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Abstract
A zk-SNARK is a powerful cryptographic primitive that pro-
vides a succinct and efficiently checkable argument that the
prover has a witness to a public NP statement, without reveal-
ing the witness. However, in their native form, zk-SNARKs
only apply to a secret witness held by a single party. In prac-
tice, a collection of parties often need to prove a statement
where the secret witness is distributed or shared among them.

We implement and experiment with collaborative zk-
SNARKs: proofs over the secrets of multiple, mutually dis-
trusting parties. We construct these by lifting conventional
zk-SNARKs into secure protocols among N provers to jointly
produce a single proof over the distributed witness. We op-
timize the proof generation algorithm in pairing-based zk-
SNARKs so that algebraic techniques for multiparty compu-
tation (MPC) yield efficient proof generation protocols. For
some zk-SNARKs, optimization is more challenging. This
suggests MPC “friendliness” as an additional criterion for
evaluating zk-SNARKs.

We implement three collaborative proofs and evaluate the
concrete cost of proof generation. We find that over a 3Gb/s
link, security against a malicious minority of provers can
be achieved with approximately the same runtime as a single
prover. Security against N−1 malicious provers requires only
a 2× slowdown. This efficiency is unusual since most com-
putations slow down by orders of magnitude when securely
distributed. This efficiency means that most applications that
can tolerate the cost of a single-prover proof should also be
able to tolerate the cost of a collaborative proof.

1 Introduction

Zero-knowledge succinct, non-interactive arguments of
knowledge (zk-SNARKs) [24] are publicly verifiable proofs
that the prover has secret data (a witness) that satisfies a cer-
tain public NP relation. The proof reveals nothing about the
secret data other than its validity. zk-SNARKs have two key
strengths. First, they are very general: there are zk-SNARKs
that can prove any relation expressible as a bounded size
arithmetic circuit. Second, they can be easily verified: proof
size and verification time are sublinear in the amount of se-
cret data (typically kilobytes and tens of milliseconds), and
verification can be performed by anyone. However, there are
two key limitations. First, generating the proof is expensive:
typically thousands of times slower than checking the relation
directly [94, 101, 109, 111]. Second, the secret data must be
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(b) A collaborative zk-SNARK
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Figure 1: Conventional and collaborative zk-SNARKs

held by a single party: generating a proof when the secret data
is distributed among multiple parties is not natively supported.

Being limited to secrets that are held by a single party bars
some applications. We describe some examples in Section 2.

Collaborative zk-SNARKs In this work we generalize zk-
SNARKs to collaborative zk-SNARKs. That is, we generalize
from public proofs about a secret w held by a single party,
to public proofs about a secret w⃗ = (w1, . . . ,wN) distributed
among N parties, where party i has wi, for i ∈ [N], as in Fig. 1.
The proof generation process should reveal nothing new about
w⃗ to a coalition of parties, other than the validity of w⃗.

A natural approach for constructing a collaborative zk-
SNARK is as follows: start from a standard single-prover zk-
SNARK, and run its proof generation algorithm as a secure
multi-party computation (MPC) [51] among the N provers.

Recall that, informally, MPC allows N parties to compute a
public function f : X N → Y over secret inputs x1, . . .xN ∈
X , where party i has xi for all i ∈ [N]. At the end of the
protocol, all parties learn the output y← f (x1, . . .xN), but
learn nothing else about each others’ inputs. MPC protocols
work for any function f that can be expressed as a reasonable
size arithmetic circuit.

By taking the MPC function f to be the circuit represen-
tation of a zk-SNARK proof generator, the provers can use
a generic MPC protocol to jointly generate the desired proof
without revealing anything else about their secret inputs. One
technicality is that proof generation is a randomized algo-
rithm, but this is easily supported by MPC protocols.

Another issue is that any prover can choose not to partic-
ipate in the MPC, thereby preventing the proof from being
generated. Hence, a collaborative zk-SNARK only makes
sense in a setting where all N provers want to jointly generate
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a valid proof. This lets us use a slightly simpler kind of MPC,
called MPC-with-aborts [51], that does not guarantee output
delivery. Regardless, using an MPC protocol to generate a
proof ensures that no matter what a malicious set of provers
does, it learns nothing about the secret data of the honest
provers, other than the validity of the witness tuple w⃗.

As we will see, a direct application of this approach leads to
very poor performance. Generating a standalone zk-SNARK
proof is already computationally expensive. Running this en-
tire process naively through a general purpose MPC protocol
would likely result in unacceptable proving time. In partic-
ular, since MPC protocols and zk-SNARK provers are each
thousands of times slower than their underlying functionality,
their composition is likely to be millions of times slower.

Instead, we show that for some zk-SNARKs, proof genera-
tion lends itself to a very efficient MPC protocol. For these
zk-SNARKs it is quite efficient to generate the proof dis-
tributively, without the provers leaking undesired information
about their secrets to the public or to each other. This sug-
gests MPC “friendliness” of the prover as a new criterion for
evaluating zk-SNARKs. As we will see, some zk-SNARKs
are MPC-friendly, while others are less so.

Our techniques We design optimized multi-prover proto-
cols by using three ideas:
(1) Building on previous and new techniques, we apply MPC

techniques based on secret-sharing directly to elliptic
curves, making secure, distributed curve operations cheap.

(2) By using secret sharing over curve points we streamline
key prover bottlenecks, such as multi-scalar multiplica-
tion, polynomial division, and Fourier transform.

(3) We employ an optimized MPC protocol for comput-
ing sequences of partial products. In particular, for field
elements x1, . . . ,xn we use an efficient MPC protocol
from [5] to compute p j := ∏

j
i=1 xi for all j ∈ {1, . . . ,n}.

Ultimately, we adapt four zk-SNARKs to multiple provers:
Groth16 [68], Plonk [55], Marlin [41], and Fractal [42].

Our results
• First, we formally define collaborative zk-SNARKs (§4).
• Next, we design four collaborative proofs by adapting four

existing zk-SNARK provers into MPC protocols that ex-
ploit the algebraic nature of these provers: (§5):
− Groth16 and Marlin give very efficient protocols.
− Plonk results in a protocol with more communication

between the provers, due to the larger number of multi-
plications during proof generation.

− Fractal can achieve MPC efficiency, but at the expense
of increasing the proof size and verification time by a
factor of N.

This list classifies these zk-SNARKs by their MPC-
friendliness, from most to least friendly. Some of these
constructions depend on a trusted setup.

• We implement our Groth16-, Marlin-, and Plonk-based pro-
tocols. We do so by lifting a single-prover code base called

arkworks [49] and making it support multiple provers. The
key implementation technique is to replace arkworks’ low
level implementation of fields and curves with secret shares
that implement multi-party protocols for these types (§6).

• Finally, we demonstrate the concrete efficiency of our con-
structions. We find that with a 3Gb/s link, protocols secure
against a malicious minority of provers run in essentially
the same time as a single-party proof. Protocols secure
against a malicious majority run in twice the time of a
single-party prover (§7). These results are unusual in that
MPC typically incurs a significant overhead. These results
also show that collaborative proofs are practical.

• Communication costs dominate in low-capacity networks.
We conclude with a conditional Ω(n) lower bound on
the communication needed to build a collaborative proof,
where n is the “size” of the relation.

Publicly auditable MPC Collaborative zk-SNARKs give
an efficient construction for a cryptographic primitive called
publicly auditable MPC (PA-MPC) [8]. A PA-MPC proto-
col is an MPC that also produces a proof by which the pub-
lic can verify that the computation was performed correctly
with respect to commitments to the inputs. Classic PA-MPC
constructions [8] have linear size proofs. Collaborative zk-
SNARKs yield PA-MPC with constant size proofs. We discuss
this further in Sections 2 and 4.1. Concurrent work [77] builds
on a similar idea.

2 Example applications

Collaborative zk-SNARKs come up naturally in many set-
tings, both for real world applications and for conceptual ones.
In this section we briefly survey a number of situations where
they are needed.

(1) Healthcare statistics Healthcare providers provide ser-
vices (medication, operations, etc.) to millions of patients
every day. Their actions concern the intimate details of indi-
viduals’ well-being and must not be publicly revealed. Yet,
the public benefits from understanding costs in the healthcare
system, in aggregate. For example, a recent investigation re-
vealed that many hospitals routinely charge uninsured patients
the highest rates [52].

The challenge is to compute aggregate statistics over sen-
sitive data in a fashion that certifies the accuracy of the ag-
gregates, despite the participants’ incentives to omit data or
mis-aggregate. This problem is not unique to healthcare; it
also arises for criminal justice statistics [53].

Collaborative proofs yield a clean solution. First, every
healthcare provider publishes a short Merkle commitment to
the list of services that it provided. Second, regulators can
request aggregate statistics over the set of services provided
by all healthcare providers. The requested statistic is defined
by an arithmetic circuit that computes the statistic. Third,
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providers can compute the aggregate statistic via an MPC
among the providers, and publish a collaborative proof that
the claimed result is consistent with all of their local com-
mitments. This protects both the privacy of patient data and
ensures the integrity of the aggregate.

The Merkle commitments to the underlying data are crucial
for integrity. If at a later time there is a dispute over the
accuracy of the aggregate statistic, a forensics investigator can
request the providers to open their local Merkle commitments.
A provider that committed to incorrect data will immediately
be caught and penalized, and this provides a strong incentive
for providers to commit to accurate data (refusing to open a
commitment could similarly carry a penalty). Patients are also
incentivized to check (via a Merkle proof) that the provider
accurately committed to the service they received.

Overall, the collaborative proof that the computed aggre-
gate is consistent with the committed data ensures accuracy
of the aggregate while maintaining data privacy.

(2) Computing credit scores The three US credit bureaus
collect financial information from many institutions and use
that data to compute a credit score for all US individuals.
Credit scores are used to make credit related decisions such
as who gets a loan. When a credit bureau is hacked [48],
everyone’s information is exposed.

Collaborative proofs provide a very different solution for
computing credit scores. Let A1, . . . ,AN be N institutions
whose data is used to compute a person’s credit score. Each
Ai could publish a short Merkle commitment to the entirety
of its local dataset. When Alice needs her credit score, the N
institutions engage in an MPC to compute her score based
on their local data, and collaboratively construct a proof that
the score is consistent with the public commitments. Alice is
given her score s and the short collaborative proof π. She can
present (s,π) to a lender, who can validate π with respect to
the public commitments to ensure that Alice’s score is correct.

Ai’s commitment to its local data ensures that if there is
a dispute over Alice’s credit score, her leaves of the Merkle
commitment can be opened. If an incorrect credit score is
computed, there is enough information to identify the cause.
This is a more satisfying guarantee than simply asking the
institutions to certify the computed credit score by signing it.

An example. Consider a lender that is reviewing a loan appli-
cation. The lender wants to know the sum of the applicant’s
credits and debits with the banks where the applicant has an
account. The applicant could request a collaborative proof
from its banks to prove that the difference between its debits
(assets) and its credits (debts) is larger than some threshold T .
In Section 7 we evaluate the time required to build this proof.

(3) Private audits of multiple parties The global financial
system can be modeled as a transaction graph: every account
is a node, and there is an edge from u to v if account u issued
a payment to account v. Financial regulators often need to
answer the following question: did account u at Bank A pay

account v at Bank B, either directly or via intermediate ac-
counts? If the entire graph were stored at a single location
this would be easy to answer: the entity that holds the graph
could commit to the graph and provide a succinct proof that
there is no chain of transactions u→ a1→ ··· → aℓ→ v.

In reality, the transaction graph is distributed and siloed
across a number of institutions. Each financial institution only
sees the portion of the graph that touches accounts under its
control. Yet, the regulator needs an answer to questions about
the entire graph. Previous work applies MPC techniques to
this problem [35, 89, 99], but the results are not verifiable by
a third party (i.e., the regulator or the public).

Collaborative proofs provide a clean solution. First, every
bank commits to its local view of the graph. They then collab-
oratively generate a succinct proof that there is no path from u
to v in the union of their graphs. More generally, this applies
to any query about the global graph that can be computed
using an arithmetic circuit of reasonable size. The banks can
collaboratively compute an answer to the query, along with a
proof that the answer is consistent with each bank’s commit-
ment to its local view of the graph. In case of a later dispute,
the commitments can be opened to identify who is at fault.

Publicly auditable MPC The three applications above are
special cases of publicly auditable MPC (PA-MPC) [8]: a gen-
eral primitive that extends secure MPC to produce a proof that
can be independently checked to verify that the computation
was performed correctly. The auditor need not participate in
this computation, yet it can still check that the claimed output
is consistent with commitments to the inputs.

We will see in Section 4.1 that collaborative proofs yield
a PA-MPC with proof size and verification time sublinear in
the circuit size.

Reducing the number of parties Some of the applications
in this section could involve many online parties, and the re-
sulting MPC can be expensive in communication (§7). How-
ever, by having each data provider secret share their data
among a small set of non-colluding servers, we can make
the cost independent of the number of data providers. Fur-
thermore, only the small set of non-colluding servers need
to be simultaneously online. A similar approach has been
successfully used in real-world MPC-based auctions [27].

3 Background

Let Fp denote the finite field of integers mod p, a prime. We
omit p when unambiguous. Let G be an additive cyclic group
of prime order q, group operation +, inverse operation −,
identity 0, and generator g.

Let G1, G2, and GT be cyclic groups of prime order q with
generators g1 ∈ G1 and g2 ∈ G2. Let e : G1×G2→ GT be
an efficiently computable and non-degenerate pairing, so that

e(α ·h1, β ·h2) = αβ · e(h1,h2)
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for all α,β in Fq and all h1 ∈G1 and h2 ∈G2.

3.1 Multi-party computation
Let f : X N → Y be a function and let P1, . . . ,PN be N par-
ties such that Pi has input xi ∈ X . A multi-party computation
(MPC) for f is a protocol Π among the parties which com-
putes and reveals y := f (x1, . . . ,xN). Informally, Π is secure
if it reveals nothing except y, and it requires malicious parties
to chose their inputs independently from the honest parties.
In more detail, Π is secure against t dishonest parties if for
every efficient adversary A corrupting t parties, there is an
efficient simulator S which can produce a protocol transcript
from the output and the inputs of those t parties, that is indis-
tinguishable from the view of those parties in a real protocol
execution.1 We refer the reader to [84] for the complete defi-
nition.

Many protocols are secure with one caveat: aborts. An
adversary can cause the protocol to abort and deny the output
to all honest parties. This security model is called security-
with-aborts and it is sufficient in our setting. Many protocols
achieve security-with-abort (or better) assuming an honest
majority of parties [10, 11, 21, 23, 28, 31, 32, 40, 45, 46, 56,
57, 59, 64, 66, 85, 92, 97] or even in the presence of a single
honest party [47, 60, 75, 83, 86, 87, 88, 91]. The latter is
called the dishonest majority setting.

Arithmetic circuit MPC We build on MPC protocols that
can securely compute any function defined as a bounded size
arithmetic circuit. An arithmetic circuit is a directed acyclic
graph of gates and wires. Wires carry values in a finite field F
(e.g., Fp). Input wires can be public, or private to a single
party. Gates take two inputs and perform multiplication or
addition in F. Certain wires are designated as outputs.

The two protocols we build on—SPDZ [47] and GSZ [66]—
are based on secret sharing. They evaluate the circuit by rep-
resenting each wire’s value using a k-out-of-N secret-sharing:
N tokens distributed among the parties such that no k− 1
tokens reveal the true value, but any k tokens do. We use [y]
to denote that y is shared using a secret sharing scheme.

• SPDZ [47] uses additive secret sharing where y ∈ F is
represented by random shares y1, . . . ,yN that sum to y.
All N shares are required to recover y.

• GSZ [46, 66] uses Shamir secret sharing [102] where
y ∈ F is shared among N parties as y1, . . . ,yN such that
the points (1,y1), . . . ,(N,yN) lie on a polynomial p(X)
of degree at most d, with p(0) = y. Any d + 1 points
suffice to reconstruct the polynomial and y.

SPDZ [47] is a dishonest majority protocol. GSZ [66] is
representative of a new generation of state-of-the-art honest
majority protocols [23, 28, 31, 32, 64, 66].

1This defines MPC that is computationally—rather than information-
theoretically—secure. Computational MPC is more efficient.

3.2 zk-SNARKs

Informally, a proof for a relation R is a protocol between a
prover P and an efficient verifier V by which P convinces V
that ∃w : R(x,w) = 1, where x is a called an instance, and w
a witness for x. If the proof comprises a single message from
P to V , it is said to be non-interactive and has syntax:
• Setup(1λ,R)→ pp: setup public parameters for R.
• Prove(pp,x,w)→ π/⊥: if (x,w) ∈ R, output a proof π,

otherwise ⊥.
• Verify(pp,x,π)→{0,1}: check a proof.
Generally, proofs support a class of relations (e.g., bounded
size arithmetic circuits). The supported class must also define
the size of a relation—denoted |R|—the time needed to eval-
uate it (e.g., the number of gates in the circuit). In the next
subsection we discuss common classes of relations.

A zk-SNARK is a proof with the following properties [24]:
• Completeness: If R(x,w) = 1, then an honest P convinces

V except with negligible probability. If R(x,w) = 0, Prove
outputs ⊥.

• Zero knowledge: Informally, the triple (pp,x,π) reveals
nothing about the witness w.

• Knowledge soundness: Informally, for every P ⋆ there ex-
ists an efficient algorithm, called an extractor, such that
whenever P ⋆ convinces V to output 1, the extractor can
use P ⋆ to output w such that R(x,w) = 1 [13].

• Succinctness: proof size and verification time are o(|R|).
When soundness is computational, the protocol is called an
argument, and referred to as a (z)ero-(k)nowledge (S)uccinct
(N)on-interactive (AR)gument of (K)nowledge

R1CS format Different zk-SNARKs represent the rela-
tion R in different ways: binary arithmetic circuits [55],
quadratic arithmetic programs [94, 100], AIR [15], low-
depth circuits [26, 43, 61, 104, 107, 108, 110, 113, 114]
and more [19, 20, 58, 94]. We focus on proofs for rank-1
constraint systems (R1CS); these generalize arithmetic cir-
cuits, and are the interface to many state-of-the-art proof sys-
tems [17, 41, 68, 69].

For R1CS, x is represented as x ∈ Fℓ, w is represented as
w ∈ Fm−ℓ, and the relation itself is defined by three matrices:
A,B,C ∈ Fn×m such that (Aa)◦ (Ba) =Ca where a := x∥w
and ◦ is the Hadamard (element-wise) product. This a is
said to be a satisfying assignment for the R1CS relation
(n, ℓ,m,A,B,C). The matrices are assumed to have only Θ(n)
non-zero entries, and |R| is defined to be n.

The R1CS formalism introduces an additional challenge:
each relation R must be compiled to an R1CS relation
R := (n, ℓ,m,A,B,C). Additionally, the compiler produces
a witness extension procedure Extend that maps any satisfy-
ing (x,w) ∈R to a satisfying assignment a ∈ Fm for R. Thus,
when writing a proof, the prover P operates in two steps:
(1) P extends the pair (x,w) to a satisfying assignment a∈Fm

for the R1CS relation R,
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Definition 1. Collaborative zk-SNARK for a relation R, secure against t malicious provers:
Let p(λ) be a polynomial bound on the collaborative proof’s total communication, and U(λ) be the set of functions from
{0,1}≤p(λ) to {0,1}λ. In the random oracle model, a collaborative zk-SNARK for a relation R that is secure against t
malicious provers is a collaborative proof (Setup,Π,Verify) with the following properties:
• Completeness: For all (x, w⃗) ∈R, the following is negligible:

Pr

VerifyH(pp,x,π) = 0 :
H←$ U(λ)

pp← SetupH(1λ,R)
π←ΠH(pp,x, w⃗)


• Knowledge soundness: For all x, for all sets of efficient algorithms P⃗ = (P ∗1 , . . . ,P ∗N ), there exists an efficient extractor

Ext with

Pr

(x, w⃗) ∈R :
H←$ U(λ)

pp← SetupH(1λ,R)

w⃗← ExtH ,⃗P H
(pp,x)

≥ Pr

VerifyH(pp,x,π) = 1 :
H←$ U(λ)

pp← SetupH(1λ,R)

π← P⃗ H(pp,x)

− ε

for negligible ε. Here, ExtH ,⃗P H
denotes that Ext has oracle access to H and may re-run the collection of provers P⃗ (pp,x),

reprogramming the random oracle H each time, and receiving only the final output produced by P⃗ .

• Succinctness: Proof size and verification time are o(|R|).
• t-zero-knowledge: For all efficient A controlling k ≤ t provers: Pi1 , . . . ,Pik , there exists an efficient simulator Sim such

that for all x, w⃗, and for all efficient distinguishers D,∣∣∣∣∣∣∣∣Pr

DH[µ](tr) = 1 :

H←$ U(λ)

pp← SetupH(1λ,R)
b←R(x, w⃗) ∈ {0,1}
(tr,µ)← SimH(pp,x,wi1 , . . . ,wik ,b)

−Pr

DH(tr) = 1 :
H←$ U(λ)

pp← SetupH(1λ,R)
tr← ViewH

A [x, w⃗]


∣∣∣∣∣∣∣∣

is negligible, where tr is a transcript, ViewH
A [x, w⃗] denotes the view of A when provers P1, . . . ,PN interact with input x

and witnesses w⃗ (the honest provers follow Π, but dishonest ones may not), µ is a partial function from the domain of H,
and H[µ] maps x to µ(x) if it x ∈ Domain(µ) and H(x) otherwise. Thus, H[µ] is the random oracle H after it has been
re-programmed by Sim at a few points.

(2) P builds an argument of knowledge for a satisfying as-
signment for the R1CS relation R with respect to x.

The first step is relation-specific, non-cryptographic, and typi-
cally inexpensive. The second step is relation-generic, crypto-
graphic, and typically the bottleneck. Thus, most proof sys-
tems research focuses on the second step, as do we.

4 Collaborative zk-SNARKs

A non-interactive collaborative proof for N provers and a
relation R(x,w1, . . . ,wN) is a tuple (Setup,Π,Verify):
• Setup(1λ,R)→ pp: setup public parameters.
• Π(pp,x,w1, . . . ,wN)→ π: a protocol for N provers with

private inputs w1 through wN that produces a proof.
• Verify(pp,x,π)→{0,1}: check the proof.
This primitive is non-interactive in the verification phase: the
verifier does not send messages to the provers. Informally, a
collaborative proof is secure if it has the following properties:

• completeness: Honest provers with a valid witness produce
a valid proof.

• t-zero-knowledge: Up to t colluding dishonest provers learn
nothing about the witnesses of other provers through Π,
other that the validity of the entire witness.

• succinctness: Proof size and verification are o(|R|).
• knowledge soundness: Only provers that “know” a valid

witness can build a valid proof. That is, a valid witness can
be efficiently “extracted” given “rewind” access to provers
that can build a valid proof.

Definition 1 states security formally, building on prior zk-
SNARK security definitions [18]. Since soundness only holds
against efficient provers, the protocol is a non-interactive col-
laborative argument. Regardless, we (informally) refer to it
as a “proof” elsewhere in this work.

Importantly, some of the properties in Definition 1 differ
from their zk-SNARK analogs. The single-prover definition
of zero knowledge requires that the proof π for any (x,w)∈R
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can be simulated without w. The restriction to valid witnesses
is acceptable because an honest prover would never write
a proof with an invalid witness. However, for collaborative
proofs, each prover controls only a part of the witness, so
no single prover can guarantee that (x, w⃗) ∈ R. Moreover,
prover i can choose wi arbitrarily, and then learn if the re-
sulting combined witness w satisfies (x, w⃗) ∈R. This is un-
avoidable, and reveals to prover i some information about
the witnesses held by the other provers. We model this by
explicitly providing the validity of the witness, denoted by
b←R(x, w⃗) ∈ {0,1}, to the simulator.

In sum, the zero-knowledge property applies to all wit-
nesses, for up to t malicious provers, and guarantees that only
the validity of the witness is revealed.

Knowledge soundness has two subtleties. First, the extrac-
tor can program the oracle accessed by all provers participat-
ing in Π. Second, knowledge soundness establishes only that
the provers have distributed knowledge of the N witnesses.
That is, it proves that if they pooled their information, they
could determine the N witnesses.2 It does not prove that Pi
knows wi. This limitation is intrinsic to the non-interactive
syntax of the proof, which obscures from V the number of
provers participating in the protocol. In some cases, the re-
striction might be partially circumvented by having R itself
establish knowledge of secrets believed (for reasons external
to the proof) to be in the custody of different entities.

Theorem 1. If (Setup,Prove,Verify) is a zk-SNARK, and Π

is an MPC for Prove that is secure-with-abort against up
to t corruptions, then (Setup,Π,Verify) is a collaborative
zk-SNARK secure against t malicious provers.

Proof sketch Completeness follows from the completeness of
the zk-SNARK and the correctness of Π as an MPC. Knowl-
edge soundness follows directly from the knowledge sound-
ness of the zk-SNARK: from the perspective of an extractor,
properties that hold for a malicious prover also hold for a
malicious collection of provers. Succinctness follows from
the succinctness of the zk-SNARK. Security-with-abort is
sufficient for Π because the collaborative proof completeness
definition does not cover malicious provers.

Zero-knowledge follows from the zero-knowledge of the
zk-SNARK and the security of Π. In the case that b = 1 (the
witness is valid), then the SNARK’s zero-knowledge implies
that π can be simulated from x. Then, the security of Π implies
that the adversary’s view can be simulated from π and the
witnesses of the corrupted provers. If b = 0 (the witness is
invalid), then the security of Π implies that adversary’s view
can be directly simulated from the witnesses of corrupted
provers and ⊥.

Collaborative proofs for R1CS In this work, we consider
non-interactive collaborative arguments for secret-shared
R1CS witnesses. That is, we consider an R1CS instance x

2This is the Halpern and Moses definition of distributed knowledge [70].

R

w⃗

x

Compiler

Πext

R

[w]

x

SetupR1CS

pp

ΠR1CS

π

Figure 2: The role of compilation and extension when using
a collaborative zk-SNARK for R1CS. First, the relation R is
compiled to an R1CS relation R and a protocol Πext. Given
(x, w⃗) ∈R, the provers engage in Πext to yield x and [w] such
that x∥w satisfies R.

and provers P1, . . . ,PN which hold shares [w] of an R1CS
witness w, such that x∥w is a satisfying assignment for an
R1CS relation R. As in a single prover SNARK for R1CS, this
approach requires a compiler to R1CS which also produces
an extension protocol that maps the input and witness for R
to shares of the complete R1CS witness. Figure 2 shows the
use of the compiler and extension protocol.

4.1 PA-MPC from collaborative proofs
Publicly-auditable MPC [8] (PA-MPC) extends MPC with a
publicly-verifiable proof that the output of the MPC is cor-
rect with respect to commitments to each party’s inputs. In
Appendix D we define PA-MPC formally, and show that col-
laborative proofs can be used to construct a PA-MPC protocol.
Specifically, we show how a suitable MPC protocol, a com-
mitment scheme, and a collaborative proof give a PA-MPC
protocol. The derived PA-MPC protocol outputs proofs whose
size is about the same as those output by the collaborative
proof. In particular, if the collaborative proof scheme out-
puts constant size proofs, then so does the derived PA-MPC
protocol. This is a dramatic improvement over the classic
construction [8] (where proof size and verification time are
linear in the size of the evaluated circuit) and it is competitive
with recent [106] and concurrent [77] work.

5 Design: efficient MPC for SNARK provers

5.1 Review: two algebraic MPC protocols
We extend two secure MPC protocols for arithmetic circuit
evaluation. The first, GSZ (§5.1), is secure if a majority of par-
ties are honest. The second, SPDZ (§5.1), is secure if at least
one party is honest. We choose these two protocols because
they are simple, efficient, and extend naturally to elliptic curve
computations (§5.2). SPDZ [47] is a dishonest majority pro-
tocol. GSZ [66] is representative of a new generation of state-
of-the-art honest majority protocols [23, 28, 31, 32, 64, 66].

We first describe important features of both protocols. Then
in Section 5.2, we discuss how to generalize these protocols
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to circuits over elliptic curve points and their scalars.

Honest majority MPC using GSZ The first protocol, GSZ
was developed in [66], and based on [28, 46, 57]. The protocol
builds on Shamir secret-sharing. It evaluates an arithmetic cir-
cuit one gate at a time. Shamir shares can be added, shifted by
public values, and scaled by public values using a single field
operation and no communication between parties. Shares can
be multiplied with an interactive protocol [46]. This protocol
is not secure against malicious behavior [57], so all multi-
plication triples ([x], [y], [z]) corresponding to wire values of
multiplication gates in the circuit, must be saved and checked
for consistency, namely xy = z, before any share is opened.
The multiplication checking protocol requires communication
sub-linear in the number of triples [66].

Dishonest majority MPC using SPDZ The SPDZ pro-
tocol [47] uses additive sharing. Similar to Shamir shares,
additive shares can be added, shifted by public values, or
scaled by public values with at most one field operation and
with no communication between parties. Multiplying shares
requires an interactive protocol. SPDZ does not need to check
multiplication triples because it maintains a shared message
authentication code (MAC) [∆x] for each shared value [x]
(∆∈F, the MAC key, is unknown to all). Together, a share and
its MAC form an authenticated share. The opening protocol
for authenticated shares assures the integrity of the revealed
value. However, since each operation on an authenticated
share changes the MAC, the operation takes twice as long.

Both GSZ and SPDZ are typically split into a preprocessing
phase (which can run before the circuit inputs are known) and
an online phase (which runs after the inputs are known). We
briefly discuss the relative costs of these phases in Section 7.

5.2 MPC using elliptic curve secret sharing
While SPDZ and GSZ natively support arithmetic over a fi-
nite field, the zk-SNARKs we consider perform many elliptic
curve group operations, such as curve additions and multipli-
cations by scalars.

Since elliptic curve operations decompose into operations
over the curve’s base field, there is an obvious way to perform
them in an MPC. Unfortunately, this naive approach is very
expensive: curve additions require tens of field operations,
and scalar products require thousands. Furthermore, curve
additions require multiple field multiplications, so even curve
additions require rounds of communication.

Fortunately there is a better way: both the SPDZ and GSZ
protocols can be adapted to operate directly on elliptic curves,
where all secret sharing is done over the elliptic curve.

An elliptic curve circuit (Fig. 3) is a generalization of an
arithmetic circuit over Fq, adding support for computations
over an elliptic curve group G, with order q. In an elliptic
curve circuit, wires can hold elliptic curve points from G or

x ∈ F

y ∈ F

P ∈G

×
×

+

Figure 3: An elliptic curve circuit. The sub-circuit drawn
with solid lines is an arithmetic circuit; the dashed extension
includes curve operations

.

scalars from Fq and the gate set is extended to include curve
addition and the multiplication of curve points by scalars. The
multiplication of two curve points is prohibited.

Prior work shows that SPDZ generalizes to elliptic curve
circuits [103]; we observe that GSZ does too. To start, observe
that Shamir secret sharing can be used to share an elliptic
curve point: the N shares are themselves elliptic curve points,
and the secret is reconstructed by a weighted linear combi-
nation of sufficiently many shares. In Appendix A, we show
how to apply GSZ’s sub-protocols—those for computing [46]
and checking [66] field products—to scalar-curve products.3

5.3 Commitments to shared polynomials

SNARK provers have many components. In this section and
the next we show efficient MPC protocols for the core building
blocks needed to generate a SNARK proof. We begin with an
MPC protocol for a polynomial commitment scheme.

Polynomial commitments are a primitive—and bottleneck—
in many recent SNARKs. SNARKs are built from polynomial
commitments using the polynomial interactive oracle proof
(P-IOP) paradigm [37, 41]. In a P-IOP, P ’s messages to V
are oracles to polynomials which V accesses by querying
for the outputs at various inputs. The polynomials are en-
codings of the SNARK witness, and V checks the SNARK
relation using the results of its queries. To compile a P-IOP
to a standard protocol, a polynomial commitment scheme is
used to implement the oracles. For each oracle, P sends V a
commitment to the underlying polynomial. For each query,
V sends the input, P sends the output, and P and V engage
in an evaluation protocol to validate the claimed evaluation.
Informally, the evaluation protocol forces P to answer queries
consistently with the underlying polynomial, so the compiled
protocol is equivalent to the P-IOP.

A polynomial commit scheme is a tuple (PC.Setup,
PC.Commit,PC.Eval) where

3Generalizing SPDZ and GSZ to elliptic curves suffices for implementing
SNARK provers, but the protocols can do even more: they apply to any
bilinear operation, e.g., pairings and polynomial products.
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• PC.Setup(d)→ pp: prepares public parameters supporting
polynomials of degree up to d.

• PC.Commit(pp, f ,r)→ c: computes a commitment c to
an input polynomial f , using randomness r.

• PC.Eval(pp,x,y,c; f ,r)→{0,1}: a protocol where P con-
vinces V that c commits to an f such that f (x) = y. Only
P knows f and r.
Prior work [37, 41] gives the security properties that a

polynomial commitment must satisfy for the compiled P-IOP
to be secure.

For a collaborative proof, the polynomial f is shared since it
encodes the witness. However, the commitment to f , and var-
ious polynomial evaluations that are part of the proof are pub-
lic. Hence, our goal is to generalize PC.Commit and PC.Eval
to efficiently operate on a shared polynomial.

KZG commitments The KZG polynomial commit-
ment [78] is among the most efficient known schemes and in
particular has the smallest evaluation proofs. It is defined by
four algorithms:

• PC.Setup(d): sample α
$←− F; output

pp← (α ·g1, . . . , α
d ·g1, α ·g2)

• PC.Commit(pp, f ): output c = f (α) ·g1,
computed as c← ∑

d
i=0 fi · (αi ·g1)

• PC.Prove(pp, f ,x): compute the remainder and quotient

q(X),r(X)←
(

f (X)− f (x)
)
/(X− x);

output π = q(α) · g1, computed as π← ∑
d
i=0 qi · (αi · g1);

the remainder r(X) must be zero.

• PC.Check(pp,c,x,y,π): accept if the following pairing
equation holds:

e(π, α ·g2− x ·g2) = e(c− y ·g1, g2)

Here, PC.Setup samples a trapdoor α, which must be dis-
carded for security; for this reason the procedure is called
a trusted setup. Together, PC.Prove and PC.Check form
the evaluation protocol for the scheme. At a high level, the
scheme’s security follows from the fact that X − x divides
f (X)− y if and only if f (x) = y. See [41, 54, 78] for security
proofs and extensions of the scheme.

Generalizing KZG to multiple provers We now adapt
KZG to polynomials shared among multiple provers.

How can PC.Commit and PC.Prove be implemented for
a secret shared f ? First, let [ f ] be represented as a list of
shared coefficients: [ f0], [ f1], . . . , [ fd ]. Let f (i)0 , f (i)1 , . . . f (i)d de-
note Pi’s shares of those coefficients, defining a polyno-
mial f (i), known only to Pi. When using a linear sharing
scheme [12] (including the additive and Shamir schemes we
use) the provers can correctly create shares of commitments

to (respectively, proofs for) f by locally committing to (re-
spectively, proving evaluations for) their individual f (i) and
interpreting the results as shares of the desired commitment
(respectively, proof). More explicitly, Figure 4 holds our multi-
party commitment and proving protocols: PC.Commit′ and
PC.Prove′.

Let us show that PC.Prove′ is correct; Appendix C shows
security and that PC.Commit′ is correct and secure. We ar-
gue generically over a linear secret sharing scheme [12]. A
linear secret sharing scheme has linear reconstruction: for
any sufficient subset of parties there is a linear combination
of their shares that reconstructs the value. Let γ⃗ ∈ FN encode
this linear combination, that is, for any value v with shares
v(i), v = ∑

N
i=1 γiv(i).

We begin with a lemma about the division in PC.Prove′

from Figure 4b.

Lemma 2. For any shared polynomial [ f (X)] and public

polynomial d(X), if each party Pi computes q(i),r(i)← f (i)
d ,

then q(i) and r(i) are shares of q and r such that (q,r) = f
d .

Proof. Per each party’s euclidean division, we have that q(i) ·
d + r(i) = f (i). Summing the equations—scaled by the γi—
yields: (

N

∑
i=1

γiq(i)
)
·d +

(
N

∑
i=1

γir(i)
)

=
N

∑
i=1

γi f (i) = f

Since each r(i) has degree less than d, their scaled sum does
too, so ∑

N
i=1 γiq(i) and ∑

N
i=1 γir(i) are a quotient-remainder pair

for f divided by d. Since polynomial division is unique, these
sums must be equal to q and r respectively.

Claim 3. PC.Prove′ is correct, that is PC.Prove(pp, f ,x) =
PC.Prove′(pp, [ f ],x).

Proof. It suffices to show that ∑
N
i=1 γiπ

(i) is equal to
PC.Prove(pp, f ,x). By Lemma 2, we have that for the q(i)

that each Pi computes, ∑i γiq(i) = q. Then we have that
∑

N
i=1 γiπ

(i) is just ∑
N
i=1 ∑

d
j=1 γiq

(i)
j ·α j ·g1. Swapping the order

of the sum and simplifiying yields ∑
d
j=1 ∑

N
i=1 γiq

(i)
j ·α j ·g1 =

∑
d
j=1 γiq(i)(α) ·g1 = q(α) ·g1 = PC.Prove(pp, f ,x).

These simple and efficient protocols for commitments to
shared polynomials are encouraging: the bottleneck in many
SNARKs incurs little overhead in the multi-prover setting.
In the next section we’ll see that many other key SNARK
operations have similarly efficient protocols.

5.4 Optimizing SNARK provers for MPC
In this subsection we discuss techniques for optimizing four
SNARKs: Groth16 [68], Marlin [41], Plonk [55], and Frac-
tal [42] to multiple-provers. Marlin and Plonk are defined
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procedure PC.Commit′(pp, [ f ])→ c:
each party i:

c(i)← ∑
d
j=0 f (i)j · (α j ·g1)

interpret c(i) as a share of [c]
output [c]

(a) Commitments

procedure PC.Prove′(pp, [ f ],x)→ π:
each party i:

q(i),r(i)← f (i)/(X− x) (compute quotient and remainder)
π(i)← ∑

d
j=0 q(i)j · (α j ·g1)

interpret π(i) as a share of [π]
output [π]

(b) Evaluation proofs

Figure 4: KZG [78] procedures for shared polynomials

SNARK FFT MSM Poly. Division Vector Commit. Sum-Check Product-Check

Groth16 [68] ✓ ✓ ✓
Marlin [41] ✓ ✓ ✓ ✓
Plonk [55] ✓ ✓ ✓ ✓
Fractal [42] ✓ ✓ ✓

Figure 5: Key components of SNARKs

generically over a polynomial commitment scheme. We in-
stantiate them with the KZG-derived scheme from [41],
adapted per the previous subsection. Here, we focus on other
potential bottlenecks, especially those common to multiple
provers. Figure 5 shows the operations we consider and the
SNARKs they appear in.

Traditional bottlenecks: FFTs and MSMs Fast fourier
transforms (FFTs) and multi-scalar multiplications (MSMs)
are bottlenecks for most SNARK provers. MSMs are com-
putations of the form ∑i γi ·gi for scalars γi and curve points
gi; informally, provers use them to “commit” to the scalars γi.
The fourier transform computes a matrix-vector product Mx⃗,
where M is derived from a root of unity ω. Provers use FFTs
to convert between the coefficient- and evaluation-forms of
polynomials.

Both the FFT and MSM are linear operators in the scalars γi
and the vector x⃗ respectively. Thus, if other inputs (the curve
points gi and the root of unity ω) are public information (as
they are in SNARKs) and a linear sharing scheme is used,
each operator can be applied directly to each party’s input
shares, yielding shares of the output. Thus, FFTs and MSMs
in a multi-prover SNARK reduce to performing the opera-
tion share-wise, with no communication required. Share-wise
computation is cheap in an MPC: identical to the base cost
for Shamir shares and twice that for authenticated shares.

We now discuss other operations that are not traditional
bottlenecks, but might become bottlenecks in the multi-prover
setting.

Polynomial division All provers do large polynomial di-
visions: a complex and non-linear operation that might have
high cost in an MPC. However, most SNARKs (including
those we consider) only divide by witness-independent—
and therefore public—polynomials. The KZG scheme is

one example—the divisor is X − x, for public x. Elsewhere,
provers divide by far larger polynomials, but these polyno-
mials are still public, admitting—as shown Section 5.3—a
simple protocol.

Sum- and product-checks Two of the proof systems listed,
Plonk and Marlin, combine the aforementioned components
with two different but related proof primitives: Marlin re-
lies on SUMCHECK while Plonk relies on PRODCHECK. To
explain these primitives, let c f be a commitment to a poly-
nomial f ∈ Fp[X ], let Ω := {1,ω,ω2, . . .ωn−1} be a subset
of Fp, and let c ∈ Fp. Then SUMCHECK and PRODCHECK
are sub-SNARKs for the relations R+ and R× respectively,
where
• R+

(
c f ,c; f

)
holds when ∑x∈Ω f (x) = c and c f is a com-

mitment to f ;
• R×

(
c f ,c; f

)
holds when ∏x∈Ω f (x) = c and c f is a com-

mitment to f .
The SUMCHECK SNARK is described in [41] while the
PRODCHECK SNARK is described in [55]. An MPC imple-
mentation of Plonk and Marlin requires proving SUMCHECK
and PRODCHECK for shared polynomials.

Adapting the SUMCHECK prover to a shared [ f ] is fairly di-
rect. In SUMCHECK, the prover commits to f ′(X)← ( f (X)−
c/|Ω|)/X , and the verifier checks that f = X · f ′+c/|Ω|. The
coefficients of f ′ are just coefficients of f , so the only work
happens inside the polynomial commitment.

PRODCHECK poses a greater challenge. Its prover first
computes all partial products

ti :=
i

∏
j=0

f (ω j) for i = 0, . . . ,n−1. (1)

At first glance, one might expect that that an MPC for
the PRODCHECK prover would be very costly. Indeed, the
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distributed prover has to compute a sharing of the n partial
products in (1), which naively takes n−1 rounds.

We show that an MPC for the PRODCHECK prover can
actually be implemented in a constant number of rounds. To
do so, we use a technique due to Bar-Ilan and Beaver [5] to
compute all partial products in a constant number of rounds:
(1) The provers generate shared values [r0],

[
r−1

0

]
, [r1],

[
r−1

1

]
,

. . . , [rn],
[
r−1

n
]

for random r0,r1, . . . ,rn in Fp.
(2) The provers use a multiplication protocol to compute

and open the quantities
[
ri−1tir−1

i
]

for i ∈ {1, . . . ,n}. Let
t ′1, . . . , t

′
n ∈ Fp be the resulting public quantities.

(3) Use n multiplications in parallel to compute [ti] =
(∏i

j=1 t ′j) ·
[
r−1

0 · ri
]

for i ∈ {1, . . . ,n}.
The end result is all the partial products needed to run the
PRODCHECK prover. The remainder of computing the PROD-
CHECK proof can be adapted to an MPC with previously
discussed techniques.

Vector commitments and hashing Fractal, like Marlin and
Plonk, can be viewed as a P-IOP, but with a very different kind
of polynomial commitment. Rather than using the pairing-
based KZG scheme, the prover commits to a vector of poly-
nomial evaluations (over an enormous domain) using a vector
commitment, which can be opened to any index. Then, P and
V use a low-degree test to establish that most elements in
the vector are consistent with a low-degree polynomial. Then,
future polynomial evaluation queries reduce to vector com-
mitment index openings. By using a hash-based vector com-
mitment, the security of Fractal rests only on cryptographic
hashing; which is plausibly quantum secure—unlike pairings.

Fractal’s best low-degree test, DEEP-FRI [14, 22], is based
on the fast Fourier transform, and adapts naturally to an MPC.

However, implementing the vector commitment efficiently
in an MPC seems difficult. Fractal’s best vector commitment
is a Merkle tree: a binary tree of hash evaluations that reduce
a vector to a single hash that serves as the commitment to the
vector. Hash functions, by necessity, are extremely non-linear,
so evaluating them on shared data is extremely expensive.
Even hash functions explicitly designed to minimize non-
linearity [2, 67] still require hundreds of field multiplications.

To avoid this cost, one could replace the vector commitment
to evaluations of a polynomial f with N vector commitments
to evaluations of shares of f : f (1), . . . , f (N). Then, when V
requests an evaluation, each Pi opens the corresponding evalu-
ation of f (i); V checks all N opening proofs and computes the
sum. This minimizes prover cost, but the proof size grows by
a factor of N, as does V ’s work. When an application requires
short proofs and fast verification, this might be unacceptable.

6 Implementation

We implement collaborative proofs based on Groth16, Marlin,
and Plonk. We omit Fractal because of the tradeoff between

proving time and proof size discussed in the previous sec-
tion. Our starting point is arkworks [49]: a collection of Rust
libraries for implementing cryptographic proofs, used in a
few recent works [38, 39, 41]. It includes interfaces and im-
plementations for finite fields, pairing-friendly curves, and
polynomial commitments. It also includes SNARKs imple-
mented generically over their primitives; e.g., Groth16 and
Marlin implementations applicable to any pairing e.

Collaborative SNARKs through MPC lifting Our im-
plementation pursues three goals. First, to support different
secret-sharing schemes, proof systems, and MPC protocols.
Second, to achieve proving time concretely competitive with
state-of-the-art conventional SNARKs. Third, to focus on the
multi-party aspects of the implementation and optimization.

Given these considerations, we adopt a design that lifts an
existing SNARK prover implementation into a multi-prover
protocol by instantiating the primitives that the prover uses
with secure multi-party protocols. At a high level, we:
(1) define interfaces for field and curve sharing schemes
(2) provide implementations based on the SPDZ and GSZ

protocols
(3) define wrapper types for field and curve elements which

can be either public or shared,
(4) implement arkworks field and curve interfaces for the

wrapper types,
(5) instantiate arkworks-based SNARK provers with the

wrapper types (yielding multi-prover protocols!), and
(6) optimize the protocols.

Building multi-party primitives We first define interfaces
for shares of both field elements and groups of prime order
(like pairing-friendly elliptic curves). From here on, we dis-
cuss only field support; group support is similar. The field
share interface includes functions for scaling by public values,
shifting by public values, adding shares, multiplying shares,
and opening shares. We implement three sharing schemes
generically over their underlying field. They use a network
library to communicate and access protocol metadata (e.g.,
their party number). Figure 6 shows the definitions, and how
to shift each type of share by a public value. For GSZ shares,4

all parties shift their value; for additive shares, only one party
does; for authenticated shares, the base share is updated by a
single party, but the MAC is updated by everyone using their
share of the MAC key.

To represent values in an MPC, we introduce a union
type MpcField for either public or shared field elements.
MpcField is generic over both the field and the sharing
scheme. We implement the Field interface for MpcField,
allowing it to be used in any computation that expects to op-
erate on field elements. Figure 7 sketches the code for this.
By instantiating the function foo (perhaps not intended as an

4Identical to Shamir shares, save the verification that runs before any
share is opened.
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struct AddShare<F> {
f: F,

}

impl<F: Field> FieldShare<F>
for AddShare<F> {
fn shift(&mut self, c: F) {
if net::am_first_party() {
self.f += c;

}
}
// ... other methods ...

}

struct AuthShare<F> {
val: AddShare<F>,
mac: AddShare<F>,

}

impl<F: Field> FieldShare<F>
for AuthShare<F> {
fn shift(&mut self, c: F) {
self.val.shift(c);
self.mac.f +=

mac_key_share() * c;
}
// ... other methods ...

}

struct GszShare<F> {
y: F,
// x is party number

}

impl<F: Field> FieldShare<F>
for GszShare<F> {
fn shift(&mut self, c: F) {
self.y += c;

}

// ... other methods ...
}

Figure 6: Fragments of the definitions of additive, authenticated, and GSZ shares

enum MpcField<F, S> {
Public(F),
Shared(S),

}

impl<F: Field, S: FieldShare<F>>
Field for MpcField<F, S> {
// ...

}

fn foo<F: Field>() { /* .. */ }
use ark_bls12_377::Bls12_377::Fr as OurField;

fn run_local() {
foo::<OurField>();

}
fn run_mpc() {

net::init(); // reads config file
foo::<MpcField<OurField, GszShare<OurField>>>();

}

Figure 7: Single and multi-party computations in our framework. foo is defined generically over a field F. Instantiating F
with BLS 12-377’s scalar field yields a local computation. Instantiating F with MpcField and GszShare yields a multi-party
computation backed by the GSZ protocol.

MPC) with an MpcField based on GszShare, we execute it
as an honest-majority secure multi-party computation.

Lifting SNARKs into MPCs and optimizing Similarly, we
can obtain collaborative proofs from prover implementations
that are generic over the arkworks interfaces. For Marlin and
Groth16 we can use implementations from arkworks; Plonk
has no arkworks-based implementation yet, so we build one.

The resulting protocols (with a few small tweaks) are cor-
rect but perform poorly. The problem is that some operations
are not optimized for an MPC. One example is computing the
partial products of a list (discussed in Section 5.4). Without
optimization, this entails a sequence of calls to the Field
interface’s multiplication method; each call requires a round
of communication, which is expensive. To allow for an MPC-
optimized protocol here (i.e., the one from Section 5.4), we
add a partial product method to the Field interface. The de-
fault implementation is based on serial multiplication, but we
also provide an overriding implementation for a sequence of
shared values. We repeat this pattern (find a problematic oper-
ation, identify a better MPC protocol, add the operation to the
relevant algebraic interface, and provide an MPC-optimized
implementation) for batch multiplication, polynomial division,
batch inversion, multi-scalar multiplication, and the Fourier
transform. These new methods and their default implemen-
tations are our primary changes to the arkworks algebraic
interfaces. Calls to these methods are our primary changes to
the SNARK prover implementations.

Limitations Our approach is effective for collaborative
proofs, but cannot be applied to all computations based on
arkworks. Critically, it does not support programs which
branch on shared data or access data at shared locations. The
limitation is fundamental: the MPC protocols we use sup-
port circuit evaluation, not RAM machine execution—which
the Rust programming language and arkworks target. While
a program might perform circuit-incompatible operations,
our approach works because the provers we study do not
do that.5 Techniques for translating RAM programs into cir-
cuits [7, 33, 34, 81, 82, 93, 105] could yield more general
support. Separately, some MPC algorithms [63, 72, 73, 74]
directly support branching programs.

Source code In sum, our implementation comprises a
network library (≈700 lines), interfaces and implementa-
tions of sharing schemes (≈3000 lines), MPC implemen-
tations of arkworks algebraic interfaces (≈2000 lines), an
arkworks Plonk implementation (≈1200 lines), and tests
and benchmarking scripts (≈3000 lines). We also slightly
modify a number of arkworks libraries. Our implementa-
tion is available at https://github.com/alex-ozdemir/
multiprover-snark.

5There are a few exceptions. Some basic operations (polynomial divi-
sion, multi-scalar multiplication) branch on shared data—we provide MPC-
optimized replacements anyway, sidestepping the issue. Some provers also
check intermediate (shared) proof material for consistency—we defer all
checks until the final proof is revealed.
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Figure 8: Proving time for varying numbers of parties and protocols, over a 3 gigabit link. NPC denotes a collaboration among N
provers. A dishonest majority (SPDZ) protocol is private against <N corrupt provers. An honest majority (GSZ) protocol is
private against <N/2 corrupt provers. The baseline is a single prover, using the (non-collaborative) zk-SNARK.

7 Evaluation

We evaluate our collaborative SNARKs against conventional
SNARKs. Our metric is single-threaded prover runtime; for
multiple parties, this is their average runtime. For all config-
urations, we report the median of three trials. We vary these
parameters:
• collaborative proof: based on Groth16, Marlin, or Plonk
• number of rank-1 constraints: from 2 to 220. We discuss

the number of constraints needed by one application at the
end of the section.

• MPC algorithm: GSZ (honest majority) or SPDZ (dishonest
majority)

• link capacity: from 1Mb/s to 3Gb/s
As we will see, collaborative proofs are concretely fast: over
gigabit links, multi-prover protocols are nearly as fast as a
single prover.

Preprocessing We do not evaluate pre-processing. Omitting
preprocessing is acceptable for two reasons. First, preprocess-
ing can be performed when spare compute and bandwidth
are available. Second, preprocessing is concretely faster than
proof generation. The most expensive preprocessing required
by either of our base protocols (SPDZ and GSZ) is the multi-
plication triple generation phase of SPDZ. Yet, with recent
protocols [9, 76, 98], this requires only a few microseconds
per triple (e.g., [9] generates one million triples in in ≈ 5s).
Meanwhile, even the fastest prover (Groth16)—which uses
one triple per constraint—requires over 200 µs per constraint.

High capacity links Our first experiment measures proving
time for varying MPC algorithms, numbers of constraints,

and proof systems over a high-capacity link. We consider 2
and 3-party proofs, omitting honest majority 2-party proofs,
which provide no security. We consider constraints systems
of size 2 through 220, and collaborative proofs based on
Groth16, Marlin, and Plonk. For each proof system, we com-
pare with the single-prover time. Google Cloud Platform
(GCP) n2-standard-2 machines are our testbed; these have
1 hardware core (Cascade lake), 8GB of memory, and 3Gb/s
links. We run Debian 10 with hyperthreading disabled.

Figure 8 shows the results. Missing data points indicate
memory exhaustion. For small constraint systems the multi-
prover protocols are slower than a single prover, because net-
work round-trips (which take milliseconds) dominate. How-
ever, the number of round-trips is sub-linear in constraints,6

and for large constraint systems (≳ 210) the protocols perform
quite well. The honest majority protocol (3PC GSZ) runs in
essentially the same time as a single prover; the dishonest ma-
jority protocols (SPDZ) run in essentially twice the time. This
is because the computational costs of the protocols dominate
the bandwidth costs. SPDZ is twice as slow as a single prover
because it applies the computation to the data and its MAC:
duplicating the computational work.

Varying party count To show how the different MPC im-
plementations scale with party count, we write Groth16 proofs
for 210 constraints, with varying numbers of parties. We use
the same testbed as the previous experiment, and report slow-
down: the time to write the collaborative proof, divided by
the time of a single prover. Figure 9 shows the results. As the

6SPDZ is constant-round, while GSZ requires a logarithmic number of
rounds to check multiplication triples.
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Figure 10: Proving time versus link capacity, normalized by
single-prover time. All protocols run with 2 parties, 210 con-
straints, and the malicious majority protocol (SPDZ).

number of parties increases, the performance of SPDZ slowly
degrades, while the performance of GSZ degrades faster. The
crucial difference is in the number of rounds of inter-prover
communication. For SPDZ, there is only a constant number of
rounds of communication, since the Groth16 circuit has low
multiplicative depth. However, the multiplication checking
protocol of GSZ requires a number of rounds logarithmic in
the number of constraints. This means that for large numbers
of parties, one should use a round-efficient protocol such as
SPDZ instead of GSZ, even if one assumes a majority of
provers are honest.

Varying link capacity While gigabit links are common in
LANs, within datacenters, and between data centers, lower
capacity links are common elsewhere. Our third experiment
measures the relationship between proving time and link ca-
pacity. We cohost two provers on an Arch Linux (kernel
5.12.15) machine with an AMD Ryzen-2700 CPU and 32GB
of RAM. We use the Mahimahi network shell suite [90] to

Type Size Compute Traffic Total Cost

2PC 210 1.9×10−5 1.0×10−5 2.9×10−5

1PC 210 4.6×10−6 0 4.6×10−6

2PC 220 0.019 0.011 0.030
1PC 220 0.0048 0 0.0048

Figure 11: Price estimates (in US$) for collaborative (2PC)
and conventional (1PC) proofs. The “size” column refers to
the number of constraints.

emulate low-capacity links. We report slowdown for SPDZ
evaluating varying provers on 210 constraints with varying
network capacity.

Figure 10 shows the results. At low bandwidths, data trans-
fer dominates proving time, so slowdown grows linearly with
the reciprocal of link capacity. At higher bandwidths, com-
putational costs dominate, so slowdown approaches 2 (recall
that SPDZ duplicates the computation). Plonk’s slowdown is
higher than the other proof systems. This is due to the batch
multiplications and divisions in its PRODCHECK; while our
optimization (Section 5.4) keeps round complexity constant,
the communication volume is still substantial.

Price We also estimate the price of writing collabora-
tive proofs. We consider 2-prover Groth16 proofs using
the SPDZ protocol. Communication is dominated by 256-
bit field elements: 4n are transferred. Figure 8 shows that
the computation requires ≈ 488µs per constraint. Currently,
GCP e2-standard-2 VMs cost $0.067/hr [96], and cross-
continent traffic between VMs costs $0.08/GB [95]. At these
rates, Figure 11 summarizes net costs for proofs of varying
size and type. Collaborative proofs (2PC) have quadruple the
compute costs of conventional ones (1PC), because they in-
volve twice the wall-clock time and two machines. Ultimately,
net costs are tiny: million-constraint collaborative proofs cost
only 3 cents.

Proofs about net assets In Section 2 we discussed a setting
where a client of multiple banks wants a publicly verifiable
proof that the net of its debits and credits across all its banks
exceeds a threshold T . Here, we discuss the number of con-
straints required for such a proof.

To use our collaborative proofs, that claim must be written
as a rank-1 constraint system (R1CS). How does the number
of constraints depend on the number of transactions (credits
and debits)? The constraints must (a) open the bank’s com-
mitments to all the customer’s transactions, (b) check that
each transaction is well-formed, (c) sum their values, and (d)
compare that sum to T .

Let there be n transactions split among N banks. Each
transaction is a 64-bit signed integer. Let bank i have ni trans-
actions in a Merkle tree of ni + 1 leaves—the extra leaf is
fully random to make the commitment hiding. Opening bank
i’s commitment uses ni hash evaluations: one for each internal
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node in the binary Merkle tree. Thus, opening all the com-
mitments uses n = ∑i ni hash evaluations. The Poseidon [67]
hash function requires ≈ 300 constraints per evaluation.

Furthermore, checking that each committed transaction has
a value representable as a 64-bit signed integer requires ≈ 64
constraints. In R1CS, computing the sum requires essentially
no constraints, and comparing with T requires a small con-
stant number of constraints: ≈ 64+ log2 n. In sum, a proof
about n transactions requires ≈ 364n constraints. Thus, 220

constraints suffices for proofs about≈ 2900 customer transac-
tions. This means that three banks could write a proof about
≈ 2900 transactions in ≈ 165s. This time could be further
reduced with parallelism (§9).

8 Related work

The most closely related work is [77] (building on [106]),
which is concurrent and independent. Their focus is on en-
abling MPC-as-a-service, by building a PA-MPC protocol
(as defined in [8]) from Marlin [41]. They specially integrate
the PA-MPC commitments that each party posts to its input
with the Marlin prover, via polynomial evaluation commit-
ments: a primitive they introduce. In contrast, our focus is
on collaborative proofs: we explore the MPC friendliness of
different zk-SNARK systems. Any of our constructions yields
PA-MPC (§4.1).

Other works also distribute a SNARK prover. Some do
so to parallelize [112] or delegate [100] computation. These
goals are orthogonal to our goal: the privacy on an initially dis-
tributed witness. Bulletproofs have been securely distributed
for privacy [36]; however, this work does not define secu-
rity for a collaborative proof and considers only honest-but-
curious adversaries. Moreover, Bulletproof verification takes
time Ω(n). Thus, the result is not a collaborative zk-SNARK.

Another line of work [1, 28, 29], based on Prio [44], con-
siders proofs over a witness shared among multiple verifiers.
In our setting, the witness is shared among multiple provers.

Research into multi-prover interactive proofs (MIPs) [4,
25, 62] considers two provers who are assumed to not collude
to increase the power of the proof system. Our goal is inter-
prover privacy, and we explicitly consider colluding provers.

Other research [16, 30, 79] uses MPC to securely sample
zk-SNARK parameters (e.g., to ensure that KZG’s α parame-
ter is discarded). This is orthogonal to our approach, which is
securely distribute the proving algorithm of a zk-SNARK.

9 Discussion

A partial barrier to reducing communication Since com-
munication is a bottleneck over low-capacity networks, one
might try to reduce it. However, we show a partial barrier:
Ω(n) communication is required if the R1CS witness is addi-
tively shared, where n is the number of rank-1 constraints. We

show this, in Appendix B, through a reduction from disjoint:
a known communication-hard problem.

Nonetheless, constant-factor reductions in communication
are possible. For example, [23, 31, 32, 64] communicate less
than GSZ, with varying assumptions about the numbers of
honest and dishonest parties. We leave the empirical evalua-
tion of these protocols in our setting to future work.

Parallelization For simplicity, we evaluate single-threaded
provers. However, our techniques should yield multi-threaded
multi-prover protocols with similarly good performance com-
pared to a multi-threaded single prover. In most provers, par-
allelism accelerates Fourier transforms and multi-scalar multi-
plications. Our protocols perform these operations locally, so
the same benefits should be achievable. Similarly, distributed
computing [112] and hardware acceleration [115] could be
used. However, parallelism would be less helpful over low-
capacity links, where bandwidth becomes the bottleneck (§7).

Latency Our evaluation considered the effect of link
capacity—but not latency—on proving-time. All protocols
have round-complexity sub-linear in the constraint count, so
latency has an insignificant effect as constraint count grows.

Trusted Setup Our implemented collaborative proofs all
require the same trusted setup as the zk-SNARK they build
on. For those based on Plonk or Marlin that setup is uni-
versal (independent of the relation) and updatable (securely
re-randomizable by any party). A Fractal-based collaborative
zk-SNARK would not require a trusted setup.

Leaking relation membership We emphasize that a col-
laborative proof for (x,w) reveals whether (x,w) is in R. This
is unavoidable: completeness and soundness require it. For
some relations, this enables malicious provers to glean infor-
mation about another prover’s witness. As a simple example,
the relation that checks whether two witnesses agree in the
first bit lets one prover learn the first bit of another prover’s
witness. When using a collaborative proof, one must consider
the worst-case leakage from the relation itself.

Significance We’ve shown that collaborative proofs can be
constructed with little to no computational overhead com-
pared to single-prover proofs. Communication costs are
asymptotically Θ(λn), but concretely small over commod-
ity high-capacity links. In sum, most server-side applications
that can tolerate the (considerable) cost of a single-prover
proof should also be able to tolerate the cost of a collaborative
proof. We hope this makes succinct, public verifiability avail-
able to more applications—even when the secrets of multiple
parties are involved.
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A Honest majority MPC for elliptic curve cir-
cuits

In this section we adapt the multiplication protocols of [46]
and [66] to products of scalars and group elements. We follow
the exposition of [65], which includes the protocols from both
works.

We adopt a few notational conventions. Bolded quantities
are vectors: · denotes inner product and ◦ denotes Hadamard
product,. For x, a vector, xL and xR denote its left and right
halves and xi denotes an element. We assume all vector
lengths are a power of two; generalizing to other lengths
is straightforward. [v]d denotes that v is distributed among
the parties as degree-d Shamir shares. If the degree is omit-
ted, it is assumed to be t = ⌊N/2⌋. Lowercase letters denote
scalars and uppercase letters denote group elements. f and
its subcripts denote scalar polynomials, F and its subscripts

denote polynomials with group coefficients and a scalar vari-
able. Vectors of polynomials are bolded, and polynomials
(and vectors thereof) can be shared coefficient-wise. [f(x)]
denotes shares of each polynomial in f evaluated at public x.

Protocols G-DOUBLE-RAND, G-DOUBLE-RAND, and
G-COIN are exactly like RAND, DOUBLE-RAND, and COIN,
save that the operate on Shamir shares of group elements
rather than field elements.

The rest of the protocols are adapted to scalar-group prod-
ucts as follows. DE-LINEARIZATION (Protocol 13, [65])
reduces checking a sequence of multiplication tuples (a
Hadamard product); it is adapted to G-HADAMARD-CK,
which reduces checking a sequence of scalar-point multipli-
cation triples to checking a scalar-point inner product.

G-HADAMARD-CK([a] ∈ Fn, [A], [B] ∈Gn)

Shows: a◦A = B
α← COIN()

ααα← (αi)n
i=1

G-IP-CK(ααα◦ [a], [A],ααα · [B])

G-IP-COMPUTE adapts EXTEND-MULT (Protocol 10,
[65]) from computing a field inner product to computing a
scalar-point inner product. EXTEND-MULT is itself a general-
ization of the multiplication and degree reduction protocols
of [46].

G-IP-COMPUTE([a] ∈ Fn, [A] ∈Gn)

Computes a◦A = B

Everyone computes the inner product on their shares

Interpret the results as [B]2t

[X ]t , [X ]2t ← G-DOUBLE-RAND()

All parties send [B−X ]2t to Party 1

Party 1 opens B−X and reshares it as [B−X ]t

return [B]← [B−X ]t +[X ]t

G-IP-FOLD adapts EXTEND-COMPRESS (Protocol 12,
[65]). The original protocol compresses N different inner
product checks into one. The new one compresses 2 point-
scalar inner product checks into one.
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G-IP-FOLD([x] ∈ Fn, [X] ∈Gn, [P] ∈G,
[y] ∈ Fn, [Y] ∈Gn, [Q] ∈G)

Reduces x ·X = P∧y ·Y = Q to a ·A = R

Interpolate shares of lines [f] such that

fi(1) = xi and fi(2) = yi for i ∈ [n]

Interpolate shares of lines [F] such that

Fi(1) = Xi and Fi(2) = Yi for i ∈ [n]

[z]← [f(3)]; [Z]← [F(3)]
[S]← G-IP-COMPUTE([z], [Z])
Interpolate shares of a parabola

[
Fp
]

such that

Fp(1) = P, Fp(2) = Q, and Fp(3) = S

α← COIN()

[a]← [f(α)]; [A]← [F(α)]; [R]←
[
Fp(α)

]
return ([a], [A], [R])

Finally, G-IP-CK adapts MULT-VERIFICATION (Protocol
17, [65]), from a recursive protocol for product checking to
a recursive protocol for point-scalar inner product checking.
G-PROD-CK is the adapted base case (Protocol 15, [65]).

G-IP-CK([x] ∈ Fn, [X] ∈Gn, [P] ∈G)

Shows: x ·X = P

while n > 1:

[L]← G-IP-COMPUTE([xL], [XL])

[x], [X],P← G-IP-FOLD([xL], [XL], [L],

[xR], [XR], [P−L])

n← n/2

G-PROD-CK([x1], [X1], [P])

G-PROD-CK([x] ∈ F, [X ] ∈G, [P] ∈G)

Shows: x ·X = P

[r]← RAND()

[R]← RAND()

[S]← G-IP-COMPUTE([r], [R])

[y], [Y ], [Q]← G-IP-FOLD([(x,r)], [(X ,R)], [(P,S)])

All parties open y, Y , and Q and check y ·Y = Q

B Communication Lower Bound

In this section, we show a Ω(n) lower bound on the commu-
nication needed to compute a collaborative proof when the
witness is additively shared among two parties.

Our bound applies to proof systems that are honestly sound:
a prover following the proving protocol with an invalid wit-
ness produces a valid proof with negligible probability.

Definition 2. A proof (Setup,Prove,Verify) is honestly
sound if for all (x,w) /∈R,

Pr
[
Verify(pp,x,π) = 1 : pp← Setup(1λ,R)

π← Prove(pp,x,w)

]
= negl(λ)

Surprisingly, knowledge soundness does not imply honest
soundness. While the former guarantees that a verifier can
extract a valid witness from an acceptable proof, it makes no
guarantees about the witness that the prover used.

As an example, consider the (trivial) relation

R= = {(x ∈ F,w ∈ F) : x = w}

For this relation, define the proof system (Setup,Prove,
Verify) where Setup is a no-op, Prove always returns a null
proof π =⊥, and Verify always return 1. This proof system
is knowledge-sound, but not honestly sound.

Regardless, it’s easy to show that the SNARKs we study
are honestly sound.

It suffices to show a Ω(n) communication bound for
checking a shared R1CS witness. If there were a low-
communication protocol for generating a proof, parties could
just check a shared witness by constructing and checking the
proof. Per completeness and honest soundness, the proof is
valid if and only if the witness was valid, except with negligi-
ble probability.

Unfortunately, the communication-hard problem DISJn

reduces to checking additively shared R1CS witnesses. DISJn

asks whether the two length-n bit-strings do not share a one
at any index; i.e., DISJn(a,b) =

∧n
i=1¬(ai∧bi). DISJn has

been shown to have Ω(n) randomized 2-party communication
complexity [6, 71]. DISJn(a,b) reduces to R1CS checking as
follows. P1, who has a, interprets it as a zero-one vector in Fn

and sets x0← a;y0← 0⃗;z0← 0⃗. Simultaneously, P2, interprets
b as a zero-one vector in Fn and sets x1← 0⃗;y1← b;z1← 0⃗.
With this reduction, a and b are disjoint if and only if (x0,x1),
(y0,y1), and (z0,z1) are sharings of x,y,z such that x◦ y = z,
an R1CS relation.

Note that this is only a limited bound. First, it requires
Ω(n)—not Ω(n log |F|)—communication. We suspect the
stronger bound holds as well, but do not know of an existing
communication complexity result that it immediately follows
from. Second, the bound applies only to additively shared
witnesses.

C KZG for Shared Polynomials

In this section we prove that our alternate KZG commitment
and proof protocols (PC.Commit′ and PC.Prove′) can be
used within an arithmetic MPC without compromising se-
curity.

We show this for all arithmetic MPCs which build on a ho-
momorphic secret sharing scheme. This includes both SPDZ
and GSZ.

Definition 3. Homomorphic secret-sharing:
Let SSS be a secret sharing scheme for messages from X ,

an F-module, and with shares in S , also an F-module.
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SSS is homomorphic if for all messages x,x′ ∈ X shared
as (s1, . . . ,sn) ∈ S n and (s′1, . . . ,s

′
n) ∈ S n respectively, and all

scalars α,α′ ∈ F, the tuple (αs1 +α′s′1, . . .αsn +α′s′n) ∈ S n

is is a sharing of αx+α′x′.

The homomorphism of such a scheme is a natural
communication-free protocol for adding shared values or scal-
ing them by public constants.

Lemma 4. Let SSS be a homomorphic secret sharing scheme.
Let C be an arithmetic circuit with wire values in X . Let Π be
a secure MPC protocol that evaluates C by computing secret
shares of its wire values in topological order—using SSS’s
homomorphism to add or scale shares—and revealing the
outputs. Let C′ be a sub-circuit that computes a output wires
y1, . . . ,ym from input wires x1, . . . ,xn, according to a linear
function f : X n→ X m. Let Π′ be a protocol which is exactly
like Π, save how the parties evaluate C′. Each party i, for
inputs x j to C′, lets x(i)j denote its share of x j’s value. Then,

each party computes y(i)1 , . . . ,y(i)m ← f (x(i)1 , . . . ,x(i)n ), and takes

each y(i)j to be its share of the value of y j in evaluating the
rest of the circuit. Then Π′ is a secure MPC protocol for
evaluating C.

Proof. First, we show that Π and Π′ differ only in the local
computation performed by each party: not in the messages
they send. Then, we show Π′ is secure.

Since y = f (x) is a linear transformation, there exists a
matrix M ∈ Fm×n, such that y = Mx. Without loss of gener-
ality, let the sub-circuit C′ compute Mx naively, that is, let it
compute y j as ∑

n
i=1 Mi jxi (n scalar multiplication gates and

n−1 addition gates). Since Π evaluates addition and scalar
multiplication gates in C according to the homomorphism of
SSS, evaluating C′ involves no communication. Each party i
locally computes a share shares y(i)j of wire y j from its shares

x( j)
i of wires xi using the formula

y(i)j =
n

∑
k=1

Mk jx
(i)
k

But this is equivalent to computing (y(i)1 , . . . ,y(i)m ) =

f (x(i)1 , . . .x(m)
n ), as done in protocol Π′. Thus, Π and Π′ differ

only in the local computation performed by each party when
evaluating C′—parties following Π and Π′ send identical mes-
sages.

Since Π is secure, for any adversary A , there is an efficient
algorithm Sim, which can simulate its view when interacting
with honest parties following Π. Since honest parties follow-
ing Π and Π′ send the same messages, Sim is also a simulator
for A when it interacts with parties following Π′. Thus, the
view of any adversary participating in Π′ can be simulated,
so it is secure.

Both of the MPC protocols we build on (GSZ and SPDZ)
meet the conditions of Lemma 4. SPDZ uses authenticated

secret sharing, and GSZ uses Shamir secret sharing. Both
schemes are homomorphic.

Lemma 4 concerns functions f : X n → X m with domain
and codomain elements from the same space. However, it’s
easy to generalize to lists of inputs and outputs from different
spaces—that is, to f : (Ii)

n
i=1→ (Oi)

m
i=1 where each Ii or Oi

may be a different space—so long as each space is an F-
module with a homomorphic sharing scheme. Below, we use
a generalization to functions which operate on a mix of field
and curve elements.

Corollary 1. Let Π be a secure protocol which computes a
KZG commitment by evaluating an arithmetic circuit. Let Π′

be the same protocol, save that the commitment is computed
using PC.Commit′. Then Π′ is secure.

Proof. First, consider the function C′ : Fd+1→G1 that map
polynomials of degree up to d to their commitments. C′ maps
any vector of coefficients f0, . . . , fd , to ∑i fi · hi where each
hi =αi ·gi and is part of the public parameters. Observe that C′

is linear, for polynomials f ,g ∈ F≤d [X ], and scalars x,y ∈ F,
C′(x f +yg) =∑i(x fi+ygi) ·hi =∑i(x fi+ygi) ·hi = x ·∑i( fi ·
hi)+ y ·∑i(gi ·hi) = x ·C′( f )+ y ·C′(g).

Thus, Lemma 4 implies that Π′ is secure.

Corollary 2. Let Π be a secure protocol which computes a
KZG opening proof by evaluating an arithmetic circuit. Let Π′

be the same protocol, save that the commitment is computed
using PC.Prove′. Then Π′ is secure.

Proof. A KZG proof that f (z) = y is computed in two
steps. First, compute q(X) = f (X)−y

X−z . Second, commit to
q. PC.Prove′ uses PC.Commit′ for the second step, which
Corollary 1 shows does not compromise security. We consider
the first step. It computes shares of the quotient from shares
of f , i.e. it computes a function C′ : Fd+1→ Fd . We show that
this function is linear. Let f and g be polynomials, a and b be
scalars, and let C′( f ) = q f and C′(g) = qg. Then there exist re-
mainder constants r f and rg such that f = q f ·(X−z)+r f and
g = qg · (X− z)+ r f . Scaling the first equation by a, scaling
the second by b, and summing, gives

a f +bg = (aq f +bqg) · (X− z)+(ar f +brg)

Since ar f + brg is a constant, and polynomial division is
unique, aq f + bqg is the quotient when a f + bg is divided
by X− z. Thus C′(a f +bg) = aq f +bqg, so C′ is linear.

Thus, Lemma 4 implies that Π′ is secure.

D PA-MPC from collaborative proofs

Publicly-auditable MPC (PA-MPC) was originally defined
in terms of simulation [8], with the auditor as an additional
party. Definition 4 gives an alternative formulation based on
collaborative proofs. With this definition, it’s straightforward
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Definition 4. A secure PA-MPC for t malicious parties:
A PA-MPC for function f : X N → Y and a commitment
scheme Commit is a tuple (Setup,Π,Verify) such that:
• Setup( f )→ pp: setup public parameters for f
• Π(pp, x⃗)→ (y,π): evaluate f on x⃗ and create a proof.
• Verify(pp, c⃗,y,π)→{0,1}: check output with respect

to input commitments.
A PA-MPC is secure against t malicious parties if
• Πy (the restriction of Π to its y output) is a secure-

with-abort MPC for function f , against t malicious
parties, and

• (Setup,Ππ,Verify), where Ππ is the restriction of Π

to its π output, is a collaborative zk-SNARK for the
relation

R f ,Commit :=
{(⃗

c,y ; x⃗,⃗r
)

:

f (⃗x) = y∧
∧

i∈[N]

ci = Commit(xi,ri)
}

that is secure against t malicious provers.

to construct PA-MPC from a collaborative proof. We give the
construction below.

For a multivariate function f (⃗x)→ y and a commitment
scheme Commit(x,r)→ c, let R f ,Commit be as in Definition 4.

Theorem 5. Let f : X N → Y be a function, and let Commit
be a binding and hiding commitment scheme. Let Π f be an
MPC for f that is secure-with-aborts against t malicious par-
ties, and let (Setupπ,Ππ,Verifyπ) be a collaborative proof
for R f ,Commit that is secure against t malicious provers. Then,
there is a PA-MPC (Definition 4) protocol for f and Commit,
for t malicious parties, with the same proof size and verifica-
tion time as the collaborative proof.

Proof. The protocol (Setup,Π,Verify) is defined by:
• Setup(1λ): output Setupπ(1λ).
• Π(pp, x⃗,⃗r, c⃗): compute y←Π f (⃗x) and

π←Ππ(pp, (⃗c,y),(xi,ri)
N
i=1); output (y,π).

• Verify(pp, c⃗,y,π): output Verifyπ(pp, (⃗c,y),π)
The security of this PA-MPC protocol follows immediately
from its construction and the definition of PA-MPC security.

Note that in this approach, Commit must be expressible
within a relation that the collaborative proof system sup-
ports. This paper constructs collaborative proofs for R1CS.
Reasonably efficient rank-1 constraint systems have been
designed for commitments based on discrete-log [50, 80],
SHA-2 [2, 80], algebraic hash functions [2, 3, 67], and more.

E Unrolled Groth16/SPDZ Protocol

We review the Groth16 proof system’s setup and prove algo-
rithms. Then, we walk through its collaborative zk-SNARK
analog based on the SPDZ MPC protocol. Thus, this section
presents the result of instantiating the techniques of Section 5
for Groth16 with SPDZ.

Arithmetization Recall that (n, ℓ,m,A,B,C) is an R1CS
relation (§3.2). Assume ω ∈ Fp is a primitive root of unity
of order 2n, and let ω′ = ω2. Let fA,i(X), fB,i(X), and fC,i(X)
be families of polynomials such that

fA,i(ω
′ j) = A j,i fB,i(ω

′ j) = B j,i fC,i(ω
′ j) =C j,i

for i = 1, . . . ,m and j = 1, . . . ,n

Prior work [58] observes that R is satisfied if and only if
for each j ∈ [n],

m

∑
i=1

ai fA,i(ω
′ j) ·

m

∑
i=1

ai fB,i(ω
′ j) =

m

∑
i=1

ai fC,i(ω
′ j)

Let z(X) denote the polynomial ∏
|w′|
i=1(X −ω′i). The above

condition is satisfied if and only if there is an q(X) such that

m

∑
i=1

ai fA,i(X) ·
m

∑
i=1

ai fB,i(X)−
m

∑
i=1

ai fC,i(X) = q(X) · z(X)

It suffices for the prover to convince the verifier that there is
an q(X) such that this equation holds.

Setup The trusted setup computes the following common
reference string (CRS):

α,β,γ,δ,x $←− Fp

fi := β fA,i +α fB,i + fC,i

σ1←
(

α,β,δ,(xi)n
i=1,(γ

−1 fi(x))ℓi=1,

(δ−1 fi(x))m
i=ℓ+1,(δ

−1xiz(x))n−2
i=0 ,

( fA,i(x))m
i=1,( fB,i(x))m

i=1

)
·g1

σ2←
(
β,γ,δ,(xi)n

i=1,( fB,i(x))m
i=1
)
·g2

σT ← αβ ·gT

output (σ1,σ2,σT )

Single-Prover Proof First the prover computes the coeffi-
cients of the polynomial

q =
(∑m

i=1 ai fA,i)(∑
m
i=1 ai fB,i)− (∑m

i=1 ai fC,i)

z
(2)

The prover computes the coefficients of q (defined in Equa-
tion 2) in stages. Let D be the set ⟨ω⟩ \

〈
ω2
〉
. Note that z is

non-zero everywhere in D.
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(1) She computes all parenthesized polynomials in point-
value form over ⟨ω′⟩ by scaling each ai by A j,i and sum-
ming across j.

(2) Using the FFT and its inverse, she computes those poly-
nomials in point-value form over D.

(3) She obtains z in point-value form over D (in preprocessing
or using the FFT).

(4) She computes q in point-value form over D using point-
wise operations.

(5) She computes the coefficients of q using the FFT.
The prover, equipped with the coefficients of q, denoted
(qi)

n−2
i=0 , computes the proof:

r,s $←− Fp

π1← α ·g1 + r · (δ ·g1)+
m

∑
i=1

ai · ( fA,i(x) ·g1)

π2← β ·g2 + s · (δ ·g2)+
m

∑
i=1

ai · ( fB,i(x) ·g2)

π
′
1← s ·π1 + r ·

(
β ·g1 +

m

∑
i=1

ai · ( fB,i(x) ·g1)

)

+

(
m

∑
i=ℓ+1

ai ·
(
δ
−1 fi(x) ·g1

))

+

(
n−2

∑
i=0

qi ·
(
δ
−1xiz(x) ·g1

))
output π← (π1,π2,π

′
1)

Notice that the CRS contains all immediate products of the
g∗ that are used in the computations of the prover.

E.1 Implementation within an MPC

Recall that SPDZ represents a secret value x as an additive
sharing of it [x] and its MAC [∆x]. Let JxK = ([x], [∆x]), with
addition and scaling done component-wise, and with multi-
plication performed using the SPDZ multiplication protocol.

The protocol begins with JaiK for each i. The protocol pro-
ceeds by evaluating the single-prover algorithm, but with
secret-shares in place of many values. We discuss which val-
ues are public, which values are shared, and which SPDZ
subprotocols must be used.

Computing JqK from JaK The prover must first compute
shares of q’s coefficients (Equation 2). The ai are shared,
and all polynomials fA,i, fB,i, fC,i and z are public. Since the
evaluations of the parenthesized polynomials of Equation 2
over ⟨ω′⟩ are equal to linear combinations of the JaiK (by
public scalars), shares of these evaluations are computed by
scaling and summing the JaiK. Then, we pass to evaluations
over D, using FFTs (which, as linear operators, can be applied
to shared values). Then, for each d ∈ D, the provers run the

secret-secret product protocol on
t

m

∑
i=1

ai fA,i(d)

|

and

t
m

∑
i=1

ai fB,i(d)

|

Then the provers can compute shares of JqK’s evaluations on
D using point-wise sums and scalings of shares, and an FFT
gives shares of q’s coefficients.

Thus most of the computation of q is scalings and sums,
and can thus be computed in the MPC without interaction
between parties. Only n secret-secret products are needed.

Computing JπK from JqK and JaK First the randomness for
the proof (r and s) must be sampled. Each party Pi indepen-
dently samples an ri and si from the field, These are inputs to
the MPC, and the parties compute and distribute secret shares
(JriK)n

i=1 accordingly. They then compute JrK = ∑
n
i=1 JriK and

JsK = ∑
n
i=1 JsiK.

The rest of the proof procedure is deterministic. Much of it
comprises multiplying CRS elements (which are public) by
secret-shared field elements, and summing them. There are
only 2 secret-secret products:

JrK ·

t

β ·g1 +
m

∑
i=1

ai · ( fB,i(x) ·g1)

|

and JsK · Jπ1K

At the end, the shared values

(Jπ1K,Jπ2K,
q

π
′
1
y
)

are opened.

Efficiency In sum, n secret scalar-scalar products are com-
puted, 2 secret scalar-curve products are computed, 2N new
scalar inputs inputs are introduced, and 3 shared curve points
are opened at the end of the protocol.
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