
On Sufficient Oracles for Secure Computation
with Identifiable Abort

Mark Simkin, Luisa Siniscalchi, and Sophia Yakoubov

Aarhus University

Abstract. Identifiable abort (IA) is the strongest security guarantee that is achievable for secure
multi-party computation in the dishonest majority setting. Protocols that achieve IA ensure that, in
case of an abort, all honest parties agree on the identity of at least one corrupt party who can be held
accountable for the abort. It is important to understand what computational primitives must be used
to obtain secure computation with identifiable abort. This can be approached by asking which oracles
can be used to build perfectly secure computation with identifiable abort. Ishai, Ostrovsky, and Zikas
(Crypto 2014) show that an oracle that returns correlated randomness to all n parties is sufficient;
however, they leave open the question of whether oracles that return output to fewer than n parties
can be used.
In this work, we show that for t ≤ n − 2 corruptions, oracles that return output to n − 1 parties
are sufficient to obtain perfectly secure computation with identifiable abort. Using our construction
recursively, we see that for t ≤ n− `− 2 and ` ∈ O(1), oracles that return output to n− `− 1 parties
are sufficient.
For our construction, we introduce a new kind of secret sharing scheme which we call unanimously
identifiable secret sharing with public and private shares (UISSwPPS). In a UISSwPPS scheme, each
share holder is given a public and a private shares. Only the public shares are necessary for reconstruc-
tion, and the knowledge of a private share additionally enables the identification of at least one party
who provided an incorrect share in case reconstruction fails. The important new property of UISSwPPS
is that, even given all the public shares, an adversary should not be able to come up with a different
public share that causes reconstruction of an incorrect message, or that avoids the identification of a
cheater if reconstruction fails.

1 Introduction

In the setting of secure multiparty computation we have n parties, each having their own private input xi,
that would like to compute an arbitrary function f(x1, . . . , xn) of their inputs in the presence of an adversary,
who may actively corrupt up to t of the parties. In particular, the parties would like to compute the function
in a way that prevents the adversary from learning any unnecessary information, i.e. the corrupted parties
should learn no more than what they can deduce from their own inputs and outputs. From a correctness
point of view, we would ideally like to guarantee that the honest parties always obtain the output no matter
what the corrupted parties do, but unfortunately, such strong guarantees are unattainable when t ≥ n/2
parties are corrupt, as was shown by Cleve [Cle86].

For this reason, protocols tolerating this many corruptions usually aim for the weaker notion of active
security with unanimous abort (UA), where the honest parties either all obtain the correct output or all
unanimously output abort. The drawback of such protocols, however, is that they do not provide the honest
parties with a mechanism for determining who caused the abort in a failed execution, thus potentially
allowing an adversary to perform a denial-of-service attack on the whole computation by only corrupting
a single party. To overcome this issue, Ishai, Ostrovsky, and Zikas [IOZ14] introduced the notion of active
security with identifiable abort (IA), which enables the honest parties to always unanimously agree on at
least one corrupted party that will be held responsible for an abort.

To eventually construct efficient protocols for either notion, it is important to understand the minimal
computationally secure building blocks necessary. Towards this goal, it is convenient to study the task of
constructing information-theoretically secure protocols in a world where the parties have access to oracles

that compute certain sub-functions correctly and securely on their behalf. In such a world, the question of
finding the minimal building blocks reduces to finding the “simplest” oracles. The hope of this approach
is that simpler oracles lead to computationally less expensive solutions in an oracle-free world, where the
oracles are replaced by computationally secure protocols that often represent the main efficiency bottleneck
of the overall protocol.

For secure n-party computation with UA or IA in the presence of an adversary that corrupts less than
half of the parties, i.e. t < n/2, no oracles are needed [RB89, Bea90].1 For UA and any t ≥ n/2, oracles
are necessary and oracles that realize two-party oblivious transfer [Rab81] are sufficient [Kil88, CvT95].
In contrast to this, an impossibility result by Ishai, Ostrovsky, and Seyalioglu [IOS12] rules out secure
computation with IA from any two-party oracle for t ≥ 2n/3.2 On the positive side, the authors of [IOZ14]
show that an n-party oracle for setting up correlated randomness is sufficient for secure computation with
IA for any t. For t > n/2 and oracles that realize k-party functionalities for 2 < k < n, very little is known
about the feasibility of IA. The only known (upper) bounds are due to Brandt et al. [BMMMQ20], who
show that IA with security against t corruptions can be realized from certain (t + 2)-party oracles, when
n ∈ O(log λ/ log log λ), where λ is the security parameter. The authors conjecture that analogous results for
larger n are not possible unless P = NP .

1.1 Our Contribution

In this work, we make the first progress towards constructing n-party protocols with IA for any n ∈ poly(λ)
from k-party oracles for k < n. In particular, we show that such protocols can be constructed for any
t ≤ n− `− 2 and k = n− `− 1, where ` ∈ O(1). Our result thereby refutes the conjecture of Brandt et al.

As a key technical tool, we introduce the notion of unanimously identifiable secret sharing with public and
private shares (UISSwPPS), which is inspired by the notion of unanimously identifiable secret sharing (UISS)
of Ishai, Ostrovsky, and Seyalioglu [IOS12]. We believe that this notion may be of independent interest and
could potentially find other applications.

1.2 Technical Overview

The starting point of our work is a result of Ishai, Ostrovsky, and Zikas [IOZ14], which shows that an n-party
oracle with IA for distributing correlated randomness is sufficient for general n-party computation with IA.
An n-party oracle generating correlated randomness takes no private inputs from the parties, computes
(r1, . . . , rn) ← Setup(), and returns ri to party i. In this work, we focus on realizing those oracles from
(n − 1)-party oracles. We require that the number of corruptions t is at most n − 2 to ensure that every
oracle call includes at least one honest party, which we need for our construction.

At its core, our approach is to pick a party x ∈ [n] and exclude it from the computation. The remaining
n− 1 parties use their oracle access to compute a function Setup′x, which uses Setup to generate correlated
randomness, provides every party with its output and additionally secret shares the output rx belonging to
party x among the n − 1 parties. After calling the oracle, all parties send their share of rx to party x, who
reconstructs its correlated randomness. If all parties behave honestly, then everybody receives the correct
output. Privacy of the value rx is guaranteed, since at least one honest party participated in the oracle call.

However, the adversary may actively misbehave in the above protocol sketch. Any corrupt party in
the set [n] \ {x}, for instance, may send an incorrect share or nothing at all to party x. Through the use
of an appropriate secret sharing scheme, we ensure that any tampering of the shares is detectable during
reconstruction. If tampering is detected, the excluded party proceeds to a complain phase, which establishes

1 We assume that parties have access to point-to-point and broadcast channels, and we do not consider those as
explicit oracles in this paper.

2 In addition to their impossibility result, the authors of [IOZ14] also show that blackbox access to adaptively-secure
two-party oblivious transfer is sufficient for constructing protocols with IA for t > n/2. We note that assuming
blackbox access to a primitive is a stronger assumption than assuming oracle access, which is the focus of this
work.

2

conflicts between parties. Two parties are in conflict if they accuse each other of misbehaving in the protocol
execution.

At the end of this complain phase, one of two things happens. If sufficiently many conflicts have been
established, all honest parties are guaranteed to unanimously abort, blaming the same corrupt party. If the
honest parties do not have sufficient information for agreeing on a malicious party, they make a new attempt
at generating fresh correlated randomness as above; possibly using a different excluded party.

To ensure that our protocol can establish “good” conflicts during the complain phase, we rely on our new
secret sharing notion of UISSwPPS. In a nutshell, this secret sharing scheme provides every participant with
a public and a private share. The public shares are used for reconstructing the secret, whereas the private
shares are used for checking the integrity of other parties’ public shares. Our scheme ensures that even an
adversary who gets to see all public shares cannot come up with a set of bad public shares that will fool a
party holding a private share into reconstructing an incorrect message. Moreover, the scheme ensures that
all parties holding private shares agree on the set of public shares that they believe to be malformed.

1.3 Notation

We write [n] to denote the set {1, . . . , n}.

2 Secure Multiparty Computation (MPC) Definitions

We follow the real/ideal world simulation paradigm.
An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic polynomial-time (PPT) interactive

Turing machines (ITMs), where each party Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈
{0, 1}∗. We let A denote a special ITM that represents the adversary and that is initialized with input that
contains the identities of the corrupt parties, their respective private inputs, and an auxiliary input. The
protocol is executed in rounds (i.e., the protocol is synchronous), where each round consists of the send phase
and the receive phase, where parties can respectively send the messages from this round to other parties and
receive messages from other parties. In every round parties can communicate either over a broadcast channel
or a fully connected point-to-point (P2P) network, where we additionally assume all communication to be
private and ideally authenticated.

During the execution of the protocol, the corrupt parties receive arbitrary instructions from the adversary
A, while the honest parties faithfully follow the instructions of the protocol. We consider the adversary A
to be rushing, i.e., during every round the adversary can see the messages the honest parties sent before
producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output, the corrupt parties produce no
output, and the adversary outputs an arbitrary function of its view. The view of a party during the execution
consists of its input, random coins and the messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party protocol and let C ⊆ [n],
of size at most t, denote the set of indices of the parties corrupted by A. The joint execution of Π under
(A, C) in the real world, on input vector x = (x1, . . . , xn), auxiliary input aux to A and security parameter
λ, denoted REALΠ,C,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux) resulting from the
protocol interaction.

Definition 2 (Ideal Computation). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let C ⊆
[n], of size at most t, be the set of indices of the corrupt parties. Then, the joint ideal execution of f
under (S, C) on input vector x = (x1, . . . , xn), auxiliary input aux to S and security parameter λ, denoted
IDEALf,C,S(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and S(aux) resulting from the interaction
to the ideal functionality F (Figure 1) with the simulator S and the honest parties. After interacting with F ,
the hones parties output the message received from F . The corrupt parties output nothing. The simulator S
outputs an arbitrary function of the initial inputs {xi}i∈C , the messages received by the corrupt parties from
the trusted party and its auxiliary input.

3

Functionality Ff,n

1. For i ∈ [n]\C receive xi from party Pi;
2. For i ∈ C receive xi from S;
3. Compute y = f(x1, . . . , xn);
4. Send y to S;
5. Receive either continue or (abort, ī) (for some ī ∈ C) from S;
6. If S sent continue: send y to each party i ∈ [n]\C;
7. If S sent (abort, ī): send (abort, ī) to each party i ∈ [n]\C.

Fig. 1. Functionality Ff,n for secure computation of function f among n parties with identifiable abort.

Definition 3. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π t-securely computes the
function f if for every real-world adversary A there exists a simulator S whose running time is polynomial
in the running time of A such that for every C ⊆ [n] of size at most t, it holds that{

REALΠ,C,A(aux)(x, λ)
}

x∈({0,1}∗)n,λ∈N≡
{
IDEALf,C,S(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N .

3 Unanimously Identifiable Secret Sharing with Public and Private Shares

A secret sharing schemes allows a dealer to split a message into shares such that certain authorized subsets
of those shares can be used to reconstruct the message, whereas unauthorized subsets reveal no information
about the message whatsoever.

Definition 4 (Secret Sharing Scheme). A secret sharing scheme for message space {0, 1}∗ consists of a
probabilistic polynomial-time algorithm Share and a deterministic polynomial-time algorithm LRec with the
following syntax:

Share(msg)→ (s1, . . . , sn): takes as input a message msg ∈ {0, 1}∗ and outputs shares s1, . . . , sn.
LRec(si, {sj}j∈S)→ (msg, L): takes as input a share si and a subset of shares {sj}j∈S, where i ∈ S ⊂ [n],

and outputs a reconstructed message in {0, 1}∗ ∪ {⊥} and a set of accusations L ⊂ [n].

Furthermore, (Share, LRec) should satisfy correctness (Definition 8, with appropriate syntactic modifica-
tions and ignoring the requirements on Rec, which we do not have in a regular secret sharing scheme) and
privacy (Definition 9, with appropriate syntactic modifications).

We introduce the notion of unanimously identifiable secret sharing with public and private shares (UIS-
SwPPS). In such a scheme, each share holder will receive one private and one public share. On an intuitive
level, the public shares will correspond to a secret sharing of the message shared by the dealer. The private
shares, on the other hand, will be used by the share holders to detect any tampering with public shares. In
particular, having additional private shares for each share holder allows us to satisfy a stronger notion of
local identifiability, which we define below. We show a construction of UISSwPPS in Section 5.

Definition 5 (Secret Sharing Scheme with Public and Private Shares). A secret sharing scheme
with public and private shares for message space {0, 1}∗ consists of a probabilistic polynomial-time algorithm
Share and deterministic polynomial-time algorithms Rec and LRec with the following syntax:

Share(msg)→ (spub
1 , . . . , spub

n , spriv
1 , . . . , spriv

n): takes as input a message msg ∈ {0, 1}∗ and outputs public shares

spub
1 , . . . , spub

n and private shares spriv
1 , . . . , spriv

n .

Rec({spub
i }i∈S)→ msg/⊥: takes as input a subset of public shares {spub

i }i∈S (where S ⊂ [n]) and outputs a
value in {0, 1}∗ ∪ {⊥}.

4

LRec(spriv
i , {spub

j }j∈S)→ (msg, L): takes as input a private share spriv
i and a subset of public shares {spub

j }j∈S
(where S ⊂ [n]) and outputs a reconstructed message in {0, 1}∗ ∪ {⊥} and a list of accusations L ⊂ [n].

Furthermore, (Share, Rec, LRec) should satisfy correctness (Definition 8), privacy (Definition 9), adap-
tive local identifiability (Definition 10), publicly detectable failures (Definition 11), consistent failures (Def-
inition 12) and predictable failures (definitions 13 and 14).

We will use our new secret sharing scheme in combination with a new access structure that effectively
corresponds to a threshold access structure with additional observers that hold no information about the
dealer’s message. Even though these observers are not helpful for reconstructing the message, they will still
be able to verify whether other published shares are valid or not.

Definition 6 (Threshold Access Structure). For an arbitrary but fixed threshold t ∈ [n], the t-threshold
access structure is defined as An,t = {S ⊂ [n] | |S| ≥ t}.

Definition 7 (Threshold Access Structure with Observers). For an arbitrary but fixed threshold
t ∈ [n] and set O ⊂ {1, . . . , n}, the t-threshold access structure with observers O is defined as AOn,t = {S ⊂
{1, . . . , n} | |S \O| ≥ t}.

Definition 8 (Correctness). A secret sharing scheme with public and private shares (Share, Rec, LRec)
for access structure A is correct if for any S ∈ A, for any i ∈ S, for any message msg ∈ {0, 1}∗, there exists
a negligible function negl(·) such that

Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg), (msg,⊥)← LRec

(
spriv
i , {spub

j }j∈S
)

: msg = msg

]
= 1− negl(λ)

and

Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg),msg← Rec

(
{spub
j }j∈S

)
: msg = msg

]
= 1− negl(λ)

where the probability is taken over the random coins of the Share algorithm.

Definition 9 (Privacy). A secret sharing scheme (Share, LRec) for access structure A is private if for
any S 6∈ A, any two messages msg,msg′ ∈ {0, 1}∗ with |msg| = |msg′|, any possible vector of shares

{(s̃pub
i , s̃priv

i)}i∈S, it holds that

Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg) : {(̃spub

i , s̃priv
i)}i∈S = {(spub

i , spriv
i)}i∈S

]
−Pr

[[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg′) : {(̃spub

i , s̃priv
i)}i∈S = {(spub

i , spriv
i)}i∈S

]
≤ negl(λ) ,

where the probability is taken over the randomness of the secret sharing algorithm.

For our new notion of (adaptive) local identifiability, we consider an adversary that can see all public
shares before outputting any tampered shares.

Definition 10 (Adaptive Local Identifiability). Consider the game described in Figure 2. A secret
sharing scheme with public and private shares (Share, Rec, LRec) for access structure A has adaptive local
identifiability if for any message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·)
such that

Pr[A wins gameali(A)] ≤ negl(λ)

where the probability is taken over the random coins of the C and A.

5

Game gameali(A)

A C[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n]

C ⊂ [n]

{spriv
i }i∈C

{s̃pub
i }i∈C

Define s̃pub
i := spub

i for all i ∈ [n]\C.
A wins unless for each S ∈ A with S 6⊂ C, one of the following happens:

(1) ∀i ∈ [n] : (msg,⊥) = LRec
(
spriv
i , {s̃pub

j }j∈S
)

(2) ∀i, j ∈ S \ C : ∅ 6= Li = Lj ⊂ [n],where

(msgi, Li)← LRec
(
spriv
i , {s̃pub

k }k∈S
)

and

(msgj , Lj)← LRec
(
spriv
j , {s̃pub

k }k∈S
)

Fig. 2. Security game for adaptive local identifiability.

6

Remark 1. We will assume that local reconstruction outputs message ⊥ whenever the list of accusations is
not empty.

We require a UISSwPSS to satisfy a mild notion of error detection for outside parties that receive a set
of potentially tampered shares and attempt to reconstruct the secret.

Definition 11 (Publicly Detectable Failures). Consider the game described in Figure 3. A secret sharing
scheme with public and private shares (Share, Rec, LRec) has publicly detectable failures if for any message
msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamepdf(A)] ≤ negl(λ)

where the probability is taken over the random coins of Share and A.

Game gamepdf(A)

A C

C ⊂ [n]

[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈C

{s̃pub
i }i∈C

Define s̃pub
i = spub

i for all i ∈ [n]\C and set {s̃pub
i }i∈[n].

A wins if ∃ S ∈ A : S ∩ C 6= ∅ and Rec({s̃pub
i }i∈S) 6∈ {msg,⊥}

Fig. 3. Security game for publicly detectable failures.

Finally, we require that Rec fails whenever LRec fails.

Definition 12 (Consistent Failures). Consider the game described in Figure 4. A secret sharing scheme
with public and private shares (Share, Rec, LRec) for access structure A has consistent failures if for any
message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamecf(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Definition 13 (Predictable Failures with respect to LRec). Consider the game described in Figure 5.
A secret sharing scheme (Share, LRec) for access structure A has predictable failures if there exists a prob-
abilistic polynomial-time algorithm SLRec such that for any message msg ∈ {0, 1}∗ and adversary A, there
exists a negligible function negl(·) such that

Pr[A wins gamepflrec(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

7

Game gamecf(A)

A C[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n]

C ⊂ [n]

{spriv
i }i∈C

{s̃pub
i }i∈C

Define s̃pub
i = spub

i for all i ∈ [n]\C.

A wins if ∃ S ∈ A ∃ i ∈ S : Rec({s̃pub
j }j∈S) = ⊥ and

LRec(spriv
i , {s̃pub

j }j∈S) 6= (⊥, L)

Fig. 4. Security game for consistent failures.

Game gamepflrec(A)

A C

C ⊂ [n], C /∈ A

[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n], {s

priv
i }i∈C

{s̃pub
i }i∈C , S ∈ A, S 6⊂ C and i∗ ∈ S

Define (b, L′) := SLRec(C, S, i∗, {spub
i }i∈[n], {s

priv
i }i∈C , {s̃

pub
i }i∈S∩C)

Define s̃pub
i := spub

i for all i ∈ [n]\C and (msg, L) := LRec(spriv
i∗ , {s̃

pub
j }j∈S)

A wins unless any one of the following happens:

− b = 1 and msg = msg

− b = 0 and L = L′ 6= ⊥

Fig. 5. Security game for predictable failures with respect to LRec.

8

Definition 14 (Predictable Failures with respect to Rec). Consider the game described in Figure 6. A
secret sharing scheme with public and private shares (Share, Rec, LRec) for access structure A has predictable
failures with respect to Rec if there exists a probabilistic polynomial-time algorithm SRec such that for any
message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamepfrec(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Game gamepfrec(A)

A C

C ⊂ [n], C /∈ A

[
spub
1 , . . . , spub

n

spriv
1 , . . . , spriv

n

]
← Share(msg)

{spub
i }i∈[n], {s

priv
i }i∈C

{s̃pub
i }i∈C , S ∈ A and S 6⊂ C

Define b := SRec(C, S, {spub
i }i∈[n], {s

priv
i }i∈C , {s̃

pub
i }i∈S∩C)

Define s̃pub
i := spub

i for all i ∈ [n]\C and msg := Rec({s̃pub
j }j∈S)

A wins unless any one of the following happens:

− b = 1 and msg = msg

− b = 0 and msg = ⊥

Fig. 6. Security game for predictable failures with respect to Rec.

4 Bootstrapping MPC With Identifiable Abort

In this section, we describe how to instantiate MPC with identifiable abort for n parties and t ≤ n− 2 given
MPC with identifiable abort for n − 1 parties and t ≤ n − 2. In Section 4.1, we describe the protocol. In
Section 4.2, we prove its security.

4.1 Protocol

Ishai et al. [IOZ14] show that given correlated randomness, it is possible to securely compute any func-
tion with any threshold t, with identifiable abort and with information-theoretic security. Let Setup() →
(r1, . . . , rn) be the randomized function that produces the appropriate correlated randomness. Setup takes no
inputs (since correlated randomness is independent of the parties’ inputs), and outputs n correlated objects,
one for each party.

We would like to make use of the availability of MPC with identifiable abort for n − 1 parties to run
Setup (for n parties). In order to do this, we define Setup′x to be Setup augmented to return shares of rx
to parties i ∈ [n]\{x}, and nothing to party x. We then expect parties i ∈ [n]\{x} to send those shares to
party x. Of course, we need to make sure that party x won’t accept incorrect shares; so, we use UISSwPPS
to authenticate the shares.

9

If party x is dissatisfied with the shares she receives, she broadcasts all the shares. Then, one of two
things happens. Either (1) all parties acknowledge that they sent the broadcast shares to party x, in which
case, because of the adaptive local identifiability (Definition 10) of the secret sharing, we obtain identifiable
abort among the parties who participated in the MPC; or (2) one of the parties (say, party i) claims that
party x misrepresented the share she sent, in which case we have established a conflict between parties i and
x, and can repeat the MPC excluding party i from the set of parties who hold shares of rx.

We define Setup′x,O to be the augmented correlated randomness setup function that distributes shares
of rx to parties i ∈ [n] with observers O ⊆ [n] (where x ∈ O). (We only create an observer share for party x
for ease of notation; this share is never used.) Setup′x,O is described in Figure 7.

Algorithm Setup′x,O

(r1, . . . , rn)← Setup()
{spub
i , spriv

i }i∈[n] ← Share(AOt , rx)

return {(ri, spub
i , spriv

i)}i∈[n]\{x}

Fig. 7. Algorithm Setup′x,O

Figure 8 describes the functionality FSetup,n that computes Setup with identifiable abort; Figure 12
describes the protocol ΠSetup,n that realizes FSetup,n. This protocol calls upon a weaker ideal functionality
FSetup,n,x, which is described in Figure 9; this ideal functionality only has identifiable abort among n − 1
of the parties (party x cannot necessarily identify a cheater). FSetup,n,x either (1) distributes the correlated
randomness successfully, (2) identifiably aborts, or (3) identifiably aborts only among [n]\{x}, in which case
ΠSetup,n calls FSetup,n,x again with a different x. Figure 11 describes the protocol ΠSetup,n,x that realizes
FSetup,n,x. ΠSetup,n,x in turn calls upon an ideal functionality FSetup′,n,x,O; this ideal functionality computes
Setup′ among n − 1 parties with identifiable abort. We do not give a protocol realizing FSetup′,n,x,O, as we
assume that secure protocols with identifiable abort exist for any (n− 1)-party function.

Functionality FSetup,n

1. Run (r1, . . . , rn)← Setup();
2. Send {ri}i∈C to S;
3. Receive either continue or (abort, ī) (for some ī ∈ C) from S;
4. If S sent continue: send ri to each party i ∈ [n]\C;
5. If S sent (abort, ī): send (abort, ī) to each party i ∈ [n]\C.

Fig. 8. Functionality FSetup,n for secure computation of the correlated randomness setup function Setup among n
parties with identifiable abort.

Theorem 1. Protocol Π
FSetup′,n−1,x,O

Setup,n,x (Figure 11) securely realizes the functionality FSetup,n,x (Figure 9)
against t ≤ n−2 corruptions, assuming the availability of a broadcast channel and oracle access to FSetup′,n−1,x,O.

10

Functionality FSetup,n,x

1. Run (r1, . . . , rn)← Setup();
2. Send {ri}i∈C to S;
3. Receive either continue or (abort, ī) (for some ī ∈ C) from S;
4. If S sent continue: send ri to each party i ∈ [n]\C;
5. If S sent (abort, ī):

(a) If ī = x: send (abort, x) to each party i ∈ [n]\C;
(b) If ī 6= x:

i. Send (gadgabort, ī) to each party i ∈ [n]\({x} ∪ C)
ii. Send gadgabort to party x if x /∈ C.

Fig. 9. Functionality FSetup,n,x for secure computation of the correlated randomness setup function Setup among n
parties with identifiable abort among all the parties except for x.

Functionality FSetup′,n−1,x,O

1. Compute {(ri, spub
i , spriv

i)}i∈[n] ← Setup′x,O();

2. Send {(ri, spub
i , spriv

i)}i∈C to S;
3. Receive either continue or (abort, ī) (for some ī ∈ C) from S;
4. If S sent continue: send (ri, s

pub
i , spriv

i) to each party i ∈ [n]\({x} ∪ C);
5. Otherwise: send (abort, ī) to each party i ∈ [n]\({x} ∪ C).

Fig. 10. Functionality FSetup′,n−1,x,O for secure computation of function Setup′x,O with identifiable abort among n−1
parties (parties i ∈ [n]\{x}).

11

Theorem 2. Protocol ΠSetup,n (Figure 12) securely realizes the functionality FSetup,n (Figure 8) against
t ≤ n− 2 corruptions, assuming the availability of a broadcast channel.

Of course, given a protocol ΠSetup,n realizing FSetup,n, we can use that setup to achieve secure computation
with identifiable abort of any function f using the approach of Ishai et al. Since ΠSetup,n only requires oracle
access to FSetup,n,x — which in turn can be realized given only oracle access to FSetup′,n−1,x,O — we can
claim the following lemma.

Lemma 3. For any function f , there exists a protocol that securely realizes the functionality Ff,n (with
identifiable abort) against t ≤ n− 2 corruptions, given oracle access to FSetup′,n−1,x,O.

By using our construction recursively to realize FSetup′,n−1,x,O given oracle access to a (n−2)-party ideal
functionality, and so on, we can claim the following lemma.

Lemma 4. For any function f , for any constant `, there exists a protocol that securely realizes the func-
tionality Ff,n (with identifiable abort) against t ≤ n− `− 2 corruptions, given oracle access to (n− `)-party
ideal functionalities (with identifiable abort).

We require that the recursion depth ` be constant because every (n− l)-party instance calls at most n− l
(n− l− 1)-party instances, and additionally may require p′(n− l, λ) = p(λ) work for some polynomials p′, p.
Thus, we can only guarantee that the protocol is polynomial time if p`(λ) ∈ poly(λ), which is only true when
` is constant.

Conflict Graphs Before presenting our protocol ΠSetup,n, which requires keeping tack of conflict graphs,
we introduce some notation that we use for such graphs. We let Sx be the set of conflicts (denoted as tuples
(i, j)) occurring among parties [n] \ {x}. These conflicts result from a call to a functionality with identifiable
abort among these n−1 parties. Parties i and j are considered to be in conflict if they accuse different parties
of aborting the functionality. Since we do not allow a party to accuse itself, this includes the case when one
of them accuses the other. For simplicity, we let Six denote the set of parties that party i is in conflict with
within Sx.

4.2 Security

Proof of Theorem 1 We prove this theorem by demonstrating a sequence of hybrids. In the first hybrid, a

dummy simulator interfaces with a real-world adversary A, executing the protocol Π
FSetup′,n−1,x,O

Setup,n,x on behalf
of the honest parties exactly as in the real world. In the last hybrid, the simulator SSetup,n,x interfaces with
the real-world adversary A and the ideal functionality FSetup,n,x. We show a number of intermediate hybrids,
wherein the simulator “imagines” interfacing with a partially-functional ideal functionality.

H0 is the real world, where S0 acts on behalf of the honest parties in the protocol. Note that at this point, S0

is already responsible for running the ideal functionality FSetup′,n−1,x,O; it does so honestly (by running

{(r∗i , s
pub
i , spriv

i)}i∈[n] ← Setup′x,O()).
H1 is the same as H0, except that the simulator S1 starts using a partially-functional ideal functionality
F ′ in its head. F ′ runs (r∗1, . . . , r

∗
n) ← Setup(), sends {r∗i }i∈C to S1, and does nothing further. S1 uses

(r∗1, . . . , r
∗
n) to respond to the first call to FSetup′,n−1,x,O.

Of course, since (r∗1, . . . , r
∗
n) is picked from the same distribution (whether by an honest run of FSetup′,n−1,x,O

or by a partially-functional F ′), H1 is indistinguishable from H0.
H2 is the same as H1, except that the simulator S2 rewinds the adversary A in the appropriate steps as

described for SSetup,n,x. During the rewind S2 will run with freshly generated {(ri, spub
i , spriv

i)}i∈GS. In each
rewind, A’s view is completely identical and a fresh output is used. The set of adversarial actions that
cause rewind to be set to true, when rewind = false, is identical to the set of actions that will set it to false,
when rewind = true. Thus, if the adversary performs such an action with probability ε initially, then it

12

Protocol Π
FSetup′,n−1,x,O

Setup,n,x

Let GS = [n] \ {x}. Let O = {x}. (GS denotes the fixed set of parties calling the ideal
functionality; O denotes the set of parties who do not get a share of rx, which might
change over time.)
The parties repeat the three phases described below until one of the following termination
conditions occurs:

1. The parties i ∈ GS receive a special broadcast message done from party x. When this
happens, each party i ∈ [n] outputs ri.

2. All of the parties i ∈ GS identify party x as a cheater. When this happens, the parties
i ∈ GS output (abort, x).

3. One of the calls to FSetup′,n−1,x,O results in an (identifiable) abort. When this happens,
the parties i ∈ GS output (abort, ī) (where ī = min(Li) and Li is the list of parties
identified by party i).

4. Though FSetup′,n−1,x,O did not abort, the honest parties among the n− 1 parties who
called the functionality unanimously identify (a) cheater(s). When this happens, the
parties i ∈ GS output (abort, ī) (where ī = min(Li) and Li is the list of parties identified
by party i).

Call the Ideal Functionality:
1. The parties i ∈ GS invoke the ideal functionality FSetup′,n−1,x,O to compute

Setup′x,O, so that each party i ∈ GS learns (ri, s
pub
i , spriv

i).
2. If FSetup′,n−1,x,O aborts, we are in termination condition 3; otherwise the parties

proceed to the reconstruct phase.
Reconstruct:

3. Each party i ∈ GS \O sends spub
i to party x.

4. Party x runs rx ← Rec({spub
i }i∈GS\O). If rx 6= ⊥, party x broadcasts done. (We

are now in termination condition 1; the parties all output ri.) If rx = ⊥, party x
broadcasts complain and the parties proceed to the complain phase.

Complain:
1. Party x broadcasts the shares it received as {s̃pub

i }i∈GS\O.

2. Each party i ∈ GS \O broadcasts spub
i .

3. If there is an i such that s̃pub
i 6= spub

i :
(a) All parties set O = O ∪ {i}

i∈GS s.t. s̃
pub
i 6=s

pub
i

.

(b) If O = GS (that is, all parties have had conflicting claims with party x), all
parties output (⊥, {x}).

4. Otherwise:
(a) If Rec({s̃pub

i }i∈[n]\O) 6= ⊥: all parties i ∈ GS identify party x as a cheater.
(We are now in termination condition 2; the parties broadcast and output
(abort, x).)

(b) Otherwise: all parties i ∈ GS compute (⊥, Li) ← LRec(spriv
i , {spub

j }j∈GS), and
broadcast and output (abort, ī) where ī = min(Li). (We are now in termination
condition 4.)

Fig. 11. Protocol Π
FSetup′,n−1,x,O

Setup,n,x for secure computation of the correlated randomness setup function Setup among
n parties (with identifiable abort among all of the parties except for x, with threshold t = n− 2) given access to an
ideal functionality FSetup′,n−1,x,O that distributes the output of Setup′ to n− 1 parties (with identifiable abort, with
threshold t = n− 2).

13

Protocol Π
FSetup,n,x

Setup,n

1. For x ∈ [n]: the parties i ∈ [n] invoke the ideal functionality FSetup,n,x to compute
Setup. One of the following occurs:
(a) Each party i ∈ [n] receives and outputs ri.
(b) Each party i ∈ [n] receives and outputs (abort, x).
(c) Each party i ∈ [n] \ {x} receives (gadgabort, ī) (for ī 6= x), and party x receives

gadgabort. In this case, each party i ∈ [n] \ {x} broadcasts ī as īi.
i. A. If there exists a party i ∈ [n] \ {x} such that īi = i: all parties output

(abort, i).
B. Otherwise: the parties record the obtained conflict graph Sx: (i, j) is added

to Sx if īi 6= īj .
2. For i ∈ [n]:

(a) For j ∈ [n]:
i. If Sji ∩ S

i
j 6= ∅: let ī := min(Sji ∩ S

i
j).

A. If i ∈ Skj and j ∈ Ski : party k outputs (abort,min({i, j})).
B. Otherwise: party k outputs (abort, ī).

Fig. 12. Protocol ΠSetup,n for secure computation of the correlated randomness setup function Setup among n parties
(with identifiable abort, with threshold t = n− 2) given access to an ideal functionality FSetup,n,x that distributes the
output of Setup to n parties (with identifiable abort amongall the parties except for x, with threshold t = n− 2).

will perform such an action again after 1/ε rewinding steps in expectation. It follows that H2 terminates
in expected polynomial time, returning an output that is identically distributed to the output of H1.
Thus the two hybrids are statistically close (not identical, since one runs in strict polynomial time and
one in expected polynomial time).

H3 is the same as H2, except that the simulator S3 augments the (simulated) partially-functional F ′ to
expect either continue or (abort, ī) after sending {r∗i }i∈C . If it receives continue or (abort, x), F ′ does
nothing further; otherwise, it sends (a) (gadgabort, ī) to each (simulated) honest party i ∈ [n]\({x} ∪C)
and (b) gadgabort to (simulated) party x if x 6∈ C. Those simulated parties use that output. If the
execution reaches step 2, S3 sends (abort, ī) to F ′, where (abort, ī) is the output of FSetup′,n−1,x,O.

H3 is indistinguishable from H2 since the distributions are identical.

H4 is the same as H3, except that, if the execution reaches step 4b, S4 sends (abort, ī) to F ′, where ī is

computed as ī := min(Li) for i = min(GS\C) and (⊥, Li)← LRec(spriv
i , {spub

j }j∈GS).

We observe that the only way in which H4 can differ from H3 is when, in the protocol, termination
condition 4 occurs. In H4, if termination condition 4 occurs, each party i ∈ [n]\({x} ∪ C) outputs
(abort, ī) for the same index ī. The same is true H3 because (1) in H4 (in case of a termination condition
4) Rec outputs ⊥ and by the consistent failure property of UISSwPPS we can be sure that LRec outputs
a list of cheater(s); (2) from the locally identifiable property of UISSwPPS it follows that each party
i ∈ [n]\({x} ∪ C) agrees on the same set of cheater(s).

H5 is the same as H4, except that the simulator S5 augments the (simulated) partially-functional F ′ so that
if it receives (abort, x), it sends (abort, x) to each (simulated) honest party i ∈ [n]\C. Those simulated
parties use that output. If the execution reaches step 4a, S5 sends (abort, x) to F ′.
We observe that H5 is distributed as H4 because when termination condition 2 occurs, S5 in H5 acts in
the exact same way as the honest parties in H4.

H6 is the same as H5, except that the simulator S6 augments the (simulated) partially-functional F ′ so that
if it receives continue, it sends r∗i to each (simulated) honest party i ∈ [n]\C. Those simulated parties
use that output. If the execution reaches step 4, S6 sends continue to F ′.

14

Simulator SSetup,n,x
Let GS := [n]\{x}, O := {x}, rewind := false and simulated := false.
As a first action SSetup,n,x invokes FSetup,n,x and obtains {r∗i }i∈C , then proceeds to repeatedly start with the
“call the ideal functionality” phase until SSetup,n,x terminates.

Call the Ideal Functionality: Upon receiving a call to FSetup′,n−1,x,O from A, SSetup,n,x does the follow-
ing:
1. If rewind = true: SSetup,n,x computes {(ri, spub

i , spriv
i)}i∈GS ← Setup′x,O().

2. Otherwise:
(a) If x ∈ C: SSetup,n,x computes {(spub

i , spriv
i)}i∈[n] ← Share(AOt , r∗x);

(b) Otherwise (if x /∈ C): SSetup,n,x computes {(spub
i , spriv

i)}i∈[n] ← Share(AOt , 0).

3. SSetup,n,x sends {(ri, spub
i , spriv

i)}i∈GS∩C (on behalf of FSetup′,n,x,O) to A.
4. If A sends (abort, ī):

(a) If rewind = false: SSetup,n,x sends (abort, ī) to FSetup,n,x and terminates returning A’s output.
(b) Otherwise: SSetup,n,x rewinds A to the beginning of step 1.

Reconstruct:
5. If x ∈ C:

(a) For each i ∈ GS\(O ∪ C), SSetup,n,x sends spub
i to A (on behalf of party i).

(b) If A broadcasts done (on behalf of party x):
i. If rewind = false: SSetup,n,x terminates returning A’s output.

ii. Otherwise: SSetup,n,x rewinds A to the beginning of step 1.
6. Otherwise (if x /∈ C):

(a) SSetup,n,x receives s̃pub
i from A on behalf of each party i ∈ GS ∩ C\O.

(b) Let s̃pub
i := spub

i for i ∈ GS\(C ∪O). SSetup,n,x computes rx ← Rec({s̃pub
i }i∈GS\O).

i. If rx 6= ⊥:
A. If rewind = false: SSetup,n,x broadcasts done (on behalf of party x) and terminates return-

ing A’s output.
B. Otherwise: SSetup,n,x rewinds A to the beginning of step 1.

ii. Otherwise (if rx = ⊥): SSetup,n,x broadcasts complain (on behalf of party x) and proceeds
to the complain phase.

Complain:
1. If x ∈ C: SSetup,n,x receives {s̃pub

i }i∈C\O from A (on behalf of party x).

2. Otherwise (if x /∈ C): SSetup,n,x broadcasts the shares it received as {s̃pub
i }i∈GS\O (on behalf of party

x).
3. For each party i ∈ GS\(O ∪ C), SSetup,n,x sets spub

i := spub
i and broadcasts spub

i .
4. SSetup,n,x receives {spub

i }i∈GS∩C\O from A.

5. If there is an i such that s̃pub
i 6= spub

i :
(a) If rewind = false: SSetup,n,x sets rewind := true and rewinds A to the beginning of step 1 of the

“call the ideal functionality” phase.
(b) Otherwise: SSetup,n,x sets O = O ∪ {i}

i∈GS s.t. s̃
pub
i 6=s

pub
i

, and rewind := false. If O = GS, SSetup,n,x
sends (abort, x) to FSetup,n,x.

6. Otherwise:
(a) If Rec({s̃pub

i }i∈[n]\O) 6= ⊥ (and thus x ∈ C):
i. If rewind = false: SSetup,n,x sends (abort, x) to FSetup,n,x, and broadcasts (abort, x) (on behalf

of each party i ∈ GS\C). SSetup,n,x terminates returning A’s output.
ii. Otherwise: SSetup,n,x rewindsA to the beginning of step 1 of the “call the ideal functionality”

phase.
(b) Otherwise:

i. If rewind = false: SSetup,n,x chooses an (arbitrary) index i ∈ GS\C, and lets (⊥, Li) ←
LRec(spriv

i , {spub
j }j∈GS). SSetup,n,x sends (abort, ī) (where ī = min(Li)) to FSetup,n,x, and broad-

casts (abort, ī) (on behalf of each party i ∈ GS\C). SSetup,n,x terminates returning A’s
output.

ii. Otherwise: SSetup,n,x rewindsA to the beginning of step 1 of the “call the ideal functionality”
phase.

Fig. 13. The simulator SSetup,n,x.
15

We observe that the only way in which H6 can differ from H5 is in protocol termination condition 1,
which is when party x recovers the output rx. Note that, in H5, if party x /∈ C outputs r∗x, then r∗x must
be the message secret shared during the execution of Setup′x,O(). The above observation follows form the
detectable failure property of UISSwPPS. We can conclude that, in H6, if termination condition 1 occurs,
the simulated party x outputs r∗x which corresponds to the value that party x would have reconstruct
via Rec in H5.

H7 is the same as H6, except that the simulator S7 augments the (simulated) partially-functional F ′ to use

r∗x = 0 to generate the shares {(spub
i , spriv

i)}i∈[n] ← Share(AOt , r∗x) if x 6∈ C. Note that, at this point, F ′ is
the same as FSetup,n,x.
The view of A in H7 is distributed statistically close to the view of A in H6. To see that this is true,
observe that: (1) Due to the privacy property of UISSwPPS, the shares {(spub

i , spriv
i)}i∈[C] do not reveal any

information about the secret shared message; (2) Due to the predictable failure property of UISSwPPS,
if the reconstruction algorithms Rec and LRec fail, no information about the secret shared message is
revealed.

H8 is the ideal game. S8 = SSetup,n,x uses FSetup,n,x instead of F ′. At this point, FSetup,n,x returns output
directly to the honest parties, so SSetup,n,x never sees the honest party values.
H8 is indistinguishable from H7 because the distributions are identical.

Simulator SSetup,n
1. SSetup,n invokes FSetup,n and obtains {r∗i }i∈C .
2. SSetup,n sets rewind := false.
3. For each x ∈ [n]: upon receiving a call to FSetup,n,x from A, SSetup,n does the following:

(a) If rewind = true:
i. SSetup,n computes (r1, . . . , rn)← Setup().
ii. SSetup,n sends {ri}i∈C (on behalf of FSetup,n,x) to A.

iii. If A responds with (abort, x) or continue: SSetup,n rewinds the adversary to Step 3a.
iv. Otherwise (if A responds with (gadgabort, ī)):

A. SSetup,n broadcasts īi := ī on behalf of each party i ∈ [n]\({x} ∪ C).
B. Let īi be the accusation broadcast by A on behalf of each party i ∈ C\{x}.
C. If there exists a i ∈ C\{x} such that īi = i: SSetup,n rewinds the adversary to Step 3a.
D. SSetup,n records the obtained conflict graph as Sx.
E. SSetup,n sets rewind := false and continues.

(b) Otherwise (if rewind = false):
i. SSetup,n sends {r∗i }i∈C (on behalf of FSetup,n,x) to A.

ii. If A responds with continue: the simulator sends continue to FSetup,n and terminates.
iii. If A responds with (abort, x): the simulator sends (abort, x) to FSetup,n and terminates.
iv. If x 6= n and A responds with (gadgabort, ī): SSetup,n sets rewind := true and rewinds the

adversary to Step 3a.
v. If x = n and A responds with (gadgabort, ī):

A. SSetup,n broadcasts īi := ī on behalf of each party i ∈ [n]\({x} ∪ C).
B. Let īi be the accusation broadcast by A on behalf of each party i ∈ C\{x}.
C. If there exists a i ∈ C\{x} such that īi = i: SSetup,n sends (abort, i) to FSetup,n and termi-

nates.
D. SSetup,n records the obtained conflict graph as Sx.
E. SSetup,n finds the first (i, j) such that Sji ∩ S

i
j 6= ∅, sets ī∗ := min(Sji ∩ S

i
j), sends (abort, ī∗)

to FSetup,n and terminates.

Fig. 14. The simulator SSetup,n.

16

Proof of Theorem 2 We start by making several simple observations about conflict graphs.

Observation 1 Within a given conflict graph Sx, all honest parties are in conflict with the same other
parties. This is apparent because all honest parties accuse the same party — the one who really aborted the
functionality; thus, any party who disagrees with one honest party disagrees with them all.

Observation 2 If two parties i and j are in conflict within a given conflict graph Sx, then every other
participating party k is in conflict with at least one of these two parties:

j ∈ Six ⇒ ∀k ∈ [n] \ {i, j, x}, k ∈ Six ∨ k ∈ Sjx.

This is true because, assuming no party accuses themselves, two parties who are in conflict always make
different accusations; every other party must thus disagree with at least one of them.

As before, we prove Theorem 2 by demonstrating a sequence of hybrids. In the first hybrid, a dummy

simulator interfaces with a real-world adversary A, executing the protocol Π
FSetup,n,x

Setup,n on behalf of the honest
parties exactly as in the real world. In the last hybrid, the simulator SSetup,n (described in Figure 14) interfaces
with the real-world adversary A and the ideal functionality FSetup,n. We show a number of intermediate
hybrids, wherein the simulator “imagines” interfacing with a partially-functional ideal functionality.

H0 is the real world, where S0 acts on behalf of the honest parties in the protocol. Note that at this point,
S0 is already responsible for running the ideal functionality FSetup,n,x; it does so honestly (by running
(r1, . . . , rn)← Setup()).

H1 is the same as H0, except that the simulator S1 starts using a partially-functional ideal functionality
F ′ in its head. F ′ runs (r∗1, . . . , r

∗
n) ← Setup(), sends {r∗i }i∈C to S1, and does nothing further. S1 uses

(r∗1, . . . , r
∗
n) to respond to the first call to FSetup,n,x.

H1 is indistinguishable from H0 because the distributions are identical.
H2 is the same as H1, except that the simulator S2 rewinds the adversary A in the appropriate steps

as described for SSetup,n. During the rewind S2 will run with freshly generated (r1, . . . , rn). The set of
adversarial actions that cause rewind to be set to true, when rewind = false, is identical to the set of actions
that will set it to false, when rewind = true. Thus, if the adversary performs such an action with probability
ε initially, then it will perform such an action again after 1/ε rewinding steps in expectation. It follows
that H2 terminates in expected polynomial time, returning an output that is identically distributed to
the output of H1. Thus the two hybrids are statistically close (not identical, since on runs in strict
polynomial time and one in expected polynomial time).

H3 is the same as H2, except that the simulator S3 augments the (simulated) partially-functional F ′ to
expect either continue or (abort, ī) after sending {ri}i∈C . If it receives (abort, ī), F ′ does nothing further;
otherwise (if it receives continue), it sends r∗i to each (simulated) honest party i ∈ [n]\C. Those simulated
parties use that output. If the execution reaches step 1b, S3 sends continue to F ′.
H3 is indistinguishable from H2 because the distributions are identical.

H4 is the same as H3, except that the simulator S4 augments the (simulated) partially-functional F ′ to send
(abort, ī) to each (simulated) honest party i ∈ [n] \ C if it receives (abort, ī) from S4. Those simulated
parties terminate giving in output (abort, ī). If the execution reaches step 1c, S4 sends (abort, ī) to F ′.
H4 is indistinguishable from H3 because the distributions are identical.

H5 is the same as H4, except that the simulator S5 sends (abort, ī) to F ′ if the execution reaches step 1(c)iA.
H5 is indistinguishable from H4 because the distributions are identical.

H6 is the same as H5, except that the simulator S6 sends (abort,min({i, j})) to F ′ if the execution reaches
step 2(a)iA.
H6 is indistinguishable from H5 because the only thing that might change is that if, in the previous
hybrid, parties disagreed about whom to blame in this step, now F ′ forces unanimity. However, thanks
to the broadcast accusations, all parties have the same view of the conflict graphs. By Observation 1, if it
holds for one, it holds for all honest parties k that i ∈ Skj and j ∈ Ski ; so, the honest parties unanimously
accuse min({i, j}).

17

H7 is the same as H6, except that the simulator S7 sends (abort, ī) to F ′ if the execution reaches step 2(a)iB.
H7 is indistinguishable from H6 because the only thing that might change is that if, in the previous
hybrid, parties disagreed about whom to blame in this step, now F ′ forces unanimity. However, due to
the same logic as in the previous hybrid, unanimity is guaranteed in this hybrid as well.
Informally, in H6 the honest parties are guaranteed to unanimously accuse a corrupt party because an
honest party j knows that all honest parties but party i are aleady in conflict with ī (by Observation 1),
and i is now also in conflict with ī. Similarly, an honest party i knows that all honest parties but party
j are aleady in conflict with ī (by Observation 1), and j is now also in conflict with ī.

H8 is the ideal game. S8 = SSetup,n uses FSetup,n instead of F ′. At this point, FSetup,n returns output directly
to the honest parties, so SSetup,n never sees the honest party values.
To argue that H8 is indistinguishable from H7, we need to show that we always end up in one of the
termination conditions already covered in previous hybrids; in other words, that, if we reach step 2, we
are guaranteed to have parties i, j such that Sji ∩ Sij 6= ∅.
We prove this by contradiction. Assume that all of the calls to FSetup,n,x result in an abort, and that

Sji ∩ Sij = ∅ for all i, j ∈ [n], i 6= j. That is, i ∈ S īj ⇔ j 6∈ S īi . We make Observation 3 under this
assumption, which is a clear contradiction.
First, we define a clique. Let a clique C in a conflict graph Sx be a set of parties all of whom share a
conflict with the same party.

Observation 3 If there exists a size-c clique in some conflict graph Si, then there also exists a size-(c+1)
clique in some (different) conflict graph.

Proof. Let Ci = {j1, . . . , jc} be the size-c clique in Si.
By definition, there exists l such that l ∈ Sjki for k ∈ [c]. (Otherwise, the relevant call to the ideal
functionality cannot have resulted in an abort.)
Now, consider the conflict graph Sl. By assumption,

l ∈ Sjki ⇒ i 6∈ Sjkl .

We know that Sil 6= ∅; without loss of generality, say m ∈ Sil ,m 6∈ Ci.
By Observation 2, for k ∈ [c], m ∈ Sil ⇒ jk ∈ Sml ∨ jk ∈ Sil . Since jk 6∈ Sil , it follows that jk ∈ Sml .
Therefore, Ci ∪ {i} form a size-(c+ 1) clique all of are in conflict with m in Sl.

Note that Observation 3 is a contradiction, since the base case of a size-1 clique trivially exists, and since
Observation 3 will lead to cliques larger than n− 1, which is the number of parties participating in each
call to the ideal functionality.

5 Building UISSwPPS

In this section, we build a unanimously identifiable secret sharing scheme with public and private shares.
In Section 5.1, we describe two building blocks: unanimously identifiable commitments and unanimously
identifiable secret sharing. In Section 5.2, we describe our construction and prove its security.

5.1 Building Blocks

Unanimously Identifiable Commitments Unanimously identifiable commitments (UIC) have been in-
troduced by Ishai, Ostrovsky, and Seyalioglu [IOS12]. Such commitments allow a trusted dealer to commit
to a message msg by distributing com1, . . . , comn among n recipients and providing a sender with decommit-
ment information dec. From a security point of view, we require that the joint view of all recipients should
contain no information about msg and that any decommitment information dec′ published by the sender
either causes all honest parties to reconstruct msg or all parties to unanimously abort. Ishai, Ostrovsky, and
Seyalioglu have shown how to construct such commitments with information-theoretic security.

18

Definition 15 (Unanimously Identifiable Commitments). A UIC scheme consists of a probabilistic
polynomial-time algorithm Commit and a deterministic polynomial-time algorithm Open with the following
syntax:

Commit(s)→ (com1, . . . , comn, dec): takes as input a message msg ∈ {0, 1}∗, and outputs n commitments
com1, com2, . . . , comn, and decommitment information dec.

Open(comi, dec)→ msg/⊥: takes as input comi and the decommitment information dec, and outputs a value
in {0, 1}∗ ∪ {⊥}.
Furthermore, (Commit, Open) should satisfy correctness (Definition 16), privacy (Definition 17), and

binding with agreement on abort (Definition 18).

Definition 16 (Correctness). A UIC (Commit, Open) is correct if for any msg ∈ {0, 1}∗ and any i ∈ [n],

Pr[(com1, com2, . . . , comn, dec)← Commit(msg) : Open(comi, dec) = msg] = 1.

Definition 17 (Privacy). A UIC (Commit, Open) is private if for any msg,msg′ ∈ {0, 1}∗ with |msg| =
|msg′|

{(com1, . . . , comn) | (com1, com2, . . . , comn, dec)← Commit(msg)}
≡{(com1, . . . , comn) | (com1, com2, . . . , comn, dec)← Commit(msg′)}.

Definition 18 (Binding with Agreement on Abort). Consider the security game described in Figure 15.
A UIC (Commit, Open) is binding with agreement on abort if for any message msg ∈ {0, 1}∗ and adversary
A, there exists a negligible function negl(·) such that

Pr[A wins gamebaa(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Game gamebaa(A)

A C
(com1, com2, . . . , comn, dec)← Commit(msg).

dec

C ⊂ [n]

{comi}i∈C

dec′

A wins unless

∀i ∈ [n]\C : Open(comi, dec
′) = msg or

∀i ∈ [n]\C : Open(comi, dec
′) = ⊥

Fig. 15. Security game for binding with agreement on abort.

Remark 2. For technical convenience, we slightly modified the security game gamebaa(A) by allowing the
adversary to first obtain dec and then query the set C. The original UIC construction of Ishai, Ostrovsky,
and Seyalioglu [IOS12] directly satisfies our new notion and if necessary all of our proofs can also be done
with the original security definition; albeit with a slightly larger security loss.

19

Unanimously Identifiable Secret Sharing Unanimously identifiable secret sharing (UISS) is another
primitive that has been introduced and constructed with information-theoretic security by Ishai, Ostrovsky,
and Seyalioglu [IOS12].

Definition 19 (Unanimously Identifiable Secret Sharing Scheme). A unanimously identifiable secret
sharing scheme for message space {0, 1}∗ is a secret sharing scheme (Definition 4) that additionally satisfies
local identifiability (Definition 20) and predictable failures (Definition 14 with the appropriate syntactic
modifications).

A secret sharing scheme is said to be unanimously identifiable if all share holders either reconstruct the
correct message, or unanimously agree on some subset of shares which they consider to be invalid.

Definition 20 (Local Identifiability). Consider the game described in Figure 16. A secret sharing scheme
(Share, LRec) for access structure A is locally identifiable if for any message msg ∈ {0, 1}∗ and adversary
A, there exists negligible function negl(·) such that

Pr[A wins gameli(A)] ≤ negl(λ)

where the probability is taken over the random coin of C and A.

Game gameli(A)

A C

C ⊂ [n]

(s1, . . . , sn)← Share(msg)

{s′i}i∈C

Define s′i := si for all i ∈ [n]\C.
A wins unless for each S ∈ A, one of the following happens:

− ∀i ∈ [n] : (msg,⊥) = LRec(si, {s′j}j∈S)

− ∀i, j ∈ S \ C : ∅ 6= Li = Lj ⊆ C,
where (msgi, Li)← LRec(si, {s′k}k∈S) and (msgj , Lj)← LRec(sj , {s′k}k∈S)

Fig. 16. Security game for local identifiability.

5.2 Construction

Theorem 5. Let AOn,t be a threshold access structure with k observers, where k < n. Let (UISS.Share, UISS.Rec)
be a UISS for Am,t, where m = n− k. Let (Commit, Open) be a n-party UIC. Then, the construction in Fig-
ure 17 is a UISSwPPS for AOn,t.

Proof. We will now proceed to prove all the properties of the UISSwPPS.

Correctness. Follows by inspection.

Privacy. Follows by the privacy of UIC and UISS.

20

UISSwPPS

Share(msg):
1. Compute {si}i∈[n]\O ← UISS.Share(msg);
2. For each i ∈ [n] \O, compute

(
com1

i , . . . , com
n
i , deci

)
← Commit(si);

3. If i ∈ O, then spub
i := ⊥; otherwise, spub

i := (si, deci);
4. Set spriv

i := ({comi
j}j∈[n]\O, spub

i).

LRec(spriv
i , {spub

j }j∈S):

1. Let Li := ∅;
2. For each j ∈ S \O, if Open(comi

j , decj) 6= sj , then Li = Li ∪ {j};
3. If Li 6= ∅, then return (⊥, Li);
4. If i ∈ O, then

(a) Set s′ := sj where j = min(S);
(b) Return (msg,⊥), where msg = UISS.Rec(s′, {sj}j∈S).

5. Otherwise, if i 6∈ O, then return (msg,⊥), where msg = UISS.Rec(si, {sj}j∈S).

Rec({spub
j }j∈S):

1. For each i ∈ S, compute (msgi, Li) = UISS.Rec(si, {sj}j∈S);
2. If ∃ i, j s.t. msgi 6= msgj output ⊥, otherwise output msgk with k = min(S).

Fig. 17. UISSwPPS construction.

Adaptive Local Identifiability. Suppose for contradiction that the adversary A wins the game in Fig-
ure 2.
Reduction R. Let us first recall that a public share spub

j of our UISSwPPS is of the form spub
j = (sj , decj)

and the corresponding private share is of the form spriv
j = ({comi

j}j∈[n]\O, s
pub
j). We show a reduction R

that will act as a proxy between the challenger C of the game described in Figure 15 and A which is
playing the game in Figure 2.
R picks a random index i∗ ∈ [n] and a random message msg ∈ {0, 1}∗. She then computes {si}i∈[n]\O ←
UISS.Share(msg) and sends si∗ to C obtaining back deci∗ . R sets spub

i∗ = (si∗ , deci∗); for all i ∈ [n]\{i∗}, R
computes spub

i honestly (Figure 17). R receives the corrupted set C from A and forward it to C; C sends

back the set {comj
i∗}j∈[n]. R aborts if i∗ /∈ C or i∗ ∈ O. Otherwise, R uses the honestly generated shares

and the ones received from C to compute the private shares honestly. R sends {spriv
j }j∈C to A receiving

the set {s̃pub
j }j∈C . R retrieves dec′ from s̃pub

i∗ , which she forwards to C. We finish the proof observing
that since by hypothesis A has a non-negligible probability of winning the game in Figure 2, R has a
non-negligible advantage of winning the game in Figure 15 (in particular, R provides dec′ which will
make cause some — but not all — parties to abort). The reduction has a loss of 1

n .
If a list Li is empty then step 3 in of LRec (Figure 17) is not executed, and by the correctness of UIC
and UISS we are guaranteed that a correct message is reconstructed.

Publicly Detectable Failures. Suppose for contradiction that with non-negligible probability A wins the
game in Figure 3. Then ∃S ∈ AOn,t (which contains an index not corrupted by A) s.t. Rec returns a
message msg /∈ {⊥,msg}. If this is the case A could be used to break the local identifiability of UISS.

Reduction R. Let us first recall that the public share spub
j of our UISSwPPS is of the form spub

j = (sj , decj).
We show a reductionR that will act as a proxy between the challenger C of the game described in Figure 16
and A which is playing the game in Figure 3. R receives the corrupted set C from A and forward it to C
receiving back the shares {sj}j∈C . R acting as a challenger for A computes Commit on input sj for j ∈ C
to complete the public shares {spub

j }j∈C that R forwards to A. R receives from A the set {s̃pub
j }j∈C and

21

uses it to constructs the set {s̃j}j∈C that she forwards to C. We finish the proof observing that since by
hypothesis A has a non-negligible probability of winning the game in Figure 3 R has a non-negligible
advantage of winning the game in Figure 16 (in particular, R provides shares that are able to make
reconstruct a different message from the one shared).

Consistent Failures. Suppose for contradiction that A wins the game in Figure 4. Then ∃S ∈ AOn,t s.t.

Rec({spub
j }j∈S) outputs ⊥.

Looking at Rec defined in Figure 17 if it returns ⊥, then it must be the case that there exist i, j s.t.
msgi = UISS.Rec(si, {sk}k∈S), msgj = UISS.Rec(sj , {sk}k∈S) and msgj 6= msgi, since UISS is perfect
correct we can conclude that at least one share, say sj with j ∈ S, was changed by A. Considering the

public share spub
j of our UISSwPPS are of the form spub

j = (sj , decj) we observe that A could have left deci
unchanged or not. In the first case from the correctness of UIC we can conclude that LRec outputs ⊥;
in the second case from the binding with agreement on abort property of UIC follows that LRec outputs
⊥ (the reduction follows very closely to the one described for adaptive local identifiability).

Predictable Failure.
Predictable failure for LRec. Roughly speaking, the predictable failure property requires the existence

of an algorithm SLRec which “predicts” the output of the adversary when she run LRec. Below we
show the algorithm SLRec.
SLRec(C, S, i∗, {spub

j }j∈[n], {spriv
j }j∈C , {s̃

pub
j }j∈S∩C) computes the following steps:

1. Parse spriv
j as ({comj

k}k∈[n]\O, s
pub
j) and spub

j as (sj , decj) for j ∈ C.

2. Parse s̃pub
j as (s̃j , decj) for j ∈ S ∩ C.

3. Let Li∗ := ∅;
4. If i∗ ∈ C :

(a) For each j ∈ C \O, if Open(comi∗

j , decj) = ⊥, then Li∗ = Li∗ ∪ {j}.
(b) If Li∗ 6= ∅: (bi∗ , Li∗) = UISS.SRec(C, S, i∗, {sj}j∈C , {s̃j}j∈S∩C).
(c) If Li∗ = ∅ output (1,⊥) otherwise output (0, Li∗)

5. Otherwise:
(a) For randomly selected k ∈ C: for each j ∈ C \O, if Open(comi

j , decj) 6= sj , then Lk = Lk∪{j}.
(b) If Lk = ∅ output (1,⊥) otherwise output (0, Lk)

It remain to observe that if A has a non-negligible probability of winning in the predictable failure
game, then when i ∈ C we could construct a reduction that wins binding with agreement on abort
property of UIC; otherwise (when i /∈ C) we could construct a reduction that wins the predictable
failure game of UISS.

Predictable failure for Rec. Roughly speaking, the predictable failure property requires the existence
of an algorithm SRec which ”predicts” the output of the adversary when she run Rec. Therefore we
show how the algorithm SRec works, intuitively SRec relys on the algorithms UISS.SRec which it
exists by the predictable failure property of UISS.
The algorithm SRec(C, S, {spub

j }j∈C , {s̃
pub
j }j∈S∩C) computes the following steps:

– Parse spub
j as (sj , decj) for j ∈ C.

– Parse s̃pub
j as (s̃j , ˜decj) for j ∈ S ∩ C.

– For each i ∈ C, compute bi = UISS.SRec(C, S, i, {sj}j∈C , {s̃j}j∈S∩C);
– If ∃ j s.t. bj = 0 output 0, otherwise output 1.

It remain to observe that if A has a non-negligible probability of winning in the predictable failure game,
then we could construct a reduction that wins the predictable failure game of UISS.

References

Bea90. Donald Beaver. Multiparty protocols tolerating half faulty processors. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 560–572. Springer, Heidelberg, August 1990.

BMMMQ20. Nicholas-Philip Brandt, Sven Maier, Tobias Müller, and Jörn Müller-Quade. Constructing secure multi-
party computation with identifiable abort. IACR Cryptol. ePrint Arch., 2020:153, 2020.

22

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In 18th ACM STOC, pages 364–369. ACM Press, May 1986.

CvT95. Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and private multi-
party computation. In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 110–123.
Springer, Heidelberg, August 1995.

IOS12. Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters without an honest majority.
In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 21–38. Springer, Heidelberg, March
2012.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identifiable
abort. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 369–386. Springer, Heidelberg, August 2014.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM
Press, May 1988.

Rab81. Michael O Rabin. How to exchange secrets with oblivious transfer. Technical Memo, 1981. https:

//www.iacr.org/museum/rabin-obt/obtrans-eprint187.pdf.
RB89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority

(extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

23

https://www.iacr.org/museum/rabin-obt/obtrans-eprint187.pdf
https://www.iacr.org/museum/rabin-obt/obtrans-eprint187.pdf

	On Sufficient Oracles for Secure Computation with Identifiable Abort

