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Abstract. In this paper, we study the hybrid dual attack over Learning
with Errors (LWE) problems for any secret distribution. Prior to our
work, hybrid attacks are only considered for sparse and/or small secrets.
A new and interesting result from our analysis shows that a hybrid dual
attack can outperform a standalone dual attack, regardless of the secret
distribution. We formulate our results into a framework of predicting the
performance of the hybrid dual attacks. We also present a few tricks that
further improve our attack. To illustrate the effectiveness of our result,
we re-evaluate the security of all LWE related proposals in round 3 of
NIST’s post-quantum cryptography process, and improve the state-of-
the-art cryptanalysis results by 1-9 bits, under the BKZ-core-SVP model.

Keywords: Learning with Errors, Lattice-based Cryptography, Crypt-
analysis, Dual Attack, Hybrid attack, NIST PQC

1 Introduction

The Learning with Errors (LWE) problem, introduced by Regev [34] in 2005,
is one of the most important problems in lattice-based cryptography. A vari-
ety of schemes, from public key encryptions and digital signatures to homo-
morphic encryptions, base their security on LWE family of the lattice prob-
lems. The LWE problem and its variants are conjectured to be hard to solve,
even with a quantum computer. The schemes that base their security on LWE
problems, are therefore, considered quantum-safe. Indeed, LWE and its vari-
ants contribute to 5 out of 15 schemes in round 3 of National Institute of
Standards and Technology’s post-quantum cryptography standardization pro-
cess (NIST-PQC), namely Dilithium[23], Kyber[14], Saber[22], Frodo[13] and
NTRULPrime[10]. This process has sparked a long list of cryptanalytic advance-
ments [1,3,5,6,16,19,21,25,35], and is still calling for a better understanding of
the concrete security of LWE and its variant problems.

Informally, the search version of LWE asks to recover a secret vector s ∈ Zn
q ,

given a matrix A ∈ Zm×n
q and a vector b ∈ Zm

q such, that As+ e = b mod q for
⋆ bilei121@outlook.com
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a short error vector e ∈ Zm
q sampled from some error distribution. The decision

version LWE asks to distinguish between an LWE instance (A,b) and uniformly
random (A,b) ∈ Zm×n

q × Zm
q .

In the survey paper [6], Albrecht et al. summerized three strategies to analyze
the concrete hardness of LWE:

– The first one tries to recover the secret directly, for example, the algebraic
attack (i.e., using the Arora-Ge algorithm) [9,2] or exhaustive search.

– The second method tries to view an LWE problem as a Bounded Distance
Decoding (BDD) problem. There are two subsequent attacks: the decoding
attack (i.e., using the Nearest Plane algorithm) [32] and the primal attack [5].

– The last strategy solves decisional LWE by reducing it to a Short Integer
Solutions (SIS) problem. There are also two subsequent attacks: the combi-
natorial attack (i.e., using BKW algorithm) [4] and the dual attack [1].

In a later paper, Albrecht et al. [3] studied the security of all lattice-based
schemes from round 1 candidates of NIST-PQC, and concluded that the primal
attack and the dual attack are the most effective ones from the cryptanalysis
standpoint.

The primal attack is to find the closest lattice vector to b in the lattice
spanned by the columns of A mod q [32] via bounded distance decoding. Then,
one reduces the BDD problem to a unique Shortest Vector Problem (uSVP) in a
higher dimension lattice via some embedding, and solves the uSVP with lattice
reductions (e.g., BKZ [18]). The lattice, as of our cryptanalysis interest, is then
denoted by

Λprimal = {x ∈ Zm+n+1|(A|Im|b)x = 0 mod q}.

The dual attack is to solve the (Inhomogeneous) Short Integer Solutions ((I)SIS)
problem, i.e., using a lattice reduction algorithm to find short vectors w or (w,v)
in the following lattice:

Λ⊥
dual = {w ∈ Zm : w ·A = 0 mod q} ,

ΛE
dual = {(w,v) ∈ Zm × Zn : w ·A = v mod q} .

This allows one to distinguish an LWE sample b from a uniform vector u since
⟨w,b⟩ = ⟨v, s⟩+ ⟨w, e⟩ is small when w, v, s and e are all short [7].

One may additionally combine the above attacks with guessing. This method
is known as the hybrid attacks in the literature [1,16,19,25,28,30,35,37,38]. Infor-
mally, a hybrid attack guesses part of the secret and performs some attack on the
remaining part. As guess reduces the dimension of the problem, the cost of the
lattice attack on the remaining part is reduced. Moreover, in general, the lattice
attack component is reusable for multiple guesses; an optimal attack is achieved
when the cost of guessing matches the cost of lattice attack. For simplicity, we
refer to hybrid attacks where the lattice attack component is a primal attack as
the hybrid primal attack, and accordingly, the hybrid dual attack.

Let us start with a typical example: we assume, with probability p, the at-
tacker is able to guess all the entries for the guessing components. The cost of
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the hybrid attacks becomes that of the lattice attack components (with a success
rate p). For (sparse) binary/ternary secrets, this strategy works well. For hybrid
primal attacks over other secret distributions, there are mainly two obstacles.
First, for secrets with more entropy, such as Gaussian, p will be reduced sig-
nificantly with the increase of guessing dimension. Second, one need to solve a
CVP (a decoding problem) rather than a uSVP (a primal attack) after guessing
(see [35] for more details about the reduction). As a rule of thumb, a decoding
attack requires better reduced lattice than a primal attack. Due to the above
drawbacks, hybrid primal attacks are considered less efficient than standalone
primal attacks when dealing with none (sparse) binary/ternary secrets.

Now let us turn to the focus of this paper: hybrid dual attacks. They differ
from the hybrid primal attacks in that, after a guess, the resulting lattice compo-
nent becomes a new LWE lattice with a smaller dimension; and the LWE lattice
remains the same for all guesses. Note that the attacker does not need to solve
a decoding problem. In other words, the second obstacle for the hybrid primal
attack is no longer an issue for hybrid dual attack. Nonetheless, the community
seems to have presumed the obstacles for the hybrid dual attack, and applying
it over LWE with arbitrary secrets therefore remains a blind spot prior to this
paper.

Related work. The very first hybrid attack was proposed by Howgrave-Graham
[31] to analyze NTRU [29]. In the recent years, hybrid attacks have been exten-
sively studied for LWE with sparse and/or small sparse secrets. We summarize
those results in Table 1. The first work of hybrid attack on LWE [16] com-
bined decoding attack with meet-in-the-middle (MITM) technique. Then a sim-
ilar approach was conducted on primal lattices [35]. Albrecht [1] proposed the
framework of hybrid dual attack and applied it over LWE with sparse and bi-
nary/ternary secrets. Cheon et al. [19] improved guessing in this attack via an
MITM technique. We note that in a hybrid dual attack, the secret and errors
will increase significantly. Therefore, the proposed MITM technique requires a
gigantic modulus q to incorporate the new, larger error. Recently, Espitau et al.
[25] proposed a further optimization for guessing, via an efficient matrix mul-
tiplication exploiting the recursive structure of the matrix whose columns form
the whole guessing space.

Table 1. Hybrid attacks on LWE

Lattice Guessing Secret
[16] Decoding MITM Small
[35] Decoding + Primal MITM Small + sparse
[1] Dual Pruning Small + sparse
[19] Dual MITM Small + sparse
[25] Dual Matrix Mul. Small

This paper Dual Opt. Pruning + Mat. Mul. Arbitrary
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1.1 Contribution

In this work, we study the hybrid dual attack on LWE with arbitrary secrets.
Our contributions are two-fold. From the theory side, we analyze the hybrid dual
attack in details, and develop the following observation:

Hybrid dual attacks can out-perform dual attacks
for LWE instances with arbitrary secrets.

This observation is based on a quite interesting and surprising phenomenon in
our analysis that when the guessing dimension (r) increases, the BKZ blocksize
(β) indeed reduces. We formulate this phenomenon into the following lemma.

Theorem 1 (Informal). For a hybrid dual attack under the core-SVP model,
for most cryptographic use cases, if we increase the guessing dimensions r, the
minimum BKZ blocksize β that maintains a same level of success rate will be
reduced.

We will provide our intuition shortly. The proof will be present in Section
3.3. To quantify this effect, we make an additional Heuristic 2 with justification
in Section 3.4.

For LWE with short secrets, it is straightforward to see that the observation
is implied by Theorem 3 as long as Theorem 1 and Heuristic 2 hold. For LWE
with large secrets, when enough LWE samples are given, we normalize it and
invoke Theorem 3. The only remaining case is LWE with large secrets and limited
samples, for which we prove separately in Section 4.

We also propose a few tricks that further improve the guessing complexity.
This allows us to develop an estimator that may be of independent interest (our
estimator is open sourced on Github5. For example, one may apply our estimator
to other LWE based schemes, such as FHE [26,15,27] or lattice-based ZK proofs
[12,24,11].

From the practical side, we re-evaluated all LWE-related candidates of NIST-
PQC round 3, namely, Dilithium [23], Kyber [14], Saber [22], Frodo [13] and
NTRULPrime [10]. Our results are summarized in Table 2. We improve state-of-
the-art cryptanalyze results by 1-10 bits6 for these candidates, under the classi-
cal/quantum core-SVP model [7,6,3]. We will give more details on the estima-
tions in Section 7.

Our technique. Our baseline for comparison is the standalone dual attack.
In combination with the dual attack, we propose two hybrid attacks, namely,
Hybrid 1 and Hybrid 2, vary in the strategy to conduct searching.
5 https://github.com/BiLei121/hybrid-dual-estimator.
6 NIST-PQC process has been running for 4 years. Finalists (and also the alternate

candidates) and their parameters are considered mature and stable, and the security
estimations are fairly conservative: even a few bits improvement on an individual
candidate may be considered as a valid contribution.

https://github.com/BiLei121/hybrid-dual-estimator
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Table 2. Bit-security estimations under Core-SVP Model

Name Security Classical Quantum
Level Dual Ours ∆ Dual Ours ∆

Kyber512 1 112 108 -4 101 99 -2
Kyber768 3 182 176 -6 165 161 -4
Kyber1024 5 254 245 -9 231 225 -6
Saber512 1 117 115 -2 107 105 -2
Saber768 3 189 184 -5 172 169 -3
Saber1024 5 258 250 -8 235 230 -5
Dilithium768 1 100 99 -1 91 90 -1
Dilithium1024 2 142 140 -2 129 128 -1
Dilithium1280 3 175 172 -2 158 157 -1
Frodo640 1 142 139 -3 129 127 -2
Frodo976 3 206 202 -4 187 185 -2
Frodo1344 5 271 264 -6 245 242 -3
NTRULPrime653 1 131 125 -5 118 115 -3
NTRULPrime761 2 155 148 -7 141 137 -4
NTRULPrime857 3 177 168 -9 160 155 -5
* Data for “Ours” uses Hybrid 2m estimator.
* For a fair comparison, data for “Dual” also comes from our estimator. Our estimated

results closely match the reported bit-security from their NIST-PQC documentations, with
a maximum difference of 1 bits.

We first compare the standalone dual attack with Hybrid 1, which exhaus-
tively searches all candidates from the guessing space. We show that for most
cryptographic use cases we can select a proper guess dimension for Hybrid 1
such that the overall cost is reduced. Therefore, Hybrid 1 can outperform the
dual attack, regardless the secret distribution. We further assert that optimal
blocksize of the BKZ decreases linearly as the guess dimension increases, i.e.,
Heuristic 2, and use BKZ simulator to validate this assertion. This allows us to
derive a formula to estimate the improvement of Hybrid 1 compared to the
dual attack on arbitrary secrets.

Before proceeding further, let us give our intuition of Theorem 1. When the
guessing dimension r is increased, the determinant of the lattice in the hybrid
attack will be reduced. Hence, we can use a larger root Hermite factor (which
implies a smaller β) to produce a short vector, denoted by (w,v), of a similar ℓ2-
norm. Note that although each coefficient of (w,v) indeed increases, the ℓ2-norm
remains unchanged (since the lattice dimension drops). From a dual attack’s
standpoint, Lemma 2 says that the advantage only cares about the ℓ2-norm of
(w,v), rather than its individual coefficients. Hence, so long as this ℓ2-norm
remains stable, the success rate of the dual attack component is intact. We also
remark that this is a key difference between a hybrid primal attack and a hybrid
dual attack.

Our Hybrid 2 further improves upon Hybrid 1 with optimal pruning. This
method works for center limited distributions that are common to most cryp-
tosystems. Note that a main obstacle of hybrid dual attack for general secrets
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is the large secret space. The subtlety here is to find a better approach to guess
instead of exhaustively searching. Straightforward methods, such as partitioning
the search space, reduce the success probability of the attack (significantly). Our
Hybrid 2 with a fine-tuned pruning allows for a high success probability over
a fixed number of secrets; while having a minimal impact on the overall cost.

To achieve so, we present an algorithm to guess the secret with optimal
success probability when the number of guesses is bounded. More precisely, we
partition the secret space into ordered classes, sorted by the probability of a
candidate being the correct secret. Then we greedily choose candidates from the
class with the highest probability when the number of guesses permits. We give
a theoretical analyses of this approach, as well as its impact on Hybrid 2; and
show the advantage of Hybrid 2 over Hybrid 1.

As an orthogonal line of optimization, we also give an efficient algorithm for
matrix multiplication which can be seen as a none-trivial generalization of the
algorithm in [25]. Our improved algorithm decreases the computation time for
each guess; consequently, we increase the number of guesses, given a fixed cost
model. To be a bit more specific, assuming an integer multiplication takes a
unit time, for an M × r matrix of arbitrary entries, and a r × ℓr matrix whose
columns consist of all vectors from Qℓ, where Q is a set of ℓ numbers, [25]’s
algorithm improves the matrix multiplication cost from O(M ·ℓr ·r) to O(M ·ℓr).
However, this algorithm is only applicable to matrices whose columns form the
whole guessing space without pruning. We generalize it to all closed matrices
(see Def. 3). We remark that this optimization can be used for both Hybrid
1 and Hybrid 2. We refer to the attacks with this additional optimization by
Hybrid 1m and Hybrid 2m.

We conclude this section with a final remark. The advantage of Hybrid 1
and Hybrid 2 over standalone dual attack is independent of the underlying BKZ
cost model. For example, Hybrid 1 will always out-perform dual attack, for core-
SVP model, Practical model, or Frodo model (see Section 2.2 for definitions); the
actual gain will vary depending on the cost model, nonetheless. For consistency,
we will adopt the core-SVP model throughout the rest of the paper, unless
otherwise stated.

2 Preliminaries
2.1 Notations
Logarithms are base 2 if not stated otherwise. We write ln for the natural loga-
rithm. We denote vectors in bold, e.g. v and matrices in upper-case bold, e.g. A.
For a vector v The Euclidean norm of a vector v ∈ Rm is ||v||. We denote by ⟨·, ·⟩
the usual dot product of two vectors. For a compact set S ∈ Rn, we denote
by U(S) the uniform distribution over S.

2.2 Lattices and lattice reductions
Lattice. A lattice is a discrete additive subgroup of Rm for some m ∈ N. In this
case, m is called the dimension of the lattice. A lattice Λ is generated by a basis
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B = {b1, . . . ,bn} ⊂ Rm which is a set of n linearly independent row vectors
and Λ = Λ(B) can be represented as Λ(B) = B ·Zm =

{∑
i∈[n] zi · bi : zi ∈ Z

}
.

We say that the rank of the lattice is n and its dimension is m. If n = m,
the lattice is called a full-rank lattice. For the lattice Λ = Λ(B), its fundamental
parallelepiped is defined as P(B) = B·[− 1

2 ,
1
2 )

n =
{∑

i∈[n] ci · bi : ci ∈ [− 1
2 ,

1
2 )
}
.

The determinant of Λ = Λ(B) denoted by det(Λ) is defined as the m-dimensional
volume of its fundamental parallelepiped.

A non-zero vector in a lattice Λ that has the minimum norm is named as
the shortest vector. The norm of the shortest vector is denoted as λ1(Λ) =
minv∈Λ,v ̸=0 ||v||.

Lattice reductions. When given as input some basis of a lattice, a lattice re-
duction algorithm is to find a basis that consists of relatively short and relatively
pairwise orthogonal vectors. The quality of basis returned by a lattice reduction
algorithm is characterized by the Hermite factor δm0 :

δm0 =
||b1||

det(Λ)
1
m

,

where b1 is the first vector in the output basis. Refer to δ0 itself, we call it the
root-Hermite factor.

The BKZ algorithm [18] is a commonly used lattice reduction algorithm.

Heuristic 1. BKZ with blocksize β yields root-Hermite factor

δ0 ≈
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

.

This heuristic is experimentally verified in [17].

BKZ cost models. To estimate the runtime of BKZ, there are several different
cost models. The main differences between them are (1) whether they choose
sieving or enumeration as the SVP oracle and (2) how many calls to the SVP
oracle are expected to produce a vector of length δm0 · det(Λ)

1
m , where δ0 is the

root-Hermite factor, m is the dimension of lattice Λ. See [3] for more details.
Let us firstly list relevant cost models in this paper. As mentioned earlier,

we will be focusing on the core-SVP model with sieving [7].

Core-SVP Model: TBKZ(m,β) =

{
20.292β , classical
20.265β , quantum

We will also briefly compare with two additional models: a practical model, used
by, for exmaple [1], where the number of calls is 8m rather than 1.

Practical Model: TBKZ(m,β) =

{
8m · 20.292β+16.4, classical
8m · 20.265β+16.4, quantum
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and the Frodo model [13]

Frodo Model: TBKZ(m,β) =

{
β · 20.292β , classical
β · 20.265β , quantum

In addition, when using sieving as the SVP oracle, [7] also made an assumption
on the number of output short vectors from BKZ.
Assumption 1. When using sieving as the SVP oracle, BKZ algorithm with
blocksize β provides 20.2075β short vectors in one run, and they are almost as
short as the shortest one produced by BKZ algorithm.

To justify, [7] pointed out that a sieving algorithm maintains a list of 20.2075β
vectors. When the sieving algorithm terminates, the list of vectors should be
of approximately same length as the final output. This assumption has been
adopted in most of the subsequent cryptanalysis work in this field.

2.3 The Learning with Errors problem
The Learning with Errors (LWE) problem, introduced by Regev [34], is a compu-
tational problem, whose presumed hardness (against quantum computers) gives
rise to a large numbers of cryptographic constructions.
Definition 1 (LWE). Let n, q ∈ N, S be an distribution over Zn

q and s← S be
a secret vector. Let χ be a small error distribution over Z. Denote LWEn,q,s,χ

the probability distribution on Zn
q × Zq obtained by choosing a ∈ Zn

q uniformly
at random, choosing e

$← χ and returning (a, ⟨a, s⟩+ e) ∈ Zn
q × Zq.

Given access to the outputs from LWEn,q,s,χ distribution, we define two
following problems:
• Decision-LWE. Given m instances, distinguish U(Zn

q × Zq) and LWEn,q,s,χ

distribution for a fixed s← S.
• Search-LWE. Given m instances sampled from LWEn,q,s,χ distribution with

fixed s← S, recover s.
The LWE instances can be presented in the matrix form as follows:

(A,b = As+ e mod q) (1)

with s← S,A $← Zm×n
q , e

$← χm,b ∈ Zm
q .

There is an useful lemma shows that given instances from LWEn,q,s,χ with
s ∈ Zn

q , we can construct normal-form LWE instances, i.e., the secret follows the
error distribution.
Lemma 1 ([8]). Given the instances (a, b = ⟨a, s⟩+e) sampled from LWEn,q,s,χ

with s ∈ Zn
q , we can construct instances of the form (a, b = ⟨a, e⟩+e) with e

$← χn

and e
$← χ at the loss of n instances overall.

In this paper, we will also be dealing with LWE variant problems, such as
Ring-LWE, module-LWE and module-LWR. We will treat those problems as
LWE problems, following prior cryptanalysis.
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Secret distributions. Practical LWE (and its variants) based cryptosystems
utilize various secret and error distributions. To list a few,

• B+ the distribution on Zn
q where each component is independently sampled

uniformly at random from {0, 1}.
• B− the distribution on Zn

q where each component is independently sampled
uniformly at random from {−1, 0, 1}.

• B+h the distribution on Zn
q where each component is independently sampled

uniformly at random from {0, 1} with the additional guarantee that the
number of 1s is h.

• B−h where each component is independently sampled uniformly at random
from {−1, 0, 1} with the additional guarantee that the number of 1s and −1s
are both h.

In this paper, we divide the existing secret distributions into two categories:

1. binary/ternary secret with fixed hamming weight,
2. general central discrete distribution (without fixed hamming weight):

Value 0 ±1 ±2 · · · ±t
Probability p0 p1 p2 · · · pt

Note 1. If the number of values is infinite (e.g. the Gaussian distribution), we
truncate the distribution at a suitable place (also denoted by ±t). Looking ahead,
we will treat B+ as a category 2 distribution. It shares a same behavior as a
central limited distribution for our analysis.

2.4 Best known attacks on LWE

To date, primal attacks and dual attacks are considered best known attacks
against LWE and it variants. Their complexity are approximately the same for
most cryptosystems.

Primal Attack. As mentioned in the introduction, the primal attack is to solve
the search version LWE by viewing it as a Bounded Distance Decoding (BDD)
problem. Then the attack reduces it to the unique Shortest Vector Problem
(uSVP) via certain embedding technique, and solves uSVP with lattice reduc-
tion. We skip the details, since we will not focus on primal attacks in this paper.

Dual Attack. The dual attack, introduced by Micciancio and Regev [33], is to
solve a decision-LWE by reducing it to a Shortest Integer Solution (SIS) problem,
i.e., trying to find short vectors in the lattice

Λ⊥
dual = {w ∈ Zm : w ·A = 0 mod q} .
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If the input instances are from the LWEs,σ, then, b = As+ e mod q. In this
case, given a short vector w, we have

⟨w,b⟩ = w · (As+ e) = ⟨w, e⟩ mod q,

which will be short/small. Otherwise, ⟨w,b⟩ is uniform on [− q
2 ,

q
2 ). With suffi-

cient number of distinct w vectors, this attack can distinguish these two distri-
butions with high probability.

Alkim et al. [7] presented an improved dual attack on normal-form LWE,
which tries to solve an inhomogeneous SIS problem, and works over the embedded
lattice:

ΛE
dual = {(w,v) ∈ Zm × Zn : w ·A = v mod q} .

Following the same strategy, if the instances are from the normal-form LWEs,σ,
then we have

⟨w,b⟩ = w · (As+ e) = ⟨v, s⟩+ ⟨w, e⟩ mod q,

the right part of the equation is small as s and e are both small.
In general, (w,v) ∈ ΛE

dual(A) is produced by BKZ. There is an assumption
on the quality of this vector.

Assumption 2 ([20,25]). The coordinates of vectors produced by lattice re-
duction algorithms are balanced, i.e., each coordinate of (w,v) ∈ Zm × Zn

follows a Gaussian distribution of mean 0 and standard deviation ℓ√
m+n

, where
ℓ = ||(w,v)||.

Under this assumption, the distribution of t := ⟨w,b⟩ can be viewed as a
Gaussian distribution Gρ with mean 0 and standard deviation ρ = ℓσ [7].
Then the maximal variance distance between Gρ and U(− q

2 ,
q
2 ) is bounded by

ε = 4 exp(−2π2τ2), where τ = ℓσ/q [7]. According to these, the advantage of
the attack is shown in the following lemma.

Lemma 2 ([7]). Given m normal-form LWE instances (A,b = As+ e mod q)
characterized by n, σ, q, and a vector (w,v) ∈ ΛE

dual of length ℓ, the dual attack
solves the decision-LWE with advantage ε = 4 exp(−2π2τ2) where τ = ℓσ

q .

Then the success probability of the attack can be amplified by using about 1/ε2
many such vectors (w,v) ∈ ΛE

dual of length ℓ. By Assumption 1, when using
sieving as the SVP oracle, the attack needs to repeat BKZ ⌈ 1

20.2075βε2
⌉ times.

The analysis of Alkim et al. [7] about the cost and success probability of this
attack does not specify how to distinguish the Gaussian distribution from the
uniform to get the desired advantage (which equals to the statistical distance
between the two distributions) and how to amplify this advantage. we present
concrete algorithms in Appendix B to make the conclusion complete.

This attack [7] was introduced for the normal-form LWE. When the secret
does not follow the error distribution, the attack also works by using the scaling
technique introduced by Albrecht [1]. For the remaining part of this paper, we
use this technique when it is needed and will not mention it separately.
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Note that the [33] dual attack (referred to as original dual attack) works for
arbitrary secrets; while the [7] dual attack (referred to as embedded dual attack)
requires the secret to be somewhat short, so that ⟨v, s⟩ is small and distinguish-
able from uniform. Nonetheless, for practical cryptosystems (all NIST-PQC can-
didates use small secrets) the embedded dual attack is more efficient than the
original dual attack. Therefore, for the remaining part of the paper, a (hybrid)
dual attack stands for a (hybrid) embedded dual attack, unless otherwise stated.

3 Hybrid attack on short secrets

Now we are ready to proceed to our hybrid dual attack. We start with a naive
strategy where we conduct “guess” via exhaustive search. We name this strategy
Hybrid 1. We will be comparing intensively Hybrid 1 with a standalone dual
attack.

3.1 The framework

A hybrid attack has two components, a lattice reduction phase and a guess-
ing phase. We start with the lattice reduction phase. Given m LWE instances
(A,b = A · s+ e mod q) as input, we divide the secret vector s and public ma-
trix A into two parts, parameterized by r:

s =

(
s1
s2

)
∈ Zr

q × Zn−r
q , A = (A1,A2) ∈ Zm×r

q × Zm×(n−r)
q .

Looking ahead, our guessing phase works over vectors of dimension r, and tries
to identify the coefficient of s1.

Similar to the dual attack, we define a lattice over A2:

ΛE
dual(A2) =

{
(w,v) ∈ Zm × Zn−r : w ·A2 = v mod q

}
.

ΛE
dual(A2) has a dimension of d = m+ n− r and a volume of qn−r w.h.p. Then,

we assume that with lattice reduction algorithms we will obtain some short
vector(s) (w,v) ∈ ΛE

dual that allow us to calculate ⟨w,b⟩ as

⟨w,b⟩ = w(As+ e)

= wA1s1 +wA2s2 + ⟨w, e⟩
= wA1s1 + ⟨v, s2⟩+ ⟨w, e⟩ mod q.

This can be seen as a new LWE instance (â, b̂ = ⟨â, s1⟩+ ê), where

b̂ = ⟨w,b⟩ mod q,

â = wA1 mod q,

ê = ⟨v, s2⟩+ ⟨w, e⟩ mod q.

(2)
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Next we proceed to the guessing phase. Denote by s̃1 a candidate from the
guessing space. Then, ê = b̂−⟨â, s̃1⟩ mod q is from a Gaussian distribution if s̃1
is a correct guess. Otherwise ê must follow the uniform distribution on Zq.

In order to recover s1 completely, we will require a large number of short
vectors from ΛE

dual(A2). This can be obtained from the lattice reduction phase,
assuming Assumption 1.

We present the pseudo-code of the attack in Algorithm 1. Here we denote M
the number of short vectors we need to sample from the dual lattice and denote
N the number of calls to BKZ. Both values will be discussed in Section 3.2. In
addition, we denote C a collection of the selected candidates s̃1 and let L = |C|.

Algorithm 1: Hybrid Dual Attack
Input: (A,b) ∈ Zm×n

q × Zm
q ,r ∈ Z

Output: LWE distribution or Uniform
1 P

$← permutation matrix;
2 (A1,A2)← A ·P with A1 ∈ Zm×r

q and A2 ∈ Zm×(n−r)
q ;

3 M short vectors (wi,vi)i∈[M ] ← N calls to BKZ on ΛE
dual(A2);

4 for i ∈ {1, · · · ,M} do
5 calculate b̂i = ⟨wi,b⟩ mod q and âi = wiA1 mod q; ▷ Eq.(2)
6 for each s̃1 ∈ C do ▷ C is defined in Section 5.1
7 for i ∈ {1, · · · ,M} do
8 calculate ẽi = b̂i − ⟨âi, s̃1⟩ mod q;

9 if ẽi∈[M ] follow Gaussian distribution then
10 return LWE distribution;
11 return Uniform;

3.2 Analysis

The success probability of the attack is the product of two quantities:

1. ps := the success probability of the distinguish algorithm,
2. pc := the probability that C contains the right s1.

We present the analysis of ps in the remaining part of this section. The analysis
of pc is deferred to Section 5.1 as it depends on the specific secret distribution.

In Algorithm 1, The goal of lines 6-11 is to recover s1 using the new LWE in-
stances. For each guessed candidate s̃1, we calculate the M distinct quantities ẽi.
If the input instances are from LWEs,σ, the distribution of ẽi must follow a mod-
ular Gaussian distribution otherwise ẽ is uniform in [− q

2 ,
q
2 ). In order to recover

s1, we need to correctly identify the distribution for all candidates s̃1 ∈ C.



Hybrid Dual Attack on LWE with Arbitrary Secrets 13

Denote p̃s the success probability of correctly guessing the distribution of one
candidate s̃1, then the success probability of recovering s1 will be p̃Ls . Similar to
dual attack, using majority vote, we can amplify the success probability from
1
2 + ε

2 to p̃s = 1 − exp
(
− ε2

2 M
)

by using M short vectors (see Lemma 9 in
supplementary material B for more details). If we target a success probability of
ps = 1− 1

2κ for the hybrid dual attack, for a given security parameter κ, then we

have p̃Ls ' 1− 1
2κ Therefore, we can derive M from

(
1− exp

(
− ε2

2 M
))L

≈ 1− 1
2κ .

As a result, when there are M ≈ κ+lnL
ε2 short vectors (wi,vi) ∈ ΛE

dual(A2) of
length ℓ, the success probability of Algorithm 1 is ps = 1 − 1

2κ , where κ is the
security parameter.

The cost of the attack is the sum of two main components:

1. N · TBKZ := N calls to BKZ on ΛE
dual(A2),

2. Tguess := evaluate all L guesses s̃1 ∈ C using the M instances,

According to Assumption 1, we need repeat the BKZ algorithm for N = ⌈ M
20.2075β

⌉
times to produce M short vectors. If we use a naive way to evaluate all L guesses,
we will have Tguess = M ·L · r. We will give an improved algorithm for Tguess in
Section 6.

In summary, we present the results formally as follows.

Theorem 2. Given (A,b) ∈ Zm×n
q × Zm

q , the hybrid dual attack using Al-
gorithm 1 can decide whether they are LWE instances (A,b = As+ e) mod q
characterized by n, σ, q or they are from uniform distribution. The success prob-
ability p = pc · ps, where pc is presented in Section 5.1 and ps = 1− 1

2κ , where κ
is a security parameter. The cost of dual attack is calculated as

T = N · TBKZ + Tguess,

where N = ⌈ M
20.2075β

⌉ is the number of repeated times of the BKZ algorithm,
M = κ+lnL

ε2 is the number of short vectors in the dual lattice, and Tguess = M ·L·r
(see Section 6 for an improvement of Tguess).

Remark 1. In Algorithm 1, we first identify the distribution for each guess s̃1 ∈ C
independently, and then output “Uniform” if and only if all guesses are identified
as “Uniform”. An alternative approach is to use Algorithm 3 to identify the
combination of M samples with L guesses in one shot. However, the advantage
will then become ε

L . As a result, to achieve the success probability ps = 1− 1
2κ ,

we need to set M = κL2

ε2 , which will be worse than our adopted approach.

3.3 The advantage of the hybrid dual attack

We analyze the advantage of the hybrid dual attack by comparing the dual attack
and Hybrid 1. Since we always set the probability ps = 1− 1

2κ with κ = 128, it
is safe to ignore ps. Then we just need to compare the running time. Note that
we can view dual attacks as a special case of hybrid dual attacks, with r = 0.
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Let SV be the number of short vector provided by BKZ algorithm with
blocksize β using sieving as the SVP oracle. We first show that for dual attack
and Hybrid 1, under the optimal parameters, we should repeat the BKZ only
once, i.e., N = 1. Moreover, the number of short vectors produced by sieving
(SV) should be almost the same as the number of short vectors required (M) to
achieve the desired success probability ps.

Lemma 3. Assuming β > 50, for a fixed r such that Tguess ≤ 250 · TBKZ, 7

the optimal β that minimizes THybrid 1 = N · TBKZ + Tguess will satisfy N = 1,
SV

20.2075 ≤M ≤ SV , and ε2 ≤ 2−0.2β+7.

Proof sketch. The full proof is deferred to supplementary material C.1. We first
assume β is a real number and show that the optimal β will satisfy M(β) =
SV (β) and hence N = 1. Then the claim of the lemma follows when β has to be
an integer. Let β∗ be the real number such that M(β∗) = SV (β∗). We consider
two cases when β ≥ β∗ and β ≤ β∗, and show that in both cases the optimal
β is β∗. The first case when β ≥ β∗ is easy as in this case N = ⌈ M(β)

SV (β)⌉ = 1.
For the second case when β ≤ β∗, we consider the continuous function f(β)
corresponding to N · TBKZ defined as follows:

f(β) :=
M(β)

SV (β)
· TBKZ(β) =

M(β)

20.2075β
· 20.292β = M(β) · 20.0845β .

We can show that f(β) is decreasing in β. Then the optimal β minimizing
N · TBKZ is the maximum β such that β ≤ β∗, i.e., the optimal β is β∗. The
upper bound for ε2 is due to M = κ+lnL

ε2 = SV = 20.2075β .

Next, we study the influence of the guessing dimension r on the number of
required short vectors M . In Hybrid 1 when we guess r dimensions, the benefit
is that the determinant of the dual lattice is decreased. If we use a same β as for
dual attack, the length ℓ of the short vectors produced by sieving is decreased,
which will help to increase the advantage ε and decrease M .

On the other hand, when we guess r dimensions with L candidates, for each
candidate we need to achieve a higher success probability (than ps) such that
the overall success probability is ps. For this, we will need more short vectors to
amplify the success probability, i.e., M will be increased.

These two opposite effects can be seen from the calculation of M = κ+lnL
ε2 ,

where both ε and L increase when r increases. The key problem is how does
M change when r increases. Our simulations show that M decreases when r
increases for all 5 schemes tested in Section 7. This can be intuitively explained
by that lnL = r lnR, where R is the size of the support for each entry of the
secret, is increasing linearly in r while ε2 is increasing exponentially in r (from
2−O(n) when r = 0 to O(1) when r = n).
7 This guarantees that we don’t guess too much. In practice, we usually have Tguess ≤
TBKZ. For example, all 5 schemes tested in Section 7 have Tguess ≤ TBKZ under the
optimal parameters. So it is safe to assume that Tguess ≤ 250 · TBKZ.
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β

δ0 ℓ ε M N THybrid 1

SV

TBKZ

r L Tguess

↓

↑

↑ ↓ ↑ ↓
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↓

=
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↓

Fig. 1. Parameter relations and their value changes from dual attack to Hybrid 1. An
arrow “→” (respectively, “99K”) from node A to node B means that increasing A will
increase (respectively, decrease) B. “↑” and “↓” shows the direction that the values
change from the dual attack to Hybrid 1 when r is increased and β is decreased while
maintaining M ≈ SV and N = 1 unchanged.

We assume for now that M is decreasing in r and use this to explain why
Hybrid 1 outperform dual attack. At the end of this section, we will show that
this condition, M is decreasing in r, is satisfied under mild assumptions.

Lemma 4. Assume M is decreasing in r (when β is fixed), then when we in-
crease the guessing dimension r, the optimal BKZ blocksize β that minimizes
N · TBKZ and maintains a same level of success probability will be reduced.

Proof. To ease analysis, we will take β as a real number (instead of an integer),
and show that the optimal (real number) β will always be reduced when r
increases. According to Lemma 3, the optimal β will always satisfy N = 1 and
M = SV 8, which means that the optimal β will maintain M = SV when we
increase r. Since decreasing β will increase M and decrease SV = 20.2075β , and
we assume that M will be reduced when r increases, to maintain M = SV , the
optimal β will be reduced when r increases.

Now we can explain why Hybrid 1 outperform dual attack. According to
Lemma 3, we have N = 1 for dual attack and Hybrid 1 under the optimal choice
of β. Hence, for dual attack we have Tdual = TBKZ-d and for Hybrid 1 we have
THybrid 1 = TBKZ-h + Tguess. Note that we can take dual attack as a special case
of Hybrid 1 with r = 0 and Tguess = 0. Compared with dual attack, in Hybrid
1 we can increase r and decrease β while maintaining SV ≈ M and N = 1.
As a result, TBKZ is decreased and Tguess is increased. As long as Tguess does
not exceed TBKZ, we can increase r almost “for free” (at the expense of at most
one bit when Tguess = TBKZ) and decrease β such that the overall running time
8 Lemma 3 claims SV

20.2075
≤ M ≤ SV as β is an integer. The proof of Lemma 3 shows

that M = SV when β is taken as a real number.
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THybrid 1 = TBKZ-h + Tguess decreases. Our simulations show that the optimal r
and β for Hybrid 1 will satisfy TBKZ ≈ Tguess. Figure 1 shows how parameter
changes from dual attack to Hybrid 1.

Example. To give a more intuitive explanation of the advantage of the hybrid
framework, we take Kyber512 as an example and use a figure to show how TBKZ,
Tguess, and THybrid 1 change as r increases. In fact, Tguess and THybrid 1 depend on
both r and β. However, since we need to guarantee N = 1 (according to Lemma
3) to minimize the the total cost THybrid 1, the value of β can be determined once
the value of r is chosen. This allows us to estimate TBKZ, Tguess, and THybrid 1 as
functions of r. The results are shown in Figure 2. As expected, as r increases (and
β decreases), Tguess increases and TBKZ decreases. Hence, as r increases, THybrid 1
first deceases and then increases, and the optimal THybrid 1 is achieved when the
two lines cross. From Figure 2, we can see that the cross point (THybrid 1) is
smaller than the starting point, which has r = 0 and represents a standalone
dual attack.

Fig. 2. Example: THybrid 1, TBKZ and Tguess for Kyber512.

M is decreasing in r. To show that M indeed decreases when r increases, we
need to make two minor assumptions. The first one is that 50 < β < 1990, which
implies that the cost of the BKZ is from 15 bits to 580 bits, and this covers most
LWE instances we are interested in. Specifically, this covers all 5 schemes tested
in Section 7, whose optimal β is in (30, 1000). The second assumption is that the
cost of guessing only one dimension should not exceed the cost of the standalone
dual attack, as otherwise it is not helpful at all to use the hybrid framework. We
state this formally in the following assumption.
Assumption 3. Let TBKZ be the cost of the standalone dual attack with the
optimal β on a LWE instance, then the number M of short vectors needed for
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the attack and the number SV of short vectors produced by BKZ satisfy that
M ≥ SV

20.2075 (according to Lemma 3). Let R be the size of the support for each
entry of the secret. Assume the cost of guessing only one dimension is less than
TBKZ, i.e., R ·M ≤ TBKZ, then

R ≤ 20.2075 · TBKZ
SV

= 20.0845β+0.2075.

Now we can show that M decreases when r increases.

Lemma 5. Assuming 50 ≤ β ≤ 1990 and Assumption 3, the number M of short
vectors required to achieve the success probability ps is decreasing in the guessing
dimension r.

Proof sketch. The full proof is deferred to supplementary material C.2. To ease
analysis, we will take β as a real number (instead of an integer). Once r and the
corresponding optimal β are fixed, the optimal number m of equations to use is
given by

m =

√
(n− r) log q

log δ0
− (n− r)[33]9.

So the number of samples we need is

F (r) := M(r) =
κ+ lnL(r)

ε2(r)
=

κ+ lnL(r)

4e
−4π2σ2(δ40)

√
(n−r) log q

log δ0

q2

.

Our goal is to show that M decreases when r increases, i.e., F (r) is decreasing
in r. After some computation, we can get

F (r + 1)

F (r)
=

κ+ lnL(r + 1)

κ+ lnL(r)

(
ε2(r)

)1−X(r)

√
n−r−1
n−r

−1

,

where X(r) = (δ40)

√
(n−r) log q

log δ0 . Using Assumption 3 and Lemma 3, we can upper
bound the right hand side of the above equation by a function that only depends
on β. Then it is easy to check that this function is less than 1 when 50 < β <
1990.

Remark 2. We emphasize that the range 50 < β < 1990 is not a necessary
condition and hence it should not be taken as a criterion to predict when M
is decreasing in r. For β ≥ 1990, we could add other restrictions such that the
conclusion still holds. We decide to choose this restriction (50 < β < 1990)
since it covers most cryptographic use cases, specifically, the 5 schemes tested in
Section 7.

Combining Lemma 4 and Lemma 5, we get the following conclusion.

9 The formular in [33] is
√

n log q
log δ0

since [33] considers the original dual attack.
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Theorem 1. For Hybrid 1 under the core-SVP model, for any LWE instance
with arbitrary secrets, assuming 50 < β < 1990 and Assumption 3, when we
increase the guessing dimension r, the optimal BKZ blocksize β that minimizes
N · TBKZ and maintains a same level of success rate will be reduced.

Remark 3. Similarly to the remark for Lemma 5, we emphasize that Theorem
1 should be taken as an exemplary evidence for that, for most cryptographic use
cases, the blocksize β of BKZ can be reduced when we guess some entries, and
hence Hybrid 1 can outperform dual attack. However, the range 50 < β < 1990
in Theorem 1 should not be taken as a criterion to predict when Hybrid 1
will outperform dual attack. Except for the reason that 50 < β < 1990 is not a
necessary condition for Lemma 5, a more important reason is that the condition
“increasing r will decreases β” in Theorem 1 is not necessary for Hybrid 1
to outperform dual attack. It could happen that at the beginning increasing r
makes β increased, but if we can afford to increase r a little bit larger (while
maintaining Tguess ≤ TBKZ), then overall β will be decreased. For example, if we
can afford to guess 6 entries of the secret (increase r from 0 to 6), then β will be
reduced for any 50 < β < 230. To sum up, one should not reply on Theorem 1 to
decide whether Hybrid 1 will outperform dual attack (although it covers most
cryptographic use cases). Instead, one should always consider Hybrid 1 when
dual attack is considered, and in practice, one just need to run our estimator to
see whether Hybrid 1 outperforms dual attack. In the next section, we will give
a predictor that estimate the improvement of Hybrid 1.

3.4 Predicting improvement of Hybrid 1

We now proceed to a predictor that estimate the advantage of Hybrid 1 over
dual attacks under the aforementioned core-SVP model. We give our theoretical
results in Theorem 3. We also compare the predictor’s outputs (i.e., advantage +
dual attacks) with our Hybrid 1 estimator, for sanity checking the correctness
of the predictor. The results are shown in Table 3.

Let us first expand the result of Theorem 1. Our simulations show that,
for all 5 schemes, the value of the optimal β decreases linearly as r increases.
However, the slopes differ among the schemes. We could have computed the
slope from m,n, σ, b and q, but it’s hard to derive a concrete formula from them.
For simplicity, our predictor uses pre-computed slopes that we derived from our
simulations. As a consequence, our predictor relies on the following heuristic.

Heuristic 2. Fix N = 1. The optimal β decreases linearly as r increases. The
slope, denoted by α, for 5 schemes are shown in Table 3.

Next, our simulations show that the optimal r and β for Hybrid 1 will satisfy
TBKZ ≈ Tguess, i.e., we should increase r till the cost of guessing is about the
same as the cost of BKZ. To ease analysis, we will assume TBKZ = Tguess and
take parameters r and β as real numbers in our predictor. Since N = 1 (Lemma
3), we have THybrid 1 = 2TBKZ = 2Tguess. Note that this approximation differs
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Table 3. Comparison of Hybrid 1 and the Predictor

Name Parameters Dual Hybrid 1 Predictor
b1 R α

Kyber512 382 5 -0.9179 112 109 109
Kyber768 622 5 -0.9574 182 177 177
Kyber1024 870 5 -0.9764 254 246 246

Saber512 402 11 -0.956 117 115 116
Saber768 648 9 -1 189 185 185
Saber1024 885 7 -1 258 252 252

Dilithium768 343 13 -0.6296 100 99 100
Dilithium1024 485 11 -0.6301 142 140 140
Dilithium1280 598 7 -0.5993 175 172 173
Frodo640 486 25 -0.9768 142 140 140
Frodo976 705 21 -0.8828 206 203 203
Frodo1344 927 13 -0.8174 271 266 267

NTRULPrime653 447 3 -0.8306 131 126 126
NTRULPrime761 532 3 -0.8453 155 150 150
NTRULPrime857 605 3 -0.8509 177 170 170

from the optimal THybrid 1 by at most one bit, since increasing r will increase
Tguess and decreasing r will increase β, which will increase TBKZ.

Finally, we are ready to present our predictor, captured via Theorem 3.

Theorem 3. Using Heuristic 2 and assume TBKZ = Tguess for Hybrid 1, for
an LWE instance with parameters n and R, where R is the size of the support for
each entry of the secret, let b1 be the optimal β for the dual attack, then the cost
of Hybrid 1 is THybrid 1 = 20.292b2+1, where b2 = b1

logR
logR−0.0845α is the optimal

β for Hybrid 1 and α is the slope, and the guess dimension is r = 0.0845b2
logR .

Proof. According to Lemma 3, we have M = SV = 20.2075b2 (when β is taken
as a real number). Using Tguess = TBKZ = 20.292b2 , we get L =

Tguess
M = TBKZ

SV =

20.0845b2 . Since L = Rr, we get r = 0.0845b2
logR . According to Heuristic 2, b2 −

b1 = αr ⇒ r = b2−b1
α . Combining r = 0.0845b2

logR and r = b2−b1
α , we get b2 =

b1
logR

logR−0.0845α .

Note that in the proof we have L = TBKZ
SV = 20.0845b2 . This means the guessing

space is determined by the difference between the running time of sieving and
the number of short vectors produced by sieving. If this difference becomes larger
(e.g., using other cost models), then we can guess more and the improvement of
Hybrid 1 compared with dual attack will be larger.
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We use the result of Theorem 3 to predict the bit-security of all 5 schemes,
and present the results in in Table 3. The Predictor data is computed as the
sum of dual attack and the predicted advantage. The Predictor results are very
close to those from our Hybrid 1 estimator, with a difference of one bit in worst
cases.

4 Hybrid attack on arbitrary secrets

Essentially, there are two methods to deal with uniform secrets:

1. Attack the LWE samples directly with the original dual attacks;
2. Convert the uniform LWE samples into normal-form LWE samples (Lemma

1), and then use embedded dual attacks.

The second option requires more samples, but is believed to be more efficient
in general when the number of samples permits. Via normalizing the uniform
LWE, we obtain an LWE problem with short secrets. Hence we can adopt the
strategy in Section 3. There are also cases where an attacker must use the original
dual attacks (perhaps due to the limitation of samples, etc.). We emphasis that
this setting (uniform secret and limited samples) does not reflect any real-world
cryptosystem. Nonetheless, it is interesting to show that hybrid dual attacks are
still better than dual attacks with both approaches, from a theoretical point of
view.

To see this, we start with the first option. We can still adopt the strategy
in Section 3, and combine an original dual attack with guess to obtain a hybrid
original dual attack. In addition, we can still invoke the predictor from Theorem
3, via setting R = q, and α to a value close to −1 for simplicity (Table 3 shows
that α is close to -1 and the scope is (−0.6,−1). The advantage would be larger
if we have larger absolute value of α.). According to Theorem 3, we have

r =
0.0845b2
log q

and b2 − b1 =
b1 · 0.0845α

log q − 0.0845α
≈ −0.0845b1

log q
.

For a larger q the cost of guessing even a single entry becomes too high. Therefore,
we can guess very few entries and the improvement is limited. Taking Regev’s
original scheme [34] as an example, where q ≈ n2 and σ = q

2π
√
n log2 n

, we
consider two different restrictions on the number of samples: the original one
m ∈ (0, n log q) and m ∈ (0, 2n). We see marginal improvements between 1 to 3
bits in Table 4.

For the second option, we transform the samples with s uniform in Zn
q to

normal-form ones at a loss of n samples. The advantage of this method is that
as the secret is small, we can guess more entries than the previous option. Sim-
ilarly, we present the estimations in Table 5. We see improvements across all
parameter sets. Notice an anomaly from Regev1024: it occurs when there isn’t
sufficient number of samples. The advantage of hybrid embedded dual attack
over embedded dual attack is surprisingly large when number of samples is (ex-
tremely) limited.
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Table 4 and 5 show that hybrid dual attack always outperforms dual attack
for uniform secrets, regardless the number of samples. In addition, the advantage
of hybrid dual attacks increases (sometimes drastically) with the increase of n,
when the number of samples is limited (m ∈ (0, 2n)).

Table 4. (Hybrid) original dual attack

Regev m ∈ (0, 2n) m ∈ (0, n log q)

n Dual Hybrid Dual Hybrid
256 63 62 56 56
512 150 149 135 134
1024 343 340 306 305

Table 5. (Hybrid) embedded dual attack

Regev m ∈ (0, n) m ∈ (0, n log q − n)

n Dual Hybrid Dual Hybrid
256 63 61 56 55
512 151 147 134 133
1024 631 570 306 303

5 Hybrid dual attack with optimal pruning

5.1 Guess with pruning

In this section, we show how to choose the optimal subset of secret candidates
for different secret distributions when the hybrid dual attack becomes too ex-
pansive or unfeasible to guess all candidates. In this scenario, since our guess
time need to approximate the cost of BKZ (similarly to Hybrid 1), we can only
guess a limited number of candidates. To optimize the success probability pc, we
need to find a collection of certain number of candidates such that its success
probability is as large as possible, i.e. we want to maximize the success prob-
ability when the number of candidates is limited. This can be formally stated
as max|C|<c p(C), where C is a collection of guessed candidates, c is the upper
limit of |C|, and p(C) = Pr[s1 ∈ C] is the probability that the correct s1 is in C.

Note that the optimal parameters that minimize the target
(
N · TBKZ +

Tguess
)
/pc may result in pc < 1

2 . To boost the success probability pc, we can
repeat the attack by guessing different parts (r dimensions) of the secret. We
can repeat the attack for at least ⌊nr ⌋ times. Since the optimal guess strategy
may ignore some candidates with low probability, it could happen that for some
instances the attack fails for all ⌊nr ⌋ times. However, the probability for this to
happen is very low as long as pc is not too small. For all LWE-related proposals
we test in Section 7, we have pc ≥ 2−0.97, ⌊nr ⌋ ≥ 7 , and the probability that the
attack fails after repeat is at most 2−19 under the optimal parameters. Therefore,
the attack is valid from a practical point of view.

In the rest of the section, we will look into three different distributions.

Pruning for B+
h . Let s ∈ B+

h be a binary secret vector with hamming weight
h. Denote S the set of all the candidates of s1 ∈ {0, 1}r. Let kmin and kmax be
the lower and upper bound of the hamming weight of candidates in S. It is easy
to see that kmin = max

{
0, h+ r − n

}
and kmax = min

{
h, r
}

.
Our goal is to greedily form the set C with candidates of high(est) success

rate from S. To this end, we first partition the set S into several subsets according
to the hamming weight. For each integer k ∈ [kmin, kmax], let Sk be the set of
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candidates from S with hamming weight k. Then S =
∪

k∈[kmin,kmax]
Sk. Next,

we can compute the order of Sk, denoted by N(k), and the probability that Sk

contains the correct s1, denoted by p(k) for each k ∈ [kmin, kmax] as follows:

N(k) =

(
r

k

)
and p(k) =

(
r
k

)(
n−r
h−k

)(
n
h

) .

Since candidates in the same set Sk have the same probability to be the correct
s1, the probability for each candidate in Sk to be s1 is p(k) = p(k)

N(k) =
(n−r
h−k)
(nh)

.

Finally, based on p(k), we can greedily choose candidates in Sk with the highest
p(k) to C till |C| ≈ c. It is easy to see that this method achieve the optimal
success probability as every time when we put a vector into C, it is the one with
the highest success probability p(k) in S\C.

Note 2. If n > r + 2h, then it holds that (n − r)/2 > h − k, and hence p(k)
decreases as k increases. Therefore, in this case, we should always start guessing
candidates from Sk with the lowest hamming weight. Accordingly, the guessing
time and success probability are

Tguess = M ·
h∗∑
i=0

N(i) · i, and pc =

h∗∑
i=1

p(i),

where h∗ satisfies
∑h∗

i=1 N(i) < c and
∑h∗+1

i=1 N(i) > c.

Pruning for B−
h . Let s ∈ B−

h be a ternary secret vector with h number of 1
and h number of −1. Similar to the case of binary secret vector, let S(k+,k−) be
a subset of S where k+ and k− denote the number of 1 and −1, respectively.
The order of S(k+,k−) (denoted by N(k+, k−)) and the probability that S(k+,k−)

contains the correct s1 (denoted by p(k+, k−)) are calculated as

N(k+, k−) =

(
r

k+

)(
r − k+

k−

)
, p(k+, k−) =

(
r
k+

)(
r−k+

k−

)(
n−r
h−k+

)(
n−r−h+k+

h−k−

)(
n
h

)(
n−h
h

) .

Also, the probability for each candidate in S(k+,k−) to be the correct s1 is

p(k+, k−) =
p(k+, k−)

N(k+, k−)
=

(
n−r
h−k+

)(
n−r−h+k+

h−k−

)(
n
h

)(
n−h
h

) .

Based on p(k+, k−), we choose the candidates in S(k+,k−) with the high-
est p(k+, k−) to C till C ≈ c. Accordingly, the guessing time and success prob-
ability are

Tguess = M ·
∑

S(i+,i−)∈C

N(i+, i−) · (i+ + i−) and pc =
∑

S(i+,i−)∈C

p(i+, i−).
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Note 3. If n > r + 3h, then p(k+, k−) decreases when k+ + k− increases. More-
over, for a fixed k+ + k−, p(k+, k−) decreases as |k+ − k−| increases. Therefore,
in this case, we should choose the candidates following two rules: k+ + k− is
minimized, and |k+ − k−| is minimized.

Pruning for central discrete distribution. For a general central discrete
distribution with a support S := {0,±1, · · · ,±t}, we partition all candidates in S
into subsets according to the appearance of each value in S. Denote S(k0,k1,··· ,kt)

the subset of candidates with ki entries being ±i for i ∈ [0, t]. For each subset,
its order, denoted by N(k0, k1, · · · , kt), and the probability of each candidate to
be the correct guess, denoted by p(k0, k1, · · · , kt), can be calculated as

N(k0, k1, · · · , kt) =
(
r

k0

)(
r − k0
k1

)
· · ·
(
r − k0 − · · · − kt−1

kt

)
· 2r−k0 ,

p(k0, k1, · · · , kt) = pk0
0 pk1

1 · · · k
kt
t .

Based on p(k0, k1, · · · , kt), we choose the candidates in S(k0,k1,··· ,kt) with the
highest p(k0, k1, · · · , kt) to C till C ≈ c. Accordingly, the guessing time and
success probability are

Tguess = M ·
∑

S(i0,··· ,it)∈C

N(i0, · · · , it) ·(i1+ · · ·+it), pc =
∑

S(i0,··· ,it)∈C

p(i0, · · · , it).

5.2 The advantage of optimal guess

Now we are ready to analyze the advantage of Hybrid 2 over Hybrid 1. Similar
to the previous comparison in Section 3.3, it is safe to ignore ps as it is close to
1 for both algorithms. Recall that we have

THybrid 1 = N · TBKZ-h1 + Tguess-h1

THybrid 2 =
(
N · TBKZ-h2 + Tguess-h2

)
/pc

Intuitively, in Hybrid 2, our guess dimension r will be larger. This decreases
blocksize β, and therefore, the cost for a single attack is reduced. So long as the
advantage one gains via Hybrid 2 makes it up to the loss in success probabil-
ity (pc), pruning will improve the overall cost. The detailed analysis comes as
follows.

We first analyze the relation between the cost THybrid 2 and the parameters
r, β and L, which is shown in Figure 3. Note that the influence of r and β on the
cost THybrid 2 is almost the same as in Hybrid 1. The only difference is that in
Hybrid 1 the number of candidates L is directly determined by r since we guess
all candidates, while in Hybrid 2, L is a free parameter that the attacker can
choose. This introduces a success probability pc, i.e., the optimal probability we
can achieve via optimal pruning in Section 5.1. It’s easy to see that increasing r
or decreasing L will decrease pc.
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Fig. 3. Parameter relations in Hybrid 2 and value changes from Hybrid 1 to Hybrid
2. The attack can choose the value for parameters in red color (i.e., β, r and L), which
then determine the value for other parameters.

A natural next step is to adjust the parameters r, β, L in Hybrid 2 to get
a lower cost THybrid 2 than that of Hybrid 1. Recall that in Hybrid 1, we
fix N = 1, and gradually increase r from 0 (and decrease β accordingly) till
TBKZ = Tguess. We follow a similar strategy in Hybrid 2 by fixing N = 1 and
gradually increase r. Once a balance between TBKZ and Tguess is reached, we
gradually decrease L (this do not change the condition that TBKZ = Tguess)
and compute the corresponding success probability pc. We search for the point
where the overall cost is minimal. Note that a deciding factor on whether there
exists a minimal point (other than the starting point of L), in other words,
whether Hybrid 2 can outperform Hybrid 1, is the concentration of the secret
distribution.

Concentration level. As we will see in Section 7 the improvement of Hybrid
2 depends largely on the individual secret distribution. For example, for secret
distributions that are more centralized, the success probability pc are higher.
To capture this quantity, we formally define a concentration level as a metric to
indicate the effectiveness of our optimal pruning.

Definition 2. Let g(r, L) be a function of r and L, which is the optimal success
probability when Hybrid 2 guesses L candidates for a secret of dimension r and
distribution χ, i.e., g(r, L) = maxC⊆D(r),|C|≤L p(C), where D(r) is the set of all
candidates for the secret and p(C) is the probability that the correct secret is in
C. We say g(r, L) is χ’s concentration level.

As per definition, g(r, L) characterizes how centralized a distribution is, or
how hard it is to achieve a high success probability when guessing r dimensions
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and L candidates. For example, for two distributions χA and χB , if we guess a
same r and L and we get gχA

(r, L) > gχB
(r, L), then we can claim that χA is

more centralized, or easier to guess. The metric g(r, L) will be used in Theorem
4.

Note that concentration level is different from entropy. Surprisingly, a dis-
tribution with higher entropy could have a higher concentration level, which
means easier to guess. For example, for two distributions χA and χB with the
same support set {0, 1, 2} and pA = (0.6, 0.2, 0.2) and pB = (0.5, 0.5, 0), the
entropy of χA is higher than that of χB , but when guessing only one dimension
(r = 1) and one candidate (L = 1), the success probability for χA is higher than
that of χB , i.e., gχA

(1, 1) = 0.6 > gχB
(1, 1) = 0.5.

Example. To show how the concentration level influences Hybrid 2, let us
consider two typical examples:

– LAC192 with a secret distribution B+h for n = 1024 and h = 128;
– Dilithium768 whose secret is from uniform distribution.

Our simulations show that Hybrid 2 can reduce the bit complexity of LAC192
by 12 bits compared with Hybrid 1, but there is no difference between Hybrid
2 and Hybrid 1 for Dilithium768.

For each r, we should choose an appropriate β such that N = 1 and then
choose L such that Tguess = TBKZ. Then, for a secret distribution, the bit com-
plexity and the optimal success probability pc = g(r, L) can be expressed as
functions of r. We plot this function in the Figure 4. Specifically, 4(a) and 4(b)
show the progression of THybrid 2, TBKZ, and pc as functions of r, and 4(c) and
4(d) show the centralization function g(r, L) for the two different secret dis-
tributions. For better visualization, in 4(a) and 4(b), we present the following
quantities:

– ∆ log THybrid 2(r) = log THybrid 2(r)− log THybrid 2(0),
– ∆ log TBKZ(r) = log TBKZ(r)− log TBKZ(0),
– ∆ log(1/pc(r)) = log(1/pc(r))− log(1/pc(0)).

For LAC192, when 0 ≤ r ≤ 50, TBKZ(r) decreases; 1/pc(r) = 1/pc(0) = 1. As
a result, THybrid 2(r) and TBKZ(r) behaves similarly. Indeed, during this stage, we
have Tguess(r) < TBKZ(r). This means we have been under-guessing for Hybrid
2: we can afford to guess all candidates. The optimal r for Hybrid 1 is r = 50
when Tguess(r) = TBKZ(r).

On the other hand, when 50 < r ≤ 150, TBKZ(r) decreases and 1/pc(r)
increases. The overall cost, THybrid 2(r) drops since the gain in doing less BKZ
overtakes the loss of success probability. The above gain and loss balance out
at r = 150, at which point, Hybrid 2 becomes optimal.

For Dilithium768, 0 ≤ r ≤ 9 is also the under-guessing phase where Hybrid
1 ≈ Hybrid 2. Beyond r = 9, 1/pc(r) increases much faster due to its low
concentration level, there is not a point where the gain in BKZ cost can catch
up the loss in success probability. Therefore, for Dilithium768, pruning does not
improve the hybrid attack.
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(a) LAC (b) Dilithium

(c) LAC (d) Dilithium

Fig. 4. Comparison between LAC192 and Dilithium768. Figure (a) and (b) plot
THybrid 2, TBKZ, and pc in function of r; Figure (c) and (d) visualize the impact of
centralization level over pc.

Figure 4(c) and 4(d) visualize the concentration level for a fixed r = 150.
Here, observe that for LAC192 a small ratio of guessed candidates is enough to
achieve a high success probability, while for Dilithium768 with uniform secrets,
the success probability is proportional to the guessed candidates. For example,
with a guess ratio of 2−50, the success probability is close to 1 for LAC192, and
remains 2−50 for Dilithium768.

5.3 Predicting improvement of Hybrid 2

In this section, we present a predictor for Hybrid 2’s advantage. In our simula-
tor, we observe that, similar to Hybrid 1, the optimal parameters for Hybrid
2 also satisfy that N = 1 and TBKZ = Tguess. This leads to the predictor in
Theorem 4. We defer the proof to supplementary material C.3.

Theorem 4. Assuming Heuristic 2 and that the optimal parameters of Hybrid
2 satisfy N = 1 and TBKZ = Tguess, let b1 the optimal β for the dual attack,
then the optimal cost of Hybrid 2 when guessing r entries of the secret s is
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f(r) = 20.292·b(r)+1

g(r,20.0845·b(r))
, where b(r) = b1 + αr is the optimal β corresponding to

r, g(r, L) is the centralization function, and α is the slope. The optimal cost of
Hybrid 2 is minr≥0 f(r).

Remark 4. As an additional sanity check, we show that Theorem 3 and 4 con-
verge when guessing all candidates is indeed the optimal strategy. In this case we
have g(r∗, 20.0845·b(r

∗)) = 1 for some optimal point r∗. Note that 20.0845·b(r
∗) =

Rr∗ , where R is the size of the support for each entry of the secret. Combined
with b(r∗) = b1 + αr∗, we achieve Theorem 3, that is, b2 ≈ b1

logR
logR−0.0845α .

6 An additional optimization

Recall that in the guessing stage, for each s̃1 ∈ C, we use M short vectors
(w,v) ∈ ΛE

dual(A2) to check the distribution of ẽ = b̂ − ⟨â, s̃1⟩ mod q corre-
sponding to the guesses s̃1 (line 9 in Algorithm 1). For all the M short vectors
and all the L guessed s̃1, we rewrite their combinations into the matrix form
as Ẽ = B̂ − ÂS mod q, where Ẽ, B̂ ∈ ZM×L

q , Â ∈ ZM×r
q and S ∈ Zr×L. Each

column of Ẽ denotes all the ẽ’s to be tested of a guessed s̃1 ∈ C. Therefore, the
overall cost of the guessing stage has two main parts: (1), computing the mul-
tiplication of Â and S and (2), checking the distributions of all the L columns
of Ẽ. It is obvious that the multiplication cost dominants, and is therefore, the
focus of optimization.

6.1 An efficient algorithm from [25]

A school book multiplication for A ∈ ZM×r
q and S ∈ Zr×L takes O(M · r · L),

assuming integer multiplications take unit time. [25] improves the cost by a
factor of r, when the matrix S has a special form.

Lemma 6 ([25]). The product of a matrix A ∈ ZM×r and a matrix S of size
r × ℓr which consists of all vectors from {t1, . . . , tℓ}r in lexicographic order can
be calculated in O(M · ℓr) time.

The idea of the algorithm from [25] is as follows. For any i ∈ N, denote S(i) of
size i× ℓi the matrix consisting of all vectors from {t1, · · · , tℓ}i in lexicographic
order. These matrices can be constructed recursively. For i = 1,S(1) =

(
t1 · · · tℓ

)
and for ∀i > 1, S(i) =

(
S1 · · · Sℓ

S(i−1) · · · S(i−1)

)
. Denote a = (ar, · · · , a1) a d-

dimensional vector and a(i) = (ai, · · · , a1). Then the scalar products of a(i)
and S(i) can be calculated recursively as follows:

a(i) · S(i) =
(
ai a(i−1)

)( t1 · · · tℓ
S(i−1) · · · S(i−1)

)
=
(
ai · t1 + a(i−1)S(i−1) · · · ai · tℓ + a(i−1)S(i−1)

)
.
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Hence, given a(i−1)S(i−1), we can compute a(i) · S(i) in O(ℓi) time. Therefore,
the product of A and S can be calculated in time O(M · ℓi). We state this result
formally in the following lemma.

However, Lemma 6 only works for Hybrid 1, and does not work after
pruning. For example, for a central discrete distribution with a support set
{0,±1,±2} and p0 = 0.7, p1 = 0.2, p2 = 0.1, an optimal guess set C for di-
mension 3 may contain (0, 0, 1) and (0, 0, 2), but not (1, 1, 1), since (0, 0, 1) and
(0, 0, 2) have higher success probabilities than (1, 1, 1). Now there is no set in the
form required by Lemma 6 (except for the whole set {0,±1,±2}3) that contains
(0, 0, 1) and (0, 0, 2) but not (1, 1, 1). In the next section, we present an improved
algorithm.

6.2 An improved algorithm

Warm up. Let us begin with our intuition. Let a = (a1, a2, . . . , ar) and b =
(b1, b2, . . . , br) be two vectors of dimension r. Compute ⟨a,b⟩ requires O(r) time.
However, if we already have the result of ⟨a,b′⟩, where b′

j = 0 for some j ∈ [r]
and b′

i = bi for all other i ̸= j, then ⟨a,b⟩ = ⟨a,b′⟩ + ajbj can be computed
in constant time based on the result of ⟨a,b′⟩. To compute the product of a
vector a and a matrix S, we need to compute the inner product of a with each
column of S. If all columns of the matrix S have an order such that the inner
product for one column can be computed recursively based on the inner product
for another column, then we can drop the dimension r out in the running time.

Concrete algorithm. We start with a few new definitions. Let D ⊆ Z be a set
of integers including 0. For two vectors v,v′ ∈ Dr, we say v′ precedes v, denoted
as v′ ≺ v, if there exists j ∈ [r] such that v′

j = 0 and v′
i = vi for all i ̸= j.

Slightly abusing the notation, we use S as the set of column vectors of S and
we write v ∈ S if v is a column of S. Finally we can formally define the closed
matrices.

Definition 3 (Closed Matrix). For a matrix S ∈ Dr×L, we say S is closed
if for any v ∈ S, we have v′ ∈ S for all v′ ≺ v.

The main result of this section is stated in the following theorem.

Theorem 5. The product of a matrix A ∈ ZM×r and a closed matrix S ∈ Dr×L,
where D ⊆ Z is a set of integers including 0, can be computed in O(M ·L) time.

We defer to supplementary material C.4 for the proof.
Next, we show that all the optimal subsets of candidates discussed in Section

5.1 are closed, and hence Theorem 5 can be applied. The proof of Corollary 1 is
deferred to supplementary material C.5.

Corollary 1. If the guessing part s1 has dimension r and the secret distribution
of the LWE problem is from one the following distributions: B+h with n − r ≥
2h, B−h with n − r ≥ 3h, or a central discrete distribution, then the candidate
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subset C∗ for s1 satisfying that C∗ = argmax|C|<c p(C) is closed. Hence, the
multiplication of the matrix Â ∈ ZM×r

q and the corresponding optimal candidate
matrix S∗ ∈ Zr×L can be computed in O(M · L) time.

7 Security estimations

We conclude our paper with new estimations for 5 NIST-PQC candidates. Their
parameters are given in Table 7. The highlight are presented in Table 2, and
a full comparison is given in Table 11. Again, our base line for comparison is
the dual attack. Then we compare it with the most optimized one, Hybrid 2m,
taking into account the optimal pruning and our additional optimization. Our
results are in both the core-SVP model and the practical model. We skipped the
Frodo model, since its estimations will always lie in between those of core-SVP
and practical models.

The number of samples allowed from each scheme is shown in Table 7. We
observe that the optimal number of samples is smaller than the allowed one in our
simulation, with an exception of Frodo. For Frodo, we use the optimal number
of samples under the restriction of allowed samples. Nevertheless, the influence
of this restriction is at most one bit. We set target ps = 1− 1

2κ with κ = 128.
In addition, we note that for the schemes whose distributions of secret s

and error e are different, we use the ”modulus switching” technique [1] (which
balances the weight of s and e) to improve the estimation results. Among the 5
schemes we considered, we use this technique for Saber and NTRULPrime.

For all cases, Hybrid 2m is more efficient than dual attacks, regardless of
the model. Although, we remark that the gain becomes more significant, if we
assume a higher complexity of BKZ (i.e., the practical model). Our method
reports an overall improvement between 1 to 9 bits; the actual improvement
varies, depending on scheme/parameter sets, as well as the security model. Our
algorithm works best on NTRULPrime857 and Kyber1024 under the core-SVP
model, which records an improvement of 9 bits with classical computation.

We want to emphasis that, the new estimations for Kyber, Dilithium and
NTRULPrime are indeed lower than the corresponding security level. As a final
takeaway, we believe that hybrid dual attacks (with pruning) should be consid-
ered for cryptanalysis on any future practical lattice-based cryptosystem.
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A Parameters for various cryptosystems

Parameters for various cryptosystems considered in this paper are listed in Table
6, 7, 8, 9 and 10.

Table 6. Parameters of LAC192

Name n q σ Secret distribution Hamming weight

LAC192 1024 251 1/
√
2 #(−1, 0, 1) = (128, 768, 128) 256

B A concrete treatment of embedded dual attacks

The analysis of Alkim et al. [7] about the cost and success probability of em-
bedded dual attack, as shown in Section 2.4, does not specify how to distinguish
the Gaussian distribution from the uniform to get the desired advantage (which
equals to the statistical distance between the two distributions) and how to am-
plify this advantage. In this section, we present concrete algorithms to make the
conclusion given by Alkim et al. [7] complete.

B.1 With a single short vector

Given instances (A,b) from LWEs,σ or uniform distribution U(Zm×n
q ×Zq) and

a short vector (w,v) ∈ ΛE
dual of length ℓ, denote t = ⟨w,b⟩, which is from

Gρ or U(− q
2 ,

q
2 ) accordingly. Let ε be the maximum variance distance between

Gρ and U(− q
2 ,

q
2 ). In the following, we present an algorithm to distinguish the

distribution of t with an advantage ε.
Denote g(x) and G(x) the probability density function and the cumulative

distribution function of Gρ, respectively. Similarly, denote f(x) and F (x) those
of U(− q

2 ,
q
2 ). Let Ig be the subset of (− q

2 ,
q
2 ) where g(x) ≥ f(x), and accordingly,

let If be the subset of (− q
2 ,

q
2 ) where f(x) > g(x). Denote

pg := Pr
[
t ∈ Ig|t← Gρ

]
, and

pf := Pr
[
t ∈ Ig|t← U(−

q

2
,
q

2
)
]
.

By definition, we can compute the maximal variance distance between Gρ and
U(− q

2 ,
q
2 ) by pg and pf as follows.

Lemma 7. ε = pg − pf .
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Table 7. Parameters for NIST-PQC round 3 LWE-based schemes

Name
Parameters Security

n k q σ m∗ Secret dist. Level Claim
Classical Quantum

Kyber
256 2 3329 1 768

see Table 8
1 111 100

256 3 3329 1 1024 3 181 164
256 4 3329 1 1280 5 254 230

Saber
256 2 213 2.29 768

see Table 9
1 118 107

256 3 213 2.29 1024 3 189 172
256 4 213 2.29 1280 5 260 236

Dilithium
256 3 8380417 3.74 1024 uniform in [−6, 6] 1 100 91
256 4 8380417 3.16 1280 uniform in [−5, 5] 2 141 128
256 5 8380417 2 1536 uniform in [−3, 3] 3 174 158

Frodo
640 - 215 2.8 640

see Table 10
1 148 108

976 - 216 2.3 976 3 214 154
1344 - 216 1.4 1344 5 279 201

NTRULPrime
653 - 4621

√
2/3 909 #(±1) = 252 1 130 118

761 - 4591
√

2/3 1017 #(±1) = 250 2 155 140
857 - 5167

√
2/3 1113 #(±1) = 281 3 176 160

* The parameters are the secret dimension n, MLWE rank k, modulo q, standard deviation of the
error σ and the distribution of secret vector s.

* m∗ is the maximum number of allowed samples for each scheme.
* The claimed bit-security are derived from the dual attack for all schemes except for NTRULPrime.

NTRULPrime did not consider dual attacks; we use their best claimed result.
* Frodo uses the Frodo model; all the rest schemes use core-SVP model.
* As the parameters of the schemes in round 3 haven’t been published until the paper is submitted,

we use the parameters proposed in round 2. We will update our results in the final version of this
paper, if it is accepted.

Table 8. Kyber’s secret distribution

Name n k
Probability of

0 ±1 ±2

Kyber512 256 2 3
8

1
4

1
16

Kyber768 256 3 3
8

1
4

1
16

Kyber1024 256 4 3
8

1
4

1
16
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Table 9. Saber’s secret distribution

Name n k
Probability of

0 ±1 ±2 ±3 ±4 ±5

Saber512 256 2 0.2460 0.2051 0.1172 0.0439 0.0098 0.0010
Saber768 256 3 0.2734 0.2187 0.1094 0.0313 0.0039
Saber1024 256 4 0.3124 0.2344 0.0938 0.0156

Table 10. Frodo’s secret distribution

Name n
Probability of (in multiples of 2−16)

0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12

Frodo640 640 9288 8720 7216 5264 3384 1918 958 422 164 56 17 4 1
Frodo976 976 11278 10277 7774 4882 2545 1101 396 118 29 6 1
Frodo1344 1344 18286 14320 6876 2023 364 40 2

Proof. By definition, we have

ε =
1

2

∫ q/2

−q/2

|g(x)− f(x)| dx

=
1

2

(∫
Ig

g(x)− f(x) dx+

∫
If

f(x)− g(x) dx

)

=

∫
Ig

g(x)− f(x) dx
(

as
∫ q/2

−q/2

(
g(x)− f(x)

)
dx = 0

)
= pg − pf .

Therefore, we can first compute the subset Ig. Then, for a given target in-
stance t, when t ∈ Ig, we label t ← Gρ, otherwise t ← U(− q

2 ,
q
2 ). The concrete

algorithm is shown in Algorithm 2. Its success probability is shown in Lemma 8.

Lemma 8. The success probability of Algorithm 2 is 1
2 + 1

2ε.

Proof. Assume that the target instance t is sampled from either Gρ or U(− q
2 ,

q
2 )

with equal probability, i.e., 1
2 . Denote Pr[Gaussian|Gaussian] the probability

that the algorithm outputs ‘Gaussian’ when the input instance is from Gρ, and
Pr[Uniform|Uniform] the probability that the algorithm outputs ‘Uniform’ when
the input instance is from U(− q

2 ,
q
2 ). Then, according to Lemma 7, the success
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probability can be calculated as follows:

Pr[success] = 1

2

(
Pr[Gaussian|Gaussian] + Pr[Uniform|Uniform]

)
=

1

2

(
pg + 1− pf

)
=

1

2

(
1 + ε

)
=

1

2
+

1

2
ε

Therefore, the success probability of Algorithm 2 is 1
2 + 1

2ε.

Algorithm 2: Distinguish Gρ from U(− q
2 ,

q
2 ) given one instance

Input: (A,b), (w,v) ∈ ΛE
dual(A) of length ℓ

Output: Gaussian or Uniform
1 Compute Ig;
2 Compute t := ⟨w,b⟩ mod q;
3 if t ∈ Ig then return Gaussian;
4 else return Uniform;

B.2 Extend to M short vectors

Recall that pg = Pr
[
t ∈ Ig|t ← Gρ

]
and pf = Pr

[
t ∈ Ig|t ← U(− q

2 ,
q
2 )
]
. If the

input distribution is Gρ, then pgM of instances are expected to be labeled as from
Gaussian distribution; otherwise, pfM . This allows us to setup a threshold 1

2 (pg+
pf )M . The distinguisher will output Gρ if the threshold is reached; U(− q

2 ,
q
2 )

otherwise. The algorithm that captures the above logic is shown in Algorithm 3,
and the success probability is captured via Lemma 9.

Lemma 9. Given M instances ti∈[M ] sampled from Gρ or U(− q
2 ,

q
2 ), the success

probability of Algorithm 3 is at least 1− exp(− ε2

2 M).

To prove the success probability, we will use an additional lemma of Hoeffd-
ing’s inequality.

Lemma 10 (Hoeffding’s inequality.). Let Z1, . . . , Zn be independent bounded
random variables with Zi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then

Pr
( 1
n

n∑
i=1

(Zi − E[Zi]) ≥ t
)
≤ exp(− 2nt2

(b− a)2
)
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and

Pr
( 1
n

n∑
i=1

(Zi − E[Zi]) ≤ −t
)
≤ exp(− 2nt2

(b− a)2
)

for all t ≥ 0.

Now we prove Lemma 9.

Proof. We assume that the input instances (A,b) are all from Gaussian or uni-
form distribution with probability 1

2 respectively. Each yi in Algorithm 3 is a
indicator variable and let Y =

∑M
i=1 yi. We consider the probability that the

algorithm outputs the wrong distribution in the following two cases:

• Algorithm 3 outputs “Uniform” when the input instances are from Gaussian
distribution. Since (A,b) are from Gρ, we have Pr[yi = 1] = pg and E(Y ) =
pgM . Since Algorithm 3 outputs “Uniform”, Y < 1

2 (pg + pf )M . Using Ho-
effding’s inequality, we get:

Pr[Y <
pg + pf

2
M ] = Pr[Y − pgM < −ε

2
M ]

≤ exp(−ε2

2
M).

• Algorithm 3 outputs “Gaussian” when the input instances are from Uni-
form distribution. Since (A,b) are from U(− q

2 ,
q
2 ), we have Pr[yi = 1] = pf

and E(Y ) = pfM . Since Algorithm 3 outputs “Gaussian”, Y ≥ 1
2 (pg+pf )M .

Using Hoeffding’s inequality, we get:

Pr[Y >
pg + pf

2
M ] = Pr[Y − pfM >

ε

2
M ]

≤ exp(−ε2

2
M)

Therefore the success probability of Algorithm 3 is at least 1− exp(− ε2

2 M).

According to Lemma 9, if we set the target success probability of the dual
attack to 1− 1

2κ , where κ is the security parameter, then, the required number
of short vectors can be derived via 1− exp(− ε2

2 M) = 1− 1
2κ . That is, when we

use M ≈ κ
ε2 short vectors in ΛE

dual(A) of length ℓ, we can distinguish Gρ from
random with success probability 1− 1

2κ .
Finally, based on Lemma 7, 8, 9, assuming Heuristic 1 and Assumption 1,

we draw the following conclusion for dual attack.

Theorem 6. Given m normal-form LWE instances (A,b = As+ e mod q) char-
acterized by n, σ, q. Using BKZ with blocksize β to obtain a vector (w,v) of
length ℓ in the dual lattice ΛE

dual(A) = {(w,v) ∈ Zm × Zn : w ·A ≡ v mod q} ,
the success probability of distinguishing t = ⟨v, s⟩+ ⟨w, e⟩ from random is at
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Algorithm 3: Distinguish between Gaussian and Uniform Distribution
Input: (A,b), M short vectors (w,v)i ∈ ΛE

dual(A) for i ∈ [M ], Ig, pg, pf
Output: Gaussian or Uniform

1 for i ∈ [M ] do
2 ti = ⟨wi,b⟩ mod q;
3 if ti ∈ Ig then yi = 1;
4 else yi = 0;
5 Calculate Y =

∑M
i yi;

6 if Y ≥ 1
2 (pg + pf )M then return Gaussian;

7 else return Uniform;

least p = 1
2 + 2e−2π2τ2

, where τ = ℓσ
q and ℓ = δm0 q

n
m . The success probabil-

ity can be amplified to 1 − 1
2κ by using M = κ

ε2 vectors of the same length
ℓ, where κ is a security parameter. Accordingly, the BKZ algorithm should be
repeated N = ⌈ κ

20.2075β ·ε2 ⌉ times. Then the cost of dual attack is calculated as
T = N · TBKZ.

C Additional proofs

C.1 Proof for Lemma 3

Proof. We first show that N = 1 and SV
20.2075 ≤ M ≤ SV . Note that β is an

integer. In the following analysis, we will assume β is a real number and show that
the optimal β will satisfy M(β) = SV (β) and hence N = 1. Then when β has to
be an integer, we have that the optimal β satisfies N = 1 and SV

20.2075 ≤M ≤ SV ,
as claimed.

Let β∗ be the real number such that M(β∗) = SV (β∗). We consider two
cases when β ≤ β∗ and β ≥ β∗, and show that in both cases the optimal β is β∗.
Since M(β) is decreasing in β and SV (β) is increasing in β, M(β)

SV (β) is decreasing
in β. Then β ≤ β∗ ⇔ M(β)

SV (β) ≥ 1 and β ≥ β∗ ⇔ M(β)
SV (β) ≤ 1.

When β ≥ β∗ and M(β)
SV (β) ≤ 1, we have that N = ⌈ M(β)

SV (β)⌉ = 1 and N ·
TBKZ = TBKZ is increasing in β. Then in this case the optimal β minimizing
N · TBKZ = TBKZ is the minimum β such that β ≥ β∗, i.e., the optimal β is β∗.

When β ≤ β∗ and M(β)
SV (β) ≥ 1, we consider the continuous function f(β)

corresponding to N · TBKZ defined as follows:

f(β) :=
M(β)

SV (β)
· TBKZ(β) =

M(β)

20.2075β
· 20.292β = M(β) · 20.0845β .

We will show that f(β) is decreasing in β. Then in this case the optimal β
minimizing N · TBKZ is the maximum β such that β ≤ β∗, i.e., the optimal β is
β∗.
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Now we show that f(β+1)
f(β) ≤ 1. To ease the analysis, we use the following

approximation for δ0:
δ0 = 2

1
β .[36]

Let m1 and m2 be the optimal number of equations to use for β and β + 1
respectively, we have

f(β + 1) =
κ+ lnL

ε2(β + 1)
· 20.0845(β+1)

=
κ+ lnL

4e
−4π2σ2q

2n
m2+n

q2
2

2(m2+n)
β+1

· 20.0845(β+1)

≤ κ+ lnL

4e
−4π2σ2q

2n
m1+n

q2
2

2(m1+n)
β+1

· 20.0845(β+1)

=
κ+ lnL(

ε2(β)
)2− 2(m1+n)

β(β+1)

· 20.0845(β+1)

= f(β) ·
(
ε2(β)

)1−2
− 2(m1+n)

β(β+1)

· 20.0845

≤ f(β) ·
(
ε2(β)

)1−2
− 2

β

· 20.0845.

The first inequality holds since m2 is the optimal number to minimize ε(β + 1).
The last inequality holds since the BKZ blocksize β should be smaller than the
dimension m1 + n of the dual lattice.

Then our goal is to show that

g(β) :=
(
ε2(β)

)1−2
− 2

β

· 20.0845 ≤ 1

when β > 50 and M(β)
SV (β) ≥ 1. To this end, we give an upper bound for ε2(β).

According to M(β)
SV (β) ≥ 1, we have that M(β) = κ+lnL

ε2(β) ≥ SV (β) = 20.2075β , then

ε2(β) ≤ 2−0.2075β(128 + lnL). (3)

According to M(β)
SV (β) ≥ 1 and Tguess ≤ 250 · TBKZ, we can upper bound L by that

L =
Tguess(β)

M(β)
≤ 250 · TBKZ(β)

SV (β)
= 250+0.0845β .

Then it is easy to verify that for any β > 50,

2−0.0075β(128 + lnL) ≤ 27. (4)

Incorporating Equation 4 to Equation 3, we get the upper bound for ε2(β):

ε2(β) ≤ 2−0.2β+7. (5)
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Incorporating Equation 5 to g(β) we get

g(β) ≤ 2(−0.2β+7)(1−2
− 2

β )+0.0845.

It is easy to verify that the right side is decreasing in β and for any β > 50,

g(β) < 1.

This finish the proof for that the optimal β will satisfy M(β) = SV (β) and
N = 1. For ε2(β) ≤ 2−0.2β+7, note that we have already shown this bound in
the above when assuming M(β)

SV (β) ≥ 1. And we have just showed that the optimal
β will satisfy M(β) = SV (β), so ε2(β) ≤ 2−0.2β+7 is satisfied by the optimal
β.

C.2 Proof for Lemma 5

Proof. For a fixed r, we can find the corresponding optimal β. Then the advan-
tage is ε(r) = 2e−2π2τ2 , where τ = ℓσ

q and ℓ = δm+n−r
0 q

n−r
m+n−r . Once r and β

are fixed, it is easy to verify that the optimal number m of equations to use is
given by

m =

√
(n− r) log q

log δ0
− (n− r)[33]10,

then ℓ = (δ20)

√
(n−r) log q

log δ0 . So the number of samples we need is

F (r) := M(r) =
κ+ lnL(r)

ε2(r)
=

κ+ lnL(r)

4e
−4π2σ2(δ40)

√
(n−r) log q

log δ0

q2

.

To ease the notation, let X(r) = (δ40)

√
(n−r) log q

log δ0 . Notice that

X(r + 1) = X(r)

√
n−r−1
n−r ,

and
ε2(r + 1) = 4e

−4π2σ2X(r+1)

q2 = (ε2(r))X(r)

√
n−r−1
n−r

−1

.

Now
F (r + 1)

F (r)
=

κ+ lnL(r + 1)

κ+ lnL(r)

ε2(r)

ε2(r + 1)

=
κ+ lnL(r + 1)

κ+ lnL(r)

ε2(r)(
ε2(r)

)X(r)

√
n−r−1
n−r

−1

=
κ+ lnL(r + 1)

κ+ lnL(r)

(
ε2(r)

)1−X(r)

√
n−r−1
n−r

−1

.

(6)

10 The formular in [33] is
√

n log q
log δ0

since [33] considers the original dual attack.
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Our goal is to show that F (r) decreases when r increases. It suffices to show
that F (r+1)

F (r) < 1 for any r ≥ 0. We will upper bound κ+lnL(r+1)
κ+lnL(r) and ε2(r), and

lower bound 1−X(r)

√
n−r−1
n−r −1 in Equation 6 by functions that only depend on

β, and then using these upper bounds to show that F (r+1)
F (r) < 1 for any β > 50.

1. Let R ≤ q be the size of the support for each entry of the secret, then

κ+ lnL(r + 1)

κ+ lnL(r)
=

κ+ (r + 1) lnR

κ+ r lnR

≤ κ+ lnR

κ

≤ κ+ ln 20.0845β+0.2075

κ
(Assumption 3)

=
128 + (0.0845β + 0.207) ln 2

128

(7)

2. According to Lemma 3, we can upper bound ε2(r) by that

ε2(r) ≤ 2−0.2β+7 (8)

3. Since m =
√

(n−r) log q
log δ0

− (n− r) ≥ 0,
√

(n−r) log q
log δ0

≥ (n− r). In addition,√
n−r−1
n−r − 1 ≤ − 1

2(n−r) . Combining these two inequalities, we get√
(n− r) log q

log δ0
(

√
n− r − 1

n− r
− 1) ≤ −1

2
.

Then
1−X(r)

√
n−r−1
n−r −1

= 1− (δ40)

√
(n−r) log q

log δ0
(
√

n−r−1
n−r −1)

≥ 1− δ−2
0 .

(9)

Note that δ0 is a function of β.
Now incorporating Equations 7 8 9 into Equation 6, we can upper bound

F (r+1)
F (r) by a function of β:

F (r + 1)

F (r)
≤ f(β) :=

128 + (0.0845β + 0.2075) ln 2

128
(
1

2
)(1−δ−2

0 )(0.2β−7).

It is easy to verify that for any 50 < β < 1990, f(β) < 1. We plot the value of
f(β) for 20 ≤ β ≤ 2000 in Figure 5.

C.3 Proof for Theorem 4

Proof. According to Heuristic 2 and Tguess = TBKZ, we have that the optimal β
and r satisfies that b(r) = b1 + αr, and

Tguess = TBKZ = 20.292·b(r).
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Fig. 5. The value of f(β) for 20 ≤ β ≤ 2000.

Since N = 1,
M = SV = 20.2075·b(r),

then
L =

Tguess
M

= 20.0845·b(r).

The success probability

pc = g(r, L) = g(r, 20.0845·b(r)).

Therefore, we get the cost of the attack

f(r) =
TBKZ ·N + Tguess

pc
=

2TBKZ
pc

=
20.292·b(r)+1

g(r, 20.0845·b(r))
.

C.4 Proof for Theorem 5

Proof. Let Ai be the i-th row vector of A. We show that Ai · S runs in O(L)
time. Then the claim of the theorem follows.

Denote h the maximum number of non-zero entries of all columns of S. We
can partition all columns of S into h+1 subsets S0,S1, . . . ,Sh, where Sk consists
of all columns having k non-zero entries. Since S is closed, all these subsets are
non-empty. Moreover, for any v ∈ Sk, there is a vector v′ ∈ Sk−1 such that
v′ ≺ v. Let j ∈ [r] be the index such that v′

j = 0, vj ̸= 0, and v′
i = vi for all

i ̸= j. Then, the product of ⟨Ai,v⟩ can be easily computed based on the product
of ⟨Ai,v

′⟩ as follows:
⟨Ai,v⟩ = ⟨Ai,v

′⟩+Ai,jvj .

This can be done in constant time. Hence, when we compute the product of Ai

and S, we can compute the product of Ai and the columns of S in the order of
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increased number of non-zero entries. The result for each column in S0 can be
done in constant time, and result for each columns in Sk can also be done in
constant time given the results for all columns in Sk−1. Therefore, the product
of Ai and S can be done in O(L) time.
Remark 5. Note that to ensure the recursive computation in the proof, we need
to maintain a function which given a column v ∈ S outputs a column v′ ∈ S
with v′ ≺ v. We can do this once for all Ai in O(L2) time. Since under the
optimal parameters, we have ML = Tguess = TBKZ = 20.292β and M = 20.2075β ,
so L = 20.0845β < M . Therefore, this additional O(L2) does not influence the
claimed running time.

About the increased storage space, our algorithm need at most O(20.0845β)
bits (recall that L = 20.0845β). At first glance, it seems that our algorithm needs
ML bits to store the resulting matrix AS. However, it is actually not necessary
to store the whole matrix since what we need is the number of entries that are in
(−H,H) for each column of AS (see Algorithm 2). Hence, during our algorithm,
we keep a vector of length L to record this number for all columns. And at each
step when computing AiS, we need to remember at most L numbers to ensure
the recursive approach. Therefore, the actual storage space is O(20.0845β) bits,
which is negligible compared with the exponential storage space (O(20.2075β))
needed for the sieving algorithm.

C.5 Proof for Corollary 1
Proof. For any non-zero candidate vector v ∈ C∗ and any vector v′ ≺ v, we
show that v′ ∈ C∗. According to the definition of C∗, it suffices to show that
the probability that v or v′ is the correct s1 satisfies that p(v′) ≥ p(v).

For B+h with n− r ≥ 2h, assume that the hamming weight of v and v′ are k
and k − 1, respectively. We have that

p(v) =

(
n−r
h−k

)(
n
h

) , and p(v′) =

(
n−r

h−k+1

)(
n
h

) .

Since n− r ≥ 2h, we have p(v′) ≥ p(v).
For B−h with n− r ≥ 3h, assume that v contains k+ of 1 and k− of −1. We

have that

p(v) =

(
n−r
h−k+

)(
n−r−h+k+

h−k−

)(
n
h

)(
n−h
h

) =

(
n−r
h−k−

)(
n−r−h+k−

h−k+

)(
n
h

)(
n−h
h

) .

Since v′ ≺ v, v′ contains one less 1 or one less −1. It’s easy to see that in both
case we have p(v)′ ≥ p(v).

For a central discrete distribution, assume that v contains ki of ±i for i ∈ [t].
We have that

p(v) = pk0
0 pk1

1 · · · k
kt
t .

Since v′ ≺ v, v′ contains one less non-zero entry. Since p0 ≥ pi for all i ∈ [t], we
have that p(v)′ ≥ p(v).

Therefore, for any one of these three distributions, C∗ is closed, and according
to Theorem 5, the multiplication of Â and S∗ can be done in O(M ·L) time.
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D Full comparison results
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