robustness in the case of a malicious server is not guaranteed.
We give the comparison between DPF, Prio, and our protocol for security and

1This seems like a reasonable assumption to make in the real world, where the number
of malicious clients, e.g., those infected with a particular malware, is generally much smaller
than the number of trustworthy clients.

2Semi-honest adversaries execute the protocol honestly but try to learn additional infor-
mation from the protocol transcript.
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privacy guarantees in Table 1.

Protocol

Robustness
against
malicious
clients

Semi-
honest
servers

Privacy
against a
malicious
server

Correctness
against a
malicious
server

DP

DPF [6]
requires
sketching
protocol

yes yes no yes

Prio [10]

requires
zero-
knowledge
range
proofs

yes yes no no

Bucketization no cost yes yes no yes

Table 1: Threat model and security guarantee comparison.

1.2.3 Complexity

The time complexity of our aggregation protocol is O(C + BM̄), where C is
the number of client reports, B is the number of buckets, and M̄ is the average
noise added to each bucket (M̄ = O (−(1/ϵ) ln δ) to achieve (ϵ, δ)-DP). The
communication complexity is O(ℓ(C+BM̄)), where ℓ is the reported key length.
The communication required from clients in their reports is only O(ℓC) with
some encryption overhead. We give the comparison between DPF, Prio, and
our protocol for time and communication complexity in Table 2.

Protocol Time Complexity
Server-to-
Server Comm.

Client-to-Server
Comm.

DPF [6] (ℓC2/t)DPF.Eval calls ℓ log2(p) λℓ
Prio [10] O(BC) O(C log2(p)) B log2(p)
Bucketization O(C +BM̄) O(ℓ(C +BM̄)) ℓ

Table 2: ℓ is the reported key length; t is the pruning threshold (t = 1 for full
histogram); log2(p) is the size of the finite field; λ is the security parameter;
C is the number of client reports; B is the number of buckets (B = 2ℓ for full
histogram); M̄ is the noise added on average to each bucket in Bucketization.
DPF row does not account the DP protection (our scheme without DP would
mean M̄ = 0). Note that the time complexity of DPF.Eval is exponential in ℓ.

As shown, our protocol has linear time and communication complexity in
the number of reports. When we consider the communication complexity of
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the aggregate system as the total communication required for an end-to-end
execution, we must include the communication required from clients to servers
as well. In that sense, the linear complexity in the number of clients is inevitable.
In our work, we add a similar communication complexity for the server-to-server
communication. As the network between servers is normally much better, we
do not see this as a drawback. Furthermore, our approach comes with a time
complexity advantage compared to other protocols. DPF takes a completely
orthogonal approach and introduces a time complexity quadratic in the number
of clients, while avoiding the linear communication complexity between servers.
We give a detailed description of an existing proposal using DPF in Section 5.
We compare the performance of our protocol with [6] (DPF) in Section 6.

Prio defines a complete toolbox for secure and private aggregation. However,
it comes with the cost of having clients encode their reports to help aggregation
by the servers and creating proofs that their reports are well-formed. We explain
further how Prio approaches to solve private aggregate protocols in Section 5.
We do not compare Prio performance with our protocol as there is no known
codebase for histograms to use. However, there is an ongoing effort to build
such [3].

2 Preliminaries

In this section, we will first define the notations we use throughout the paper
and give two main building blocks of our final protocol: a differential privacy
mechanism and an oblivious random shuffling protocol. Later, in Section 3, we
will instantiate these primitives.

2.1 Notation

We refer to web browsers (in the real-world scenario motivating this work) as
clients. We denote the Reporting Origin as R and the three helper servers as
S1,S2,S3. We denote by C the total number of clients (or, more precisely, the
total number of reports) and by b ∈ {1, 2, 3} the server index. Unless explicitly
stated otherwise, all indices start from 1. We use k to denote the list of keys
formed with µ attributes; the size of k is C. The report from client i is denoted
by ki. The m-th attribute ki[m] of ki is an element of a group Gm. We assume
that Gm includes a “dummy value” ⊥ and that ki[m] ∈ Gm \ {⊥}. In other
words, the ⊥ value is reserved for our protocol.

There are several ways to implement the groups Gm. For example, if the
value of the m-th attribute, ki[m], is an ℓm bit string and that 1 . . . 1 is never
used to report, we set Gm = Zℓm

2 and ⊥ = 1 . . . 1. For the rest of the paper, we
will follow this notation. If all ℓm-bit strings must be used, we let Gm = Z2ℓm+1

and ⊥ = 2ℓm . We let Lm be the order of Gm and let G = G1 × G2 × · · · × Gµ.
Hence, ki is an element of G.

In the case of binary representation, an ℓ-bit ki will have µ different at-
tributes, such that ℓ =

∑µ
m=1 ℓm, where each attribute key is ℓm bits for m ∈ [µ].
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d1 = 00 010
d2 = 01 001
d3 = 00 000
d4 = 00 010
d5 = 10 010
d6 = 00 010
d7 = 01 110
d8 = 01 001
d9 = 10 000
d10 = 10 010

Figure 3: A visualization of our small example: the list D with C = 10 reports
with µ = 2 attributes and total of 5 bits.

When we bucketize for an attribute index m with ℓm bits, we obtain Lm = 2ℓm

buckets, which we represent as {B1, . . . ,BLm}. Among these buckets, one bucket
is reserved for the dummy value. We denote the bucket of dummies by B⊥.

We denote the vector of reports (keys) by D = (di = ki)i∈[C], where di (or

ki here) denotes the i-th report in D, while dbi denotes the server b’s share of
the i-th report. We denote server b’s shares of the full dataset D by Db.

2.1.1 Example

Throughout the paper, we will describe the high-level idea of the protocols with
a small example. We work with 10 client reports, where each report consists
of two attributes: Gender (represented with 2 bits to allow “he/she/they” and
⊥) and Category (represented with 3 bits). In this example, we take G1 = Z2

2

and G2 = Z3
2; addition is bitwise XOR. Since we have C = 10, k will be formed

with 10 reported keys. Each key will have µ = 2 attributes and 5 bits in
total: ki[1] = x1x2 and ki[2] = y1y2y3. If we want to build a histogram on
attribute “Gender” (m = 1), we will obtain Lm = 22 buckets: {B1,B2,B3,B4}
where B4 is reserved for dummy records and filled with values for reports with
ki[1] = 11. An example of a corresponding dataset k (without considering any
secret sharing yet) is given in Figure 3. Notice that there are no records with
ki[1] = 11 or ki[2] = 111, as these buckets are reserved for dummy records.

2.2 Secret Sharing

The GMW protocol [16] was the first multi-party computation protocol based
on secret sharing. In GMW, a secret is information-theoretically shared between
multiple parties. Let G denote a finite additive group. In the two party case, a
client willing to share a value k ∈ G to two servers will first uniformly sample
r ← G, send r to one server, and k − r to the other server. Neither share alone
reveals any information about the secret value k. Such a scheme works for both
Boolean circuits and arithmetic circuits; it requires no communication for the
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d11 = 10 011
d12 = 00 011
d13 = 01 111
d14 = 11 110
d15 = 01 001
d16 = 10 001
d17 = 00 011
d18 = 01 101
d19 = 00 011
d110 = 11 101

(a) Shares of S1: D
1

d21 = 10 001
d22 = 01 010
d23 = 01 111
d24 = 11 100
d25 = 11 011
d26 = 10 011
d27 = 01 101
d28 = 00 100
d29 = 10 011
d210 = 01 111

(b) Shares of S2: D
2

Figure 4: Secret shares of D held by S1 and S2.

addition of two secret values, or addition or multiplication with public constant
values.

Example

Continuing with our example, we secret share the reports in D for S1 and S2 as
follows: di = d1i ⊕ d2i , for i ∈ [10]. We depict the shares in Figure 4.

2.3 Differential Privacy

Differential privacy [11, 12] protects the privacy of individual records in a
database, while still allowing meaningful queries to be made. For each (or-
dered) dataset D ∈ χC , we define an (unordered) database D̄ ∈ Nχ by D̄(j) =
#{i : Di = j}. Let M be a randomized algorithm with domain Nχ and let
D̄, D̄′ ∈ Nχ be two neighboring databases that differ on only one record.3 We
say that a mechanism M is (ϵ, δ)-differentially private ((ϵ, δ)-DP) for parame-
ters ϵ ≥ 0 and δ ∈ [0, 1] if for any S ⊆ Range(M) and any neighboring D and
D′,

Pr[M(D̄) ∈ S] ≤ eϵPr[M(D̄′) ∈ S] + δ

The property of differential privacy is maintained through post-processing.
Informally, it means that once differential privacy is achieved for the output of a
particular query, the data curator can make any computations with this output
without violating the formal differential privacy guarantees.

2.3.1 Laplace Mechanism

The Laplace mechanism is one of classical DP mechanisms, where we add
noise drawn from the Laplace distribution to the output of statistical aggre-
gate. The probability density function of Laplace distribution is Lap(X, b) =

3Formally, neighboring means L1 norm of two databases ∥D̄ − D̄′∥1 ≤ 1
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(1/2b) exp(−|X|/b), with zero mean and standard deviation σ =
√
2b2, for a pa-

rameter b. For any function f : Nχ → RL, the Laplace mechanismM : Nχ → RL

is defined as
M(f(D̄)) = f(D̄) + Y .

Here Yj ← Lap(X,∆f/ϵ) are the i.i.d noise terms randomly drawn from the
Laplace distribution for each bucket j and ∆f is the sensitivity of the function
f , which quantifies how a single record can change the output. Since we are
interested in histogram queries, L is the number of buckets, and the sensitivity
∆f = 1. Thus, the Laplace distribution we consider from now on is Lap (X, 1/ϵ).

2.4 Oblivious Random Shuffling

We will make use of an oblivious shuffling protocol that runs between two or
three servers. It inputs a dataset, which is initially additively secret shared
between two servers and outputs additive secret shares of a shuffled dataset.
Obliviousness means that none of the servers learns the mapped positions before
and after the shuffling for any element in the dataset.

To achieve obliviousness, a prior work by Chase et al. [9] uses the idea of an
oblivious permutation for two-party oblivious random shuffling. In their work,
each party samples a permutation and initiates an oblivious permutation to
permute a secret shared dataset. Since the dataset is permuted twice, with each
permutation known only by one of the parties, the mapping of the elements
positions before and after the permutations are kept secret. However, a third-
party approach could be used to improve the efficiency of the protocol.

Mohassel et al. [19] proposed an oblivious permutation protocol in the honest
majority three-party setting with linear computation and communication cost.
We will instantiate a modified version of their protocol in Section 3.2.

3 Subroutines

3.1 Differential Privacy Mechanism with Constraints

To achieve differential privacy (DP) in histograms, we add noise to the counts
of each bucket in our Bucketization protocol. Ideally, we can achieve it with
Laplace mechanism. However, the way we design our protocol does not allow
to apply it in a straightforward way. Briefly, our protocol requires to generate
positive integers as noise because sampled noise becomes the number of dummy
records generated for each bucket. So, our ultimate aim is to find a way to
allow adding both positive or negative noise sampled from standard Laplace
distribution. Therefore, we will tweak the Laplace mechanism in a way that
will allow us to use Laplace noise as it is. This will make the analysis of DP
simpler.

Alternatively, we could follow the proposal from Medina et al. [18] as a gen-
eral framework for private optimization without constraints violations. Clearly,
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their work could be used in order to achieve discrete positive noise, however, we
could achieve DP with a simpler method, which we describe next.

3.1.1 Truncated and Shifted Laplace Mechanism

As we stated before, our aim is to use the standard Laplace distribution in
a way that it leads us to generate discrete positive or negative noise. First,
we define the truncation of Laplace. We sample a noise n from Lap (X, 1/ϵ):
n ← Lap(X, 1/ϵ) (rounded to the closest integer4) which could be negative. If
n < −M , we sample again until n ≥ −M . We obtain a PDF for n which

is Pr(X) = 0 if X < −M − 1/2 and Pr(X) = Lap(X,1/ϵ)
1−p otherwise, with p

defined as resampling probability (which we will define shortly). Finally, we
define shifting as follows: we add M to n. These steps ensure that n + M is
always non-negative and we obtain n+M as number of dummy records. Note
that M is a public parameter. Later on, when the buckets are computed, we
will subtract the value M from each counts and it will leave us with the original
Laplace noise n added to the buckets.

Let −M − 1
2 define a truncation point in Laplace distribution. Given the

PDF of standard Laplace distribution, we define resampling probability p as:

p = Pr

[
X < −M − 1

2

]
=

−M−1/2∫
−∞

Lap

(
X,

1

ϵ

)
=

1

2
e−ϵ(M+1/2)

Then, we compute M = −(1/ϵ) ln(2p) − 1/2. As an example, if we want
p ≈ 1/1 000 000, M becomes M = ⌈13.12/ϵ− 1/2⌉.

3.1.2 Computation of average dummy records

We define the added noise as n+M dummy records. We compute the average
of n+M as M̄ as follows:

E(n) =
∞∫

−M−1/2

x Lap(x)

1− p
dx =

p

1− p

(
1

ϵ
+M +

1

2

)

M̄ = M + p
1−p (1/ϵ+M + 1/2) which is very close to M .

We provide a suggested way to implement noise generation in Appendix A.1.
The protocol for noise generation is shown in Figure 5.

3.1.3 Example

We continue our example from previous Section 2.1. We want to build a his-
togram on the attribute “Gender” (m = 1) with Lm = 4 buckets {B1,B2,B3,B4}.
In our ΠNoiseGen protocol, Noise generation step will sample a number for each

4This is safe due to the Post-Processing Theorem.

10



Protocol ΠNoiseGen

Parameters. An attribute index m. Lm buckets. There exists privacy
parameters (ϵ, δ). There exists a Laplace distribution Lap(X, 1/ϵ). For a
resampling probability p such that δ = p eϵ

1−p , we define M = − 1
ϵ ln(2p)−

1
2 .

Input. Each server Sb inputs (dp, Db,m) where Db is the full dataset share
of the server b and m is the (queried) attribute index of the key.

Noise generation. For each b ∈ {1, 2}, for each bucket j ∈ [Lm], Sb
randomly samples noise (until it is larger than −M − 1

2 by rejection sam-
pling) from the distribution Lap(X, 1/ϵ) and rounds it to the nearest inte-
ger. We call this rounded noise as nb

j . All the noise values are recorded as

N b = (nb
j +M)j∈[Lm].

Generating dummy records. For each b ∈ {1, 2} and each bucket j ∈
[Lm], Sb creates nb

j + M dummy records as follows: for i ∈ [nb
j + M ], set

kb
i,j [m] = j and kb

i,j [v]← ⊥(∈ Gv) for v ∈ [µ]\{m} (which form one dummy

record kb
i,j). Sb forms all of nb =

∑
j∈[L](n

b
j+M) dummy records dbi,j = kb

i,j

as Db
dum.

Appending shares to dummy records. Set D1
priv and D2

priv as follows:

(D1
priv)i = D1

i for i < C; (D1
priv)i = (D1

dum)i−C for C ≤ i < C + n1; and

(D1
priv)i = 0 for C + n1 ≤ i < C + n1 + n2. S2 computes similarly except

that it puts all 0 keys before the dummy records of S1.

Output. Each server Sb outputs Db
priv.

Figure 5: The protocol of DP noise generation.
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d11 = 10 011
d12 = 00 011
d13 = 01 111
d14 = 11 110
d15 = 01 001
d16 = 10 001
d17 = 00 011
d18 = 01 101
d19 = 00 011
d110 = 11 101
d111 = 00 111
d112 = 00 111
d113 = 01 111
d114 = 11 111
d115 = 11 111
d116 = 00 000
d117 = 00 000

(a) D1
priv

d21 = 10 001
d22 = 01 010
d23 = 01 111
d24 = 11 100
d25 = 11 011
d26 = 10 011
d27 = 01 101
d28 = 00 100
d29 = 10 011
d210 = 01 111
d211 = 00 000
d212 = 00 000
d213 = 00 000
d214 = 00 000
d215 = 00 000
d216 = 00 111
d217 = 11 111

(b) D2
priv

Figure 6: Output of ΠNoiseGen on small example dataset D. Last 7 entries in
Dpriv are dummy records; 5 of them were are added by S1 and 2 of them by S2.

of these 4 buckets (with B4 being the reserved bucket for dummy records). Sup-
pose the noise vector N 1 = (2, 1, 0, 2) for S1. It means that total n1 = 5 records
will be created: two records k1

1,1,k
1
2,1 to append for B1; one record k1

1,2 to
append for B2; two records k1

1,4,k
1
2,4 to append for B4.

In step Generating dummy records, each fake report will have the form
k1
i,j = [j||111] where j represented in binary with 2 bits and other attribute set

to reserved value 111. Same steps repeat for S2 with different total noise vector
N 2 and n2.

Finally, in the step Appending shares to dummy records, these 5
dummy reports from S1, as well as n2 fake reports (all key bits filled with
0’s) will be appended to end of true reports from 10 clients. This way, we let
the communication between S1 and S2 be the exchange of n1 and n2 only. Let
the noise vector of S2 be N 2 = (1, 0, 0, 1). We depict the noise addition following
our examples in Figure 6.

Let’s continue further with our example. Suppose we reveal the buckets for
the first attribute. Then, the servers only reveal the first attributes and puts
the shared second attributes in corresponding buckets:

B1 = {db1, db3, db4, db6, db11, db12, db16}

B2 = {db2, db7, db8, db13}

B3 = {db5, db9, db10}
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B4 = {db14, db15, db17} .
Again, note that we do not reveal the second attributes. Then, the histogram

is built with the counts of B1,B2,B3 after discarding the dummy bucket.

3.2 Oblivious Random Shuffling

In our work, we take the Mohassel et al. [19] protocol and modify it into an effi-
cient honest-majority three-party oblivious random shuffling protocol achieving
linear complexity. All the operations are information-theoretic, thus having only
a small computational overhead.

The oblivious random shuffling protocol is described in Figure 7 and de-
picted in Figure 8. In Initialize step, we allow only one server to sample the
permutation and random masks and then send it to the other server. We do not
need commitment and interactions because of the third server we introduced.
This is because when one of the servers is malicious, the sampling from the
(third) honest server is enough to create uniform distribution. This would not
be true if we had two-party computation.

Protocol ΠRandShuf

Notation. When the operator {+,−} are applied to vectors, they mean
element-wise addition and subtraction.

Input. For b ∈ {1, 2}, Sb inputs (shuffle, Db) where Db := {(kb
i )}i∈[C],

with kb
i ∈ G (G is defined as a product group: G = G1 × . . .×Gµ).

Initialize. For (b1, b2) ∈ {(1, 2), (2, 3), (1, 3)}, Sb1 and Sb2 jointly sample
(only one of the corresponding server samples and sends privately to the
other server) a permutation πb1b2 and a random vector Rb1b2 ∈ GC .

Shuffling.

1. S2 computes A := π23(π12(D
2) +R12) +R23 and sends A to S1.

2. S1 computes B := π12(D
1)−R12 and sends B to S3. It also computes

A′ := π13(A)−R13 and outputs A′.

3. S3 computes B′ := π13(π23(B)−R23) +R13 and outputs B′.

Output. S1 outputs A′ and S3 outputs B′.

Figure 7: The protocol of oblivious random shuffling.

Informally, what we prove is that the views of any corrupt party can be
perfectly simulated. At the initialization phase, each pair of parties jointly
sample a random injective permutation and a random mask vector. They can
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Figure 8: Illustration of Protocol ΠRandShuf . Gray tuples indicates the inputs
known to each server.

be simulated by the simulator uniformly samples and sends to the adversaries
random injective permutations and mask vectors. The simulation of shuffling
phase is done as follows.

1. Corrupt S1: The only message that S1 receives is A from S2. A :=
π23(π12(D

2) + R12) + R23, where π23 and R23 are known to S1. Since
the random vector R23 masks the permuted shares, A is indistinguishable
from a random vector from S1’s view. The simulator can replace it with
a random vector of same size.

2. Corrupt S2: S2 receives no messages, thus there is no need to simulate.

3. Corrupt S3: The only message that S3 receives is B from S2. As is the
same situation to S1’s, B is indistinguishable from a random vector from
S3’s view, so the simulator can replace it with a random vector of the
same size.

This informal analysis ignores the final output. Later, in the formal treat-
ment, we will assume collusion between Reporting Origin and one of the aggre-
gate servers. Reporting Origin learns the final output and we assume the leakage
of A′ and B′, as well. The formal privacy of the protocol in the semi-honest
server model is proven in Appendix A.2.

4 Secure Report Bucketization For Histograms

The goal of report bucketization is to arrange reports collected from C clients
into appropriate buckets according to a subset of attributes encoded in set of
keys k, while preserving privacy of the individual reports. For an attribute k[m],
with ℓm bits, there are Lm = 2ℓm buckets in total. Our full protocol involves
four parties: a Reporting Origin R and three helper servers {S1,S2,S3}.

We assume that no two servers in the aggregation system collude, butR may
collude with one of the servers. We build our system with three helper servers
in a way that two of them, say S1 and S2, receive the secret shared inputs, and
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other two, say S1 and S3, output the results of the histogram computations. In
between, our design is to run DP noise generation with two helper servers and
oblivious random shuffling with three helpers to enable faster protocols.

The input to our protocol is a vector of reports D = (ki)i∈[C], which is
initially secret shared between two non-colluding helper servers. To ensure that
the helpers get the same ordering of reports, the clients may attach an ephemeral
ID along with the encryption of the shared reports (under the public key of the
servers) before passing them to the servers. This is equivalent to including a
Leader server, which is a trusted entity whose only job is to maintain the order
of the records.5 At the end of the protocol, two helpers obtain a new secret
shared vector Dpriv = (ki)i∈[C+n′], where all reports having the same set of

attributes (called “buckets”) are stored consecutively in Dpriv. Note that the
size of Dpriv becomes C + n′ with additional n′ dummy reports with dummy
attributes. The n′ dummy reports were created to ensure that the outputs
revealed to the reporting origin and helper servers are differentially private.

4.1 Private Histogram Protocol Description

In this section, we describe our Bucketization protocol as a full procedure
ΠHist

Bucketize in Figure 10. Let D = (di = ki ∈ G)i∈[C] be the dataset of reports

(report keys) collected from clients. ΠHist
Bucketize takes D and a query index m (to

indicate on which attribute the histogram is built) as an input.
The procedure is triggered by R, with helper servers S1 and S2 receiving

the shares of the reports as D1 =
(
d1i = k1

i

)
i∈[C]

and D2 =
(
d2i = k2

i

)
i∈[C]

, such

that ki = k1
i + k2

i for all i ∈ [C].
After secret sharing the reports in D, the first step is to achieve differential

privacy by S1 and S2 independently adding dummy reports as noise, which is
done by invoking the noise generation subroutine, as defined in Figure 5. This
step inputs the shares of the dataset and the query attribute index m, and
outputs a new dataset with appended dummy records Dpriv = (ki)i∈[C+n′]. The

look of the protocol with addition of dummy records (and oblivious shuffling,
which we will describe shortly) is depicted in Figure 9.

After generating Dpriv, the servers S1, S2 and S3 execute an honest-majority
three-party oblivious random shuffling protocol, as defined in Figure 7. At the
end of this step, the real reports and dummy reports will be mixed up by the
random permutation so that none of the helpers can trace back any report to the
original report, neither can they distinguish between the authentic reports and
dummy reports. The output will be a permuted datasetDpriv perm = (k′

i)i∈[C+n′],
secret shared between the helper servers S1 and S3.

For each i ∈ [C + n′], the helpers reveal the selected attribute ki[m] and
bucketize the reports according to the bucket where the key attribute belongs
to: {B1, . . . ,BLm}.

Finally, the buckets with size less than the pruning threshold t, as well as
the dummy bucket B⊥, are discarded. A value for t is typically decided based

5This is also aligned with the Internet-Draft [13].
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Figure 9: The workflow of Bucketization starting with dummy record addition
and oblivious shuffling. The dummy records are colored to show the shuffling,
due to the XOR of random masks, they will not be traced. This flow will run
with three servers, which carry the shares of the original records.

on the DP parameter M̄ , as M̄ indicates the dummy records added on average
to each bucket. Since the output shares remain with S1 and S3, we apply an
organizing step to put the shares back in place (i.e., reshare to S1 and S2) to run
the protocol again if needed, as we will describe next. However, this resharing
is not necessary in implementations: we include it in the protocol in order to
be able to use ΠHist

Bucketize repeatedly.

4.2 Layered Bucketization

In this section we will describe how our method makes the aggregate histogram
computations on various attributes very flexible. In short, our protocol can be
run on a single or a few attributes, not necessarily on all attributes. We achieve
this flexibility by recursively calling the ΠHist

Bucketize protocol.
Our method enables running queries such as

SELECT COUNT(Category) FROM D
WHERE Gender = “She” GROUP BY Category

as long as there is enough data in the corresponding bucket. Moreover, such
an approach enables a performance gain for attributes with large key sizes. For
example, if one attribute has 32 bits, we can apply layered pruning to speed
up the protocol. More importantly, if the domain of the attributes is sparse
(say 216 keys represented with 32 bits), layering the Bucketization of 32 bits
keys into three (10, 10, and 12 bits correspondingly) and pruning the buckets
after Bucketization of each layer would allow us to run the protocol efficiently
even for relatively large key sizes, which appear with sparse domains. A formal
description of the layered algorithm is given in Algorithm 1.

Concretely, when the first layer is done with m1, only the corresponding bits
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Protocol ΠHist
Bucketize

Parameters. C as the total number of collected reports.

Input. A query index m to indicate which attribute to bucketize on; shares
of S1 and S2 as D1 =

(
k1
i

)
i∈[C]

and D2 =
(
k2
i

)
i∈[C]

, such that ki = k1
i +k2

i ;

a threshold t.

Initialization. Each server receives and decrypts their share. They discard
the shares if they are not in G.

Bucketization.

1. (Differential privacy) S1 and S2 invoke the protocol ΠNoiseGen from
Figure 5 on input (dp, D1,m) and (dp, D2,m). For b ∈ {1, 2}, Sb
sends (dp, Db,m) and updates Db by the output of the protocol as
Db

priv =
(
kb
i

)
i∈[C+n′]

with appended n′ dummy records.

2. (Random shuffling) S1, S2 and S3 invokes the protocol ΠRandShuf

from Figure 7 on inputs (shuffle, D1
priv), (shuffle, D2

priv). It outputs

Db
priv perm =

(
k′
i
b
)
i∈[C+n′]

to Sb for b ∈ {1, 3} .

3. (Bucketizing) For i ∈ [C+n′], S1 and S3 reveal their shares of k′
i[m]

and recover the bucket identifier idi (decimal value of k′
i[m]). Allocate

Lm empty buckets {B1, . . . ,BLm}. For i ∈ [C+n′], b ∈ {1, 3}, Sb puts
the record k′

i
b
into the corresponding bucket Bidi .

4. (Pruning and organizing) For each bucket revealed in previous
step, discard the bucket Bj if |Bj | < t which has small number of
records and the dummy buckets (indexed as j = ⊥ ) along with all
the records in it. For the shares of noisy database from S1 and S3,
S3 generates two secret shares of D2

priv perm and sends the shares to S1
and S2 respectively; S1 combines the share he receives from S3 with
D1

priv perm so that S1 and S2 have the new shares of the Dpriv perm.

Output. Output buckets which remain after pruning, their counts, and the
attribute value of index m for each bucket. Servers keep a private output
which shares datasets of records for each bucket so that they can be used
as input for further instance of the protocol.

Figure 10: Our Histogram Protocol based on Oblivious Shuffling

are revealed. Then, the procedure bucketizes on the next attribute index m2 by
generating noisy reports, setting bucket IDs with the bits of m2 and sampling
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Algorithm 1 Layered ΠHist
Bucketize

Input: A list of attribute indices M = {m1, . . . ,mλ}; a shared dataset for S1
and S2.
Output: Histogram on attributes inM.

1: procedure Layered(M, label, i,D1, D2)
2: if (label, i) = (⊥,⊥) then
3: Set label = null, i = 1.
4: end if
5: if i ≤ λ then
6: Call ΠHist

Bucketize with inputs (mi, D
1, D2).

7: for each produced bucket, the value v of k[mi], D
1, D2 do

8: Call Layered(M, label+ v, i+ 1, D1, D2).
9: end for

10: else
11: Output label and count(D).
12: end if
13: end procedure

other attribute bits at random. Since the ΠHist
Bucketize call feeds other attributes

into the random shuffling procedure, these attributes go through a “reshare”
process. It means that each key a server received will be a permuted dataset
masked with a random vector. So, the original revealed buckets for attribute
m1 as public information will not cause any information leakage.

4.2.1 Example

We continue with our toy example. The reports consist of 5-bit keys representing
two attributes with 2 and 3 bits respectively. Our protocol allows to run the
bucketization on the first attribute Gender (with 2 bits) into 3 buckets B =
{B1,B2,B3} after discarding the dummy bucket, prune the buckets which have
number of reports below some threshold t, B′ = {Bi : |Bi| ≥ t}, and continue
bucketization for the next attribute for each remaining bucket in B′ in the next
layer.

When we open the first attribute (i.e., only the first two bits), the bucket
B1 will contain {00 010, 00 000, 00 010, 00 010, 00 111, 00 111, 00 111}, yielding
7 records where the second attribute is still secret shared. Then, suppose the
protocol goes to the second layer on B1 where the bucketization is run on the
second attribute. It would mean that both S1 and S2 will create a noise vector
for all possible buckets including the dummy bucket. Let’s focus on bucket
B′3, which counts the reports where ki[1] = 00 and ki[2] = 010. Suppose S1
sampled 2 and S2 sampled 1 to add in that bucket B′3. Then, the output of that
bucket will have 3 + 2 + 1 reports, where 3 comes from real reports (neither S1
nor S2 know these true report counts), and additional 2 and 1 come from the
dummy reports. It means that the query that asks for counts, where k[1] = 00
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and k[2] = 010, will output 6 (instead of 3). Finally, in the second layer, more
dummy records are added with ki[2] = 111 and then the second attribute values
are revealed. After revealing, the bucket corresponding to 111 and the buckets
with less than t counts will be discarded.

In an extreme case we consider every single bit of the key as an attribute,
in which case our layered protocol runs as a (pruned) binary tree descent. We
analyse the complexity of the layered protocol, as well as this extreme case,
next.

4.2.2 Complexity of Algorithm 1

For each layer i = 1, . . . , λ, we consider every call to Layered(·, ·, i, ·, ·). The
average complexity is the size of the input dataset to this call added with LiM̄
dummy records. The size of the input dataset is the size of a bucket at the
upper (i − 1)-th layer which is not pruned (larger than t) and not a dummy
bucket. We analyse the complexity in two different cases.

In the first case, we consider t too low, i.e., t ≤ M so that the number
of selected buckets is exponential, or that there is no pruning, i.e. t = 0. In
this case, the number of selected buckets at layer i − 1 is upper bounded by
L1 ·L2 · . . . ·Li−1. The sum of the bucket sizes is C+L1 · . . . ·Li−1M̄ on average.
By summing over all layers, we obtain total complexity of O(λC + M̄L1 . . . Lλ)
(comparable to O(ℓ C + M̄ B)). This is the complexity of the full histogram.

In the second case, we consider t large enough (t > M) to prune effectively.
We consider every possible bucket B1, . . . , BL1L2...Li−1

at layer i−1. We denote
by aj the number of true records in bucket Bj and byXj = ⌊M+Zj⌉, the number
of added dummy records, where Zj follows the truncated Laplace distribution.
Finally, we let Yj be the number of dummy buckets which are added in Bj at
layer i. The complexity to treat Bj at layer i is bounded by aj + Xj + Yj if
aj+Xj ≥ t. Thus, the complexity to treat layer i is

∑
j(aj+Xj+Yj) ·1aj+Xj≥t.

Because
∑

j aj = C, this complexity is bounded by C+
∑

j(Xj +Yj) ·1aj+Xj≥t.
The coins for Xj and Yj are independent. Since we want to compute the average
complexity, we can directly average Yj and get a complexity of C + S with
S =

∑
j E

(
(Xj + LiM̄) · 1aj≥t−Xj

)
. We can show that all buckets such that

aj < t −M have little influence on the sum (either there are a few with high
aj or aj is so low that Xj has too little chance to exceed t− aj). The sum over
buckets such that aj ≥ t −M has a number of terms bounded by C

t−M and

is bounded by
(
M̄ + LiM̄

)
C

t−M . We sum over all layers and obtain O(λC +

(L1 + · · ·Lλ)M̄
C

t−M ). In the extreme case, with λ = ℓ and Lm = 2, this is

O(ℓC + M̄ C
t−M ).

4.3 Privacy Analysis of ΠHist
Bucketize Protocol

4.3.1 Differential Privacy

The ΠHist
Bucketize protocol is (ϵ, δ)-differentially private with δ = p eϵ−1

1−p for a failure

probability p = 1
2e

−ϵ(M+ 1
2 ). We prove the statement in Appendix A.3.
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We can tune the parameters for our protocol quite nicely. If we want our
protocol to achieve (ϵ = 1, δ = 2−40)-DP, then we take p ≈ 2−41 which implies
M = 28. So, for each bucket, we add 28 dummy records on average.

In our protocol, we provide privacy against a malicious server by making
both servers to add noise. If one of them is malicious, even though the malicious
server can subtract the dummy records he added from the final histogram, learn
the histogram with the only dummy records from his counterpart.

Previously, we computed the average number of dummy records per bucket
as 28 for (ϵ = 1, δ = 2−40)-DP. This becomes better if all the participants
are honest, i.e. it is enough for each honest server to add 14 dummy records
on average per bucket because if both are honest, the total 28 is preserved.
These parameters change when we have layered Bucketization with λ layers.
For example, for λ = 16, (2λ− 1)ϵ = 1, and (2λ− 1)δ = 2−40, we take p ≈ 2−40

which implies M = 732 and M̄ = 732+2−30. We can keep the (2λ−1)δ = 2−20,
then we obtain M̄ = 409 + 2−11.

4.3.2 (Informal) Security Analysis against Malicious Clients

In this section, we give the privacy bound against malicious clients. Note that
the malicious behaviour of the client is to modify his reports in a way that it
corresponds to a different bucket at the end of the protocol. This holds true
because our protocol uses the length preserving secret sharing mechanism. A
(malicious) client submits two shares of a report to two corresponding servers.
Regardless of the authenticity of shares, the shares will belong to one bucket
that an honest client could have submitted.

Informally, the ΠHist
Bucketize protocol protects against small subset of malicious

clients. Since the shares of the attributes preserve the length of the original
key size, a small subset of client can only share a wrong key to be counted in
another bucket. Since the aggregated results are already noisy, removing the
record from the original bucket and increasing the count on another bucket only
gives the affect of noise as long as only small set of clients are allowed to do
that.

Formally, we prove the following result in Appendix A.4. Let N be the
number of malicious clients. The L1 distance between true histogram and the
incorrect histogram output from ΠHist

Bucketize protocol is bounded by 2N.

4.3.3 (Informal) Privacy Analysis with Semi-Honest Servers

The cryptographic protocol ΠHist
Bucketize is built upon a generic honest-majority

three-party computation protocol and a specific three-party oblivious permu-
tation protocol. Overall, it is under honest-majority assumption, which means
that the system does not tolerate any collusion. As long as there is no collusion
between any pairs of servers, true counts and aggregate keys are hidden from
each server as well as the reporting origin. We formally prove the privacy of
random shuffling in Appendix A.2.
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In the Layered protocol, the semi-honest server additionally learns the
number of records in the dummy bucket before discarding it. This bucket in-
cludes dummy records from upper layers and newly added dummy records. We
take it into account in the analysis of the Layered protocol.

4.3.4 (Informal) Privacy Analysis Against a Malicious Server

Privacy against malicious server is formally analyzed in Appendix A.5 under
a leakage function. This leakage function allows a malicious server to choose
an offset vector ∆ and to learn the noisy histograms of D + ∆ instead of D.
The leakage function from the execution of protocol with semi-honest servers
use ∆ = 0. Thus, the malicious server model is only introducing the ability to
select a nonzero ∆ in the leakage function. Thus, we provide the same guarantee
as in [6]: allows only additive attacks where a malicious server chooses an offset
vector ∆ and computation is made on dataset D +∆ instead of ∆.

We analyse the implication for differential privacy for Layered protocol in
Appendix A.6.

5 Existing Proposals

Even though there are many different proposals to solve secure aggregate prob-
lems, in this section, we focus on two specific proposals: Prio [10] and Dis-
tributed Point Functions (DPF) [6].

5.1 Prio

Prio [10] is the first existing protocol to solve privacy preserving aggregate sys-
tems which is robust against malicious clients. It does not rely on any general
purpose MPC. The protocol can be used for many different aggregates such
as histograms, sum, average, heavy-hitter, and others with different techniques
and, as a result, with different costs.

Prio uses two-party computations in order to compute the aggregates. Each
client secret shares (defined in Zp for a prime p) their data to the servers. In
order to provide robustness against malicious clients, Prio integrates a special
range proof called SNIP and characterized by a Valid predicate. Each client gives
each server a proof that the shared data satisfies this predicate. A data point x
(shared by a client) is supposed to satisfy the Valid predicate in order to prove the
validity of the data point. The predicate is defined by an arithmetic circuit with
N multiplications. Even though constructing such proofs are efficient enough,
the size of the proofs are O(N) elements in Zp. This implies a very expensive
communication complexity from clients to servers. When the servers receive the
proofs, they run the Valid predicate which only requires 1 MPC multiplication
per client no matter how large N is.

Prio encodes data x before sharing and this encoding depends on which
aggregate function to compute and what type of proof is required. For example,
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to prove that x is made of ℓ bits, the client first encodes x as Encode(x) =
(x, β0, . . . , βℓ−1) βi represents bits. Then, it generates a proof that x =

∑
i

βi2
i

and that every bit βi is a root of a polynomial P (z) = z2 − z. Thus, what is
shared and proved is Encode(x).

If Prio is used to compute the histograms (or frequency counts as the paper
names it), then the encoding becomes a lot larger. The encoding is defined as
Encode(x) = (β0, . . . , βB−1) where B is the number of the buckets (B = 2ℓ for
full histograms) and βx = 1 while βi = 0 for i ∈ {0, . . . , B − 1} \ {x}. Valid
predicate requires all βi to be 0 or 1 as well as

∑
i βi = 1. As it can be observed,

such a method is inefficient for histogram computations. Therefore, we also omit
its performance analysis in our comparisons.

Finally, Prio, as it is proposed, does not provide any differential privacy
guarantees. However, as shown in some use-cases, it may be possible to add
such guarantee under certain conditions [2]. For now, we are not aware of any
effort put in that direction. Instead, another proposal to solve specifically the
heavy-hitter problem with differential privacy guarantees is proposed. This new
proposal specifically aims to reduce the client-side communication complexity
of Prio for heavy-hitter problem, as well as introducing additional differential
privacy guarantees. We will explain this new primitive next.

5.2 Distributed Point Functions

Recently, Google proposed an Attribute Reporting API with Aggregate Re-
ports scheme, which strongly aligns with this problem [1]. A potential solution
mentioned in their proposal relies on Distributed Point Functions (DPF): a two-
party secure computation protocol [6, 15]. More precisely, DPF consists of two
protocols: DPF.Gen and DPF.Eval. We pause here to explain the basic idea of
DPF. Theoretically, the keys can be represented with a large vector of size of
the key space. For an ℓ-bit key k, the key can be represented as a one-hot en-
coded vector of size 2ℓ, with the k-th position set to 1 and other positions to 0.
Then, this vector can be secret shared and sent to two servers to compute the
aggregates. However, this naive approach requires too much communication.
The beautiful idea DPF introduces is to generate the secret shares of this vec-
tor in a compact form and let the servers expand the keys to the full vectors by
executing a series of cryptographic operations. The structure of this expansion
is a tree structure, i.e., the expansion happens level by level. Essentially, DPF
takes these vectors and treats them as functions, which are equivalent when the
representation is a point function.

At the beginning of the data collection clients generate their secret shared
reports by DPF.Gen. Then, two servers jointly execute DPF.Eval to generate
noisy aggregates. Data users (e.g., advertisers) make queries to two servers
and receive differentially private results. The aggregate queries DPF allows are
histogram and sum on reported keys and values.

The most recent DPF construction is introduced as a solution to the private
heavy hitters problem [6]. Particularly, Boneh et al. [6] describes three main
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protocols in their paper.
The first protocol is to build a private subset histogram from collected reports

for a given set of keys. The set of keys may or may not be known to the servers.
It requires O(CB) DPF.Eval calls, where C is the number of reports and B is
the set of keys to build the histogram on (without differential privacy).6

The second protocol is to find the most popular keys, which appears with
a threshold t (without differential privacy); this is called the t-heavy hitters
problem. Boneh et al. defines a new DPF called incremental DPF (iDPF) to
solve this problem more efficiently than with standard DPF. The complexity of
the proposed protocol is O(ℓC2/t) DPF.Eval calls, where ℓ is the (fixed) size of
the keys collected from clients. The third protocol is simply to use the t-heavy
hitters protocol with threshold t = 1. Then, the complexity becomes O(ℓC2)
DPF.Eval calls.

These protocols can be made differentially private by applying the noise
addition process at certain steps. The differential privacy parameters proposed
in [6] use

ϵ′ = ϵ

√
2q ln

1

δ′
+ ϵqeϵ−1 ,

with q = ℓC/t. They provide example parameters for an (ϵ′, δ′)-DP protocol,
with ℓ = 256, ϵ = 0.001, t = C/100, and δ′ = 2−40, resulting in ϵ′ = 1.22.
However, the impact on the complexity and the accuracy is not analysed.

6 Performance Evaluation

We want to take advantage of performance benefit of layering for large attribute
sizes) for histogram aggregation and report the performance. When we run
Layered ΠHist

Bucketize on a long attribute size, we layered it with λ ≥ 2 by dividing
the attribute into equal sizes. The three helper servers S1,S2,S3 run on Azure
Standard D8s v4 virtual machines with 8 virtual CPUs and 32 GiB RAM. S1,S3
are located in the West-US-2 region (Washington) and the round-trip latency
between them is throttled to 60 ms. S2 is located in the East-US-2 region
(Virginia). The network latency between the east and west regions is around
60 ms. Note that most of the network communication happens between (S1,S2),
and (S2,S3).

Our implementation utilizes only a single thread and the code is far from
fully optimized. For some experiments, we run all servers on the same machine
and simulated the network latency with 60 ms; we clarify when we do this. We
ignore the cost of clients in the experiments and only focus on the overhead of
helper servers. Finally, all experiments are implemented with (ϵ, δ)-DP, with
parameters ϵ = 1 and M = 28. We obtain p = 2−42, δ = 2−41, M̄ = M + 2−37

for one layer.

6Note that the complexity of DPF.Eval is exponential in the size of the keys.
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6.1 Constructing a Full Histogram.

We benchmark the performance of our protocols for generating differentially
private full histograms from short keys. C = 10 000 000 reports of clients
are synthesized and generated from a uniform distribution. We choose the
reported key lengths from the list ℓ ∈ {16, 18, 20, 22, 24}. For each execution,
a full histogram consisting of 2ℓ buckets is generated by the helper servers.
When testing our protocols, the one-time bucketization protocol ΠHist

Bucketize is
executed for ℓ ≤ 22. For ℓ = 24, we instantiate Algorithm 1 to run a two-layer
bucketization on ℓ1 = 12 bits and ℓ2 = 12 bits, where ℓ = ℓ1 + ℓ2. This is
because of memory constraints caused by large number of buckets and dummy
reports from DP noise.

We compare the performance of our protocol with the regular DPF-based
protocol.7 In this scheme, the input to the helper servers are DPF keys generated
from a domain of size 2ℓ. Two helper servers evaluate the shared keys at all
points of the DPF domain. Finally, they output a vector of size 2ℓ representing
the histogram.

To generate full histograms, the regular DPF-based protocol is used with the
key evaluation phase. The performance measures the computational efficiency
of helpers running in one server. We run the benchmarks with provided code,
which does not take the number of reports as a parameter, instead, it bench-
marks the regular DPF for one report. We first benchmark the average time
used to evaluate a DPF tree at every point and interpolate it into the time us-
age for C = 10 000 000 reports by simply multiplying it. The results are shown
in Table 3. Both DPF and Bucketization implementation will benefit from op-
timization. However, in general, our protocol is much more efficient than the
regular DPF-based protocol for generating full histograms for short keys.

6.2 Constructing a Subset-Histogram via Pruning

In the real world practice, generating a histogram of the whole domain is not
always meaningful. The domain size can be large and the reports are usually
not uniformly distributed. As in the setting of [6], the reported keys come from
a certain distribution and are encoded sparsely in a large domain. The data
collector is only interested in popular reports, but tend to ignore rarely appeared
outliers. In histogram aggregation, a large number of buckets may be empty or
only contain a small number of reports, when the aggregation keys have a large
domain size or the input reports have a highly concentrated distribution. We
demonstrate the performance of our protocol Layered ΠHist

Bucketize with following
experiments.

We synthesize a dataset of C = 10 000 000 input 32-bit keys from a domain
size of 216, so the attributes are sparsely encoded in the keys. The keys follow
a Zipf distribution, with Zipf parameter 1.03. We set the threshold to be t =

C
10 000 + M̄ , where M̄ is the average number of noise in each output bucket. We

7We used the implementation available at https://github.com/google/distributed_

point_functions (commit 934011c).
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ℓ 16 18 20 22 24

Ours 9.2 s 11.2 s 25.3 s 75 s 422 s

Regular DPF 1.15 days 4.75 days 19 days 76 days 305 days

Table 3: Performance of constructing full-domain histograms. The inputs from
10 000 000 clients are uniformly sampled with ℓ-bit keys. The output is a full
histogram containing 2ℓ buckets. The numbers in the table represent the running
time of experiments. For our protocols, we set two locally separated servers
with 110 ms network latency. We instantiate one-time bucketization protocol
ΠHist

Bucketize when ℓ ≤ 22 and two-layer bucketization Algorithm 1 for ℓ = 24 with a
split of 12 bits for each layer. Our protocol implements the DP with parameters
set to ϵ = 1, δ = 2−40, M̄ = 28. Regular DPF results are run on one server for
one report and multiplied by C as the code provided in the repository allows us.
Regular DPF results do not implement DP. We omit Prio due to the expensive
client-to-server communication complexity.

run Algorithm 1 with a two-layer bucketization on higher and lower 16-bit keys,
respectively. It takes around 139 seconds to generate the histogram with 945
output buckets.

We also compare the performance of our bucketization protocol with the
subset-histogram appeared in the end-to-end performance evaluation of [6]. The
two-party computation protocol in [6] is based on the incremental DPF (iDPF).
For the performance evaluation, C = 400 000 input keys are generated from a
Zipf distribution with Zipf parameter 1.03 and support 10 000. The bit-length
of input keys is 256. The threshold is t = C/1000. The experiment of [6] is done
between 2 servers of 32 virtual CPUs and is equipped with a network of 61.9 ms
round-trip latency. It takes around 53 minutes to generate a subset-histogram.
For our protocol, 3 helper servers run the protocol Layered ΠHist

Bucketize (described
in Algorithm 1) with λ = 16 and bucketize the keys into 16-bit sub-keys. It takes
122 seconds to generate the subset-histogram from the above input.

6.3 Micro-Benchmarks

The Bucketization protocol is efficient and flexible. The clients encode a number
of attributes into a report and secretly share the whole report to helper servers.
According to the query from the reporting origin, helper servers perform his-
togram aggregation on any set of attributes. For the DPF-based protocols, the
queries are known ahead of time and the clients need to generate evaluation
materials for certain queries.

We micro-benchmark the protocol ΠHist
Bucketize with variable key length to

demonstrate the performance of three main components: dummy records adding,
random shuffling, and noisy label reveal. For each execution, C = 10 000 000
reports are sampled from a Zipf distribution with parameter 1.03. The pruning
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Key size ℓ′ (bits) 32 64 256 512

Add dummy records 26 ms 47 ms 176 ms 355 ms

Random shuffling 3.91 s 5.86 s 20.1 s 38.4 s

Noisy labels reveal 2.41 s 2.86 s 6.73 s 10.92 s

Table 4: The numbers are total running time of the one-time bucketization
protocol ΠHist

Bucketize with all servers running on the same machine with 60 ms
latency. The bucketization is executed only on a 16-bit attribute.

threshold is set to t = 10 + M̄ . The length of the reported keys is from a list
ℓ ∈ {32, 64, 256, 512} and the servers generate differentially private histograms
from a domain size of 216 on any 16 bits encoded as attributes in the keys. The
results are shown in Table 4.

As an interactive MPC protocol, Bucketization is susceptible to the restric-
tions on network communication, especially the round-trip latency (60 ms). The
overhead mainly lies in the three-party random shuffling protocol, which has a
communication complexity of O((C + BM̄)ℓ). Revealing the noisy labels has
a communication complexity of O(C + BM̄). Overall, the drawback of our
protocol is the communication complexity between servers.

7 Conclusions

We have presented an efficient three-party protocol, Bucketization, for comput-
ing privacy-preserving histogram queries. The basic protocol Figure 10 can be
used iteratively to compute histograms for large keys with sparse distributions,
as described in Algorithm 1.

We believe our approach can present a viable method for enabling web ad-
vertisers to obtain valuable information about their ad campaigns, while still
preserving the privacy of individual users with state-of-the-art cryptographic
techniques and differential privacy. Our protocol is simpler and works with
linear communication/computational complexity in the number of clients. The
performance analysis indicates that it can be very efficient for various different
test vectors.
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A Appendix

A.1 Sampling Noise Securely

To sample the noise following the description given in Section 3.1, we have two
options:

1. Naive rejection sampling:

1: Sample n← Lap
(
X, 1

ϵ

)
2: while n < −M − 1

2 do.
3: Sample n← Lap

(
X, 1

ϵ

)
4: end while
5: Output n

2. Directly inverting the CDF of truncated Laplace distribution:

1: Sample u uniformly between 0 and 1.

2: Set z = 2(1− p)
(
u−

1
2−p

1−p

)
.

3: Set a = − ln(1−|z|)
ϵ .

4: Set x = a sign(z).
5: Output x.
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This follows from

CDF(x) =

x∫
−M

Lap
(
t, 1

ϵ

)
1− p

dt

=
1
2 − p

1− p
+

x∫
0

Lap
(
t, 1

ϵ

)
1− p

dt

=
1
2 − p

1− p
+

ϵ

2(1− p)

x∫
0

e−ϵ.|t| dt

=
1
2 − p

1− p
+

1

2(1− p)
(1− e−ϵ|x|)sign(x)

When the second method is followed and carefully implemented, assuming
that inverting the CDF can be done in constant time, the method is not time-
invariant. However, the number of rejections is independent from input u and
output x. Thus, the number of rejection does not leak any information to the
adversary.

A.2 Privacy of Oblivious Random Shuffling In Honest-
but-Curious Model

We allow that a malicious participant U colludes with the Reporting Origin to
learn the final histogram. In the worst case, we assume that U learns A′ and
B′ produced by the shuffling protocol based on which the final histogram is
computed.

Theorem 1. Assume that all the participants follow the protocol and are non-
colluding (honest but curious). For each participant of the protocol ΠRandShuf

described in Figure 7, there exists an efficient simulator SimU such that the
view of U in the protocol can be simulated from the final output (A′, B′).

Proof. The view of U = S1 is that the received shares from each client D1, the
value π12, π13, R12 and R13, the value A, and the value B′:

(D1, π12, π13, R12, R13, A,B′)

S1 computes A′ from (A, π13, R13). Then, its view is equivalent to

(D1, π12, π13, R12, R13, A,A′ +B′)

where A′ + B′ = π13(π23(π12(D))). Since π13 is known, the view of S1 is
equivalent to

(D1, π12, π13, R12, R13, A, π23(π12(D)))

The first five terms: D1, π12, π13, R12, R13 are independently sampled. The
last term is a random permutation of D which is independent of the first five
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terms. The sixth term A is a function of D2, R12, R23 with an independent value
R23. Thus, the simulator for this view would independently sample the first six
terms and would select an independent permutation of D which can be done
from the output of the protocol.

The same procedure applies to U = S2 and U = S3 similarly.

A.3 Differentially Private Protocol ΠHist
Bucketize

Theorem 2. The ΠHist
Bucketize protocol given in Figure 10 is (ϵ, δ)-differentially

private with δ = p eϵ−1
1−p for a failure probability p = 1

2e
−ϵ(M+ 1

2 ).

We consider what is learnt by S1 (or S2) as other participants will see noisy
results. S1 learns the final noisy histogram minus the noise it added himself,
i.e. the true histogram plus the noise of his counterpart. As other participants
will see more noise in data, we focus on S1 and S2 and prove the theorem as
follows:

Proof. Let d and d′ be two neighboring databases defined on Nχ. In what
follows, we let i be a fixed index such that |di − d′i| = 1 and dj = d′j for all
j ∈ {1, · · · , L} except j = i. Let f(·) be the function with noisy output such
that f := Nχ → RL.

For each bucket, protocol ΠNoiseGen (given in Figure 5) iterates until the
Laplace noise is larger than −M . Let P denote the PDF of the noise n as

P (n) =
Lap(n, 1ϵ )

1−p if n ≥ −M and P (n) = 0 otherwise. Recall that p = 1
2e

−ϵ(M+ 1
2 ).

Let S ∈ RL be an arbitrary set. We split S into two disjoint subsets Sgood and
Sbad. Sgood has points s ∈ S such that (si−di) ≥ −M− 1

2 and (si−d′i) ≥ −M− 1
2 .

It means that we can obtain s from either d or d′ (as far as the bucket i is
concerned) because the noise to add is greater than or equal to −M − 1

2 . Sbad

has points s such that (si−di) < −M− 1
2 or (si−d′i) < −M− 1

2 . It means that
s is impossible to obtain from either d or d′ (as far as the bucket i is concerned).
Here, i is a specific index defined from d and d′ by |di − d′i| = 1. We consider
noise vectors n defined as (s− d) (or (s− d′)).

The property for s to be in Sgood or Sbad depends on the single bucket index
i. We start computing the probability of f(d) being in Sgood for which the
standard Laplace mechanism proof [12] works as it is:
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Pr(f(d) ∈ Sgood) =

∫
s∈Sgood

∏
j

P (sj − dj) (1)

=

∫
s∈Sgood

Lap(si − di)

1− p

∏
j ̸=i

P (sj − dj) (2)

=

∫
s∈Sgood

Lap(si − d′i + d′i − di)

1− p

∏
j ̸=i

P (sj − d′j) (3)

≤ eϵ
∫
s∈Sgood

Lap(si − d′i)

1− p

∏
j ̸=i

P (sj − d′j) (4)

= eϵ
∫
s∈Sgood

∏
j

Pr(sj − d′j) (5)

= eϵ Pr(f(d′) ∈ Sgood) (6)

≤ eϵ Pr(f(d′) ∈ S) (7)

where Equation (4) follows from

Lap(si − d′i + (d′i − di)) = Lap(si − d′i)e
ϵ(di−d′

i) ≤ Lap(si − d′i)e
ϵ

Next, we compute the probability over Sbad which can be bounded as follows.
Let the noise ni = si − di. If f(d) is in Sbad, it means that either ni < −M
(which is not possible due to resampling) or ni + di − d′i < −M + 1

2 . To reach
any s ∈ Sbad from f , we must add a noise between −M − 1

2 and −M + 1
2 (this

is a necessary but not sufficient condition). Thus,

Pr(f(d) ∈ Sbad) ≤ Pr

(
ni ∈

[
−M − 1

2
,−M +

1

2

])
(8)

=

−M+ 1
2∫

−M− 1
2

Lap(ni,
1
ϵ )

1− p
(9)

= p
eϵ − 1

1− p
(10)

= δ (11)

Equation (10) follows from
−M+ 1

2∫
−M− 1

2

Lap(ni,
1
ϵ ) =

1
2e

−ϵ(M+ 1
2 )(eϵ − 1) where

1
2e

−ϵ(M+ 1
2 ) = p. Hence, we show that Pr(f(d) ∈ Sbad) is lower than the proba-

bility to sample a “bad” noise which is δ. Pr(f(d) ∈ Sbad) ≤ δ for δ = p eϵ−1
1−p .

Finally,

Pr(f(d) ∈ S) = Pr(f(d) ∈ Sgood) + Pr(f(d) ∈ Sbad) (12)

≤ eϵ Pr(f(d′) ∈ S) + δ (13)
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We conclude that the protocol ΠHist
Bucketize is (ϵ, δ) differentially private for δ =

p eϵ−1
1−p .

A.4 Security Analysis for Malicious Clients

Theorem 3. Let N be the number of malicious clients. The L1 distance between
the true histogram and the incorrect histogram output from ΠHist

Bucketize protocol
described in Figure 10 is bounded by 2N.

Proof. We start with one malicious client. Let recauth be the true record of a
malicious client. Let a (resp. b) be the number of records in the correct (resp.
incorrect) bucket that recauth belongs to. The consequence of the malicious
behaviour is that true bucket will have a − 1 records while incorrect bucket
will have b+ 1. The L1 distance between true histogram and the is defined as
the sum (over all buckets) of the absolute values of the difference between two
counts in both histograms. In the case of one malicious client, the L1 distance
is bounded by 2. By triangle inequality, the L1 distance induced by N clients is
bounded by 2N.

A.5 Privacy Against a Malicious Server

We consider the following Leak game played by an adversary A with a dataset
D as input.

LeakA(D)

1 : Set C to the size of D.

2 : Generate n2 dummy records Ddum.

3 : Run A(coins, C, n2) → ∆.

4 : Compute the histogram hist of D||Ddum +∆.

5 : Output (coins, C, n2, hist).

We let ViewS(D) be the view of S1 when running the protocol with input
dataset D.

Theorem 4. For a malicious server S1, there exists an adversary A and a
simulator Sim such that for any dataset D Sim(LeakA(D)) ∼ ViewS1

(D).

Thus, a malicious S1 does not learn more than what it would learn playing
the Leak game.

Proof. The protocol from the viewpoint of S1 is defined as follows: S1 receives
dataset share D1 and the total number n2 of dummy records S2 wants to add.
S1 selects and outputs n1, π12, π13, R12, R13. S1 gets a vector A defined by
A = π23(π12((D−D1)||D2

dum)+R12)+R23 with π23 and R23 uniform and Ddum

the dummy shares by S2. S1 selects vectors A′ and B. And, S1 learns B′ defined
by B′ = π13(π23(B)−R23) +R13
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Until B′ is obtained, the partial view of S1 is (coins, D1, n2, A) which is
perfectly simulatable as the tuple elements are independent and follow a known
distribution. However, the final B’ is dependent on the rest of the tuple which
leaks.

Let Out = A+π−1
13 (B

′−R13). There is a 1-to-1 correspondence between the
final view (coins, D1, n2, A,B′) and (coins, D1, n2, A,Out). Thus, instead of B′,
we consider the equivalent Out.

We have Out = π23(π12((D − D1)||D2
dum) + B + R12). Let ∆′ = π−1

12 (B +

R12)−D1||0n1+n2

so that Out = π23(π12(D||D2
dum +∆′))

We assume that D2
dum is composed of the n2 dummy records created by S2

and by n1 slots of 0 shares (to be added to the dummy records created by S1).
We accordingly split ∆′ as ∆′ = ∆||∆0 with ∆0 of size n1 (to be added to
the 0 slots). Hence, Out = π23(π12(((D||Ddum) + ∆)||∆0)) which is a random
permutation of (D||Ddum) + ∆)||∆0.

We construct A as follows:

A(coins, C, n2)

1 : Generate D1 uniformly of size C.

2 : Simulate S1 upon receiving D1 and n2.

3 : Simulate S1 selecting n1, π12, π13, R12, R13.

4 : Generate A uniformly of size (C + n1 + n2).

5 : Simulate S1 receiving A.

6 : Simulate S1 selecting A′ and B.

7 : Compute ∆′ = π−1
12 (B +R12)−D1||0n

1+n2

.

8 : Split ∆′ = ∆||∆0.

9 : Output ∆.

All random processes are done using the random sequence of coins at the input
of A so that they could be redone deterministically by Sim when needed.

In LeakA(D), we could create an arbitrary vector with the histogram hist,
append it to ∆0, apply a random permutation π. We would obtain a view with
same distribution as the view of S1 in the protocol. We define Sim as follows:

Sim(coins, C, n2, hist)

1 : Redo the computations of A to get the same variables.

2 : Create a vector V with histogram hist.

3 : Set V ′ = V ||∆0.

4 : Pick a random permutation π.

5 : Set Out = π(V ′).

6 : Compute B′ = π13(Out+A) +R13.

7 : Output (coins, D1, n2, A,B′).

This produces a view with same distribution as ViewS1
(D) in the protocol for

S1.
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A.5.1 Discussions

The proof for malicious server S2 is simpler. The view of the protocol for S2
is: it receives dataset shares D2 and the number n1 of dummy records that S1
wants to add; it selects and outputs (n2, π12, π23, R12, R23; it selects a vector A
and learns vectors A′ and B′ where A′ = π13(A)−R13 and

B′ = π13(π23(π12(D −D2)−R12)−R23) +R13

with π13 and R13 random. Then, the view of S2 is

ViewS2
(D) = (coins, D2, n1, A′, B′) .

The (A′, B′) pair is equivalent to (Unif, A′ + B′) with A′ + B′ being a random
permutation of

(A+ π23(π12(D −D2)−R12)−R23) .

With appropriate change of variables, we can construct A and Sim for S2 in a
similar way.

The proof is even simpler for S3 as the protocol leaks less to him. S3 receives
a total length N = C+n1+n2); it selects and outputs π13, R13, π23, R23. Then,
it receives B and A′ such that B = π12(D

1)−R12 and

A′ = π13(π23(π12(D
2) +R12) +R23)−R13 .

The view of S3 is
ViewS3

(D) = (coins, N,B,A′) .

In A′, S3 can peel off R13, π13, R23, π23 and get π12(D
2) + R12 which added to

B gives a random permutation of D||Ddum.

A.5.2 Collusion Between Reporting Origin and a Helper Server

In the security analysis, we assume that A′ and B′ leak. The view of Reporting
Origin is a deterministic function of A′ and B′. Therefore, the collusion between
a malicious server and the Reporting Origin is already implicitly covered.

A.6 Differential Privacy of Layered Protocol with Honest-
but-Curious and Malicious Servers

We first consider honest-but-curious server. Given two neighbouring datasets d
and d′ and a target s, the noise to select is either s − d or s − d′. For every
attribute of the unique record which was added or withdrawn between d and d′,
there is a corresponding noise which is changed by 1. Moreover, the change in
this noise induces a change in the following dummy bucket noise, as well. Thus,
the total number of affected sample noises is 2λ− 1.

In the proof of Theorem 2, what changes is that we have one eϵ appearing
for each of the affected noise. The consequence is that ϵ is multiplied by 2λ− 1.
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We also define Sgood to hold for every affected noise. The consequence is that δ
multiplied by 2λ−1. Hence, the Layered protocol is ((2λ−1)ϵ, (2λ−1)δ)-DP.

With a malicious server, what changes is that the server can decide an offset
∆ at every execution of the Bucketization protocol. This does not affect the
proof.
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