
HOLMES: A Platform for Detecting Malicious
Inputs in Secure Collaborative Computation
Weikeng Chen†, Katerina Sotiraki†, Ian Chang†, Murat Kantarcioglu†‡, and Raluca Ada Popa†

UC Berkeley†, University of Texas at Dallas‡

Abstract—Though maliciously secure multiparty computation
(SMPC) ensures confidentiality and integrity of the computation
from malicious parties, malicious parties can still provide mal-
formed inputs. As a result, when using SMPC for collaborative
computation, input can be manipulated to perform biasing and
poisoning attacks. Parties may defend against many of these at-
tacks by performing statistical tests over one another’s input,
before the actual computation.

We present HOLMES, a platform for expressing and per-
forming statistical tests securely and efficiently. Using HOLMES,
parties can perform well-known statistical tests or define new
tests. For efficiency, instead of performing such tests naively in
SMPC, HOLMES blends together zero-knowledge proofs (ZK)
and SMPC protocols, based on the insight that most computation
for statistical tests is local to the party who provides the data.

High-dimensional tests are critical for detecting malicious in-
puts but are prohibitively expensive in secure computation. To
reduce this cost, HOLMES provides a new secure dimensional-
ity reduction procedure tailored for high-dimensional statistical
tests. This new procedure leverages recent development of alge-
braic pseudorandom functions.

Our evaluation shows that, for a variety of statistical tests,
HOLMES is 18× to 40× more efficient than naively imple-
menting the statistical tests in a generic SMPC framework.

I . I N T R O D U C T I O N

To meet the increasing demands of big data, many services
today try to gain access to diverse and wide-ranging datasets.
For this reason, a recent trend between competing business
organizations is to perform collaborative computation over
their joint datasets, so they can make decisions based on more
than just their own data [1–3]. This approach, however, comes
with data privacy issues, as organizations are often unwilling,
sometimes prohibited by regulators, to share data [4, 5].

A solution to this problem is secure multiparty computation
(SMPC), which enables such collaboration without compro-
mising privacy. SMPC has been used in various settings, such
as data analytics and machine learning [6–22], and in a wide
range of applications, such as medical [23] and financial [24].

Though SMPC ensures the privacy and correctness of the
computation, it does not ensure that parties provide well-formed
datasets as input. As a result, state-of-the-art works offering
malicious security, such as Senate [6], Helen [11], and Private
Deep Learning [19], have assumed that all parties provide well-
formed data, though the security of these systems ensures that
parties cannot deviate from the protocol in many other ways.
However, if we consider real-world use cases, such as training
models for anti-money laundering or for medical studies, ma-
nipulated input can lead to grave consequences. For instance, a
malicious organization can gain an unfair advantage in market

competition by contributing grossly biased data to make the
result of collaborative computation unusable. This raises the
following question:

Can we practically detect malicious input in secure
collaborative computation?

Though identifying every possible malicious input is infea-
sible, in many scenarios we know properties that the honest
input must satisfy. For instance, we know that age data must
lie in a specific range (e.g., 0–100), and that in a typical city,
only a small fraction of the population has age over 90. In fact,
range checks [25–27] are frequently used to limit the effect of
misreported values in secure computation.

However, range checks are not always enough. For example,
assume that two banks with the same number of clients use
the age of clients to predict the success of a bank marketing
campaign. A malicious bank can decrease the combined mean
age from, for example 20, to 10 by contributing manipulated
data where all the ages are 1. Therefore, if some statistical
characteristics of the data must be enforced, statistical hypoth-
esis testing [28, 29] can be used as a general tool to check the
quality of the input. Indeed, statistical testing has been a major
tool in quality control [30–32], which checks the quality of all
factors involved in manufacturing.

Building defenses against ill-formed or biased input is an
active research area in machine learning [33–46]. In biasing
attacks, the attacker provides biased data to reduce the accuracy
of the model. In poisoning attacks, the attacker injects malicious
input to the training dataset and influences a model. These
attacks can not only affect the correctness, but also reveal
information about the training data [47–49]. Various defenses
against poisoning attacks are also based on computing statistical
characteristics of the input [50, 51]. Thus, statistical tests are
building blocks of many known and future defenses against
biased or poisoned data in various settings.

We present HOLMES, a platform for expressing a rich class
of statistical tests and performing them efficiently and securely.
HOLMES does not aim to prescribe which specific tests each
application should run because they depend on the use case,
and new research may open up new defenses. Nonetheless,
HOLMES enables parties in secure collaborative computation
to express checks of statistical properties over the input by
offering a rich set of statistical tests and building blocks, and
performs these tests securely and efficiently. The efficiency gain
is indeed important, as it allows parties to run more statistical
tests with the same cost.

...
Statistical
tests

Secure collaborative
computation

...

Planning phase Execution phase

Pi
checklist

P2

P1

Pt

P1 Pt

HOLMES

P1, …, Pt checklist

input size

instructions

instructions

instructions

instructions

Setup decide what statistical tests to run

Fig. 1. Pipeline of secure collaborative computation: Identifying the set of
required statistical checks and performing the collaborative computation are
outside HOLMES. HOLMES’s planning phase outputs a set of instructions that
depend on the checklist and the input size, which are executed in HOLMES’s
execution phase for parties to check each other’s input.

In sum, we envision that users of secure collaborative com-
putation can use HOLMES to perform input checks before the
actual computation, to detect malformed input.

A. HOLMES’s techniques

To illustrate HOLMES’s techniques, we introduce the use
case of bank marketing data [52, 53], the goal of which is to
predict the success of a bank marketing initiative. Combining
data from multiple banks results in better prediction mecha-
nisms since, apart from having more data, the data reflects
more diversified client demographics.
Overcoming the inefficiency of generic SMPC. Perform-
ing statistical tests in generic SMPC frameworks can be very
inefficient, especially with malicious security [6, 11, 54, 55].
Interestingly, in many statistical tests, a large fraction of the
computation involves only local computation, i.e., computation
on the input of a single party.

However, in our setting where parties are malicious, we
cannot trust them to perform local computation honestly. To
leverage local computation for efficiency, HOLMES uses zero-
knowledge proofs (ZK) to check that such local computation
is performed correctly. More concretely, HOLMES divides
statistical tests into a local part and a nonlocal part. The local
part is checked using ZK, while the nonlocal part is executed
in SMPC. HOLMES’s planning algorithm devises a secure and
efficient execution plan by resolving the dependencies of each
test and avoids redundant computation in the various tests.

Finally, HOLMES incorporates a lightweight mechanism,
described in Section III-A that checks the consistency between
the data proved in ZK and the data provided to SMPC.
Efficient support of multidimensional statistical tests. One
of the most prominent statistical tests is the goodness-of-fit test
[56], which tests whether the input is close to a public distribu-
tion. Sometimes, the input domain is high-dimensional, i.e., in-

volves various features, and has large support. For the bank mar-
keting use case, a high-dimensional goodness-of-fit test would
check if an input dataset has a specific distribution with respect
to the attributes of age, job, marital status, and educational level.
The different combinations of these attributes are approximately
100(age) · 15(jobs) · 5(marital status) · 5(education) = 37, 500.
We can see that the support, which—in the case of high-
dimensional distributions corresponds to the number of different
combinations—increases rapidly.

When the number of dimensions is high, goodness-of-fit
tests are expensive, even without any security requirements.
Naively implementing goodness-of-fit will lead to poor perfor-
mance. HOLMES’s approach is to first perform dimensionality
reduction based on random projections, in which a vector in a
high-dimensional space is linearly mapped to a space of lower
dimension. Importantly for goodness-of-fit tests, this random
linear mapping preserves distances approximately, as shown
by the Johnson-Lindenstrauss (JL) lemma [57].

However, performing this random projection is challenging.
In goodness-of-fit tests for high-dimensional distributions, the
instance needs to be encoded as a one-hot vector of dimension
equal to the support (e.g., 37, 500 in our example). Though this
vector is sparse, we cannot use the sparseness to compute the
encoding in secure computation, since revealing the positions
of non-zero values leaks information about the dataset.

HOLMES’s insight is to instantiate this random projection
tailored for statistical tests without encoding, but approximately
via the Legendre PRF [58–61], a pseudorandom function whose
output is evenly distributed in {−1, 1} and can be efficiently
computed in many ZK and SMPC protocols. The Legendre PRF
output naturally fits into the structure of the random projection
matrix, and can significantly reduce the cost of dimensionality
reduction by 5× to 15000× from a naive use of the JL lemma,
based on our experiments in Section VII-F.

B. Our contributions

HOLMES enables parties to perform statistical checks on
data before secure collaborative computation. The checks may
involve statistical properties of data coming from a single party
or from multiple parties. HOLMES supports common statistical
tests, including tests for goodness-of-fit for high-dimensional
distributions. Our design is modular, so new statistical tests can
be easily defined using our building blocks. We implement and
evaluate HOLMES in several scenarios, where we show useful
input checks can be performed practically. In sum, HOLMES’s
contributions are the following:
• HOLMES provides a platform to express and securely per-

form well-known statistical tests, e.g., z-test, t-test, F -test,
and χ2 test, which is 18× to 40× more efficient than running
the same tests in generic SMPC frameworks;

• HOLMES provides a planning algorithm that ensures secu-
rity and efficiency for running multiple statistical tests by
identifying the dependencies and removing the redundancy
between these tests;

• HOLMES provides a new secure and efficient dimensionality
reduction procedure based on the Johnson-Lindenstrauss

2

lemma [57], which provides an efficiency improvement of
up to 104× compared with a straightforward baseline.

I I . OV E RV I E W

When a number of parties want to perform a secure collabo-
rative computation, they can use HOLMES to detect malicious
inputs before the actual computation. To use HOLMES, as
shown in Fig. 1, the parties need to first identify the statistical
tests that are necessary to ensure a high quality input, based
on the use cases, and assemble these tests into a checklist,
which is provided to HOLMES. If the checks pass, the parties
perform the SMPC computation using the committed input that
has been checked by HOLMES.

In bank marketing example, parties may want to check are
that age is within range, that the combined dataset distribu-
tion matches some known distribution, e.g., that ratios of the
dataset in different combination of age, job, marital status, and
educational level are close to some public ratios. The parties
can also check the input quality by comparing the success rates
of different banks for specific populations, assuming that in
high quality data these rates should be similar across banks.

A. HOLMES architecture

HOLMES consists of two phases—the planning phase and
the execution phase—and three modules—the summary module,
the ZK module, and the SMPC module. The workflow of
HOLMES is summarized in Fig. 2.

Planning. In the planning phase, each party uses the prede-
termined checklist of statistical tests and information related to
the size of its input to construct instructions (Isum, Izk, Ismpc)
for each module. The planning algorithm also estimates the
cost for the execution phase.

Each module takes as input the corresponding set of instruc-
tions and the dataset. In the summary module, the party locally
computes some values that depend only on the party’s dataset.
Computation of statistical tests can be split into two parts: local
computation—which involves the data of a single party—and
nonlocal computation—which involves the input of multiple
parties. The party commits the dataset and the summary to both
the ZK and SMPC modules. A consistency check is performed
between the ZK and SMPC modules to ensure that the values
committed in the two modules are the same. In the ZK module,
each party proves the local computation, and in the SMPC
module, the party computes the nonlocal part of the statistical
test using the committed data.

Summary module. Instructions Isum specify the summary
information that each party precomputes on its input. For in-
stance, quantities that are typically needed in statistical analysis
are the mean and variance. Another useful precomputation for
some tests is to count how many data belong to a particular
range. For example, for age, the party can count how many
data points belong to ranges [1, 10], [11, 20], and so on.

ZK module. The ZK module with input Izk, the dataset, and
the summary values is responsible for verifying the local com-
putations. The parties first commit their dataset and summary.

Party Pi
𝐼!" 𝐼#$% 𝐼#%&'checklist

input size

instructions

estimated cost

Planner

(a) Planning phase: outputs instructions for each module depending
on the checklist and the input size.

Party Pi

ZK module
Summary module

summary

𝐼!"
𝐼#$%

𝐼#%&'Input

input
summary

SMPC module

summary

input

Consistency check

(b) Execution phase: the summary includes precomputed values of the
dataset. Dataset and summary are committed to both the ZK module
and the SMPC module. The consistency check is performed over the
committed data in these modules.

Fig. 2. Workflow of a party in HOLMES.

Then, they engage in a zero-knowledge protocol to prove that
the local computation was done correctly.

SMPC module. Apart from the single-party computation
that happens in the ZK module, many checks involve multiple
parties; for instance checking that the combined dataset follows
a public distributions requires multiparty computation. These
statistical checks are computed in the SMPC module, where
the input is Ismpc, the dataset, and the summary.

B. Statistical tests

Input checking is motivated by statistical hypothesis testing,
a fundamental tool in statistics that rigorously checks if ob-
served data satisfies some requirements. Examples include χ2

goodness-of-fit test, the goal of which is to test whether data is
drawn from a known distribution. In hypothesis testing, there
are a null hypothesis and an alternative hypothesis. Our goal is
to check if we have evidence to reject the null hypothesis. A
statistical hypothesis test often consists of the following steps:
1) Compute a test statistic T , which is a quantity derived from

the samples;
2) Calculate the critical value for a significance level α; the

critical value Tα is the value for which the probability that
we obtain a test statistic at most as extreme as Tα under
the null hypothesis is α;

3) Check if T is bigger than Tα. If yes, then reject the null
hypothesis in favor of the alternative hypothesis.

HOLMES supports well-known statistical tests, such as mean
equality testing using z-test (known variance) or t-test (un-
known variance), variance equality testing using F -test, and
χ2 test for goodness-of-fit. HOLMES also enables parties to

3

TABLE I
T H E C H E C K L I S T A P I (α D E N O T E S T H E S I G N I F I C A N C E L E V E L)

API function Description
Basic tests and building blocks
range(〈S〉, attr, [a, b])→ {yes, no} check that values for an attribute attr in population S fall in the range [a, b]

histogram(〈S〉, (attr1, ..., attrd), ([a11, b11], . . . , [adu, bdu]))

→ −−−→count

count elements of S in the non-overlapping multidimensional bins[
[a1k, b1k], . . . , [adk, bdk]

]u
k=1

for attributes (attr1, . . . , attrd)

mean(〈S〉, attr)→ x mean of S for an attribute attr

variance(〈S〉, attr)→ s2 variance of S for an attribute attr

trimmedMean(〈S〉, attr, θ)→ x mean of elements in S belonging in the range [0, θ] for an attribute attr

dimensionalityReduce(〈S〉, attr1, . . . , attrd)→ (attr′1, · · · , attr′`)
perform dimensionality reduction for attributes (attr1, · · · , attrd)
for S into a projection (attr′1, · · · , attr′`)

Unidimensional tests

zTest(〈S1〉, 〈S2〉, attr, σ1, σ2, α)→ {yes, no} z-test for mean equality for an attribute attr of populations S1 and S2

with standard deviations σ1, σ2, respectively

tTest(〈S1〉, 〈S2〉, attr, α)→ {yes, no} t-test for mean equality for an attribute attr of populations S1 and S2

FTest(〈S1〉, 〈S2〉, attr, α)→ {yes, no} F -test for variance equality for an attribute attr of populations S1 and S2

Multidimensional tests

chiSquaredTest(〈S〉, (attr1, . . . , attrd),

([a11, b11], . . . , [adu, bdu]), (p11, . . . , pdu), α)→ {yes, no}

χ2 test for goodness-of-fit of attributes (attr1, . . . , attrd) for
population S for multidimensional bins [[aik, bik]

d
i=1]

u
k=1 and

public distribution [[pik]
d
i=1]

u
k=1

User-defined tests

userDefinedTest(〈S1〉, 〈S2〉, f, CV Fα)→ {yes, no} user-defined statistical test on populations S1 and S2 described by f ,
with a critical value function CV Fα for significance level α

express new statistical tests, by providing parties with access
to common test building blocks.

C. Checklist API
HOLMES provides a checklist API, as shown in Tab. I,

for parties to express the statistical tests. HOLMES can then
estimate the cost of the tests or run the tests. The API consists
of well-known statistical tests. Parties can also define their own
tests, using the basic tests and building blocks that the API
provides. Every API function takes as input a description of a
population S, which we denote by 〈S〉, a list of attributes of
S where the test is performed, and other statistical parameters.
Example. We show how to use this API to express statistical
tests for a bank marketing dataset described in Section VII-C.

Consider that two banks want to perform some statistical
tests on their inputs. Assume that each of the banks has data for
their clients, denoted by S1 and S2 respectively, with attributes
including their age (e.g., 18 to 90), educational level (e.g.,
nominal values indexed by 0 to 3), and whether the marketing
initiative was successful (e.g., 0 or 1).
• Range check: The age, the educational level, and the success

indicator should fall in the right ranges. This can be expressed
in the API as follows, for i ∈ {1, 2}:

range(〈Si〉, “age”, [18, 90]) = yes
range(〈Si〉, “education”, [0, 3]) = yes
range(〈Si〉, “success”, [0, 1]) = yes

• Unidimensional test: S1 and S2 should have similar mean
age, which can be checked via a z-test when the standard
deviation of the datasets is known, as follows:
zTest(〈S1〉, 〈S2〉, “age”, σ1 = 15, σ2 = 10, α = 0.95) = yes

• Multidimensional test: check that the histogram of the union
of S1 and S2 for educational level equal to 0 and 1 and
marital status equal to 0 and 1 has ratios (0.1, 0.4, 0.3, 0.2),
as follows:

chiSquaredTest

 〈S1 ∪ S2〉,
(“education”, “marital status”),
((0, 0), (0, 1), (1, 0), (1, 1)),
(0.1, 0.4, 0.3, 0.2), 0.90

 = yes

• User-defined test: Besides the well-known statistic tests in
the API, banks can add a customized test. One example is
a test appearing in [62], which checks if the success rate
of the marketing initiative p1 for bank P1 is larger than the
success rate p2 of P2 by at least 0.2 using the test statistic

p2−p1+0.2√
1
n1
p1(1−p1)+ 1

n2
p2(1−p2)

. This can be expressed in the API

as “userDefinedTest(〈S1〉, 〈S2〉, f, CV Fα) = yes”, where

f =
x2 − x1 + 0.2√

1
n1
x1(1− x1) + 1

n2
x2(1− x2)

,

given the mean values x1 = mean(S1, "success") and x2 =
mean(S2, "success"), and CV Fα is a function that computes
the critical value for this statistical test.

D. Threat model and security guarantees

HOLMES considers t parties who want to perform some
secure computation together. They can collude with one an-
other and arbitrarily deviate from the protocol, including in
manipulating their input. In HOLMES, we assume that at least
one of the t parties is honest and does not collude with any

4

Ideal functionality FHOLMES

Running with t parties P1, · · · ,Pt and a simulator Sim, FHOLMES

proceeds as follows: Upon receiving a message (sid,Pi, inputi,
checklisti, fi) from each of the t parties (or from Sim if that party
is corrupted),
• Agreement: FHOLMES first checks if all the parties send the same

checklist and function to compute f , i.e.,
– requires all checklist1, · · · , checklistt to be equal, and
– requires all f1, · · · , ft to be equal.
If not, FHOLMES sends the message (disagreement, sid) to each
Pi and Sim and halt.

• Security with abort: FHOLMES awaits a message (deliver, sid)
or (abort, sid) from Sim to decide whether the computation
should move forward. FHOLMES proceeds to the next step if
the message is (deliver, sid). Otherwise, FHOLMES sends (abort,
sid) to each Pi and Sim and halt.

• Input check: FHOLMES runs the statistical tests specified on the
checklist on each party’s input. If the inputs do not pass the
entire checklist, FHOLMES sends (check-fail, sid) to each Pi and
Sim and halt.

• Computation: Now that all the input check has passed, FHOLMES

now evaluates the function f on the parties’ inputs input1,
, · · · , inputt. The result of the computation is t outputs, one for
each party: output1, · · · , outputt. FHOLMES sends the message
(output, sid,Pi, outputi) to Pi (and if Pi is corrupted, to Sim).

Fig. 3. Ideal functionality for secure computation with input checks.

corrupted parties, because if all the parties are corrupted, it is
not even meaningful to check the inputs.

We define the security of HOLMES in the real/ideal world
paradigm, with an ideal functionality FHOLMES, shown in Fig. 3,
for checking statistical properties of the input, based on existing
definitions for secure function evaluation with abort [63, 64].
The ideal functionality FHOLMES takes as input a checklist and
the input to the computation, and it outputs the computation
results only if the tests in the checklist pass.

Based on FHOLMES, we define the security of HOLMES
using a standard definition for (standalone) malicious security
[65]. We provide the security proof sketches in Appendix B.

Definition 1. A protocol Π is said to securely compute
FHOLMES in the presence of static malicious adversaries that
compromise up to t−1 of the t parties, if, for every non-uniform
probabilistic polynomial-time (PPT) adversary A in the real
world, there exists a non-uniform PPT simulator Sim in the
ideal world, such that for every I ⊆ {1, 2, ..., N},

{IDEALFHOLMES,I,Sim(z)(~x)}~x,z
c≈ {REALΠ,I,A(z)(~x)}~x,z

where ~x denotes all parties’ input, z denotes the auxiliary
input for the adversary A, IDEALFHOLMES,I,Sim(z)(~x) denotes the
joint output of Sim and the honest parties, and REALΠ,I,A(~x)
denotes the joint output of A and the honest parties.

I I I . H O L M E S ’ S W O R K F L O W

HOLMES uses both ZK and SMPC protocols to perform
statistical tests, which improves the efficiency compared with
simply running tests in generic SMPC. However, this hybrid

dataset + summary

ZK module SMPC module

Step 1:
commitment

Step 3:
ZK check

Step 2:
Consistency check

Step 4:
SMPC check & compute

Fig. 4. The workflow of HOLMES in the execution phase.

approach brings up a new challenge: HOLMES must ensure
that ZK and SMPC protocols see the same data. Otherwise, a
malicious party who provides different data to ZK and SMPC
might bypass the tests.

HOLMES’s approach is to design an execution phase that en-
ables consistency checking between data in the ZK and SMPC
modules, as shown in Fig. 4. The ZK and SMPC protocols
that we use have a commitment phase, where parties commit
their private data before engaging in the ZK or SMPC protocol.
After the commitment phase, the parties can no longer change
their data. It is worth noting that no actual “cryptographic
commitment” is computed in the commitment phase; the com-
mitment phase simply refers to the guarantee of the ZK and
SMPC protocols that data cannot be changed after the initial
insertion to the module.

A family of ZK protocols, called commit-and-prove ZK
[63, 66–69], has such a commitment phase. In maliciously
secure SMPC, the input phase is naturally a commitment phase.

The fact that the data has been committed allows us to check
their consistency between the two modules with a probabilistic
test. A malicious party cannot adapt its input data to circumvent
the probabilistic test, since the data is committed and cannot be
changed. We use polynomial testing [70–72], a common tool
in zero-knowledge proof systems, to perform the consistency
checking, which we now describe.

A. Polynomial testing

HOLMES assumes that the input to the ZK and SMPC
module is represented as n field elements, {xZK

i }ni=1 and
{xSMPC

i }ni=1 respectively, over the same field Fp. After the
input has been committed in both modules, HOLMES per-
forms the polynomial test. In this test, we represent the input
as a polynomial f(z) in the ZK and the SMPC module, and
we query this polynomial at a random point β←$Fp. The
polynomials in ZK and SMPC are defined as follows:

fZK(z) = r +

n∑
i=1

xZK
i · zi, fSMPC(z) = r +

n∑
i=1

xSMPC
i · zi ,

where r is a random element that is also committed during the
commitment phase. The random value r is used so that the
query to f(z) does not reveal information about the input. The
random point z = β is decided through a coin toss protocol
[73] among the parties.

5

The parties use the SMPC module to compute ySMPC =
fSMPC(β) and release it to all parties. Then, the ZK module is
invoked to prove that ySMPC = yZK = fZK(β). Such computa-
tion is relatively cheap in ZK and SMPC, as evaluating f(β)
is merely scalar multiplication with public values.

If the polynomial test passes, we know that with high prob-
ability fZK = fSMPC, which implies that xZK

i = xSMPC
i for

i ∈ {1, · · · , n}. This holds due to the Schwartz-Zippel lemma
[70–72], which states that for a random point β the probability
that fZK(β) = fSMPC(β), but fZK 6= fSMPC is small.

Lemma 1 (Schwartz-Zippel Lemma). Let f(x) be a non-zero
polynomial of degree d in a prime field Fp. Pick y←$Fp. Then,
we have Pr [f(y) = 0] ≤ d/|Fp|.

To achieve a sufficient level of statistical security, one can
query the polynomials on more than one random point, while
supplying more random elements to hide the polynomials.

B. Detailed execution phase workflow

We now summarize HOLMES’s execution phase workflow,
as shown in Fig. 4.
1) Commitment: Each party Pi commits their input, which

consists of the dataset and the summary, to both the ZK
and SMPC modules. As a result, parties cannot change the
committed data in the rest of the execution phase.

2) Consistency check: All parties P1, · · · ,Pt together execute
the polynomial test to check that each party’s inputs to the
ZK and SMPC module are the same. The parties halt if the
polynomial test fails.

3) ZK check: Each party Pi invokes the ZK module, which
executes the instructions provided by the planner, to prove
to one another that the summary is correctly computed from
the dataset. The parties halt if the ZK check fails.

4) SMPC check and compute: All parties P1, · · · ,Pt now
run the remaining tests using the dataset and summary in
the SMPC module. If the tests pass, the parties start the
secure collaborative computation, using the dataset that has
been committed in the SMPC module.

I V. H O L M E S ’ S S TAT I S T I C A L T E S T S

In this section, we describe how HOLMES instantiates the
API in Section II-C using the the summary, ZK, and SMPC
modules.

A. Single-party basic tests and building blocks

HOLMES provides functions for basic tests and building
blocks that involve the input of a single party: range, histogram,
mean, variance, trimmed mean, and dimensionality reduction.
These building blocks can be used to assemble more compli-
cated tests, such as a z-test.

Range. The data provider uses the ZK module to prove that
the input data is within a given range [a, b]. To prove that x lies
in [a, b], the data provider proves that x−a ≥ 0 and b−x ≥ 0,
which can be done by proving that the bit decomposition of
x− a and b− x uses at most dlog2(b− a)e bits.

Histogram. A histogram of a dataset is generated by counting
the number of instances in a set of groups. This counting can
be proved using the ZK module, since the data provider can
locally compute the counting as part of the summary.

For each instance, the data provider inputs to the ZK module
a one-hot encoding vector ~v = (0, 0, ..., 1, ..., 0, 0), the length
of which is the same as the number of non-overlapping bins in
the histogram. If ~v[i] is 1, then the instance belongs to the i-th
bin. First, the data provider proves that ~v is one-hot, meaning
that it has Hamming weight and Euclidean norm of 1. Next,
the data provider shows that the instance entry belongs to the
i-th bin, by performing range checks over the bounds for this
bin. These bounds can be defined as inner products with ~v.

If a histogram is needed, then this building block is included
in the summary generated by the summary module. The ZK
module checks if the summary has the correct histogram, and
the SMPC module uses this histogram in the summary for
subsequent statistical tests. In addition, computing a histogram
on an attribute subsumes proving a range checking of this
attribute. HOLMES’s planning phase removes this redundancy
by dropping the range check when appropriate.

Mean and variance. Mean and variance are building blocks
in many statistical tests, such as z-tests and t-tests.

For mean, the data provider computes the mean x as part
of the summary and proves the computation using the ZK
module. If the dataset has n instances, the data provider shows
that n · x ≈ ∑n

i=1 xi. In practice, we may want to keep a
few decimal places for x (e.g., x = 12.34 with two decimal
places). This is done by defining x′ = 1234, which is a fixed-
point representation of x, and the data provider shows that
100 ·∑n

i=1 xi ≥ n · x′ and 100 ·∑n
i=1 xi < n · (x′ + 1).

For variance, the data provider locally computes the mean
x of the dataset and the mean of the squares of the dataset
y. Then, the variance can be computed as s2 = n

n−1 (y − x2).
Here, the term n

n−1 corrects the bias of the variance because
x is computed from the data [74].

If the mean or variance are needed, then the corresponding
building blocks are included in the summary generated by
the summary module. The ZK module checks if they are
correct, and the SMPC module uses them for other tests. Before
computing mean and variance on an attribute, a range checking
of the attribute is needed. HOLMES’s planning phase resolves
this dependency and adds the range checks, if necessary.

Trimmed mean. Trimmed mean is a variant of mean that
only considers instances that fall within a certain range [0, θ].
This is useful for robust statistics, as one can exclude extreme
values before computing the mean.

The data provider locally computes the trimmed mean in the
summary and proves that the computation is correct in the ZK
module. For each instance, the data provider first computes a
bit b indicating whether each value falls in [0, θ] and proves
that this bit is computed correctly through range checks. Next,
the data provider computes the sum of the values sθ in the
entries where b = 1 and counts the number of such values
nθ, and then proves such computation in ZK. Finally, the data

6

provider computes and proves the trimmed mean, which is
close to sθ/nθ, following the same procedure as for mean.

Dimensionality reduction. High-dimensional statistical tests,
such as the χ2 test for goodness-of-fit across many dimensions,
are prohibitively expensive. A common solution in statistics
is to first reduce the number of dimensions, while preserving
some useful properties. HOLMES implements a secure and
efficient procedure of dimensionality reduction based on the
Johnson-Lindenstrauss lemma [57, 75], which compresses an
entry with data of high dimensions into a vector of very few
dimensions, denoted by ~v = (attr′1, · · · , attr′`). The projected
vector approximately preserves the norm of the original. This
procedure involves more theoretical analysis, so we describe
the details later in Section VI.

The result of dimensionality reduction, a short vector ~v, is
included in the summary by the summary module. The ZK
module checks that this vector is computed correctly, and the
SMPC module uses this vector for the χ2 test for goodness-
of-fit for high-dimension settings.

B. Multiparty basic tests and building blocks

Most single-party building blocks can be easily generalized
to their multiparty variants, where the dataset is split among
many parties. For range checks, the multiparty variant coincides
with performing a range check to the input of each party
independently. For the histogram construction, the final result
is the summation of the individual histograms, so it suffices for
the parties to perform independent histogram checks; then the
summation of the individual histograms is done in the SMPC
module. For the (trimmed) mean and variance, parties compute
the necessary sums of their dataset and of the squares of their
dataset in the summary and prove the correctness of the sums
in the ZK module; then, the multiparty mean and variance are
computed in the SMPC using the same equations as in the
single-party case.

C. Instantiations of statistical tests

HOLMES implements four well-known statistical tests: z-
test, t-test, F -test, and χ2-test, as described in Section II-B.
These statistical tests make use of the results from the local
computation, which is included in the summary and is checked
against the committed dataset of ZK module. The general form
of statistical hypothesis tests is described in Section II-B. The
test statistic and the comparison with the critical value are
performed in the SMPC module. The critical value can be
either given as a public parameter or is computed through a
function, which typically is an oblivious lookup over a critical
value table, if the critical value depends on secret information.

z-test. The test statistic is defined as

T =
mean(S1, attr)−mean(S2, attr)√

σ2
1/n1 + σ2

2/n2

,

and the computation of the critical value depends only on n1

and n2, which are public information.

t-test. Let x1 = mean(S1, attr), x2 = mean(S2, attr),
s2

1 = variance(S1, attr), and s2
2 = variance(S2, attr). The test

statistic is defined as:

T =
x1 − x2√
1
n1
s2

1 + 1
n2
s2

2

, df =

(
1
n1
s2

1 + 1
n2
s2

2

)2

1
n1−1

(
1
n1
s2

1

)2

+ 1
n2−1

(
1
n2
s2

2

)2 .

Note that in this case the degrees of freedom (df), which
affect the computation of the critical value, depend on secret
information. So, finding the critical value in the lookup table of
critical values for different df happens in the SMPC module.
F -test. The test statistic is defined as

T =
variance(S1, attr)

variance(S2, attr)

and the computation of the critical value depends only on n1

and n2, so it can be performed publicly.
χ2-test. Given the histogram −−−→count of S over d attributes
(attr1, · · · , attrd), each of which has u possible values, the test
statistic is

T =

m∑
k=1

(count[k]− npk)2

npk
,

where m = d · u is the total number of bins and pk is the
probability mass for the k-th bin of the public distribution.
The critical value is given as a parameter. Observe that the
computation in the SMPC module is proportional to the number
of bins m, which might be a lot larger than the input size n.
In Section VI, we explain HOLMES’s approach for χ2-test in
the case of high-dimensional distributions, when m� n.
User-defined test. The parties can specify a new statistical
test in HOLMES by providing a description of the test statistic
f . The test statistic f can use the results of the basic tests and
the building blocks. The parties also provide a function for
computing the critical value CV Fα for a significance level α.

The data provider computes and proves the necessary results
from the single-party basic tests and building blocks using the
ZK module. These results are then included in the summary
by the summary module. The SMPC module evaluates the
multiparty building blocks and the test statistic f , finds out
the corresponding critical value from CV Fα using information
from the dataset (e.g., degree of freedom), and checks if the
test statistic result is below the critical value. A typical CV Fα
consists of a description of a distribution and a small table
of critical values corresponding to significance level α for
different degrees of freedom of the distribution.

D. Subsampling

HOLMES also supports statistical tests that are performed
on a random subset of the entire dataset. Though this sacrifices
some accuracy, it boosts the efficiency of individual tests and
allows more tests to be performed with a given computational
budget. The subsampling must be maliciously secure, since
otherwise a malicious party knows which subset of the data
would be selected.

7

HOLMES’s approach is to decide this random subset only
after the input data has been committed, and the random subset
is chosen with the help of a pseudorandom function, using a
seed that comes from a coin toss protocol among the t parties
[73]. This ensures that if at least one of the t parties is honest,
the corrupted parties cannot predict or decide what data would
be selected in the subsampling.

V. H O L M E S ’ S P L A N N I N G A L G O R I T H M

HOLMES’s planning algorithm is responsible for choosing
an efficient and secure execution plan for the statistical tests in
the checklist and is executed by each party individually. The
planning algorithm performs the following tasks.

Dependency resolution. Some of the statistical tests depend
on other tests or building blocks. For example, both the t-test
and the F -test depend on the variance of the datasets, and the
tests for mean and variance require the attribute to go through
a range check first. The planning algorithm resolves such
dependencies, ensuring that all necessary checks are included.

Redundancy elimination. Several building blocks overlap
with each other. For example, the computation of histogram
subsumes range check. So, if the checklist computes a histogram
on an attribute, the planning algorithm can drop the range check
on this attribute without loss of security. Since range check
contributes a modest overhead, as shown later in Section VII-D,
such redundancy elimination is useful.

Instruction generation. The planning algorithm produces the
instructions for the module for each building block or statistical
test in the checklist. The planning algorithm separates the test
between local and nonlocal checking, as described in Section IV.
The local checking is performed in the ZK module, while the
nonlocal checking is performed in the SMPC module, using
the results of local checking.

For example, consider a z-test over four parties P1–P4 such
that S1 contains the dataset of P1 and P2, and S2 contains
the dataset of P3 and P4. The planning algorithm produces
the summary instructions Isum for computing the local part of
mean computation, the ZK instructions Izk for verifying the
summary, and the SMPC instructions Ismpc for computing the
combined means and the final test result.

V I . H O L M E S ’ S H I G H - D I M E N S I O N A L T E S T S

In some situations, parties want to check if several attributes
in each other’s input dataset follow a public multidimensional
distribution. Unfortunately, this test, known as goodness-of-fit,
becomes prohibitively expensive when the number of possible
combinations of attributes is high, which affects the applica-
bility of the test. Recall that in the bank marketing example
from Section I-A, the four attributes, age, jobs, marital status,
and education, already have in total 37, 500 possible combi-
nations. To improve the efficiency, we provide a new secure
dimensionality reduction technique to handle this “curse of
dimensionality”.

A. HOLMES’s goodness-of-fit

The most typical goodness-of-fit test is based on the χ2-
test, which is described in Section IV-C. In order to improve
efficiency, especially in the high-dimensional case, HOLMES
supports a modified χ2-test, which we call unnormalized χ2.

The unnormalized χ2-test works as follows. Given a his-
togram −−−→count of S over d attributes (attr1, · · · , attrd), each
of which has u possible values, the test statistic is

T =
∑m
k=1(count[k]− npk)2,

where m = d ·u is the number of bins and pk is the probability
mass for the k-th bin of the public distribution. Now, the
critical value is computed from a variant of the generalized χ2

distribution with parameters (np1, . . . , npm) [76–78]. Since
the weight parameters are public, we can find the critical value
outside ZK and SMPC.

The unnormalized χ2 test has improved efficiency compared
to the original χ2-test even when the number of bins is small,
since it avoids divisions in SMPC. More importantly, in the
high-dimensional regime the new test enjoys great efficiency
gains using our dimensionality reduction techniques, as we
show in the next section.

B. HOLMES’s dimensionality reduction for goodness-of-fit

We provide the necessary background for dimensionality
reuction in HOLMES by starting with a strawman.

Strawman: random linear projection. We perform
the goodness-of-fit test using the unnormalized χ2-test,
which requires the computation ‖count[k]− npk‖2 =∑m

k=1(count[k] − npk)2, i.e., the distance between two vec-
tors. To reduce the dimensions of the vectors, one can apply
a suitable random linear projection Fmp → Frp, which can be
represented by a matrix A of size r × m, to these vectors.
The Johnson-Lindenstrauss (JL) lemma says that the projected
vector approximately preserves the norm of the original vector.

Lemma (Johnson-Lindenstrauss lemma (informal)). Let x ∈
Zm and let A be a random r×m matrix that satisfies certain
uniformity and normality requirements, then

∑
k∈[m] x

2
k ≈∑

v∈[r](Ax)2
v , where r = O(logm).

To apply this random projection, parties jointly sample a
public matrix A after data has been committed. Then, the
unnormalized χ2 tests with random projection is computed as
follows:

1) In the summary module, Party i computes
−−−−−−→
JLvectori =

A · −−−−→counti, where −−−−→counti is the histogram of Party i.
2) In the ZK module, Party i proves the correctness of−−−−−−→

JLvectori.
3) In the SMPC module, parties approximate the unnormal-

ized χ2 statistic by computing

T̃ =

∥∥∥∥∥
(

t∑
i=1

−−−−−−→
JLvectori −

−→
Q

)∥∥∥∥∥
2

,

8

where
−→
Q = A · (n−→p) depends only on public information.

Finally, parties compare the test statistic with the publicly
compute critical value.

Observe that the computation of the test statistic requires adding
the JL vectors of all parties and O(r) = O(log(n)) squar-
ing operations, which is efficient in the SMPC module when
m� n. However, in the ZK module, proving the computation
of
−−−−−−→
JLvectori still requires O(m · r) operations. As a result,

applying the JL lemma naively provides only a small efficiency
gain for multidimensional tests.

HOLMES’s approach: pseudorandom projection via PRF.
To overcome the inefficiency of computing

−−−−−−→
JLvectori in the ZK

module, we modify the random projection with a computation
that requires O(n·r) operations in the ZK module, but otherwise
preserves the efficiency of the strawman solution. A crucial
step towards this goal is to replace the random matrix A with
a ZK-friendly pseudorandom matrix.

Our main insight is that for input x = {x1, . . . , xn}, where
1 ≤ xj ≤ m, it holds that

−−−−−−→
JLvectori =

∑n
j=1Axj

, where Axj

is the xj-th column of the matrix A. The equality holds because
−−−−−−→
JLvectori = A · −−−−→counti =

∑m
k=1Ak · counti[k] =

∑n
j=1Axj ,

(1)

where Ak is the k-th column of A.
Equation (1) shows that the random projection, when it is

tailored for the histogram of a population, can be computed in a
way that avoids computing the counting explicitly. In HOLMES,
we can take advantage of this insight when we compute the
matrix A using a pseudorandom function. Specifically, we
set the (`, k)-th matrix element A`,k to be PRFK`

(k), for a
pseudorandom function PRFK`

with seed K`. Then, the k-th
column of A is equal to

Ak =

PRFK1(k)

PRFK2
(k)

· · ·
PRFKr (k)

 , (2)

and hence, we can compute
−−−−−−→
JLvectori as

∑n
j=1Axj

=
∑n
j=1

PRFK1(xj)

PRFK2
(xj)

· · ·
PRFKr

(xj)

 . (3)

This new formula avoids the counting and can be computed
with n · r calls to the PRF.

In sum, the (single-party) dimensionality reduction A·−−−−→counti
is now efficiently checkable in ZK. The multiparty case works
similarly, with the exception that in the end parties compute
the summation of their output vectors in SMPC.

C. HOLMES’s use of pseudorandom function

We now discuss the pseudorandom function that HOLMES
uses. For HOLMES’s random projection, we invoke the
JL lemma of [75], where the JL matrix has elements in

{−
√

1/r,
√

1/r}, because operations with this type of entries
are easier to prove.

HOLMES uses Legendre PRF [58–61] for pseudorandom
projection. This PRF can be computed efficiently and is more
suitable than other algebraic pseudorandom functions [79–83]
for our use case, as its output is supposed to be distributed
evenly in {−1, 1}, which is only a constant away from the
format of JL matrices ({−

√
1/r,

√
1/r}). We specify the vari-

ant of Legendre PRF used in HOLMES and refer readers to
Appendix A for more background.

Definition 2 (degree-d Legendre PRF). Let p be an odd prime
and d ≥ 2 be an integer. The degree-d Legendre PRF [58–
61] is a family of functions LK : Z∗p → {−1, 1} where K =

(k0, k1, ..., kd) such that K ←$
(
Z∗p
)d

, and Lp,K is defined

as
(
fK(x)
p

)
, where fK(x) = k0 +

∑d
i=1 kix

i needs to be an
irreducible degree-d polynomial and does not have nontrivial
stabilizer, and

(
x
p

)
∈ {−1, 0, 1} is the Legendre symbol. For

x ∈ Z∗p, Lp,K(x) 6= 0 because fK(x) is irreducible and has
degree at least 2.

In HOLMES’s pseudorandom projection, we compute the
random JL matrix A, whose entries are in {−

√
1/r,

√
1/r},

as follows:
A`,k = Lp,K`

(k)
√

1/r ,

where K` ∈
(
Z∗p
)d

are different Legendre PRF keys.
Proving the evaluation of Legendre PRF in the ZK module

is efficient. To show
(
x
p

)
= y ∈ {−1, 1}, it suffices to provide

a =
√
x mod p (if y = 1) or a =

√
bx mod p (if y = −1)

where b is a quadratic nonresidue. Thus, the correctness of a
PRF evaluation is verified in the ZK module by showing that
2a2 = (1−y) · bx+(y+1) ·x mod p and (y+1)(y−1) = 0
mod p.

V I I . E VA L U AT I O N

We implement HOLMES and present the evaluation results,
which answer the following questions:
• What is the overhead of HOLMES on real-world data? What

contributes to this overhead? (Section VII-D)
• How do the individual components of HOLMES scale with

more data? (Section VII-E)
• How does HOLMES’s multidimensional testing compare

with a strawman implementation? (Section VII-F)

A. Setup

We ran our experiments on two to five AWS c5.9xlarge
instances, each with 36 cores and 72 GB of memory. We use
the Linux tc tool to limit each instance’s bandwidth to 2 Gbps
and add a round-trip latency of 20 ms, which is to approximate
the setting where the parties are in different states.

B. Implementation

We implement HOLMES and the baseline using the state-
of-the-art cryptographic libraries, as follows.

9

TABLE II
B R E A K D O W N O F T H E C O S T F O R T H E B A N K

M A R K E T I N G D ATA S E T (T W O - PA R T Y) .

Number of instances
82376

(41188× 2)
Number of attributes 21

Total time 20.23 s
Average time per instance 0.25 ms
Loading the data to ZK 0.27 s
Loading the data to SMPC 8.09 s
Range checks for all attributes 5.63 s
Histogram and χ2 test over age 0.86 s
Multidimensional and χ2 test over

4.92 s
age, job, marital status, education

Mean, variance, and t test over
0.21 s

call duration
Consistency check < 0.01 s

TABLE III
B R E A K D O W N O F T H E C O S T F O R T H E
D I A B E T E S D ATA S E T (T W O - PA R T Y) .

Number of instances
203532

(101766× 2)
Number of attributes 49

Total time 80.04 s
Average time per instance 0.39 ms
Loading the data to ZK 1.59 s
Loading the data to SMPC 46.62 s
Range checks for all attributes 23.27 s
Histogram and χ2 test over

7.59 s
medical specialty

Mean, variance, t test over
0.23 s

number of lab procedures
Consistency check < 0.01 s

TABLE IV
B R E A K D O W N O F T H E C O S T F O R T H E

A U C T I O N I N G D ATA S E T
(T W O - PA R T Y) .

Number of instances
1134582

(567291× 2)
Number of attributes 15

Total time 183.04 s
Average time per instance 0.16 ms
Loading the data to ZK 2.59 s
Loading the data to SMPC 79.55 s
Range checks for all attributes 92.48 s
Trimmed mean and z test over

7.45 s
total impressions

Consistency check < 0.01 s

HOLMES. We use QuickSilver [84] to instantiate the ZK
module. HOLMES invokes QuickSilver in a pairwise manner,
where each of the N parties proves the consistency of its local
data and summary to the other N − 1 parties. We use SCALE-
MAMBA [85] and MP-SPDZ [86, 87] for SMPC, where the
Low Gear protocol in MP-SPDZ is used for the offline phase
of SMPC due to its efficiency, and SCALE-MAMBA is used
for the online phase of SMPC. In HOLMES, these protocols
operate on the same prime field Fp where p = 262−216 +1, so
we can perform the polynomial test in Section III-A efficiently.
Baseline. The baseline runs the same checking algorithm in
SMPC, using SCALE-MAMBA and MP-SPDZ.

C. Datasets
To show how to perform various statistical and well-

formedness tests with HOLMES for real-world data, we evalu-
ate HOLMES’s tests on three datasets. For each dataset, we
demonstrate a few tests that fit the specific use case.
Bank marketing. The dataset [52, 53] consists of telemarket-
ing records for financial products. It consists of 41188 instances
and 21 attributes, which include client profile and call records.
Banks’ goal in a secure computation might be to train a clas-
sifier for predicting the success of a campaign. Before the
training, though, they want to ensure that their joint dataset has
a balanced number of customers from different backgrounds,
which will improve the classifier’s quality, and is not too differ-
ent from each other, which is an indication that the provided
data is correct. Therefore, they may consider the following
checks: (1) χ2 goodness-of-fit test over age, grouped into the
bins 10–19, 20–29, · · · , 90–99, (2) χ2 goodness-of-fit test over
age, job, educational level, and marital status, which depicts
the customer profiles, and (3) t-test over the telemarketing
call duration, to check whether their telemarketing records are
similar enough to train a model together, and (4) range checks,
for all the attributes.
Diabetes. The dataset [88, 89] consists of admission records
for patients with diabetes. It consists of 101766 instances and
50 attributes, which include patient profile, treatment, and ad-
mission history. A use case of secure computation with this

dataset is for evaluating the quality of service provided in the
health system of a state. We consider the following checks:
(1) χ2 goodness-of-fit test for the medical specialty of initial
admissions to compare with the publicly known distribution
of specialties for doctors practicing in the state, (3) t-test on
the number of lab procedures across hospitals, as an indication
that hospitals provide the similar quality of service, and (4)
range checks, for all the attributes.

Auctioning. The dataset [90] consists of advertisement biding
history. It consists of 567291 instances and 17 attributes, which
include the advertisement location and its expected number of
impressions (i.e., number of ad displays) and revenue. Bidders
want to train a machine learning system, but first they need
a guarantee that each other has contributed reasonable data.
So, they may consider the following tests: (1) z-test on the
number of displays that are lower than a specific threshold, to
exclude the extreme values, which shows if the bidding history
between different parties is comparable enough to be trained
together, and (2) range checks, for all the attributes.

D. End-to-end overhead

We discuss the end-to-end overhead of HOLMES evaluated
on the three datasets and compare HOLMES with the baseline.

In our experiment, we vary the number of parties from 2 to
5 to see how HOLMES scales with more parties. We assume
that each party provides the same amount of the data, so when
there are t parties, there are t times more data. For example, in
our experiment for the bank marketing dataset, we assume each
party provides n = 41188 instances (which is the size of our
dataset). When there are five parties, the entire computation is
now over n · t = 205940 instances. We choose this approach
because in secure collaborative computation with more parties,
they should have access to more data. We choose the dimension
parameter r = 40 for HOLMES’s goodness-of-fit test based
on Venkatasubramanian and Wang’s study [91] by choosing
an error rate ε = 3/4.

Cost analysis. To understand how the overhead increases with
more parties as well as more data, we first analyze the cost of

10

2 3 4 5
Number of parties

0
150
300
450
600
750
900

1050
Ti

m
e

(s
)

Bank marketing (HOLMES)
Diabetes (HOLMES)
Auctioning (HOLMES)

(a) Datasets (HOLMES)

28 212 216 220 224

Range size

0

2

4

6

8

10

12

Ti
m

e
(s

)

N = 100k (HOLMES)
N = 200k (HOLMES)

(b) Range check (HOLMES)

10 20 30 40 50
Number of individual labels

0

4

8

12

Ti
m

e
(s

)

N = 100k (HOLMES)
N = 200k (HOLMES)

(c) Histogram for nominal (HOLMES)

24 26 28 210 212

Range size of each group

0

5

10

15

Ti
m

e
(s

)

N = 100k, 10 groups (HOLMES)
N = 100k, 10 groups (HOLMES)
N = 200k, 20 groups (HOLMES)

(d) Histogram for numeric (HOLMES)

2 3 4 5
Number of parties

0

10000

20000

30000

40000

50000

60000

70000

Ti
m

e
(s

)

Baseline (Bank Marketing)
Baseline (Diabetes)
Baseline (Auctioning)

(e) Datasets (Baseline)

28 212 216 220 224

Range size

0

50

100

150

200

250

Ti
m

e
(s

)

N = 100k (Baseline)
N = 200k (Baseline)

(f) Range check (Baseline)

10 20 30 40 50
Number of individual labels

0

50

100

150

200

250

Ti
m

e
(s

)

N = 100k (Baseline)
N = 200k (Baseline)

(g) Histogram for nominal (Baseline)

24 26 28 210 212

Range size of each group

0

60

120

180

240

300

360

Ti
m

e
(s

)

N = 100k, 10 groups (Baseline)
N = 100k, 10 groups (Baseline)
N = 200k, 20 groups (Baseline)

(h) Histogram for numeric (Baseline)

1×106 2×106 3×106 4×106 5×106

Number of instances

0

10

20

30

40

Ti
m

e
(s

)

HOLMES

(i) Mean + variance (HOLMES)

28 212 216 220 224

Range size

0

3

6

9

Ti
m

e
(s

)

N = 100k (HOLMES)
N = 200k (HOLMES)

(j) Trimmed mean (HOLMES)

1×106 2×106 3×106 4×106 5×106

Number of instances

0

40

80

120

160

200

Ti
m

e
(s

)

Baseline

(k) Mean + variance (Baseline)

28 212 216 220 224

Range size

0

20

40

60

80

100

120

140

Ti
m

e
(s

)

N = 100k (Baseline)
N = 200k (Baseline)

(l) Trimmed mean (Baseline)

Fig. 5. Overhead of the end-to-end checks on the datasets and individual components, for HOLMES and for the baseline.

HOLMES and the baseline, which we define as the wall-clock
time to perform the tests.

The main overhead consists of performing the local checks
in ZK or SMPC, loading data to SMPC, and computing the
test statistics in SMPC. We express the cost as formulas where
C1, C2(t), C3(t), C4(t) represent the cost of cryptographic op-
erations, n denotes the amount of instances provided by each
party, and t denotes the number of parties.

HOLMES: C1 · n(t −1)︸ ︷︷ ︸
local data checks in ZK

+ C2(t) · nt︸ ︷︷ ︸
loading data to SMPC

+ C3(t)︸ ︷︷ ︸
test statistics

Baseline: C4(t) · nt︸ ︷︷ ︸
local data checks in SMPC

+ C2(t) · nt︸ ︷︷ ︸
loading data to SMPC

+ C3(t)︸ ︷︷ ︸
test statistics

As shown in the highlighted part, HOLMES and the baseline
differ in the cost of performing local data checks, which is also
the dominating part of the overhead. The differences between
HOLMES and baseline are due to two reasons. First, recall
that HOLMES uses the ZK in a pairwise manner between
the parties. Since a party does not need to prove anything to
itself, each party only needs to prove (t− 1) times instead of t
times, while the SMPC is run over all parties’ dataset, of size
n · t. Second, C1 tends to be smaller than C4(t), on the one
hand because ZK is more restricted than SMPC and oftentimes
can be implemented more efficiently, and on the other hand,
while C4(t) tends to grow (at least) linearly with the number
of parties, C1 is independent of the number of parties (since
HOLMES invokes ZK in a pairwise manner).

Results. We present the results in Fig. 5(a). Because the

overheads of HOLMES and baseline are very different, and we
still want to discuss their individual growth patterns, we present
them in separate graphs. For the three datasets, HOLMES
outperforms the baseline by 18× to 40×. In addition, this
gap is larger when the number of parties increases, which is
consistent with the cost analysis. From Fig. 5(a) we can see
that the overhead of HOLMES grows almost linearly, while
the overhead of baseline grows slightly faster than linear. This
is consistent with the cost analysis, as the term C4(t) · nt in
baseline is growing faster than C1 · n(t− 1) when the number
of parties t increases, because C4(t) also grows linearly to t.

Breakdown. To understand what contributes to this overhead,
we present the breakdown of the overhead in Tab. II, Tab. III,
and Tab. IV. As the tables show, the average time per instance
varies between datasets because we perform different tests on
them. In all three experiments, we can see that range check
contributes to a large portion of the overhead, followed by the
cost of loading data into SMPC. In contrast, multidimensional
testing is quite efficient. The consistency check between ZK
and SMPC also has a small overhead.

E. Overhead of the individual components

To understand more concretely the overhead of HOLMES
and how it outperforms the baseline, we present the overheads
for a number of basic tests and building blocks: range check,
histogram, mean, variance, and trimmed mean, as shown in
Fig. 5. We defer the discussion of dimensionality reduction to
Section VII-F since we focus later on how it compares with a
strawman implementation. We now discuss these components.

11

2 3 4 5
Number of dimensions

0

10

20

30

40

50
Ti

m
e

(s
)

N = 100k (HOLMES)
N = 200k (HOLMES)

(a) HOLMES, fixing the size of each
dimension to 10

2 3 4 5
Number of dimensions

100

102

104

106

Ti
m

e
(s

)

N = 100k (Strawman)
N = 200k (Strawman)

(b) Strawman, fixing the size of each
dimension to 10

5 10 15 20 25
Number of individual labels in each dimension

0

10

20

30

40

50

Ti
m

e
(s

)

N = 100k (HOLMES)
N = 200k (HOLMES)

(c) HOLMES, fixing the number of
dimensions to 4

5 10 15 20 25
Number of individual labels in each dimension

100

102

104

106

108

Ti
m

e
(s

)

N = 100k (Strawman)
N = 200k (Strawman)

(d) Strawman, fixing the number of
dimensions to 4

Fig. 6. Overhead of the multidimensional goodness-of-fit test with dimensionality reduction, in HOLMES and in the strawman.

Range check. As shown in Fig. 5(b) and Fig. 5(f), the over-
head of range check grows almost linearly to the number of
instances and logarithmically to the size of the range, as ex-
pected. HOLMES performs range checks about 4× to 19×
more efficiently than the baseline.
Histograms. We consider histograms over nominal and nu-
meric attributes. The difference is that the latter needs to arrange
data belonging to a range into a group (e.g., age [20, 29]), which
incurs additional overhead. As shown in Fig. 5(c) and Fig. 5(g),
the overhead grows almost linearly to the number of individual
labels in a nominal attribute, and linearly to the number of
instances, as expected. From Fig. 5(d) and Fig. 5(h), for the
numeric case, the overhead grows linearly to the number of
groups and the number of instances, and logarithmically to the
range size of each group. HOLMES is about 4× to 10× more
efficient than baseline.
Mean and variance. Mean and variance are relatively cheap
to compute, so we experiment with more instances to better
show the growth patterns (one million to five million). As
shown in Fig. 5(i) and Fig. 5(k), the overhead is linear to the
number of instances (mainly the cost to load data into SMPC).
HOLMES is only about 2× to 3× more efficient.
Trimmed mean. We show the overhead of trimmed mean in
Fig. 5(j) and Fig. 5(l). The overhead grows almost linearly to
the number of instances and logarithmically to the range size,
as expected. HOLMES is about 4× to 10× more efficient than
the baseline.

F. Overhead of dimensionality reduction
We now describe the overhead of HOLMES’s dimensionality

reduction technique and compare it with a strawman that only
uses random linear projection (from the JL lemma).
Cost analysis. The overheads of HOLMES’s approach and the
strawman are very different. Consider a multidimensional test
with C5 nominal attributes each with C6 independent labels
where CC5

6 � p ≈ 261. Assume that the projected vector has r
dimensions. Then, for each instance in the dataset, the overhead
for dimensionality reduction can be expressed as the number of
input and multiplications of private values in ZK, as follows.

HOLMES: 5 · r︸ ︷︷ ︸
cost of PRF

, Strawman: CC5
6 · (C5 − 1) + 2 · C5 · C6︸ ︷︷ ︸

cost to create one-hot encoding

Results. We choose the parameter r based on [91] with an
error rate ε = 3/4. We now discuss the growth patterns in

Fig. 6. As shown in Fig. 6(a) and Fig. 6(c), as long as CC5
6 � p,

HOLMES’s approach is almost independent of C5 and C6, but
just linear to the number of dimensions in the projected vector
r and the number of instances, as expected.

We present the strawman case, drawn in log scale, in Fig. 6(b)
and Fig. 6(d). The strawman is very expensive, as we could
only run the experiment in smaller scales and extrapolate the
results. We see that the overhead grows exponentially to the
number of dimensions. With a fixed number of dimensions,
the overhead grows much slower than an exponential function
(indeed, it is expected to be close to a degree-4 polynomial
function). Both are expected based on the cost analysis. In sum,
HOLMES’s approach improves the efficiency of dimensionality
reduction especially for high dimensions, up to 104× based
on our evaluation.

V I I I . R E L AT E D W O R K

Secure collaborative computation systems. We envision that
HOLMES can be combined with systems for secure analytics
and machine learning [6–9, 11–22]. Our platform is especially
useful when malicious security is required, and parties are not
trusted to provide their honest inputs.
Secure multiparty computation. A rich body of works pro-
pose SMPC protocols [92–94] for malicious adversaries and
dishonest majority, with SPDZ [95–97] and authenticated gar-
bling [98–101] being the state-of-the-art. HOLMES uses SPDZ
because it is more suitable for arithmetic computation.

There are works [102, 103] that use SMPC techniques for
statistical tests. In contrast to our platform, they mostly focus
on the two-party case and consider different threat models.
Zero-knowledge proofs. Zero-knowledge proofs (ZK) [104]
enable a party to prove a statement without leaking any informa-
tion. Recently, constructing practical ZK has gained much atten-
tion, especially since succinct non-interactive proofs [27, 105–
108] have been used in blockchains. In HOLMES, we want
small proving time, so succinctness and non-interactivity are
not important. Hence, we use QuickSilver [84].
Verifiable computation. A research area related to HOLMES
is verifiable computation [67, 109–114], in which one or more
parties prove that some (secure) computation is done correctly.
This is different from HOLMES, as we do not check that the
collaborative computation is done correctly (which is the duty of
SMPC) but instead focuses on the inputs that the parties provide.
Moreover, instead of focusing on verifying general computation,

12

HOLMES is tailored to perform statistical tests securely and
efficiently, such as supporting efficient dimensionality reduction
for multidimensional data.
Robust statistics. Robust statistics [115–117] focuses on
statistics that are resilient to nonstandard input distributions.
HOLMES shares the similar motivation, but works very dif-
ferently. Robust statistics aims at making algorithms resilient
to incoming malicious inputs, while HOLMES tries to detect
them. HOLMES also provides the necessary privacy guarantees
for secure collaborative computation.
Poisoning attacks. Poisoning attacks [118, 119] happen when
the attacker can inject manipulated data to the training set and
cause the model to fail on certain inputs. There are existing
defenses trying to mitigate poisoning attacks [33]. One defense
is to filter out potentially poison data by identifying outliers
in the training data [120–123], which has the potential to be
represented as a user-defined test in HOLMES.
Differential privacy. Differential privacy (DP) [124–126] is
a mechanism that adds noise to the dataset or the model to
hide information about the individual sample in the dataset. DP
is slightly related to HOLMES because DP has been used to
improve the robustness of the training phase, and is a common
feature of secure collaborative learning systems [127–131].
HOLMES can provide robustness in addition to what DP offers
by ensuring the input follows the desirable distributions. It is
an open problem whether HOLMES can work more closely
with DP, such as in checking that each party has correctly
added a data-independent noise to their inputs.
Hardware enclave. An alternative to cryptographic collabo-
rative computation is to use hardware enclaves [132]. Several
systems have used enclaves for encrypted databases and data an-
alytics [133–136]. However, a well-known issue with enclaves
is that they are susceptible to side-channel attacks [137–144],
which may reveal access patterns.

I X . D I S C U S S I O N A N D L I M I TAT I O N S

HOLMES is only the beginning of checking inputs for ma-
liciously secure collaborative computation. We now discuss
some challenges that HOLMES has not solved.
Identifying necessary tests. HOLMES enables parties to
specify and perform statistical input checks specific to their use
case before the collaborative computation. It does not, however,
make any decisions regarding what the necessary tests are.
Identifying attacks and proposing defenses in learning systems
is an active area of research [33–46], but at this moment, there
is no systematic approach that identifies the necessary tests for
defending against a general class of attacks, such as biasing
attacks. HOLMES’s contribution is to enable expressing a rich
class of statistical tests, both enabling tests that parties perform
today [25–27, 120–123] and aiming to support input checks
that will be developed in the future.
Beyond statistical tests. Not all desired input checks can be
expressed as statistical tests. In data analytics applications, there
might be consistency concerns between instances. For example,
in a dataset consisting of patient admissions, the same patient

may have several records, each with the patient’s date of birth.
The application may want to check that the same patient has
only one date of birth in the dataset. In other applications, the
parties might perform input checks with the help of machine
learning model, e.g., run a classifier on the input data [120–
123]. These checks are outside of HOLMES’s scope, but can
potentially be performed in other existing systems. Systems
for secure data analytics [6] and for running machine learning
models privately [11, 15, 19, 20, 54, 55, 145] are able to
perform input checks again malicious parties. Integrating such
systems with HOLMES would allow expressing an even richer
class of input checks.

X . C O N C L U S I O N

We present HOLMES, a platform for expressing and perform-
ing rich statistical tests over input data for secure collaborative
computation. HOLMES then enables running such tests in an
efficient and secure way. First, HOLMES’s techniques blend
together efficient zero-knowledge proofs and secure multiparty
computation protocols to leverage the local computation in
statistical tests. Second, for high-dimensional data, HOLMES
contributes a new secure dimensionality reduction procedure
that leverages the sparseness securely and significantly outper-
forms naive approaches. Finally, we implemented HOLMES
and demonstrated that it can perform useful input checks for
several use cases.

13

R E F E R E N C E S

[1] Nature Communications Editorial, “Data sharing and the
future of science,” in Nature Communications ’18.

[2] H. A. Piwowar and T. J. Vision, “Data reuse and the
open data citation advantage,” in PeerJ ’13.

[3] M. Packer, “Data sharing in medical research,” in British
Medical Journal ’18.

[4] H. L. Williams, “Intellectual property rights and innova-
tion: Evidence from the human genome,” in Journal of
Political Economy ’13.

[5] M. W. Carroll, “Sharing research data and intellectual
property law: A primer,” in PLoS Biology ’15.

[6] R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa, and
J. M. Hellerstein, “Senate: A maliciously-secure MPC
platform for collaborative analytics,” in SEC ’20.

[7] P. Mohassel and Y. Zhang, “SecureML: A system for scal-
able privacy-preserving machine learning,” in S&P ’17.

[8] M. Chase, R. Gilad-Bachrach, K. Laine, K. E. Lauter, and
P. Rindal, “Private collaborative neural network learning,”
in IACR ePrint 2017/762.

[9] I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon,
“Privacy-preserving ridge regression with only linearly-
homomorphic encryption,” in ACNS ’18.

[10] M. Kantarcıoğlu and C. Clifton, “Privacy-preserving
distributed mining of association rules on horizontally
partitioned data,” in IEEE TKDE ’04.

[11] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica,
“Helen: Maliciously secure coopetitive learning for linear
models,” in S&P ’19.

[12] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural
network predictions via MiniONN transformations,” in
CCS ’17.

[13] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“GAZELLE: A low latency framework for secure neural
network inference,” in SEC ’18.

[14] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter,
and F. Koushanfar, “XONN: XNOR-based oblivious deep
neural network inference,” in SEC ’19.

[15] V. Chen, V. Pastro, and M. Raykova, “Secure computation
for machine learning with SPDZ,” in NeurIPS ’18.

[16] A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private
evaluation of decision trees using sublinear cost,” in
PETS ’19.

[17] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft, “Privacy-preserving ridge regres-
sion on hundreds of millions of records,” in S&P ’13.

[18] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Do-
erner, S. Zahur, and D. Evans, “Privacy-preserving dis-
tributed linear regression on high-dimensional data.” in
PETS ’17.

[19] H. Chen, M. Kim, I. Razenshteyn, D. Rotaru, Y. Song,
and S. Wagh, “Maliciously secure matrix multiplica-
tion with applications to private deep learning,” in ASI-
ACRYPT ’20.

[20] W. Zheng, R. Deng, W. Chen, R. A. Popa, A. Panda,

and I. Stoica, “Cerebro: A platform for multi-party cryp-
tographic collaborative learning,” in SEC ’21.

[21] C. A. Choquette-Choo, N. Dullerud, A. Dziedzic,
Y. Zhang, S. Jha, N. Papernot, and X. Wang, “CaPC
learning: Confidential and private collaborative learning,”
in Arxiv:2102.05188, 2021.

[22] M. Abspoel, D. Escudero, and N. Volgushev, “Secure
training of decision trees with continuous attributes,” in
PETS ’21.

[23] L. Kamm, D. Bogdanov, S. Laur, and J. Vilo, “A new way
to protect privacy in large-scale genome-wide association
studies,” in Bioinformatics ’13.

[24] E. A. Abbe, A. E. Khandani, and A. W. Lo, “Privacy-
preserving methods for sharing financial risk exposures,”
in American Economic Review ’12.

[25] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust,
and scalable computation of aggregate statistics,” in
NSDI ’17.

[26] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Poly-
chroniadou, “Prio+: Privacy preserving aggregate statis-
tics via Boolean shares,” in IACR ePrint 2021/576.

[27] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell, “Bulletproofs: Short proofs for confidential
transactions and more,” in S&P ’18.

[28] E. L. Lehmann and J. P. Romano, Testing statistical
hypotheses. Springer Science & Business Media, 2006.

[29] E. L. Lehmann, Testing statistical hypotheses. Wiley,
1959.

[30] W. A. Shewhart and W. E. Deming, Statistical method
from the viewpoint of quality control. Courier Corpo-
ration, 1986.

[31] A. Mitra, Fundamentals of quality control and improve-
ment. John Wiley & Sons, 2016.

[32] D. C. Montgomery, Introduction to statistical quality
control. John Wiley & Sons, 2020.

[33] N. Papernot, P. McDaniel, A. Sinha, and M. P. Well-
man, “Sok: Security and privacy in machine learning,”
in EuroS&P ’18.

[34] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan,
and N. K. Jha, “Systematic poisoning attacks on and
defenses for machine learning in healthcare,” in IEEE
Journal of Biomedical and Health Informatics ’15.

[35] M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gum-
madi, “Fairness beyond disparate treatment & disparate
impact: Learning classification without disparate mis-
treatment,” in WWW ’17.

[36] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and
A. Galstyan, “A survey on bias and fairness in machine
learning,” in ACM Computing Surveys ’21.

[37] T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi,
A. Singla, A. Weller, and M. B. Zafar, “A unified ap-
proach to quantifying algorithmic unfairness: Measuring
individual & group unfairness via inequality indices,” in
KDD ’18.

[38] K. Webster, M. Recasens, V. Axelrod, and J. Baldridge,
“Mind the GAP: A balanced corpus of gendered ambigu-

14

ous pronouns,” in Transactions of the Association for
Computational Linguistics ’18.

[39] R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas,
and F. Diaz, “Towards a fair marketplace: Counterfactual
evaluation of the trade-off between relevance, fairness &
satisfaction in recommendation systems,” in CIKM ’18.

[40] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and
A. Huq, “Algorithmic decision making and the cost of
fairness,” in KDD ’17.

[41] J. Zhang and E. Bareinboim, “Fairness in decision-
making: The causal explanation formula,” in AAAI ’18.

[42] N. Grgic-Hlaca, E. M. Redmiles, K. P. Gummadi, and
A. Weller, “Human perceptions of fairness in algorith-
mic decision making: A case study of criminal risk
prediction,” in WWW ’18.

[43] F. P. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy,
and K. R. Varshney, “Optimized pre-processing for dis-
crimination prevention,” in NeurIPS ’17.

[44] N. Grgic-Hlaca, M. B. Zafar, K. P. Gummadi, and
A. Weller, “Beyond distributive fairness in algorithmic
decision making: Feature selection for procedurally fair
learning,” in AAAI ’18.

[45] R. J. Mooney, “Comparative experiments on disambiguat-
ing word senses: An illustration of the role of bias in
machine learning,” in EMNLP ’96.

[46] N. Kilbertus, M. Rojas-Carulla, G. Parascandolo,
M. Hardt, D. Janzing, and B. Schölkopf, “Avoiding dis-
crimination through causal reasoning,” in NeurIPS ’17.

[47] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted
backdoor attacks on deep learning systems using data
poisoning,” ArXiv:1712.05526, 2017.

[48] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru,
and B. Li, “Manipulating machine learning: Poisoning
attacks and countermeasures for regression learning,” in
S&P ’18.

[49] M. Chase, E. Ghosh, and S. Mahloujifar, “Property in-
ference from poisoning,” in Arxiv:2101.11073, 2021.

[50] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan,
and N. K. Jha, “Systematic poisoning attacks on and
defenses for machine learning in healthcare,” in IEEE
Journal of Biomedical and Health Informatics ’14.

[51] M. Goldblum, D. Tsipras, C. Xie, X. Chen,
A. Schwarzschild, D. Song, A. Madry, B. Li, and
T. Goldstein, “Dataset security for machine learning:
Data poisoning, backdoor attacks, and defenses,” in
ArXiv:2012.10544, 2020.

[52] S. Moro, P. Cortez, and P. Ritaa, “A data-driven approach
to predict the success of bank telemarketing,” in Decision
Support Systems ’14.

[53] “Bank marketing data set,” https://archive.ics.uci.edu/ml/
datasets/Bank+Marketing.

[54] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz,
P. Mittal, and T. Rabin, “Falcon: Honest-majority mali-
ciously secure framework for private deep learning,” in
PETS ’21.

[55] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-

party secure computation for neural network training,”
in PETS ’19.

[56] R. B. D’Agostino, Goodness-of-fit-techniques. CRC
Press, 1986, vol. 68.

[57] W. B. Johnson and J. Lindenstrauss, “Extensions of
Lipschitz mappings into a Hilbert space 26,” in Contem-
porary mathematics ’84.

[58] I. B. Damgård, “On the randomness of Legendre and
Jacobi sequences,” in CRYPTO ’88.

[59] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P.
Smart, “MPC-friendly symmetric key primitives,” in
CCS ’16.

[60] D. Khovratovich, “Key recovery attacks on the Legen-
dre PRFs within the birthday bound,” in IACR ePrint
2019/862.

[61] A. May and F. Zweydinger, “Legendre PRF (multiple)
key attacks and the power of preprocessing,” in IACR
ePrint 2021/645.

[62] P. J. Costa, Applied mathematics for the analysis of
biomedical data: Models, methods, and MATLAB. John
Wiley & Sons, 2017.

[63] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Uni-
versally composable two-party and multi-party secure
computation,” in STOC ’02.

[64] D. Evans, V. Kolesnikov, and M. Rosulek, “Defining
multi-party computation,” in A Pragmatic Introduction
to Secure Multi-Party Computation, 2018.

[65] Y. Lindel, How to simulate it: A tutorial on the simulation
proof technique, 2017.

[66] J. Kilian, “Uses of randomness in algorithms and proto-
cols,” Ph.D. dissertation, MIT, 1990.

[67] C. Costello, C. Fournet, J. Howell, M. Kohlweiss,
B. Kreuter, M. Naehrig, B. Parno, and S. Zahur, “Gep-
petto: Versatile verifiable computation,” in S&P ’15.

[68] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohri-
menko, and B. Parno, “Hash first, argue later: Adaptive
verifiable computations on outsourced data,” in CCS ’16.

[69] M. Campanelli, D. Fiore, and A. Querol, “LegoSNARK:
Modular design and composition of succinct zero-
knowledge proofs,” in CCS ’19.

[70] J. T. Schwartz, “Fast probabilistic algorithms for verifi-
cation of polynomial identities,” in JACM ’80.

[71] R. Zippel, “Probabilistic algorithms for sparse polyno-
mials,” in EUROSAM ’79.

[72] R. A. Demillo and R. J. Lipton, “A probabilistic remark
on algebraic program testing,” in Information Processing
Letters ’78.

[73] M. Blum, “Coin flipping by telephone a protocol for solv-
ing impossible problems,” in ACM SIGACT News ’83.

[74] C. F. Gauss, “Theoria combinationis obsevationum er-
roribus minimis obnoxiae,” in Carl Friedrich Gauss
Werke, 1823.

[75] D. Achlioptas, “Database-friendly random projections:
Johnson-Lindenstrauss with binary coins,” in Journal of
Computer and System Sciences ’03.

[76] R. B. Davies, “Algorithm as 155: The distribution of

15

https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

a linear combination of χ2 random variables,” Applied
Statistics, pp. 323–333, 1980.

[77] J. Sheil and I. O’Muircheartaigh, “Algorithm as 106: The
distribution of non-negative quadratic forms in normal
variables,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 26, no. 1, pp. 92–98, 1977.

[78] J.-P. Imhof, “Computing the distribution of quadratic
forms in normal variables,” Biometrika, vol. 48, no. 3/4,
pp. 419–426, 1961.

[79] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and
T. Tiessen, “MiMC: Efficient encryption and crypto-
graphic hashing with minimal multiplicative complexity,”
in ASIACRYPT ’16.

[80] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher,
C. Rechberger, D. Rotaru, A. Roy, and M. Schofnegger,
“Feistel structures for MPC, and more,” in ESORICS ’19.

[81] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and
A. Szepieniec, “Design of symmetric-key primitives for
advanced cryptographic protocols,” in FSE ’20.

[82] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and
M. Schofnegger, “POSEIDON: A new hash function for
zero-knowledge proof system,” in SEC ’21.

[83] A. Szepieniec, “On the use of the Legendre symbol in
symmetric cipher design,” in IACR ePrint 2021/984.

[84] K. Yang, P. Sarkar, C. Weng, and X. Wang, “QuickSil-
ver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field,” in CCS ’21.

[85] “SCALE and MAMBA,” https://github.com/
KULeuven-COSIC/SCALE-MAMBA.

[86] “Multi-protocol SPDZ,” https://github.com/data61/
MP-SPDZ.

[87] M. Keller, “MP-SPDZ: A versatile framework for multi-
party computation,” in CCS ’20.

[88] B. Strack, J. P. DeShazo, C. Gennings, J. L. Olmo, S. Ven-
tura, K. J. Cios, and J. N. Clore, “Impact of HbA1c
measurement on hospital readmission rates: Analysis
of 70,000 clinical database patient records,” in BioMed
Research International ’14.

[89] “Diabetes 130-US hospitals for years 1999-2008 data
set,” https://archive.ics.uci.edu/ml/datasets/Diabetes+
130-US+hospitals+for+years+1999-2008.

[90] “Real time advertiser’s auction,” https://www.kaggle.
com/saurav9786/real-time-advertisers-auction.

[91] S. Venkatasubramanian and Q. Wang, “The Johnson-
Lindenstrauss transform: An empirical study,” in Work-
shop on Algorithm Engineering and Experiments
(ALENEX) ’11.

[92] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Com-
pleteness theorems for non-cryptographic fault-tolerant
distributed computation,” in STOC ’88.

[93] O. Goldreich, S. Micali, and A. Wigderson, “How to
play any mental game or A completeness theorem for
protocols with honest majority,” in STOC ’87.

[94] A. C. Yao, “Protocols for secure computations,” in
FOCS ’82.

[95] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias,

“Multiparty computation from somewhat homomorphic
encryption,” in CRYPTO ’12.

[96] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl,
and N. P. Smart, “Practical covertly secure MPC for
dishonest majority - or: Breaking the SPDZ limits,” in
ESORICS ’13.

[97] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making
SPDZ great again,” in EUROCRYPT ’18.

[98] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure
multiparty computation,” in CCS ’17.

[99] C. Hazay, P. Scholl, and E. Soria-Vazquez, “Low cost
constant round MPC combining BMR and oblivious
transfer,” in ASIACRYPT ’17.

[100] K. Yang, X. Wang, and J. Zhang, “More efficient MPC
from improved triple generation and authenticated gar-
bling,” in CCS ’20.

[101] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang,
“Ferret: Fast extension for correlated OT with small com-
munication,” in CCS ’20.

[102] A. Andoni, T. Malkin, and N. S. Nosatzki, “Two party
distribution testing: Communication and security,” arXiv
preprint arXiv:1811.04065, 2018.

[103] V. Narayanan, M. Mishra, and V. M. Prabhakaran, “Pri-
vate two-terminal hypothesis testing,” in ISIT ’20.

[104] S. Goldwasser, S. Micali, and C. Rackoff, “The knowl-
edge complexity of interactive proof-systems,” in
STOC ’85.

[105] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Pe-
tit, “Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting,” in EUROCRYPT ’16.

[106] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song,
“Libra: Succinct zero-knowledge proofs with optimal
prover computation,” in CRYPTO ’19.

[107] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transpar-
ent polynomial delegation and its applications to zero
knowledge proof,” in S&P ’20.

[108] S. Setty, “Spartan: Efficient and general-purpose zk-
SNARKs without trusted setup,” in CRYPTO ’20.

[109] B. Parno, J. Howell, C. Gentry, and M. Raykova,
“Pinocchio: Nearly practical verifiable computation,” in
S&P ’13.

[110] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and
C. Papamanthou, “vSQL: Verifying arbitrary SQL
queries over dynamic outsourced databases,” in S&P ’17.

[111] R. S. Wahby, Y. Ji, A. J. Blumberg, A. Shelat, J. Thaler,
M. Walfish, and T. Wies, “Full accounting for verifiable
outsourcing,” in CCS ’17.

[112] A. Kosba, C. Papamanthou, and E. Shi, “xJsnark: A
framework for efficient verifiable computation,” in
S&P ’18.

[113] S. Setty, S. Angel, T. Gupta, and J. Lee, “Proving the cor-
rect execution of concurrent services in zero-knowledge,”
in OSDI ’18.

[114] A. Bois, I. Cascudo, D. Fiore, and D. Kim, “Flexible
and efficient verifiable computation on encrypted data,”
in PKC ’21.

16

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://www.kaggle.com/saurav9786/real-time-advertisers-auction
https://www.kaggle.com/saurav9786/real-time-advertisers-auction

[115] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and
W. A. Stahel, Robust statistics: The approach based on
influence functions. John Wiley & Sons, 2011, vol.
196.

[116] P. J. Huber, Robust statistics. John Wiley & Sons, 2004,
vol. 523.

[117] R. A. Maronna, R. D. Martin, V. J. Yohai, and
M. Salibián-Barrera, Robust statistics: Theory and meth-
ods (with R). John Wiley & Sons, 2019.

[118] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses
for data poisoning attacks,” in NeurIPS ’17.

[119] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer,
T. Dumitras, and T. Goldstein, “Poison frogs! Targeted
clean-label poisoning attacks on neural networks,” in
NeurIPS’18.

[120] I. Diakonikolas and D. M. Kane, “Recent advances
in algorithmic high-dimensional robust statistics,” in
Arxiv:1911.05911, 2019.

[121] M. Goldblum, D. Tsipras, C. Xie, X. Chen,
A. Schwarzschild, D. Song, A. Madry, B. Li, and
T. Goldstein, “Dataset security for machine learning:
Data poisoning, backdoor attacks, and defenses,” in
Arxiv:2012.10544, 2020.

[122] A. Paudice, L. Munoz-González, and E. C. Lupu, “Label
sanitization against label flipping poisoning attacks,” in
ECML PKDD ’18.

[123] A. Paudice, L. Muñoz-González, A. Gyorgy, and E. C.
Lupu, “Detection of adversarial training examples
in poisoning attacks through anomaly detection,” in
Arxiv:1802.03041, 2018.

[124] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Cal-
ibrating noise to sensitivity in private data analysis,” in
TCC ’06.

[125] C. Dwork, “Differential privacy,” in ICALP ’06.
[126] C. Dwork and A. Roth, The Algorithmic Foundations of

Differential Privacy. Now Publishers, 2014.
[127] A. Narayan and A. Haeberlen, “DJoin: Differentially pri-

vate join queries over distributed databases,” in OSDI ’12.
[128] A. Narayan, A. Feldman, A. Papadimitriou, and A. Hae-

berlen, “Verifiable differential privacy,” in EuroSys ’15.
[129] R. Shokri and V. Shmatikov, “Privacy-preserving deep

learning,” in CCS ’15.
[130] E. Roth, D. Noble, B. H. Falk, and A. Haeberlen, “Hon-

eycrisp: Large-scale differentially private aggregation
without a trusted core,” in SOSP ’19.

[131] E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce,
“Orchard: Differentially private analytics at scale,” in
OSDI ’20.

[132] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas,
H. Shafi, V. Shanbhogue, and U. Savagaonkar, “Innova-
tive instructions and software model for isolated execu-
tion,” in HASP ’13.

[133] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica, “Opaque: An oblivious and
encrypted distributed analytics platform,” in NSDI ’17.

[134] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A

secure database using SGX,” in S&P ’18.
[135] S. Eskandarian and M. Zaharia, “ObliDB: Oblivious

query processing for secure databases,” in VLDB ’19.
[136] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “SGX-

BigMatrix: A practical encrypted data analytic frame-
work with trusted processors,” in CCS ’17.

[137] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel
attacks: Deterministic side channels for untrusted oper-
ating systems,” in S&P ’15.

[138] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and
R. Strackx, “Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution,”
in SEC ’17.

[139] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter, “Leaky cauldron
on the dark land: Understanding memory side-channel
hazards in SGX,” in CCS ’17.

[140] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution,” in
SEC ’18.

[141] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai, “SgxPectre: Stealing Intel secrets from SGX en-
claves via speculative execution,” in EuroS&P ’19.

[142] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida, “CROSSTALK: Speculative data leaks across cores
are real,” in S&P ’21.

[143] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom, “CacheOut: Leaking data on Intel CPUs via
cache evictions,” in S&P ’21.

[144] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom,
“SGAxe: How SGX fails in practice,” https://sgaxe.com/
files/SGAxe.pdf.

[145] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Ras-
togi, and R. Sharma, “CrypTFlow: Secure Tensorflow
inference,” in S&P ’20.

[146] W. Beullens, T. Beyne, A. Udovenko, and G. Vitto,
“Cryptanalysis of the Legendre PRF and generalizations,”
in FSE ’20.

[147] N. Kalud̄erović, T. Kleinjung, and D. Kostić, “Cryptanal-
ysis of the generalised Legendre pseudorandom function,”
in ANTS ’20.

[148] M. O. Rabin, “Probabilistic algorithms in finite fields,”
in SIAM Journal on Computing ’80.

[149] C. F. Gauss, Carl Friedrich Gauss’ Untersuchungen uber
hohere Arithmetik, 1889.

[150] S. K. Chebolu and J. Mináč, “Counting irreducible poly-
nomials over finite fields using the inclusion-exclusion
principle,” in Mathematics Magazine ’11.

[151] C. Ding, T. Hesseseth, and W. Shan, “On the linear
complexity of Legendre sequences,” in IEEE TIT ’98.

[152] V. Tóth, “Collision and avalanche effect in families of
pseudorandom binary sequences,” in Periodica Mathe-
matica Hungarica ’07.

[153] C. Mauduit and A. Sárközy, “On finite pseudorandom

17

https://sgaxe.com/files/SGAxe.pdf
https://sgaxe.com/files/SGAxe.pdf

binary sequences i: Measure of pseudorandomness, the
Legendre symbol,” in Acta Arithmetica ’97.

[154] “Legendre pseudo-random function,” https://legendreprf.
org/.

[155] I. A. Seres, M. Horváth, and P. Burcsi, “The Legendre
pseudorandom function as a multivariate quadratic cryp-
tosystem: Security and applications,” in IACR ePrint
2021/182.

[156] A. Dasgupta, R. Kumar, and T. Sarlos, “A sparse Johnson-
Lindenstrauss transform,” in STOC ’10.

[157] D. M. Kane and J. Nelson, “A derandomized sparse
johnson-lindenstrauss transform,” ArXiv:1006.3585,
2010.

[158] H. Corrigan-Gibbs and D. Kogan, “The discrete-
logarithm problem with preprocessing,” in EURO-
CRYPT ’18.

A P P E N D I X

A. Parameters of Legendre PRF for HOLMES’s dimensionality
reduction

In HOLMES, dimensionality reduction requires the sampling
of a pseudorandom matrix A as described in Section VI. We
provide details regarding the key generation for Legendre PRF
and other necessary background for Legendre PRF.

Sampling the Legendre PRF key. The t parties use the same
JL matrix, and therefore the same set of PRF keys. Before
sampling this random matrix, all parties must have already
committed their input data in the ZK and SMPC modules. This
is to prevent a malicious party from adaptively adjusting their
input data according to the random matrix.

The parties first use a random coin toss protocol to agree
on a freshly generated pseudorandom seed. Then, using this
pseudorandom seed as source of randomness, they run the
following PRF key generation algorithm. In the Legendre PRF,
the protocol needs to sample a random key K = (k0, k1, ..., kd)
such that fK(x) is irreducible in Z∗p and has no nontrivial
stabilizer, for each row of matrix A. This requirement has
arisen recently [146, 147] as a safeguard against known attacks
on Legendre PRF.

The parties sample a random degree-d polynomial and check
its reducibility using Rabin’s irreducibility test [148]. We can
expect to find an irreducible polynomial with a probability of
about 1/d [149, 150].

We skip the testing for nontrivial stabilizer, as it is known
to be very inefficient, and for d ≥ 3, a random polynomial
over Z∗p has nontrivial stabilizers only with a probability of at
most 9/p [147]. One could, following the recommendations in
[147], avoid nontrivial stabilizers from the beginning by having
gcd(p2 − 1, d) = 1. But, for our choice of parameter d = 3,
this condition cannot be satisfied for any prime larger than 3.
For d = 4, it is also impossible because our prime p is chosen
such that p− 1 has some two-arity (for the SMPC to be able
to use the Low Gear protocol).

Pseudorandomness of Legendre PRF. The protocol relies
on the pseudorandomness of the Legendre sequence gener-

ated by the PRF. Though there is no known reduction to
standard cryptographic assumptions, it has been conjectured,
like other symmetric key primitives, to have such a property.
The pseudorandomness of Legendre PRF has been studied in
many different aspects, including linear complexity, collision,
avalanche effect, and so on [151–153]. There is a recent trend
to study Legendre PRF as a SMPC-friendly PRF function
[59, 60, 146, 147, 154, 155]. Note that JL lemma does not
require a very high level of pseudorandomness—hash functions
with bounded independence already suffice [156, 157]. We only
need to ensure that the hash functions are chosen independently
from the input data, which we guarantee by committing the
data before sampling PRF keys.

Recently, there are several works on key-recovery attacks on
Legendre PRF [60, 146, 147]. They are indeed not relevant to
our settings because our protocol never hides the Legendre PRF
keys, and our protocol uses the Legendre PRF to generate a
pseudorandom mapping. Still, in HOLMES, we conservatively
choose our parameters to be sufficient to resist key-recovery
attacks, so we have a modest security margin against future
attacks on pseudorandomness. PRF distinguishing attacks on
Legendre PRF that does not base on key-recovery attacks and
is faster than a direct use of key-recovery attacks is an open
problem with no positive result so far [61], even with state-of-
the-arts attack techniques [158]. Ethereum foundation currently
has an active bounty program [154] on this open problem.

In our use case where the party has already committed their
input, it suffices to choose d = 3 for statistical security.

B. Security proof sketches

Theorem 1. Under standard cryptographic assumptions and
static corruptions, and under the random oracle and the ideal
cipher models, the protocol of HOLMES securely realizes the
ideal functionality FHOLMES.

Proof sketch. We prove the security in the (FCP,FSFE)-hybrid
world, where a commit-and-prove zero-knowledge proof ideal
functionality FCP models the ZK module, and a secure function
evaluation ideal functionality FSFE models the SMPC module.
We also need to invoke a random oracle for subsampling,
and/or an ideal cipher for our dimensionality reduction to model
Legendre PRF. For ease of presentation, we focus on the part
involving (FCP,FSFE) in this proof sketch.

We assume that the adversary corrupts at least one party,
otherwise the adversary does not even know what the checklist
is. And for simplicity, we assume malicious parties do not
abort in the middle of the protocol. The simulator in the ideal
world can simulate the transcripts of HOLMES’s protocol,
by invoking the corresponding simulators SimCP and SimSFE,
on the corresponding computation as well as the consistency
check. Note that, during the consistency check, the simulator
can easily evaluate the polynomial at a random point z = β
sampled by a simulated coin toss. Therefore, the simulator
is able to simulate the view of the hybrid world. By using
the hybrid arguments, we can show that HOLMES’s protocol
securely realizes the ideal functionality FHOLMES.

18

https://legendreprf.org/
https://legendreprf.org/

	Abstract
	I Introduction
	I-A HOLMES's techniques
	I-B Our contributions

	II Overview
	II-A HOLMES architecture
	II-B Statistical tests
	II-C Checklist API
	II-D Threat model and security guarantees

	III HOLMES's Workflow
	III-A Polynomial testing
	III-B Detailed execution phase workflow

	IV HOLMES's statistical tests
	IV-A Single-party basic tests and building blocks
	IV-B Multiparty basic tests and building blocks
	IV-C Instantiations of statistical tests
	IV-D Subsampling

	V HOLMES's Planning Algorithm
	VI HOLMES's High-Dimensional Tests
	VI-A HOLMES's goodness-of-fit
	VI-B HOLMES's dimensionality reduction for goodness-of-fit
	VI-C HOLMES's use of pseudorandom function

	VII Evaluation
	VII-A Setup
	VII-B Implementation
	VII-C Datasets
	VII-D End-to-end overhead
	VII-E Overhead of the individual components
	VII-F Overhead of dimensionality reduction

	VIII Related work
	IX Discussion and limitations
	X Conclusion
	References
	Appendix
	Appendix
	A Parameters of Legendre PRF for HOLMES's dimensionality reduction
	B Security proof sketches

