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Abstract. Recent works showed how Mutual Information Neural Estimation (MINE)5

could be applied to side-channel analysis in order to evaluate the amount of leakage6

of an electronic device. One of the main advantages of MINE over classical estimation7

techniques is to enable the computation between high dimensional traces and a8

secret, which is relevant for leakage assessment. However, optimally exploiting this9

information in an attack context in order to retrieve a secret remains a non-trivial10

task especially when a profiling phase of the target is not allowed.11

Within this context, the purpose of this paper is to address this problem based on a12

simple idea: there are multiple leakage sources in side-channel traces and optimal13

attacks should necessarily exploit most/all of them. To this aim, a new mathematical14

framework, designed to bridge classical Mutual Information Analysis (MIA) and the15

multidimensional aspect of neural-based estimators, is proposed. One of the goals is16

to provide rigorous proofs consolidating the mathematical basis behind MIA, thus17

alleviating inconsistencies found in the state of the art.18

This framework allows to derive a new attack called Neural Estimated Mutual Infor-19

mation Analysis (NEMIA). To the best of our knowledge, it is the first unsupervised20

attack able to benefit from both the power of deep learning techniques and the21

valuable theoretical properties of MI. From simulations and experiments conducted22

in this paper, it seems that NEMIA performs better than classical and more recent23

deep learning based unsupervised side-channel attacks, especially in low-information24

contexts.25

Keywords: Side-channel analysis, Mutual information, Deep learning, Multidimen-26

sionality, MINE27

1 Introduction28

1.1 Context29

Side-Channel Analysis (SCA) could be defined as the process of gaining information on30

a secret hold by a system through leakage that comes from its practical implementation.31

In the most famous examples, an adversary exploits physical leakages of an electronic32

device such as its power consumption [KJJ99] or Electromagnetic (EM) emanations [QS01]33

to recover a cryptographic key. Many other side-channels have been pointed out in the34

literature such as timing attacks [Koc96], cache monitoring [Per05] or even network packets35

length analysis [SSH+14]. In any case, the problem can be reduced to the following form:36

an adversary is able to learn realizations of a leakage variable L, often called a trace, and37

aims at using it to infer information about another related secret variable S.38

From an information theory point of view, the maximum amount of information one39

could extract from a side-channel trace is bounded by the Mutual Information I(S, L).40

This quantity is, indeed, central in the side-channel domain. The goals of the different41

actors could be summarized as follows:42
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• Designers aim at implementing countermeasures to decrease as much as possible43

I(S, L), under computational and efficiency constraints.44

• Evaluators aim at estimating I(S, L) as closely as possible to assess leakages in a45

worst-case scenario.46

• Attackers aim at developing strategies to partially or fully exploit I(S, L) in order47

to recover a secret.48

The main problem with this paradigm is that I(S, L) is famously hard to estimate49

from drawn samples when the variables live in a high dimensional space, which is generally50

the case of L (i.e. power traces often consist of thousands of time samples). Classical MI51

estimators suffer from the so called "curse of dimensionality" and require an exponential52

(w.r.t. the dimension) amount of data to produce reliable results. This explains why,53

despite its valuable theoretical properties, I(S, L) is not directly used for side-channel54

analysis. Instead, one often compute maxi I(S, L[i]) where L[i] stands for the i-th sample55

of the trace, but this may not represent the true available information when multiple56

samples leak or when there exist some dependencies between these samples.57

However, in a recent work [CLM20], authors took advantage of a new deep learning58

technique called Mutual Information Neural Estimation (MINE) [BBR+18] to develop59

a side-channel tool able to reliably estimate the MI between the secret and full traces,60

drastically reducing the impact of high dimensionality on the estimation reliability. This61

tool allows one to get an absolute leakage quantification from raw traces which is helpful62

for designers or evaluators to perform leakage assessment. However, knowing the amount63

of potentially usable information is not the same as actually exploiting it to retrieve a64

secret, and authors left open questions regarding this tool from the attacker’s point of65

view. Is an adversary also able to use the inherent multidimensional properties of MINE to66

exploit at the same time all the potential leakage sources ? And if so, what is the optimal67

way to do it ? This paper aims at answering these questions.68

Side-channel attacks are mainly divided into two categories: supervised SCA, where69

the adversary can first perform a characterization of the target, and unsupervised SCA70

in which this profiling step is not possible. For profiled SCA, one is theoretically able to71

exploit all the information I(S, L) by perfectly learning the target’s leakage model during72

the characterization phase. Deep learning attacks have been shown to effectively extract all73

the available information when using the negative log likelihood as loss function [MDP19].74

Therefore the problem is closed, at least in theory, for profiled SCA.75

However, this is not the case for unsupervised attacks, where the true leakage model76

of the target is unknown to the adversary. In this situation, only a fraction of I(S, L),77

which value depends on the correctness of one’s a priori on the leakage model, can78

be exploited. For example, the Correlation Power Analysis (CPA) [BCO04] is efficient79

for linear dependencies between the leakage and a certain function of the intermediate80

variable (often being the Hamming weight function). The Linear Regression Analysis81

(LRA) [DPRS12] also assumes a linear dependency but can handle different weights for82

each bit of the intermediate variable.83

Mutual Information Analysis (MIA), however, has been introduced as a generic strategy84

able to capture any kind of dependencies. Papers addressing the theoretical background85

behind MIA [GBTP08,PR09,VCS09,BGP+11] all present MIA as SCA distinguisher able86

to recover the correct key without any knowledge on the target nor on its leakage model.87

However, this leakage model free strategy only works to target non-bijective intermediate88

variables which makes it well suited for the DES (as the DES S-boxes are not bijectives)89
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but less suited for more recent algorithms such as the AES. This explains why MIA has90

not often been used in practice.91

A second version of the MIA allowing to target any intermediate variables (and is92

therefore applicable in many more contexts) has also been developed. These two versions93

are not separated in the literature but we decided to do so in this paper to clarify the94

relationship between MIA and leakage model a priori. Indeed, this second version is not95

leakage model free i.e. it requires an a priori on the leakage model to work. However, one96

of the main advantages of this attack is that it is not limited to linear leakage model and97

more generally, does not require any assumption on the leakage distribution (as long as98

the adversary’s a priori is sufficiently correct). However, this gain in genericity comes at99

the cost of efficiency: CPA has almost always been proved to work better than MIA in100

classical attack scenarios since leakage models are often linear. Therefore MIA is more101

seen as a great tool in theory that does not offer much in practice.102

However, one of the main advantages of MIA is that it generalizes well to higher103

dimension variables and offers a way to potentially use a bigger part of the information104

contained in a side-channel trace. This has not really been used in the literature (except to105

extend MIA for masked implementation [PR09,BGP+11]) due to MI estimators limitations.106

But recent breakthroughs regarding neural estimation encourages to revisit classical MIA107

in order to make it highly multidimensional, to get closer to an optimal attack regarding108

the amount of information being used from the traces.109

Even if neural estimation techniques can be applied in the leakage model free version110

of the MIA, we are more interested in the second version of MIA since it does not impose111

restrictions on the targeted algorithm. However, we argue that the mathematical framework112

behind this version (developed in [GBTP08,PR09,VCS09,BGP+11]) is not complete or113

even wrong at some points and rely too much on intuition instead of proofs. As a result, it114

is difficult to derive the best way to use the new MI estimators, especially in the context115

of high dimensional variables, where intuition quickly falls short. That is why rebuilding116

a mathematical framework along with rigorous proofs on how to conduct an optimal117

multidimensional MIA is one of the contributions of this paper.118

1.2 Contributions119

1. Clarifying the State Of The Art (SOTA) around the MIA.120

We explicitly split MIA into two different versions (this is not explicitly done in the121

SOTA), to help understanding the need or not of an a priori on the leakage model122

(2.2). We then highlight inconsistencies with the second version mainly related to the123

fact that MIA relies on a distinguisher computing a score for each key hypotheses,124

but the wrong hypotheses scores are not taken into account in the analysis (2.3).125

This leads us to define a new generic version of MIA which objective is related to a126

maximization problem that includes the impact of the wrong hypotheses scores (2.4).127

2. Providing rigorous proofs to analytically solve the mathematical problems emerging128

from our new version of MIA.129

One of the main contributions of this paper, given by theorem 1 (2.5), is to solve130

the optimization problem defined in (2.4). Then, theorem 2 provides an extension of131

the analysis in the context of masking (3). Both theorems are designed to take into132

account the potential multidimensionality of the leakage and therefore are suited to133

support the use of the new neural MI estimators.134
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3. Presenting a new unsupervised multidimensional attack: the Neural Estimated135

Mutual Information Analysis (NEMIA).136

Mathematical results are then combined with recent breakthroughs regarding neural MI137

estimation in high dimension. This allows to derive, to the best of our knowledge, the138

first unsupervised side-channel attack able to benefit from both deep learning techniques139

(highly multidimensional, no pre-processing of the data...) and the valuable theoretical140

properties of MI (4).141

4. Providing Simulations and experiments to support the analysis.142

Simulations are provided both to empirically validate the mathematical analysis as143

well as to gain intuition about their meaning and about which situations are best144

suited for the use of NEMIA (5). Eventually, practical experiments on the ASCAD145

database (both on raw traces and on artificially noised traces) are conducted and146

show that this new attack seems to outperform classical SCA strategies in terms of147

number of traces needed and noise resiliency (6).148

2 Mutual Information Analysis149

2.1 Background150

Notations. Random variables are represented as upper-case letters such as X. They take151

their values in the corresponding set X depicted with a calligraphic letter. Lower case152

letters such as x stand for elements of X . Probability density function associated to the153

variable X is denoted by PX (replaced by P when there is no ambiguity).154

Information theory. The entropy H(X) [Sha48] of a random variable is a fundamental155

quantity in information theory which indicates how much information one would gain, in156

average, by learning a particular realization x of X. It is defined as the expectation of the157

self-information log2(1/pX). In a discrete context:158

H(X) =
∑
x∈X

PX(x) · log2( 1
PX(x) ) (1)159

In a side-channel environment where L represents the acquired data, one is not interested in160

the absolute information provided by X but rather in the amount of information revealed161

about a second variable such as a secret S. This is exactly what is measured by the mutual162

information I(S, L). It is defined as:163

I(S, L) = H(S)−H(S | L) = H(L)−H(L | S) (2)164

where H(A | B) stands for the conditional entropy of A knowing B:165

H(A | B) =
∑
b∈B

PB(b) · H(A | B = b) (3)166

Another useful way to characterise I(S, L) is to express it as the Kullback-Leibler (KL)167

divergence between the joint distribution and the product of the marginals:168

I(S, L) = DKL(PS,L || PS ⊗ pL)

=
∑
s∈S

∑
l∈L

P (s, l) · log
( P (s, l)

P (s) · P (l)
) (4)169

Unsupervised attacks. Suppose an adversary wants to recover the secret key used170

by the physical implementation of a cryptographic algorithm. He has access to a set of171
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measurements (traces) (Li)1≤i≤n labeled with the plaintext Pi used for the encryption.172

The general idea of an unsupervised side-channel attack is to make a series of hypotheses173

ki, on a sub-part of the key and to use a distinguisher D(k) allowing to rank the different174

candidates. Distinguishers use statistical dependencies between traces and an intermediate175

variable Zk∗ = g(P, k∗) that depends on the plaintext and the correct key k∗ through a176

deterministic function g : P ×K → Z related to the underlying algorithm. For simplicity,177

g(P, k) is denoted gk(P ) in the rest of the paper.178

Common distinguishers such as Pearson’s coefficient or coefficient of determination179

in a linear regression exploit some a priori on the leakage model. A common intuition180

about mutual information used as a distinguisher [GBTP08] is that it has been introduced181

precisely to reduce the need to have an a priori. It is often found in the literature182

(e.g. [BGP+11]) that it aims at generality, leading to successful attacks without requiring183

specific knowledge or assumptions on the target. While this is true in some sense, this184

assertion is mitigated hereafter.185

2.2 State of the art186

This section presents the state of the art of MIA [GBTP08,PR09,VCS09,BGP+11] and is187

organized to discuss and clarify the importance of the adversary’s leakage model a priori.188

MIA uses a distinguisher D which takes the following form1:189

D(k) = I
(
f(Zk), L

)
(5)190

with f being a function transforming the guessed intermediate variables Zk. This function191

is one of the main concerns of this paper. It is often called the "model" of the adversary.192

The requirement of a model may seem contradictory with the claims of genericity of the193

MIA. Actually, this model can be replaced by the identity function making the MIA194

independent of any a priori on the leakage model. This version of the MIA is presented195

hereafter.196

MIA version 1. (Leakage model free) In its most basic form, MIA uses197

I(Zk = gk(P ), L) as a distinguisher, making hypotheses on k. With φ : Z → Rn repre-198

senting the leakage model of the target, L can be written as L = φ(Zk∗) + N , with N199

being a random variable independent of Zk for all k, and representing the noise. With200

these notations, the distinguisher becomes:201

D(k) = I
(
Zk, φ(Zk∗) + N

)
(6)202

Proposition 1. This distinguisher is maximized for the correct key hypothesis k∗.203

Proof. Using equation 2, for any k ∈ K:204

D(k∗)−D(k) = H(L)−H(L | Zk∗)−
[
H(L)−H(L | Zk)

]
= H

(
φ(Zk∗) + N | Zk

)
−H

(
φ(Zk∗) + N | Zk∗

) (7)205

Since adding knowledge can only decrease entropy:206

D(k∗)−D(k) ≥ H
(
φ(Zk∗) + N | Zk, Zk∗

)
−H

(
φ(Zk∗) + N | Zk∗

)
(8)207

Now using the independence of N and the fact that φ(Zk∗) is entirely determined by Zk∗ :208

D(k∗)−D(k) ≥ H(N)−H(N)
≥ 0

(9)209

which concludes the proof.210

1Due to MI estimator limitations, D(k) is often replaced in practice by maxi I(f(Zk), L[i]), where L[i]
represents the i-th sample of the trace. This does not affect the theory described in this section so we
decided to keep it as described in eq. 5 for the sake of simplicity. More details are provided in section 4.2.
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This strategy does not require any assumption on the leakage model of the target.211

However, it only works if the correct key hypothesis is distinguishable from the other ones,212

or, in other words, if D(k) < D(k∗),∀k ≠ k∗, which is not guaranteed by proposition 1.213

An important property of the MI is that it is preserved by injective transformations of the214

input variables. So if different key hypotheses yield Zk variables differing from each other215

only by a permutation (for example if the gk functions are bijective), I(Zk, L) would be216

constant for all k and the distinguisher could not discriminate key candidates. Therefore,217

gk has to be non-injective. For example, one could target the output of the first round218

DES S-box.219

While this form of MIA is effectively leakage model free, it comes with a huge constraint220

since in many interesting cases gk is bijective. In the AES case, this means that one cannot221

target the output of the first S-box since Sbox[k∗ ⊕ P ] is bijective with P . In [PR09]222

and [RGV14a], authors suggest to target the bitwise addition between two S-box outputs223

during the MixColumns operation. This requires making hypotheses on 16 bits of the224

key (leading to 216 MI computations). Moreover, it is only feasible if this operation225

leaks enough information which may not be the case in practice. Indeed, for hardware226

implementations, this step is usually fully combinatorial and does not use any register.227

This explains why most of the MIA experiments in the literature have been performed on228

the DES.229

MIA version 2. (Leakage model dependent) It is still possible to target Zk∗ =230

gk∗(P ) for bijective gk functions. The idea is to apply a non-injective function f to Zk and231

use I(f(Zk), L) as distinguisher. The application of f create a partition of Z so f will be232

called the "partition function" in the rest of this paper. Since no data transformation can233

create information (this is the so called data processing inequality [BR12]), the application234

of f can only decrease the initial information: ∀f, ∀k, I(f(Zk), L) ≤ I(Zk, L). The goal is235

then to find a function that decreases more I(Zk, L) than I(Zk∗ , L) and therefore, enhance236

the discriminating power of the analysis.237

For example, assuming that bits leak independently, [GBTP08] proposes to drop one238

bit of Z. This is equivalent to redefine the intermediate variable as a restrictive number of239

bits of gk∗(P ), and apply MIA version 1 with no partition function. Another idea is to240

use a guessed version φ̄ of the leakage model φ. Indeed, I
(
φ(Zk), φ(Zk∗) + N

)
is clearly241

maximized for k = k∗. Therefore, if φ̄ is not too far from φ, I
(
φ̄(Zk), φ(Zk∗) + N

)
may242

still be maximized for k = k∗. It is shown in [VCS09] that error in the approximation of φ243

may be less penalizing than for other attacks.244

In addition, MIA is more flexible in the sense that it is not limited to exploit linear245

dependencies and gives an option to mount a successful attack with any leakage model.246

However, it should be emphasized that, for this version, the adversary must have a good247

enough a priori on the leakage, otherwise, the attack is unsuccessful. A suitable choice for248

the partition function necessarily uses assumptions on φ.249

While we think this point needed to be clarified, we do not see this as a criticism of250

MIA. As stated in [WOS14], hopes of finding a leakage model free strategy able to target251

a bijective intermediate variable are vain, even outside the context of MIA. We present252

hereafter a synthetic proof of the main result of [WOS14].253

Proposition 2. Let gk be a bijective map for all k. For any strategy S which takes as254

input a set of traces L⃗ =
(
φ(gk∗(Pi))

)
1≤i≤n

and outputs a ranking of the different key255

hypotheses, there exists a leakage model φ̃ that would rank k∗ in the last position such that256

the attack completely fails.257

Proof. First, apply S on traces obtained through any leakage model φ0 and denote by258

k̄ the last key returned by S. Now, for all P , define φ̃0(gk∗(P )) = φ0(gk̃(P )), which259
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completely defines φ̃0 as gk̄ is bijective. Applying S on traces obtained through φ̃0 would260

now rank k∗ in the last position.261

This proposition shows that there does not exist any generic distinguisher, that would262

both:263

1) Exploit statistical dependencies between traces and an intermediate variable bijec-264

tively related to the plaintext.265

2) Work whatever the leakage model of the target.266

Since MIA version 2, with a fixed partition function, verifies 1), it necessarily fails for267

some leakage models or, in other words, has to use an assumption on the leakage model to268

succeed. Even though it requires an analysis on what partition function should be used,269

the rest of this paper is more focused on MIA version 2 since it is more generic in the270

sense that it can be applied in many more situations.271

2.3 About the distinguishability272

As stated in [WO11], even if D(k) is maximized for k = k∗, it is not enough to guarantee273

a successful attack in practice, when noise comes into play. What is really important is274

the difference between D(k∗) and the others, or in other words, the distinguishability of275

the correct hypothesis through the distinguisher D. The idea found in the literature is276

that for a wrong key hypothesis:277

«false predictions will form a partition corresponding to a random sampling of [L]278

and therefore simply give scaled images of the global side-channel probability density279

function. Hence, the estimated mutual information will be equal (or close) to zero in this280

case.» [BGP+11].281

We do not agree with this fact since the wrong hypotheses scores totally depend on282

the partition function f and on gk. As explained in the previous section, if the gk’s are283

bijective, all the scores would be equal if f is also bijective. This fact is well noted in all284

the papers about MIA but we would like to emphasize that even for non-bijective f the285

wrong hypotheses score depends on the "degree of bijectiveness" of f . Intuitively, the more286

compact f is (in the sense of more collisions through f) the smaller the wrong hypotheses287

scores would be. But the same is true for the correct score which means that there is a288

trade-off between how much one wants to decrease I
(
f(Zk), L

)
for the wrong k and keep289

I
(
f(Zk∗), L

)
high, to enhance the distinguishability.290

2.4 Towards an optimal partition function f291

In the SOTA, the partition function is not seen as a parameter on which a maximization292

research could be done. Therefore, no research on finding the optimal function f has293

been conducted. It is generally fixed to one or two constant choices, except in [PR09]294

where authors proposed that f could be a generic function. However, it is stated that the295

adversary:296

«does not need a good linear approximation of φ but only a function [f ] such that the297

mutual information I
(
f(Zk∗), φ(Zk∗)

)
is non-negligible » [PR09].298

Again, this condition is necessary but not sufficient. Even if bijective functions are299

excluded one can create the following f0 function such that:300

f0(x) =
{

0, if x ∈ {0, 1}
x, else

(10)301

Being almost the identity function, f0 is such that I
(
f0(Zk∗), φ(Zk∗)

)
is high but would302

have a very low discriminating power. This shows that the wrong hypotheses scores can303
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not be left out of the analysis. One typically wants to find the f function maximizing304

the distinguishability of the correct hypothesis. Several criterion has been studied in the305

literature [WO11, RGV14b]. In this paper we chose to use the nearest rival criterion2.306

Therefore, let us define the optimal set of functions Fopt as:307

Fopt = arg max
f : Z→Rn

{
I

(
f(Zk∗), L

)
−max

k ̸=k∗

[
I

(
f(Zk), L

)]}
(11)308

Fopt is a set since the maximum is reached by an infinite amount of functions. Indeed,309

if fopt ∈ Fopt, for any bijection b, b ◦ fopt is also in Fopt since bijections do not affect MI.310

Note that f is not restricted to be one-dimensional. Its domain is set to be Rn where n311

can be any positive integer.312

2.5 Analytical resolution313

Being consistent with proposition 2, Fopt depends on L and therefore on the leakage model.314

Since knowledge on φ is required anyway, this section assumes a full knowledge on φ in315

order to conduct an analytical analysis to find the optimal f function. Traces are also316

supposed to be acquired in an ideal set-up, without noise, so that, at least for a significant317

sub-part of the trace, L = φ(Zk∗). Bounds taking into account imperfect knowledge on φ318

as well as noise will be given in section 2.7.319

A natural choice for the partition function would be to take f = φ because it maximizes320

the left term in (11): I
(
f(Zk∗), φ(Zk∗)

)
. But it may be possible to find a function321

that would maximize the global objective without maximizing the left term of (11) (we322

emphasize that f and φ can be multi-dimensional which make the intuition harder to323

have). Th. 1 actually proves that it is not possible and that whatever the leakage model,324

φ ∈ Fopt. The main demonstration requires the use of a helper which is introduced in the325

form of a lemma hereafter.326

Lemma 1. Let f : Z → Rn be any function. For any leakage model φ: Z → Rn there327

exists a decomposition of f into f = f2 ◦ f1, with f1 : Z → N, f2 : N→ Rn, satisfying the328

two following properties:329

1) ∃ f3 : Im f1 → Rn such that f3 ◦ f1 = φ330

2) ∀z ∈ Z, f2|
f1

(
φ−1({φ(z)})

) is bijective of reciprocal f−1
2 |f2◦f1

(
φ−1({φ(z)})

)331

Proof. The proof is given in appendix A.332

Theorem 1. Let P follow a uniform distribution. Let Zk represent the hypothetical333

intermediate variables such that Zk = gk(P ) with bijective gk’s. Let φ: Z → Rn be the334

leakage model of the target so that L = φ(Zk∗). Then, φ ∈ Fopt.335

Proof. Let Sf = I
(
f(Zk∗), L

)
− maxk ̸=k∗

[
I

(
f(Zk), L

)]
represent the distinguishability336

score for a given function f such that:337

Fopt = arg max
f : Z→Rn

{Sf}338

Since all the Zk follow a uniform distribution (P follows a uniform distribution and339

the gk functions are bijective), the entropy H(f(Zk)) is equal for all k. Then using340

I(A, B) = H(A)−H(A | B):341

Sf = −H
(
f(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f(Zk) | L

)]
(12)342

2Note that other criterion such as the distance with the mean of the wrong hypotheses could also have
been used without modifying the analysis as discussed in remark 1.
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Symmetrically, using I(A, B) = H(B)−H(B | A):343

Sf = −H
(
L | f(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | f(Zk)

)]
(13)344

Let f : Z → Rn be any function. Applying lemma 1, there exist f1 and f2 satisfying the345

two properties given in lemma 1, such that f = f2 ◦ f1. The goal is to show that Sf ≤ Sφ.346

The proof is divided into two phases: first show that Sf ≤ Sf1 using (12), then show that347

Sf1 ≤ Sφ using (13). Let us start with (12):348

Sf = −H
(
f2 ◦ f1(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f2 ◦ f1(Zk) | L

)]
≤ −H

(
f2 ◦ f1(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f1(Zk) | L

)] (14)349

since applying f2 in the second term can only decrease entropy (see lemma 2). The goal is350

now to remove f2 in the first term:351

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

f̄2∈Im f2

P (l) · P (f̄2 | l) · log(P (f̄2 | l)) (15)352

353

P (f̄2 | l) = P
(
f2 ◦ f1(Zk∗) = f̄2 | φ(Zk∗) = l

)
= P

(
f1(Zk∗) ∈ f−1

2 (f̄2) | φ(Zk∗) = l
) (16)354

Knowing that φ(Zk∗) = l implies that Zk∗ ∈ φ−1({l}) and also that f1(Zk∗) ∈ f1(φ−1({l})).355

Let Al denotes f1(φ−1({l})) to avoid heavy notations. Then:356

φ(Zk∗) = l =⇒ f1(Zk∗) ∈ Al

=⇒ f1(Zk∗) ∈ f−1
2 (f2(Al))

(17)357

which means that:358

P (f̄2 | l) =
{

P
(
f1(Zk∗) ∈ f−1

2 |f2(Al)(f̄2) | l
)

if f̄2 ∈ f2(Al)
0 else (18)359

Lemma 1 states that f2|Al
is bijective of reciprocal f−1

2 |f2(Al), so if f̄2 ∈ f2(Al):360

P (f̄2 | l) = P
(
f1(Zk∗) = f−1

2 |f2(Al)(f̄2) | l
)

(19)361

Let us plug this result back into (15):362

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

∑
f̄2∈f2(Al)

P (l) · P
(
f1(Zk∗) = f−1

2 |f2(Al)(f̄2) | l
)
·

log
(

P
(
f1(Zk∗) = f−1

2 |f2(Al)(f̄2) | l
)) (20)363

Now, one can apply the following change of variable in the second sum: f̄1 = f−1
2 |f2(Al)(f̄2):364

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

∑
f̄1∈Al

P (l) · P
(
f1(Zk∗) = f̄1) | l

)
·

log
(

P
(
f1(Zk∗) = f̄1) | l

)) (21)365

Finally, since P
(
f1(Zk∗) = f̄1) | l

)
= 0 when f̄1 ∈ Im f1 \ Al, one can artificially add some366

terms equal to 0 in the second sum:367

−H
(
f2 ◦ f1(Zk∗) | L

)
=

∑
l∈L

∑
f̄1∈Im f1

P (l) · P (f̄1 | l) · log
(
P (f̄1 | l)

)
= −H

(
f1(Zk∗) | L

) (22)368
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Applying this result to (14) gives:369

Sf ≤ −H
(
f1(Zk∗) | L

)
+ min

k ̸=k∗

[
H

(
f1(Zk) | L

)]
Sf ≤ Sf1

(23)370

which concludes the first step of the demonstration.371

Now the goal is to show that Sf1 ≤ Sφ. Lemma 1 guarantees that there exists f3 such372

that f3 ◦ f1 = φ. Let us use this in (13):373

Sf1 = −H
(
L | f1(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | f1(Zk)

)]
≤ −H

(
L | f1(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | f3 ◦ f1︸ ︷︷ ︸

φ

(Zk)
)] (24)374

since applying f3 to the known variable can only increase the global entropy (see lemma 3).375

Now using L = φ(Zk∗):376

−H
(
L | f1(Zk∗)

)
≤ 0

−H
(
L | f1(Zk∗)

)
≤ −H

(
φ(Zk∗)|φ(Zk∗)

)
= 0

(25)377

Therefore:378

Sf1 ≤ −H
(
L | φ(Zk∗)

)
+ min

k ̸=k∗

[
H

(
L | φ(Zk)

)]
Sf1 ≤ Sφ

(26)379

Finally, using both part of the demonstration:380

Sf ≤ Sf1 ≤ Sφ (27)381

which ensures that φ is better or equal to any other functions and so that φ ∈ Fopt.382

Remark 1. Demonstration of Th. 1 would have worked exactly the same if one had first383

fixed a particular hypothesis k, and tried to maximize Sf,k = I
(
f(Zk∗), L

)
− I

(
f(Zk), L

)
.384

Therefore, for each k, φ maximizes the distance between the score of k∗ and k which is an385

even stronger version of the theorem. One could not be sure that such a function would386

exist a priori, that is why Fopt has not been defined with this criterion. However, this387

shows a posteriori that Th 1 is still valid even if one decides to redefine Fopt, for example388

using the distance with the mean (instead of the maximum) of the wrong hypotheses389

scores.390

Interpretation. This theorem tells that to conduct an optimal MIA, one has to391

transform the targeted variable Zk by applying the leakage model φ (or any bijection of φ)392

and use I(φ(Zk), L) as a distinguisher. Note the multidimensional aspect of this theorem393

since both φ(Zk) and L can live in high dimensional space. This is a key point in this394

paper that will be discussed in detail in section 4.2 which bridges this theorem with newest395

multidimensional MI estimators in order to derive a new attack. Note that this theorem396

also implies that if the leakage model is itself bijective, MIA is not a valid strategy since397

the distinguishability score would be bounded by 0.398

2.6 Selecting leakage model a priori399

In a real-life experiment, one might not perfectly know the leakage model φ but only400

an estimation φ̄. This is especially true when working in an unsupervised context. This401

section provides a procedure to evaluate the correctness of φ̄, helping to choose from402

multiple guesses φ̄1, . . . , φ̄n. This test relies on the following observation:403
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Proposition 3. Let L = φ(Zk∗)+N , with N an independent random variable representing404

the noise. Then: φ ∈ arg maxf [I
(
f(Zk∗), L

)
]405

Proof. On one hand:406

I
(
f(Zk∗), L

)
= H(L)−H

(
L | f(Zk∗)

)
≤ H(L)−H

(
φ(Zk∗) + N | f(Zk∗), φ(Zk∗)

)
≤ H(L)−H(N)

(28)407

and on the other hand:408

I
(
φ(Zk∗), L

)
= H(L)−H

(
L | φ(Zk∗)

)
= H(L)−H

(
φ(Zk∗) + N | φ(Zk∗)

)
= H(L)−H(N)

(29)409

Then:410

I
(
φ(Zk∗), L

)
≥ I

(
f(Zk∗), L

)
(30)411

which concludes the proof.412

The identity function obviously also maximizes: I
(
f(Zk∗), L

)
so combining this with413

proposition 3:414

I
(
Zk∗ , L

)
= I

(
φ(Zk∗), L

)
(31)415

or,416

I
(
Zk∗ , L

)
= max

k
[I

(
φ(Zk), L

)
] (32)417

Then, if k∗ is known (for example in an evaluation setup) one can use equation 31 and418

estimate I
(
Zk∗ , L

)
and I

(
φ̄(Zk∗), L

)
and compare them. If φ̄ is a good approximation419

of the true underlying leakage model, one should have I
(
Zk∗ , L

)
≈ I

(
φ̄(Zk∗), L

)
. If k∗ is420

unknown, the adversary can still use equation 32 estimating I
(
φ̄(Zk), L

)
for all k, and421

comparing the maximum with I
(
Zk0 , L

)
(k0 can be chosen randomly since all the Zk422

variables are just permutation of each other which does not affect MI). Note that this test423

is only a rejection test since passing the test does not guarantee a good estimation of φ:424

for example, the identity function always passes the test.425

2.7 Leakage model uncertainty and noise426

Let assume that the adversary has chosen a given estimation φ̄ of φ. Let also assume that427

the ideal data L = φ(Zk∗), used in theorem 1, are now noisy so that the acquired data428

takes the following form: L̄ = φ(Zk∗) + N , with N an independent random variable. This429

section aims at complementing theorem 1 by lower bounding the distinguishably score S̄φ̄430

that one would get in practice in such a context:431

S̄φ̄ = I
(
φ̄(Zk∗), L̄

)
−max

k ̸=k∗

[
I

(
φ̄(Zk), L̄

)]
(33)432

Our goal is to compare S̄φ̄ with the optimal score Sφ (from theorem 1) that one would get433

with the perfect knowledge of φ and un-noised data such that:434

Sφ = I
(
φ(Zk∗), L

)
−max

k ̸=k∗

[
I

(
φ(Zk), L

)]
(34)435

Proposition 4. S̄φ̄ is lower-bounded by the following inequality:436

S̄φ̄ ≥ Sφ −H(N)−H
(
φ(Zk∗) | φ̄(Zk∗)

)
−max

k ̸=k∗

[
H

(
φ̄(Zk) | φ(Zk)

)]
(35)437
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Proof. Using the same argument as in (13) one has:438

S̄φ̄ = −H
(
φ(Zk∗) + N | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) + N | φ̄(Zk)

)]
(36)439

Since removing noise on the right term can only decrease entropy:440

S̄φ̄ ≥ −H
(
φ(Zk∗) + N | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ̄(Zk)

)]
(37)441

Now since H(A + B) ≤ H(A) + H(B) and using the independence of N :442

S̄φ̄ ≥ −H(N)−H
(
φ(Zk∗) | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ̄(Zk)

)]
(38)443

Using H(A | B) ≥ H(A | C)−H(B | C) which can be shown through information Venn444

diagram:445

S̄φ̄ ≥ −H(N)−H
(
φ(Zk∗) | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)
−H

(
φ̄(Zk) | φ(Zk)

)]
≥ −H(N)−H

(
φ(Zk∗) | φ̄(Zk∗)

)
+ min

k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)]
−max

k ̸=k∗

[
H

(
φ̄(Zk) | φ(Zk)

)]
(39)

446

Now let Sφ appear in the equation:447

min
k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)]
= min

k ̸=k∗

[
H

(
φ(Zk∗) | φ(Zk)

)]
−

0︷ ︸︸ ︷
H

(
φ(Zk∗) | φ(Zk∗)

)
= Sφ

(40)448

So:449

S̄φ̄ ≥ Sφ −H(N)−H
(
φ(Zk∗) | φ̄(Zk∗)

)
−max

k ̸=k∗

[
H

(
φ̄(Zk) | φ(Zk)

)]
(41)450

which concludes the proof.451

This proposition describes the impact of the noise and leakage model approximation in452

a quantitative way. Its qualitative interpretation is fairly intuitive. It clearly shows that453

one has two strategies to get closer to the optimal score: reducing the noise entropy or454

improving his guess on φ̄. When H(N) tends towards 0 and φ̄ gets closer to φ , S̄φ̄ tends455

towards the optimal score Sφ. It also captures the fact that bijective errors do not impact456

the outcome of the attack since if there exists a bijection between φ̄(Zk) and φ(Zk), both457

terms H
(
φ(Zk∗) | φ̄(Zk∗)

)
and maxk ̸=k∗ [H

(
φ̄(Zk) | φ(Zk)

)
] would be equal to 0.458

It should be noted that the given bound may not be tight especially in the context459

of high noise where the right term could become negative. In such a context, finding460

inequalities, able to control or give useful insights on S̄φ̄ is an interesting problem for461

further works.462

3 MIA against masked implementations463

Masking is one of the most widely used countermeasures to protect implementations of464

block ciphers against side-channel analysis [CJRR99]. The idea is to split each sensitive465

intermediate value Z, into d shares (Zi)1≤i≤d. The d− 1 shares Z2, ..., Zd are randomly466

chosen and the last one, Z1 is processed such that::467

Z1 = Z ∗ Z2 ∗ · · · ∗ Zd (42)468
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for a group operation ∗. Assuming the masks are uniformly distributed, the knowledge469

of d − 1 shares does not tell anything about Z. However, partial knowledge on the d470

shares can be exploited to retrieve information on Z. That is why, to defeat masking, one471

should use a distinguisher able to combine the leakage of at least d samples of the traces472

(assuming masks do not leak at the same time). Higher-order correlation attacks [Mes00]473

exploit a combining function, C : Rd → R , which transforms a multidimensional leakage474

into a single value such that the output of C correlates with Z. The optimal combining475

function is unknown but, the centered product between the shares [PRB09] is a popular476

choice.477

3.1 MIA, a natural choice against masking478

Although higher-order CPA attacks lead to successful key recoveries, they are not optimal479

from an information-theoretic point of view. Indeed, by the data processing inequal-480

ity [BR12], the application of the combining function leads to an information loss. Opposed481

to Pearson’s correlation, mutual information can deal with dependencies of multidimen-482

sional variables. Therefore, no combining function is required which makes MIA a very483

natural strategy against masked implementations. An extension of MIA in the context484

of masking has been proposed in [PR09] and [BGP+11]. The idea is very similar to the485

non-masked case. Concepts of MIA versions 1 and 2 still apply and one can use I(f(Zk), L)486

as a distinguisher.487

3.2 About the partition function in the presence of masking488

Using I(f(Zk), L) as distinguisher still raises the question of the optimal f function. Th. 1489

cannot be applied straightforwardly since, for masked implementation, the leakage cannot490

be expressed as a deterministic function φ(Zk∗) modulo some noise. Instead, with Zi491

representing the shares, one now has:492

L =
∑

i

φi(Zi) (43)493

for some functions φi : Z → Rn. Note that, as for the unmasked case, a noise-free version494

of the leakage is first considered to simplify the analysis. Noise will be added in section 3.3.495

Most of the time, the φi supports can be supposed disjoint (i.e. leakages of the shares do496

not overlap). In that case, the leakage vector could be summarized as:497

L = [φ1(Z1), . . . , φd(Zd)] (44)498

with φi taking its values in a subspace of Rn. Even with this simplification, we could not499

solve analytically the problem of finding an optimal partition function, or, in other words,500

a function f ∈ Fopt as defined in (11). However, we still give some useful insights in the501

common case of Boolean masking on a device leaking the Hamming weight (or Hamming502

distance with a known value) of the shares.503

For this specific case, [BGP+11] tried to use the Hamming weight as well as the identity504

function for f (they were attacking the output of a DES S-box, therefore a non-injective505

intermediate variable). The Hamming weight produced better results. Their justification506

is that the Hamming weight is closer to the underlying leakage model of the circuit. We507

do not find this justification straightforward especially in a multivariate context since even508

in the ideal case where the leakage could be expressed as:509

L = [HW(Zk∗ ⊕M), HW(M)] (45)510
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HW(Zk∗) is not directly related to any physical leakage. More generally, there is no proof511

that if all shares leak with the same leakage model φ, taking f = φ is the optimal (or even512

a good) option. However, in the specific case of a Hamming weight leakage model, [PRB09]513

has shown that their exists a linear correlation between HW(Zk∗) and the covariance:514

cov
(
HW(Zk∗ ⊕M), HW(M)

)
which is a clue that there exists a non-negligible mutual515

information between HW(Zk∗) and L. However, we go further in this paper by showing in516

Theorem 2 that there is actually no loss of information when applying the Hamming weight517

function to the Zk∗ variable. This result can then be used to give a formal justification for518

using f = HW, as done hereafter.519

Let us introduce FLeft as the left part of equation 11:520

FLeft = arg max
f : Z→Rn

{
I

(
f(Zk∗), L

)}
(46)521

This set does not consider the wrong hypotheses. Therefore it is not hard to find a522

function f ∈ FLeft: the identity or any bijective function works. The problem is that523

with a bijective map, I
(
f(Zk∗), L

)
= I

(
f(Zk), L

)
for any k. However, a non-injective524

function f such that f ∈ FLeft would naturally decrease I
(
f(Zk), L

)
and create some525

distinguishability. Such a function is not a priori likely to exist. But the following theorem526

shows that, while being highly non-injective, HW ∈ FLeft.527

Theorem 2. Let L represent the leakage of a masked variable Zk∗ with a mask M . Let528

both shares follow any bijection b1 and b2 of a Hamming weight leakage model so that:529

L =
[
b1

(
HW(Zk∗ ⊕M)

)
, b2

(
HW(M)

)]
(47)530

Then, HW ∈ FLeft or in other words: I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
.531

The following proof may be generalizable to higher-order (see section 5.3 for an empirical532

validation), but for simplicity, only first-order masking is considered here.533

Proof. Since bijective transformations do not impact mutual information, one can consider534

without loss of generality that:535

L =
[
HW(Zk∗ ⊕M), HW(M)

]
(48)536

Now let us evaluate I
(
f(Zk∗), L

)
using equation 4:537

I
(
f(Zk∗), L

)
=

∑
f̄∈f(Z)

∑
l∈L

P (f̄ , l) · log

(
P (f̄ , l)

P (f̄) · P (l)

)
(49)538

One can split the first sum by summing on z instead of f̄ :539

I
(
f(Zk∗), L

)
=

∑
z∈Z

∑
l∈L

P (z, l) · log

(
P (l | f(z))

P (l)

)
=

∑
z∈Z

∑
l∈L

P (z) · P (l | z) · log

(
P (l | f(z))

P (l)

) (50)540

Since the identity function is bijective and maximizes this quantity, it would be enough to541

show that P (l | HW(z)) = P (l | z) for any given z and a given l = [HW(z ⊕m), HW(m)]542

for a fixed m. Let us start by the latter term:543

P (l | z) = P (HW(m)) · P (HW(z ⊕m) | z, HW(m)) (51)544

To compute the right term one can evaluate the cardinal of the set M of all the masks m′
545

satisfying the following conditions:546
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1) HW(m′) = HW(m)547

2) HW(z ⊕m′) = HW(z ⊕m)548

and divide by the number of byte with a Hamming Weight of HW(m) which is
( 8

HW(m)
)
.549

To evaluate this cardinal, we first show an invariance property. For any m′ ∈M, let nm′550

denotes the number of bits set to 1 in m′ such that there is also a bit set to 1 at the same551

position (0 to 7) in z. Then:552

HW(z ⊕m′) = HW(m′) + HW(z)− 2 · nm′ ⇐⇒

nm′ = HW(m′) + HW(z)−HW(z ⊕m′)
2

(52)553

Now since m′ satisfies the above two conditions:554

nm′ = HW(m) + HW(z)−HW(z ⊕m)
2 (53)555

which does not depend on m′ anymore. As nm′ has to be a positive integer, the above556

equation shows that:557

HW(m) + HW(z)−HW(z ⊕m) /∈ 2N =⇒ M = ∅ (54)558

This allows us to define a generic n as:559

n =
{

HW(m)+HW(z)−HW(z⊕m)
2 , if HW(m) + HW(z)−HW(z ⊕m) ∈ 2N

−1, otherwise
(55)560

so that ∀m′ ∈M, nm′ = n.561

Reciprocally, one can see that each byte m′ such that HW(m′) = HW(m) and nm′ = n562

is in M. So to form a valid m′ ∈ M one has to choose first the position of the n ’1s’563

superposing with the ’1s’ in z, which lead to
(HW(z)

n

)
possibilities. Then, choose the564

positions of the remaining ’1s’, which lead to
( 8−HW(z)

HW(m)−n

)
possibilities. Therefore, with the565

convention
(

l
k

)
= 0 when k is strictly negative:566

P (HW(z ⊕m) | z and HW(m)) =
(

HW(z)
n

)
·
(

8−HW(z)
HW(m)− n

)
· 1( 8

HW(m)
) (56)567

Injecting this into (51) gives:568

P (l | z) =
( 8

HW(m)
)

28 ·
(

HW(z)
n

)
·
(

8−HW(z)
HW(m)− n

)
· 1( 8

HW(m)
)

= 1
28 ·

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

) (57)569

Now let us evaluate P (l | HW(z)):570

P (l | HW(z)) = P (HW(m)) ·
A︷ ︸︸ ︷

P (HW(z ⊕m) | HW(z) and HW(m)) (58)571

And,572

A =
∑

z′ s.t.
HW(z′)=HW(z)

P (z′ | HW(z)) · P (HW(z′ ⊕m) | z′ and HW(m)) (59)573
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Now using result from (56):574

A =
∑

z′ s.t.
HW(z′)=HW(z)

1( 8
HW(z)

) · (HW(z′)
n

)
·
(

8−HW(z′)
HW(m)− n

)
· 1( 8

HW(m)
)

=
(

HW(z)
n

)
·
(

8−HW(z)
HW(m)− n

)
· 1( 8

HW(m)
) (60)575

since all the terms are constant in the sum and there are exactly
( 8

HW(z)
)

of them. Now576

plugging this into (58) gives:577

P (l | HW(z)) = 1
28 ·

(
HW(z)

n

)
·
(

8−HW(z)
HW(m)− n

)
= P (l | z) (61)578

Thus,579

I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
(62)580

which ensures that HW ∈ Fleft and concludes the proof.581

Interpretation. This theorem shows that when the shares leak in Hamming weight,582

it is sound to use f = HW in practice because it creates some distinguishability by583

decreasing the information only for the wrong hypotheses. Since the Hamming distance584

with a computable value can be rewritten as a Hamming weight, it also works in that585

case. However, Th. 2 is not generalizable to any leakage model φ (for example on 3 bits586

words, φ = 2b1 + b2 + b3 gives a counter-example). Knowing if there exists a generic587

strategy against masking (depending on φ but working for any φ) or if one will always be588

condemned to work on a case-by-case basis is an interesting question and may be handled589

in future works.590

Remark 2. Note that since I
(
Zk∗ , L

)
= I

(
HW(Zk∗), L

)
= maxk[I

(
HW(Zk), L

)
], the591

procedure described in section 2.6 can also be applied on a masked implementation, to test592

the validity of the Hamming weight leakage model hypothesis. If the Hamming weight593

is too far from the true model, a practical alternative is to use only specific bits of the594

unmasked variable as partition function. An example of this is given in section 6.595

Considering the distinguishability score:596

Sf = I
(
f(Zk∗), L

)
−max

k ̸=k∗

[
I

(
f(Zk), L

)]
(63)597

HW has not been shown to be optimal. However, a partial result can be given introducing598

the concept of "wider" function.599

Definition 1. A function f is said wider than g if there exists another function h such600

that: h ◦ f = g.601

Corollary 1. Let L be defined as in (47). Then, for any function h̄ wider than HW,602

SHW ≥ Sh̄.603

Proof. The proof is given in appendix B.604

Even though we do not conjecture so, a function doing with a better distinguishability605

than the HW may exist. But a straightforward consequence of Th. 2, given by corollary 1,606

is that HW has a better or equal distinguishability score than any other wider function.607
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3.3 Noise and multidimensionality608

The advantage of MINE is to be able to exploit the information contained in multiple609

samples at the same time. In a Hamming weight leakage scenario, the Hamming weight of610

a variable is probably not going to leak perfectly on a single sample. Instead, multiple611

samples may leak a noisy version of it. To ensure that it is sound to use MINE and its612

multidimensional capabilities to mount an attack in the case of masking, one would need a613

multidimensional version of Th.2. This is exactly the purpose of corollary 2, in which the614

noise is directly included.615

In the context of masking the actual useful part of the leakage could be expressed as:616

L =
[
b1

(
HW(Zk∗ ⊕M)

)
+ N1, . . . , bm1

(
HW(Zk∗ ⊕M)

)
+ Nm1 ,

b′
1
(
HW(M)

)
+ N ′

1, . . . , b′
m2

(
HW(M)

)
+ N ′

m2

] (64)617

with bi and b′
j being bijective maps, and Ni and N ′

j being discrete noise variables in-618

dependent of the shares. The following corollary shows that Th 2 is still valid in that619

case.620

Corollary 2. Let L be defined as in (64). Then, one still has HW ∈ FLeft as defined621

in (46).622

Proof. As for Th. 2, one can drop, without loss of generality, the bijections in L as they623

do not affect the MI. Let N be the noise vector [N1, . . . , Nm1 , N̄1, . . . , N̄m2 ] and L̄ the624

noise-free version of the leakage so that L = L̄ + N . As for Th. 2, it is enough to show625

that P (l | HW(z)) = P (l | z) for any given l and z. Decomposing on all the possible values626

of the noise one has:627

P (l | z) =
∑
n∈N

P (n) · P (L = l | z and n)

=
∑
n∈N

P (n) · P (L̄ = l − n | z)
(65)628

Since L̄ is noise free, it consists of the repetition of the same two variables: HW(Zk∗ ⊕M)629

(m1 times) and HW(M) (m2 times). So for the probability P (L̄ = l−n | z) to be non-zero,630

the vector l − n should be constant on its first m1 coordinates, and constant on its m2631

last one. Let Nc be the subset of N verifying the precedent property. If n /∈ Nc, then:632

P (L̄ = l − n | z) = P (L̄ = l − n | HW(z)) = 0 (66)633

Else, if n ∈ Nc, then, with an = (l − n)[1], bn = (l − n)[m1 + m2] and L̃ = [HW(Zk∗ ⊕634

M), HW(M)]:635

P (L̄ = l − n | z) = P (L̃ = [an, bn] | z) (67)636

So (65) can be rewritten as:637

P (l | z) =
∑

n∈Nc

P (n) · P (L̃ = [an, bn] | z) (68)638

Since, Th. 2 tells that P (L̃ = [an, bn] | z) = P (L̃ = [an, bn] | HW(z)):639

P (l | z) =
∑

n∈Nc

P (n) · P (L̃ = [an, bn] | HW(z))

P (l | z) =
∑

n∈Nc

P (n) · P (L̄ = l − n | HW(z))

P (l | z) = P (l | HW(z))

(69)640

which concludes the proof.641



18 iacrtans class documentation

This corollary shows that it is sound to use I(HW(Zk), L) as distinguisher even when642

considering a noisy multidimensional leakage vector. Th. 2 still applies and MINE may643

benefit from the different leakage sources resulting in an attack (presented in the next644

section) exploiting more of the available information.645

4 Neural Estimated Mutual Information Analysis (NEMIA)646

This section aims at formally describing the new attack proposed in this paper. Note that647

throughout this work, a tool able to compute I(Z, L) with high dimensional variables has648

been assumed to exist. This research has been driven by recent progress regarding neural649

estimation techniques. However, this work is not absolutely related to MINE. It would stay650

sound with any MI estimator able to work in high dimension. In particular, any progress651

in the field, which is likely to happen since it is a very active domain, would instantly652

impact the attack efficiency. In this work, the most basic version of MINE is used. It653

should be seen as a proof of concept with almost no hyper-parameters tuning and without654

considering recent optimizations nor improvements in the technique (non-exhaustively:655

[CL20,LSN+19,CABH+19]). A study focused on deep learning optimizations would be656

interesting but is out of the scope of this paper. Basic principles of MINE are recalled657

hereafter.658

4.1 Mutual Information Neural Estimation659

Technical details about the utilization of MINE in a side-channel context can be found660

in [CLM20]. However, a high-level picture is still given in this section. The general idea661

is to express I(Z, L) as the Kullback-Leibler divergence between the joint distribution662

and the product of the marginals: I(Z, L) = DKL(pZ,L || pZ ⊗ pL). Then, to exploit the663

Donkser-Varadhan variational formulation of the KL-divergence that states that if p and q664

are two densities defined over a compact set Ω ∈ Rd:665

DKL(p || q) = sup
T : Ω→R

[Ep[T ]− log(Eq[eT ])] (70)666

This allows to express MI as a supremum. Then, the following loss function can be defined:667

L(θ) = EpZ,L
[Tθ]− log(EpZ⊗pL)[eTθ ]) (71)668

and deep learning techniques can be applied to maximize this loss over all the functions669

Tθ parametrized by a neural network with parameters θ ∈ Θ. The objective function670

should converge towards the supremum so that its final value constitutes the MI estimation.671

Formally:672

Definition 2. (MINE) Let A = {(z1, l1), . . . , (zn, ln)} and B = {(∼
z1,

∼
l 1), . . . , (∼

zn,
∼
l n)}673

be two sets of n empirical samples respectively from pZ,L and pZ ⊗ pL. Let F = {Tθ}θ∈Θ674

be the set of functions parametrized by a neural network. MINE is defined as follows:675

̂I(S, X)n = sup
T ∈F

EA[T ]− log(EB[eT ]) (72)676

where EX [·] stands for the expectation empirically estimated over the set X .677

In practice one only has samples from the joint distribution: A = {(z1, l1), . . . (zn, ln)} of678

the labeled traces. Samples from the product of the marginals can be artificially generated679

by shuffling the variable L using a random permutation ρ: B = {(z1, lρ(1)), . . . , (zn, lρ(n))}.680
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Validation loss function. One of the main problems of MINE pointed out in [CLM20]681

is the overfitting. Indeed, the loss function may overestimate the true MI. Therefore, one682

can introduce a validation loss function to detect overfitting and to produce a more reliable683

estimation. The idea is to split A and B into training datasets At and Bt and validation684

datasets Av and Bv. Then, only the training datasets are used for back-propagation so that685

the loss function evaluated on the validation datasets cannot overestimate the MI. That is686

why only validation loss functions are considered/plotted in this paper. For robustness,687

the MI estimation is not set to be the supremum of the validation loss, but instead, the688

supremum of a moving average along the epochs with a window size of w which depends689

on the variability between epochs (w = 10 in this paper).690

Architecture. The network’s input layer consists of a concatenation of both Z and691

L variables. Authors in [CLM20] have shown that the representation of Z is important692

and that one should use the One-Hot Encoding (OHE) or a binary encoding of Z (unless693

otherwise specified we used the OHE in this paper). The output layer is a single neuron as694

the function T output has to be a real value. Other layers are not specified and should be695

adapted to the underlying problem (e.g. convolutional layers to counter jitter or traces696

misalignment).697

For our experiments, we used a Convolutional Neural Network (CNN) where a batch698

normalization layer is added after the first layer and dropout layers are inserted after699

each hidden layer in order to mitigate overfitting. The activation function is set to the700

Exponential Linear Unit (ELU) and the batch size to 1000. The precise architecture is701

depicted in Appendix D. The validation dataset represents 20 percent of the full dataset.702

4.2 Multidimensional paradigm703

MINE is by essence a tool that estimates MI in a multidimensional way, enabling to704

compute the MI between f(Zk) and significant part of the traces. This was not possible705

with classical MI estimators which do not scale with high dimensional variables. Until706

now, MIA was only performed with the following distinguisher:707

Dold(k) = max
i
I(f(Zk), L[i]) (73)708

where L[i] represents the i-th sample of the trace. This way, trace dimension is kept low,709

allowing methods such as the histogram or the kernel density estimation [PR09] to produce710

reliable results. However, this comes at the cost of sacrificing some, and maybe a large711

part, of the available information. MINE allows to directly use:712

Dnew(k) = I(f(Zk), L) (74)713

as a distinguisher. This comes with two main advantages:714

• Intermediate variables often leak at multiple instants in the trace. MINE allows to715

exploit all these leakage sources at the same time.716

• Other intermediate variables, statistically dependent from the first one, can also717

leak information. For example, there could be some useful information about an718

AES key, before and after the application of the first S-box. In this context, MINE719

could exploit leakage from both intermediate variables at the same time, without720

any assumption related to the kind of link between these variables.721

Theorem 1 states that the optimal distinguisher is I(φ(Zk), L) with φ being the leakage722

model. It is important to note that φ(Zk) itself can be multidimensional. Therefore,723

an optimal MI attack should exploit this multidimensionality of the leakage model to724

increase the distinguishability of the correct hypothesis. However, it is frequent that725
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multiple samples leak with the same underlying model: for example, a noisy version of the726

Hamming weight of Sbox[k∗ ⊕ P ] can leak multiple times in the trace. In such a context,727

the deterministic parts of the leakage of all these samples are all bijectively related. As728

adding bijection of the same variables multiple times would not change the MI, one can729

keep only one version of each different sub-leakage model. For example, if the target730

leaks (maybe multiple times) the Hamming weight of the first S-box of an AES and the731

Hamming distance between the S-box and k ⊕ P , Zk could be defined as k ⊕ P and one732

could replace φ(Zk) by the two-dimensional vector:733 [
HW

(
Sbox[Zk]

)
, HW

(
Sbox[Zk]⊕ Zk

)]
(75)734

Remark 3. In practice, one may deliberately drop some intermediates variables for not735

being enough discriminating for wrong key candidates making them less tolerant regarding736

errors in the estimation of φ. For example, it is theoretically possible to use leakage on737

a xor: HW(k ⊕ P ) (assuming a Hamming weight a priori) but it is preferable to use738

intermediate variables where each bit depends on multiple bits of k such as the output739

of an S-box. Indeed, these variables are more discriminating since single bit errors on k740

are diffused to the whole variable which prevents from rewarding wrong hypotheses with741

several correct bits.742

Scalability with masking order. In the context of masking, another advantage743

of multidimensionality emerges. In a classical d-order attack one often does not know744

the exact leakage time of each share, and therefore, has to compute the value of the745

distinguisher for each possible tuple (i1, . . . , id) and select the maximum. In the case of746

MIA the old distinguisher takes the following form:747

Dold(k) = max
i1,...,id

{I(f(Zk), L[i1, . . . , id])} (76)748

For long traces, this can become a huge constraint since the total number of tuples grows749

exponentially with the masking order. Our version of the MIA which uses I(f(Zk), L) as750

distinguisher, does not suffer from this since it does not require any kind of recombination751

between time samples. Note that it does not mean that masking is useless: it still decreases752

exponentially the information contains in side-channel traces [PR13] and an attack may753

require exponentially more traces to succeed.754

For a fixed number of traces, the number of network trainings to mount a NEMIA is755

constant with respect to the masking order. However, each training may require more756

epochs to succeed when dealing with higher order masking schemes, in order to escape757

from the so called plateau effect described in [MCLS22]. The computational complexity758

required by gradient descent-based algorithms to escape from such a plateau (and start759

being better than random models) is an open problem but figure 9-b of [MCLS22] suggests760

that the number of epochs compared to the masking order is sub-exponential.761

4.3 Attack description762

A step-by-step description of the NEMIA is given hereafter. It takes as input a set of763

traces and outputs a ranking of the key hypotheses.764

1. Define an a priori φ̄ on the leakage model. It can be multidimensional if multiple765

intermediate variables related to the key leak information. Also, a single intermediate766

variable can have different leakage models at different times. The test described in767

section 2.6 can be used to detect wrong a priori. Even if MIA is tolerant regarding768

estimation errors on φ, better a priori lead to more efficient attacks.769

2. Compute, for all k, the hypothesis vectors: Hk = φ̄(Zk).770
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3. Compute I(Hk, L), for all k, with MINE. This implies to run a neural network771

trainings for each key hypothesis. Each estimation is the supremum of a moving772

average along the epochs of the validation loss function.773

4. Rank the key hypotheses.774

For masked implementation, the only step that changes is the construction of Hk. If775

the shares have a Hamming weight leakage model, Th.2 proves that it is sound to use the776

Hamming weight of the corresponding unmasked intermediate variable in Hk (one may777

do this for multiple intermediate variables). For a generic leakage model of the shares,778

the best strategy to adopt remains an open question. It appears that, in some cases, it is779

efficient to keep a restrictive number of bits of the unmasked variable as partition function,780

for example in a situation where some bits of the shares leak much more information than781

the others (an example of this is given in section 6).782

5 Simulation experiments783

In order to gain confidence in the mathematical results presented in this paper, as well as784

to gain intuition about their implications, this section presents experiments on synthetic785

data.786

5.1 The importance of the a priori787

The main message of Th.1 is that, to maximize the distinguishability of the correct788

hypothesis, one should use the leakage model φ to create the hypothesis vectors Hk. In a789

classical side-channel scenario, with no other specific information, one may often guess790

a Hamming weight leakage of the intermediate variables. This is justified by electronic791

arguments. However, it has been shown that bits may have different leakage behaviours,792

such as leakage weighting or even sign inversions [CLH19]. To illustrate Th.1, 10k synthetic793

traces leaking a slightly modified version φ0 of the Hamming weight have been generated.794

They consist of a single sample leaking the Hamming weight of Zk∗ = Sbox(k∗ ⊕ P ) but795

with a flipped sign for bit 0 so that:796

φ0(z) = −z0 +
7∑

i=1
zi (77)797

with zi representing the i-th bit of z. Some Gaussian noise has been added to the traces798

so that L = φ0(Z) +N (0, 1). Fig.1 shows the results of a NEMIA with k∗ = 0, both with799

HW and φ0 as partition function. As predicted by Th.1, the distinguishability score:800

Sf = I
(
f(Zk∗), L

)
−max

k ̸=k∗

[
I

(
f(Zk), L

)]
(78)801

is higher for f = φ0 than for f = HW. Obviously, an attacker may not know φ0 and an802

attack with the Hamming weight still succeeds in that case. However, this shows that,803

if by any means, an adversary knows the particularity of bit 0 of such a target, he can804

perform more efficient attacks.805
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Semi-supervised attacks. This opens the idea of semi-supervised attacks. One806

of the main problems of profiling attacks is the portability [EG12]. Indeed, during the807

characterization phase, the adversary learns a perfect representation of the leakage model808

which may overfit on the particular target which is profiled. It has been shown that809

portability to other targets is not trivial. Therefore NEMIA could be turned into a810

semi-supervised attack where the purpose of the characterization phase is only to learn811

general leakage characteristics, such as the sign or weighting of each bit, and use them812

as an improved a priori for a NEMIA. Since NEMIA is agnostic towards bijective errors813

in the leakage model estimation, it has a better chance of being portable on many other814

targets similar to the one used for profiling.815

5.2 The potential of multidimensionality816

One of the main advantages of NEMIA is its potential to exploit at the same time, multiple817

leakage sources. It is possible that multiple intermediate variables leak information on the818

key and each particular variable may leak multiple times in the traces. This section aims819

at showing how NEMIA could exploit all these leakage sources as well as to compare it820

with other state of the art attacks.821

Traces Generation. To this aim, a dataset of 100k synthetic traces have again822

been generated. These traces represent the leakage of an AES that both leaks Ak∗ =823

HW(Sbox[k∗⊕P ]) and Bk∗ = HW(Sbox[k∗⊕P ]⊕ (k∗⊕P )). One could imagine that the824

bus leaks the Hamming weight of the S-box data and that the update of the state register825

leaks the Hamming distance with its precedent value (e.g. [MEP+08]).826

One of the strength of using deep learning in an unsupervised attack is the absence827

of need for preprocessing techniques. To highlight this fact we also added 90 % of828

uninformative samples as well as some misalignment in the traces following the shifting829

deformation procedure introduced in [CDP17] which simulates a random delay effect of830

maximal amplitude T by shifting each trace by a random number uniformally drawn831

between 0 and T . The procedure for the trace generation is depicted in Algorithm 1.832
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Algorithm 1 Generate Traces
Output: L, a (100k, 1010) array
Output: P , a (100k) array

1: P ← Draw 100k plaintexts uniformly from J0, 255K
2: A← HW(Sbox[P ⊕ k∗])
3: B ← HW(Sbox[k∗ ⊕ P ]⊕ (k∗ ⊕ P ))
4: S ← Draw 1010 samples from a Gaussian N (0, 102) ▷ Generate a baseline shape
5: L← Repeat S 100k times to form a (100k, 1010) array
6: for 1 ≤ i ≤ 100k do
7: for 1 ≤ j ≤ 50 do ▷ Add leakage one every 10 samples
8: L[i, 10 ∗ j]← L[i, 10 ∗ j] + A[i]
9: L[i, 10 ∗ j + 500]← L[i, 10 ∗ j + 500] + B[i]

10: end for
11: end for
12: R← Draw an array (100k, 1010) of random number from a Gaussian N (0, 202)
13: L← L + R ▷ Add some noise
14: for 1 ≤ i ≤ 100k do
15: sh← Draw a random integer uniformly from J0, 10K
16: L[i]← Roll(L[i], sh) ▷ Apply the jitter (Roll shift the array by sh)
17: end for
18: return L, P

Compared strategies. We used the generated dataset to compute and compare833

guessing entropies for the following attack strategies:834

1. A classical CPA [BCO04] with a Hamming weight model. The score for each835

hypothesis is defined as the maximum score along the sample axis.836

2. A classical univariate MIA with a Hamming weight model computing the MI with837

the histogram method described in [BGP+11] with 9 bins. Again, the score for each838

hypothesis is defined as the maximum score along the sample axis.839

3. NEMIAP artial, only considering the Hamming weight leakage (Ak) to construct the840

hypothesis vectors Hk = Ak:841

4. NEMIAF ull, considering both leakages (Ak and Bk) to construct the hypothesis842

vectors Hk = [Ak, Bk].843

5. The Differential Deep Learning Analysis (DDLA) introduced in [Tim19]. It is844

sound to compare NEMIA to DDLA since both methods use deep learning with an845

unsupervised approach. It builds 256 classifiers, one for each key hypothesis, and846

uses a metric (we used the accuracy as suggested in [Tim19]) as a distinguisher. Note847

that a partition function also has to be applied to the intermediate variables but848

its optimal choice has not been discussed in [Tim19]. We use the Hamming weight849

function in this experiment.850

6. A classical deep learning supervised attack [MPP16], denoted DL-supervised, where851

a network is train to classify amoung the 256 classes. The total number of traces is852

divided into 80% for training and 20% for the actual attack. The architechture of853

the network is depicted in Appendix D.854

7. The same deep learning attack but in a non-limited setup regarding the number of855

traces during profiling. In practice we have trained the network using another dataset856

of 100k traces generated with Algorithm 1. This attack is denoted DL-supervised∞.857
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Figure 2: Guessing entropies for the considered attacks

Figure 2 shows the evolution of the average rank of k∗ for each attack. Each point858

represents the average over 100 attacks computed with traces randomly drawn from the859

100k traces dataset. It appears that for low numbers of traces, CPA performs the best860

amoung the unsupervised attacks but this is not very meaningful since attacks with such861

guessing entropies (greater than 20 on a single key byte) are not really exploitable for a862

full key recovery. Deep learning attacks behave more like if they had a threshold: after a863

certain number of traces, one can observe a quick drop in their guessing entropies.864

As predicted by the theory, NEMIAF ull converges faster towards a ranking of 0 than865

NEMIAP artial, and both converge faster than CPA. NEMIAP artial outperforms DDLA866

and also the supervised DL attack with a restricted number of traces for profiling. This867

may seem counter-intuitive but in this case we argue that the learning problem is simpler868

for NEMIA since it has to deal with 9 different classes instead of 256 for the DL model.869

This may result into succesfull profiling with less traces. In this case, the application of870

the partition function is only beneficial and does not induce information loss since the true871

leakage model is known.872

To the best of our knowledge, classical MI-based attacks always performed worse873

than CPA in the literature, when considering the Hamming weight model, which is again874

confirmed by our results. This experiment shows that in a low-information scenario (noisy875

traces with jitter), NEMIA may be worth considering among the other unsupervised876

attacks.877

5.3 Empirical validation of theorem 2878

Th.2 may seem very counterintuitive since it basically says that: when shares of a Boolean879

masking leak in a Hamming weight model, one has:880

I
(
HW(Zk∗), L

)
= I

(
Zk∗ , L

)
(79)881

which is surprising since HW is highly non-injective and should at first glance, decrease the882

information. Corollary 2 says that this is even true when multiple samples leak a noised883

version of the Hamming weight of the shares. To verify this claim, 100k synthetic traces884

have been generated considering the following leakage:885

L =
[
HW(Zk∗ ⊕M) + N1, . . . , HW(Zk∗ ⊕M) + N10,

HW(M) + N11, . . . , HW(M) + N20
] (80)886

with Zk∗ = Sbox(k∗ ⊕ P ), Ni = N (0, 1) and M being uniformly distributed in Z/256Z.887
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Fig. 3a shows the evolution of the loss function for both the HW and the identity888

function for the correct key hypothesis. As predicted, both converge towards the same value889

which confirms experimentally that the application of the HW does not alter information.890

The HW function is even doing a little better which can be explained with practical891

machine learning considerations. Indeed, the information being constant, it is easier for892

the network to learn with a 9-classes variable than with a 256 classes variable (note that893

in this experiment, id(Zk∗) has been encoded in binary rather than in OHE, because it894

produced slightly better results). Also, since overfitting was not really a problem in this895

experiment, the dropout parameter has been set to p = 0.1.896

Fig. 3b shows the result of the same experiment performed on a second-order masking,897

with three shares and 10 leakage samples for each. Noise has been a bit decreased (σ = 0.5898

instead of 1) to keep comparable level of information. The result sustains that Th.2 may899

be generalized to higher-order and that MINE is able to extract information even with a900

second-order masking.901
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Figure 3: Comparison of I
(
Zk∗ , L

)
and I

(
HW(Zk∗), L

)
on masked synthetic traces

6 A practical case: attack on ASCAD902

This section provides a real case experiment on the public dataset of ASCAD [BPS+18].903

We only considered the training dataset composed of 50k traces composed of 700 samples904

focusing on the processing of the third byte (the first two are not masked) of the masked905

state Sbox(k∗[3]⊕ P [3])⊕ r[3], with r being the mask variable and with a fixed key k∗[3].906

Since it is a masked implementation, the test described in remark 2 has first been907

conducted. Results are presented in Fig. 4a. I
(
Zk∗ , L

)
is more than four times greater908

than I
(
HW(Zk∗), L

)
which indicates that the underlying leakage of the shares is far from909

a pure Hamming weight model. In parallel to this, authors in [Tim19] applied the DDLA910

strategy which also requires a partition function and they reported that, for the ASCAD911

database, only keeping the value of the Least Significant Bit (LSB) produced better results912

than the Hamming weight without giving further explanations.913

In a real attack scenario, an adversary mounting a NEMIA could obviously try to use914

every single bit of the unmasked variable as partition function. But in order to gain some915

intuition, and since the masks values are given in the database, we first performed a linear916

regression on both shares, assuming bits leak independently so that the actual leakage of917

share s is:
∑7

i=0 αisi + β. Figs. 4b and 4c show the evolution of the αi coefficients, on918

a leakage window for both shares. Since the implementation is protected by a Boolean919

masking, a mono-bit leakage is exploitable only if it is present on the same bit of both920

shares. Out of the 8 bits, bit 0 (LSB) is clearly the one that leaks the most information921
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since its coefficients are among the greatest ones in both shares. Thus, we computed with922

MINE I(Zk∗ [0], L) where Zk∗ [0] represents the LSB of Sbox(k∗[3] ⊕ P [3]). It returned923

0.09 bit, which is two times more than the information left with the Hamming weight (see924

Fig. 4a). This indicates that the LSB may be a good partition function since it is highly925

non-injective and still keep a decent amount of information for the correct hypothesis.926

We also tried with other bits but the information, while being non-zero, was significantly927

lower.928
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(c) Sbox(k∗[3] ⊕ P [3]) ⊕ r[3]

Figure 4: Analysis of the ASCAD leakage model:
a) Test from remark 2 - b) & c) Coeficients of a linear regression

on the given variable

Even though attacks with the Hamming weight were successful, we decided to use the929

LSB as partition function for the rest of our analysis. The attacks presented in this section930

uses the whole 700 samples as input. We compared the following attacks:931

1. A classical second-order CPA [PRB09] with a Hamming weight model. For each key932

hypothesis, the CPA is performed on each possible combination of two samples, the933

maximum being retained as the score.934

2. A second-order MIA with a LSB model computing the MI with the histogram method935

described in [BGP+11] with 9 bins. Again, for each key hypothesis, the MIA is936

performed on each possible combination of two samples, the maximum being retained937

as the score.938

3. NEMIA with LSB as a partition function. The architechture of the network is939

depicted in Appendix D.940

4. The Differential Deep Learning Analysis (DDLA) using the accuracy as distinguisher941

and with LSB as partition function. The architechture of the network is depicted in942

Appendix D.943

5. A deep learning supervised attack [MPP16], denoted DL-supervised, where a network944

is train to classify among the 256 classes (we do not apply any partition functions945

because it is not required in a supervised context). The total number of traces is946

divided into 80% for training and 20% for the actual attack. The architechture of947

the network is depicted in Appendix D.948

Results. In order to evaluate the potential of NEMIA to exploit leakage even in very949

low information context, the dataset has been artificially degraded adding Gaussian noise950

N (0, σ2) to each sample. All the attacks have been performed with σ going from 0 to 20,951

using the whole 50k traces. For each level of noise, the attacks have been repeated 10952

times (with different random sampling of the noise) in order to compute the average rank953

of the correct hypothesis. Results are presented in Figure 5. They confirm that NEMIA is954

able to succeed in situations where the considered state of the art attacks would not.955
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As for the experiment in Subsection 5.2, the DL-Supervised attack performs worse956

than the unsupervised attack which is non-intuitive. However, an adversary performing957

a supervised attack would likely have an unlimited amount of traces for profiling which958

will give rise to the best attack in terms of attack traces. We lack traces to compute the959

equivalent of DL-Supervised∞ for such noise level. It appears that the application of the960

partition function (the LSB which only has two classes) makes the training easier for the961

networks which explain why a DL model, with a restricted number of traces for profiling,962

underperforms compared to the supervised attacks. Obvioulsy the partition function could963

be applied even in the supervised case (i.e. building a two classes classifier) but one would964

then loose the interest of being in a supervised context where no assumption has to be965

done on the leakage model.966
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Figure 5: Guessing entropies for the considered attacks on ASCAD with added noise

6.1 Complexity967

One of the limitations of non-profiled deep learning based attack is that they require to968

train a neural network for each key hypotheses. That is why 256 trainings were necessary969

to run NEMIA and DDLA. Both attacks had almost the same time complexity since we970

used essentially the same network architecture (Appendix D) and stopped training after971

50 epochs in both cases, for all values of added noise. To give an order of magnitude,972

running the full NEMIA (or DDLA) on the ASCAD dataset (50k traces, 700 samples)973

required approximately 2 hours and a half on a personal computer with 128 GB or RAM,974

a Tesla V100 GPU, and 2 Intel Xeon gold 5218R 2.1GHz with 20 cores each. In lower975

information context, requiring to train networks with much more traces, the complexity of976

such attacks may become a serious limitations. However, in such cases, the recombination977

of samples required by more conventional higher-order attacks may also be overwhelming.978

If the leakage area of the shares can be reduced to small part of the traces there may be a979

trade-off between the required number of traces and the time complexity of using NEMIA980

compared to a classical higher-order attack. Such a trade-off would depend on the the981

nature of the leakage and especially on its multivariate aspect.982

7 Conclusion and perspectives983

This paper first proposes a clarification of the state of the art around the MIA. It984

provides rigorous proofs whose goal is to derive the optimal MI-based attack working with985

high-dimensional traces. Combined with recent breakthroughs on neural MI estimation986

techniques, this allows to mount a new attack: the NEMIA, which benefits from both the987

strength of deep learning and information theory. Being able to exploit at the same time988
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multiple leakage sources, it pushes the amount of effectively used information (depending989

on the strength of the attacker a priori) closer to the actual existing information between990

traces and secret. Simulations and real case experiments are presented to support the991

mathematical theory developed in this paper. They also show that NEMIA outperforms992

classical uni/bi-variate side-channel attacks and that this strategy may be worth to consider993

in low-information/high-noise situations, where all (or a large part of) the available994

information contained in traces need to be used to mount a successful attack.995

Several lines of research emerge from this paper. The mathematical analysis could996

be further extended, especially in the context of masking, in order to develop strategies997

for generic leakage model of the shares or for other masking schemes such as arithmetic998

masking. On the practical side, integrating the latest optimization on neural estimation999

techniques, as well as deep learning research on optimal networks architecture and hyper-1000

parameters would allow to mount more efficient attacks, taking as input larger portion of1001

the traces, leading to better/easier attacks.1002
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A Proof of lemma 11129

Lemma 1. Let f : Z → Rn be any function. For any leakage model φ: Z → Rn there1130

exists a decomposition of f into f = f2 ◦ f1, with f1 : Z → N, f2 : N→ Rn, satisfying the1131

two following properties:1132

1) ∃ f3 : Im f1 → Rn such that f3 ◦ f1 = φ1133

2) ∀z ∈ Z, f2|
f1

(
φ−1({φ(z)})

) is bijective of reciprocal f−1
2 |f2◦f1

(
φ−1({φ(z)})

)1134

Proof. Let us create a partition of Z = ⊔n
i=1Pi where two elements z1, z2 ∈ Z are in the1135

same Pi if and only if:1136

• φ(z1) = φ(z2)1137

• f(z1) = f(z2)1138

Then, one may define f1 as f1(z) = i,∀z ∈ Pi. Since f1 only collides for z that already1139

collides through φ, there exists f3 such that f3 ◦ f1 = φ. As f is constant on Pi, let1140

us denote by vi its output on elements of Pi. Then f2 can be defined as f2(i) = vi so1141

that f2 ◦ f1 = f . Now let us prove 2). Let z ∈ Z and a, b ∈ f1(φ−1({φ(z)})) such1142

that f2(a) = f2(b). There exists za and zb such that a = f1(za) and b = f1(zb) with1143

φ(za) = φ(zb) = φ(z). So:1144

• φ(za) = φ(zb)1145

• f2(f1(za)) = f2(f1(zb)) ⇐⇒ f(za) = f(zb)1146

which means that za and zb are in the same Pi and thus collides through f1. So a = b1147

which proves that f2|f1(φ−1({φ(z)})) is injective. Then, considering its set of destination1148

being its image, one can say that this function is bijective with reciprocal function:1149

f−1
2 |f2◦f1(φ−1({φ(z)})).1150

B Proof of corollary 11151

Definition 1. A function f is said wider- than g if there exists another function h such1152

that: h ◦ f = g.1153

Corollary 1. Let L be defined as in (47). Then, for any function h̄ wider than HW,1154

SHW ≥ Sh̄.1155

Proof. There exists h such that h ◦ h̄ = HW. So:1156

SHW = I
(
HW(Zk∗), L

)
−max

k ̸=k∗

[
I

(
HW(Zk), L

)]
= I

(
h ◦ h̄(Zk∗), L

)
−max

k ̸=k∗

[
I

(
h ◦ h̄(Zk), L

)] (81)1157

Since removing h in the second term can only increase the information:1158

SHW ≥ I
(
h ◦ h̄(Zk∗), L

)
−max

k ̸=k∗

[
I

(
h̄(Zk), L

)]
(82)1159

By Th.2, HW maximizes over g the quantity: I
(
g(Zk∗), L

)
, so removing h in the first1160

term cannot increase the information:1161

SHW ≥ I
(
h̄(Zk∗), L

)
−max

k ̸=k∗

[
I

(
h̄(Zk), L

)]
SHW ≥ Sh̄

(83)1162

1163
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C Complementary material on the entropy1164

Lemma 2. Let A and B be a two discrete random variables. Let f : A → Rn be any1165

function. Then:1166

H
(
f(A) | B

)
≤ H(A | B) (84)1167

Proof. The data processing inequality [BR12] ensures that applying f to any variables can1168

not increase its mutual information with another variable so:1169

I
(
f(A), f(A) | B

)
≤ I(A, A | B)

H
(
f(A) | B

)
≤ H(A | B)

(85)1170

1171

Lemma 3. Let A and B be a two discrete random variables. Let f : A → Rn be any1172

function. Then:1173

H
(
A | f(B)

)
≥ H(A | B) (86)1174

Proof. Again, using the data processing inequality [BR12]:1175

I
(
A, f(B)

)
≤ I(A, B)

H(A)−H
(
A | f(B)

)
≤ H(A)−H(A | B)

H
(
A | f(B)

)
≥ H(A | B)

(87)1176

1177

D Network architectures1178

Figure 6 and Figure 7 show the network architectures used for the experiments performed1179

respectfully with MINE and classifiers (supervised and DDLA). For fairness, we tried1180

to keep the two architectures as close as possible. The optimizer used in both cases is1181

Adam [KB14] with default parameters. The loss function used for the classifiers is the1182

categorical cross-entropy. Note that when using convolutional layers with MINE, the1183

convolutional layers should only be applied to the trace variable and not to f(Zk) which1184

would not make sense.1185
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