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ABSTRACT
The symmetric cryptographic primitive of choice today is AES. Its
security is well-studied and hardware acceleration is available on a
variety of platforms. Following the success of AES and the 128-bit
AES-NI instructions for it, Intel has extended the x86 instruction
set with Vector AES instructions. For the first time, we evaluate
the performance impact that these instructions have on complex
AES processing beyond bulk encryption. In particular, we focus on
the area of secure multi-party computation where AES calls are
either independent, allowing easy use of VAES for full speed-up, or
where the AES calls are dependent on the results of previous AES
evaluations. For independent calls, we evaluate the performance
impact using Microsoft CrypTFlow2 and the EMP-OT library, both
of which primarily use AES in counter mode. For dependent calls,
we evaluate the performance impact using the ABY framework
and the EMP-AGMPC framework. To get optimal efficiency from
the hardware, enough independent calls need to be combined for
each batch of AES executions. We identify such batches using a
deferred execution technique paired with early execution to reduce
non-locality issues and more static techniques using circuit depth
and explicit gate independence. We present a performance and a
modularity-focused technique to compute the AES operations effi-
ciently while also immediately using the results and preparing the
inputs. Using these manually implemented techniques, we achieve
a performance improvement via VAES of up to 244% for ABY and
of up to 28% for EMP-AGMPC. With our additional, alternative
garbling schemes, we achieve up to 171% better performance for
ABY through the use of VAES. Additionally, our evaluations show
overall performance benefits of up to 24% for EMP-OT.

KEYWORDS
privacy preserving machine learning, secure multi-party computa-
tion, VAES.

1 INTRODUCTION
The primitive of choice for encryption and similar tasks is AES. It
is used for communication encryption [73, 88], disk storage encryp-
tion [22, 34], and database encryption [76] among other applica-
tions. To improve the performance and resource utilization of this
important primitive, the AES-NI extension to the x86 instruction set
was introduced [4, 56] with common implementations computing
AES-128 in 10 or even 5 amortized clock cycles [37]. Further im-
proving on this, Intel has shipped their Ice Lake microarchitecture
with support for vector AES (VAES) instructions in 2018 [26, 27].
∗Please cite the conference version of this paper published at 37th Annual Computer
Security Applications Conference (ACSAC’21) [78].

These VAES instructions compute a single round of AES on differ-
ent blocks, using multiple different round keys [56]. This increased
width of the instructions along with increased throughput of the
AES-NI counterpart has yielded a 2× performance increase per
clock cycle from the previous Intel microarchitectures to Ice Lake-
based ones [37] which then allow another potential doubling of
throughput fromVAES on the same architecture [37]. This increased
throughput can potentially enable applications which were previ-
ously seen as unfavorable due to performance issues, like using
wide block ciphers for storage encryption [91] or using AES to
generate random numbers for simulations [42, 74]. A different po-
tential application is in the area of post-quantum signature schemes
where AES or its accelerated components could be turned into a
hash function [13, 14] for hash-based [20, 71] and “MPC-in-the-
head” [24, 58] signature schemes. Furthermore, the performance
improvements from VAES as a PRG are potentially so substantial
that maintainability concerns might be accepted in favour of an
order of magnitude faster PRG than using a hash function.

The high throughput of these new instructions also poses a chal-
lenge, as one needs to batch enough independent AES calls together
for the AES hardware units to be constantly busy and not idle when
processing blocks if one wishes to compute AES at maximum ef-
ficiency. This challenge tends to be easily solved for inherently
parallel symmetric modes of operations like counter mode, but
much harder for dependent modes of operation like cipher block
chaining mode [32]. These modes, with sufficiently long messages,
appear in most traditional security applications like TLS, database
encryption or storage encryption [22, 34, 76, 88] and typically al-
low an implementation to be created once and then reused in the
other applications, e.g., using the popular OpenSSL library [94].
However, solving the batching challenge becomes much less clear
when some AES operations depend on the output of others but
some do not, especially considering the overhead of many small
memory-abstracted library invocations. This batching problem and
its solutions are not unique to AES on x86-64 using VAES (which is
our focus). It can be generalized to all non-trivial implementations
of cryptographic primitives which includes pipelined AES imple-
mentations on ARM [5], bitsliced AES implementations [17, 64]
as well as more unusual techniques like instance-vectorized hash
functions. A natural area where such complex dependencies oc-
cur is secure multi-party computation, especially with garbled cir-
cuits [8, 39, 68, 90, 100, 102], which is whywe use them for assessing
the performance impact for VAES. More concretely, with garbled
circuits, typically binary circuits using primarily AND and XOR
gates are evaluated with XOR gates only requiring XOR opera-
tions [68], whereas AND gates do require AES operations to be and
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Table 1: Summary of our performance improvements. New Batched AES-NI indicates whether the implementation received
an additional batching AES-NI implementation. VAES indicates whether the performance improvement includes VAES.

Framework New Batched AES-NI VAES Max. Total Improv.

ABY (Ref) [11, 29, 102] ✓ ✓ 244%
ABY (Custom) [29, 39, 40, 102] ✗ ✓ 171%
EMP-OT [95] ✗ ✓ 30%
EMP-AGMPC [95, 97] ✓ ✓ 24%
CrypTFlow2 [87] ✗ ✓ 52%

sending ciphertexts. These garbled circuits can then be used for
high performance interactive zero-knowledge proofs of arbitrary
statements [44, 61, 102] as well as for secure multi-party computa-
tion.

Secure multi-party computation (MPC) is also interesting in
itself and not just as a benchmark for non-trivial local AES perfor-
mance, e.g., for companies like Alibaba or Bosch among others in
the MPC Alliance [3]. The goal of MPC is to compute public func-
tions on private inputs to yield public outputs. We study the ABY
framework [29] for passively secure two-party computation and the
EMP-AGMPC [95, 97] framework for actively secure multi-party
computation. As we are manually changing the implementation of
these schemes without changing the protocols, we substantially in-
crease the deployability of these frameworks and dependent works
as well as providing guidance to how similar effects can be achieved
for similar frameworks.

In privacy-preserving machine-learning (PPML), general
machine-learning techniques are run on private data and a private
model are provided by separate parties and the private output is
the inference or training result [38]. PPML has become a hot topic
in recent years and gained the attention of major software, service
and hardware vendors, e.g., Facebook [67], Google [16], Intel [15],
and Microsoft [87], all of whom are working on increasing its
practicality. Applications of PPML include private healthcare-based
inference, e.g., to predict illnesses [23, 70, 89], private healthcare
model training to acquire models without having to reveal patient
data [1], and private clustering to partition data according with
common features [77]. In particular, in this work, we discuss
private ML inference in the state-of-the-art framework Microsoft
CrypTFlow2 [87] where one party holds a pre-trained model
and the other a data item to be classified and then the protocol
allows classification using the model without the two parties
revealing their private inputs. We improve CrypTFlow2 [87] using
VAES. As our focus lies on manual implementation improvements,
we substantially increase such PPML applications’ deployability
without sacrificing compatibility or security.
Our Contributions. Our main contributions are as follows:

• We introduce batch identification and computation tech-
niques for efficient software-based use of AES.

• We expand the focus on microarchitectural issues from an
implementation detail for sub-operations to a consideration
for protocol and implementation design.

• We report the first performance measurements for VAES
outside of symmetric encryption with performance improve-
ments, particularly for the MPC frameworks ABY, EMP-OT

and EMP-AGMPC, and the PPML framework CrypTFlow2
where are improvments are summarized in Table 1.

• We provide our implementations for re-use by others and
as guidance for future implementation efforts at https://
encrypto.de/code/VASA.

Outline. The rest of this paper is organized as follows: We start
with providing the necessary background on the investigated types
of MPC and the hardware acceleration of AES in x86 processors
(§ 2). Next, we provide context to our work with related work (§ 3).
Following that, we describe our computational framework for ef-
ficient batch identification and computation and how we applied
it (§ 4). Next, we evaluate and discuss the performance of the ap-
plications (§ 5). Finally, we conclude and provide possible future
research directions (§ 6).

2 BACKGROUND
In this section, we provide a brief background on secure multi-party
computation and how AES is computed using AES-NI and VAES
on x86-based processors.

2.1 AES Computation
There are two instruction set extensions on x86 for providing func-
tionality relating to the computation of AES: the AES new instruc-
tions (AES-NI) and the vector AES instructions (VAES) [4, 56]. For
the encryption direction, the key instructions from these extensions
are AESENC and AESENCLAST which compute a single AES round
and the last AES round, respectively. The difference between AES-
NI and VAES is the instructions’ width and how many blocks and
round keys they work with: AES-NI is restricted to one and VAES
also allows two or four. Thus, one can compute AES-128 by chaining
an XOR operation with nine AESENC and one AESENCLAST using a
pre-expanded key. The key expansion itself can also take advantage
of the AESENCLAST instruction and is most efficiently done using
the technique of Gueron et al. [39]. As most modern x86 processors
providing the AES extensions are pipelined, the data dependency
between the AES instructions can lead to pipeline stalls if not filled
otherwise. This is the reason why multiple independent AES calls
are batched together, allowing interleaved execution of the instruc-
tions, i.e., starting execution of the second round of all batched AES
calls before starting execution of the third round of any one of them.
This leads to optimal, minimal sizes for batches of AES calls which
depend on the microarchitecture involved as they need to hide the
latency of the instructions using the throughput and the width of
the instructions. A summary of these performance characteristics
using the data of Fog [37] for modern x86 processor architectures is

https://encrypto.de/code/VASA
https://encrypto.de/code/VASA
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provided in Table 2. The performance characteristics of 128-bit AES
instructions have remained the same for all successors of AMD’s
Zen architecture so far. Also the performance characteristics of the
AESENC and AESENCLAST instructions are identical.

Table 2: AES-NI and VAES instruction latencies, through-
put [37], and resulting minimal batch size for optimal effi-
ciency. Width 128 bits corresponds to AES-NI and other val-
ues are VAES. Cycles per instruction is abbreviated as “cy-
c/instr”.

Architecture Width Latency Throughput Minimal
[bits] [cycles] [cyc/instr] Batch Size

Intel Haswell 128 7 1 7
Intel Skylake 128 4 1 4
Intel IceLake 128 3 0.5 6

256 3 0.5 12
512 3 1 12

AMD Zen 128 4 0.5 8
AMD Zen3 256 4 0.5 16

2.2 Secure Multi-Party Computation
The goal of secure multi-party computation (MPC) is to compute
arbitrary functions among multiple parties on private inputs only
known to one party each [10, 12, 83, 99, 100]. Most relevant for this
work are protocols for oblivious transfer (OT), garbled circuits (GC),
and privacy-preserving machine-learning (PPML).

Oblivious Transfer (OT). In oblivious transfer, one party (the
receiver) inputs a choice bit and the other (the sender) supplies
two messages. The receiver then learns only the message cor-
responding to the choice bit. The computation of OT protocols
typically uses a small number of invocations of a public-key-based
OT protocol [25, 79] to extend to a larger number of OTs using
symmetric cryptography [6, 7, 57]. The primary bottleneck of
these OT extension protocols are the communication time, the
computation of a bit matrix transposition, and the computation
of encryption operations using AES [6]. Common variants of the
above OT functionality which allow to decrease communication
are random OT (R-OT) where the sender gets two random strings
and the receiver gets one of them depending on the choice bit, and
correlated OT (C-OT) where the sender can input a correlation
that the returned strings have to satisfy. Additionally, there has
been a line of research looking to further minimize the com-
munication needed for C-OT using a learning parity with noise
(LPN) assumption [18, 19, 98]. These pseudo-random correlation
generators (PCGs), like FERRET [98], reduce communication at
the expense of computation, and increased complexity where
a large matrix-vector product with randomized entries is computed.

Garbled Circuits (GC). Secure computation of general functions
is typically performed using a circuit-oriented representation of
that function. Garbled circuits (GCs) are one approach for this,
originally proposed for two parties [100] and later generalized
multiple parties [10]. In GC, the key invariant is that each wire’s

value is represented by two random keys which represent the
zero and one bits. The garbling party knows both wire keys and
the evaluating party only ever learns one key for each wire. For
each gate a garbled table is generated forming the garbled circuit,
to allow translation of a given pair of gate-input-wire keys to
the output wire key corresponding to the correct output bit. The
evaluator obtains the keys corresponding to the circuit input wires
via OT. Early constructions [10, 80, 100] used garbled tables that
could effectively be generated in parallel due to a lack of data
dependencies. However, more modern schemes like free-XOR [68],
HalfGates [102], or PRF-based garbling [39] require a topologically
ordered processing of gates in exchange for requiring only two
ciphertexts instead of three per AND gate, and XOR gates require
no communication in free-XOR [68] or one ciphertext in PRF-
garbling [39]. As these schemes require at least four applications of
a cryptographic function on some counter or gate identifier as well
as the gate input keys to generate the tables, most implementations
use AES with a fixed key [11, 41] though instantiations with
variable keys were also proposed in [39, 40]. Yao’s garbled circuits
protocol described above initially provides security against passive
adversaries [72] and there have been extensions in research to
security against active adversaries [51, 81, 82, 96, 97] that can
arbitrarily deviate from the protocol specification. The latest of
these schemes [96, 97] uses the free-XOR optimization [68] and
parties jointly compute authenticated versions of the garbled
tables so that a malicious garbler does not know the actual tables
nor can tamper with them while a malicious evaluator only sees
random-looking ciphertexts.

AES vs. LowMC. With free-XOR [68] and the S-box of [17], a
Boolean circuit for AES consists of 5 210 AND gates [47]. Starting
with LowMC [2], several dedicated MPC-friendly block ciphers
have been designed that minimize the number of AND gates (or
also multiplicative depth) over AES [2, 30, 31, 62]. Due to their
smaller and/or shallower circuits, such MPC-friendly block ciphers
improve the function that is evaluated via MPC, e.g., to privately
evaluate a block cipher, called Oblivious Pseudo-Random Function
(OPRF) [86], which has several applications like private set intersec-
tion for unbalanced set sizes in private contact discovery [63, 66].
However, the MPC protocols themselves are still implemented with
AES (e.g., garbling schemes, OT extension, or PRFs). The reason for
that is the superb performance of hardware acceleration of AES
in today’s CPUs which are highly optimized ASICs that require
only about 5 to 10 CPU clock cycles per AES encryption [37]. In
our paper, we show how the efficiency of such implementations of
MPC protocols can be further improved by using VAES.

Privacy-Preserving Machine-Learning (PPML). The goal of
PPML is to apply machine-learning techniques while preserving
the privacy of the data and models [36, 38, 45, 65]. While this
application can include training and inference [38], we focus
on inference, in particular on inference for neural networks as
done in Microsoft CrypTFlow2 [87]. This involves computing the
linear and non-linear stages using optimized protocols for the
client’s private data input and the server’s private model input,
only yielding the result to the client. We note that the practicality
of PPML has improved drastically over time to the point where
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now accurate, full-sized neural network inference is possible
in a privacy-preserving setting even on moderately powerful
hardware [87].

3 RELATEDWORK
In this section, we discuss how our work relates to previous work.
In particular, we discuss the relation to previous protocol-level and
implementation-level improvements.

3.1 Protocol-Level Improvements
One primary direction for research in the past has been to improve
the protocols themselves, e.g., by reducing the amount of communi-
cation or the number of invocations to computationally expensive
primitives [8, 43, 68, 80, 90, 96, 102]. In addition, some works handle
the circuit generation for MPC protocols from specifications in a
high-level language by using industry-grade hardware synthesis
tools and tweaking them for logic synthesis [28, 46, 84, 92]. Our
work is largely orthogonal to these approaches as we focus on im-
proving the implementations and the frameworks used for them.
However, there are advances in protocol design which significantly
complicate efficient implementation, e.g., the requirement for gates
in circuits to be processed in topological order [39, 68, 102]. There
have been prior works that modified the protocol and increased
communication to allow for more efficient computation [55], but
we do not follow their approach and maintain protocol compati-
bility. This focus on implementation improvements for relatively
low-level building blocks allows protocol compatible performance
improvements for the discussed protocols and those building on
top of it. Such works include Cerebro [103], TinyGarble2 [52], and
CrypTFlow2 [87] all of which build on EMP [95] and can thus profit
from our improvements of EMP.

3.2 Implementation-Level Improvements
Another major direction has been improving the implementation
of the protocols. This has seen four sub-directions: Improving the
performance of individual operations, improving the parallelization
of the implementation, improving the memory behavior, and using
dedicated hardware to accelerate computationally expensive steps.

Operations. In OT extension, bit matrix transposition is one of the
most computationally expensive operations [6]. Previous optimiza-
tions of this operation have been using an asymptotically optimal
transposition algorithm [35], or 128-bit vector registers [95]. We
improve on the latter through the use of wider AVX512 vector
registers instead. Beyond this, OT extension has been a major
application of fixed-key AES [11] on which we improve through
the use of VAES instead of AES-NI for the implementation. Fur-
thermore, there have been efforts to increase the performance of
individual operations in GC, e.g., improving the implementation
performance of the individual garbling and evaluation operations
for individual gates [11, 39]. We improve upon these prior works
by considering multiple gates of the same type at once. A natural
question is, whether a library like OpenSSL can be used for
implementing AES operations. This is an appropriate solution if
only large batches of AES calls occur and these are well-supported

by OpenSSL. However, this would not allow the use of VAES which
is currently not used by OpenSSL, and it would bring significant
overhead for smaller batches due to thememory abstraction needed.

Parallelization. Previous work to parallelize the evaluation
of garbled circuits has seen coarse- and fine-grained ap-
proaches [9, 21, 50, 55]. Coarse-grained approaches [9, 21]
are typically used to have multiple threads compute different
parts of the same garbled circuit and are largely orthogonal to our
in-thread optimizations of the computation strategy. Alternatively,
they may have traded communication, e.g., not using free-XOR,
for added parallelism to exploiting using dedicated hardware like
graphics processing units or Intel Quick Assist Technology [55].
The more fine-grained approaches [9, 21] have primarily focused on
using a layering technique, as we also discuss, however, intending
to outsource the work to different threads instead of exploit the
high instruction-level parallelism that modern processors provide.
Additionally, previous work has suggested splitting the garbling
and the evaluating roles with a suitable sub-division of circuits [21]
or overlapping the computation with the garbling and evaluation
operations [50], both of which are orthogonal to what we do.

Memory Behavior. A smaller line of previous research has
explored the limitation of memory use for GC [48, 52, 69, 92, 101].
Their motivation for this was two-fold in allowing the computation
of large circuits not fitting into most memory configurations and
improving locality for caches through smaller code and data. We
note that the techniques to only partially load circuits into memory
are orthogonal to ours, requiring at most invoking early execution
occasionally. We also consider cache locality important. However,
our focus is more on the actual computation and the first-level
cache as opposed to keeping the data in a cache at all.

Hardware-Acceleration. There has been a line of research using
field-programmable gate-arrays (FPGAs) to accelerate garbled cir-
cuit operations [53, 54, 59, 60, 93]. Our work is independent of and
alternative to the main contributions of these prior works. However,
the scheduling discussed for FASE [53] is similar for hardware to
what we do for identifying batches, though their techniques are
focused on the specific dedicated hardware architecture they build,
making it unsuitable for our software-oriented approach.

4 OUR FRAMEWORK
The first step in our manually implemented techniques to apply
VAES is the identification of batches of independent AES calls for
small-scale batch processing (§ 4.1). The second step is to process
the AES operations (§ 4.2). Finally, we show how we used these
techniques with the ABY [29], EMP-OT [95], CrypTFlow2 [87], and
EMP-AGMPC [95, 97] frameworks (§ 4.3).

4.1 Batch Identification
For identifying batches, we use two approaches: dynamic batching
and static batching. Dynamic batching primarily uses runtime infor-
mation for minimally invasive batching. Static batching provides
reusable batching information from preprocessing but requires
more substantial changes to the code.
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Figure 1: A simple 1-bit adder with different manually chosen gate orderings as an illustrative example for the freedom of
topological ordering. Solid black arrows denote data dependencies, red dashed arrows denote one possible sub-optimal order-
ing in the left graph and green dotted arrows show a preferable ordering in the right graph. The “Eval” marks denote places
where dynamic batching with free XORs would trigger processing of the queued fresh AND gates. All unfilled nodes are on
the first layer in the right figure and all light-blue-filled nodes are on the second layer. A layer is defined to be the set of all
nodes with the same amount of non-free (AND) gates between them and the input on the critical path.

4.1.1 Dynamic Batching. The core idea behind dynamic batching
is to defer execution of operations until they are actually needed
and to compute all pending operations when one is needed. In pro-
cessing circuits, the application of this works by modifying the
main processing loop iterating over all gates and adding AES-based
AND gates to a queue and processing all queued AND gates as a
batch once any one of them is referenced as an input dependency.
An example of when the processing is invoked is provided in Fig. 1.
Implementing this technique requires potentially a few hours of
manual effort to identify the core processing loop, to implement
the deferred execution identification, and to identify relevant modi-
fications and extensions which we briefly discuss next.

Correctness Extensions. The basic technique works well if there
is one type of non-free gates requiring AES operations. However,
some schemes have AND and XOR operations requiring AES op-
erations using a shared gate index counter to uniquely produce
values per-gate. For these, new design space choices manifest, in
particular, whether it is possible and desirable to separate the do-
mains of the counters or to track the gate identifiers as well and not
just the minimal information for computing the gate. Additionally,
one can imagine that it is possible to not maintain separate queues
for the different gate types but rather join them into a shared one
which complicates the gate processing at the potential of gained
performance through more AES calls being potentially batched
together to reach minimum optimal batch size even in complex cir-
cuits. Furthermore, we note that dynamic batching can be combined
with the approach of having a variable number of cryptographic
gates associated with an administrative gate, in which case it is
beneficial to track the number of actual gate tasks associated with
each administrative gate and keep a global count to allow the batch

processing algorithm to choose appropriate sub-batches. Both of
these extensions each require a few hours of effort for the architec-
tural changes.

Optimizations. The basic batching techniques have further op-
timizations. First, the use of this batching can inadvertently lead
to significant gaps in time between visiting and enqueuing a gate
and processing it, meaning it might be pushed out of registers or
lower-level caches. To avoid such unloads, one should consider
to regularly empty the queue by processing the stored tasks even
if more tasks could still be added without violating correctness.
This holds especially true if any given processed sub-batch only
processes a small number of gates, e.g., 𝑏 = 4, and the queue has
reached a size that is a multiple of 𝑏. Additionally, one can con-
sider to only partially process the stored tasks in the queue using
a multiple of the preferred processing width to potentially allow
more gates to be directly enqueued without triggering processing
at an undesirable length. When the basic technique encounters an
AND gate referencing a queued AND gate, it will always trigger
the computation of all queued AND gates. Another optimization in
this scenario is to check whether the referenced AND gate is early
enough in the queue which is guaranteed to have been processed
once the processing reaches the current AND gate and then en-
queueing the current AND gate without triggering processing. The
implementation effort for these optimizations potentially requires
a few hours of effort on top of the basic queue implementation.

4.1.2 Static Batching. A different approach than the dynamic tech-
nique is to preprocess the circuit to gain more holistic information
on batching opportunities. These techniques can be paired with
dynamic batching techniques for further improved efficiency. The
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three techniques we discuss are layering (identifying layers of
dependencies), SIMD (grouping multiple guaranteed independent
gates into one administrative one), and a more generic smart
arrangement.

Layering. Layering techniques assign a gate to how many non-
free gates lie between it and the original input. Non-free gates on
equal layers are then necessarily independent and each layer can
be seen as a batch of AES calls to be computed. An example of
associated layers is provided in the right graph of Fig. 1. Layering
can be done in addition to dynamic batching which can potentially
identify independent tasks across layers, e.g., if the first gate of the
second layer references the first gate of the first layer and early
evaluation or peephole optimizations allow such batches. The effort
to add layering support to an implementation varies significantly
with the architecture and can range from a few hours for adding,
computing and using the attribute to significantly more if a more
complex processing strategy than a sequential loop is used.

SIMD. Single-instruction multiple-data (SIMD) gates are explicitly
specified administrative gates that represent the same gate being
applied to multiple input wires in parallel. They present natural
opportunities for batches and even allow batching techniques in
more complex gate scheduling scenarios where other techniques
are not applicable. The cost to this is either the identification of such
SIMD tasks or the need for the execution of a circuit several time as
a batch as well as the need for explicit program-level representation.
Similarly to layering, the implementation cost for SIMD gates varies
with the architecture and can quickly take a dozen or more hours.
As all gate processing methods need to be SIMD-aware, gates must
be extracted and collected and SIMD gates must be specified or
detected in a given circuit description.

Smart Arrangement. This technique is more general and provides
heuristics for circuit generators and manually optimized building
blocks of gates. For example, circuit generators should output cir-
cuits that allow circuit-internal SIMD gate operations and prefer
larger layers over smaller layers. An example of such improved gate
arrangement is provided from the left to the right graph in Fig. 1.
Additionally, locality has to be considered when generating circuits,
i.e., usage of wires must stay close to where they are generated as
not to push the wire values out of caches, while maintaining enough
distance to allow batching on current and more instruction-level
parallel future architectures.

4.2 Batch Computation
After one has identified a batch of independent AES calls, they
need to be computed. For this, we have used two techniques:
register-oriented computation, which focuses on performance and
simplicity to the compiler, and memory-oriented computation,
which focuses on modularity.

4.2.1 Register-Oriented Computation. Our primary technique for
processing batches describes the task computations as low-level
as possible without resorting to assembly. By using vector regis-
ter types and constant-sized loops we give the compiler as many

opportunities for optimization as possible while still allowing the
conciseness of high-level code. Concretely, we have identified five
steps executed continuously in a loop for all tasks.

1) Fill the appropriate lanes of the vector values with the task-
specific data, both non-vector computable and loaded data, e.g., the
lane 0 (the lowest 128 bit of the value) of all three virtual registers
are assigned to gate 0, whereas lane 1 of all three is assigned to
gate 1 and hold the input wire keys and a processed garbled table
value. 2) Perform vectorizable operations on the input data, e.g.,
deriving computed inputs from loaded inputs with a global offset. 3)
Perform the AES operations on the prepared inputs and keys with a
sufficiently large batch size. 4) Execute vectorizable post-processing
on the results and potentially other input values, e.g., XORing pairs
of AES outputs as required by the scheme. 5) Do the remaining
post-processing and scatter the data back to memory, e.g., handle
operations that cannot be vectorized and where data needs to be
extracted from the vectors first. Then, write the values back to the
memory location where they are expected.

The cost of such a low-level approach is, of course, that not just
the AES code needs to be re-written to satisfy the types of each used
architecture and extension but also the immediately surrounding
code leading to significant code duplication. An example implemen-
tation for HalfGate’s [102] AND evaluation with fixed keys [11]
and VAES is given in Listing 1 in Appendix A. Depending on the
familiarity of the developer with the available platform instructions,
their invocation, and the availability of validation methods, this
register-oriented technique can be implemented within a few hours
per optimized functionality.

4.2.2 Memory-Oriented Computation. Our memory-oriented
technique addresses the code duplication concerns of the register-
oriented one but can result in less performance. In particular, it only
requires that a core primitive for this technique, e.g., electronic
codebook mode, is implemented in an architecture-specific way.
This core primitive is then used with a memory abstraction wher-
ever needed while ensuring a sufficiently large number of AES calls
for every invocation. The main loop for this only consists of three
steps: 1) perform the data loading and preprocessing, 2) let the
optimized library perform the operations, and 3) read the results
using the memory abstraction and post-processing and store them.
The pre-processing and post-processing steps for this approach can
use platform-independent instructions lowering code duplication
for handling a batch of gates at a time. However, this technique has
performance overhead if implemented this way as implementing
counter-mode can be significantly slower than with a dedicated
implementation as the compiler might generate general-purpose
64-bit store instructions and adds from the abstract code. In con-
trast, a direct use of 64-bit vector additions might be significantly
faster. An example implementation for EMP-AG2PC’s [95, 96]
AND evaluation with fixed keys [11] and VAES is given in Listing 2
in Appendix A. As this technique favors engineering efficiency
over runtime efficiency, the required effort for its implementation
is generally a few hours if a pre-existing implementation can be
adapted and some form of batch identification has already been
implemented.



VASA: Vector AES Instructions for Security Applications Conference’17, July 2017, Washington, DC, USA

Table 3: Overview of improved frameworks, used batch identification methods, and batch computation strategies used.

Batch Identification (§ 4.1)

Framework (§ 4.3) Dynamic (§ 4.1.1) Static (§ 4.1.2) Computation (§ 4.2)

ABY [29] (§ 4.3.1) Non-Free-XOR + SIMD SIMD Register-Oriented (§ 4.2.1)
EMP-OT [95] (§ 4.3.2) — — Memory-Oriented (§ 4.2.2)

EMP-AGMPC [95, 97] (§ 4.3.3) Regular-Early-Execution — Memory-Oriented (§ 4.2.2)
CrypTFlow2 [87] (§ 4.3.4) — — Memory-Oriented (§ 4.2.2)

4.3 Frameworks
To measure the performance impact of batching, VAES, and the
above techniques we have applied them to the MPC frameworks
and libraries ABY [29], EMP-OT [95], and EMP-AGMPC [95], and
the PPML framework Microsoft CrypTFlow2 [87]. We will now
briefly discuss our changes to each framework and library and
provide an overview in Table 3.

4.3.1 ABY. We chose to use ABY [29] as it is a flexible, optimized
framework for mixed-protocol secure two-party computation. For
our modifications, we targeted the GC subcomponent of ABYwhich
uses HalfGates garbling [102] with a fixed AES key [11] and invokes
OpenSSL individually for every single AES operation used. We
changed this fixed-key AES garbling, which we call “PRP” based on
the public random permutation assumption used, to use a register-
oriented computation. We furthermore added to ABY support for
two more instantiations of the encryption functions in the Half-
Gates [102] garbling scheme: CIRC [102] is based on a circular
security assumption and uses the wire keys as AES keys. MI [40]
provides better multi-instance security and uses the wire key as
the data input and the gate index as the AES key starting from a
random offset. We note that these three schemes “PRP” / “CIRC” /
“MI” need 0 / 4 / 2 computations of the AES key schedule to garble
an AND gate respectively. Garbled circuit evaluation requires 0 / 2 /
2 key schedules per AND gate respectively. Neither the evaluation
nor the garbling of XOR gates requires communication or AES
operations with HalfGates.

Furthermore, we added an implementation of the PRF-based
garbling scheme of Gueron et al. [39] which is secure in the
standard model. It uses 8 AES operations with 4 keys for garbling
an AND gate, 2 uniquely keyed operations for evaluating an
AND, 3 uniquely keyed AES operations for XOR garbling, and 1-2
uniquely keyed AES operations for XOR evaluation. We identify
batches using dynamic batching with support for SIMD gates
and with support for two queues with shared indices for the
PRF-based scheme. For all these four schemes, we implemented
two register-oriented backends each for the batch processing: one
using AES-NI and 128-bit operations, and another one using VAES
and AVX512.

4.3.2 EMP-OT. We chose EMP-OT [95] because it is a state-
of-the-art implementation for oblivious transfer and it is the
underlying OT library for the two frameworks in § 4.3.3 and § 4.3.4
and other recent works [52]. We modified the main OT protocol
implementations [6, 7, 57] by replacing the AES-NI based ECB and

pseudo-random generator (PRG) implementations in the referenced
EMP-Tool library [95] with VAES and widened the batch size from
8 to 16. Additionally, we widened the bit matrix transposition
algorithm to use 512-bit AVX512 operations instead of 128-bit SSE
operations. Finally, we changed the LPN-based FERRET OT [98]
implementation to use VAES instead of AES-NI for selecting the
matrix-vector multiplication entries.

4.3.3 EMP-AGMPC. The EMP-AGMPC [95, 97] framework pro-
vides a low-communication actively secure garbling scheme. For
the implementation, we used a memory-oriented computation
strategy mirroring the modular design of the EMP toolkit that
strongly encourages modularity. We used basic dynamic batching
with early execution for the online and preprocessing phases’
circuit processing. In the corresponding EMP-OT library [95]
which implements the actively secure OT extension of [7], we
instantiate the PRG using VAES.

4.3.4 CrypTFlow2. Microsoft CrypTFlow2 [87] is a state-of-the-
art framework for general PPML neural network inference. The
implementation uses a sub-part of EMP-OT [95] for OT operations.
We extended the modular implementation of CrypTFlow2 with
VAES-based implementations for: 1) the 128-bit and 256-bit PRGs,
2) the AES-NI based ECB, and 3) the circular-secure correlation
robust function in the garbling scheme of Gueron et al. [39].

5 EVALUATION
This section presents the benchmarking platform and the perfor-
mance results we achieved for the frameworks from § 4.3.

5.1 Evaluation Platform
For all measurements, we use an Apple Macbook Pro with an
Intel Core i7-1068NG7, 2x16GB of dual rank Samsung LPDDR4-
3733 RAM (K4UCE3Q4AA-MGCL). It runs Arch Linux using the Linux
5.9.13.arch1-1 kernel along with GCC 10.2.0 and Clang 11.0.0 which
were used for compiling the code. For comparative AES-NI mea-
surements we use the same machine.

5.2 ABY
For ABY (cf. § 4.3.1), we ran the benchmarks with both parties
locally using a single sample per triple of circuit, scheme and
implementation backend (reference, AES-NI, and VAES). For each
measurement, the garbling times are taken from the logs of the
party running the garbling operation and the data-input-dependent
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online time from the other party running the evaluation which
are executed after each other in ABY. This is done to capture
the pure computation time for garbling and evaluation. For the
evaluation, we use circuits of AES (with 65× parallel SIMD), SHA-1
(with 512-bit input and 63× parallel SIMD), and for circuit-based
private set intersection (PSI) the sort-compare-shuffle (SCS) circuit
(1024 elements of 32-bits) [49], and circuit phasing (1024 elements
per side of 32-bit, 3 hash functions, Y = 1.2, stash of size 1) [85].
For the summary in Table 4, we computed the geometric mean
over the performance results of the four above circuits. The
detailed measurements are given in Table 8 in Appendix B. The
binaries were produced by GCC. We note a range of performance
improvements from the use of batched execution of 67 - 161%
and an additional 17 - 171% from the use of VAES. In particular,
we observe better performance improvements from VAES for
garbling schemes needing more cryptographic operations per
gate, e.g., circularly secure computation (CIRC) benefits more than
public-random permutation based computation (PRP) (cf. § 4.3.1).

Discussion. We make two key observations for the ABY bench-
marks in Table 4: First, using batch sizes larger than one increases
the throughput, as can be seen from the runtime decrease of the
baseline reference (by 80-130%). Second, the use of VAES does in-
crease performance further, more so in scenarios where more AES
operations are done per gate, i.e., with the schemes not using fixed
AES keys with HalfGates [11, 102]. Additionally, an investigation
using a profiler showed a high miss-speculation rate for the AES-
NI code using regular "if" branches with the condition depending
on an unpredictable label bit. Therefore, the use of masking facili-
tated by AVX512 is a secondary factor contributing to performance
as it does not invoke speculative execution miss-predicting the
branch with 50% probability. Finally, we note the odd behavior that
multi-instance secure computation (MI) is significantly slower than
circular-secure computation (CIRC) for AES-NI during the evalua-
tion even though they should be tied given that they perform similar
AES operations. Concerning the impact of VAES beyond improv-
ing speculative execution behavior, we see performance increases
of 27% (garbling) and 36% (evaluation) for fixed-key AES because
the AES processing makes up only a somewhat small amount of
processing time. The HalfGates variable-keyed schemes see a 47%
(MI garbling), 43% (CIRC evaluation), and 57% (CIRC garbling) per-
formance increase. PRF-based garbling schemes see the largest
increase with 51% (garbling) and 75% (evaluation) due to a large
amount of AES operations necessary, given that each AND gate
garbling requires 8 AES operations, each AND evaluation 2, each
XOR garbling 3, and each XOR evaluation at least 1.

5.3 EMP-OT
For oblivious transfers, we evaluated EMP-OT [95] (cf. § 4.3.2). We
ran it single-threaded with 100 million OT operations computed on
localhost. For the one-time base OT operations, that use public-key
crypto, the default number of OT operations was used, and times
were excluded from the throughput results. As base OT protocols,
we use the protocol of Naor and Pinkas [79] for passive security
assumptions and SimplestOT [25] for active security, except for
FERRET OT [98] which uses its own base OT protocol. The library

uses fixed-key AES for its PRG [11], the optimized version of [6] of
the protocol by Ishai et al. [57] for passive security, and the variant
by Asharov et al. [7] for active security.

In addition, we also measured the performance of FERRET-
OT [98] as it is a protocol with very little communication after the
initial base OTs. EMP-OT was compiled with Clang. The results are
shown in Table 5. We note the range of performance improvements
of 14.8 - 30.1% from the use of VAES. We also observe that the
performance increase is particularly high for random OTs (R-OTs)
which can be attributed to a lower amount of system interaction
due to the reduced amount of communication for R-OTs.

Table 4: Geometric means of the run-times in milliseconds
of ABY [29] for the evaluation of AES, SHA-1, SCS-PSI,
and Phasing-PSI with the detailed parameters as described
in § 5.2. “Ref” indicates the reference ABY implementation,
AES-NI and VAES indicate batched implementations. Gar-
bling scheme names are as introduced in § 4.3. Improv%
shows the performance improvement of VAES over AES-NI.

Garbling Scheme

Operation Impl. PRP MI CIRC PRF

Ref [29] 110.6 — — —
AES-NI 47.1 61.0 72.1 197.4
VAES 37.0 41.3 46.0 130.3Garbling

Improv% 27.2% 47.5% 56.7% 51.5%

Ref [29] 56.5 — — —
AES-NI 31.1 59.8 41.3 103.3
VAES 22.9 29.4 28.9 59.0Evaluation

Improv% 36.1% 103.5% 43.0% 75.0%

Discussion. From the OT performance data in Table 5, we see that
AVX512 and VAES notably improve performance, by 20 - 30% for
the EMP libraries’ traditional OT implementation, which use VAES
for the PRG and AVX512 for bit transposition. Additionally, we
observe mild performance improvements of 16.6% for the FERRET
protocols, mainly using AES to generate the random matrices in
the core matrix-vector multiplication.

5.4 EMP-AGMPC
For EMP-AGMPC [95, 97] (cf. § 4.3.3), we ran SHA256with three par-
ties on localhost with binaries compiled with Clang. The runs were
performed 11 times and then averaged. After the initial measure-
ments, we decided to benchmark with batching applied and while
using only a VAES-enabled library implementation of AES-ECB, the
PRG, and the OT functionalities. The resulting performance num-
bers are shown in Table 6. In this table, the computation backend
indicates the implementation strategy used, with the numbers in
parenthesis being the performance improvements over the previous
row.

Here, VAES allow to improve performance by up to 28%. The
most substantial performance improvement is in the function-
independent pre-processing phase. During that phase, the code
uses additional garbling and evaluation techniques to prepare for
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Table 5: Run-times in seconds of 10 million OTs for EMP-OT [95] before "Ref" and after implementation of VAES support.
The functionalities are general OT (OT), Correlated OT (C-OT), and Random OT (R-OT). Improv% shows the performance
improvement of VAES over AES-NI. Higher throughput is better.

OT Functionality

Security Library Impl OT C-OT R-OT

EMP-OT IKNP [6, 57] Ref [6, 57, 95] 0.35 0.20 0.33
VAES 0.28 0.16 0.25

Improv% 20.0% 20.0% 24.2%
EMP-OT FERRET [98] Ref [95, 98] 1.33 1.14 1.32

VAES 1.13 0.99 1.09

Passive

Improv% 15.0% 10.4% 17.4%

EMP-OT ALSZ [7] Ref [7, 95] 0.39 0.24 0.38
VAES 0.32 0.19 0.29

Improv% 17.9% 20.8% 23.7%
EMP-OT FERRET [98] Ref [95, 98] 1.38 1.2 1.37

VAES 1.21 1.04 1.16
Improv% 12.3% 13.3% 15.3%

+ Random Choice Ref [95, 98] — 0.94 —
VAES — 0.80 —

Active

Improv% — 14.8% —

Table 6: Run-times in milliseconds for the evaluation of various parts of SHA256 in EMP-AGMPC [95, 97] (§ 5.4). The compu-
tation backend (“Comp. Backend”) indicates the implementation strategy used. The evaluated parts are the one-time setup,
the function-independent preprocessing, the function-dependent preprocessing, and the input-dependent online phase. The
values in parenthesis show the performance improvement in percent over the reference. Lower run-times are better.

Operation

Comp. Backend Setup Function-Independent Function-Dependent Online

Ref [95, 97] 45.0 564.5 247.0 7.0
VAES 45.9 (−2.1%) 580.7 (−2.8%) 250.6 (−1.4%) 6.7 (5.0%)
Batched + VAES 45.4 (−0.9%) 453.0 (24.6%) 250.7 (−1.5%) 7.0 (0.7%)

Table 7: Geometric mean of run-times in seconds for CrypTFlow2 [87] inference (§ 5.5) using the SqueezeNetImgNet,
SqueezeNetCIFAR, ResNet50, and DenseNet121 networks. Ring32-OT denotes the 32-bit ring-based implementation using OT.
"Ref" indicates the reference implementation using AES-NI and VAES indicates our version using VAES. Improv% shows the
performance improvement of VAES over AES-NI. Lower run-times are better.

Sub-Operation

Type Impl Convolution Truncation ReLU MatrixMultiplication BatchNormalization MaxPool Total

Ref [87] 96.5 30.7 9.6 94.0 15.6 3.7 126.8
VAES 97.0 21.0 6.8 94.5 13.5 2.5 119.1Ring32-OT

Improv% −0.5% 46.5% 40.4% −0.5% 15.9% 47.1% 6.5%

the following phases based on the number of gates of the MPC
function to be computed.

Discussion. The AGMPC performance data (in Table 6) shows sub-
stantial performance differences. The performance increase from
VAES in the online phase stems from the OT used with the ex-
tra batching moving values out of registers again due to the gap

between successive accesses. The most notable improvement is
the 25% performance increase through batching in the function-
independent preprocessing phase combined with VAES. This is be-
cause the garbling operations used in that phase benefit sufficiently
from the batching, and there are not too many XORs sparsing out
the AND gates and their memory.



Conference’17, July 2017, Washington, DC, USA Jean-Pierre Münch, Thomas Schneider, and Hossein Yalame

5.5 CrypTFlow2
As CrypTFlow2 [87] (cf. § 4.3.4) uses EMP-OT internally, it is a
natural target to investigate how the internal improvements ben-
efit the overall performance of a more end-to-end application. As
benchmarks we run inference for the SqueezeCIFAR, ResNet50,
DenseNet121, and SqueezeNetImgNet networks. Each of these net-
works has its dedicated driver executable as usual for this appli-
cation, was compiled using GCC and run via localhost with both
parties on the same machine, to focus on the computational. The
default settings used did utilize multiple load-intensive threads for
both the client and the server, but had no noticeable impact on
performance consistency.

A summary of the results using the geometric mean is given in
Table 7 and the details are shown in Table 9 in Appendix B. Times
below 1 second were omitted from the table.

Discussion. Table 7 shows that the VAES-based speed-up for the
OT-based Ring32 implementation is 6.5% in total. The non-linear
layers have particularly contributed to this improvement, with both
the ReLU and MaxPool layers improving by over 40%. In particular,
we observe no performance changes for the linear convolution and
matrix multiplication steps for the Ring32 implementation. This is
because these are primarily bound by the speed of the operating
system interaction. We can also conceive that the performance
improvement for the Ring32 implementation does stem from the
relatively short focus on VAES during the operations.

6 CONCLUSION AND FUTUREWORK
In this work, we have shown how AES-NI and VAES can be used
to speed up complex security frameworks.

Summary. We started with discussing how dynamic batching
and its extensions and optimizations use deferred execution to
provide better batches of AES calls to the hardware units. Next,
we have discussed how more explicit measures in the code like
SIMD gates and layering find batches of tasks with more invasive
code modifications. Furthermore, we have discussed how to
compute the batched calls using abstract pre- and post-processing
and platform-specific AES computation in our memory-oriented
computation strategy. Our alternative register-oriented strategy
accepted code duplication for a low-level register value oriented
code description that the compiler and the processor can execute
well more easily. Following that, we applied these techniques
to ABY [11, 29, 102], EMP-OT [95], EMP-AGMPC [95, 97], and
Microsoft CrypTFlow2 [87]. For ABY we implemented additional
garbled circuit variants [39, 40, 102] for comparison. We then
evaluated the performance impact of the use of VAES and batching
techniques. In ABY, these batching techniques have significantly
increased performance without changing the hardware require-
ments. The use of VAES has yielded further significant performance
improvements in ABY, EMP-OT, Microsoft CrypTFlow2, and some
parts of EMP-AGMPC.

FutureWork.Our research can be extended in multiple directions.

Improved Modelization. The techniques presented in § 4.1 and
§ 4.2 could be further improved. A more theoretical modelization
and a more detailed analysis of the interaction with cache effects
could yield valuable insights for future implementations.

Merging Register- and Memory-oriented Computation. Our
computation techniques from § 4.2 require to make a manual
choice between low code duplication, high performance, and
clarity to the compiler. Further research could find techniques to
automatically achieve low code duplication, high performance
and clarity. For this, techniques from programming language and
compiler research might be useful.

Additional Applications. VAES and the other AVX512 extensions
can be used to improve performance in future applications. For
example, the recently published garbling schemes [8, 43, 90] that
further reduce communication at the cost of more computation
can benefit from the increased processing speed of VAES. Possible
example applications outside of MPC include transmission encryp-
tion [73, 88], storage encryption [22, 34], potentially using wide
blockcipher modes [91], and random number generation [42, 74, 75].
An implementation of the AES-GCM mode [33] with VAES and the
associated new vector PCLMUL extension requires more sophisti-
cated approaches than before, because the throughput of VPCLMUL
has not grown at the same per-block rate as the AES performance
has [37].

AVAILABILITY
The open source code of our changed VAES implementations is
freely available under the permissive Apache license at https://
encrypto.de/code/VASA.
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A EXAMPLE CODE FOR OUR
IMPLEMENTATION

We present example code for the register-oriented batch computa-
tion strategy from § 4.2.1 in Listing 1 and for the memory-oriented
one from § 4.2.2 in Listing 2.
Listing 1: Register-oriented implementation of HalfGates’s
evaluation [11, 102] using fixed-key VAES and AVX512F.

1 template <size_t width >
2 inline void F i x edKeyLTEva lua t i ngVae sP ro c e s so r : :

computeAESOutKeys ( uint32_t t a b l eCoun t e r , size_t
queueS t a r t I ndex , size_t s imd S t a r tO f f s e t , size_t
numTables InBatch , const uint8_t ∗ r e c e i v e dT a b l e s ) {

3 constexpr size_t d iv_wid th = ( width + 3 ) / 4 ; //
ceiling division

4 constexpr size_t num_buffer_words = s t d : : min ( width ,
size_t ( 4 ) ) ;

5 constexpr size_t KEYS_PER_GATE_IN_TABLE = 2 ; //
HalfGates needs 2 keys per gate in the garbled
table

6
7 s t a t i c _ a s s e r t ( ( width < 4 ) | | ( width % 4 == 0 ) ) ;
8
9 const __m512i ONE = _mm512_set_epi32 (
10 0 , 0 , 0 , 1 ,
11 0 , 0 , 0 , 1 ,
12 0 , 0 , 0 , 1 ,
13 0 , 0 , 0 , 1 ) ;
14 constexpr size_t o f f s e t = s t d : : min ( size_t ( 4 ) ∗

KEYS_PER_GATE_IN_TABLE , width ∗
KEYS_PER_GATE_IN_TABLE ) ;

15 const __m512i FULL_OFFSET = _mm512_set_epi32 (
16 0 , 0 , 0 , o f f s e t ,
17 0 , 0 , 0 , o f f s e t ,
18 0 , 0 , 0 , o f f s e t ,
19 0 , 0 , 0 , o f f s e t ) ;
20 __m512i coun t e r = _mm512_set_epi32 (
21 0 , 0 , 0 , ( t a b l eCoun t e r + 3 ) ∗ KEYS_PER_GATE_IN_TABLE ,
22 0 , 0 , 0 , ( t a b l eCoun t e r + 2 ) ∗ KEYS_PER_GATE_IN_TABLE ,
23 0 , 0 , 0 , ( t a b l eCoun t e r + 1 ) ∗ KEYS_PER_GATE_IN_TABLE ,
24 0 , 0 , 0 , ( t a b l eCoun t e r + 0 ) ∗ KEYS_PER_GATE_IN_TABLE )

;
25
26 __m512i l e f t D a t a [ d iv_wid th ] ;
27 __m512i r i g h tDa t a [ d iv_wid th ] ;
28 __m512i l e f t K e y s [ d iv_wid th ] ;
29 __m512i r i gh tKey s [ d iv_wid th ] ;
30 __m512i f i n a lMask [ d iv_wid th ] ;
31 uint8_t ∗ t a r g e tGa t eKey [ width ] ;
32 __m512i ae s_keys [ 1 1 ] ;
33 const uint8_t ∗ g t p t r = r e c e i v e dT a b l e s + t a b l eCoun t e r ∗

KEYS_PER_GATE_IN_TABLE ∗ 1 6 ;
34
35 for ( size_t i = 0 ; i < 1 1 ; ++ i ) {
36 __m128i temp_key = _mm_load_si128 ( ( __m128i ∗ ) (

m_ f i xedKeyProv ide r . g e tExpandedS t a t i cKey ( ) + i ∗
1 6 ) ) ;

37 ae s_keys [ i ] = _mm512_broadcas t_ i32x4 ( temp_key ) ;
38 }
39
40 size_t c u r r e n tGa t e I d x = qu eu eS t a r t I n d e x ;
41 uint32_t c u r r e n t O f f s e t = s im d S t a r t O f f s e t ;
42
43 for ( size_t i = 0 ; i < numTables InBatch ; i += width ) {
44 // pre -processing
45 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
46 for ( size_t k = 0 ; k < num_buffer_words ; ++k ) {
47 const GATE ∗ cu r r en tGa t e = m_gateQueue [

c u r r e n tGa t e I d x ] ;
48 const uint32_t l e f t P a r e n t I d = cur r en tGa t e −>

i n g a t e s . i n pu t s . twin . l e f t ;
49 const uint32_t r i g h t P a r e n t I d = cur r en tGa t e −>

i n g a t e s . i n pu t s . twin . r i g h t ;
50 const GATE ∗ l e f t P a r e n t = &m_vGates [ l e f t P a r e n t I d ] ;
51 const GATE ∗ r i g h t P a r e n t = &m_vGates [ r i g h t P a r e n t I d

] ;
52 const uint8_t ∗ l e f t P a r e n t K e y = l e f t P a r e n t −>gs .

yva l + 16 ∗ c u r r e n t O f f s e t ;
53 const uint8_t ∗ r i gh t P a r en tKey = r i g h t P a r e n t −>gs .

yva l + 16 ∗ c u r r e n t O f f s e t ;
54
55 const __m128i l e f t P a r e n t K e y L o c a l =

_mm_loadu_si128 ( ( __m128i ∗ ) l e f t P a r e n t K e y ) ;
56 l e f t K e y s [w] = mm512_inser t_128 ( l e f t K e y s [w] ,

l e f t P a r e n tK e yLo c a l , k ) ;
57 const __m128i r i g h t P a r e n tK eyLo c a l =

_mm_loadu_si128 ( ( __m128i ∗ ) r i g h t P a r en tKey ) ;
58 r i gh tKey s [w] = mm512_inser t_128 ( r i gh tKey s [w] ,

r i gh tP a r en tKeyLoc a l , k ) ;
59
60 t a r g e tGa t eKey [4 ∗ w + k ] = cur r en tGa t e −>gs . yva l +

16 ∗ c u r r e n t O f f s e t ;
61
62 const uint8_t l p b i t = l e f t P a r e n t K e y [ 1 5 ] & 0 x01 ;
63 const uint8_t l p b i t 1 1 = ( l p b i t << 1 ) | l p b i t ;
64 const uint8_t r p b i t = r i gh t P a r en tKey [ 1 5 ] & 0 x01 ;
65 const uint8_t r p b i t 1 1 = ( r p b i t << 1 ) | r p b i t ;
66
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67 __m128i f i n a lMa skLo c a l = _mm_maskz_loadu_epi64 (
l p b i t 1 1 , ( __m128i ∗ ) g t p t r ) ;

68 g t p t r += 1 6 ;
69 const __m128i r i g h t T a b l e = _mm_loadu_si128 ( (

__m128i ∗ ) g t p t r ) ;
70 const __m128i r igh tMaskUpdate = _mm_xor_si128 (

r i g h tT a b l e , l e f t P a r e n t K e y L o c a l ) ;
71 f i n a lMa skLo c a l = _mm_mask_xor_epi64 (

f i n a lMaskLoca l , r p b i t 1 1 , f i n a lMaskLoca l ,
r igh tMaskUpdate ) ;

72 g t p t r += 1 6 ;
73
74
75 f i n a lMask [w] = mm512_inser t_128 ( f i n a lMask [w] ,

f i n a lMaskLoca l , k ) ;
76
77 c u r r e n t O f f s e t ++ ;
78 if ( c u r r e n tO f f s e t >= cur r en tGa t e −> nva l s ) {
79 c u r r e n tGa t e I d x ++ ;
80 c u r r e n t O f f s e t = 0 ;
81 } } }
82
83 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
84 // use this because addition has a latency of 1 and

a throughput of 0.5 CPI
85 l e f t D a t a [w] = coun t e r ;
86 r i g h tDa t a [w] = _mm512_add_epi32 ( counter , ONE) ;
87 coun t e r = _mm512_add_epi32 ( counter , FULL_OFFSET ) ;
88 }
89
90 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
91 // this is a 1-bit 128-bit left shift of the left

input with a XOR of the right one
92 l e f t D a t a [w] = vaes_mix_keys ( l e f t K e y s [w] , l e f t D a t a [w

] ) ;
93 r i g h tDa t a [w] = vaes_mix_keys ( r i gh tKey s [w] ,

r i g h tDa t a [w] ) ;
94
95 l e f t K e y s [w] = l e f t D a t a [w] ; // keep as a backup for

post -whitening
96 r i gh tKey s [w] = r i g h tDa t a [w] ; // keep as a backup

for post -whitening
97 }
98 // AES processing
99 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
100 l e f t D a t a [w] = _mm512_xor_si512 ( l e f t D a t a [w] ,

a e s_keys [ 0 ] ) ;
101 r i g h tDa t a [w] = _mm512_xor_si512 ( r i g h tDa t a [w] ,

a e s_keys [ 0 ] ) ;
102 }
103
104 for ( size_t r = 1 ; r < 1 0 ; ++ r ) {
105 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
106 l e f t D a t a [w] = _mm512_aesenc_epi128 ( l e f t D a t a [w

] , a e s_keys [ r ] ) ;
107 r i g h tDa t a [w] = _mm512_aesenc_epi128 ( r i g h tDa t a

[w] , a e s_keys [ r ] ) ;
108 }
109 }
110
111 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
112 l e f t D a t a [w] = _mm512_ae senc l a s t _ep i 128 ( l e f t D a t a [w

] , a e s_keys [ 1 0 ] ) ;
113 r i g h tDa t a [w] = _mm512_ae senc l a s t _ep i 128 ( r i g h tDa t a

[w] , a e s_keys [ 1 0 ] ) ;
114 }
115 // post -processing
116 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
117 l e f t D a t a [w] = _mm512_xor_si512 ( l e f t D a t a [w] ,

l e f t K e y s [w] ) ;
118 r i g h tDa t a [w] = _mm512_xor_si512 ( r i g h tDa t a [w] ,

r i gh tKey s [w] ) ;
119 l e f t D a t a [w] = _mm512_xor_si512 ( l e f t D a t a [w] ,

r i g h tDa t a [w] ) ;
120 l e f t D a t a [w] = _mm512_xor_si512 ( l e f t D a t a [w] ,

f i n a lMask [w] ) ;
121 }
122

123 for ( size_t w = 0 ; w < d iv_wid th ; ++w) {
124 for ( size_t k = 0 ; k < num_buffer_words ; ++k ) {
125 // helper function to extract a 128-bit word from a

4x128 bit vector
126 // uses the dedicated instruction with a switch -

case
127 const __m128i e x t r a c t e d = mm512_extrac t_128 (

l e f t D a t a [w] , k ) ;
128 _mm_storeu_s i128 ( ( __m128i ∗ ) ( t a r g e tGa t eKey [4 ∗ w +

k ] ) , e x t r a c t e d ) ;
129 } } } }

Listing 2: Memory-oriented implementation of the batched
AND evaluation for actively secure garbled circuits [95, 96].

1 // ONLINE_BATCH_SIZE is an upper bound
2 void EvaluateANDGates ( uint8_t ∗ mask_input , int i n d i c e s [

ONLINE_BATCH_SIZE ] , size_t num_gates , int& ands ) {
3 int mask_ ind i c e s [ONLINE_BATCH_SIZE ] ;
4 b l o ck l e f t s [ONLINE_BATCH_SIZE ] , r i g h t s [ONLINE_BATCH_SIZE ] ;
5 b l o ck H[ONLINE_BATCH_SIZE ] [ 2 ] ;
6 for ( size_t i i = 0 ; i i < num_gates ; ++ i i ) {
7 // preprocessing
8 int i = i n d i c e s [ i i ] ;
9 int i ndex = 2 ∗ mask_input [ c f −> g a t e s [4 ∗ i ] ] +

mask_input [ c f −> g a t e s [4 ∗ i + 1 ] ] ;
10 mask_ ind i c e s [ i i ] = index ;
11 l e f t s [ i i ] = l a b e l s [ e x e c_ t ime s ] [ c f −> g a t e s [4 ∗ i ] ] ;
12 r i g h t s [ i i ] = l a b e l s [ e x e c_ t ime s ] [ c f −> g a t e s [4 ∗ i + 1 ] ] ;
13 }
14 // AES processing
15 Hash (H, l e f t s , r i g h t s , i n d i c e s , mask_ ind i ces , num_gates ) ;
16 for ( size_t i i = 0 ; i i < num_gates ; ++ i i ) {
17 // postprocessing
18 int i = i n d i c e s [ i i ] ;
19 int i ndex = 2 ∗ mask_input [ c f −> g a t e s [4 ∗ i ] ] +

mask_input [ c f −> g a t e s [4 ∗ i + 1 ] ] ;
20 GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] = GT[ exe c_ t ime s ] [ ands ] [

index ] [ 0 ] ^ H[ i i ] [ 0 ] ;
21 GT[ exe c_ t ime s ] [ ands ] [ index ] [ 1 ] = GT[ exe c_ t ime s ] [ ands ] [

index ] [ 1 ] ^ H[ i i ] [ 1 ] ;
22 b l o ck t t t = GTK[ exe c_ t ime s ] [ ands ] [ index ] ^ fp re −>De l t a ;
23 t t t = t t t & MASK ;
24 GTK[ exe c_ t ime s ] [ ands ] [ index ] = GTK[ exe c_ t ime s ] [ ands ] [

index ] & MASK ;
25 GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] = GT[ exe c_ t ime s ] [ ands ] [

index ] [ 0 ] & MASK ;
26 if ( cmpBlock (&GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] , &GTK[

exe c_ t ime s ] [ ands ] [ index ] , 1 ) )
27 mask_input [ c f −> g a t e s [4 ∗ i + 2 ] ] = false ;
28 else if ( cmpBlock (&GT[ exe c_ t ime s ] [ ands ] [ index ] [ 0 ] , &t t t

, 1 ) )
29 mask_input [ c f −> g a t e s [4 ∗ i + 2 ] ] = true ;
30 else
31 cou t << ands << "no match GT!" << end l ;
32 mask_input [ c f −> g a t e s [4 ∗ i + 2 ] ] = l o g i c _ x o r ( mask_input

[ c f −> g a t e s [4 ∗ i + 2 ] ] , getLSB (GTM[ exe c_ t ime s ] [
ands ] [ index ] ) ) ;

33 l a b e l s [ e x e c_ t ime s ] [ c f −> g a t e s [4 ∗ i + 2 ] ] = GT[
exe c_ t ime s ] [ ands ] [ index ] [ 1 ] ^ GTM[ exe c_ t ime s ] [ ands
] [ index ] ;

34 ands ++ ;
35 }

B DETAILED MEASUREMENTS
We present the detailed performance measurements for ABY (cf.
§ 5.2) in Table 8 from which the summary in Table 4 was computed.
Additionally, we present the detailed performance measurements
for CrypTFlow2 (cf. § 5.5) in Table 9 from which the summary in
Table 7 was computed.
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Table 8: Run-times in milliseconds of ABY [29] for the evaluation of AES, SHA-1, SCS-PSI, and Phasing-PSI with the detailed
parameters as described in § 5.2. “Ref” indicates the reference ABY implementation, AES-NI indicates the batched one using
AES-NI and VAES the one using VAES. Improv% shows the performance improvement of VAES over AES-NI based PRGs and
ECB implementations. Garbling scheme names are as introduced in § 4.3. Lower run-times are better.

Garbling Scheme

Operation Circuit PRP MI CIRC PRF

AES Ref [29] 47.3 — — —
AES-NI 20.5 27.6 31.3 98.5
VAES 16.6 19.0 20.8 66.2

Improv% 23.4% 45.4% 50.4% 48.6%
SHA1 Ref [29] 236.7 — — —

AES-NI 95.4 118.6 145.7 576.2
VAES 69.8 79.3 87.9 378.3

Improv% 36.6% 49.6% 65.8% 52.3%
SCS-PSI Ref [29] 153.0 — — —

AES-NI 75.3 98.9 112.3 288.1
VAES 63.9 74.2 79.7 192.7

Improv% 17.8% 33.3% 40.9% 49.5%
PSI-Phasing Ref [29] 87.3 — — —

AES-NI 33.4 42.6 52.7 92.9
VAES 25.3 26.1 30.7 59.6

Garbling

Improv% 31.8% 63.2% 71.6% 55.8%

AES Ref [29] 23.0 — — —
AES-NI 12.5 23.1 15.6 47.9
VAES 8.6 11.7 10.2 25.1

Improv% 45.0% 97.1% 53.4% 91.1%
SHA1 Ref [29] 108.8 — — —

AES-NI 56.0 139.7 80.9 261.7
VAES 38.2 51.5 52.3 151.3

Improv% 46.5% 171.5% 54.7% 73.0%
SCS-PSI Ref [29] 76.2 — — —

AES-NI 41.9 92.5 57.3 135.7
VAES 33.1 43.5 41.9 78.0

Improv% 26.5% 112.7% 36.8% 74.1%
PSI-Phasing Ref [29] 53.2 — — —

AES-NI 31.9 42.7 40.1 66.9
VAES 25.0 28.4 31.1 41.0

Evaluation

Improv% 27.5% 50.5% 28.7% 62.9%
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Table 9: Run-times in seconds for CrypTFlow2 [87] (§ 5.5) inference using the SqueezeNetImgNet (SqzImg), SqueezeNetCI-
FAR (SqzCIFAR), ResNet50, and DenseNet121 networks. Ring32-OT denotes the 32-bit ring-based implementation using OT.
Ref indicates the reference implementation (using AES-NI) and VAES indicates the version using VAES. Improv% shows the
performance improvement of VAES over AES-NI. Lower run-times are better.

Sub-Operation

Type Network Impl Convolution Truncation ReLU MatMul BatchNormalization MaxPool Total

SqzImg Ref [87] 28.1 — 4.0 27.2 — 4.7 39.0
VAES 28.0 — 2.9 26.9 — 3.1 35.6

Improv% 0.6% — 36.7% 0.9% — 53.0% 9.6%
SqzCIFAR Ref [87] 28.0 — 4.0 27.0 — 4.4 38.5

VAES 28.2 — 2.9 27.2 — 3.2 35.8
Improv% −0.8% — 38.9% −0.9% — 37.1% 7.5%

ResNet Ref [87] 439.7 30.8 18.7 436.1 12.7 3.2 513.3
VAES 448.2 20.9 12.7 444.5 11.2 2.1 503.1

Improv% −1.9% 47.5% 46.5% −1.9% 13.2% 52.1% 2.0%
DenseNet Ref [87] 250.1 30.6 28.6 244.3 19.2 2.7 335.6

VAES 250.0 21.1 20.5 243.9 16.2 1.9 313.8

Ring32-OT

Improv% 0.1% 45.5% 39.5% 0.2% 18.6% 46.6% 6.9%
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