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Abstract—This paper studies the role of multiparty
shuffling protocols in enabling more efficient metadata-
hiding communication. We show that the process of shuffling
messages can be expedited by having servers collaboratively
shuffle and verify secret-shares of messages instead of using
a conventional mixnet approach where servers take turns
performing independent verifiable shuffles of user messages.
We apply this technique to achieve both practical and
asymptotic improvements in anonymous broadcast and
messaging systems. We first show how to build a three
server anonymous broadcast scheme, secure against one
malicious server, that relies only on symmetric cryptography.
Next, we adapt our three server broadcast scheme to a
k-server scheme secure against k − 1 malicious servers,
at the cost of a more expensive per-shuffle preprocessing
phase. Finally, we show how our scheme can be used
to significantly improve the performance of the MCMix
anonymous messaging system.

We implement our shuffling protocol in a system called
Clarion and find that it outperforms a mixnet made up of
a sequence of verifiable (single-server) shuffles by 9.2× for
broadcasting small messages and outperforms the MCMix
conversation protocol by 11.8×.

I. INTRODUCTION

While end to end encrypted communication has re-
cently become widespread, systems that additionally
hide sensitive communication metadata remain an active
area of research. Many metadata-hiding communication
systems adopt a mixnet-based approach [13] and require
the platform’s servers to somehow shuffle user messages
before revealing them, breaking the connection between a
message and its author. A primary performance obstacle
in these systems is the cost of each server computing
a verifiable shuffle of user messages [6] to protect
against misbehavior by malicious servers. Metadata-
hiding communication systems have adopted a diverse
array of approaches to minimize or avoid this cost. Several
recent systems use modified mixnets with additional
techniques to reduce what part of the shuffle needs to be
verified, trade off some security for better performance,
or perform several smaller shuffles instead of a single
big one [58, 57, 44, 41, 43, 45].

Fig. 1: Message flow in our three server anonymous broadcast
system

This work presents a new approach to anonymous
communication based on multiparty shuffling protocols. In
this setting, instead of having servers take turns shuffling
user data, each server holds a secret share of the data
from the beginning, and the servers collaboratively shuffle
the data, conducting integrity checks before and after
the shuffle. The general message flow in the system is
shown in Figure 1. While each server performs a shuffle
on the data, the cost of verifying the full shuffle using
our techniques is significantly reduced compared to a
typical approach where each server individually proves
the integrity of the shuffle it performed. This approach
can either be used as a drop-in replacement for parts of
existing systems that use verifiable shuffles or to build
new standalone protocols.

We begin by building a three-server anonymous broad-
cast scheme that provides security against one malicious
server. Instead of relying on each server producing
a proof that it participated honestly in the shuffling
protocol, our approach relies on a series of integrity
checks performed by the servers during the shuffle
computation that ensure the shuffle has been conducted
honestly. Server communication and computation costs
are O(N`) for processing N messages of length ` each,
and client communication and computation costs are O(`).
Asymptotically, this matches a standard messaging system
that provides no privacy guarantees. Our scheme only
requires symmetric-key cryptographic primitives and thus
has excellent practical performance properties as well.



Next, we show how to adapt our three-server anony-
mous broadcast scheme to a k server scheme secure
against k − 1 malicious servers. This scheme maintains
the strong performance of the three server scheme and
reduces the asymptotic cost of a k-server shuffle to O(k)
as opposed to O(k2) in a naı̈ve adaptation, but it comes
at the cost of a more expensive per-shuffle preprocessing
phase. We show how to realize this preprocessing phase
by combining the secret-shared shuffle techniques of
Chase et al. [12] with new optimizations. Given the
addition of a preprocessing phase, this approach is par-
ticularly well-suited to settings like an online event with
live anonymous comments: the preprocessing information
can be prepared prior to the event, and comments can be
delivered quickly during the live event.

Finally, we show how to use our system to achieve
order of magnitude performance improvements over the
MPC-based MCMix [3] anonymous messaging system
while simultaneously upgrading parts of the system’s
security. One reason we are able to obtain such a
significant improvement is our new lightweight multiparty
shuffling protocol. Another reason is that end users format
their submissions so that the shuffling servers cannot
corrupt the execution of the MPC protocol. This further
simplifies the protocol.

We implement and evaluate our scheme in a system
called Clarion, comparing it to several prior works.
Our three server broadcast scheme outperforms servers
running the verifiable shuffle of Bayer and Groth [6] by
9.2× for 32 Byte messages and by 3.0× for 160 Byte
messages. When used to build the conversation protocol
for an anonymous messaging scheme, our approach
outperforms verifiable shuffles by 8.2× for 160 Byte mes-
sages. Compared to the MCMix system [3], we improve
the performance of the conversation protocol by 11.8× for
160 Byte messages and 10.8× for 1KB messages. We also
improve the performance of the dialing protocol, used to
initiate new conversations, by over 2×. Finally, increasing
the number of servers from three to five in our k-server
broadcast scheme increases the speedup over verifiable
shuffles from 2.9× to 4.0× for 160 Byte messages,
demonstrating increasing benefits as the number of servers
increases. Our implementation is open source and both
our code and raw evaluation data can be found at https:
//github.com/SabaEskandarian/Clarion.

In summary, we make the following contributions:

• Demonstrate a new application of multiparty shuf-
fling to anonymous communication.

• Build a new three-server anonymous broadcast
scheme with optimal asymptotic performance using

only symmetric cryptography.
• Extend our three-server scheme to k servers with

security against k − 1 malicious servers, at the cost
of introducing a per-shuffle preprocessing phase.

• Show how to use our broadcast scheme to improve
both the dialing and conversation protocols of the
MCMix [3] anonymous messaging scheme.

II. DESIGN GOALS

We will broadly target two classes of metadata-hiding
communication: anonymous broadcast and anonymous
messaging. Anonymous broadcast allows users to anony-
mously send messages which are then broadcast to the
world in batches, hiding the identity of each message’s
author among the set of all users who sent a message in
that batch. Anonymous messaging allows users to initiate
and conduct private conversations without the platform
learning which users are talking to each other. Anony-
mous messaging protocols are usually split into two parts.
A dialing protocol allows users to initiate conversations,
and a conversation protocol allows two users who have
started a conversation to send messages back and forth.
Both anonymous broadcast and anonymous messaging
make use of cover traffic, dummy messages sent by users
who are not actively communicating, sent solely for the
purpose of increasing the anonymity set enjoyed by real
users. For our purposes, both will also proceed in a series
of synchronized rounds, with message delivery happening
once per round.

Throughout this paper, we will assume that the servers
providing the broadcast/messaging services have key pairs
used to establish private, authenticated communication
channels between each other and with clients via TLS.
All messages sent using our techniques need to be padded
to a fixed length to hide message size metadata.

Security requirements. At a high level, we require three
kinds of security properties for a multiparty shuffle. Taken
together, these properties imply that, in our broadcast
and messaging protocols, any honest author of a message
can maintain anonymity against a malicious server and
coalition of malicious clients.

• Confidentiality: no client or server, possibly collud-
ing, will learn anything about the permutation that
was used to shuffle the messages (except for inputs
to the shuffle that the client chose itself).

• Integrity: a message sent to the shuffle by an honest
author will come out of the shuffle unmodified,
even in the presence of a malicious server, or any
attempted modification will be detected.
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• Disruption-resistance: a malicious client cannot
launch an in-protocol denial of service attack.

To achieve security, we will make a non-collusion
assumption among the servers. In particular, in Section IV,
we will assume that no two servers collude in an
attempt to break confidentiality or integrity guarantees.
In other words, we assume that at most one of the three
servers required by our scheme will deviate from the
prescribed protocol. In Section V, where we extend
our protocol to k servers, we will make the weaker
assumption that there is at least one honest server who
does not deviate from the protocol. That is, we expect
security to hold even if up to k − 1 servers maliciously
collude in an attempt to break confidentiality or integrity
guarantees. Our schemes do not provide security if all the
servers collude to deanonymize clients. This form of non-
collusion assumption is used by many metadata-hiding
communication systems as well as the private telemetry
functionality employed by Mozilla Firefox [20, 31, 1].

Note that we will trust the servers for availability,
meaning that we will expect them to remain online and
deliver the results of the protocol. We do not aim to
protect against DoS attacks by malicious servers, nor
against network-level DoS attacks. However, even a
malicious server who decides to abort the protocol and
prevent messages from being successfully broadcast will
be unable to violate the confidentiality or integrity of
messages. On the other hand, we do aim to protect against
disruptive clients.

We will formalize our security goals using a simulation-
based definition with an ideal functionality described in
Appendix A which captures both security requirements.
This means that the adversary, given access to the
ideal functionality, can produce a simulated transcript
distributed indistinguishably from that of the adversary
interacting with real servers and clients in the protocol.

Limitations. As in all anonymity systems, a user’s
anonymity set depends on the presence of cover traffic,
either from other real, honest users of the system or
from non-users who wish to increase the size of the
anonymity set available to those who need metadata-
hiding communication. A user’s anonymity set for a given
message is the number of honest users whose messages
are sent in the same round.

In the anonymous broadcast setting, our schemes will
hide which client sent each message within a given round,
but an adversary who can observe traffic across many
rounds, as the set of clients sending messages changes,
will be able to make inferences about who is sending
which messages. These intersection attacks affect many

anonymous broadcast systems and can be mitigated using
orthogonal techniques [48, 61] or additional cover traffic.

Additional security properties. Trusting the servers
for availability implies some potential limitations of our
approach. Foremost among these is that a malicious server
can simply cease to operate and prevent the system from
successfully delivering messages. Moreover, a malicious
server could prevent a particular user from being able
to use the system to deliver messages, or even decide to
abort the system once it sees the output (in the broadcast
setting) but before publishing messages to the world.
Prior work has studied how to prevent these scenarios
with security properties named robustness, censorship
resistance, and fairness, respectively, and shown how to
achieve them, albeit at additional cost [47, 2]. We compare
our techniques to these works, both quantitatively and
qualitatively, in Appendix D.

The choice of which security properties to include
in a system has ramifications for where it can be
deployed and for what purposes it is best-suited. Systems
where all servers must remain online are clearly not
useful in settings where it is likely that a powerful
outside actor, e.g., a nation-state adversary, would try to
censor or otherwise take down the servers. On the other
hand, allowing servers to block abusive users and view
messages before broadcasting them to the world may be
more compatible with platforms that wish to conduct a
degree of moderation to ensure compliance with legal or
ethical requirements. Our work fits in this latter category.

III. BACKGROUND

This section provides background information on nota-
tion and cryptographic tools that will be used throughout
this paper.

Notation. From here on we will use the following
notation:
• Let G be a finite abelian group where the group

operation is written additively.
• Let x ∈ GN be a length-N vector. We use [x] to

denote an additive secret sharing of x. If there are
two shares, we use [x]1 and [x]2 to denote the two
shares. In particular, [x]1 and [x]2 are elements in
GN and x = [x]1 + [x]2.

• For a vector x = (x1, . . . , xN ) ∈ GN and a
permutation π : ZN → ZN , we let π(x) denote
the permuted vector

(
xπ(1), . . . , xπ(N)

)
∈ GN .

Secret-shared shuffle. The starting point for our shuffling
scheme is an abstract problem called a secret-shared shuf-
fle. The problem is to design a secure protocol between
two parties P1 and P2 for the following functionality:
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• input: let x ∈ GN be a secret vector; Party P1 has
secret share [x]1 ∈ GN and Party P2 has secret
share [x]2 ∈ GN .

• output: P1 has [s]1 ∈ GN and P2 has [s]2 ∈ GN
such that s = π(x) and π : ZN → ZN is a random
permutation.

Neither party should learn anything else. In particular,
they should learn nothing else about x or the random
permutation π.

This problem was recently studied by Chase, Ghosh,
and Poburinnaya [12]. Their first step is a 2-party share
translation protocol which is a simpler problem defined as
follows. The parties take no input, and when the protocol
terminates:
• P2 holds random a, b ∈ GN .
• P1 holds a random permutation π1 : ZN → ZN and
∆ ∈ GN such that ∆ = π1(a)− b.

Neither party learns anything else about the other party’s
output.

Once they have a share translation protocol, Chase et al.
are able to use it to allow the parties P1, P2 to blindly
shuffle a secret-shared message using a permutation π
held by one of the parties. This process is repeated
twice with permutations π1 and π2 held by each party,
respectively, to achieve a full secret-shared shuffle.
Chase et al. construct a 2-party share translation protocol
using oblivious transfer (OT) and PRGs. As we will not
be using their share translation protocol construction, we
omit the details and only state how the resulting share
translation is used to conduct a secret-shared shuffle.

The parties use share translation to build a two-party
secret-shared shuffle protocol that works as follows: P2

masks its input share [x]2 using a and sends z1 ←
[x]2 − a to P1. P1 sets its output to [s]1 ← π1([x]1 +
z1) + ∆, and P2 sets its output to [s]2 ← b. Clearly
[s]1+[s]2 = π1(x). To achieve a full secret-shared shuffle
where neither party can determine what permutation was
applied to x, the parties repeat this process a second time
with the roles reversed.

Beaver triples. Our final scheme will require a small
multiparty computation (MPC) [36] where the servers
verify a MAC on a message while that message remains
secret-shared. This will require them to add and multiply
secret-shared values. Addition and multiplication by non-
secret-shared values can be done non-interactively by
each server on its own. However, we will require beaver
triples to efficiently compute multiplications of two secret-
shared values [7].

A Beaver triple is a secret sharing [a], [b], [c] between
parties such that a · b = c in Zp. A Beaver triple enables

the parties to efficiently multiply secret-shared quantities
that they hold. To multiply secret-shared values [x] and
[y], each party begins by computing and publishing [x−a]
and [y− b], which reveals the combined values ε = x−a
and δ = y − b. Then, each party locally computes the
share [z] ← [c] + [x] · δ + [y] · ε − εδ

N , where N is
the number of parties involved in the computation. It is
easy to verify that this results in each party holding
a share [z] of z = x · y. Since each beaver triple
multiplication requires interaction between parties, MPC
protocols using them benefit from mimizing the overall
number of multiplications and the multiplicative depth of
any arithmetic computations on secret-shared data. More
details on beaver triple MPC can be found in a number
of excellent online resources (e.g., [56, 62]).

In our three-server protocols, we will have the third
server generate the shares of [a], [b], and [c] and give
them to the two shuffling servers. Note that the third
server could maliciously create malformed beaver triples
that do not satisfy the required relationship, but because
our threat model prohibits collusion between the servers,
the third server, even if it is malicious, cannot cooperate
with another server to reveal user secrets. Thus, sending
incorrect beaver triples can damage availability but
not confidentiality or integrity. In the k-server setting,
beaver triples will be created in a maliciously-secure
preprocessing phase.

IV. THREE SERVER ANONYMOUS BROADCAST

In this section, we present our three-server protocol
for anonymous broadcast. We will first describe how
three semihonest servers can shuffle secret shared user
data such that no server learns the permutation that was
applied to the messages sent by the clients. Then we
show how to add integrity to build a full anonymous
broadcast scheme.

A. Shuffling Secret-Shared Data

We will start by using the share translation approach of
Chase et al. to shuffle messages, but instead of having two
servers generate the share translations using a protocol
between them, we have a third server generate the share
translation protocol outputs on their behalf. Roughly
speaking, each of the first two servers picks random
values for π,a, b, and sends them to the third server, who
sends back ∆ = π(a)−b. Since this process involves the
third server learning the permutations used by the first two
servers, we additionally have the first two servers share
a permutation π12, which they apply to the messages
before beginning the shuffle protocol.
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Unfortunately, this shuffle involves communication 8 ·
|x|+ 2|π| bytes of communication between the servers:
2|π| to send the permutations, |x| for each of the a, b,
and ∆ values sent from/to the two shuffling servers, and
another 2|x| to perform the Chase et al. secret-shared
shuffle given the share translation values.

Our final shuffle is a heavily optimized version of
the protocol described above that reduces the overall
communication cost to 2 · |x| + 32 bytes, a reduction
of over 4×. First, the two shuffling servers generate
the values π,a, b from random seeds and only send the
seeds to the third server, replacing 4 · |x|+ 2|π| bytes of
communication with short random seeds.

Second, and more importantly, observe that at the
end of two consecutive shuffles, P1 will hold the share
[s]1 = b2 and P2 will hold the share

[s]2 = π2

(
b1 + π1(x− a1) + ∆1 − a2

)
+ ∆2.

It turns out that several of these values are redundant,
and performance can be improved by merging or re-
moving them. That is, the secret-shared shuffle can be
more efficient than simply doing two share translations
back-to-back. In particular, by adjusting how the share
translations are used, we can entirely eliminate the need
for one party to get the vector ∆ and for the other party
to generate a vector b.

Our secret-shared shuffle protocol. Before describing
the protocol, let us first define the concept of a shuffle
correlation, which resembles the outputs of two share
translation protocols, but removes the components we
will no longer need.

Definition IV.1. A 2-party shuffle correlation is a
setting where two parties P1 and P2 hold the following
data:
• P1 holds random vectors a′2, b2 ∈ GN and a random

permutation π1 : ZN → ZN ,
• P2 holds a random vector a1 ∈ GN , a random

permutation π2 : ZN → ZN , and a vector ∆2 ∈ GN

such that ∆2 = π2

(
π1(a1) + a′2

)
− b2.

The parties know nothing else about each other’s values.

In Section IV-C, where we describe our full anonymous
broadcast, we will explain how the third server can
generate a shuffle correlation. For now we will assume
that the two parties already have a shuffle correlation,
and show how to use it to obtain a protocol for the
secret-shared shuffle functionality defined in Section III.

Protocol IV.2 (secret-shared shuffle).
input: P1 has [x]1 ∈ GN and P1’s shuffle correlation
quantities a′2, b2 and π1. P2 has [x]2 ∈ GN and P2’s
shuffle correlation quantities a1,∆2, and π2.
The secret-shared shuffle protocol proceeds as follows:

1) P2 sends z2 ← [x]2 − a1 to P1.
2) P1 sends z1 ← π1(z2+[x]1)−a′2 to P2 and

sets [s]1 ← b2.
3) P2 sets [s]2 ← π2(z1) + ∆2.

At the end of the protocol [s]1 + [s]2 = π2
(
π1(x)

)
.

Indeed,

[s]1+[s]2 = π2(z1) + ∆2 + b2

= π2(z1) + π2
(
π1(a1) + a′2

)
= π2

(
π1(z2 + [x]1)− a′2

)
+ π2

(
π1(a1) + a′2

)
= π2

(
π1(z2 + [x]1) + π1(a1)

)
= π2

(
π1([x]1 + [x]2)

)
= π2

(
π1(x)

)
.

Hence the protocol correctly implements the secret-
shared shuffle functionality. Theorem A.2 shows that
this protocol is a secure honest-but-curious protocol for
this functionality.

B. Integrity

We observe that since all servers hold shares of the data
from the beginning of the protocol, a malicious server
cannot surreptitiously drop messages without detection,
as other servers would notice the change in the number
of messages. This significantly reduces the set of attacks
the malicious server can potentially mount, limiting it to
modifying the contents of its shares. As a result, instead
of having servers provide proofs that they have correctly
shuffled messages, we will have clients send messages
with a special structure such that the servers can later
check that they have not been tampered with during the
shuffling process.

Adding MACs. As a first attempt at providing integrity,
consider a scheme where client messages are MACed
with a key k chosen by the client. The MAC and the key
are secret-shared along with the message and sent to the
servers, so actual message sent by a client is a share of
(k,m, t), where t ← MAC(k,m). The servers run the
secret-shared shuffle protocol on this data.

At the end of the protocol the servers each hash their
shares and send each other the hashes. Then they reveal
their shares to one another. The exchanged hashes ensure
that a malicious server cannot change its shares in an
attempt to forge MACs after seeing the keys. The high
entropy of the shares, which include shares of MAC keys
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unknown to the servers, mean that the hashes hide the
shares. Finally, each server verifies the MAC for each
message, and only publishes the messages for which
the MAC is valid. This ensures that messages that were
tampered with are discarded.

Unfortunately, this design does not actually achieve any
confidentiality against a malicious server. When receiving
a message share from a user whom it wants to surveil, a
malicious server can flip some bits in the message share,
ensuring that the MAC for that message will fail to verify.
Later, the malicious server knows that the message with
a MAC that does not verify is the one from the user
whose message it corrupted.

Blind MAC verification. To avoid the attack sketched
above, we require the servers to blindly verify the MACs
on all messages before revealing their shares to each
other, aborting the entire protocol if any MAC fails
to verify. We make this process efficient by using a
Carter-Wegman one-time MAC [59] that is optimized
to reduce the communication and round complexity of
the computation needed to blindly verify the MACs. We
carry out the blind validation of the MAC using Beaver
triples [7, 56, 62].

In our scheme we use a Carter-Wegman one-time
MAC defined as follows: the MAC on a message
m ∈ Z`p using a random key k ∈ Z`p is computed as
t← Σ`j=1kj ·mj . Note that the circuit for computing a
MAC has multiplicative depth 1. The keys themselves
are generated by expanding two key seeds ks1 and ks2
with a pseudorandom generator (PRG) G : Zp → Z`p and
adding the results together, i.e., k ← G(ks1) + G(ks2).
This allows the client to only send the servers their
corresponding key seeds instead of a full vector of
keys, reducing communication costs. The security of the
MAC follows directly from the DeMillo-Lipton-Schwartz-
Zippel lemma [28, 63, 54].

We implement the MAC check by having the servers
take the difference [di]← [ti]− [Σ`j=1kj ·mj ] between
the shares of the MAC tag provided by the client and the
MAC tag they have blindly computed. The servers check
all the MACs at once by taking the sum [d] ← Σi[di]
over all the messages before revealing their shares, thus
hiding which particular MAC failed to verify. This does
not harm the security of the MAC because under our
MAC scheme, this sum is no different than taking a
MAC of a single message that is the concatenation of
all the separate messages. If d = 0, then the servers
accept the MAC. Otherwise, the MAC is rejected. The
servers send each other commitments to their shares of
d before revealing them, preventing a malicious server

from waiting to see the other server’s share and then
producing a fake share that forces d = 0.

As described thus far, our scheme is vulnerable to
attack by a malicious server who intentionally corrupts
the MAC in an attempt to learn part of a user’s message,
e.g., by incrementing a single key share by one, so that
the difference of the provided tag and the computed tag
is the corresponding message block. This attack results
in the broadcast aborting, but not before the malicious
server learns part of a user’s message.

We handle this by having the client encrypt its message
under a randomly chosen key eki, and set the actual
message that gets MACed to be the concatenation of
the encrypted message and the encryption key, i.e.,
(ci, eki) where ci ← Enc(eki,mi). This ensures that
no meaningful information is leaked by an incorrect
MAC verification check. Since each encryption key
is only used for a single message, it suffices for the
encryption to be one-time semantically secure. Thus, we
implement encryption with AES in counter mode where
the count always starts at zero. Thus the final structure
of the message sent from each user to the servers is
(ks, [t], [c], [ek]), which includes a share of an encryption
of the user’s message, a share of the key under which
the message is encrypted, a share of the key under which
a MAC is computed (after the key shares are expanded
by a PRG), and a share of the resulting MAC tag.

Optimizations. Encrypting the client messages enables
two final optimizations. First, we can hash messages
to commit to them instead of using a commitment
scheme because the encrypted messages and eki have
high entropy and a malicious server who incorrectly
computes a MAC will learn nothing from a hash of the
other server’s share.

More importantly, we can reduce to the number of
Beaver triples required to one triple per message. This is
accomplished by having the servers reveal their shares
of ci before the MAC verification. Thus the MAC tag
for each message will be computed as [eki] · [k`+1] +
Σ`j=1ci,j ·[kj ], which only includes a single multiplication
between secret-shared values. Revealing the ciphertexts
reveals nothing about the underlying messages, including
whether they were tampered with before the shuffle, so
they can be safely revealed without harm to security.

Handling a malicious client. Adding the blind MAC
verification creates an opening where a malicious client
can launch an in-protocol denial of service attack. It only
needs to send a message with an incorrect MAC tag
in each batch of messages, and the servers will always
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abort the broadcast. The issue is that the current protocol
has no way of distinguishing whether a malicious server
or client has corrupted the MAC. Recall that we allow
servers to abort the protocol because they are trusted for
availability, but clients should not be allowed to launch
in-protocol DoS attacks. To mitigate this issue, we have
the servers conduct another blind MAC verification just
as they receive each message, allowing them to filter
out any faulty messages sent by clients before beginning
the shuffle. Since this check is for protecting against
malicious clients, the servers do not need to hash their
shares before revealing them to each other when checking
the MAC. The optimization to reduce the number of
beaver triples also does not apply to this initial blind
MAC verification, as revealing ciphertexts both before
and after the permutation would make them linkable.

C. The Complete Protocol

We now present the full three server scheme. We denote
the three servers as parties P1, P2, P3 and refer to servers
P1 and P2 together as the “shuffling servers.” There are
additionally N ′ clients who send messages m1, ...,mN ′

where mi ∈M for all i ∈ [N ′], to the servers in shares.
Messages will all be of a fixed length, and the system
processes N of these messages in each round. P1 and
P2 share a secret seed from which they generate a fresh
permutation π12 over the elements of ZN for each run of
the protocol. The client and servers will make use of (1)
an encryption scheme (Enc,Dec) where Enc : Zp×M→
Z`p is defined as Enc(ek,m) = m+H(ek) for a random
oracle H : Zp → Z`p, instantiated with AES in counter
mode and modeled as a distinct random oracle from the
one used for other hashes in the protocol, and (2) a PRG
G : Zp → Z`+1

p . For our purposes, p is a 128-bit prime.
The protocol proceeds as follows. We prove its security
in Appendix A.

Clients send messages. Each client samples two MAC
key seeds ksi,1, ksi,2 ∈ Zp, from which it computes the
one-time MAC key

ki = (ki,1, . . . , ki,`+1)← G(ksi,1) +G(ksi,2) ∈ Z`+1
p .

It also samples an encryption key eki ∈ Zp and produces
the ciphertext ci ← Enc(eki,mi).

It then computes the fixed-length MAC tag
ti ← ki,`+1 · eki + Σ`j=1ki,j · ci,j . It sends the
share (ksi,1, [ti]1, [ci]1, [eki]1) to P1 and the share
(ksi,2, [ti]2, [ci]2, [eki]2) to P2.

Seed expansion. For each message, the servers compute
vectors of shares [ki]1 ← G(ksi,1) and [ki]2 ← G(ksi,2)

respectively. Let xi = (ki, ti, ci, eki) ∈ Z2`+2
p and x =

(x1, . . . ,xN ). Server P1 has a share [x]1 and P2 has [x]2.

Blind MAC verification. The shuffling servers use an
MPC to check that ti = ki,`+1 · eki +

∑`
j=1 ki,j · ci,j

for every entry i ∈ [N ] of [x]. Each verification requires
` + 1 multiplications of secret shared data. All of this
can be done in parallel in one round using (` + 1)N
beaver triples. These beaver triples are supplied by the
third server P3.

The equality check is computed by the servers locally
taking the difference of shares [di] ← [ti] − [ki,`+1 ·
eki +Σ`j=1ki,j ·ci,j ] and revealing their shares of di, with
verification passing when di = 0. Messages for which
the MAC fails to verify are removed.

To ensure an appropriate anonymity set for each
message, the servers wait until N messages have passed
this blind MAC verification before proceeding to the next
step of the protocol.

Secret-shared shuffle. The shuffling servers now have
vectors [x]1 and [x]2. They begin by each permuting their
shares according to π12 to compute [x′]← π12([x]).

Next, server P1 chooses a random seed, expands it
to get π1 : ZN → ZN and a′2, b2 ∈ ZN×(2`+2)

p (these
are length-N vectors with entries of size 2` + 2), and
sends the seed to P3, who expands it to recover the same
values. P2 does the same to get π2,a1 and give them to
P3. Server P3 computes ∆2 ← π2

(
π1(a1) + a′2

)
− b2

and sends it back to P2.
The shuffling servers now have a shuffle correlation,

which they use to execute a secret-shared shuffle using
Protocol IV.2 on their shared vector x′. At the end of the
protocol the shuffling servers hold shares of a vector s,
where s = π2(π1(π12(x))). No single server knows all
three permutations used to shuffle x.

Second blind MAC verification. The servers run
a second blind MAC verification for every entry
([ki], [ti], [ci], [eki]) ∈ [s]. They begin by revealing their
shares of [ci] to each other to recover all the ci. They
then use an MPC with N beaver triples to check

ΣNi=1[ti] = ΣNi=1

(
[ki,`+1] · [eki] + Σ`j=1[ki,j ] · ci,j

)
.

The beaver triples are supplied by the third server. As in
the first blind MAC verification, all the multiplications
can be done in one round. Note, however, that this time
we verify all the MACs together as one batch, so if any
MAC fails to verify, the servers output abort and stop,
without revealing which particular MAC failed.
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The equality check is performed by taking the differ-
ence

[d]← [ΣNi=1ti]− [ΣNi=1

(
ki,`+1 · eki + Σ`j=1ki,j · ci,j

)
],

revealing the shares of d, and checking that d = 0. To
prevent a malicious shuffling server from lying about its
share to force the result to be zero, we have the servers
first send each other hashes of their shares of d before
revealing the actual shares.

Output phase. The shuffling servers hash their shuffled
shares and send the hashes to each other. Once it has
received the other shuffling server’s hash, each server
sends over its share of s and checks that the share
it receives matches the hash. For the purposes of our
security proof in Appendix A, we model the hash function
as a random oracle.

The shuffling servers then merge the shares to recover
(ki, ti, ci, eki) ∈ Z2`+2

p for i ∈ [N ]. They check each
MAC, aborting if a verification fails, recover mi ←
Dec(eki, ci), and make the messages available to clients
for download.

Complexity. Our scheme requires O(N`) field multiplica-
tions and PRG output evaluations to shuffle N messages
of length `. Communication costs between the servers
and between the servers and the client are also O(N`).
The cost for a client to send a message of length `
is O(`), and its communication cost is exactly ` + 3
elements of Zp sent to each server. This is asymptotically
optimal, as a system that simply receives and broadcasts
N messages with no security guarantees must also do
O(N`) computation and communication.

We discuss potential alternative MAC schemes that
could be used to instantiate our design in Appendix B

V. k-SERVER SCHEME

In this section, we show how to adapt the shuffling
technique used for three server anonymous broadcast in
Section IV to any k > 2 servers with malicious security
against k − 1 servers. This increase in security comes at
the cost of a more expensive per-shuffle preprocessing
phase that replaces the role of the third server in the
previous scheme. Since this scheme offers fast online
time but requires more expensive precomputation, it is
ideal for settings like an online event with live anonymous
comments: the preprocessing information can be prepared
while the event is planned, and comments can be delivered
quickly during the live event.

The k-server scheme involves server parties P1, ..., Pk
and is very similar to the three server scheme. Messages

sent by clients are identical to those sent in the three-
server scheme except that the key vector ki is generated
by more shares:

ki ← G(ksi,1) + ...+G(ksi,k),

where each ksi,j is sent to server Pj . The protocol
for conducting integrity checks is identical to that of
the three server case, except the multiplications require
beaver triples shared among k servers instead of only two.
Moreover, instead of using a third server to generate the
triples, they are generated in a per-round preprocessing
phase using standard techniques [24, 38].

Since the client input and server-side verification
procedures require only minimal changes compared to
the three-server setting, we will focus our attention on
changing the shuffling stage of the protocol to efficiently
accommodate k servers.

A. k-Server Shuffling

As described in Section III, the share translation
protocol of Chase et al. [12] roughly allows one party to
apply a permutation to the shares held by another party
without revealing the permutation. This naturally implies
a k-server shuffle protocol made up of pairwise share
translations between all the parties. In a setting where
each Pi holds permutation πi, the protocol begins with
P1 doing a share translation protocol separately with
each party Pj , j 6= 1, where the other parties’ shares
are permuted according to π1. Then, one at a time, each
subsequent Pi repeats this process with all other parties
Pj , j 6= i, until every party’s share has been permuted
under all permutations π1, ..., πk. This protocol would
result in communication and computation cost O(k2N`).
In this section, we show how improve this naı̈ve protocol,
reducing the cost to O(kN`).

The important observation is that when party Pi uses
the share translation protocol to shuffle the shares of all
the other parties, every party Pj 6= Pi has as its output a
random value b that does not depend on the user data
being shuffled. When it is time for the the next party to
shuffle, all the parties mask their random outputs with
another random value a and send that to Pi+1. But of
the values being masked, only Pi holds data that actually
depends on user inputs at this point. The observation
that most of the computation and communication in the
naı̈ve protocol involves shares that do not depend on
user inputs allows us to push that computation into a
preprocessing phase or even remove it altogether.

Our final protocol reduces the computation of the naı̈ve
protocol to only include those steps that depend on user
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data. As before, the protocol begins with all the servers
masking the initial shares they have received from the
users and sending them to P1, who shuffles them. Then
P1 masks its resulting share and sends it to P2, which
shuffles only the share from P1. This process continues,
with each server Pi shuffling its share and sending it to
server Pi+1, until the final server Pk has performed its
shuffle. Then the server Pk applies a single correction
value ∆k, generated during the preprocessing phase, that
removes the now-permuted masks that each server added
to its data before sending it to P1. We formalize the
protocol below.

(i) Offline phase. A pre-processing protocol described in
Section V-B below generates a k-party shuffle correlation,
defined as follows.

Definition V.1. A k-party shuffle correlation is a
situation where for i = 1, . . . , k server Pi holds:
• random vectors ai, bi,a

′
i ∈ GN and

• a random permutation πi : ZN → ZN .
Server Pk holds an additional vector ∆k ∈ GN where:

∆k = πk(. . . π2(π1(Σki=2ai) + a′
1) + a′

2) . . .+ a′
k−1)

− Σk−1i=1 bi.

The servers know nothing else about each other’s values.

(ii) Collect data. For i = 1, . . . , k server Pi receives
a share [x]i ∈ GN from the N end users (each user
contributes one entry in [x]i).

(iii) Shuffle. The k servers do:
1) All servers Pi, where i 6= 1, produce zi ← [x]i−ai

and send zi to server P1.
2) Server P1 computes z′

1 ← π1(Σki=2zi) − a′
1 and

sends z′
1 to server P2. Then it sets its output to

[s1]← b1.
3) For i ∈ {2...k − 1}, server Pi computes z′

i ←
πi(z

′
i−1)− a′

i and sends it to Pi+1. Then it sets its
output to [s]i ← bi.

4) Server Pk outputs [s]k ← πk(z′
k−1) + ∆k.

The servers now hold shares of [s], which is a secret
sharing of πk(...π1([x])...), and no set of k − 1 servers
knows all the permutations used to shuffle [x]. This
completes the shuffling protocol.

We prove security of this shuffle in Appendix A.

B. Preprocessing Phase

The offline phase of our k-server scheme has two
goals: (i) generate the beaver triples needed for blind
MAC verification, and (ii) prepare the k-party shuffle
correlation needed for the k-server shuffle. We use

standard techniques for generating beaver triples [24, 38]
and the protocol of Chase et al. [12] to produce share
translations ai,j , bi,j ,∆i,j for all i, j ∈ [k], i 6= j such
that ∆i,j = πi(ai,j)−bi,j , with Pi holding πi,∆i,j and
Pj holding ai,j , bi,j . Note that producing these share
translations will be slightly more expensive than reported
by Chase et al. [12] because they estimated performance
for semihonest security, whereas our instantiation of their
protocol would require malicious security. In practice,
this only requires replacing semihonest-secure oblivious
transfers with malicious-secure ones.

From here, we need to process these share translation
values to generate the k-party shuffle correlation required
for our shuffling protocol. In particular, we need to
produce the vectors ai, bi,a

′
i for each party Pi and

additionally ∆k for party Pk. We define the values of
the k-party shuffle correlation as follows.
• ai ← a1,i

• bi ← bk,i
• a′

i ← Σkj∈[k]\ibi,j + ∆i,j + ai+1,j

• ∆k ← Σj∈[k−1]∆k,j

Of these, ai, bi, and ∆k can be computed by each
server using only its own outputs from the Chase et al.
protocol. However, a′

i requires summing vectors held
by different servers. This can be achieved with a simple
MPC, involving only additions, where each server shares
all its vectors [ai,j ], [bi,j ], and [∆i,j ]. The servers then
compute the appropriate sums [a′

i] over the shares and
send the shares of each sum a′

i to Pi.
Omitting message sizes and log factors that vary based

on tunable parameters, the Chase et al. protocol has
cost Õ(N) to produce share translations for shuffling
N messages, meaning that the preprocessing phase has
complexity Õ(k2N). If k becomes large enough that the
k2 factor outweighs the benefits of using the Chase et al.
scheme over generic MPC, the parties could use an
alternative approach where all values except ∆k are
chosen uniformly at random. Then an MPC is used to
compute ∆k such that ∆k = πk(...π2(π1(Σki=2ai) +
a′
1)+a′

2)...+a′
k−1)−Σk−1i=1 bi. This MPC would consist

only of additions and k permutations, which can be
implemented with oblivious sorts, resulting in overall
cost Õ(kN).

VI. ANONYMOUS MESSAGING

We now show how to use our three-server anonymous
broadcast technique to improve the MPC-based anony-
mous messaging scheme MCMix [3]. Although the actual
design of MCMix will not be relevant to our discussion
here, the core technique used in MCMix is to sort the data
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passing through the system in various ways to exchange
messages between communicating parties, resulting in
O(N logN) complexity to handle N messages. MCMix,
like many other anonymous messaging systems, consists
of a conversation protocol that delivers actual messages
and a dialing protocol that initiates conversations. MCMix
operates in a three server setting, but its implementation
only offers security against a single semihonest server.
In addition to improving performance, the conversation
protocol we introduce will achieve security against a
single malicious server. Our improvements to the dialing
protocol use the MCMix dialing protocol in a black-
box way, so they inherit the semihonest security of the
MCMix protocol.

Conversation protocol. We first observe that anonymous
broadcast can be used as a drop-in replacement for the
conversation protocol in many anonymous messaging
protocols, including MCMix. What the communicating
parties A and B need from the dialing protocol is a
shared encryption key kAB for an underlying end-to-end
encrypted messaging scheme, another shared secret sAB
used to facilitate message transfer, and knowledge of
whether they will or will not be receiving a message
in a given round. Clients use the shared secret sAB
for message transfer as a PRF key which is expanded
to different pseudorandom “addresses” addrrAB ←
F (sAB , (r, “A, B”)), addrrBA ← F (sAB , (r, “B, A”))
(sometimes called a “dead drops”) for each round r of
communication.

Using the information from the dialing protocol, a
client involved in a conversation sends a message to the
anonymous broadcast system that includes the ciphertext
it wants delivered as well as the address it shares with its
conversation partner. Specifically, the message a client A
wanting to send m to B sends to the broadcast system in
round r is addrrAB ||EncE2E(kAB ,m), where EncE2E is
some end-to-end encrypted messaging scheme. Client B
sends a message addrrBA||EncE2E(kAB ,m

′) where m′

can either be a real message or simply a string of 0s if
B doesn’t have a message to simultaneously send back
to A. Note kAB may differ for each message sent under
end-to-end encrypted messaging schemes that employ
ratcheting [51]. A client C not sending a message in
round r uses a randomly chosen address addrrC ←R Zp
and encrypts a message consisting of all zeros under a
random key kC .

Clients attempting to read messages simply need to
query the servers for the address from which they want to
read, and clients not receiving messages query the same
random address they included in the message they sent.

That is, A, would query the servers for the message that
begins with addrrBA, B would query for the message
that begins with addrrAB , and C would query for the
message that begins with addrrC . Since the servers can
see all the final messages in the anonymous broadcast,
they can send each client its requested messages.

Every client always sends and then retrieves a single
message identified by a random address through the
broadcast system, so the behavior of clients having
conversations and not having conversations is indistin-
guishable. Moreover, every message includes a random
address string followed by a ciphertext. This means
the anonymous renders conversation partners unlinkable
because nothing about the messages themselves or which
address a client accesses reveals which parties are
speaking to each other.

Using this approach for messaging gives the conver-
sation protocol the O(N`) complexity of our shuffling
scheme, removing a logN factor compared to MCMix,
and also upgrades security to allow one malicious server
instead of a semihonest one.

There is an additional optimization that improves
performance when using an anonymous broadcast scheme
for messaging as described here. In this special case,
the addresses addrr are the only parts of the client
messages that actually need to be MACed and blindly
verified in the broadcast scheme because the rest of the
message is protected by the authenticated encryption of
the underlying end-to-end encryption scheme used to
protect the messages.

Dialing protocol. Our shuffling technique can also be
used to improve the MCMix dialing protocol. With our
improvement, server costs will be O(N) in the number of
total messages and O(NR logNR) in the number NR ≤
N of real, non-cover messages, i.e., the messages that are
actually initiating conversations. This results in an overall
cost O(N+NR logNR). In the original MCMix scheme,
the cost is O(N logN) for all messages. This clearly
leaks the number of real conversations to the servers, but
gives no information about which users are involved in
real conversations. This technique was first suggested by
Chase et al. [12] in the context of applying secret-shared
shuffles to MPC on private set intersections.

The idea is for clients to add a “cover” bit to all
messages, indicating whether each message is cover traffic
or not. The servers start by doing a shuffle, revealing the
cover bits, and separating the cover messages from the
non-cover messages. Then they perform the usual MCMix
dialing protocol on the non-cover messages. At the end
of the protocol, the cover messages are added back in at
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the same locations from which they were removed, the
cover bits are dropped from each message, and another
shuffle occurs using the inverse of the permutations used
in the original shuffle. This puts the cover messages back
in their original locations, without the servers learning
which entries were cover messages and which were real.

Although the shuffles used in this transformation have
security against malicious servers themselves, the overall
protocol inherits the semihonest security of the MCMix
dialing implementation.

VII. IMPLEMENTATION

We implemented our schemes in a system called
Clarion, which includes our three server anonymous
broadcast system, the variant of the broadcast system
used for the anonymous messaging conversation protocol,
and the multi-server version of our broadcast protocol,
all in Go. We did not implement the multi-server
preprocessing or the modified MCMix dialing protocol.
Performance estimates for the main components of both
can be found in prior work [12, 38, 3]. Our code is
open source and available at https://github.com/
SabaEskandarian/Clarion.

We use the Goff library for fast finite field arithmetic
in Go [9]. We instantiate our hash function with SHA256
and our encryption scheme with AES in counter mode.
Although the formalization of our scheme requires a
cipher with keyspace Zp, the statistical distance between
Zp and a uniformly random 128-bit key is negligible for
our choice of p = 2128 − 159.

Clarion includes a number of performance optimiza-
tions, several of which we discuss in Appendix C.

VIII. EVALUATION

We evaluated Clarion on Google cloud using compute
instances spread across the us-east, us-central, and us-
west regions and running Ubuntu Linux with 2, 8, or 16
vCPUs and 48 or 64GB of RAM. We set the power of the
instances used for each comparison to match the machines
used to evaluate the works to which we compare. All
performance numbers for Clarion are averages of 5 runs,
and our evaluation uses the malicious-secure versions of
our protocols that include blind MAC verification.

Throughout our evaluation, on all message sizes,
message batch sizes, and evaluation instance configu-
rations, the client computation to prepare a message
never exceeded 1ms. Thus we focus our evaluation on
server-side performance, where most costs are incurred.

Evaluation overview. We begin by comparing our three
server shuffling technique to a system where each server

computes a separate verifiable shuffle. We compare
the two approaches when they are used for anony-
mous broadcast (Section IV) and anonymous messaging
conversation protocols (Section VI). We find that we
outperform verifiable shuffles for anonymous broadcast of
32 Byte messages by 9.2×, but our performance becomes
worse when message sizes increase to 1KB. We perform
significantly better in the messaging setting, where we
deliver 160 Byte messages 8.2× faster than the verifiable
shuffle-based system and 1KB messages 1.9× faster.

Next, we evaluate the effectiveness of our approach
in improving the performance of an existing MPC-based
anonymous messaging system, MCMix [3]. We find that
our system has a conversation protocol that delivers
160 Byte messages 11.8× faster than MCMix. We also
estimate the performance gains our optimizations can
have on the MCMix dialing protocol.

Finally, we evaluate the performance of the online
phase of our k-server protocol (Section V), showing that
the performance cost of adding a server is less than that
of adding a server to the verifiable shuffle system, and
that Clarion significantly outperforms prior work that
does not take advantage of a preprocessing phase.

Comparison to verifiable shuffles. We conduct com-
parisons of our three server shuffling system to a two
server system where each server runs a separate verifiable
shuffle, one at a time. The difference in the number of
servers is so that both systems offer security against
1 malicious server, ensuring a fair comparison. The
verifiable shuffle we compare to is the optimized Bayer-
Groth shuffle proof initially built and used in the Stadium
system [6, 57]. We calculate the system’s total shuffling
time as the time to compute two verifiable shuffles
minus the time to verify the first shuffle proof (because
this can be done in parallel with preparing the second
proof). Our reported times underestimate the true running
time because they only shuffle one group element per
message instead of the whole message, as this is the
most expensive part of the verifiable shuffle. We also do
not include the cost of network communication for the
verifiable shuffle, but we do for our own system. This
comparison was run using Google cloud instances with
16 vCPUs and 64GB of RAM.

Figure 2 shows the performance of Clarion on various
message sizes as compared to the verifiable shuffle
system. For a batch size of 1 million messages, Clarion
outperforms verifiable shuffles by 9.2× on 32 Byte
messages and 3.0× for 160 Byte messages, but is 1.8×
slower for 1KB messages. This is because the cost of
blind MACs in Clarion is linear in the length of messages,
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Fig. 2: Performance of our three server
anonymous broadcast scheme for various
message sizes compared to a verifiable
shuffle system with 2 servers. For 1M 32
Byte messages, our scheme shuffles the
messages 9.2× faster.
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Fig. 3: Performance of our anonymous
messaging conversation protocol for var-
ious message sizes compared to a verifi-
able shuffle system with 2 servers. For 1M
160 Byte messages, our scheme shuffles
the messages 8.2× faster.

103 104 105 106

100

101

102

Number of Messages

Ti
m

e
[s

ec
]

Conversation Protocol
Comparison to MCMix

160B Msg 144B MCMix
1KB Msg 1KB MCMix

Fig. 4: Performance of our messaging
conversation protocol for various mes-
sage sizes compared to MCMix [3]. For
100,000 160 Byte messages, our scheme
shuffles the messages 11.8× faster than
MCMix.

but the verifiable shuffle only needs to run on a fixed-size
component of each message. Although a full verifiable
shuffle system implementation would also need to do
additional computation, roughly corresponding to the cost
of evaluating AES for the length of each message, we
do not expect that this would significantly increase costs.
We conclude that our approach can lead to significant
performance improvements for anonymous broadcast in
shorter messages, but a verifiable shuffle system will
perform better on large messages.

The situation changes, however, when we consider the
conversation protocol in anonymous messaging schemes,
as shown in Figure 3. Here we outperform verifiable
shuffles by 8.2× for 160 Byte messages and 1.9× for
1KB messages. The improvement is due to the fact that
in a conversation protocol, the servers in Clarion only
need to blindly verify MACs on a short identifier for
each message, not the messages themselves, which are
ultimately verified by communicating clients using the
underlying end-to-end encryption scheme.

Comparison to MCMix. Figure 4 compares our con-
versation protocol with the reported performance of the
MCMix conversation protocol. For this comparison, we
run our scheme on Google cloud instances with 2 vCPUs
and 48GB of RAM to match the MCMix evaluation. The
figure shows that we outperform the MCMix protocol by
11.8× when delivering 100,000 160 Byte messages and
by 10.8× when delivering 1KB messages.

We also estimate the performance improvement we
can achieve over MCMix by using our technique to
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Fig. 5: Performance of online phase of the k-server broadcast.

make the cost of processing cover traffic cheaper than
real traffic in the dialing protocol (as described in
Section VI). The performance benefit will vary depending
on what fraction of the messaging service’s users are
initiating conversations at any time, so we will assume
conservatively that perhaps 20% of the service’s user
base starts a new conversation in each dialing round.
This means that the cost of dialing with 500,000 users,
the largest number of dialing messages on which MCMix
was evaluated, will be the cost of two shuffles using our
scheme on 500,000 messages, plus the cost of the original
MCMix scheme on 100,000 messages. This comes out
to under 100 seconds in our improved version versus
over 200 seconds in the original scheme, a more than
2× improvement. The improvement will increase as we
reduce the fraction of users that we assume are starting
a conversation in each dialing round.
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k-server scheme. Figure 5 shows the performance of
the online portion of our k-server protocol broadcasting
160 Byte messages, excluding preprocessing, for three,
four, and five servers. This evaluation was conducted
on Google cloud instances with 8 vCPUs and 64GB of
RAM. Compared to verifiable shuffles run by 3, 4, or 5
servers, which would provide the same security properties,
Clarion mixes 1 Million messages 2.9×, 3.6×, and 4.0×
faster, respectively. Thus the more servers are desired,
the more shuffling secret shared messages improves over
using verifiable shuffles.

In Appendix D, we compare our k-server protocol with
other systems that use MPC techniques for anonymous
communication.

IX. RELATED WORK

In general, Clarion can be thought of as sitting between
mixnet approaches [13, 25, 33, 42, 41, 43, 45] and
more recent MPC techniques for anonymous commu-
nication [47, 2, 3]. By having all servers involved in each
shuffle and imposing a special structure on messages sent
by clients, we make the task of proving that a shuffle
was computed honestly much easier.

A large class of systems also build anonymous com-
munication from DC-nets and related approaches [14,
35, 22, 60, 23, 21]. Compared to these works, we
remove the linear server-side work for each request.
Since communication-efficient DC-net approaches often
rely on DPFs [34, 11, 10, 21, 32, 49], we also get
around the communication and efficiency issues that
arise when scaling DPFs past two servers. For example,
while systems like Riposte [21] or Express [32] process
individual messages faster than Clarion, their overall
O(N2) complexity to handle N messages makes them
much slower, e.g., Riposte estimates 11 hours to get
an anonymity set of 1,000,000 users whereas Clarion
performs a shuffle of similar size in minutes.

We similarly avoid the linear server-side cost per
message involved when using PIR approaches [18, 50,
19, 53, 39, 40, 8, 5, 4, 17]. Our work offers a securi-
ty/performance tradeoff compared to Pung [5], which is
a single-server system secure against a malicious server
and therefore does not need to make any kind of non-
collusion assumption. Clarion offers stronger performance
and lower costs than Pung, but it also makes a stronger
non-collusion assumption among the participating servers.

The most widely used anonymity system today is
Tor [30]. Tor and similar low-latency anonymity systems
achieve strong performance but are vulnerable to traffic
analysis by a passive adversary with a view of enough of

the network [29, 37]. Recent impossibility results suggest
that this limitation may be necessary [26, 27].

Recent iterations on the low-latency mix network de-
sign, e.g., HORnet [15], Loopix [52], and TARAnet [16],
provide stronger resistance to passive attacks, and even
a degree of protection against active attacks, while still
incurring minimal latency overheads. As an example
of the tradeoffs involved in these systems, the Loopix
anonymity system provides low latency on the order
of seconds to process messages because it does not
require the protocol to run in synchronized rounds, which
lead to high latencies in round-based systems. On the
other hand, Loopix measures security by observing the
expected difference in likelihood, from the perspective
of an attacker, that a given message originated from
one sender versus another. Whereas this measure of
security varies based on system parameters in Loopix
and other low-latency anonymity systems, the difference
in likelihood in Clarion will always be zero, as Clarion’s
confidentiality property guarantees that the source of a
message is completely hidden among the set of potential
senders. Thus Clarion offers a stronger security guarantee
at the cost of significantly higher latency.

Works based on differential privacy [58, 46, 57, 44]
achieve high throughput at the expense of only providing
differentially private security guarantees that gradually
exhaust a privacy budget over time as more messages
are sent. Since these systems also often use verifiable
shuffling as part of their solutions, our techniques may
have applications in speeding them up as well.

X. CONCLUSION AND FUTURE WORK

We have shown how to use multiparty shuffling
protocols to build faster metadata-hiding communication
systems in the three-server and k-server settings. Our
k-server scheme comes at the cost of a more expensive
preprocessing phase. This raises the interesting question
of whether we can reduce the cost of preprocessing or if it
would be possible to replace the per-shuffle preprocessing
with a one-time preprocessing that can be reused. We
leave this as a compelling problem for future work.
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APPENDIX A
SECURITY PROOFS

We begin by stating our multiparty shuffle ideal
functionality. The functionality describes the more general
k-server setting where we wish to achieve security against
k − 1 servers. In Section IV, we considered the special
case where k = 3 and the adversary is allowed to control
at most 1 server. In this case, if the adversary controls
the third server, called P3, the adversary is not given the
opportunity to see T ′ before it is output.

Definition A.1 (Multiparty shuffle ideal functionality).
The functionality interacts with N ′ clients C1, ..., CN ′ ,
some of which are honest and the rest are controlled by
the adversary, and with k servers P1, ..., Pk, of which
at most k − 1 are are controlled by the adversary. At
any point, any adversary-controlled server can send
the functionality an abort message, which causes the
functionality to abort.

The functionality initiates an empty table T and waits
for messages from clients. Each client sends a message
(given to it as an input), with an optional additional
tag malformed included by adversary-controlled clients.
The functionality drops any message that contains the

malformed tag. For the remaining messages, it polls the
adversary-controlled servers (without sending them the
message), and any adversary server can send the function-
ality a drop request, which will cause the functionality to
drop that message. Any message that is not malformed
or dropped will be added to T .

Once T contains N messages (where N is a parameter
that specifies the minimum anonymity set size), the func-
tionality samples a random permutation π : ZN → ZN
and applies it to T , computing T ′ ← π(T ). It then sends
T ′ to the adversary, who can respond with continue or
abort. Before responding with continue, the adversary
may choose to modify any message T ′π(i), where i is
the index of a message initially sent by an adversary-
controlled client. Let T ′′ be the resulting table with any
modifications made by the adversary. When the adversary
sends continue, the functionality outputs T ′′.

We now prove the security of our three server shuffle
and its multi-server generalization. We will begin by
proving the security of the secret-shared shuffle against
honest-but-curious adversaries.

Theorem A.2 (Three server semihonest shuffle). As-
suming that the inputs to P1 and P2 include a random
2-party shuffle correlation (Definition IV.1), Protocol IV.2
achieves the secret-shared shuffle ideal functionality
described in Section IV-A against an honest-but-curious
adversary.

Proof. To simulate the view of P1, the simulation
produces a random message z2 ←R GN from P2 and
otherwise follows the protocol honestly using P1’s inputs
[x]1,a

′
2, b2, and π1, and setting P1’s output to b2. This

simulation is distributed identically to the view of P1 in
the real protocol because there z2 ← [x]2 − a1, where
a1 is uniformly random by the definition of a shuffle
correlation. The rest of the messages are identical to the
messages sent by P1 in the real protocol.

To simulate P2, the simulation must simulate the
message z1 sent by P1. The simulation is given P2’s
output [s]2, which is computed as [s]2 ← π2(z1) + ∆2,
and it is also given P2’s inputs, including π2 and ∆2.
Thus it can solve for the value z1 = π−12 ([s]2−∆2). The
rest of the simulation follows the protocol honestly using
P2’s inputs. This simulation is distributed identically to
the view of P2 in the real protocol because all the inputs,
outputs, and messages are exactly equal to the values
that would be sent and received in the real protocol.

The proof above generalizes directly to the k-server
shuffle in Section V, so we omit the proof of the following
theorem.
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Theorem A.3 (k-server semihonest shuffle). Assuming
that the inputs to P1...Pk include a random k-party
shuffle correlation (Definition V.1), the k-party shuffle
in Section V achieves the secret-shared shuffle ideal
functionality against an honest-but-curious adversary.

We now turn to proving the security of our anonymous
broadcast scheme, which has the secret-shared shuffle
at its core but also provides security against malicious
adversaries. Throughout the rest of this section, we
will assume that Beaver triple-based share multiplication
achieves an ideal functionality Fmult whose messages can
be simulated by the simulator Smult. The functionality
takes as inputs shares of two values and returns shares
of their product.

Our proof will model hash functions as random oracles
when servers send hashes of their messages to each other
before revealing them. We will also model our one-time
semantically secure encryption scheme (Enc, Dec) as
being built around another (distinct) random oracle H :
Zp → Z`p and defined as Enc(k,m) = m+H(k). This
is necessary because the adversary should learn nothing
from ciphertexts that are revealed to it, but at the end of
an honest execution of the protocol, all the encryption
keys and messages will be revealed.

Note that our proof does not invoke the security of the
first blind MAC verification. This is because the first blind
MAC verification is included only to protect against a
malicious client who wishes to send disruptive messages,
but we already allow a malicious adversary who controls
a server to disrupt the protocol. We do not formalize a
weaker adversary who only controls malicious clients,
but the proof that such an adversary could not disrupt the
protocol would simply rely on the first MAC verification
and the correctness of the scheme. That is, we would show
that when the servers are honest a malformed message
whose MAC does not verify would be discarded prior to
the shuffle, and a MAC that does verify would not fail
to verify after the shuffle. To be clear, our model does
capture malicious clients colluding with the adversary to
violate others’ privacy.

Theorem A.4 (Three server shuffle). Assuming that G is
a secure PRG and that the beaver triple MPC achieves
Fmult, then the three server anonymous broadcast scheme
presented in Section IV achieves the three party shuffle
ideal functionality (Definition A.1) in the random oracle
model.

Proof (sketch). We first describe and prove the security
of the simulation for the third server and then move
on to the shuffling servers. Due to space limitations,

we only sketch the behavior of the simulators and their
corresponding indistinguishability proofs.

Simulating the third server. The view of the third server
in the honest protocol only consists of the random seeds
it receives from the shuffling servers, the messages it
sends to the shuffling servers, and the final output of the
protocol. The adversary also sees the messages sent by
any clients it controls.

Messages sent by the shuffling servers to the third
server are simulated by random strings.

For an adversary that follows the protocol exactly,
the simulator never sends drop, malformed, or abort
messages to the ideal functionality, makes no changes
to the table T ′ when given the opportunity, and receives
the ideal functionality’s output T ′′.

The adversary may also, acting as a malicious client,
send messages that do not have correct MACs, but then
send modified beaver triples and shuffle correlations
to force the messages it sent to be accepted by the
blind MAC verification. It knows the indexes of its own
messages pre- and post-shuffle, so there is no barrier to
doing this. For the rest of this proof, we do not consider
beaver triples or shuffle correlations modified for this
purpose to be malformed.

If the adversary sends a message with a MAC that does
not verify, or sends a message with a correct MAC but
sends malformed beaver triples for that message’s initial
blind MAC verification, the simulator sends the message
with the malformed tag to the ideal functionality, which
results in that message being excluded from the output.

If the adversary incorrectly generates the beaver triples
for an honest client’s message, then the simulator sends
the message drop for that message, which results in that
message being excluded from the output.

If the adversary sends a malformed shuffle correlation
or malformed beaver triple for the second blind MAC
verification, the simulation sends abort to the ideal
functionality, resulting in the output ⊥. This completes
the description of the simulation of the third server.

Security of third server simulation. Note that any
adversary in the real protocol that does not produce any
malformed beaver triples or share correlations produces
a transcript that is already identically distributed to the
simulated transcript. To handle the remaining cases, we
require two hybrids.
Hyb1 : We modify the real protocol so that the

MAC key shares [k] used by the shuffling servers
for non-adversary controlled client messages are truly
random instead of the output of a PRG. The adversary
never sees these seeds or key shares, so this change is
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indistinguishable from the previous hybrid by the security
of the PRG G.

Hyb2 : In this hybrid we have our protocol abort if
either of the following occur:
• The adversary produces a malformed beaver triple

for the first blind MAC verification, but the message
the beaver triple is used to verify is included in the
protocol output.

• The adversary produces a malformed shuffle corre-
lation or beaver triple for the second blind MAC
verification, but the output of the protocol is not ⊥.

This hybrid is indistinguishable from the preceding
one because of the events above occur with negligi-
ble probability by the DeMillo-Lipton-Schwartz-Zippel
lemma [28, 63, 54]. Observe that our MAC has the form
t = Σiki ·mi, which means that it is an evaluation of a
multilinear polynomial determined by the message blocks
mi being MACed, and it is evaluated at a random point
corresponding to the choice of keys ki which are random
and not visible to the adversary. Thus the probability of
a tampered MAC being accepted is at most negligible.

The transcript generated in Hyb2 is distributed identi-
cally to that of our simulation, completing the proof.

Simulating the shuffling servers.
Sending client messages. The first part of the adver-

sary’s view is the messages it sends on behalf of clients
it controls. The simulator recovers the plaintext message
in each message sent by the adversary and sends that
as a message to the ideal functionality. If any of the
adversary’s messages do not contain MACs that verify
correctly, the simulation sends malformed to the ideal
functionality for those messages so that they are excluded
from the output of the protocol.

If at any point the adversary modifies shares of one of
the messages it sent to produce a share of a new message
that also has a legitimate MAC, the simulator modifies the
message accordingly when given the chance to modify
T ′ in the ideal functionality. Throughout the proof, we
do not consider this a deviation from the protocol.

First blind MAC verification. Next, the adversary sees
the messages it receives from honest clients. These
messages are simulated by random strings. During the
initial blind MAC verification for each message, the
adversary is sent a random string for each component of
a beaver triple, and the simulator Smult is used to simulate
the beaver multiplication for all honest messages. For
adversary-controlled messages, the simulation performs
the role of the other servers in the real blind MAC
verification protocol and sends their messages.

For the remaining messages, if the adversary performs
the initial blind MAC verification honestly, the simulated
message revealing the other server’s share of [di] is the
negation of the adversary’s share. If the adversary deviates
from the protocol in computing the MAC verification,
then the simulated message is a random element of Zp.
In this case, the simulator sends the message drop to the
ideal functionality, and this message is dropped from the
output of the functionality.

Shuffling. The view of the adversary during the shuf-
fling stage of the protocol is simulated as described
in Theorem A.2. The adversary’s share of the shuffle
correlations are simulated by random strings.

Second blind MAC verification. After the shuffle,
the simulator examines the table T ′ sent to it by the
ideal functionality and identifies the entries where the
adversary-produced messages landed after the shuffle.
When the servers reveal their shares of the ciphertexts ci,
the simulator sends shares for the adversary-controlled
messages that reconstruct the ciphertexts originally
sent by the adversary. For the remaining messages,
it chooses random keys eki and produces ciphertexts
ci ← Enc(eki, T

′
i ). It then creates shares [ci] and sends

the appropriate share to the adversary.
For the second blind MAC verification, the simulator

gives the adversary random strings to simulate beaver
triples, uses Smult as before to simulate beaver multiplica-
tions for honest shares, and follows the protocol honestly
for shares of adversary-controlled messages.

When hashing and revealing the result of the difference
d, the simulator uses the negation of the adversary’s
share if the adversary performs the MAC honestly. If
the adversary deviates from any part of the protocol
where it operates on honest client-generated messages, the
simulation uses a random element of Zp. If the adversary
deviates from the protocol but only deviates in parts of
the protocol that touch adversary-controlled messages,
the simulator performs the protocol honestly for only
the adversary-controlled rows of the table and sends the
resulting output. In any case where the adversary deviates
from the protocol, the simulation sends abort to the ideal
functionality, resulting in the output ⊥.

If at any point the adversary sends a message whose
hash does not match the hash it previously sent (of
purportedly the same message), the simulation sends
abort to the ideal functionality, resulting in the output ⊥.

Output. To simulate the honest shuffling server’s
share of the output, the simulator produces a database
DB of messages of the form (ki, ti, ci, eki), where the
rows corresponding to adversary-controlled messages
are exactly the messages produced by the adversary
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(including any modifications it may have made after
initially sending them). The remaining rows have the
eki, ci from the second blind MAC verification, random
ki, and a MAC ti ← ki,`+1 · eki + Σ`j=1ki,j · ci,j . Let
DBAdv be the table of shares held by the adversary at the
beginning of the output phase. The simulator computes
DBHon ← DB−DBAdv, and uses DBHon as the message
the honest shuffling server hashes and reveals in the
output phase.

If the adversary aborts before revealing its final output,
or if the adversary’s final output contains messages whose
MACs do not verify, the simulation sends abort to the
ideal functionality, resulting in the output ⊥.

Security of shuffling server simulation. The proof that
a real execution of the protocol produces a transcript
indistinguishable from the simulated protocol proceeds
by a series of hybrids. We sketch the proof below.
Hyb0 : The transcript of a real execution of the protocol

with the adversary controlling one of the shuffling servers.
Hyb1 : In this hybrid we replace the real beaver triple

multiplication messages with simulated messages. This
step is indistinguishable from the real protocol by the
security of Smult.
Hyb2 : We modify the real protocol so that the

MAC key shares [k] used by the honest shuffling server
for non-adversary produced client messages are truly
random instead of the output of a PRG. The adversary
never sees these seeds or key shares, so this change is
indistinguishable from the previous hybrid by the security
of the PRG G. Note that as long as one of the shares of
the MAC key is truly random, the whole key is random.
Moreover, if the adversary changes its share of a key, the
result is a different key that is still random and unknown
to the adversary.
Hyb3 : We modify the protocol to abort if there is

ever a situation where the protocol reaches the end of
its execution without aborting, but the adversary queries
the random oracle used for encryption at the same eki
as an honest client message before the output phase.
This hybrid is indistinguishable from the previous hybrid
because this event occurs with negligible probability. If
the protocol reaches the end without aborting, then the
adversary never sees any client-generated key eki before
the output phase, so the probability that it could guess a
random eki is negligible.

Note that this change implies that any ciphertext
component from an honest user that the adversary sees
in the course of the blind MAC verifications, whether or
not it complies with the protocol, will appear uniformly
random and reveal nothing about the underlying messages.

An adversary who deviates from the protocol and gets
d 6= 0 can use the output d to learn an inner product of
a combination of MAC keys, ciphertexts, and encryption
keys. But observe that the MAC keys and encryption
keys are uniformly random, meaning any inner product
including them will be random. If instead the inner
product only includes ciphertext blocks, then d will still
appear random because the encryption key remains hidden
and the encryption masks the blocks of the message with
the output of the random oracle on the encryption key.
Hyb4 : We replace the real view of the adversary

during the shuffling step with a simulated shuffle. This is
indistinguishable from the previous hybrid by the proof
of Theorem A.2.
Hyb5 : We modify the protocol to abort if the

adversary deviates from the protocol before it receives
the final message of the shuffle and then the protocol
accepts the second blind MAC verification. This hybrid
is indistinguishable from the previous hybrid because this
event occurs with negligible probability. Observe that our
MAC has the form t = Σiki ·mi, which means that it is
an evaluation of a multilinear polynomial determined by
the message blocks mi being MACed, and it is evaluated
at a random point corresponding to the choice of keys
ki which are random and not visible to the adversary.
Thus the probability of a tampered MAC being accepted,
i.e., the servers reveal shares that sum to zero, is at
most negligible by the DeMillo-Lipton-Schwartz-Zippel
lemma [28, 63, 54].

Moreover, as mentioned above, whenever d 6= 0, it
appears random to the adversary. Thus, knowledge of its
share of [d] gives the adversary no information about the
share held by the honest party, meaning the probability
that the adversary can guess the other party’s share is
negligible. Since the adversary cannot guess the other
party’s share, the hash of that share sent during the MAC
verification also appears random to the adversary.

Hyb6 : We modify the protocol to abort if the adversary
reveals a DBAdv that it has not previously sent as a
query to the random oracle, but the protocol does not
abort and output ⊥. This hybrid is indistinguishable from
the preceding one because this event occurs with at
most negligible probability. Since the hash of DBAdv

must match a previously sent value, the probability that
the adversary finds a second preimage for that hash is
negligible.
Hyb7 : We modify the protocol to abort if the final

recovered DB does not contain the set of messages sent by
honest clients in T ′′. This hybrid is indistinguishable from
the previous hybrid by the security of our MAC, which fol-
lows directly from the DeMillo-Lipton-Schwartz-Zippel
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lemma [28, 63, 54], as discussed above. For an honest
client’s message to be missing, the adversary must have
modified the message in that position in T ′′, but this
would require forging a MAC. Although the MAC keys
have by now been revealed, the message DBAdv was
produced independently of the keys, as it was hashed
before the adversary sees DBHon, and the MAC security
therefore still applies.

The transcript produced in Hyb7 is distributed identi-
cally to a simulated transcript, completing the proof.

The security of the preprocessing phase of the k-server
protocol follows directly from the security of the tools
used to build it. We state the following theorem for the
online portion of the protocol.

Theorem A.5 (k-server shuffle). Assuming that G is
a secure PRG, that the beaver triple MPC achieves
Fmult, and assuming that the offline phase of the pro-
tocol securely generates random beaver triples and k-
party shuffle correlations, then the k-server anonymous
broadcast scheme presented in Section IV achieves the
multiparty shuffle ideal functionality (Definition A.1) in
the random oracle model.

We omit a full proof of this theorem as it is almost
identical to the proof for the three server scheme with one
malicious server. The main reason the 3-server protocol
was secure against only 1 adversary was the role of the
third server in producing shuffle correlations and beaver
triples. With the role of the third server pushed to the
preprocessing phase, the remaining parts of the protocol
are the shuffle and integrity checks. Both of these had
1-out-of-2 security in the 3-server protocol because two
servers did the actual shuffling, and both generalize to (k-
1)-out-of-k security. Thus the primary difference between
the protocols is that the shuffling protocol used is the
k-party shuffle to account for the shift from two to k
shuffling servers. The other components of the protocol
are the same except that multiplication of secret-shared
values, whose security is used as a black box in the
proof, is computed via beaver multiplications among k
parties instead of only two parties. The similarities and
differences between the protocols are described in more
detail in Section V.

APPENDIX B
ALTERNATIVE MAC SCHEMES

Instead of separately multiplying each block of the
message by a separate one-time MAC key, we could
instead make use of an additively homomorphic collision
resistant hash function to add together hashes of all the

message blocks and then only multiply that sum of hashes
by a single MAC key. This would require only one beaver
triple for each blind MAC check, would halve the length
of each entry in x, and would reduce the communication
costs of the third server by a factor of `.

Concretely, we could use a hash function H : Z`p →
G for a group G parameterized by public parameters
g1, ..., g` whose discrete logs are unknown. The hash
is defined as H(m) ← Π`

i=1g
mi
i . Since instantiating

this hash function would be more expensive than the
multiplications in Zp that we currently employ, we see
this as a computation/communication tradeoff, although
using this hash is strictly superior asymptotically.

We could also directly use a standard Carter-Wegman
MAC [59] for our MAC, reducing the length of entries
in x by a factor of 2, but this would require log ` rounds
to compute the MAC using Beaver triples.

APPENDIX C
PERFORMANCE OPTIMIZATIONS

Free permutation. Our three server shuffle requires the
shuffling servers to share a permutation π12 which they
use to permute their shares before running the secret-
shared shuffle. We design our implementation so that this
permutation is effectively computed “for free” while the
servers receive messages from clients.

In our implementation, clients send all their messages
to the first shuffling server, with shares meant for
the second server encrypted under that server’s public
key. The servers wait until they have a predetermined
number of messages before beginning their shuffles. This
simplifies the process of ordering received messages
among the servers, but it also means that the first
shuffling server can simply pick π12 before receiving
client messages, insert the ith client message into position
π12(i) in its message storage, and send the other shuffling
servers both the messages intended for them and the index
π12(i) where they should be inserted. Using this approach
to receiving client messages means that servers do not
actually need to evaluate the permutation π12 on the
messages.

This optimization does not harm security because the
first server only helps route encrypted and authenticated
messages to the second server and doesn’t learn anything
from the messages it passes on. Moreover, the permuta-
tion π12 is needed for security only in the case where
the third server is malicious. In this case, since we are
assuming only one of three servers is malicious, we know
the shuffling servers are honest and the data will correctly
be permuted according to π12.
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Concurrency. We interleave different parts of our proto-
col to reduce the time the shuffling servers spend waiting
for inputs from the third server in the three server protocol.
The shuffling servers’ first action is to generate the seeds
needed for shuffling, send them to the third server, and
then expand those seeds into the vectors ai, bi, and a′

i, so
the shuffling servers don’t wait idle while the third server
prepares beaver triples for the blind MAC verification.
The clients also generate the shares [a] and [b] for their
beaver triples on their own from PRG seeds and send
these seeds to the third server, who uses them to complete
the triple, thus reducing beaver triple communication costs
by a factor of three. After MAC verification, the servers
immediately commence the shuffle without waiting for
the second server to receive ∆2, only waiting if they
reach the last step of the shuffle (where ∆2 is used)
before it arrives.

The most time-consuming portion of our protocol is
the blind MAC verification, but fortunately this part of
the protocol can be parallelized among as many cores or
even separate machines as are available.

Skipping final MAC verification. The final (non-blind)
MAC verification and message decryption is left to clients,
with servers simply sending the message along with the
keys. This does not affect security because by this point
the servers have already blindly verified the MACs both
before and after shuffling, and the clients will not see
anything that an adversary-controlled shuffling server has
not already seen.

APPENDIX D
COMPARISON TO OTHER MPC-BASED APPROACHES

We now compare the online phase of our k-server
protocol with Asynchromix [47], Blinder-CPU, and
Blinder-GPU [2], three other works which use MPC
techniques for anonymous communication. Here we
compare to the performance numbers reported in each
paper, so the comparison serves only to give a sense
of order of magnitude differences between the systems’
performance and does not compare them directly on the
same hardware or parameters. When comparing to the
largest message batch sizes each work was evaluated on,
Clarion’s online phase outperforms Asynchromix (4K
32B messages per batch, 4 servers), Blinder-CPU (100K
160B messages per batch, 5 servers), and Blinder-GPU
(1M 160B messages per batch, 5 servers), by 26×, 19×,
and 2× respectively. The performance improvement over
Blinder-GPU holds despite the fact that Blinder was run
on GPUs which would cost about 40× more to run for

the same amount of time as our setup (based on current
Google cloud pricing).

We caution that this strong performance compar-
ison does not imply that Clarion strictly dominates
Asynchromix and Blinder. First, the evaluation includes
only the online time to run Clarion. This means our
evaluation corresponds well to the setting where low-
latency anonymous broadcast is needed for a short period,
e.g., during a live event, that can be planned ahead of
time, as Blinder cannot support an offline preprocessing
phase in the same way we can. Moreover, Asynchromix
and Blinder both provide additional resilience properties
not present in Clarion– the robustness, fairness, and
censorship-resistance properties mentioned in Section II
– that ensure the system can continue operating if some
fraction of servers go down due to malicious interference.
On the other hand, they also only provide security against
a k/3 and k/4 fraction of malicious servers, respectively,
whereas Clarion provides security against k−1 malicious
servers. Thus our evaluation demonstrates that there
are settings where our approach is a better choice than
Asynchromix or Blinder, but the best system for a given
scenario varies.

The differences in security properties between Clarion
and Asynchromix/Blinder all arise from a fundamental
difference in approach. Messages in these other systems
use threshold secret sharing of messages, so not all servers
are required to participate in order for protocol outputs
to be correctly computed. In order for Clarion to achieve
these same security properties, we would need to replace
our secret-shared shuffle with a threshold secret-shared
shuffle. This motivates an interesting question for future
work: can the shuffling techniques of Clarion, or of
Chase et al. [12], be extended to work in a setting where
messages are threshold secret shared, e.g., using Shamir
secret sharing [55], instead of being additively shared?
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