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Abstract

A homomorphic secret sharing (HSS) scheme is a secret sharing scheme that supports eval-
uating functions on shared secrets by means of a local mapping from input shares to output
shares. We initiate the study of the download rate of HSS, namely, the achievable ratio be-
tween the length of the output shares and the output length when amortized over ℓ function
evaluations. We obtain the following results.

� In the case of linear information-theoretic HSS schemes for degree-d multivariate polyno-
mials, we characterize the optimal download rate in terms of the optimal minimal distance
of a linear code with related parameters. We further show that for sufficiently large ℓ
(polynomial in all problem parameters), the optimal rate can be realized using Shamir’s
scheme, even with secrets over F2.

� We present a general rate-amplification technique for HSS that improves the download
rate at the cost of requiring more shares. As a corollary, we get high-rate variants of
computationally secure HSS schemes and efficient private information retrieval protocols
from the literature.

� We show that, in some cases, one can beat the best download rate of linear HSS by allowing
nonlinear output reconstruction and 2−Ω(ℓ) error probability.
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1 Introduction

Homomorphic Secret Sharing (HSS) [Ben86, BGI16a, BGI+18] is a form of secret sharing that
supports computation on the shared data by means of locally computing on the shares. HSS can
be viewed as a distributed analogue of homomorphic encryption [RAD78, Gen09] that allows for
better efficiency and weaker cryptographic assumptions, or even unconditional security.

More formally, a standard t-private (threshold) secret-sharing scheme randomly splits an input
x into k shares x(1), . . . , x(k), distributed among k servers, so that no t of the servers learn any
information about the input. (Here we assume information-theoretic security by default, but we
will later also consider computational security.) A secret-sharing scheme as above is an HSS for a
function class F if it additionally allows computation of functions f ∈ F on top of the shares. More
concretely, an HSS scheme Π consists of three algorithms, Share, Eval and Rec. Given m inputs
x1, . . . , xm, which we think of as originating from m distinct input clients, the randomized Share
function independently splits each input xi among k servers. Each server j computes Eval on its m
input shares and a target function f ∈ F , to obtain an output share y(j). These output shares are
then sent to an output client, who runs Rec(y(1), . . . , y(k)) to reconstruct f(x1, . . . , xm).
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As described up to this point, the HSS problem admits a trivial solution: simply let Eval be
the identity function (which outputs all input shares along with the description of f) and let Rec
first reconstruct the m inputs and then compute f . To be useful for applications, HSS schemes
are required to be compact, in the sense that the output shares y(j) are substantially shorter than
what is sent in this trivial solution. A strong compactness requirement, which is often used in
HSS definitions from the literature, is additive reconstruction. Concretely, in an additive HSS
scheme the output of f is assumed to come from an Abelian group G, each output share y(j) is
in G, and Rec simply computes group addition. Simple additive HSS schemes for linear func-
tions [Ben86], finite field multiplication [BGW88, CCD88, CDM00], and low-degree multivariate
polynomials [BF90, BFKR90, CGKS98] are implicit in classical protocols for information-theoretic
secure multiparty computation and private information retrieval. More recently, computation-
ally secure additive HSS schemes were constructed for a variety of function classes under a vari-
ety of cryptographic assumptions [BGI15, DHRW16, BGI16a, BGI16b, FGJI17, BGI+18, BKS19,
BCG+19, CM21, OSY21, RS21].

While additive HSS may seem to achieve the best level of compactness one could hope for,
allowing for 1-bit output shares when evaluating a Boolean function f , it still leaves a factor-k gap
between the output length and the total length of the output shares communicated to the output
client. This is undesirable when f has a long output, especially when k is big. We refer to the
total output share length of Π as its download cost and to the ratio between the output length and
the download cost as its download rate or simply rate. We note that even when allowing a bigger
number of servers and using a non-additive output encoding, it is not clear how to optimize the
rate of existing HSS schemes (see Section 1.1.1 for further discussion).

In the related context of homomorphic encryption, it was recently shown that the download rate,
amortized over a long output, can approach 1 at the limit [DGI+19, GH19, BDGM19]. However,
here the concrete download cost must inherently be bigger than a cryptographic security parameter,
and the good amortized rate only kicks in for big output lengths that depend polynomially on the

1One may also consider robust HSS in which reconstruction can tolerate errors or erasures. While some of our
results can be extended to this setting, in this work (as in most of the HSS literature) we only consider the simpler
case of non-robust reconstruction.
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security parameter. The relaxed HSS setting has the qualitative advantage of allowing the rate
to be independent of any security parameters, in addition to allowing for information-theoretic
security and better concrete efficiency.

In this work, we initiate the systematic study of the download cost of homomorphic secret
sharing. We ask the following question:

How compact can HSS be? Can existing HSS schemes be modified to achieve amortized
download rate arbitrary close to 1, possibly by employing more servers?

More concretely, our primary goal is to understand the best download rate attainable given the
number of servers k, the security threshold t and the class of functions F that the HSS is guaranteed
to work for. As a secondary goal, we would also like to minimize the overhead to the upload cost,
namely the total length of the input shares.

To help establish tight bounds, we study the download rate when amortized over multiple
instances. That is, given inputs xi,j for i ∈ [m], j ∈ [ℓ], all shared separately, and functions
f1, . . . , fℓ ∈ F , we consider the problem of computing fj(x1,j , x2,j , . . . , xm,j) for all j ∈ [ℓ]. (Note
that positive results in this setting also apply in the easier settings of computing multiple functions
on the same inputs or the same function on multiple inputs.) HSS with a big number of instances
ℓ can arise in many application scenarios that involve large-scale computations on secret-shared in-
puts. This includes private information retrieval, private set intersection, private statistical queries,
and more. Such applications will motivate specific classes F we consider in this work.

1.1 Contributions

We develop a framework in which to study the download rate of HSS and obtain both positive and
negative results for special cases of interest. In more detail, we make the following contributions.

1.1.1 Optimal-download linear HSS for low-degree polynomials, and applications

We consider information-theoretic HSS when the function class F is the set of degree-d m-variate
polynomials over a finite field F. A standard HSS for this class [BF90, BFKR90] uses k = dt + 1
servers and has download rate of 1/k. By using k ≫ dt servers, a multi-secret extension of Shamir’s
secret sharing scheme [FY92] can be used to get the rate arbitrarily close to 1/d, for sufficiently
large ℓ.2 In Section 3 we give two constructions that obtain a better rate, arbitrarily close to 1.

Our first construction (Theorem 3) is based on the highly redundant CNF sharing [ISN89],
where each input is shared by replicating

(
k
t

)
additive shares. This construction is defined for all

choices of F,m, d, t, ℓ and k > dt, and its rate is determined by the best minimal distance of a linear
code with related parameters. For sufficiently large ℓ this code is an MDS code, in which case the
rate is 1 − dt/k. The main downside of this construction is a

(
k
t

)
overhead to the upload cost.

Settling for computational security, this overhead can be converted into a computational overhead
(which is reasonable in practice for small values of k, t) by using a pseudorandom secret sharing
technique [GI99, CDI05].

Our second construction (Theorem 5) uses Shamir sharing [Sha79], where each input is shared
by evaluating a random degree-t polynomial over an extension field of F at k distinct points. This

2Intuitively, this is because one can use polynomials of degree ≈ k/d to share the secrets (yielding rate ≈ 1/d
when k ≫ dt). A higher degree is not possible because the product of d polynomials should have degree < k to allow
interpolation. See Remark 4 for more details.

2



construction also achieves a download rate of 1− dt/k for sufficiently large ℓ, but here this rate is
achieved with upload cost that scales polynomially with t and the other parameters.

Both constructions are linear in the sense that Share and Rec are linear functions. In Section 3.2
we show that for such linear HSS schemes, 1 − dt/k is the best rate possible, implying optimality
of our schemes.

We compare the above two HSS schemes in Section 3.1.3. Briefly, the Shamir-based scheme
has better upload cost (which scales polynomially with all parameters) but is more restrictive in
its paramater regime: that is, it only yields an optimal scheme in a strict subset of the parameter
settings where the CNF-based scheme is optimal. One may wonder if this is a limitation of our
Shamir-based scheme in particular or a limitation of Shamir sharing in general. We show in
Proposition 1 that it is the latter. That is, there are some parameter regimes where no HSS based
on Shamir sharing can perform as well as an HSS based on CNF sharing.

Applications: High-rate PIR and more. We apply our HSS for low-degree polynomials to
obtain the first information-theoretic private information retrieval (PIR) protocols that simultane-
ously achieve low (sublinear) upload cost and near-optimal download rate that gets arbitrarily close
to 1 when the number of servers grows. A t-private k-server PIR protocol [CGKS98] allows a client
to retrieve a single symbol from a database in YN , which is replicated among the servers, such
that no t servers learn the identity of the retrieved symbol. The typical goal in the PIR literature
is to minimize the communication complexity when Y = {0, 1}. In particular, the communication
complexity should be sublinear in N . Here we consider the case where the database has (long)
ℓ-bit records, namely Y = {0, 1}ℓ. Our goal is to maximize the download rate while keeping the
upload cost sublinear in N . Chor et al. [CGKS98] obtain, for any integers d, t ≥ 1 and k = dt+ 1,
a t-private k-server PIR protocol with upload cost O(N1/d) and download rate 1/k (for sufficiently
large ℓ). This protocol implicitly relies on a simple HSS for degree-d polynomials. Using our high-
rate HSS for degree-d polynomials, by increasing the number of servers k the download rate can
be improved to 1− dt/k (in particular, approach 1 when k ≫ dt+ 1) while maintaining the same
asymptotic upload cost. See Theorem 6 for a formal statement.

It is instructive to compare this application to a recent line of work on the download rate of
PIR. Sun and Jafar [SJ16, SJ17], following [SRR14], have shown that the optimal download rate
of 1-private PIR is (1 − 1/k)/(1 − 1/kN ) (for records of length ℓ ≥ kN ). However, their positive
result has Ω(N) upload cost. We get a slightly worse3 download rate of 1− d/k, where the upload
cost is sublinear for d ≥ 2.

Finally, beyond PIR, HSS for low-degree polynomials can be directly motivated by a variety of
other applications. For instance, an inner product between two integer-valued vectors (a degree-2
function) is a measure of correlation. To amortize the download rate of computing ℓ such corre-
lations, our HSS scheme for degree-2 polynomials over a big field F can be applied. As another
example, the intersection of d sets Si ⊆ [ℓ], each represented by a characteristic vector in Fℓ2, can be
computed by ℓ instances of a degree-d monomial over F2. See [LMS18, ILM21] for more examples.

3Note that our positive result applies also to a stronger variant of amortized PIR, which amortizes over ℓ inde-
pendent instances of PIR with databases in {0, 1}N . In this setting, our construction with d = 1 achieves an optimal
rate of 1 − 1/k (where optimality follows from [SRR14] or from Lemma 3). In Section 1.1.2 below we discuss a
construction of computationally secure PIR that achieves the same rate of 1− 1/k with logarithmic upload cost.
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1.1.2 Black-box rate amplification for additive HSS

The results discussed so far are focused on information-theoretic HSS for a specific function class.
Towards obtaining other kinds of high-rate HSS schemes, in Section 4 we develop a general black-
box transformation technique (Lemma 4) that can improve the download rate of any additive
HSS (where Rec adds up the output shares) by using additional servers. More concretely, the
transformation can obtain a high-rate t-private k-server HSS scheme Π by making a black-box
use of any additive t0-private k0-server Π0, for suitable choices of k0 and t0. The transformation
typically has a small impact on the upload cost and applies to both information-theoretically secure
and computationally secure HSS. While we cannot match the parameters of the HSS for low-degree
polynomials (described above) by using this approach, we can apply it to other function classes
and obtain rate that approaches 1 as k grows.

We present three useful instances of this technique. In the first (Theorem 8), we use Π0 with
k0 =

(
k
t

)
and t0 = k0 − 1 to obtain a t-private k-server HSS Π with rate 1− t/k. Combined with a

computational HSS for circuits from [DHRW16] (which is based on a variant of the Learning With
Errors assumption) this gives a general-purpose computationally t-private HSS with rate 1 − t/k,
approaching 1 when k ≫ t, at the price of upload cost and computational complexity that scale with(
k
t

)
. This should be compared to the 1/(t+1) rate obtained via a direct use of [DHRW16]. Note that,

unlike recent constructions of “rate-1” fully homomorphic encryption schemes [GH19, BDGM19],
here the concrete download rate is independent of the security parameter.

The above transformation is limited in that it requires Π0 to have a high threshold t0, whereas
most computationally secure HSS schemes from the literature are only 1-private. Our second
instance of a black-box transformation (Theorem 9) uses any 1-private 2-server Π0 to obtain a
1-private k-server Π with rate 1 − 1/k. Applying this to HSS schemes from [BGI15, BGI16b],
we get (concretely efficient) 1-private k-server computational PIR schemes with download rate
1− 1/k, based on any pseudorandom generator, with upload cost O(λ logN) (where λ is a security
parameter). We can also apply this transformation to 1-private 2-server HSS schemes from [BGI16a,
OSY21, RS21], obtaining 1-private k-server HSS schemes for branching programs based on number-
theoretic cryptographic assumptions (concretely, DDH or DCR), with rate 1− 1/k.

Our third and final instance of the black-box transformation is motivated by the goal of
information-theoretic PIR with sub-polynomial (No(1)) upload cost and download rate approaching
1. Here the starting point is a 1-private 3-server PIR scheme with sub-polynomial upload cost based
on matching vectors [Yek07, Efr09]. While this scheme is not additive, it can be made additive by
doubling the number of servers. We then (Theorem 11) apply the third variant of the transforma-
tion to the resulting 1-private 6-server PIR scheme, obtaining a 1-private k-server PIR scheme with
sub-polynomial upload cost and rate 1 − 1/Θ(

√
k). Note that here we cannot apply the previous

transformation since k0 = 6 > 2.
We leave open the question of fully characterizing the parameters for which such black-box

transformations exist.

1.1.3 Nonlinear download rate amplification

All of the high-rate HSS schemes considered up to this point have a linear reconstruction function
Rec. Moreover, they all improve the rate of existing baseline schemes by increasing the number of
servers. In Section 5 we study the possibility of circumventing this barrier by relaxing the linearity
requirement, without increasing the number of servers.
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The starting point is the following simple example. Consider the class F of degree-d monomials
(products of d variables) over a field F of size |F| ≈ d. Letting k = d + 1 and t = 1, we have the
following standard “baseline” HSS scheme: Share applies Shamir’s scheme (with t = 1) to each
input; to evaluate a monomial f , Eval (computed locally by each server) multiplies the shares of
the d variables of f ; finally Rec can recover the output by interpolating a degree-d polynomial,
applying a linear function to the output shares. The key observation is that since each input share
is uniformly random over F, the output of Eval is biased towards 0. Concretely, by the choice of
parameters, each output share is 0 except with ≈ 1/e probability. It follows that when amortizing
over ℓ instances, and settling for 2−Ω(ℓ) failure probability, the output of Eval can be compressed
by roughly a factor of e by simply listing all ≈ ℓ/e nonzero entries and their locations.

While this example already circumvents our negative result for linear HSS, it only applies to
evaluating products over a big finite field, which is not useful for any applications we are aware of.
Moreover, this naive compression method does not take advantage of correlations between output
shares. In Theorem 12 we generalize and improve this method by using a variant of Slepian-Wolf
coding tailored to the HSS setting. Note that we cannot use the Slepian-Wolf theorem directly,
because the underlying joint distribution depends on the output of f and is thus not known to each
server. We apply our general methodology to the simple but useful case where f computes the
AND of two input bits. As discussed above, ℓ instances of such f can be motivated by a variant
of the private set intersection problem in which the output client should learn the intersection of
two subsets of [ℓ] whose characteristic vectors are secret-shared between the servers. By applying
Theorem 12 to a 1-private 3-server HSS for AND based on CNF sharing, we show (Corollary 6) that
the download rate can be improved from 1/3 to ≈ 0.376 (with 2−Ω(ℓ) failure probability), which is
the best possible using our general compression method.

Perhaps even more surprisingly, the improved rate can be achieved while ensuring that the
output shares reveal no additional information except the output (Proposition 4). We refer to the
latter feature as symmetric privacy. This should be contrasted with the above example of computing
a monomial over a large field, where the output shares do reveal more than just the output (as
they reveal the product of d degree-1 polynomials that encode the inputs). While symmetric
privacy can be achieved by rerandomizing the output shares—a common technique in protocols
for secure multiparty computation [BGW88, CCD88, CDM00]—this eliminates the possibility for
compression.

Our understanding of the rate of nonlinear HSS is far from being complete. Even for simple
cases such as the AND function, some basic questions remain. Does the compression method of
Theorem 12 yield an optimal rate? Can the failure probability be eliminated? Can symmetric
privacy be achieved with nontrivial rate even when the output client may collude with an input
client? We leave a more systematic study of these questions to future work.

1.2 Technical Overview

Before diving into the details, we give a high level overview of the main ideas used by our results.

1.2.1 Linear HSS for low-degree polynomials

We begin by describing our results in Section 3 for linear HSS. We give positive and negative results;
we start with the positive results.
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HSS for Concatenation. Both of our constructions of linear HSS (the first based on CNF
sharing, the second on Shamir sharing) begin with a solution for the special problem of HSS for
concatenation (Definition 10). Given ℓ inputs x1, . . . , xℓ that are shared separately, the goal is
for the servers to produce output shares (the outputs of Eval) that allow for the joint recovery
of (x1, . . . , xℓ), while still using small communication. Once we have an HSS for concatenation
based on either CNF sharing (Definition 6) or Shamir sharing (Definition 7), an HSS for low-degree
polynomials readily follows by exploiting the specific structure of CNF or Shamir.4

This problem can be viewed as an instance of share conversion. Concretely, the problem is to
locally convert from a linear secret sharing scheme (LSSS) that shares x1, . . . , xℓ separately (via
either CNF or Shamir) to a linear multi-secret sharing scheme (LMSSS) that shares x1, . . . , xℓ
jointly. Thus, our constructions follow by understanding such share conversions.

Construction from CNF sharing. If we begin with CNF sharing, we can completely charac-
terize the best possible share conversions as described above. Because t-private CNF shares can be
locally converted to any ≥ t-private LMSSS (Corollary 1, extending [CDI05] from LSSS to LMSSS),
the above problem of share conversion collapses to the problem of understanding the best rate at-
tainable by an LMSSS with given parameters. It is well-known that LMSSS’s can be constructed
from linear error correcting codes with good dual distance (see, e.g., [Mas95, CCG+07]). However,
in order to construct HSS we are interested only in t-private LMSSS with the property that all k
parties can reconstruct the secret (as opposed to any t+1 parties or some more complicated access
structure), which results in a particularly simple correspondence (Lemma 1, generalizing [GM10]).
This in turn leads to Theorem 2, which characterizes the best possible download rate for any lin-
ear HSS-for-concatenation in terms of the best trade-off between the rate and distance of a linear
code. This theorem gives a characterization (a negative as well as a positive result). The positive
result (when we plug in good codes) gives our CNF-based HSS-for-concatenation, which leads to
Theorem 3, our CNF-based HSS for general low-degree polynomials.

Construction from Shamir sharing. If we begin with Shamir sharing, we can no longer locally
convert to any LMSSS we wish. Instead, we develop a local conversion to a specific LMSSS with
good rate. In order to develop this construction, we leverage ideas from the regenerating codes
literature (see the discussion in Section 1.3 below). Unfortunately, we are not able to use an off-
the-shelf regenerating code for our purposes, but instead we take advantage of some differences
between the HSS setting and the regenerating code setting in order to construct a scheme that
suits our needs. This results in Theorem 4 for HSS-for-concatenation, and then Theorem 5 for HSS
for general low-degree polynomials.

As an application of our Shamir-based construction, we extend information-theoretic PIR pro-
tocols from [CGKS98] to allow better download rate by employing more servers, while maintaining
the same (sublinear) upload cost. This leads to Theorem 6.

Negative results. As mentioned above, Theorem 2 contains both positive and negative results,
with the negative results stemming from negative results about the best possible trade-offs between
the rate and distance of linear codes. This shows that our CNF-based construction is optimal for

4In some parameter regimes, HSS for concatenation with optimal download rate is quite easy to achieve using
other secret sharing schemes, such as the multi-secret extension of Shamir’s scheme due to Franklin and Yung [FY92].
However, this does not suffice for obtaining rate-optimal solutions for polynomials of degree d > 1 (see Remark 4).
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HSS-for-concatenation, but unfortunately does not extend to give a characterization of the best
download rate for HSS for low-degree polynomials. Instead, in Theorem 7, we use a linear-algebraic
argument to show that no linear HSS for degree d polynomials can have download rate better than
1−dt/k. This means that for sufficiently large ℓ, both of our HSS schemes for low-degree polynomials
have an optimal rate.

1.2.2 Black-box rate amplification for additive HSS

Next, we give a brief technical overview of our results in Section 4 on black-box rate amplification
for additive HSS.

The general approach. We show that starting from any t0-private k0-server HSS scheme Π0 with
additive reconstruction (over some finite field), it is possible to construct other t-private k-server
HSS schemes with higher rate. The main observation is that due to the additive reconstruction
property, after the servers perform their evaluation, the output shares form an additive sharing of
the output y = y(1) + . . .+ y(k0) (which is t0-private). By controlling how the shares are replicated
among the servers, each output yi, i = 1, . . . , ℓ, is shared among the servers according to some
LSSS. Hence, at this stage, this becomes a share conversion problem, where we want to convert
separately shared outputs into a high-rate joint LMSSS, which yields our high-rate HSS scheme.

Black-box transformations with large k0. We observe that if k0 =
(
k
t

)
and t0 = k0 − 1, then

we can replicate the shares of Π0 in such a manner that each output y is t-CNF shared among the
servers. Concretely, if y = y(1) + . . . + y(k0), then we can identify each index i = 1, . . . , k0 with a
subset Ti ∈

(
[k]
t

)
, and provide each server j = 1, . . . , k with y(i) if and only if j /∈ Ti, after which the

servers hold a t-CNF sharing of y (Definition 6). Therefore, as in Section 1.1.1, this now reduces
to finding a t-private LMSSS with the best possible rate.

Black-box transformations with k0 = 2. Most computationally secure HSS schemes from the
literature are 1-private 2-server schemes, to which the previous transformation does not apply. Our
second transformation converts any (additive) 1-private 2-server Π0 to a 1-private k-server Π with
rate 1− 1/k. This is obtained by replicating k − 1 pairs of (output) shares among the k servers in
a way that: (1) each server gets only one share from each pair; (2) the servers can locally convert
their shares to a 1-private (k−1)-LMSSS of the outputs of rate 1−1/k. To illustrate this approach

for k = 3, suppose we are given a 2-additive secret sharing for every output yi = y
(1)
i +y

(2)
i , i = 1, 2.

We obtain a 1-private 3-server 2-LMSSS sharing of the outputs with information rate 2/3 in the
following way:

y1

y2

y
(1)
1 , y

(1)
2

y
(2)
1 , y

(1)
2

y
(1)
1 , y

(2)
2

z(1)

z(2)

z(3)

z(1) + z(2) = y1

z(1) + z(3) = y2

y
(1)
1 + y

(1)
2

y
(2)
1 − y

(1)
2

−y(1)1 + y
(2)
2
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Since we need only 3 shares to reconstruct 2 secrets, the rate is 2/3. This can be generalized in a
natural way to k servers and k − 1 outputs.

Sub-polynomial upload cost PIR with high rate. Our third variant of the black-box trans-
formation is motivated by the goal of high-rate information-theoretic PIR with sub-polynomial
upload cost. Unlike the previous parts, here we start with a 1-private 6-server HSS, which has a
lower privacy-to-servers ratio. While we don’t obtain a tight characterization for this parameter
setting, we can reduce the problem to a combinatorial packing problem, which suffices to get rate
approaching 1. Concretely, for a universe {1, . . . , q} we need the largest possible family of subsets
S ⊆

(
[q]
5

)
, such that distinct sets in S have at most a single element in common. Next, we show that

it is possible to associate every set in S with a secret from F, and also every set in S and an element
of the universe {1, . . . , q} with a server, in such a way that the output shares, each an element of F,
constitute a high-rate LMSSS sharing of the outputs. This gives us a rate of 1− q/(q+ |S|). Using
known constructions of subset families as above of size Θ(q2) [EH63], we get a download rate of
1− 1/Θ(q) = 1− 1/Θ(

√
k).

1.2.3 Nonlinear download rate amplification

Finally, we describe our results in Section 5 for nonlinear rate amplification with a small error
probability.

Slepian-Wolf-style Compression. We begin with any HSS scheme Π for a function class F .
Suppose that, sharing a secret x under Π, each server j has an output share (that is, the output of
Eval), zj . The vector z of these output shares is a random variable, over the randomness of Share
and Eval. Thus, if we repeat this ℓ times with ℓ secrets x1, . . . ,xℓ to get ℓ draws z1, z2, . . . , zℓ, we
may hope to compress the sequence of zi’s if, say, H(z) is small.

There are two immediate obstacles to this hope. The first obstacle is that each vector zi is
split between the k servers, with each server holding only one coordinate. The second obstacle is
that the underlying distribution of each zi depends on the secret xi, which is not known to the
reconstruction algorithm. Both of these obstacles can be overcome directly by having each server
compress its shares individually. This trivially gets around the first obstacle, and it gets around
the second because, by t-privacy, the distribution of any one output share does not depend on the
secret. However, we can do better.

The first obstacle has a well-known solution, known as Slepian-Wolf coding. In Slepian-Wolf
coding, a random source z split between k servers as above can be compressed separately by each
server, with download cost for a sequence of length ℓ approaching ℓ ·maxS⊆[k]H(zS |zSc). (Here, zS
denotes the restriction of z to the coordinates in S.) Unfortunately, classical Slepian-Wolf coding
does not work in the face of the second obstacle, that is if the underlying distribution is unknown.

The most immediate attempt to adapting the classical Slepian-Wolf argument to deal with
unknown underlying distributions is to take a large union bound over all |Xm|ℓ possible sequences
of secrets. Unfortunately, this does not work, as the union bound is too big. However, by using
the method of types (see, e.g., [CT06, Section 11.1]), we are able to reduce the union bound to
a manageable size. This results in our main technical theorem of this section, Theorem 12. We
instantiate Theorem 12 with 3-server HSS for the AND function, based on 3-party CNF sharing,
demonstrating how to beat the impossibility result in Theorem 7 even for a simple and well-
motivated instance of HSS.
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Symmetric privacy for free. A useful added feature for HSS is having output shares that
hide all information other than the output. We refer to this as symmetric privacy. The traditional
method of achieving this is by “rerandomizing” the output shares. However, this approach conflicts
with the compression methodology discussed above. Somewhat unexpectedly, we show (Proposi-
tion 4) that our rate-optimized HSS for AND already satisfies the symmetric privacy property.

To give a rough idea why, we start by describing the HSS scheme for AND that we use to
instantiate Theorem 12 in an optimal way. In fact, we describe and analyze a generalization to
multiplying two inputs a, b in a finite field F (the AND scheme is obtained by using F = F2). The
Share function shares each secret using 1-private CNF. Concretely, a is first randomly split into
a = a1 + a2 + a3 and similarly b, and then server j gets the 4 shares ai, bi with i ̸= j. For defining
Eval, we can assign each of the 9 monomials aibj to one of the servers that can evaluate it, and let
each server compute the sum of its assigned monomials. It turns out that the monomial assignment
for which Theorem 12 yields the best rate is the greedy assignment, where each monomial is assigned
to the first server who can evaluate it. Using this assignment, the first and last output shares are
y(1) = (a2 + a3)(b2 + b3) = (a − a1)(b − b1) and y(3) = a1b2 + a2b1. Since y(1) + y(2) + y(3) = ab,
it suffices to show that the joint distribution of (y(1), y(3)) reveals no information about a, b other
than ab.

This can be informally argued as follows. First, viewing y(3) as a randomized function of a1, b1
with randomness a2, b2, the only information revealed by y(3) about a1, b1 is whether a1 = b1 = 0.
Since a2, b2 are independent of (a− a1)(b− b1), the information about (a, b) revealed by (y(1), y(3))
is equivalent to (a− a1)(b− b1) together with the predicate a1 = b1 = 0. Since y(1) is independent
of a, b and is equal to ab conditioned on a1 = b1 = 0, the latter reveals nothing about a, b other
than ab, as required. In the formal proof of symmetric privacy (Proposition 4) we show an explicit
bijection between the randomness leading to the same output shares given two pairs of inputs that
have the same product.

To complement the above, we observe (Proposition 3) that if we use the natural HSS for multipli-
cation based on Shamir’s scheme (namely, locally multiply Shamir shares without rerandomizing),
then symmetric privacy no longer holds. Indeed, in this scheme the output shares determine the
product of two random degree-1 polynomials with free coefficients a and b respectively. Thus, one
can distinguish between the case a = b = 0, in which the product polynomial is of the form αX2,
and the case where a = 0, b = 1, in which the product polynomial typically has a linear term. Note
that the two cases should be indistinguishable, since in both we have ab = 0. The insecurity of ho-
momorphic multiplication without share randomization has already been observed in the literature
on secure multiparty computation [BGW88].

1.3 Related Work

We already mentioned related work on homomorphic secret sharing, fully homomorphic encryption,
private information retrieval, and secure multiparty computation. In the following we briefly survey
related work on regenerating codes and communication-efficient secret sharing.

1.3.1 Regenerating codes

Our Shamir-based HSS scheme is inspired by regenerating codes [DGW+10], and in particular the
work on using Reed-Solomon codes as regenerating codes [SPDC14, GW16, TYB17]. A Reed-
Solomon code of block length k and degree d is the set C = {(p(α1), . . . , p(αk)) : p ∈ F[X],deg(p) ≤

9



d}. A regenerating code, introduced by [DGW+10] in the context of distributed storage, is a
code that allows the recovery of a single erased codeword symbol by downloading not too much
information from the remaining symbols. The goal is to minimize the number of bits downloaded
from the remaining symbols. Thus, a repair scheme for degree dt Reed-Solomon codes immediately
yields an HSS for degree-d polynomials with t-private Shamir-sharing with the same download cost.
It turns out that one can indeed obtain download-optimal HSS schemes for low degree polynomials
this way from the regenerating codes in [TYB17] (see Corollary 2). However, while this result
obtains the optimal download rate of 1 − dt/k, even for ℓ = 1, the field size F must be extremely
large: doubly exponential in the number of servers k. Alternatively, if we would like to share
secrets over F2, for example, the upload cost must be huge (see Remark 3), even worse than CNF.
Moreover, [TYB17] shows that this is unavoidable if we begin with a regenerating code: any linear
repair scheme for Reed-Solomon codes that corresponds to an optimal-rate HSS must have (nearly)
such a large field size. In contrast, our results in Section 3 yield Shamir-based HSS with optimal
download rate and with reasonable field size and upload cost.

The reason that we are able to do better (circumventing the aforementioned negative result of
[TYB17] for Reed-Solomon regenerating codes) is that (a) in HSS we are only required to recover
the secret, while in renegerating codes one must be able to recover any erased codeword symbol
(corresponding to any given share); (b) we allow the shares to be over a larger field than the secret
comes from;5 and (c) we amortize over ℓ > 1 instances.

However, even though we cannot use a regenerating code directly, we use ideas from the re-
generating codes literature. In particular, our scheme can be viewed as one instantiation of the
framework of [GW16] and has ideas similar to those in [TYB17]; again, our situation is simpler
particularly due to (a) above.

We mention a few related works that have also used techniques from regenerating codes. First,
the work [ACE+21] uses regenerating codes, including a version of the scheme from [GW16], in order
to reduce the communication cost per multiplication in secure multiparty computation. Their main
result is a logarithmic-factor improvement in the communication complexity for a natural class of
MPC tasks compared to previous protocols with the same round complexity.6 Second, the recent
work [SW21] studies an extension of regenerating codes (for the special case of Reed-Solomon
codes) where the goal is not to compute a single missing symbol but rather any linear function
of the symbols. While primarily motivated by distributed storage, that result can be viewed as
studying the download cost of HSS for Shamir sharing, in the single-client case where m = 1, and
restricted to linear functions. One main difference of [SW21] from our work is that in [SW21] the
secrets are shared jointly, while in our setting (with several clients) the secrets must be shared
independently. Thus [SW21] does not immediately imply any results in our setting. Finally, the
work [EGKY21] studies the connection between regenerating codes and proactive secret sharing.

5In the regenerating codes setting, this corresponds to moving away from the MSR (Minimum Storage Regenerating
codes) point and towards the MBR (Minimum Bandwidth Regenerating codes) point; see [DRWS11]. To the best of
our knowledge, repair schemes for Reed-Solomon codes have not been studied in this setting.

6One may wonder why [ACE+21] can use a regenerating code while we cannot. The reason is that we are after
optimal download rate. Indeed, one can obtain nontrivial download rate in our setting using a variant of the scheme
in [GW16], which does have a small field size. However, as is necessary for regenerating codes over small fields, the
bandwidth of the regenerating code does not meet the so-called cut-set bound, and correspondingly the download rate
obtained this way is not as good as the optimal 1− dt/k download rate that is achieved with our approach.
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1.3.2 Communication-efficient secret sharing

As noted above, the HSS problem is easier than the general problem of regenerating codes, as we
only need to recover the secret(s), rather than any missing codeword symbol (which corresponds to
recovering any missing share in the HSS setting). As such, one might hope to get away with smaller
field size. In fact, this has been noticed before, and previous work has capitalized on this in the
literature on Communication-Efficient Secret Sharing (CESS) [HLKB16, HB17, BER17, RKV18].
The simplest goal in this literature is to obtain optimal-download-rate HSS for the special case that
F consists only of the identity function; more complicated goals involve (simultaneously) obtaining
the best download rate for any given authorized set of servers (not just [k]); and also being able
to recover missing shares (as in regenerating codes). Most relevant for us, the simplest goal (and
more besides) have been attained, and optimal schemes are known (e.g., [HLKB16]).

However, while related, CESS—even those based on Shamir-like schemes as in [HLKB16]—do
not immediately yield results for HSS, or even for HSS-for-concatenation. The main difference
is that in CESS, the inputs need not be shared separately. For example, when restricted to the
setting of HSS for the identity function, the scheme in [HLKB16] is simply the ℓ-LMSSS described
in Remark 1(b), where the ℓ inputs are interpreted as coefficients of the same polynomial and are
shared jointly.

One exception is the scheme from [HB17], which is directly based on Shamir’s scheme (with only
one input) over a field F. The scheme is linear, and so it immediately yields an HSS for degree-d
polynomials. However, while the download rate approaches optimality as the size of the field F
grows, it is not optimal.7

Organization of the paper. In Section 2, we set notation and formally define the notions of
HSS and LMSSS that we will use. In Section 3, we present our results for linear HSS. In Section 4,
we present our results for black-box rate amplification of additive HSS. Finally, in Section 5, we
present our results for rate amplification using nonlinear reconstruction.

2 Preliminaries

Notation. For an integer n, we use [n] to denote the set {1, 2, . . . , n}. For an object w in
some domain W, we use |w| to denote the number of bits required to write down w. That is,
|w| = log2 |W|. We will only use this notation when the domain is clear. We generally use bold
symbols (like x) to denote vectors.

2.1 Homomorphic Secret Sharing

Throughout the paper we consider HSS schemes with m inputs and k servers; we assume that
each input is shared independently. We would like to compute functions from a function class F
consisting of functions f : Xm → Y, where X and Y are input and output domains, respectively.
Formally, we have the following definition.

7In more detail, the download rate of the t-private, k-server Shamir-based scheme for degree-d polynomials in

[HB17] is
(

k
k−dt

+ k2(k−dt)2

4 log|B| |F|

)−1

, where B is an appropriate subfield of F. In particular, F should be exponentially

large in k before this rate is near-optimal.
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Definition 1 (HSS, modified from [BGI+18]). A k-server HSS for a function family F = {f :
Xm → Y} is a tuple of algorithms Π = (Share,Eval,Rec) with the following syntax:

� Share(x): On input x ∈ X the (randomized) sharing algorithm Share outputs k shares (x(1), . . . , x(k)).
We will sometimes write Share(x, r) to explicitly refer to the randomness r used by Share. We
refer to the x(j) as input shares.

� Eval(f, j, (x
(j)
1 , . . . , x

(j)
m )): On input f ∈ F (evaluated function), j ∈ [k] (server index) and

x
(j)
1 , . . . , x

(j)
m (jth share of each input), the evaluation algorithm Eval outputs y(j), correspond-

ing to server j’s share of f(x1, . . . , xm). We refer to the y(j) as the output shares.

� Rec(y(1), . . . , y(k)): Given y(1), . . . , y(k) (list of output shares), the reconstruction algorithm
Rec computes a final output y ∈ Y.

The algorithms Π = (Share,Eval,Rec) should satisfy the following requirements:

� Correctness: For any m inputs x1, . . . , xm ∈ X and f ∈ F ,

Pr

[
Rec

(
y(1), . . . , y(k)

)
= f(x1, . . . , xm) :

∀i ∈ [m]
(
x
(1)
i , . . . , x

(k)
i

)
← Share(xi)

∀j ∈ [k] y(j) ← Eval(f, j, (x
(j)
1 , . . . , x

(j)
m ))

]
= 1.

If instead the above probability of correctness is at least α for some α ∈ (0, 1) (rather than
being exactly 1), we say that Π is α-correct.

� Security: We say that Π is t-private, if for every T ⊆ [k] of size |T | ≤ t and x, x′ ∈ X , the
distributions (x(j))j∈T and ((x′)(j))j∈T are identical, where x is sampled from Share(x) and
x′ from Share(x′).

While the above definition does not refer to computational complexity, in positive results we
require by default that all of algorithms are polynomial in their input and output length.

A major theme of this work is amortizing the download cost of HSS over ℓ function evaluations.
Informally, there are now ℓ points in Xm, xj = (x1,j , x2,j , . . . , xm,j) for each j ∈ [ℓ], and each input
xi,j is shared separately using Share. The goal is to compute fj(xj) for each j ∈ [ℓ] for some fj ∈ F .
Formally, we can view this as a special case of Definition 1 applied to the following class F ℓ.

Definition 2 (The class F ℓ). Given a function class F that maps Xm to Y, we define F ℓ to be
the function class that maps X ℓm to Yℓ given by

F ℓ := {(xi,j)i∈[m],j∈[ℓ] 7→ (f1(x1), . . . , fℓ(xℓ)) : f1, . . . , fℓ ∈ F}.

Computational HSS. In this work we will be primarily interested in information-theoretic HSS
as in Definition 1. However, in Section 4 we will also be interested in computationally secure
HSS schemes, where the security requirement is relaxed to hold against computationally bounded
distinguishers; we defer a formal definition to Appendix A.

We will be particularly interested in HSS schemes whose sharing and/or reconstruction functions
are linear functions over a finite field, defined as follows.

12



Definition 3 (Linear HSS). Let F be a finite field. We say that an HSS scheme Π = (Share,Eval,Rec)
has linear reconstruction over F if Y = Fb for some integer b ≥ 1; Eval(f, j,x(j)) outputs y(j) ∈ Fbj
for integer bj ≥ 0; and Rec : F

∑
j bj → Fb is an F-linear map. We say that Π has additive re-

construction over F, or simply that Π is additive, if b = bj = 1 for all j and Rec(y(1), . . . , y(k)) =
y(1) + . . .+ y(k).

Finally, we say that Π is linear if it has linear reconstruction and in addition, X = F and
Share(x, r) is an F-linear function of x and a random vector r with i.i.d. uniform entries in F.
Notice that we never require Eval to be linear.

The main focus of this work is on the communication complexity of an HSS scheme. We
formalize this with the following definitions.

Definition 4 (Upload and download costs and rate). Let k, t be integers and let F = {f : Xm → Y}
be a function class. Let Π be a k-server t-private HSS for F . Suppose that the input shares for Π

are x
(j)
i for i ∈ [m], j ∈ [k], and that the output shares are y(1), . . . , y(k). We define

� The upload cost of Π, UploadCost(Π) =
∑m

i=1

∑k
j=1 |x

(j)
i |.

� The download cost of Π, DownloadCost(Π) =
∑k

j=1 |y(j)|.

� The download rate (or just rate) of Π,

Rate(Π) =
log2 |Y|

DownloadCost(Π)

Symmetrically private HSS. Several applications of HSS motivate a symmetrically private
variant in which the output shares (y(1), . . . , y(k)) reveal no additional information about the inputs
beyond the output of f . Any HSS with linear reconstruction (Definition 3) can be modified to meet
this stronger requirement without hurting the download rate (and with only a small increase to the
upload cost) via a simple randomization of the output shares. We further discuss this variant in
Section 5.

Private information retrieval. Some of our HSS results have applications to private informa-
tion retrieval (PIR) [CGKS98]. A t-private k-server PIR protocol allows a client to retrieve a single
symbol from a database in YN , which is replicated among the servers, such that no t servers learn
the identity of the retrieved symbol. Note that such a PIR protocol reduces to a t-private k-server
HSS scheme for the family ALLY of all functions f : [N ]→ Y, where the number of inputs is m = 1.
Indeed, in order to retrieve the i’th symbol f(i) from a database represented by the function f , the
client may use an HSS to share the input x = i among the k servers; each server computes Eval on
their input share and the database and sends the output share back to the client; the client then
runs Rec in order to obtain f(i). The download rate and upload cost of a PIR protocol are defined
as in Definition 4.

2.2 Linear Secret Sharing Schemes

In this section we define and give common examples of (information theoretic) linear secret sharing
schemes (LSSS), with secrets from some finite field F. We consider a generalized linear multi-secret
sharing scheme (LMSSS) notion, which allows one to share multiple secrets.
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Definition 5 (LMSSS). Let Γ, T ⊆ 2[k] be monotone (increasing and decreasing, respectively)8

collections of subsets of [k], so that T ∩ Γ = ∅. A k-party ℓ-LMSSS L over a field F with access
structure Γ and adversary structure T is specified by numbers e, b1, . . . , bk and a linear mapping
Share : Fℓ × Fe → Fb1 × . . .× Fbk so that the following holds.

� Correctness: For any qualified set Q = {j1, . . . , jm} ∈ Γ there exists a linear reconstruc-
tion function RecQ : Fbj1 × . . . × Fbjm → Fℓ such that for every x ∈ Fℓ we have that
Prr∈Fe [RecQ(Share(x, r)Q) = x] = 1, where Share(x, r)Q denotes the restriction of Share(x, r)
to its entries indexed by Q.

� Privacy: For any unqualified set U ∈ T and secrets x,x′ ∈ Fℓ, the random variables
Share(x, r)U and Share(x′, r)U , for uniformly random r ∈ Fe, are identically distributed.

If T contains all sets of size at most t (and possibly more), we say that L is t-private. If ℓ = 1 we
simply call L an LSSS, and we refer to the ℓ-LMSSS obtained via ℓ independent repetitions of L as
ℓ instances of L. Finally, we define the information rate of L to be ℓ/(b1 + . . .+ bk).

Additive sharing is an important example of an LSSS.

Example 1 (Additive sharing). The additive sharing of a secret x ∈ F is a (k − 1)-private LSSS
with Γ = [k], e = k − 1 and bj = 1 for all j ∈ [k]. It is defined as follows.

� Sharing. Let Share(x, r) = (r1, r2, . . . , rk−1, x − r1 − . . . − rk−1). Note that the shares are
uniformly distributed over Fk subject to the restriction that they add up to x.

� Reconstruction. Let Rec[k](x
(1), . . . , x(k)) = x(1) + . . .+ x(k).

We now define two standard LSSS’s and associated ℓ-LMSSS’s we will use in this work: the so-
called “CNF scheme” [ISN89] (also referred to as replicated secret sharing) and Shamir’s scheme [Sha79].

Definition 6 (t-private CNF sharing). The t-private k-party CNF sharing of a secret x ∈ F is an
LSSS with parameters e =

(
k
t

)
− 1 and bj =

(
k−1
t

)
for all j ∈ [k]. (We use t-CNF when k is clear

from the context.) It is defined as follows.

� Sharing. Using a random vector r ∈ Fe, we first additively share x by choosing
(
k
t

)
random

elements of F, xT , so that x =
∑

T⊆[k]:|T |=t xT . Then we define Share(x, r)j = (xT )j ̸∈T for
j ∈ [k].

� Reconstruction. Any t+1 parties together hold all of the additive shares xT , and hence can
recover x. This defines RecQ for |Q| > t.

We note that there is a trivial ℓ-LMSSS variant of t-private CNF sharing, as per Definition 5,
which shares ℓ secrets with ℓ independent instances of CNF sharing.

Definition 7 (t-private Shamir sharing). Let F be a finite field and let E ⊇ F be an extension field
(typically, the smallest extension field so that |E| > k), and suppose that s = [E : F] is the degree of
E over F. Fix distinct evaluation points α0, α1, . . . , αk ∈ E. The t-private, k-party Shamir sharing
of a secret x ∈ F (with respect to E and the αi’s) is an LSSS with parameters e = t · s and bi = s
for all i ∈ [k], defined as follows.

8We say that Γ and T are monotone (increasing and decreasing, respectively) if Q ⊆ Q′ and Q ∈ Γ then Q′ ∈ Γ;
and if T ′ ⊆ T and T ∈ T then T ′ ∈ T .
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� Sharing. Let x ∈ F and let r ∈ Fts. We may view r as specifying t random elements of
E, and we use r to choose a random polynomial p ∈ E[X] so that deg(p) ≤ t and so that
p(α0) = x. Then Share(x, r)j = p(αj).

� Reconstruction. Any t+1 parties together can obtain t+1 evaluation points of the random
polynomial p, and hence can recover x = p(α0) by polynomial interpolation. This constitutes
the Rec function.

Remark 1 (ℓ-LMSSS variants of Shamir sharing). The definition above is for an LSSS (1-LMSSS).
There are several ℓ-LMSSS varints of t-private Shamir sharing. In particular:

(a) The first variant is the trivial ℓ-LMSSS variant of t-private Shamir sharing where each of
ℓ secrets are shared independently. As per Definition 5, we refer to this as “ℓ instances of
t-private Shamir sharing”.

(b) The second (and third) variants are where ℓ = k− t secrets are encoded as different evaluation
points of a polynomial with degree ℓ+ t−1 (requiring |E| > 2k− ℓ), or, alternatively, different
coefficients (requiring |E| > k). These two ℓ-LMSSS variants of Shamir sharing (the first
of which is sometimes referred to as the Franklin-Yung scheme [FY92]) have an information

rate of ℓ log |F|
k log |E| =

1−t/k
s .

Local share conversion. Informally, local share conversion allows the parties to convert from
one LMSSS to another without communication. That is, the conversion maps any valid sharing of
x using a source scheme L to some (not necessarily random) valid sharing of x (more generally,
some function ψ(x)), according to the target scheme L′. Formally, we have the following definition,
which extends the definitions of [CDI05, BIKO12] to multi-secret sharing.

Definition 8 (Local share conversion). Suppose that L = (Share,Rec) is a k-party ℓ-LMSSS with
parameters (e, b1, . . . , bk), and suppose that L′ = (Share′,Rec′) is a k-party ℓ′-LMSSS with param-
eters (e′, b′1, . . . , b

′
k). Let ψ : Fℓ → Fℓ′. A local share conversion from L to L′ with respect to ψ is

given by functions φi : Fbi → Fb′i for i ∈ [k], so that for any secret x ∈ Fℓ, for any r ∈ Fe, there is
some r′ ∈ Fe′ so that

(φ1(Share(x, r)1), . . . , φk(Share(x, r)k)) = Share′(ψ(x), r′).

If there is a local share conversion from L to L′ with respect to ψ, we say that L is locally convertible
with respect to ψ to L′. When ψ is the identity map, we just say that L is locally convertible to L′.

It was shown in [CDI05] that t-private CNF sharing can be locally converted to any LSSS L′
which is (at least) t-private. Formally:

Theorem 1 ([CDI05]). Let L be the t-private k-party CNF LSSS over a finite field F (Definition 6).
Then L is locally convertible (with respect to the identity map ψ) to any t-private LSSS L′ over F.

We will use a natural extension of this idea: that ℓ instances of k-server CNF can be jointly
locally converted to any k-server ℓ-LMSSS with appropriate adversary structure.

Corollary 1. Let L be the k-party ℓ-LMSSS given by ℓ instances of t-CNF secret sharing over F
(Definition 6). Then L is locally convertible to any t-private k-party ℓ-LMSSS L′ over F.
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Proof. Observe that we may obtain an LSSS L′i for each i ∈ [ℓ] from L′ by considering the LSSS
that uses L′ to share (0, . . . , 0, xi, 0, . . . , 0), where xi is in the i′th position. Note that each L′i is
also t-private, by definition of an LMSSS. Now, consider the secret-sharing scheme Li that shares
(0, 0, . . . , 0, xi, 0, . . . , 0) using L; this is just the standard t-CNF LSSS. Thus, we may apply Theorem
1 to locally convert Li to L′i for each i ∈ [ℓ]. Finally, each party adds up element-wise its shares of
all schemes L′i to obtain, by linearity, a sharing of (x1, . . . , xℓ) according to L′.

3 Linear HSS for Low-Degree Polynomials

In this section, we give both positive and negative results for linear HSS for low-degree multivariate
polynomials. Before we get into our results, we state a few useful definitions.

Definition 9. Let m > 0 be an integer and let F be a finite field. We define

POLYd,m(F) = {f ∈ F[X1, . . . , Xm] : deg(f) ≤ d}

to be the class of all m-variate degree-at-most-d polynomials over F. When m and F are clear from
context, we will just write POLYd to refer to POLYd,m(F).

The class POLYℓd may be interesting even when d = 1. In this case, the problem can be reduced
to “HSS for concatenation.” That is, we are given ℓ secrets x1, . . . , xℓ ∈ F, shared separately,
and we must locally convert these shares to small joint shares of x = (x1, . . . , xℓ). (To apply this
towards HSS for POLYℓ1, first locally compute shares of the ℓ outputs from shares of the inputs,
and then apply HSS for concatenation to reconstruct the outputs.) Formally, we have the following
definition.

Definition 10 (HSS for concatenation). Let X be any alphabet and let Y = X ℓ. We define
f : X ℓ → Y to be the identity map, and CONCATℓ(X ) = {f}. We refer to an HSS for CONCATℓ(X )
as HSS for concatenation.

Note that we view m = ℓ as the number of inputs, and so an HSS for concatenation must share
each input xi ∈ X independently. Also note that a linear HSS for CONCATℓ(F) is equivalent to a
linear HSS for POLY1,1(F)ℓ. While HSS for concatenation seems like a basic primitive, to the best
of our knowledge it has not been studied before. In this work we will need HSS-for-concatenation
with specific kinds of Share functions. Without this restriction, the problem has a trivial optimal
solution discussed in the following remark.

Remark 2 (Trivial constructions of HSS-for-concatenation). Given any ℓ-LMSSS L, there is a
simple construction of an HSS-for-concatenation Π = (Share,Eval,Rec) with the same information
rate as L. In more detail, suppose that L has share function Share′ and reconstruction function Rec′.
Given input x ∈ X , we define Share by sharing (x, 0, . . . , 0), . . . , (0, . . . , 0, x) separately using Share′.

Now, suppose the servers are given shares y
(j)
i of inputs xi for i ∈ [ℓ] and j ∈ [k]. Then we define

Eval so that server j’s output share is z(j) =
∑

i y
(j)
i , where y

(j)
i is the part of y

(j)
i corresponding to

the i’th instance of Share′. Finally, we define

Rec(z(1), . . . , z(k)) = Rec′[k](z
(1), . . . , z(k)).

The correctness of this scheme follows from the linearity of Rec′[k].
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While this simple construction results in optimal linear HSS-for-concatenation, our applications
depend on HSS-for-concatenation with particular Share functions (like the LSSS versions of t-CNF
or Shamir). Unfortunately, the share functions arising from natural ℓ-LMSSS schemes (like the
ℓ-LMSSS version of Shamir in Remark 1(b)) will not work in our applications (c.f. Remark 4).

3.1 Constructions of Linear HSS for Low-Degree Polynomials

In this section, we give two constructions of HSS for POLYℓd, one based on CNF sharing in Sec-
tion 3.1.1 and one on Shamir sharing in Section 3.1.2; we will show later in Section 3.2 that both of
these have optimal download rate among linear schemes for sufficiently large ℓ. We further compare
the two schemes in Section 3.1.3, and we work out an application to PIR in Section 3.1.4.

3.1.1 Linear HSS from CNF sharing

Our main result in this section is a tight connection between HSS-for-concatenation (that is, for
CONCATℓ) and linear codes. More precisely, we show in Theorem 2 that the best trade-off between
t and the download rate R for HSS-for-concatenation (assuming that the output of Eval has the
same size for each party) is captured by the best trade-off between distance and rate for certain
linear codes. Then we extend this result to obtain constructions of HSS for POLYℓd.

The basic idea is to begin with CNF sharing, and then use Corollary 1 to convert the CNF
shares to shares of some ℓ-LMSSS L. The final outputs of Eval will be the shares of L, so the total
download rate of the resulting HSS scheme will be the information rate of L. Thus, we need to
study the best t-private ℓ-LMSSS with access structure [k]. To do this, we utilize a connection
between such LMSSS and linear error correcting codes.

Let C ⊆ (Fb)k be an F-linear subspace of (Fb)k. We call C an F-linear code with alphabet Fb
and block-length k.9 We define the rate of such a code C to be

Rate(C) =
dimF(C)

bk

and the distance to be
Dist(C) = min

c ̸=c′∈C
|{i ∈ [k] : ci ̸= c′i}|.

It is well-known that LMSSSs can be obtained from error correcting codes with good dual
distance (see, e.g., [Mas95, CCG+07]). However, in order to construct HSS we are interested only
in LMSSS with access structure Γ = [k], which results in a particularly simple correspondence. We
record this correspondence in the lemma below. (The special case where b = 1 follows from [GM10].)

Lemma 1 (Generalizing Theorem 1 of [GM10]). Let ℓ < bk. There is a t-private k-party ℓ-LMSSS
L over F with shares in Fb and access structure Γ = [k] (in particular, with rate ℓ

kb) if and only if

there is an F-linear code C ⊆ (Fb)k of information rate R ≥ ℓ
kb and distance at least t+ 1.

Proof. We begin with some notation. Given a vector v ∈ Fbk, we will write chop(v) = (v(1),v(2), . . . ,v(k)),
where each v(i) ∈ Fb, to denote the natural way of viewing v as an element of (Fb)k. Similarly,
given H ∈ Fe×bk, we write H = [H(1)|H(2)| · · · |H(k)] where H(i) ∈ Fe×b.

9Codes that are linear over a field F and have alphabet Fb show up often in coding theory; for example, folded
codes and multiplicity codes both have this feature. Moreover, any linear code over Fqb can be viewed as an Fq-linear

code over Fb
q, by replacing each symbol α ∈ Fqb with an appropriate vector in Fb

q.
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Given a matrix H ∈ Fe×kb, we may define a corresponding F-linear code CH ⊂ (Fb)k by

CH := {chop(c) : c ∈ Fbk : Hc = 0}. (1)

Conversely, any F-linear code C ⊆ (Fb)k can be written as CH for some (not necessarily unique)
H ∈ Fe×bk for some e.

Now we prove the “only if” direction of the lemma. Let C ⊆ (Fb)k be a code as in the lemma
statement. By assumption, the dimension of the code is Rkb ≥ ℓ. Since C is linear, we may write
C = CH as in (1) for some full-rank matrix H ∈ Fe×bk, where e = bk(1−R). Let G ∈ Fbk×ℓ be any
matrix so that [G|HT ] ∈ Fbk×(ℓ+e) has rank ℓ + e. Notice that this exists because H is full-rank
and

e+ ℓ = bk(1−R) + ℓ ≤ bk(1−R) + bkR = bk.

Then consider the ℓ-LMSSS L given by

Share(x, r) = chop(Gx+HT r),

where x ∈ Fℓ contains the secrets and r ∈ Fe is a uniformly random vector. We claim that L
is a t-private ℓ-LMSSS with access structure Γ = [k]. To see that it is t-private, note that the
distance of CH implies that there is no vector v ∈ Fbk so that chop(v) has weight at most t (that
is, at most t of the k “chunks” of v are nonzero) and so that Hv = 0. This implies that for
any i1, . . . , it ∈ [k], the matrix [H(i1)|H(i2)| . . . |H(it)] is full rank. This in turn implies that any t
elements of chop(HT r) are uniformly random, which implies that any t elements of Share(x, r) are
uniformly random. Thus L is t-private. The fact that L admits access structure Γ = [k] follows
from the fact that [G|HT ] is full rank.

The “if” direction follows similarly. Suppose we have an ℓ-LMSSS L as in the theorem statement.
From the definition of LMSSS, we may write Share(x, r) = chop(Gx + HT r) for some matrix
G ∈ Fℓ×bk and some matrix H ∈ Fbk×e for some e. Without loss of generality, we may assume
that H has full rank, since otherwise we may replace it with a full rank matrix with fewer rows.
Since L has access structure Γ = [k], the matrix [G|HT ] must have rank ℓ + e. This implies that
e ≤ bk − ℓ. Consider the code CH defined by H. The rate of CH is (bk − e)/(bk) ≥ ℓ/bk, which is
the information rate of L. Finally, by the same logic as above, the fact that L is t-private implies
that CH has distance at least t.

With the connection to error correcting codes established, we can now use well-known construc-
tions of error correcting codes in order to obtain good HSS schemes. We begin with a statement
for HSS for concatenation (Definition 10). Then we will use share conversion from t-private CNF
to dt-private CNF (Lemma 2 below) to extend this to POLYℓd for d > 1.

Theorem 2 (Download rate of HSS-for-concatenation is captured by the distance of linear codes).
Let ℓ, k be integers, and let F be a finite field. Suppose that b > ℓ/k.

There is a t-private, k-server linear HSS for CONCATℓ(F) with output shares in Fb (and hence
with download rate ℓ/(kb)) if and only if there is an F-linear code C ∈ (Fb)k with rate at least ℓ/(kb)
and distance at least t+ 1.

Further, for the “if” direction, the HSS scheme guaranteed by the existence of C uses t-CNF
sharing and has upload cost kℓ

(
k−1
t

)
log2 |F|.
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Proof. For the “if” direction (a code C implies an HSS-for-concatenation Π), we follow the outline
sketched above. Our goal is to share each input xi independently with CNF sharing and to recon-
struct x = (x1, . . . , xℓ) from the outputs of Eval. Let C be a code as in the theorem statement, and
define an HSS Π = (Share,Eval,Rec) as follows.

� Sharing. Let Share(x) = (x(1), . . . ,x(k)) be t-CNF sharing of x, as in Definition 6.

� Evaluation. Given t-CNF shares x(j) = (x
(j)
1 , . . . ,x

(j)
ℓ ) for each j ∈ [k], we use Corollary 1

to locally convert these to shares y(j) ∈ Fb of an ℓ-LMSSS L for the secret x = (x1, . . . , xℓ),
where L is the ℓ-LMSSS that is guaranteed by Lemma 1 and the existence of the code C. We
define Eval(f, j,x(j)) = y(j).

� Reconstruction. By construction, we have

Rec[k](y
(1), . . . ,y(k)) = x,

where Rec[k] is the reconstruction algorithm from L. This defines the reconstruction algorithm
Rec for Π.

The parameters for the “if” and “further” parts of the theorem follow by tracing the parameters
through Corollary 1 and Lemma 1.

Now we prove the “only if” direction. Suppose that Π = (Share,Eval,Rec) is an HSS as in the
theorem statement. Consider the ℓ-LMSSS L that shares x = (x1, . . . , xℓ) ∈ Fℓ as Share′(x, r) =
(y(1), . . . ,y(k)), where y(j) is the j’th output of Eval when x is shared using Share. Since Rec(y(1), . . . ,y(k)) =
x is linear, this secret sharing scheme has a linear reconstruction algorithm. By [Bei96, Claims
4.3, 4.7, 4.9], any secret sharing scheme with a linear reconstruction algorithm is equivalent to a
scheme with a linear share function; this argument can be extended to ℓ-LMSSS. Thus there is
a linear share function Share′′ so that L = (Share′′,Rec) forms a t-private, k-party ℓ-LMSSS with
information rate ℓ/(bk). By Lemma 1, there is a code C ⊆ (Fb)k with distance at least t + 1 and
rate at least ℓ/(bk). This establishes the “only if” direction.

We can easily extend the “if” direction (the construction of HSS) to POLYℓd,m(F) by using the
following lemma, which shows that t-CNF shares of d secrets can be locally converted to valid dt-
CNF shares of the product of the secrets via a suitable assignment of monomials to servers. A similar
monomial assignment technique was used in the contexts of communication complexity [BGKL03],
private information retrieval [BIK05], and secure multiparty computation [Mau06].

Lemma 2. Let L be the d-LMSSS that is given by d instances of t-private, k-party CNF sharing.
Let L′ be the LSSS given by dt-private, k-party CNF sharing. Let ψ(x1, . . . , xd) =

∏d
i=1 xi. Then

L is locally convertible to L′ with respect to ψ.

Proof. We describe the maps φi : Fd(
k−1
t ) → F(

k−1
dt ) for each i ∈ [d] that will define the local share

conversion. Suppose that the original secrets to be shared with L are x1, . . . , xd ∈ F. Under L,
party j’s share consists of y(j) = (xi,S : i ∈ [d], j ̸∈ S), where for S ⊆ [k] of size t, the random
variables xi,S ∈ F are uniformly random so that xi =

∑
S xi,S for all i ∈ [d].

For each set W ⊆ [k] of size |W | ≤ dt, define

yW =
∑

S1,...,Sd:
⋃

i Si=W

d∏
i=1

xi,Si ,
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where the sum is over all sets S1, . . . , Sd ⊆ [k] of size t whose union is exactly W . Notice that

∑
W⊆[k],|W |≤dt

yW =
∑

S1,...,Sd⊂[k]:|Si|=t

d∏
i=1

xi,Si

=

d∏
i=1

 ∑
S⊂[k]:|S|=t

xi,S

 =

d∏
i=1

xi = ψ(x).

Now, for all W ⊂ [k] with |W | ≤ dt, arbitrarily assign to W some set T = T (W ) ⊂ [k] of size
exactly dt, so that W ⊆ T . For T ⊆ [k] of size exactly dt, define

zT =
∑

W :T=T (W )

yW ,

where the sum is over all sets W ⊆ [k] of size at most dt so that T (W ) is equal to T . By the above,
we have ∑

T⊆[k]:|T |=dt

zT = ψ(x).

Further, each party j can locally compute zT for each T so that j ̸∈ T . This is because zT
requires knowledge only of xi,S for i ∈ [d] and for S ⊆ T . If j ̸∈ T , then j ̸∈ S, and therefore xi,S
appears as part of the share y(j). Thus, we define

φj(y
(j)) = (zT : T ⊆ [k], |T | = dt, j ̸∈ T ),

and the shares φj(y
(j)) are legitimate shares of ψ(x) under L′.

Using Lemma 2 along with Theorem 2 implies the following extension to POLYℓd.

Theorem 3 (Download rate of HSS-for-polynomials follows from distance of linear codes). Let
ℓ, t, k, d,m be integers, and let F be a finite field. Suppose that for some integer b > ℓ/k, there
is an F-linear code C ∈ (Fb)k with rate at least ℓ/(kb) and distance at least dt + 1. Then there
is a t-private, k-server linear HSS for POLYd,m(F)ℓ with download rate ℓ/(kb) and upload cost

kℓm
(
k−1
t

)
log2 |F|.

Proof. By linearity, we may assume without loss of generality that the function f ∈ POLYd,m(F)ℓ is
a vector of ℓ monomials given by fr : Fm → F for r ∈ [ℓ], so that that fr is a monomial of degree at
most d. We define a t-private, k-server linear HSS Π′ = (Share′,Eval′,Rec′) for POLYd,m(F)ℓ with
download rate ℓ/(kb) as follows.

Let Π = (Share,Eval,Rec) be the dt-private, k-server linear HSS for CONCATℓ(F) with output
shares in Fb and download rate ℓ/(kb) that is guaranteed by Theorem 2. Consider f ∈ POLYd,m(F)ℓ
of the form described above. For r ∈ [ℓ], let φ1,r, . . . , φk,r be the local share conversion functions
guaranteed by Lemma 2 for the monomial fr.

� Sharing. The Share′ function is t-CNF sharing. Suppose that we share the inputs xi,r for

i ∈ [m] and r ∈ [ℓ] as shares y
(j)
r ∈ Fm(

k−1
t ) for each party j ∈ [k] and each r ∈ [ℓ]. Let

y(j) = (y
(j)
1 , . . . ,y

(j)
ℓ ).
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� Evaluation. Define zj and Eval′ by:

z(j) = Eval′(f, j,y(j)) = Eval(g, j, (φj,1(y
(j)
1 ), . . . , φj,ℓ(y

(j)
ℓ )))

for all j ∈ [k] and for y(j) as above, where g is the identity function.

� Reconstruction. Define

Rec′(z1, . . . , zk) = Rec(z1, . . . , zk).

To see why this is correct, notice that by construction, {φj,r(y(j)
r ) : j ∈ [k]} are dt-CNF shares

of the secret fr(x1,r, . . . , xm,r). Thus, again by construction, the shares z(j) are shares under
some ℓ-LMSSS with reconstruction algorithm Rec for the concatenated secrets (f1(x1), . . . , fℓ(xℓ)).
Therefore, Rec′(z1, . . . , zk) indeed returns (f1(x1), . . . , fℓ(xℓ)), the desired outcome.

Below are some instantiations of Theorem 3 that yield an HSS with high rate. Example 2 gives
an HSS with optimal rate but requires sufficiently large ℓ, while Example 3 has worse rate (and
only works for d = 2), but uses a significantly smaller ℓ.

Example 2. Let ℓ, t, k, d,m be integers, and let F be a finite field. There is a t-private, k-server
linear HSS for POLYd,m(F)ℓ, where Share is t-private CNF over F, with download rate at least
1− dt/k, for any ℓ of the form ℓ = b(k − dt) where b ≥ log|F|(k) is an integer.

Proof. We begin with an observation about the existence of linear codes with good rate/distance
trade-offs (in particular, that meet the Singleton bound).

Fact 1. Let k, b be positive integers, and suppose that F is a finite field with |F| = q. Suppose that
qb ≥ k. For any R ∈ (0, 1) so that kR ∈ Z, there is an F-linear code C ⊂ (Fb)k with rate R and
distance k(1−R) + 1.

Indeed, we may simply take the standard Reed-Solomon code over Fqb , and then concatenate

with the identity code over F, replacing each field element in Fqb with an appropriate vector in Fbq.
To obtain the result, combine Theorem 3 with the concatenated Reed-Solomon code of Fact 1.

We choose a code of rate R = 1 − dt/k and distance dt + 1, and we choose b ≥ log|F|(k) to be
any parameter. As in the theorem statement, we suppose that ℓ = bkR = b(k − dt), so that the
download rate of the resulting HSS is ℓ/(bk) = R.

Example 3. Let ℓ, r,m be integers, and let F be a finite field with |F| = q. There is a 1-private,
(k = (qr − 1)/(q − 1))-server linear HSS for POLY2,m(F)ℓ, where Share is 1-private CNF over F,
with download rate at least 1− r/k = 1−O(logq(k)/k), for ℓ = k − r = k −O(logq(k)).

Proof. We begin with the following fact, which is achieved by Hamming codes.

Fact 2. Let r be a positive integer, suppose that F is a finite field with |F| = q, and set k =
(qr − 1)/(q − 1). There is an F-linear code C ⊂ (F)k with dimension k − r, rate 1 − r/k, and
distance 3.

Combining Theorem 3 with Fact 2 yields the desired result, with ℓ = k − r and download rate
ℓ/k = 1− r/k.
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3.1.2 Linear HSS from Shamir Sharing

Our next construction of linear HSS is based on Shamir sharing (Definition 7). Later in Sec-
tion 3.1.3, we compare this to the CNF-based construction from the previous section.

As noted in Section 1.3, HSS from Shamir sharing is related to work on the use of Reed-Solomon
codes as regenerating codes. In particular, existing results in the regenerating codes literature
immediately imply the following corollary.

Corollary 2 (Follows from [TYB17]). Let k, d,m, t be integers so that k > dt, and let p be prime.
There is a field F of characteristic p and of size |F| = expp(exp(k log k)) so that the following
holds. There is a t-private, k-server HSS for POLYd,m(F) where Share is given by a Shamir scheme
(Definition 7, where both the secrets and the shares lie in F) and where the download rate is 1−dt/k.

Remark 3 (Limitations of regenerating-code based HSS). While Corollary 2 has optimal download
rate, the fact that the field F must be so large makes it impractical. On the one hand, if we take
the corollary as written, so that ℓ = 1, each secret must lie in an extremely large extension field,
with extension degree exponential in k. On the other hand, it is possible to “pack” ℓ = exp(k log k)
secrets over Fp into a single element of the large field F; we do this in our Theorem 5, for example.
However, the problem with this when starting with a regenerating code is that each secret must be
shared independently over the large field F. This means that the upload cost will scale like ℓ2, while
the number of secrets is ℓ. Since ℓ = exp(k log k) is so large, this results in a huge overhead in
upload cost.

Moreover, [TYB17] shows that a field size nearly this large is necessary for any optimal-download
linear repair scheme for Reed-Solomon codes. Thus, we cannot hope to obtain a practical Shamir-
based HSS with optimal download rate in a black-box way from regenerating codes.

In light of Remark 3, rather than using an off-the-shelf regenerating code, we adapt ideas
from the regenerating codes literature to our purpose. In particular, our approach is inspired by
[GW16, TYB17] (and is in fact much simpler). Mirroring our approach for CNF-based sharing, our
main tool is an HSS-for-concatenation scheme that begins with Shamir sharing.

Theorem 4 (HSS-for-concatenation from Shamir). Let t < k be any integers and let ℓ = k − t.
Let F be any finite field with |F| ≥ k and let E be an extension field of F of size |F|ℓ. There is an
LSSS L given by t-private k-party Shamir secret sharing with secrets in F and shares in E (as in
Definition 7) so that the following holds.

There is a t-private, k-party, linear (over F) HSS Π = (Share,Eval,Rec) for CONCATℓ(F) so
that Share is given by L, and the outputs of Eval are elements of F. In particular, the download
rate is 1− t/k.

Proof. Let E be an extension field of F so that |E| = |F|ℓ. Let γ be a primitive element of E over F.
We choose L to be the Shamir scheme with secrets in F, shares in E, and evaluation points α0 = γ
and any α1, . . . , αk ∈ F, using the notation of Definition 7.

Given L, we define Share, Eval, and Rec below.

� Sharing. The share function for Π is the same as that for L, and is thus given by Share(xi)j =
pi(αj), where pi ∈ E[X] is a random polynomial of degree at most t, so that pi(α0) = xi. Let
z(j) := (p1(αj), . . . , pℓ(αj)).
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� Evaluation. First, we bundle together the ℓ shares to form one Shamir sharing over the
larger field E. In more detail, let y =

∑ℓ
i=1 xiγ

i ∈ E, and define f(X) ∈ E by

f(X) =

ℓ∑
i=1

pi(X)γi.

Note that f(X) is a degree-t polynomial in E[X], and that

f(γ) =

ℓ∑
i=1

pi(γ)γ
i =

ℓ∑
i=1

xiγ
i = y.

Thus, if each server j locally computes z(j) = f(αj) ∈ E from its shares, they now have a
valid Shamir sharing over E of the secret y ∈ E.
Since ℓ = k − t, for any polynomial f ∈ E[X] of degree at most t, and any r ∈ [ℓ], we have
deg(Xr−1 ·f(X)) ≤ (k− t−1)+ t = k−1. Thus, for each r ∈ [ℓ], there is a linear relationship
between the k+1 evaluations αr−1

1 f(α1), . . . , α
r−1
k f(αk) and γ

r−1f(γ), in the sense that there
are some coefficients λi ∈ E (independent of f and r) so that for any f ∈ E[X] of degree at
most t, and any r ∈ [ℓ],

γr−1f(γ) =
k∑
i=1

λiα
r−1
i f(αi).

Define
w(j) = tr(λjf(αj)),

where tr(·) denotes the field trace of E over F, defined as tr(X) =
∑ℓ−1

i=0 X
|F|i . We define

Eval(f, j, z(j)) = w(j).

Notice that w(j) ∈ F, since the image of tr is F.

� Reconstruction. Suppose we are given w(1), . . . , w(k) produced by Eval. Our goal is to
recover (x1, . . . , xℓ) ∈ Fℓ in an F-linear way.
Since tr is F-linear and αj ∈ F for all j ∈ [k], we have for all r ∈ [ℓ] that

tr(γr−1f(γ)) = tr

 k∑
j=1

λjα
r−1
j f(αj)


=

k∑
j=1

αr−1
j tr(λjf(αj))

=
k∑
j=1

αr−1
j w(j)

Therefore, there is an F-linear map to recover each tr(γr−1f(γ)) for r ∈ [ℓ], given the shares
w(j). Since γ0, . . . , γℓ−1 form a basis for E over F, there is also an F-linear function that
recovers f(γ) = y from tr(γr−1f(γ)) for r ∈ [ℓ]. Finally, since y is defined as y =

∑ℓ
j=1 xiγ

i
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and γ, γ2, . . . , γℓ form a basis for E over F, there is an F-linear map to recover the coefficients
xi from y. Composing all of these, we see that there is an F-linear map that can recover
(x1, . . . , xℓ) given the shares w(1), . . . , w(k). This map will be Rec.

Finally, we observe that the information rate of L is ℓ
k = 1− t/k, as there are ℓ = t−k elements

of F that are shared as k elements of F.

In order to extend Theorem 4 to an HSS for POLYℓd, we will use the well-known local multipli-
cation property of Shamir sharing (e.g., [BGW88, CCD88, CDM00]).

Fact 3. Let F ≤ E be finite fields and let α0, . . . , αk ∈ E be distinct. Let L be the d-LMSSS that
is given by d instances of the t-private, k-party Shamir sharing scheme with secrets in F, shares in
E, and evaluation points (α0, . . . , αk) (Definition 7). Let L′ be the LSSS given by the dt-private,
k-party Shamir sharing scheme with the same specifications. Let ψ(x1, . . . , xd) =

∏d
i=1 xi. Then L

is locally convertible to L′ with respect to ψ.

Remark 4 (Comparison of Theorem 4 to the straightforward scheme). As noted in Remark 2, there
is a straightforward HSS-for-concatenation with a different version of Shamir sharing, which arises
from the ℓ-LMSSS of Franklin-Yung [FY92] (Remark 1(b)). This scheme matches the parameters
of Theorem 4 (and in particular is optimal for the parameters to which it applies). However, we
cannot use that straightforward scheme for our next step, which is to generalize to POLYℓd. The
reason is that the generalization uses Fact 3. This fact is not true for the sharing that arises from
Remark 2, since to ensure t-privacy, the degree of the polynomials used to share must be t+ ℓ− 1,
rather than t.

By combining Fact 3 with Theorem 4 we conclude the following.

Theorem 5 (HSS-for-polynomials from Shamir). Let F be a finite field. Let m be a positive integer.
Let b ≥ log|F|(k) be a positive integer and let ℓ = b(k − dt). There is a t-private k-server linear

HSS Π = (Share,Eval,Rec) for POLYd,m(F)ℓ so that Share is Shamir sharing (Definition 7), where
the upload cost is kmb2(k − dt)2 log2 |F|, and the download cost is kb log2 |F|. Consequently, the
download rate is 1− dt/k.

Proof. We first observe that a proof nearly identical to the proof of the first part of Theorem 3
establishes the theorem for b = 1, if it holds that |F| ≥ k. (Indeed, we use Theorem 4 rather
than Theorem 1 for the HSS-for-concatenation, and Fact 3 rather than Lemma 2 for the share
conversion.) To see the upload and download costs for the b = 1 case, notice that each server
j ∈ [k] holds as an input share an element of E (as in the statement of Theorem 4), which is
log2 |E| = ℓ log2 |F| bits. Thus the upload cost is kmℓ2 log2 |F| = km(k − dt)2 log2 |F| bits. Each
output share is a single element of F, so the download cost is k log2 |F|. Thus, the download rate is

ℓ log2 |F|
k log2 |F|

= 1− dt/k,

as desired.
In order to prove the theorem for b ≥ 1 (and hence possibly for |F| < k), let F̃ be an extension

field of F of degree b, so that |F̃| = |F|b ≥ k. Let γ be a primitive element of F̃ over F. Then let
Π′ = (Share′,Eval′,Rec′) be the HSS scheme over F̃ guaranteed by the b = 1 case by the above, for
ℓ̃ = k − dt. We will define Π = (Share,Eval,Rec) as follows.
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� Sharing. Suppose the inputs to Π are x1, . . . ,xℓ ∈ Fm. Organize these inputs as xi,r for
i ∈ [b] and r ∈ [ℓ̃]. The Share function shares each xi,r independently by applying Share′ to

(xi,r)r∈[ℓ̃] independently for each i ∈ [b]. Suppose that these input shares are given by y
(j)
i,r ∈ F̃

for each i ∈ [b], r ∈ [ℓ̃] and for each server j ∈ [k].

� Evaluation. For f ∈ POLYd,m(F)ℓ given by (f1, . . . , fℓ) and re-organized as (fi,r)i∈[b],r∈[ℓ̃],
define

z(j) := Eval(f, j, (y
(j)
i,r )i∈[b],r∈[ℓ̃]) =

∑
i∈[b]

Eval′(f, j, (y
(j)
i,r )r∈[ℓ̃])γ

i,

so that z(j) ∈ F̃.

� Reconstruction. Suppose the output shares are z1, . . . , zk as above. Then by linearity and
the correctness of Rec′,

Rec′(z(1), . . . , z(k)) =
∑
i∈[b]

γiRec′(Eval′(f, j, ((y
(j)
i,r )r∈[ℓ̃])j∈[k]))

=
∑
i∈[b]

γi(fi,r(xi,r))r∈[ℓ̃].

Since γ, γ2, . . . , γb form a basis of F̃ over F, and since (fi,r(xi,r)r∈[ℓ̃] ∈ Fℓ̃, given this, we can

recover all of the vectors (f(xi,r)r∈[ℓ̃] ∈ Fℓ̃ for all i ∈ [b]. Thus we, after re-arranging, we have

assembled (fs(xs))s∈[ℓ], as desired. This defines Rec.

It remains to verify the upload and download costs. The upload cost is b times the upload cost
for Π′, for a total of

b · km(k − dt)2 log2 |F̃| = b2km(k − dt)2 log2 |F|.

The download cost is the same as the download cost for Π′, which is

k log2 |F̃| = kb log2 |F|.

Consequently, the download rate is

ℓ log2 |F|
kb log2 |F|

= 1− dt/k.

Finally, note that if b is a multiple of ⌈log|F|(k)⌉ in Theorem 5, then the upload cost can

be improved to kmb⌈log|F|(k)⌉(k − dt)2 log2 |F|. This is achieved by initializing the scheme from
Theorem 5 with b = ⌈log|F|(k)⌉, and then repeating it b/⌈log|F|(k)⌉ times.

3.1.3 Comparison between CNF-based HSS and Shamir-based HSS

In this section we comment briefly on the differences between Theorem 3 and Theorem 5 in par-
ticular and on the differences between CNF and Shamir sharing more generally.
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Comparison of our HSS schemes. For simplicity, we focus on our schemes for HSS-for-
concatenation (Theorems 2 and 4), and the case where m = 1 and where the Eval functions of
both schemes output a single element of the same field (that is, b = 1). Thus, there are only two
parameters to adjust: the number of parties k and the privacy t. The goal is to maximize the
download rate (or equivalently to minimize the number of repetitions ℓ).

Note that for our Shamir-based HSS, the download rate is 1 − t/k whenever the scheme is
defined, and in particular when b = 1 we always take ℓ = k − t and enforce |F| ≥ k. Note that
our CNF-based HSS scheme is defined for any field and any ℓ, since linear codes exist for all such
choices.

Both our CNF-based HSS and our Shamir-based HSS achieve the optimal download rate 1−t/k
when they are both defined, but there are three important differences.

� Upload cost. The main advantage of the Shamir-based HSS (Theorem 4) is that the upload
cost is smaller: when ℓ = k− t (so that our Shamir-based HSS exists), the upload cost for our
Shamir-based HSS is k(k − t)2 log2 |F| bits, while the upload cost for our CNF-based HSS is
k(k − t)

(
k−1
t

)
log2 |F| bits. Thus, the Shamir-based HSS has a smaller upload cost whenever

k − t <
(
k−1
t

)
.

� Flexibility. The main advantage of our CNF-based HSS is that the parameter regime in
which it is defined is much less restrictive. More concretely, the Shamir-based HSS requires
that the field F have size at least k (when b = 1 as we consider here), and it requires ℓ ≥ k− t.
In contrast, the CNF-based HSS applies for any ℓ and over any field, as linear codes of rate
ℓ/(kb) exist for any ℓ over any field.

� Download rate. As mentioned above, whenever the Shamir-based HSS is defined, both
schemes have the same (optimal) download rate. However, the CNF-based HSS applies more
generally, and in the case of HSS-for-concatenation has optimal rate for any linear HSS
whenever it is defined, as per Theorem 2.

In order to get a meaningful comparison between our two HSS constructions, one can try to
apply the Shamir-based HSS over a field of size less than k by embedding the secrets into a
field K ≥ F, where |K| ≥ k. When we do this, the CNF-based HSS attains a strictly better
download rate.

For example, suppose that F = F2, and t = 2, and suppose for simplicity that k = 2r − 1 for
some r. Furthermore, suppose that we only allow ℓ ≤ k. In this case, the best CNF-based HSS
is given by the best binary linear code with distance 3 and length 2r − 1, as per Theorem 2.
This is the Hamming code of length 2r − 1 (see Fact 2). Translating the parameters of the
Hamming code to HSS, the CNF-based HSS has ℓ = k − r and hence download rate

1− r

k
≈ 1− log k

k
.

In contrast, the Shamir-based HSS has ℓ = k − 2 (recalling that t = 2 for this comparison),
but is working over a bigger field of size 2r and so has download rate

1− t/k
r

≈ 1− 2/k

log k
.
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Comparison of CNF and Shamir sharing, with any HSS scheme. One may wonder
whether there is an inherent limitation to Shamir sharing relative to CNF sharing. That is, could it
be possible that some HSS based on Shamir sharing can match the performance of our CNF-based
sharing scheme?

More precisely, we ask if there is a Shamir-based HSS that can match the performance of our
CNF-based HSS, where the field E that the Shamir shares lie in is the smallest such that |E| > k
(aka, the smallest so that Shamir sharing is defined). The reason to phrase the question this way
is that if we allowed E to be arbitrarily large, it might be the case that the Shamir-based HSS had
a larger share size than the CNF-based HSS, undoing the advantage of the Shamir-based HSS.

It turns out that the answer to this question can be “no,” as the following example shows.

Proposition 1. Consider the problem of constructing 1-private 5-server HSS for CONCAT4(F2).
There is a F2-linear HSS that solves this problem with CNF sharing and download cost 5 bits

(that is, one bit per server). However, there is no F2-linear HSS that solves this problem with Shamir
sharing and with download cost 5, where each of the 5 secrets in F = F2 are shared independently
over E = F8.

We defer the proof of Proposition 1 to Appendix B. Briefly, the possibility result (that is, that
there is such a CNF-based HSS) follows from an example of such a scheme. The impossibility result
(that is, that there is no such Shamir-based HSS) follows from a computer search. Naively such a
search (for example, over all sets of k = 5 linear functions from F4

8 → F2) is not computationally
tractable. Instead we first analytically reduce the problem to one that is tractable, and then run
the search.

Notice that the share size per server is 16 bits with CNF, and 12 bits with Shamir (when the
shares are in F8). In particular, if E were any larger extension field of F2 than F8, the Shamir
scheme an upload cost at least as large as the CNF scheme. Thus, the example when E = F8 is the
most generous for Shamir-based HSS if we demand that the Shamir-based HSS still has an upload
cost advantage.

3.1.4 Application to Private Information Retrieval

As a simple application of HSS for low-degree polynomials, we extend the information-theoretic
PIR protocol from [CGKS98] to allow better download rate by employing more servers, while
maintaining the same (sublinear) upload cost.

Theorem 6 (PIR with sublinear upload cost and high download rate). For all integers d, t, k, w > 0,
such that dt+1 ≤ k, there is a t-private k-server PIR protocol for (w · (k− dt) · ⌈log2 k⌉)-bit record
databases of size N such that:

� The upload cost is O(k3 log k ·N1/d) bits;

� The download cost is wk⌈log2 k⌉ bits. Consequently, the rate of the PIR is 1− dt/k.

Proof. Without loss of generality, assume w = 1, as the scheme can be repeated to apply for
arbitrary w. To this end, we view the database of size N as k − dt vectors (Di,1, . . . , Di,N ) ∈
(F2⌈log2 k⌉)N , i = 1, . . . , k − dt, such that each record with index j ∈ [N ] in the database consists
of (D1,j , D2,j , . . . , Dk−dt,j). Next, fix an injective mapping η : [N ] → W (d,m), where W (d,m) is
the set of all vectors from {0, 1}m with Hamming weight d, m > 0 is the smallest integer such that
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N ≤
(
m
d

)
. In addition, for j ∈ [N ] and ℓ ∈ [d] let η(j)ℓ denote the ℓ’th nonzero coordinate of η(j).

Furthermore, for i = 1, . . . , k − dt define the polynomial over F2⌈log2 k⌉ [z1, . . . , zm]:

pi(z1, . . . , zm) =
N∑
j=1

Di,j · zη(j)1 · · · zη(j)d

Now, notice that the polynomials p1, . . . , pk−dt jointly encode the database, in the sense that for
every j ∈ [N ], i = 1, . . . , k − dt we have pi(η(j)) = Di,j .

Let Π be the t-private k-server HSS from Theorem 5 for POLYd,m(F2⌈log2 k⌉)(k−dt) (with the
choice of b = 1). Suppose that the client wishes to recover the j’th record (D1,j , D2,j , . . . , Dk−dt,j).
By construction, the client needs to receive the evaluation of all k − dt polynomials pi on point
η(j). Thus, the client uses Π to share the η(j) among the k servers; t-privacy of the PIR protocol
follows from t-privacy of Π. Next, the servers each compute their output shares according to Π
and return them to the client. The client runs Π’s reconstruction algorithm to recover pi(η(j)) for
each i. This determines the j’th record as noted above.

By the guarantees of Theorem 5, the upload cost is k ·m · (k−dt)2 · ⌈log2 k⌉ = O(k3 log k ·N1/d),
as m = O(N1/d). In addition, the download cost is wk⌈log2 k⌉ bits.

3.2 Negative Results for Linear HSS

In Section 3.1.1, we obtained linear HSS schemes for POLYd,m(F)ℓ with rate 1 − dt/k. Our main
result in this section, Theorem 7, shows that this bound is tight for linear HSS. In particular, this
implies that for linear HSS, there is an inherent overhead for polynomials of larger degree in terms
of download cost or rate.

Moreover, we also provide some simple negative results that (a) strengthen the bound of The-
orem 7 for linear HSS-for-concatenation for specific parameters (Proposition 3), and (b) provide a
negative result for general (not necessarily linear) HSS, which is tight for d = 1 (Theorem 3).

Theorem 7. Let t, k, d,m, ℓ be positive integers so that m ≥ d. Let F be any finite field. Let
Π = (Share,Eval,Rec) be a t-private k-server linear HSS for POLYd,m(F)ℓ. Then dt < k, and the
download cost of Π is at least kℓ log2 |F|/(k− dt). Consequently, the download rate of Π is at most
1− dt/k.

Remark 5. An inspection of the proof shows that Theorem 7 still holds if Rec is allowed to be
linear over some subfield B of F, rather than over F itself.

Proof of Theorem 7. Suppose that Π = (Share,Eval,Rec) is a t-private k-server linear HSS scheme
for POLYℓd. By the definition of linearity (Definition 3) and of POLYℓd (Definition 9), we have
X = Y = F for some finite field F; Share(·) is linear over F; each output share y(j) (output of Eval)
is an element of Fbj for some bj ≥ 0; and Rec : F

∑
j bj → Fℓ is linear over F. Suppose without loss

of generality that b1 ≤ b2 ≤ · · · ≤ bk.
Without loss of generality, we may assume that Share is t-CNF sharing; indeed, by Theorem 1,

t-CNF shares can be locally converted to shares of any t-private secret-sharing scheme with a linear
Share function.

Also without loss of generality, it suffices to show an impossibility result for the special case
where there are dℓ inputs, and the HSS is for the class F ℓ, where F consists only of the monomial
f(x1, . . . , xd) =

∏d
i=1 xi. Indeed, this is because F ⊂ POLYd.
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Suppose that the secrets are xi,r for i ∈ [d] and for r ∈ [ℓ], so that we want to compute
∏d
i=1 xi,r

for each r ∈ [ℓ]. In order to share them according to t-CNF (Definition 6), we choose random
XS
i,r ∈ F for all i ∈ [d], r ∈ [ℓ], and all S ⊂ [k] of size t, so that for all i, r,

xi,r =
∑
S

XS
i,r, (2)

where the sum is over all sets S ⊂ [k] of size t. Then server j receives the input share x(j) = (XS
i,r :

j ̸∈ S) and generates an output share y(j) ∈ Fbj via the Eval map.

We may treat each output share y(j) as a vector of polynomials p(j)(X) = (p
(j)
1 (X), . . . , p

(j)
bj

(X))

in the variables X = (XS
i,r)i∈[d],r∈[ℓ],S⊂[k] with |S|=t. Since Rec is F-linear, there are some vectors

v
(j)
r ∈ Fbj for each j ∈ [k], r ∈ [ℓ] so that the r’th output of Rec(y(1), . . . ,y(k)) is given by

pr(X) :=
k∑
j=1

⟨v(j)
r ,p(j)(X)⟩. (3)

By the correctness of Π, this output must be equal to
∏d
i=1 xi,r. Plugging in (2), this reads

pr(X) =
∑

S1,...,Sd

(
d∏
i=1

XSi
i,r

)
, (4)

where the sum is over all choices of S1, . . . , Sd ⊂ [k] of size t. Define ℓ polynomials wr(X) by

wr(X) =

k−dt∑
j=1

⟨v(j)
r ,p(j)(X)⟩

for r ∈ [ℓ]. We will show below in Claim 1 that, on the one hand, the wr are linearly independent

over F; but on the other hand, they are all clearly contained in a
(∑k−dt

j=1 bj

)
-dimensional subspace,

spanned by the polynomials p
(j)
h (X) for j ∈ [k − dt] and h ∈ [bj ] (recalling that p(j) = (p

(j)
h )h∈[bj ]).

This implies that

ℓ ≤
k−dt∑
j=1

bj ≤ max

0,
k − dt
k

k∑
j=1

bj

 ,

where we have used the assumption that b1 ≤ b2 ≤ · · · ≤ bk. Rearranging (and using the fact that
ℓ > 0), this implies that dt < k and that the scheme downloads at least

k∑
j=1

bj ≥ ℓ
(

k

k − dt

)

symbols of F, or at least kℓ log2 |F|/(k − dt) bits, which will prove the theorem.
Thus, it suffices to prove the following claim.

Claim 1. The polynomials wr(X) are linearly independent over F.
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Proof. Choose sets S∗
1 , S

∗
2 , . . . , S

∗
d ⊆ [k] with |S∗

i | = t so that

d⋃
i=1

S∗
i = {k − dt+ 1, k − dt+ 2, . . . , k}.

If dt < k, then the S∗
i can be any sets that cover the last dt elements of [k]. Then consider the

monomial

Mr(X) :=
d∏
i=1

X
S∗
i

i,r

for r ∈ [ℓ]. From (4), we see that Mr(X) appears in pr(X). However, since for all j > k − dt there
exists i ∈ [d] such that j ∈ S∗

i , Mr(X) cannot appear in p(j)(X) for any j > k − dt. Then (3)
implies that Mr(X) must appear in wr(X).

Further, for any r′ ̸= r, Mr(X) cannot appear in wr′(X). Indeed, since Mr(X) does not appear
in pr′(X) (from (4)), if Mr(X) appeared in wr′(X), then (3) implies that it must be canceled by a
contribution by some p(j)(X) for j > k − dt. But, as above, Mr(X) cannot appear in p(j)(X).

Thus, each Mr(X) appears in wr′(X) if and only if r′ = r. Since the monomials Mr(X) are
linearly independent over F, this implies that the polynomials wr(X) are also linearly independent
over F. This proves the claim.

With the claim proved, the theorem follows.

Theorem 7 implies that any linear HSS scheme for concatenation must have download rate at
most 1− t/k. As we have seen, this is achievable in some parameter regimes, but it turns out that
it is not achievable for all parameter regimes. In particular, in the corollary below, we observe that
Theorem 2 immediately rules this out, based on known bounds on the distance of linear codes.

Corollary 3. Let k, b, t, ℓ be integers so that ℓ < kb − 1. Suppose that Π is a linear t-private
k-server HSS for CONCATℓ(F) with output shares in Fb, and suppose that |F|b < k/2. Then the
download rate of Π is strictly less than 1− t/k.

Proof. It is known (see, e.g., [Bal12]) that any linear code C of length k over an alphabet of
size q < k/2 with dim(C) < k − 1 cannot achieve the Singleton bound; that is, we must have
dim(C) < k −Dist(C) + 1. Thus, Theorem 2 implies the corollary.

Finally, we note that for general (not necessarily linear) information-theoretic HSS, one can also
show a negative result that implies that some degredation in rate is inevitable for larger security
thresholds t. However, this result does not depend on the complexity of F , and in fact applies
to families F with only one function in them. The proof below is similar to one that appears in
[HLKB16] for low-bandwidth secret sharing.

Lemma 3 (Similar to Prop. 1 in [HLKB16]). Let Π be any t-private k-server HSS for a function
class F with output alphabet Y, so that there is some f ∈ F with Im(f) = Y. Then Π must have

download cost at least k log2 |Y|
k−t . Consequently, its download rate is at most 1− t/k.

Proof. Fix a function f ∈ F so that Im(f) = Y. Choose a secret x ∈ Xm randomly, according
to some distribution so that f(x) is uniformly distributed in Y. (Such a distribution exists since
the image of f is Y). Suppose that y(1), . . . , y(k) are the output shares (outputs of Eval), so that

30



y(j) ∈ {0, 1}bj is bj bits long. Assume without loss of generality that b1 ≥ b2 ≥ · · · ≥ bk. Then we
have

H(x) = H(x|y(1), . . . , y(t)) (5)

≤ H(x, y(t+1), . . . , y(k)|y(1), . . . , y(t))
= H(x|y(1), . . . , y(k)) +H(y(t+1), . . . , y(k)|y(1), . . . , y(t)) (6)

≤ H(x|f(x)) +H(y(t+1), . . . , y(k)), (7)

where (5) follows from t-privacy, (6) follows from the chain rule for conditional entropy, and (7)
follows from the facts that y(1), . . . , y(k) determine f(x) and that H(A|B) ≤ H(A|g(B)) for any
function g and any random variablesA,B. Rearranging and using the fact thatH(y(t+1), . . . , y(k)) ≤
b(t+1) + . . .+ b(k), we conclude that

H(x)−H(x|f(x)) ≤ H(y(t+1), . . . , y(k)) ≤ bt+1 + · · ·+ bk ≤
k − t
k

(b1 + · · ·+ bk),

using the assumption that b1 ≥ b2 ≥ · · · ≥ bk. Finally, we have

H(x)−H(x|f(x)) = I(x; f(x)) = H(f(x))−H(f(x)|x) = H(f(x)),

because since f is fixed, H(f(x)|x) = 0. We conclude that

H(f(x)) ≤ k − t
k

(b1 + · · ·+ bk).

Since f(x) is uniform in Y, we have H(f(x)) = log2 |Y|, and re-arranging we see that

b1 + · · ·+ bk ≥
k log2 |Y|
k − t

,

as desired.

4 Black-Box Rate Amplification

In this section we present a generic rate amplification technique for HSS. More concretely, we show
how to make a black-box use of any t0-private k0-server HSS scheme Π0 = (Share0,Eval0,Rec0)
for F with additive reconstruction (see Definition 3) to obtain a t-private k-server HSS scheme
Π = (Share,Eval,Rec) (where t/k < t0/k0) for F ℓ with better download rate and similar upload
cost. This construction can be applied, with useful corollaries, to both information-theoretic and
computational HSS.

After laying out the general approach (Lemma 4), we present the three useful instances of
this technique discussed in the introduction. First, in Section 4.1 we obtain a general-purpose
(computationally) t-private k-server HSS Π with rate 1− t/k. Second, in Section 4.2, we show how
to transform any 1-private 2-server HSS scheme Π0 into a 1-private k-server HSS scheme Π with
rate 1 − 1/k, and obtain high-rate computationally secure PIR and HSS. Finally, in Section 4.3,
we obtain (information theoretic) PIR with sub-polynomial (No(1)) upload cost and download rate
approaching 1.
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The general approach. Let Π0 = (Share0,Eval0,Rec0) be a t0-private, k0-server HSS for F with
additive reconstruction over F. We will construct a t-private, k-server HSS Π for F ℓ, using Π0 as
a black box. Suppose that we have inputs x1, . . . ,xℓ and we wish to compute (f1(x1), . . . , fℓ(xℓ)),
for fi ∈ F . The general paradigm proceeds as follows:

1. Using Share0, we share the inputs as input shares x
(v)
i , for i ∈ [ℓ], v ∈ [k0]. In order to define

Share in Π, these input shares x
(v)
i are replicated, somehow, between the k servers.

2. Each server j ∈ [k] applies Eval0 to the input shares x
(v)
i that they hold, to obtain output

shares y
(v)
i . Thus, (y

(v)
i )v∈[k0] are additive shares of fi(xi):

∑
v∈[k0] y

(v)
i = fi(xi). Now each

server j holds some collection Y(j) of the y
(v)
i . These Y(j) form shares of (f1(x1), . . . , fℓ(xℓ))

under some ℓ-LMSSS L0.

In order to define Eval for Π, we use some share conversion from L0 to a new ℓ-LMSSS
L. The download rate of Π is thus given by the information rate of L.

3. The output client uses the reconstruction algorithm for L in order to define Rec for Π.

This approach allows essentially two degrees of freedom: First, in Step 1 we may choose how to
replicate the shares; and second, in Step 2 we may choose the share conversion and the new LMSSS

L. Hence, since the shares y
(v)
i are k0-additive shares, the above can be seen as a generalized CNF

share conversion question à la Theorem 1: instead of using the usual CNF sharing from Definition 6,
each secret is additively shared into only k0 shares, and there is the freedom to choose which server
receives which share. In general, for all integers t, k, t0, k0, ℓ, we will be interested in whether a
t-private k-server HSS Π for F ℓ can be constructed from a t0-private k0-server HSS Π0 for F using
the black-box approach above. As we will see later, for our purposes it will be sufficient to restrict
ourselves to t0 = (k0 − 1)-private k0-server schemes, as even for (t0 < k0 − 1)-private Π0, we could
still apply black-box transformations which preserve k0−1 privacy (see Remark 6). We can capture
this approach with the following notion:

Definition 11 (Black-box transformation). Let t, k, k0, ℓ be integers, and F a finite field. We
say there is a black-box transformation for (t, k, k0, ℓ,F), if there is k-server ℓ-LMSSS over F
L = (ShareL,RecL) with parameters (e, b1, . . . , bk), replication functions ψi : [k0]→ 2[k], i ∈ [ℓ], and
conversion functions φj : Fcj → Fbj , j ∈ [k], where cj =

∑ℓ
i=1 |{v ∈ [k0] : j ∈ ψi(v)}|, such that

� Correctness: For every (y
(j)
i )i∈[ℓ],j∈[k0] it holds that

∃r ∈ Fe : (φj(Y(j)))kj=1 = ShareL

((
k0∑
v=1

y
(v)
1 , . . . ,

k0∑
v=1

y
(v)
ℓ

)
, r

)
.

where Y(j) = (y
(v)
i )i∈[ℓ],v∈[k0]:j∈ψi(v) denotes the view of party j ∈ [k].

� Security: For every T ⊆ [k] such that |T | ≤ t and every i ∈ [ℓ] we have that∣∣∣∣∣∣
⋃
j∈T
{v ∈ [k0] : j ∈ ψi(v)}

∣∣∣∣∣∣ ≤ k0 − 1.
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We further say that the black-box transformation (L, (ψi)i, (φj)j) has rate R if L has information
rate R.

Given a black-box transformation and a compatible HSS, we may readily deduce an HSS with
potentially better rate. A formal description of our 3-step black-box approach is given in the
following lemma:

Lemma 4 (Black-box transformations applied to HSS). Suppose there is a (potentially computa-
tionally secure) (k0− 1)-private k0-server HSS Π0 for F = {Xm → F} with additive reconstruction
over F. In addition, let (L = (ShareL,RecL), (ψi)i∈[ℓ], (φj)j∈[k]) be a black-box transformation with
parameters (t, k, k0, ℓ,F) and rate R. Then, there is a (computationally secure if Π is computa-
tionally secure) t-private k-server HSS Π for F ℓ with rate R. Furthermore, in Π server j ∈ [k]
has individual upload cost10 (for all ℓm inputs) of

∑
i∈[ℓ],v∈[k0]:j∈ψi(v)

Lv, where Lv is the individual
upload cost of the v’th server in Π0.

Proof. As discussed above when we went over the general approach, the HSS Π is defined as follows:

1. Sharing: Every input xi ∈ Xm, i = 1, . . . , ℓ, is secret shared according to the source (k0−1)-

private k0-server HSS Π0 to obtain (x
(v)
i )k0v=1. For i = 1, . . . , ℓ, the shares (x

(v)
i )k0v=1 are

replicated according to ψi: x
(v)
i is sent to all servers in the set ψi(v) ⊆ [k].

2. Evaluation: Each server j ∈ [k] holding share x
(v)
i computes y

(v)
i := Eval(fi, v, x

(v)
i ), where

fi ∈ F is the function to be evaluated at xi. Then, each server j ∈ [k] locally computes
zj = φj(Y(j)) as its output share.

3. Reconstruction: The client computes RecL(z1, . . . , zk).

We first argue that RecL(z1, . . . , zk) = (f1(x1), . . . , fℓ(xℓ)). Indeed, by the correctness of Π0, we

have that y
(1)
i + · · · + y

(k0)
i = fi(xi), and thus, by the correctness of the black-box transformation

there is a vector r such that

(zj)
k
j=1 = (φj(Y(j)))kj=1 = ShareL((f1(x1), . . . , fℓ(xℓ)), r).

Hence, applying RecL to (zj)
k
j=1 should recover (f1(x1), . . . , fℓ(xℓ)) by definition of the LMSSS.

Furthermore, because the rate of the black-box transformation is the same as the information rate
of L, and (zj)

k
j=1 are shares of L, we conclude the rate of this HSS is also R. In addition, we want

to argue that the HSS satisfies (computational or information theoretic) t-privacy. By the (k0 − 1)
privacy assumption of Π0 we only need to show that every set of t servers receives at most k0 − 1

shares of each xi. The fact each server j ∈ [k] receives a share x
(v)
i if j ∈ ψi(v), together with

the security of the black-box transformation, guarantee this. Finally, the claim about individual

upload cost follows because server j receives shares (x
(v)
i )i∈[ℓ],v∈[k0]:j∈ψi(v) and |x

(v)
i | = Lv.

Remark 6 (Using Lemma 4 with t0 < k0 − 1). If t = k0 − 1 then Lemma 4 can also allow to
combine a t0-private (possibly t0 < k0−1) k0-server HSS Π0 for F with a black-box transformation
to obtain a new t0-private k-server HSS Π for F ℓ. This follows because a black-box transformation

with t = k0 − 1 necessarily replicates at most a single share y
(v)
i of yi to every party.

10Here, individual upload cost stands for the total number of bits an individual server j ∈ [k] receives. That is, if

x
(j)
i are the shares of all ℓm inputs, then the individual upload cost is

∑ℓm
i=1 |x

(j)
i |.
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4.1 Black-Box Transformations with Large k0

A simple case to consider is one where k0 can be large compared to t, k. More concretely, fixing
t, k, we would like to find k0 = k0(k, t) large enough that there is a black-box transformation with
the best possible rate R = R(k, t). Note that if such a transformation exists for some k0(k, t), then
it also exists for all k′0 > k0(k, t), because we may simply “bunch servers together” in Π0. As it
turns out, picking k0 =

(
k
t

)
is sufficient, since we can replicate the shares in such a manner as to

obtain the usual t-private k-server CNF sharing of y1, . . . , yℓ. Then, to characterize the best rate
achievable, it only remains to apply Corollary 1 and Lemma 1. Formally, we have the following
theorem.

Theorem 8. Let t, k, ℓ be integers, and let F be a finite field. Suppose that b > ℓ/k.
There is a black-box transformation with parameters (t, k, k0 =

(
k
t

)
, ℓ,F), such that the associated

LMSSS L has output shares in Fb (and hence information rate ℓ/(kb)) if and only if there is an
F-linear code C ∈ (Fb)k with rate at least ℓ/(kb) and distance at least t+ 1.

Further, for the “if” direction, for every j ∈ [k], cj = ℓ
(
k−1
t

)
, where cj =

∑ℓ
i=1 |{v ∈ [k0] : j ∈

ψi(v)}| is as in Definition 11.

Proof. Since the black-box transformation implies a t-private k-server ℓ-LMSSS L, the “only if”
direction follows by Lemma 1.

For the “if” direction, we need to construct a black-box transformation. To this end, let
η : [k0] →

(
[k]
t

)
be a bijection which assigns a t-sized subset of [k] to each index of k0. For every

i ∈ [ℓ] we let ψi(v) = [k] \ η(v) (this already implies cj = ℓ
(
k−1
t

)
). Next, let L be the t-private

k-server ℓ-LMSSS L constructed from C according to Lemma 1 (which has output shares in Fb).
For every i ∈ [ℓ], by definition of ψi, each server j holds Y(j) = (y

(v)
i )i∈[ℓ],v∈[K]:j /∈η(v). Hence, the

servers jointly hold a t-CNF sharing of y
(1)
i + . . .+ y

(k0)
i . By Corollary 1, this sharing is convertible

to L, and we choose φj , j ∈ [k] to be the functions of this conversion.

Correctness follows by the aforementioned observation that Y(j) are t-CNF shares of y
(1)
i +

. . .+ y
(k0)
i , combined with the fact that the functions φj are taken from Corollary 1 to yield a joint

sharing of (y
(1)
i + . . .+ y

(k0)
i )i∈[ℓ] according to L.

For security, note that indeed, by definition of η, for every T ⊆ [k] such that |T | ≤ t we have

that |
⋃
j∈T {v ∈ [K] : j /∈ η(v)}| = |{A ∈

(
[k]
t

)
: A∩T ̸= ∅}| = |{B ∈

( [k]
k−t
)
: B∪T ̸= [k]}| ≤

(
k
t

)
−1.

As a corollary of Theorem 8, we can amplify the rate of a t-private computationally secure
HSS scheme for circuits that relies on a circular-secure11 variant of the Learning With Errors
assumption [DHRW16, BGI+18]. See Appendix A for the relevant definitions.

Corollary 4 (High-rate t-private HSS for circuits). Let t, k be integers. Suppose there exists a
computationally t0-private k0-server HSS for circuits, for k0 =

(
k
t

)
and t0 = k0 − 1, with additive

reconstruction over F2 and individual upload cost L. Then, there exists a computationally t-private
k-server HSS for circuits with ℓ-bit outputs, ℓ = (k − t)⌈log2 k⌉, with download rate 1 − t/k and
individual upload cost ℓ

(
k−1
t

)
L.

Remark 7. Note that the conclusion of Corollary 4 circumvents the 1−dt/k barrier in Theorem 7
by allowing nonlinear (and computational) HSS.

11Alternatively, circular security can be eliminated if the share size is allowed to grow with the size of the circuit
given as input to Eval.
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4.2 Black-Box Transformations with k0 = 2

In this section, we consider black-box transformations with k0 = 2. We show that, for the special
case of t = 1, we may take k0 = 2 and obtain a black-box transformation with optimal rate 1− 1/k
(for any k). Note that this is better than the guarantee of Theorem 8, which says that if we choose
k0 =

(
k
1

)
= k then we can achieve optimal rate. The fact that we may obtain optimal rate already

with k0 = 2 may be surprising since when k0 = 2, essentially only a 1-private 2-server HSS scheme
Π0 can be combined with the black-box transformation.

Theorem 9 (Optimal black-box transformations with k0 = 2). Let k ≥ 2 be an integer and F be
a finite field. There is a black-box transformation with parameters (1, k, k0 = 2, ℓ = k − 1,F) and
rate 1− 1/k. Furthermore, for every j ∈ [k], cj = k − 1, where cj =

∑ℓ
i=1 |{v ∈ [k0] : j ∈ ψi(v)}|

is as in Definition 11.

Proof. For every i = 1, . . . , k − 1 we define

ψi(v) =

{
[k] \ {i}, v = 1

{i}, v = 2.

In addition, note that for every server j = 1, . . . , k − 1 we have

Y(j) = ((y
(1)
i )i ̸=j , (y

(2)
j ))

and for server j = k we have

Y(k) = (y
(1)
i )i∈[k−1]

This implies that cj = k − 1 for every j ∈ [k]. In addition, for every server j = 1, . . . , k − 1 we
choose

φj(Y(j)) = y
(2)
j −

∑
i ̸=j

y
(1)
i

and for server j = k we choose

φk(Y(k)) =

k−1∑
i=1

y
(1)
i .

To prove the correctness of the black-box transformation, consider the LMSSS L = (ShareL,RecL)
over F defined by ShareL((x1, . . . , xk−1), r) = (x1 + r, . . . , xk−1 + r,−r) and RecL(z1, . . . , zk) =
(z1 − zk, z2 − zk, . . . , zk−1 − zk). It is not difficult to see that this is a k-server (k − 1)-LMSSS. To
see that the black-box transformation is correct with respect to L, note that the output shares take
the form y(2)1 −

∑
i ̸=1

y
(1)
i , y

(2)
2 −

∑
i ̸=2

y
(1)
i , . . . , y

(2)
k−1 −

∑
i ̸=k−1

y
(1)
i ,

k−1∑
i=1

y
(1)
i

 .

Letting r = −
∑k−1

i=1 y
(1)
i , we see that for any j ∈ [k − 1], the j’th output share is

y
(2)
j −

∑
i ̸=j

y
(2)
i = y

(2)
j + y

(1)
j + r = xj + r,

as desired. By construction, the information rate of the black box scheme is 1−1/k, as we transmit
k symbols to reconstruct k − 1. Security follows because every server receives exactly one share of
each secret.
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Before proceeding with implications of Theorem 9, we observe that any 1-private k-server
LMSSS has rate at most 1 − 1/k (see Theorem 7). In this sense, Theorem 9 obtains the opti-
mal rate.

Next, we discuss the implications of Theorem 9. Combining Theorem 9 with Proposition 4,
we obtain several corollaries. In particular, this can be immediately applied to the constructions
in [BGI15, BGI16b], to obtain computationally secure PIR with rate approaching 1 and upload
cost O(λ logN), where λ is a security parameter (concretely, the seed length of a length-doubling
pseudorandom generator), assuming one way functions exist.

Corollary 5 (High-rate CPIR with logarithmic upload cost). Suppose one-way functions exist.
Then, for any k ≥ 2, w ≥ 1, and ℓ = w(k − 1), there is a computationally 1-private k-server PIR
protocol for databases with N records of length ℓ, with upload cost O(kλ logN) and download rate
1− 1/k.

The above can be extended to high-rate HSS schemes for other simple classes of functions,
considered in [BGI15, BGI16b], based on one-way functions. Similarly, we can get high-rate variants
of 2-server HSS schemes for branching programs based on DDH [BGI16a]12 or DCR [OSY21, RS21].
Analogously to Corollary 5, we can get similar HSS schemes for branching programs with rate
1− 1/k.

4.3 High-Rate Information-Theoretic PIR with Sub-Polynomial Upload Cost

While Theorem 6 provides PIR protocols with download rate approaching 1 as k → ∞, these
schemes have polynomial (O(N1/d)) upload cost in the database size N . In this section we will
construct PIR protocols with download rate approaching 1 as k →∞ and that have sub-polynomial
(No(1)) upload cost, albeit at a worse trade-off between the number of servers and the download
rate.

The black-box approaches of Sections 4.1 and 4.2 are not sufficient because they either require
an HSS with a high ratio of security-to-servers (1−1/k0), or a very small number of servers (k0 = 2),
while in this section we eventually apply it to a 1-private 6-server HSS. We don’t obtain a tight
result in this section, but, nevertheless, it allows us to convert a t0-private k0-server HSS Π0 to a
t0-private k-server HSS Π with higher rate, where k > k0, and hence it is sufficient for our purposes
of improving the rate of PIR protocols with sub-polynomial upload cost.

Note that we preserve the t0 privacy of the original HSS (in similar fashion to the k0 = 2
case where t0 = 1). Thus, in view of Remark 6, without loss of generality we can assume that
t0 = k0 − 1. To demonstrate the idea of this black-box transformation, suppose we are given a

3-additive secret sharing for every secret yi = y
(1)
i + y

(2)
i + y

(3)
i , i ∈ [2]. We will show how to

obtain a 2-private 5-server 2-LMSSS sharing with information rate 2/5 > 1/3. Let q = 3 and
suppose we have servers indexed by the elements of [q] = {1, 2, 3}. In addition, suppose we have
two additional servers indexed by the sets {1, 2} and {1, 3}, respectively. In this construction we

give the third share of the first secret y
(3)
1 to server {1, 2} and distribute the other shares y

(1)
1 , y

(2)
1

arbitrary among the servers indexed with 1, 2. Next, suppose we do the same with the servers

1, 3, {1, 3} and the shares y
(1)
2 , y

(2)
2 , y

(3)
2 . Assuming each server simply adds all the shares it gets, we

12Known DDH-based constructions of additive HSS for branching programs have an inverse-polynomial failure
probability. When amortizing over ℓ instances, one can use an erasure code to make the failure probability negligible
in ℓ while maintaining the same asymptotic download rate.
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would like that φ1(Y(1)) + φ2(Y(2)) + φ{1,2}(Y({1, 2})) = y1 (and the same with y2 and servers
1, 3, {1, 3}). Unfortunately, as it currently stands this does not hold because the servers 1, 2, 3 hold
terms related to y1 and y2 that do not cancel. To remedy this, suppose we also give server {1, 2}
all the shares of y2 servers 1, 2 received, so it may subtract them from the sum (and the same with
server {1, 3} and the shares of y1). Formally:

Y(1) = {y(1)1 , y
(1)
2 } φ1(Y(1)) = y

(1)
1 + y

(1)
2

Y(2) = {y(2)1 } φ2(Y(2)) = y
(2)
1

Y(3) = {y(2)2 } φ3(Y(3)) = y
(2)
2

Y({1, 2}) = {y(3)1 , y
(1)
2 } φ{1,2}(Y({1, 2})) = y

(3)
1 − y

(1)
2

Y({1, 3}) = {y(3)2 , y
(1)
1 } φ{1,3}(Y({1, 3})) = y

(3)
2 − y

(1)
1

This satisfies φ1(Y(1)) + φ2(Y(2)) + φ{1,2}(Y({1, 2})) = y1 (and the same with y2 and servers
1, 3, {1, 3}). Furthermore, since |{1, 2}∩{1, 3}| ≤ 1, this scheme is 2-private, as each server receives
at most a single share from each secret. Generalizing this idea leads to the following lemma:

Lemma 5. Let k0 < q be an integer and F a finite field. Suppose we have a collection of (k0−1)-sized
subsets from [q], S ⊆

( [q]
k0−1

)
, with the additional requirement that any two distinct sets S1, S2 ∈

S satisfy |S1 ∩ S2| ≤ 1. Then there is a black-box transformation with parameters (k0 − 1, q +
|S|, k0, |S|,F) and rate 1− q/(q + |S|).

Furthermore, for every j ∈ [q + |S|], cj ≤ |S|, where e cj =
∑ℓ

i=1 |{v ∈ [k0] : j ∈ ψi(v)}| is as
in Definition 11.

Proof. Associate indices i = 1, . . . , ℓ, ℓ = |S|, with the sets Si ∈ S, and the indices ℓ+ 1, . . . , ℓ+ q
with the elements of [q]. We will describe the construction of (ψi)i∈[ℓ] in algorithmically as follows.

1. For every i ∈ [q + ℓ] and v ∈ [k0] initialize ψi(v) = ∅.

2. For every i ∈ [ℓ], update ψi(k0) = ψi(k0) ∪ {i}.

3. For every i ∈ [ℓ], let Si = {j1, . . . , jk0−1} ∈ S be the associated set. Update ψi(r) =
ψi(r)∪ {ℓ+ jr} for r = 1, . . . , k0 − 1 (note that the indices in Si may be ordered arbitrarily).

4. For every i ∈ [ℓ] let again Si = {j1, . . . , jk0−1} ∈ S be the associated set. Now, for i′ ∈ [ℓ]\{i}
and r = 1, . . . , k0 − 1 update ψi′(r) = ψi′(r) ∪ {i}.

Next, we define (φj)j∈[q+ℓ] as follows:

� For every server j = 1, . . . , ℓ let Ij ⊆ [ℓ] × [k0] denote the set of indices (i, v) ∈ Ij such that

j ∈ ψi(v), excluding (j, k0). Then, we set φj(Y(j)) = y
(k0)
j −

∑
(i,v)∈Ij y

(v)
i .

� Every server j = ℓ + 1, . . . , ℓ + q simply computes the sum of the shares it got φj(Y(j)) =∑
i∈[ℓ],v∈[k0]:j∈ψi(v)

y
(v)
i .

To show that the above describes a black-box transformation over F, we need to establish security
and correctness. We first argue security, which holds because, for every i ∈ [ℓ], every server with

index j ∈ [q + ℓ] receives at most a single element y
(v)
i (which also implies cj ≤ ℓ). To see this,
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note that y
(k0)
i is sent exclusively to server with index i (and no other share y

(v)
i is sent to it). In

addition, every server with index j = ℓ+1, . . . , ℓ+ q receives at most a single element y
(v)
i for every

i ∈ [ℓ]. It is potentially only possible for a server with index j ∈ [ℓ] to receive elements y
(v)
i , y

(v′)
i

with v ̸= v′. However, if j = i this does not happen because we exclude it in step 4. If j ̸= i it can
only happen if there are two elements jv, jv′ ∈ Si∩Si′ for some i′ ̸= i. However, because we require
that |Si ∩ Si′ | ≤ 1 this does not happen. Hence, every subset T of size |T | ≤ k0 − 1 satisfies that

there is no i ∈ [ℓ] for which the servers in T hold all the shares y
(1)
i , . . . , y

(k0)
i .

To argue correctness we first define a (q + ℓ)-server ℓ-LMSSS over F, L = (ShareL,RecL) as
follows:

� ShareL first additively shares yi = y
(1)
i + . . . + y

(k0)
i for every i ∈ [ℓ]. Then, each server j

receives share y
(v)
i if j ∈ ψi(v).

� For RecL note that φi(Y (i)) +
∑

j∈Si
φℓ+j(Y (ℓ + j)) = y

(1)
i + . . . + y

(k0)
i = yi because if

y
(v′)
i′ ∈ Y (ℓ + j) for i′ ̸= i then also y

(v′)
i′ ∈ Y (i) (and so these terms cancel as they appear

with a minus sign in φi(Y (i))). Therefore, only terms from {y(v)i }v∈[k0] don’t cancel. Because
we can reconstruct every yi, this fully specifies RecL.

Now, since L is an LMSSS and the shares (φj(Y (j))j∈[q+ℓ] are shares of L, correctness follows.
Finally, for the rate of the black-box transformation, note that the information rate of L is 1 −
q/(q + ℓ).

Next, we need the PIR protocol from [BIKO12] (although the PIR from [Efr09], which has
larger upload cost, can also be used).

Theorem 10. [BIKO12] There exists a 1-private 3-server HSS Π = (Share,Eval,Rec) for ALLF4

with upload cost O
(
26

√
logN log logN

)
. Furthermore, the output shares satisfy z(1) + z(2) + z(3) =

η ·f(x), where f ∈ ALLF4 is the function on which Eval is applied, x is the input, and η ̸= 0 depends
only on x and the randomness of Share.

The PIR from Theorem 10 does not have additive reconstruction, but its reconstruction algo-
rithm is simple enough so that it can be modified into an additive PIR, at the cost of doubling the
number of servers.

Proposition 2. There exists a 1-private 6-server HSS Π for ALLF4 with additive reconstruction

and upload cost O
(
26

√
logN log logN

)
.

Proof. Let Π0 = (Share0,Eval0,Rec0) be the PIR from Theorem 10. The HSS Π proceeds as follows:

� Sharing: Let (x
(1)
0 , x

(2)
0 , x

(3)
0 ) = Share0(x) and η ∈ F4 be as in Theorem 10. Let η−1 = η1+η2

be an additive sharing. We use 6 servers with input shares: (x(1), x(2), x(3), x(4), x(5), x(6)) =

((x
(1)
0 , η1), (x

(2)
0 , η1), (x

(3)
0 , η1), (x

(1)
0 , η2), (x

(2)
0 , η2), (x

(3)
0 , η2)).

� Evaluation: Each server r holding a share x
(i)
0 and ηj , outputs zr = ηj · Eval(f, i, x(i)0 ).

� Reconstruction: The reconstruction algorithm computes z1 + . . .+ z6.
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Privacy holds because each server receives a single share x
(i)
0 and a single share ηj . Correctness

holds because
∑6

r=1 zr = (η1 + η2)
∑3

i=1 Eval(f, i, x
(i)
0 ) = η−1ηf(x) = f(x).

Theorem 11. There exists a 1-private k-server PIR for 2w · (k − Θ(
√
k))-bit, w ∈ N, record

databases of size N , with upload cost O
(
k2 · 26

√
logN log logN

)
and download cost 2w · k. Conse-

quently, the rate of the PIR is 1− 1/Θ(
√
k).

Proof. We will first need the following fact.

Fact 4 ([EH63]). Let k0 > 0 be an integer. There exists a function δk0 : N → [0,∞) such that
limq→∞ δk0(q) = 0 and such that for every integer q > 0 there is a family of (k0 − 1)-sized subsets

from [q], Sq ⊆
( [q]
k0−1

)
, with the additional requirement that any two distinct sets S1, S2 ∈ Sq satisfy

|S1 ∩ S2| ≤ 1, and such that |Sq| = (1− δk0(q))
q(q−1)
k0(k0−1) .

Now, we combine the above fact, Lemma 5, Proposition 2, and the modification to Lemma 4
given in Remark 6, which yields our claim with w = 1. To obtain it for w > 1 we can just repeat
the scheme w times.

Moreover, similar results for sub-polynomial upload cost PIR protocols with (t ≥ 2)-privacy
could also be obtained. These protocols exist, for example, by combining the results of [BIW07]
with the protocols from [Yek07, Efr09, BIKO12].

5 Improving Rate via Nonlinear Reconstruction and a Small Fail-
ure Probability

In Section 3.2, we saw that that the rate of 1 − dt/k is the best possible for linear HSS. In this
section, we will see that if we allow non-linear reconstruction with an exponentially small failure
probability, then we can in fact beat this bound.

Remark 8 (Efficiency of Rec). For this section, we do not attempt to address the computational
efficiency of the Rec algorithm in our main theorem statement. We note however that there are
efficient algorithms for a simpler scheme that still can beat the 1− dt/k barrier; see Remark 12.

Our main theorem, Theorem 12, offers stronger guarantees on the download rate than the simple
scheme in Remark 12. The tools that we use to prove it are information-theoretic—the approach
is based on classical Slepian-Wolf coding—and do not immediately yield efficient algorithms for
Rec. However, we are hopeful that progress in efficient implementations of Slepian-Wolf coding,
e.g. [GFC06, CHJ09, SMT15], may be applicable in our setting as well.

A warm-up. To motivate how this relaxation to non-linear schemes might help, consider the
following simple example. Suppose that m = d and we would like to construct a 1-private HSS for
{f}ℓ, where f(x1, . . . , xd) =

∏d
i=1 xi, based on Shamir sharing.

Let k = d + 1. Let q be a prime power so that q > k and suppose that |F| = q ≈ k. Given
inputs xi,r ∈ F for i ∈ [d] and r ∈ [ℓ], each server j holds the input shares (pi,r(αj))i,r, where pi,r
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is a random degree 1 polynomial over F, with pi,r(0) = xi,r. Then each party computes the output
shares

Eval(f, j, (pi,r(αj))i,r) =

(
d∏
i=1

pi,r(αj)

)
r∈[ℓ]

=: yj ∈ Fℓ.

Then, since k > d, we may recover
∏
i∈[d] xi,r for each r ∈ [ℓ] from the output shares by polynomial

interpolation. The download cost of this scheme is ℓk log2(q).
Now consider the following improvement on the same scheme. We observe that for r ∈ [ℓ],

Pr[yjr = 0] = (1− 1/q)d ≈ 1/e.

Thus, with high probability, there are only about ℓ/e nonzero entries in each yj . This allows each
party to compress their output shares. Rather than sending yj itself, each party can send the
location and value of each of the nonzeros of yj . With high probability, the number of bits that
each party needs to send is

log2

(
ℓ

ℓ/e

)
+
ℓ log2(q)

e
= ℓ

(
(1 + o(1))H(1/e) +

ℓ log2(q)

e

)
.

For large d (with k = d+1 and q ≈ k), this is a savings of about a factor of e over the naive version.

A general methodology for HSS share compression. The previous example already shows
that we can surpass the barrier of 1 − dt/k for linear schemes from Theorem 7 by using a simple
compression technique. However, it only applies to evaluating products over a big finite field, which
(despite being natural) is not useful for any applications we are aware of. Moreover, this naive
compression method is entirely local, not taking advantage of correlations between output shares.
In the following we develop a more general framework for compressing HSS shares by using Slepian-
Wolf coding. We apply this methodology to a simple and well-motivated instance of HSS, where
f computes F2 multiplication (i.e., the AND of two input bits). This can be motivated a “dense”
variant of the private set intersection problem, where the sets are represented by their characteristic
vectors. We further show that, unlike in the above warm-up example, here it is possible to obtain
improved rate while ensuring that the output shares reveal no additional information except the
output.

The rest of this section is organized as follows. In Section 5.1, we show that it is possible to
push the above line of reasoning as far as the classical Slepian-Wolf theorem allows. As described
in Section 1.2.3, the Slepian-Wolf theorem describes the extent to which we can compress (possibly
correlated) sources that are held by different parties. We cannot use the Slepian-Wolf theorem
directly because the underlying joint distribution is not known to each server (as it depends on the
value of the secret), but we show how to adapt the proof to deal with this. We apply this general
methodology to optimize the download rate of 3-server HSS for AND (F2 multiplication).

Next, in Section 5.2, we consider a desirable symmetric privacy property, ensuring that the
output shares reveal no information about the input beyond the output. While symmetric privacy
is easy to achieve for HSS with linear reconstruction, this is not necessarily true for HSS with
nonlinear reconstruction. Indeed, we show that Shamir-based HSS in the above warm-up example
does not satisfy this property. However, somewhat unexpectedly, we show that the optimized HSS
for AND from Section 5.1 does satisfy this requirement.
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5.1 Beating the 1− dt/k Barrier via Slepian-Wolf Coding

In this section we introduce a broad class of non-linear, (1− exp(−Ω(ℓ)))-correct HSS schemes for
function classes of the form F ℓ when ℓ is large, which can circumvent the linear impossibility result
of Theorem 7 for linear, 1-correct HSS schemes.

5.1.1 Notation and theorem statements

We begin by setting up some further notation for this section. Suppose we have a function class F ,
and suppose we have a k-server HSS scheme Π = (Share,Eval,Rec) for F . We will formally state
how we use Π below when we define our new HSS scheme Π′; for now we sketch enough of it to set
up our notation. Given x1, . . . ,xℓ ∈ Xm, we run the Share and Eval functions of Π independently
to obtain ℓ output shares (outputs of Eval) for each server j. Let zj,i ∈ Zj be the i’th output share
held by server j, for j ∈ [k] and for i ∈ [ℓ]. Let Z be the k × ℓ matrix whose (j, i) entry is zj,i. We
refer to the columns of Z as zi and the rows as yj . Letting

Z = Z1 ×Z2 × · · · × Zk,

we also view Z as an element of Zℓ, that is, as a sequence of the columns of the matrix Z. Abusing
notation, we will move back and forth between these two views.

Each x ∈ Xm induces a distribution on z ∈ Z, obtained by first using Share to share x among
the k servers, and then using Eval to arrive at output shares z. The randomness of this distribution
comes from the randomness in the probabilistic algorithms Share and Eval. Let D be the set of all
probability distributions on Z that arise this way. Notice that |D| ≤ |X |m, the number of possible
values for x.

We define ∆(D) to be the collection of probability distributions on D. We define ∆ℓ(D) ⊂ ∆(D)
to be the collection of distributions with denominator ℓ. That is,

∆ℓ(D) = {π ∈ ∆(D) : ∀D ∈ D, ∃i ∈ Z, π(D) = i/ℓ}.

Notice that
|∆ℓ(D)| ≤ ℓ|D| ≤ ℓ|X |m . (8)

For π ∈ ∆(D), define a distribution σπ on Z by

σπ(z) :=
∑
D∈D

π(D) ·D(z),

where for a distribution D, D(z) denotes the probability of z under D. Thus, σπ is defined by first
drawing D ∼ π and then drawing z ∼ D.

With all of this notation out of the way, we may state the main result in this section, which
states that given a particular HSS scheme Π = (Share,Eval,Rec) for a function class F , we may
“compress” the outputs of Eval to create a new HSS scheme for F ℓ, for sufficiently large ℓ, with
potentially better download rate. As noted in Section 1.2.3, this theorem is closely related to the
classical Slepian-Wolf theorem for compression of dependent sources with separate encoders and a
joint decoder.

Theorem 12 (Slepian-Wolf coding for HSS shares). Suppose there is a t-private k-server HSS
Π = (Share,Eval,Rec) for F . Let D be defined as above. There is a function δ : R → R so that
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δ(ε)→ 0 as ε→ 0, and constants C and ℓ0 (all of which may depend on Π and its parameters) so
that the following holds for any ε > 0 and any ℓ ≥ ℓ0.

For a distribution π′ ∈ ∆(D), let z′ ∈ Z denote a random variable drawn from σπ′. Suppose
that b1, b2, . . . , bk are non-negative integers so that for all S ⊆ [k],∑

i∈S
bi ≥ max

π′∈∆(D)
ℓ · (H(z′S |z′Sc) + δ(ε)).

Then there is a t-private k-server α-correct HSS scheme for F ℓ with α = 1− exp(−Cε2ℓ), and
with download cost

∑k
i=1 bi.

Remark 9. In order to interpret the bound on the bi’s in Theorem 12, let us consider it in terms of
the download cost of the naive scheme that repeats Π ℓ times. Suppose that, in the original scheme
Π, server i sends bi bits, so server i sends ℓbi bits in the naive scheme. Since z′S ∈ {0, 1}

∑
i∈S bi,

we (naively) have

H(z′S |z′Sc) ≤
∑
i∈S

bi

for all S ⊆ [k], and the total download cost is
∑k

i=1 bi. Thus (ignoring the slack δ(ε)), the naive
bound on H(z′S |z′Sc) yields the download cost of the naive scheme. As we will see below, by obtaining
better-than-naive bounds on this conditional entropy term, we will be able to beat the naive scheme,
resulting in a new scheme that has an improved download rate.

Remark 10. Theorem 12 is tight in the sense that if we are to follow the strategy of “compress
the output shares of a fixed HSS Π,” maxπ′ ℓ · H(z′S |z′Sc) is the best download cost we can hope
for. This follows from the standard converse for Slepian-Wolf coding, by allowing an adversary to
choose inputs that yield a sequence D1, . . . , Dℓ of distributions in D with empirical distribution that
is approximately the maximizer π∗.

Before we prove the theorem, we apply it to a simple case where we would like to multiply two
bits. We will apply it to the following HSS.

Definition 12 (Greedy-Monomial CNF HSS). Let t, k, d,m be positive integers with k > dt and
let F be a finite field. Define a t-private k-server HSS Π = (Share,Eval,Rec) for POLYd,m(F) as
follows.

� Sharing. The Share function is given by t-CNF sharing. To set notation, suppose that server
j receives yj = (Xi,S : j ̸∈ S) where Xi,S for i ∈ [m] and S ⊂ [k] of size t are random so that∑

S Xi,S = xi.

� Evaluation. Let f ∈ POLYd,m(F). We may view f(x1, . . . , xm) as a polynomial F (X) in
the variables X = (Xi,S)i∈[m],S⊂[k]. Each server j can form some subset of the monomials∏r
s=1Xis,Ss that appear in F (X). Server 1 greedily assembles all of the monomials in F (X)

that they can; the sum of these monomials is Eval(f, 1,y1). Inductively, Server j greedily
assembles all of the monomials in F (X) that they can and that have not been taken by Servers
1, . . . , j − 1, and the sum of these monomials is Eval(f, j,yj).

� Reconstruction. By construction, f(x1, . . . , xm) is equal to
∑

j Eval(f, j,y
j). Thus, Rec is

defined additively.
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We refer to this Π as the t-private, k-server greedy monomial CNF HSS.

Corollary 6. Let F = {f(x1, x2) 7→ x1 · x2}. Let m = 2 and X = Y = F2, so f : Xm → Y. For
sufficiently large ℓ, the Greedy Monomial CNF HSS is a 3-server, 1-private,

(
1− 2−Ω(ℓ)

)
-correct

HSS for the function family F ℓ, with download rate R ≥ 0.376.
Moreover, for these parameters, the Greedy Monomial CNF HSS yields the best download rate

when plugged into Theorem 12, out of all F2-linear HSS schemes.

Remark 11 (Greedy Monomial CNF admits optimal compression for 3-server AND). Corollary 6
shows that the simple Greedy Monomial CNF HSS can be modified to exceed the 1 − dt/k limit of
Theorem 7 for linear schemes, even in the extremely bare-bones case of multiplying two bits. (Notice
that the Shamir-based example at the beginning of Section 5 requires large fields). Moreover, the
“moreover” part of the corollary, along with Remark 10, suggests that the the rate 0.376 is the best
achievable by these methods for this problem. In comparison, a symmetric monomial assignement
that assigns 3 monomials to each server achieves rate ≈ 0.350.

Remark 12 (A simpler way to get the same qualitative result). In fact, we beat the 1 − dt/k
bound without the full power of Theorem 12, even over F2. Rather than compressing the joint
distribution of the output shares, each server may compress their share individually. Notice that by
the privacy guarantee, the distribution of each server’s share does not depend on the secret; thus,
if this distribution is not uniform, it can be compressed. As ℓ grows, the download rate achievable
can approach

log2 |Y|∑k
j=1H(yj)

, (9)

where yj is the output share for party j.
This straightforward scheme, while it does not yield bounds as strong as those obtained by

Theorem 12, already allows us to beat the 1 − dt/k bound of Theorem 7. For example, for the
3-party Greedy Monomial CNF scheme for multiplying two bits, the rate in (9) is easily seen to be
R ≈ 0.367 > 1/3.

Further, this scheme immediately comes with efficient Eval and Rec algorithms, using known
efficient algorithms for optimal compression (for example Lempel-Ziv coding).

Proof of Corollary 6. To prove the first part of the corollary, we apply Theorem 12, which states
that there is an HSS scheme Π′ for F ℓ of download cost

∑
i bi provided that, for each S ⊆ [k],

max
π′∈∆(D)

H(z′S |z′Sc) ≤
∑
i∈S

bi, (10)

where z′ ∼ σπ. To prove the theorem we describe a particular HSS scheme to use as Π. Our scheme
Π is the 1-private 3-party greedy CNF HSS, as in Definition 12.

We will compute the quantity on the left-hand-side of (10) for Π. We note that when (X,Y )
are random variables with joint distribution µ, the function H(X|Y ) is concave in µ. This implies
that if we view H(z′S |z′Sc) as a function of the distribution σπ′ on z ∈ Z that is induced by π′, the
function is concave in σπ′ . Thus, we may solve a convex optimization problem to find the optimal
σπ′ , and hence the optimal value of (10), for each S ⊆ [k].13 Implementing this, we obtain the

13This approach works for any original HSS scheme Π, but for the particular Π defined above, the situation is even
simpler because D consists of only two distributions. Thus, the problem becomes a univariate convex optimization
problem that can be easily solved using calculus.
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following requirements on b0, b1, b2.
14

b0
ℓ
≥ 0.75089

b1
ℓ
≥ 0.90690

b2
ℓ
≥ 0.90690

b0 + b1
ℓ

≥ 1.70429

b0 + b2
ℓ

≥ 1.70429

b1 + b2
ℓ

≥ 1.84745

b0 + b1 + b2
ℓ

≥ 2.65873

We see that if we take b1 = b2 =
ℓ
2 · 1.84745 = ℓ · 0.92372 and if we take b0 = ℓ · 2.65873− b1− b2 =

ℓ · 0.81128 then all of these requirements are satisfied, and we have

b0 + b1 + b2 = ℓ · 2.65873.

Thus, Theorem 12 implies that there is an HSS scheme Π′ that approaches this download cost,
provided that ℓ is sufficiently large. Thus, for any download rate R satisfying

R <
1

2.65873
≈ 0.37612,

there is some large enough ℓ so that there is an HSS scheme for F ℓ with download rate R. This
proves the first part of the corollary.

For the “moreover” part of the corollary, we first observe that any linear HSS scheme is some
sort of monomial assignment. Indeed, writing the shares of the inputs x1, x2 as Xi,j for i ∈ [2] and
j ∈ [3] (where xi =

∑
j Xi,j), then each server’s output share is some polynomial in the Xi,j . Next,

we simply enumerate over all such assignments and check the values in Theorem 12.
In more detail, as we assume that the HSS scheme is linear, we must include all monomials of

the form X1,jX2,j an odd number of times across the servers. Up to symmetries, there are only two
ways to distribute these degree-2 monomials (the way prescribed by the Greedy Monomial CNF
assignment, and one other way that assigns three monomials to each server). We must include
each linear monomial Xi,j an even number of times across the servers, as no degree-1 monomial
occurs in x1x2 =

∑
i,j X1,iX2,j . There are 64 ways to do this (including ways that are equivalent

by symmetry). Finally, degree 3 or higher monomials cannot occur in any server, as any such
monomial Xi1,j1Xi2,j2 , Xi3,j3 must contain two distinct values in {j1, j2, j3} and thus can only be
held by one server and cannot cancel out. Thus, there are only 128 things to check (again, with
some redundancy by symmetry). This is easily done with the code referenced earlier. We see that

14The code that we used to obtain this can be found at https://web.stanford.edu/~marykw/files/HSS_

SlepianWolf.sage. This code also obtains methods for finding the requirements on bi in Theorem 12, starting
from more general original HSS schemes Π.
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for all of these settings, the condition on b1 + b2 + b3 is one of the following three requirements:

b0 + b1 + b2
ℓ

≥ 2.65873

b0 + b1 + b2
ℓ

≥ 2.90564

b0 + b1 + b2
ℓ

≥ 2.85200

The first of these is the binding constraint for the Greedy Monomial CNF scheme. The other two
are larger, meaning that there is no linear HSS that can outperform the Greedy Monomial CNF
HSS.

5.1.2 Proof of Theorem 12

As discussed in Section 1.2.3, the statement of Theorem 12 is quite similar to the classical Slepian-
Wolf coding theory. The difference between our setup and that of the Slepian-Wolf theorem is that
we do not know the underlying distributions, which depend on the secrets. However, our proof
follows the basic outline of the classical Slepian-Wolf argument; the main difference is that we need
to take a union bound over the distributions π ∈ ∆ℓ(D) that may arise, and we need to argue that
the distribution of output shares arising from a sequence (D1, . . . , Dℓ) with empirical distribution
π is sufficiently close to i.i.d. samples from σπ.

15

We begin with some necessary notions from information theory. We tailor these notions to our
notation and setting for readability; in particular, the notation is non-standard from an information-
theory point of view.

We use the notation from the beginning of Section 5.1.1. Given Z ∈ Zℓ and given z ∈ Z we
write fZ(z) to denote the number of times that z appears in Z. (Viewing Z as a matrix, this is the
number of times that z appears as a column of Z).

For a set S ⊂ [k], let ZS =
∏
j∈S Zj (recalling that Z =

∏k
j=1Zj). For z ∈ Z, we write zS ∈ ZS

to denote the restriction of z to the coordinates indexed by S. Given zS ∈ ZS and zSc ∈ ZSc , we
denote by zS ◦ zSc

the vector z ∈ Z obtained by combining the two of them in the natural way
(that is, zj = zSj if j ∈ S and zS

c

j otherwise). Given ZS ∈ (ZS)ℓ and ZSc ∈ (ZSc)ℓ, we define

ZS ◦ ZSc ∈ Zℓ similarly.

Definition 13. Let ε > 0. Let σ be a probability distribution on Z. We say that Z ∈ Zℓ is a
ε-strongly typical sequence for σ of length ℓ if for all z ∈ Z so that σ(z) = 0, we have fZ(z) = 0;
and for all z ∈ Z so that σ(z) > 0, we have

|fZ(z)/ℓ− σ(z)| ≤
ε

|Z|
.

We define

T (ℓ)
ε,σ =

{
Z ∈ Zℓ : Z is ε-strongly typical for σ

}
.

Let S ⊂ [k] and fix ZSc = (z1Sc , . . . , zℓSc) ∈ (ZSc)ℓ. We define

T
(ℓ)
ε,σ,S(ZSc) =

{
ZS ∈ (ZS)ℓ : ZS ◦ ZSc ∈ T (ℓ)

ε,σ

}
.

15The empirical distribution π of (D1, . . . , Dℓ) ∈ Dℓ is sometimes called the type of (D1, . . . , Dℓ).
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That is, T
(ℓ)
ε,σ is the set of all Z that have about the right number of copies of each z ∈ Z, and

T
(ℓ)
ε,σ,S(ZSc) is the set of all ways ZSc to complete ZSc in order to have that property.
We will use the following well-known fact (see, for example [CT06, Eq. (10.175)]).

Theorem 13. Let 0 < ε′ < ε. Let S ⊆ [k]. Suppose that ℓ is sufficiently large. Let σ be a
distribution on Z, and let σS be the restriction to ZS. Let z′ ∼ σ be a random vector drawn from
σ. For all ZSc ∈ ZℓSc,

|T (ℓ)
ε,σ,S(ZSc)| ≤ (ℓ+ 1)|Z| · 2ℓH(z′S |z

′
Sc )(1+δ(ε)),

for some function δ so that δ(ε)→ 0 as ε→ 0.

With this machinery in place, we can prove Theorem 12.

Proof of Theorem 12. We use the notation listed from the beginning of Section 5.1.1 as well as
earlier in this section. Define

T (ℓ)
ε :=

⋃
π∈∆ℓ(D)

T (ℓ)
ε,σπ .

We now define our new HSS scheme, Π′ = (Share′,Eval′,Rec′). Let Π = (Share,Eval,Rec) be the
HSS scheme assumed in the theorem statement.

� Sharing. Suppose the inputs are x1, . . . ,xℓ ∈ Xm, where xi = (xi,1, xi,2, . . . , xi,m).We define
the new Share′ function to just use Share to independently share each input xi,r. Organize
server j’s shares into vectors

xji = (xji,1, x
j
i,2, . . . , x

j
i,m) ∈ X

m

for each i ∈ [ℓ].

� Evaluation. Let f = (f1, . . . , fℓ) ∈ F ℓ. For each i ∈ [ℓ] and for each server j ∈ [k], we use
the Eval function from the original HSS scheme to obtain

zj,i = Eval(fi, j,x
j
i )

Let Z ∈ Zℓ be the organization of the zj,i as described in Section 5.1.1. Note that we may
also think of Z as a matrix with Zj,i = zj,i. In this notation, server j holds yj , the j’th row
of Z.

For each server j ∈ [k], choose a random map hj : Zℓj → {0, 1}bj . Define a new evaluation
function

Eval′(f, j, (xj1, . . . , x
j
m)) := hj(y

j).

For notational convenience later on, let h(Z) = (h1(y
1), . . . , hk(y

k)).

� Reconstruction. Given output shares (v1, . . . , vk) ∈ {0, 1}b1+···+bk , we wish to reconstruct
fi(xi) for i ∈ [ℓ]. We define the new reconstruction map, Rec′, as follows. Choose a parameter
ε > 0.

– If there is a unique Z̃ ∈ T (ℓ)
ε with rows ỹj so that hj(ỹ

j) = vj for all j ∈ [k], define

Rec′(v1, . . . , vk) = Rec(z̃1),Rec(z̃2), . . . ,Rec(z̃ℓ),

where z̃i is the i’th column of Z̃.
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– If there is not a unique such Z̃, define Rec′(v1, . . . , vk) = ⊥.

We first note that Π′ is t-private, since Π is. We also note that the download cost of Π′ is indeed
b1 + · · · + bk. It remains to show that this scheme is correct with high probability, provided that
the bi satisfy the requirements in the theorem statement.

Suppose that the secrets x1, . . . ,xℓ are shared and evaluated using Share′ and Eval′ as above.
Server j holds yj , which is organized into Z ∈ Zℓ, as per the definition of Π′ above. The i’th columns
z1, . . . , zℓ of Z is generated according to a distribution Di ∈ D that depends on xi. Suppose that
(D1, D2, . . . , Dℓ) is this vector of distributions, and let π ∈ ∆ℓ(D) be the empirical distribution of
(D1, . . . , Dℓ). That is,

π(D) :=
|{i ∈ [ℓ] : Di = D}|

ℓ
.

Define
SD = {i ∈ [ℓ] : Di = D}.

We first observe that if the correct matrix Z is identified in the definition of Rec′ as the unique

Z̃ ∈ T (ℓ)
ε , then the decoding algorithm Rec′ is correct. Indeed, this follows from the correctness of

Rec. Thus, to show that this algorithm is correct, it suffices to show that with high probability
(over Share, Eval′), the following two things hold.

(A) Z lies in T
(ℓ)
ε .

(B) There is no other Z̃ ∈ T (ℓ)
ε so that h(Z̃) = h(Z).

We begin with (A).

Claim 2. Let Z ∈ Zℓ be as above. Then with probability at least 1− exp(−Ω(ε2ℓ)), Z is ε-strongly

typical for σπ. That is, Z ∈ T (ℓ)
ε,σπ .

Above, the Ω(·) hides constants that may depend on the original HSS scheme Π and its param-
eters (m, k, |X |,Z).

Proof. We must show that Z is ε-strongly typical for σπ, or in other words that for all z ∈ Z with
σπ(z) = 0, we have fZ(z) = 0; and for all z ∈ Z with σπ(z) > 0, we have∣∣∣∣fZ(z)ℓ

− σπ(z)
∣∣∣∣ ≤ ε/|Z|.

To show the first thing, suppose that σπ(z) = 0. Then

0 = σπ(z) =
∑
D∈D

π(D)D(z),

and so for each D, either π(D) = 0, in which case Di is never equal to D, or else D(z) = 0, in
which case there is no way to have ziS = z if Di = D. In either case, if σπ(z) = 0, then z will never
appear in Z and fz(Z) = 0.

Next, fix any z ∈ Z so that σπ(z) > 0. The number of z that appear in Z is

fZ(z) =

ℓ∑
i=1

1[zi = z] =
∑
D∈D

∑
i∈SD

1[zi = z].
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Recall that we have zi ∼ Di for i ∈ [ℓ], each independently (and the distributions Di ∈ D are fixed
by the secrets xi). The expectation of fZ(z) is thus

E[fZ(z)] =
∑
D∈D

ℓπ(D) Pr
D
[zi = z]

=
∑
D∈D

ℓπ(D)D(z)

= ℓσπ(z).

Thus, Hoeffding’s inequality implies that, for all such z,

Pr

[∣∣∣∣fZ(z)ℓ
− σπ(z)

∣∣∣∣ > ε/|Z|
]
= Pr

[∣∣∣∣∣1ℓ
ℓ∑
i=1

(
1[zi = z]− E1[zi = z]

)∣∣∣∣∣ > ε/|Z|

]
≤ 2 exp

(
−2ℓε2/|Z|2

)
Since |Z| is some constant that depends only on the original HSS scheme Π (and in particular,

is independent of ℓ and ε), we conclude that for any z ∈ Z,

Pr

[∣∣∣∣fZ(z)ℓ
− σπ(z)

∣∣∣∣ > ε/|Z|
]
≤ exp

(
−Ω(ℓε2)

)
.

Taking a union bound over all possible z ∈ Z, we see that

Pr[Z ̸∈ T (ℓ)
ε,σπ ] ≤ |Z| · exp

(
−Ω(ℓε2)

)
≤ exp(−Ω(ℓε2)),

using the fact again that |Z| is a constant. This proves the claim.

As a corollary of Claim 2, we see that item (A) holds with probability at least 1−exp(−Ω(ℓε2)).
Indeed, with at least that probability we have

Z ∈ T (ℓ)
ε,σπ ⊆ T

(ℓ)
ε ,

using the definition of T
(ℓ)
ε .

Now we turn to item (B), that there is no other Z̃ ∈ T (ℓ)
ε so that h(Z) = h(Z̃). We establish 2k

bad events that could prevent (B) from occurring, one for each S ⊂ [k].
For S ⊆ [k], define the event ES to be the event that there is some Z̃S ∈ ZℓS so that

� Each row of Z̃S is different than the corresponding row of ZS . (That is, if we let ỹi denote
the i’th row of Z̃S , we have ỹi ̸= yi for all i ∈ S.)

� Z̃S ◦ ZSc ∈ T (ℓ)
ε

� h(Z̃S ◦ ZSc) = h(Z)

Above, we recall the notation that Z̃S ◦ZSc means that we should create a matrix in Zℓ by taking
the rows indexed by S from Z̃ while taking the rows indexed by Sc from Z.

Observe that (B) will occur provided that none of the bad events ES occur. Indeed, suppose

that there is some Z̃ ∈ T (ℓ)
ε so that Z̃ ̸= Z and so that h(Z̃) = h(Z). Then ES occurs, where S ⊆ [k]

is the set of rows on which Z and Z̃ differ.
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Claim 3. Fix Z ∈ Zℓ and suppose that the favorable outcome of Claim 2 holds for Z. Let S ⊆ [k].
There is some function δ′(ε) so that δ′(ε) → 0 and ε → 0, (and which may depend on the HSS Π
and its parameters but which is independent of ℓ, ε), so that the following holds.

For a distribution π′ ∈ ∆(D), let z′ ∈ Z denote a random variable drawn from σ′π. Suppose that∑
i∈S

bi ≥ max
π′∈∆(D)

ℓ · (H(z′S |z′Sc) + δ′(ε)),

where the bi are as in the definition of Share′. Then

Pr[ES ] ≤ exp(−Ω(εℓ)),

where above the Ω(·) notation suppresses constants that depend on the HSS Π and its parameters.

Proof. Note that for any Z̃S satisfying the first condition of ES , we have

Pr
h
[h(Z̃S ◦ ZSc) = h(Z)] = 2−

∑
i∈S bi ,

since each hj is uniformly random and since each row of ZS differs from the corresponding row of
Z. Thus, we may bound

Pr[ES ] ≤
∑

Z̃S∈Zℓ
S\{ZS}

1[Z̃S ◦ ZSc ∈ T (ℓ)
ε ] · 2−

∑
i∈S bi

≤
∑

π∈∆ℓ(D)

∑
Z̃S∈Zℓ

S

1[Z̃S ◦ ZSc ∈ T (ℓ)
ε,σπ ] · 2

−
∑

i∈S bi (11)

≤
∑

π∈∆ℓ(D)

∣∣∣T (ℓ)
ε,σπ ,S

(ZSc)
∣∣∣ · 2−∑

i∈S bi (12)

≤
∑

π∈∆ℓ(D)

(ℓ+ 1)|Z| · 2ℓH(z′S |z
′
Sc )(1+δ(ε))−

∑
i∈S bi (13)

≤ ℓ|X |m+|Z| max
π∈∆(D)

2ℓH(z′S |z
′
Sc )(1+δ(ε))−

∑
i∈S bi (14)

where in (11) we have used the definition of T
(ℓ)
ε , in (12) we have used Definition 13, in (14) we

have used Theorem 13, and in (14) we have used the fact (8) that |∆ℓ(D)| ≤ ℓ|X |m .
Thus, provided that∑

i∈S
bi ≥ max

π∈∆(D)
ℓ
(
H(z′S |z′Sc)(1 + δ(ε)) + ε

)
+ (|X |m + |Z|) log(ℓ),

the probability that ES occurs is at most

Pr[ES ] ≤ exp(−Ω(ℓε)).

Using the fact that |X |m, |Z| are constants that depend only on the original HSS scheme Π (and
not on ℓ or ε), for sufficiently large ℓ it suffices to require that∑

i∈S
bi ≥ max

π∈∆(D)
ℓ · (H(z′S |z′Sc) + δ′(ε))

for some function δ′ that depends only on Π so that δ′(ε)→ 0 as ε→ 0. This proves the claim.
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Finally, Claim 3 implies that with high probability, (B) occurs. Indeed, by a union bound over
all 2k choices for S, we conclude that

Pr[ (B) does not occur ] = Pr[ ES occurs for some S ⊆ [k] ]

≤
∑
S⊆[k]

Pr[ES ]

≤ 2k exp(−Ω(εℓ))
≤ exp(−Ω(εℓ)),

using the fact that k is a constant that depends only on the HSS Π. Since Claim 2 has established
that (A) occurs with probability at least 1 − exp(−Ω(ε2ℓ)), we conclude by another union bound
that both (A) and (B) occur with probability at least 1−exp(−Ω(ε2ℓ)). As discussed above, if both
(A) and (B) occur, then the algorithm Rec′ is correct. This completes the proof of the theorem.

5.2 Symmetrically Private HSS

In HSS, the only security guarantee is that any set of t colluding servers learn nothing about the
input secrets. We can also study the stronger notion of symmetric security, where we additionally
demand that the output client learn nothing beyond the desired output f(x1, . . . , xm).

In this section, we begin an exploration of symmetric security that can beat the 1−dt/k barrier.
First, we show that the Shamir-based non-linear HSS example at the beginning of Section 5 is not
symmetrically secure; then we show that the Greedy Monomial CNF (Definition 12) that is used
in the proof of Corollary 6 is symmetrically secure. We leave it as an intriguing open direction to
further characterize which non-linear HSS schemes are symmetrically secure.

To begin, we first formally define symmetric security.

Definition 14 (SHSS). Let Π = (Share,Eval,Rec) be an HSS for F with inputs in Xm. We say
that Π is a symmetrically private HSS (SHSS) if the following holds for all f ∈ F and all x ∈ Xm.
Let y(1), . . . , y(k) denote the output shares of Π (that is, the outputs of Eval given f). Then the joint
distribution of y(1), . . . , y(k) depends only on f(x).

Remark 13 (Relationship to SPIR). A related notion is that of symmetrically private information
retrieval (SPIR) [GIKM98], where the client only learns its requested record from the database and
nothing else. Note, however, that in the context of SPIR there is only a single input (m = 1), and
moreover, the servers inherently share common randomness, whereas this is not necessarily the case
for us.

We first note that schemes with linear reconstruction, such as our constructions from Sections
3.1 and 4, can be trivially made into weak SHSS schemes by having some input client distribute
among the k servers a random sharing of 0 ∈ Fℓ according to the ℓ-LMSSS defined by the output
shares of the HSS. Then, each servers adds its share of 0 to its output share. Unfortunately, this
will result in a fresh sharing of the secret, which is not compressible, and thus we may not apply
the Slepian-Wolf-like machinery from the previous section in order to beat the 1− dt/k barrier.

Hence, it is interesting to ask whether we can construct HSS schemes which go beyond the 1−
dt/k barrier and are an SHSS. We begin by arguing that the usual Shamir-based HSS (instances of
which can be compressed according to the warm-up in Section 5) is not an SHSS. The fact the output
shares don’t encode a uniformly random polynomial (because it is necessarily reducible) is well
known, see for example [BGW88, CCD88]. We prove the following proposition for completeness.
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Proposition 3 (Shamir-based HSS is not an SHSS). Let F be a finite field such that |F| > 3.
Let Π be the 1-private 3-server HSS for F = {f(x1, x2) 7→ x1x2} where Share is given by Shamir
sharing (Definition 7) and where Eval simply computes the conversion in Lemma 3. Then Π is not
an SHSS.

Proof. Let α1, α2, α3 be the evaluation points used in the HSS. Suppose first that we choose inputs
(x1, x2) = (0, 0). For i ∈ [2], let pi ∈ F[x] be the random polynomial of degree 1 such that
pi(0) = xi = 0. After the servers apply Eval(f, ·, ·), the output shares constitute the polynomial
p = p1 · p2, evaluated at points α1, α2, α3. Since the degree of the polynomial is at most 2 we can
fully recover it using 3 evaluation points. Since pi(0) = 0 for every i ∈ [2], the smallest (possibly)
non-zero monomial in p has degree 2.

Now, suppose alternatively that we choose inputs (x1, x2) = (0, 1). Now the smallest (possibly)
non-zero monomial in p = p1p2 has degree 1. Since the random coefficient of this monomial is not
always zero, the above distributions of p are not identical, while 0 · 0 = 0 · 1, and so this HSS is not
an SHSS.

On the flip side, as it turns out, the HSS that arises from the proof of Corollary 6 is an SHSS.
Given Proposition 3, this is an additional benefit that the “Greedy Monomial CNF” scheme has
over Shamir-sharing, aside from its better compressibility compared to Shamir (as in Remark 11).

Proposition 4 (Greedy-CNF-based HSS is an SHSS). The HSS scheme Π from Definition 12 for
t = 1, d = 2, k = 3 is an SHSS.

Proof. Suppose that we want to multiply α, β ∈ F using Π. To this end, suppose we additively
share α = a1 + a2 + a3 and β = b1 + b2 + b3 and, according to the 1-CNF sharing, we give server
with index j ∈ [3] the shares (ai, bi)i ̸=j . Then, the servers apply their Eval algorithm and obtain
output shares

y1 = (a2 + a3)(b2 + b3)

y2 = a1b1 + a1b3 + a3b1

y3 = a1b2 + a2b1

where server with index j outputs yj . We need to show that the distribution of (y1, y2, y3) de-
pends only on a · b. To this end, let α, α′, β, β′ ∈ F be such that αβ = α′β′. In the same way
(y1, y2, y3) depends on (α, β), suppose that (y′1, y

′
2, y

′
2) depends on (α′, β′). We need to prove that

(y1, y2, y3) and (y′1, y
′
2, y

′
2) are identically distributed. Our strategy will be to find a bijective map-

ping fα,α′,β,β′(a1, a2, b1, b2) = (a′1, a
′
2, b

′
1, b

′
2) such that if we replace a1, a2, b1, b2 by a′1, a

′
2, b

′
1, b

′
2 in

the expression for (y1, y2, y2) we get (y′1, y
′
2, y

′
3). This can be shown to be equivalent to requiring

that

a1b2 + a2b1 = a′1b
′
2 + a′2b

′
1

a1β + b1α− a1b1 = a′1β
′ + b′1α

′ − a′1b′1

The rest of the proof proceeds by case analysis.
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Case 1: αβ = α′β′ ̸= 0. We have that α, β, α′, β′ ̸= 0 so we may choose

a′1 = a1(β
′)−1β

b′1 = b1(α
′)−1α

a′2 = a2α
′α−1

b′2 = b2β
′β−1

which is a bijection.

Case 2: αβ = α′β′ = 0. If α = α′ = 0 and β, β′ ̸= 0 then we require

a1b2 + a2b1 = a′1b
′
2 + a′2b

′
1

a1β − a1b1 = a′1β
′ − a′1b′1

for which we may use the mapping

a′1 = a1(β
′)−1β

b′1 = b1(β
′)−1β

a′2 = a2β
′β−1

b′2 = b2β
′β−1

which is a bijection. The case β = β′ = 0 and α, α′ ̸= 0 is symmetric. If α = α′ = β′ = 0 and β ̸= 0
we require

a1b2 + a2b1 = a′1b
′
2 + a′2b

′
1

a1β − a1b1 = −a′1b′1

for which we may use the mapping

a′1 = a1

b′1 =

{
b1 + β, a1 ̸= 0

b1, a1 = 0

a′2 = a2

b′2 =

{
b2 − βa2(a1)−1, a1 ̸= 0

b2, a1 = 0

which is also a bijection. The case α′ = β′ = β = 0 and α ̸= 0 is symmetric. Also, if α = β = α′ = 0
and β′ ̸= 0 we may use the inverse of the above mapping.

Somewhat surprisingly, this pattern does not continue to k = 4, as we show in the following
example:

Example 4. The HSS from Definition 12 with t = 1, d = 3, k = 4,F = F3 is not an SHSS.

Proof. By direct calculation, when (x0, x1, x2) = (0, 0, 1) we get for the output shares Pr(0, 0, 0, 0) =
431/2187, while when (x0, x1, x2) = (0, 0, 0) we get for the output shares Pr(0, 0, 0, 0) = 17/81.
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A Computationally Secure HSS

In this section we define the computational relaxation of HSS, adapting earlier definitions (see,
e.g., [BGI+18]) to our notation.

Unlike the information-theoretic setting of Definition 1, in the computational setting the input
domain X and output domain Y are {0, 1}∗ rather than finite sets. We further modify the syntax
of Definition 1 in the following ways.

� The function Share takes a security parameter λ as an additional input.

� The function class F is replaced by a polynomial-time computable function F (f̂ ;x1, . . . , xm),
where f̂ describes a function f(x1, . . . , xm) and is given as input to Eval. For instance,
private information retrieval can be captured by F (f̂ ;x1) where f̂ describes an N -symbol
database and x1 an index i ∈ [N ], and F returns f̂ [x1]. When referring to HSS for concrete
computational models such as circuits or branching programs, the input f̂ is a description of
a circuit or a branching program with inputs x1, . . . , xm. Finally, when considering additive
HSS as in Definition 3, f̂ also specifies the finite field over which the output is defined.

Security for computational HSS is defined in the following standard way.

Definition 15 (Computational HSS: Security). We say that Π = (Share,Eval,Rec) is computa-
tionally t-private if for every set of servers T ⊂ [k] of size t and polynomials p1, p2 the following
holds. For all input sequences xλ, x

′
λ such that |xλ| = |x′λ| = p1(λ), circuit sequences Cλ such that

|Cλ| = p2(λ), and all sufficiently large λ, we have

Pr[Cλ(YT ) = 1]− Pr[Cλ(Y
′
T ) = 1] ≤ 1/p2(λ),

where YT and Y ′
T are the T -entries of Share(1λ, xλ) and Share(1λ, x′λ), respectively.

B Proof of Proposition 1

In this section we prove Proposition 1.
First, we show that there exists a CNF-based scheme. By (the proof of) Theorem 3, it suffices

to exhibit a 5-party 4-LMSSS over F2 with download cost 5. For secrets x1, x2, x3, x4 ∈ F2 and a
random bit r ∈ F2, such a scheme is given by

Share(x1, x2, x3, x4, r) = (r, x1 + r, x2 + r, x3 + r, x4 + r)

and
Rec(y1, y2, y3, y4, y5) = (y1 + y2, y1 + y3, y1 + y4, y1 + y5).

Next, we show that there is no Shamir-based scheme that downloads only one bit from each
party. The proof proceeds by a computer search. However, naively such a search (for example,
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over all sets of k = 5 linear functions from F4
8 → F2) is not computationally tractable. Instead we

first analytically reduce the problem to one that is tractable.
Suppose (towards a contradiction) that there were an F2-linear HSS-for-concatenation Π based

on Shamir-sharing. We note that since Rec is F2-linear, we may assume that Eval is also F2-linear.
16

We will write down Π linear-algebraically over F2. Fix some basis for F8 over F2. For any element
α ∈ F8, let Vec(α) ∈ F3

2 denote the vector representation of α in that basis, and let Mat(α) ∈ F3×3
2

denote the matrix representation of α. Thus, Mat(α)Vec(β) = Vec(αβ) for all α, β ∈ F8.
Let x(j) ∈ F2 for j ∈ [4] be the ℓ = 4 secrets. Choose α0, α1, . . . , α5 ∈ F∗

8, and suppose without
loss of generality that α0 = 0.17 Under Shamir sharing, party i receives

(x(j) + ρ(j) · αi)j∈[4],

where ρ(j) ∈ F8 is uniformly random. Writing this over F2, party i receives

[v|Mat(αi)] ·


x(j)

r
(j)
1

r
(j)
2

r
(j)
3

 for j ∈ [4],

where v = Vec(1) ∈ F3
2 is a column vector, and where r

(j)
i ∈ F2 are uniformly random. (That is,

Vec(ρ(j)) = r(j)). Let Wi = [v|Mat(αi)] for all i ∈ [5].
By assumption, each party i sends a single bit, which must be an F2-linear combination of the

bits that they hold. Thus, each party i sends

zi =
4∑
j=1

⟨w(j)
i , (x(j), r

(j)
1 , r

(j)
2 , r

(j)
3 )⟩,

for some vectors w
(j)
i in the rowspan of Wi. Let

wi = w
(1)
i ◦w

(2)
i ◦w

(3)
i ◦w

(4)
i ∈ F16

2 ,

where ◦ denotes concatenation. Since the recovery algorithm must also be linear, we have

x(j) =

5∑
i=1

aijzi

for some coefficients aij ∈ F2 and for all j ∈ [4]. This implies that for all j ∈ [4],

5∑
i=1

aijwi = e4j+1, (15)

16Indeed, by the same argument in the proof of Theorem 2, our F2-linear HSS-for-concatenation Π =
(Share,Eval,Rec) gives rise to an F2-linear 4-LMSSS that has the output shares of Π as its shares, with the same Rec
function. Since Rec is F2-linear, and since by [Bei96] any LMSSS L with linear Rec may also have a F2-linear share
function, we may assume that L has a F2-linear share function, Share′. But since Share (which is Shamir sharing) is
also F2-linear, this implies that we may take Eval to be the F2-linear function Share′ ◦Share−1, where Share−1 denotes
an arbitrary linear function that returns the inputs given all of the Shamir shares.

17Indeed, this is without loss of generality, as the Shamir scheme with general αi has the same share function as
the Shamir scheme with evaluation points α′

i where α′
0 = 0 and α′

i = αi − α0.

59



where er ∈ F16
2 denotes the r’th standard basis vector. (This is because if we concatenate the

vectors (x(j), r
(j)
1 , r

(j)
2 , r

(j)
3 ) to mirror the concatenation that created the wi’s, the x

(j) term appears
in the 4j + 1’st coordinate). Consider the restriction yi of wi to the coordinates indexed by
(2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16); that is, all of the elements of [16] that are not equal to 4j + 1.
Then, (15) implies that for all j ∈ [4],

5∑
i=1

aijyi = 0.

The 5× 4 matrix formed by the aij must be full rank, since the right hand sides of (15) for j ∈ [4]
are linearly independent. Thus, the matrix with the yi as columns has a kernel of dimension at
least 4. We conclude that the yi for i ∈ [5] must have a span of dimension at most 1. In other
words, without loss of generality we may assume that yi = y is independent of i. (Notice that it’s
also possible that yi = 0, but in that case we could just make the corresponding aij values zero
and set yi = y).

Further, values for yi determine all of the values in wi. This is because we have the restriction

that each w
(j)
i lies in the rowspan of Wi, and Mat(αi) is full rank. This implies that the the first

entry of w
(j)
i is given by ⟨y(j)

i Mat(αi)
−1,v⟩ for all i, j.

Therefore, the values of wi for all i ∈ [5] are determined by a single choice of y ∈ F12
2 . This

suggests an algorithm to enumerate over all linear HSS with the claimed properties:

� For each choice of distinct α1, . . . , α5 ∈ F∗
8, and for each choice of y ∈ F4

2:

– Recover the vectors wi for i ∈ [5] that are implied by y, as described above.

– If it is the case that e3j+1 lies in the span of {wi : i ∈ [5]} for all j, we have found a
valid linear HSS; return it.

� If we have not returned, return “there is no such HSS.”

This search is tractable: there are only
(
7
5

)
· 212 things to enumerate over, and for each of these we

must do some linear algebra on a 16 × 5 matrix to determine if the choice of y results in a valid
scheme for the choice of evaluation points. We implemented this search, and did not find any valid
schemes.18 Therefore we conclude that no such scheme exists.

18The code for our implementation of this search is available at https://web.stanford.edu/~marykw/files/proof of no Shamir
HSS.sage.

60

https://web.stanford.edu/~marykw/files/proof_of_no_Shamir_HSS.sage
https://web.stanford.edu/~marykw/files/proof_of_no_Shamir_HSS.sage

	Introduction
	Contributions
	Optimal-download linear HSS for low-degree polynomials, and applications
	Black-box rate amplification for additive HSS
	Nonlinear download rate amplification

	Technical Overview
	Linear HSS for low-degree polynomials
	Black-box rate amplification for additive HSS
	Nonlinear download rate amplification

	Related Work
	Regenerating codes
	Communication-efficient secret sharing


	Preliminaries
	Homomorphic Secret Sharing
	Linear Secret Sharing Schemes

	Linear HSS for Low-Degree Polynomials
	Constructions of Linear HSS for Low-Degree Polynomials
	Linear HSS from CNF sharing
	Linear HSS from Shamir Sharing
	Comparison between CNF-based HSS and Shamir-based HSS
	Application to Private Information Retrieval

	Negative Results for Linear HSS

	Black-Box Rate Amplification
	Black-Box Transformations with Large k0
	Black-Box Transformations with k0=2
	High-Rate Information-Theoretic PIR with Sub-Polynomial Upload Cost

	Improving Rate via Nonlinear Reconstruction and a Small Failure Probability
	Beating the 1-dt/k Barrier via Slepian-Wolf Coding
	Notation and theorem statements
	Proof of Theorem 12

	Symmetrically Private HSS

	Computationally Secure HSS
	Proof of Proposition 1

