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Abstract

In this study, we focus on the differential cryptanalysis of the ChaCha stream cipher. In the
conventional approach, an adversary first searches for the input/output differential pair with
the best differential bias and then analyzes the probabilistic neutral bits (PNB) in detail based
on the obtained input/output differential pair. However, although time and data complexities
for the attack can be estimated by the differential bias and PNB obtained in this approach,
their combination does not always represent the best. In addition, a comprehensive analysis
of the PNB was not provided in existing studies; they have not clarified the upper bounds of
the number of rounds required for the differential attack based on the PNB to be successful.
To solve these problems, we proposed a PNB-based differential attack on the reduced-round
ChaCha by first comprehensively analyzing the PNB at all output differential bit positions and
then searching for the input/output differential pair with the best differential bias based on the
obtained PNB. By comprehensively analyzing the PNB, we clarified that an upper bound of
the number of rounds required for the PNB-based differential attack to be successful was 7.25
rounds. As a result, the proposed attack can work on the 7.25-round ChaCha with time and
data complexities of 2255.62 and 237.49, respectively. Further, using the existing differential bias
presented by Coutinho and Neto at EUROCRYPT 2021, we further improved the attack on the
7.25-round ChaCha with time and data complexities of 2244.22 and 269.14, respectively. The best
existing attack on ChaCha, proposed by Coutinho and Neto at EUROCRYPT 2021, works on
up to 7 rounds with time and data complexities of 2228.51 and 280.51, respectively. Therefore,
we improved the best existing attack on the reduced-round ChaCha. We believe that this study
will be the first step towards an attack on more rounds of ChaCha, e.g., the 8-round ChaCha.

1 Introduction

1.1 Background

Salsa, which was designed by Bernstein in April 2005 [4], is a stream cipher having a 256-bit security
level against key recovery attacks. He submitted Salsa20, a 20-round Salsa, to the ECRYPT
Stream Cipher Project, eSTREAM1, as a candidate stream cipher for software applications with
high throughput requirements and hardware applications with restricted resources. The eSTREAM
portfolio was completed in September 2008; eventually, Salsa20/12, a 12-round Salsa20, was selected
as a finalist for the eSTREAM software portfolio. ChaCha, which a variant of Salsa, was proposed
by Bernstein in January 2008 [3] to provide better diffusion and higher resistance of cryptanalysis
than Salsa. ChaCha has a 256-bit security level against key recovery attacks.

1http://www.ecrypt.eu.org/stream
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After releasing the Salsa and ChaCha algorithms, several studies reported the security evalua-
tions for both ciphers [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19]. The most relevant of these is the
differential attack based on the probabilistic neutral bits (PNB) concept, proposed by Aumasson et
al. at FSE 2008 [1]. The PNB concept is to divide secret key bits into two sets: one of significant
key bits and another of nonsignificant key bits, and a neutral measure is used as an evaluation
indicator to discriminate them. The fewer elements in a set of significant key bits, the less the
time complexity required for an adversary to recover an unknown secret key; thus, it is crucial to
analyze the PNB concept in the differential attacks on Salsa and ChaCha. In fact, Aumasson et al.
[1] first searched for the input/output differential pair having the best differential bias; then, based
on the obtained input/output differential pair, they divided secret key bits into two sets using the
PNB concept; finally, they performed a differential attack on ChaCha20/7, the 7-round version of
ChaCha, with time and data complexities of 2248 and 227, respectively. Then, several researchers
reported improvements of their proposed attack [2,5,6,7,16,19]. To the best of our knowledge, the
best key recovery attack on ChaCha works on up to seven rounds with time and data complexities
of 2228.51 and 280.51, respectively, proposed by Coutinho and Neto at EUROCRYPT 2021 [7].

As mentioned above, existing differential attacks on Salsa and ChaCha have focused on searching
for the input/output differential pair with the best differential bias. However, the differential biases
and PNB obtained from the existing attacks are not always the best combination. Time and data
complexities for attacks can be estimated by their combination. Furthermore, a comprehensive
analysis of the PNB was not performed in existing studies [1, 2, 5, 6, 7, 16, 19]; the upper bounds of
the number of rounds required for the differential attack based on the PNB to be successful have
not been clarified. This indicates that a comprehensive analysis of the PNB should have room for
improvement of existing attacks.

1.2 Our Contributions

In this study, we propose a PNB-based differential attack, which first analyzes the PNB and then the
differential bias. To summarize, the proposed attack works on a reduced-round ChaCha by first
comprehensively analyzing the output differential (OD) bit position with high neutral measures
and then searching for the input differential (ID) bit position with the best differential bias in
the obtained OD bit position. The primary aims of the proposed attack are to identify the best
combination of the differential bias and PNB through a comprehensive analysis of PNB and clarify
the upper bounds of the number of rounds required for the differential attack based on the PNB
to be successful. Our contributions in this study can be summarized as follows.

• By comprehensively analyzing the PNB, we clarified the distribution of neutral measures for
each round. Furthermore, we demonstrated that the value of the neutral measure varied
significantly depending on the OD bit position. In particular, we reported that all 0th single-
bits of each word in all intermediate rounds of the reduced-round ChaCha20 were OD bit
positions having a high neutral measure. In fact, these OD bit positions were used for the
proposed attack.

• Based on the comprehensive analysis of the PNB, we examined the value of neutral measures
for each round of the inversed round function. Consequently, we speculated that the upper
bound of the number of rounds required for the PNB-based differential attack to be successful
is 7.25 rounds.

• Let ∆
(r)
i [j] be a difference for the j-th bit of the i-th word in the r-round internal state. By an-

alyzing the differential biases at the obtained OD bit positions, we reported the ID-OD pairs
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Table 1: Summary of the proposed and existing key recovery attacks.

Target Time Data Reference

ChaCha20/6

2139 230 [1]

2136 228 [19]

2130 225 [5]

2127.5 227.5 [5]

2102.2 256 [6]

277.4 258 [2]

ChaCha20/7

2248 227 [1]

2246.5 227 [19]

2238.9 296 [16]

2237.7 296 [5]

2231.9 250 [6]

2231.63 249.58 This work

2230.86 248.8 [2]

2228.51 280.51 [7]

ChaCha20/7.25
2255.62 237.49 This work

2244.22 269.14 This work

with a high differential bias to use for our attack such as (∆
(0)
15 [6],∆

(3.5)
0 [0]), (∆

(0)
12 [6],∆

(3.5)
1 [0]),

(∆
(0)
13 [6],∆

(3.5)
2 [0]), and (∆

(0)
14 [6],∆

(3.5)
3 [0]). We believe that at least one of these ID-OD pairs

should yield the best combination of the differential bias and PNB.

• Based on the combination of the differential biases and PNB, we demonstrated a differential
attack on ChaCha20/7 with time and data complexities of 2231.63 and 249.58, respectively,

using the ID-OD pair of (∆
(0)
14 [6],∆

(3.5)
3 [0]). Furthermore, we present a differential attack on

ChaCha20/7.25 with time and data complexities of 2255.62 and 237.49, respectively, using the

ID-OD pair of (∆
(0)
15 [6],∆

(3.5)
0 [0]).

• For the existing best attack on ChaCha20/7, Coutinho and Neto [7] used ∆
(3.5)
5 [0] (= ∆

(4)
5 [7]⊕

∆
(4)
10 [0]) as the OD. Because all 0th single-bits of each word in all intermediate rounds of

the reduced-round ChaCha20 are the OD bit positions with a high neutral measure, we
consider that it should have the possibility to achieve differential attacks on ChaCha20/7.25,
ChaCha20/7.5. In fact, we demonstrate the differential attack on ChaCha20/7.25 with time
and data complexities of 2244.22 and 269.14, respectively, using ID-OD pair presented by
Coutinho and Neto [7].

Table 1 summarizes the existing attacks and our attack on the reduced-round ChaCha2. As shown
in the table, our attack could not reach the improvement of the best existing attack on ChaCha20/7.

2According to [7, Table 1], Coutinho and Neto presented two differential attacks on ChaCha20/7 with time
complexities of 2218 and 2224 and data complexities of 2218 and 2224, respectively. These seemed similar to the best
attacks on ChaCha20/7; however, the verification is beyond the scope of this study because they are distinguishing
attacks, and not key recovery attacks.
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However, no study that focused on the attack on ChaCha20/7.25 has been conducted; thus, our at-
tack is the best differential attack on the reduced-round ChaCha20, particularly on ChaCha20/7.25.

In the conventional attacks on ChaCha20, if a time complexity for the attack is beyond the
exhaustive search for an unknown secret key, cryptanalysts select an approach that reduces the
number of target rounds for the attack or changes an ID-OD pair with a better forward bias.
Furthermore, we focused on the fact that the PNB concept has a strong influence on the theoretical
time complexity. Consequently, we revealed that even if the number of target rounds for the attack
is increased, it may be possible to suppress the increase in the theoretical time complexity. We
believe that this study will be the first step toward an attack on more rounds of ChaCha20, e.g.,
ChaCha20/8.

1.3 Organization of This Paper

The rest of this paper is organized as follows. In Section 2, we briefly describe the specification of
the ChaCha stream cipher. In Section 3, we review generic techniques for the existing differential
attack based on the PNB concept. In Section 4, we present experimental results associated with
the detailed analysis of the PNB and discuss certain properties. In Section 5, we examine the
differential bias at the output differential bit position obtained in Section 4 and then perform
the differential attack on ChaCha20/7, ChaCha20/7.25, and ChaCha20/7.5. Finally, Section 6
concludes this study.

2 Specification of ChaCha

ChaCha [3,18] comprises the following three steps to generate a keystream block of 16 words, where
each word size is 32 bits:

Step 1. The initial state matrix X(0) of order 4 × 4 is initialized from a 256-bit secret key k =
(k0, k1, . . . , k7), a 96-bit nonce v = (v0, v1, v2), a 32-bit block counter t0, and four 32-bit
constants c = (c0, c1, c2, c3), such as c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32,
and c3 = 0x6b206574. After initialization, we obtained the following initial state matrix:

X(0) =


x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 .

Step 2. The round function of ChaCha comprises four simultaneous computations of the so-called
quarterround function. The overall structure of the quarterround function is shown in Fig. 1.

As per the procedure, a vector (x
(r)
a , x

(r)
b , x

(r)
c , x

(r)
d ) in the internal state matrix X(r) is updated

by sequentially computing the following:

x
(r)
a′ = x

(r)
a + x

(r)
b ; x

(r)
d′ = x

(r)
d ⊕ x

(r)
a′ ; x

(r)
d′′ = x

(r)
d′ ≪ 16;

x
(r)
c′ = x

(r)
c + x

(r)
d′′ ; x

(r)
b′ = x

(r)
b ⊕ x

(r)
c′ ; x

(r)
b′′ = x

(r)
b′ ≪ 12;

x
(r+1)
a = x

(r)
a′ + x

(r)
b′′ ; x

(r)
d′′′ = x

(r)
d′′ ⊕ x

(r+1)
a ; x

(r+1)
d = x

(r)
d′′′ ≪ 8;

x
(r+1)
c = x

(r)
c′ + x

(r+1)
d ; x

(r)
b′′′ = x

(r)
b′′ ⊕ x

(r+1)
c ; x

(r+1)
b = x

(r)
b′′′ ≪ 7;
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Figure 1: Overall structure of the quarterround function.

where the symbols ”+,” ”⊕,” and ”≪” represent wordwise modular addition, bitwise XOR,
and bitwise left rotation, respectively. For odd-numbered rounds, which are called column-

rounds, the quarterround function is applied to the following four column vectors: (x
(r)
0 , x

(r)
4 , x

(r)
8 ,

x
(r)
12 ), (x

(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13 ), (x

(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14 ), and (x

(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15 ). For even-numbered

rounds, which are called diagonalrounds, the quarterround function is applied to the follow-

ing four diagonal vectors: (x
(r)
0 , x

(r)
5 , x

(r)
10 , x

(r)
15 ), (x

(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12 ), (x

(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13 ), and

(x
(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14 ).

Step 3. A 512-bit keystream block is computed as Z = X(0) +X(R) where R is the final round.
The original version of ChaCha, called ChaCha20, has R = 20 rounds, and the reduced-round
version of ChaCha20 is denoted as ChaCha20/R.

The round function of ChaCha is reversible, i.e., a vector (x
(r+1)
a , x

(r+1)
b , x

(r+1)
c , x

(r+1)
d ) in the

internal state matrix X(r+1) is backdated by sequentially computing the following:

x
(r)
b′′′ = x

(r+1)
b ≪ 25; x

(r)
b′′ = x

(r)
b′′′ ⊕ x

(r+1)
c ; x

(r)
c′ = x

(r+1)
c − x

(r+1)
d ;

x
(r)
d′′′ = x

(r+1)
d ≪ 24; x

(r)
d′′ = x

(r)
d′′′ ⊕ x

(r+1)
a ; x

(r)
a′ = x

(r+1)
a − x

(r)
b′′ ;

x
(r)
b′ = x

(r)
b′′ ≪ 20; x

(r)
b = x

(r)
b′ ⊕ x

(r)
c′ ; x

(r)
c = x

(r)
c′ − x

(r)
d′′ ;

x
(r)
d′ = x

(r)
d′′ ≪ 16; x

(r)
d = x

(r)
d′ ⊕ x

(r)
a′ ; x

(r)
a = x

(r)
a′ − x

(r)
b ;

where the symbol ”−” represents wordwise modular subtraction.
Note that the quarterround function can then be subdivided into four rounds: 0.25, 0.5, 0.75, and

1 round. In the following, the 0.25-round quarterround function comprises one wordwise modular
addition, one bitwise XOR, and one bitwise left rotation.
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3 Differential Cryptanalysis of ChaCha

The most relevant study on the security analysis of Salsa and ChaCha was presented by Aumasson
et al. at FSE 2008 [1]. They proposed a differential attack based on the probabilistic neutral bits
(PNB) concept and applied it to reduced versions of Salsa and ChaCha. Then, several researchers
reported improvements of their proposed attack [2, 5, 6, 7, 10, 14, 16, 19], and it is now possible to
attack up to 7 rounds of ChaCha, i.e., ChaCha20/7.

In this section, we review generic techniques for the differential attack based on the PNB
concept. This attack comprises the precomputation and online phases. In the precomputation
phase, we examine single-bit differential biases and PNB as well as execute a probabilistic backward
computation (PBC). Subsequently, we execute the online phase to recover an unknown key.

3.1 Precomputation Phase

3.1.1 Single-Bit Differential Biases

Let x
(r)
i [j] be the j-th bit of the i-th word in the r-round internal state matrixX(r) for 0 ≤ i ≤ 15 and

0 ≤ j ≤ 31, and x
′(r)
i [j] be an associated bit with the difference ∆

(r)
i [j] = x

(r)
i [j]⊕x

′(r)
i [j]. Based on a

difference ∆
(0)
i [j] = 1 to the initial state matrix X(0), which is called the input difference or ID, we

obtain the corresponding initial state matrix X ′(0). Then, we execute the round function of ChaCha

using these initial state matrices X(0) and X ′(0) as inputs and obtain ∆
(r)
p [q] = x

(r)
p [q]⊕x

′(r)
p [q] from

the r-round output internal state matrices X(r) and X ′(r), which is called the output difference or
OD. For a fixed key and all possible choices of nonces and block counters, the single-bit differential
probability is defined by

Pr
(
∆(r)

p [q] = 1 | ∆(0)
i [j] = 1

)
=

1

2
(1 + ϵd), (1)

where ϵd denotes the OD bias.
To distinguish between the OD obtained from true random number sequences and the OD

obtained from the r-round internal state matrices in ChaCha, we use the following theorem proved
by Mantin and Shamir at FSE 2001 [17].

Theorem 1 ( [17, Theorem 2]). Let X and Y be two distributions, and suppose that the target
event occurs in X with a probability p and Y with a probability p · (1 + q). Then, for small p and
q, O( 1

p·q2 ) samples suffice to distinguish X from Y with a constant probability of success.

Let X be a distribution of the OD of true random number sequences and Y be a distribution of
the OD obtained from the r-round internal state matrices in ChaCha. As per Theorem 1 and Eq.
(1), the target event occurs in X and Y with probabilities 1

2 and 1
2 · (1+ ϵd), respectively; thus, the

number of samples to distinguish X and Y is O( 2
ϵ2d
), as p and q are equal to 1

2 and ϵd, respectively.

3.1.2 PNB

The PNB divides secret key bits in the sets of m-bit significant and n-bit nonsignificant key bits.
To differentiate between the sets, Aumasson et al. focused on the degree of influence of each secret
key bit on the OD, and the degree of influence, the neutral measure, was defined as follows:

Definition 1 ( [1, Definition 1]). The neutral measure of the key bit position κ with respect to the
OD is defined as γκ, where

1
2(1 + γκ) is the probability that complementing the key bit κ does not

change the OD.
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For example, we have the following singular cases of neutral measure:

• γi = 1: OD does not depend on the i-th key bit, i.e., it is nonsignificant.

• γi = 0: OD is statistically independent of the i-th key bit, i.e., it is significant.

• γi = −1: OD linearly depends on the i-th key bit.

By performing the following steps, we compute the neutral measure and divide the secret key
bits in two sets, the m-bit significant and n-bit nonsignificant key bits:

Step 1. Compute the R-round internal state matrix pair (X(R), X ′(R)) corresponding to the input

pair (X(0), X ′(0)) with ∆
(0)
i [j] = 1; derive the keystream blocks Z = X(0) + X(R) and Z ′ =

X ′(0) +X ′(R), respectively.

Step 2. Prepare the new input pair (X
(0)

, X ′(0)) with the key bit position κi of the original input
pair (X(0), X ′(0)) flipped by one bit.

Step 3. Compute the r-round internal state matrix pair (Y (r), Y ′(r)) for r < R with Z −X
(0)

and

Z ′ −X ′(0) as inputs to the inversed round function of ChaCha.

Step 4. Compute Γ
(r)
p [q] = y

(r)
p [q] ⊕ y

′(r)
p [q] for all possible choices of p and q, where y

(r)
p [q] and

y
′(r)
p [q] are the q-th bit of the p-th word of Y (r) and Y ′(r), respectively.

Step 5. Repeatedly perform Steps 1-4 using different initial state matrices with the same ∆
(0)
i [j] =

1; compute the neutral measure as Pr(∆
(r)
p [q] = Γ

(r)
p [q] | ∆(0)

i [j] = 1) = 1
2(1+γi), where ∆

(r)
p [q]

is the OD obtained when searching for single-bit differential biases.

Step 6. Set a threshold γ and place all key bits with γκ < γ into a set of m-bit significant key bits
and those with γκ ≥ γ into a set of n-bit nonsignificant key bits.

3.1.3 PBC

As explained at the beginning of this subsection, we obtained r-round single-bit differential biases
from the initial state matrices with the selected ID, indicating that these biases are obtained
by performing the forward computation in the target cipher. Moreover, we could obtain the r-
round single-bit differential biases for ChaCha20/R from the obtained keystream by performing
the following backward computation, which is called PBC:

Step 1. Compute the R-round internal state matrix pair (X(R), X ′(R)) corresponding to the input

pair (X(0), X ′(0)) with ∆
(0)
i [j] = 1; derive the keystream blocks Z = X(0) + X(R) and Z ′ =

X ′(0) +X ′(R), respectively.

Step 2. Prepare a new input pair (X̂(0), X̂ ′(0)) with only nonsignificant key bits reset to a fixed
value, e.g., all zeros, from the original input pair (X(0), X ′(0)).

Step 3. Compute the r-round internal state matrix pair (Ŷ (r), Ŷ ′(r)) for r < R with Z − X̂(0) and

Z ′ − X̂ ′(0) as inputs to the inversed round function of ChaCha.

Step 4. Compute Γ̂
(r)
p [q] = ŷ

(r)
p [q] ⊕ ŷ

′(r)
p [q] for all possible choices of p and q, where ŷ

(r)
p [q] and

ŷ
′(r)
p [q] are the q-th bit of the p-th word of Ŷ (r) and Ŷ ′(r), respectively.
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Step 5. Repeat Steps 1-4 using different initial state matrices with the same ∆
(0)
i [j] = 1; Compute

the r-round bias ϵa as Pr(∆
(r)
p [q] = Γ̂

(r)
p [q] | ∆(0)

i [j] = 1) = 1
2(1 + ϵa), where ∆

(r)
p [q] is the OD

obtained when searching for single-bit differential biases.

As per [1], the bias ϵ was approximated as ϵd · ϵa and was considered for computing the overall
complexity of the attack on the R-round target cipher.

3.2 Online Phase

After the precomputation phase, we perform the following steps to recover an unknown key:

Step 1. For an unknown key, we collect N keystream block pairs where each pair is generated by
a random input pair satisfying the relevant ID.

Step 2. For each choice of the subkey, i.e., the m-bit significant key bits, the following should be
performed:

Step 2-1. Derive the r-round single-bit differential biases from the obtained N keystream block
pairs by performing backward computation.

Step 2-2. If the optimal distinguisher legitimates the subkeys candidate as (possibly) correct,
we perform an additional exhaustive search over the n-bit nonsignificant key bits to confirm
the correctness of the filtered subkey and identify the n-bit nonsignificant key bits.

Step 2-3. Stop if the correct key is reported and output the recovered key.

3.2.1 Complexity Estimation

Given N keystream block pairs and the probability of a false alarm as Pfa = 2−α, the time
complexity of the attack is as follows:

2m(N + 2nPfa) = 2mN + 2256−α, where N ≈
(√

α log 4 + 3
√
1− ϵ2

ϵ

)2

, (2)

for a probability of nondetection Pnd = 1.3 × 10−3. In practice, α (and hence N) is selected to
minimize the time complexity of the attack.

4 Analysis of PNB

4.1 Searching for the PNB with High Neutral Measures

Typically, differential attacks on Salsa and ChaCha determine the ID-OD pair with high differential
biases in the beginning, then focus on the OD bit position, and explore its neutral measures.
Expressed differently, certain studies [1, 2, 5, 6, 7, 16, 19] focused on analyzing the differential bias
and optimized a combination of the differential bias and PNB as time and data complexities for
the attack can be evaluated by their combination. Furthermore, optimizing the combination by
focusing on the PNB analysis may be effective for improving the differential attack on ChaCha.

In this section, we focus on a comprehensive analysis of the PNB and examine the conditions
that induce high neutral measures because the size of PNB directly influences the time complexity
of an attack, as shown in Section 3.2.1. No study focusing on comprehensively analyzing the PNB
has been conducted. If conditions that induce high neutral measures can be clarified, we can claim
that the existing attacks may require improvement.
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We perform the following procedure to comprehensively search for the PNB with high neutral
measures:

Step 1. We generate a secret key k = (k0, . . . , k7) uniformly at random.

Step 2. We select the ID bit position ∆
(0)
i [j], nonce, and uniformly block counter at random.

Then, we generate the initial state matrix X(0) and the corresponding initial matrix X ′(0) =

X(0) ⊕∆
(0)
i [j].

Step 3. From the input pair (X(0), X ′(0)), we compute the r-round internal state matrix pair
(X(r), X ′(r)) and R-round internal state matrix pair (X(R), X ′(R)), where R is the target
round for our attack on ChaCha20/R.

Step 4. From the r-round internal state matrix pair (X(r), X ′(r)), we compute the OD for each

bit, such as ∆
(r)
p [q] = X

(r)
p [q]⊕X

′(r)
p [q] for all possible choices of p and q.

Step 5. From the R-round internal state matrix pair (X(R), X ′(R)), we obtain keystream blocks
Z = X(0) +X(R) and Z ′ = X ′(0) +X ′(R).

Step 6. We complement a particular key bit position κ (κ ∈ {0, . . . , 255}) to yield the states

X
(0)

and X ′(0). Then, we compute the r-round internal state matrix pair (Y (r), Y ′(r)) with

Z −X
(0)

and Z ′−X ′(0) as inputs to the inversed round function of ChaCha as well as derive

Γ
(r)
p [q] = Y

(r)
p [q]⊕ Y

′(r)
p [q] for all possible choices of p and q.

Step 7. We increase the counter for each p, q, and κ only if ∆
(r)
p [q] = Γ

(r)
p [q].

Step 8. We repeat Steps 2-7.

After completing our trials with the above steps, we compute the neutral measures γκ for each
counter.

4.2 Experimental Results

This subsection shows the experimental results based on the PNB searching procedure described
in Section 4.1. To search for the PNB with high neutral measures, we conducted experiments
with 28 trials using 228 IDs (samples) for each key. Based on Theorem 1, let X be a distribution

of ∆
(r)
p [q] = Γ

(r)
p [q] obtained from the r-round internal state matrices in a true random number

generator and Y be a distribution of ∆
(r)
p [q] = Γ

(r)
p [q] obtained from the r-round internal state

matrices in ChaCha20/R. The target event occurs in X and Y with probabilities 1
2 and 1

2 · (1+γκ),
respectively; thus, the number of samples to distinguish X and Y is O( 2

γ2
κ
). Our results were reliable

when the derived neutral measures γκ were greater than 2−13.5 (≈ 0.000086), as 228 samples were
used.

4.2.1 Experimental Results of ChaCha20/7

Fig. 2 shows the average neutral measures γ̂κ for eachOD bit position in ChaCha20/7. In this figure,
the vertical axis represents the average value of the neutral measures at each OD bit position, the
horizontal axis represents the OD bit position, and the auxiliary lines on the vertical axis separate
the OD word positions (i.e., the word positions are 0, 1, . . . , 15 in order from the left). The blue
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Figure 2: Average neutral measures γ̂κ for each OD bit position when the number of intermediate
rounds r is 3, 3.5, and 4 in ChaCha20/7.

(top), orange (center), and green (bottom) lines show the average value of the neutral measures
when the number of intermediate rounds r is 3, 3.5, and 4, respectively.

From this figure, the average neutral measures γ̂κ tends to be higher at all 0th OD bit position
of each word, regardless of the number of intermediate rounds. Expressed differently, optimizing a
combination of the differential bias and PNB by focusing on all 0th OD bit positions may be effective
for improving the differential attack on ChaCha20/7. Focusing on the existing studies [1, 16, 19],
the 0th OD bit positions with a high average neutral measure were selected in the third round,

i.e., ∆
(3)
11 [0]; thus, it is difficult to improve the differential attack on ChaCha20/7, even if we focus

on when the number of intermediate rounds r is 3. It is difficult if the number of intermediate
rounds r is ¡3 because the less the number of the intermediate rounds r, the lower the average
neutral measures. Therefore, we should attempt to improve the differential attack on ChaCha20/7
by focusing on when the number of intermediate rounds r is ¿3, e.g., 3.5 or 4 rounds.

The comprehensive analysis of the PNB in this section cannot be directly compared with those
in existing studies, e.g., [2,5,6,7,10] because a multi-bit differential or a differential-linear technique
was employed in the existing studies, whereas we only focus on the single-bit differential technique.
From a computational complexity perspective, we searched for the PNB with high neutral measures
for only a single-bit OD bit position. Similarly, we should search for the PNB with high neutral
measures for multi-bit OD bit positions, which is left as future work.

4.2.2 Experimental Results of ChaCha20/7.25, ChaCha20/7.5, and ChaCha20/7.75

In this study, we performed the differential attack on not only ChaCha20/7 but also ChaCha20/7.25,
ChaCha20/7.5, and ChaCha20/7.75. Thus, we searched for the PNB with high neutral measures
for the target rounds. Fig. 3 shows the average neutral measures γ̂κ for each 3.5-round OD bit
position when the number of target rounds R is 7, 7,25, 7,5, and 7.75. In this figure, the vertical
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Figure 3: Average neutral measures γ̂κ for each OD bit position when the number of intermediate
rounds r is 3.5 and number of target rounds R is 7, 7.25, 7.5, and 7.75.

and horizontal axes and the auxiliary lines on the vertical axis are the same as in Fig. 2. The blue
(top), orange (the second from the top), green (the second from the bottom), and yellow (bottom)
lines show the average value of the neutral measures when the number of intermediate rounds r is
3.5 and number of target rounds R is 7, 7.25, 7.5, and 7.75.

Similar to the experimental results of ChaCha20/7, from this figure, the average neutral mea-
sures γ̂κ tended to be higher at all 0th OD bit positions of each word. Therefore, optimizing a
combination of the differential bias and PNB by focusing on all 0th OD bit positions may be effec-
tive for performing a differential attack on ChaCha20/7.25, ChaCha20/7.5, and ChaCha20/7.75.

4.3 Discussions

In this subsection, based on experimental results described in Section 4.2, we discuss the PNB from
the following two aspects.

• Relationships between the PNB and inversed round function.

• Upper bounds of the number of rounds for analyzing PNB.

4.3.1 Relationships between PNB and Inversed Round Function

We discuss relationships between the PNB (or the average neutral measure) and inversed round
function of ChaCha. To this end, we investigated relationships between the input word position
to the inversed quarterround function and the cumulative number of wordwise modular subtrac-
tions, which was because wordwise modular addition/subtraction plays a crucial role in ensuring
the security of ARX ciphers. In our investigation, the cumulative number of wordwise modular
subtractions was counted as follows:

11



Table 2: Relationships between the input word position to the inversed quarterround function and
the cumulative number of modular subtractions when the number of target rounds R is 7 or 7.5.

Input Cumulative number of modular subtractions for R− r rounds.

word 3 rounds 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

position (r = 4 or 4.5) (r = 3.75 or 4.25) (r = 3.5 or 4) (r = 3.25 or 3.75) (r = 3 or 3.5)

A 70 70 156 156 349

B 37 85 85 192 192

C 48 107 107 236 236

D 58 128 128 128 284

Table 3: Relationships between the input word position to the inversed quarterround function and
the cumulative number of modular subtractions when the number of target rounds R is 7.25 or
7.75.

Input Cumulative number of modular subtractions for R− r rounds.

word 3 rounds 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

position (r = 4.25 or 4.75) (r = 4 or 4.5) (r = 3.75 or 4.25) (r = 3.5 or 4) (r = 3.25 or 3.75)

A 48 107 107 236 236

B 58 58 128 128 284

C 70 70 156 156 349

D 37 85 85 192 192

Wordwise modular subtraction. The cumulative number of wordwise modular subtractions
is counted only when wordwise modular subtraction is executed. Moreover, we calculated
the sum of the cumulative numbers of wordwise modular subtractions in two input words
to the wordwise modular subtraction. For example, when wordwise modular subtraction,
A′ = A − B, was executed and the cumulative numbers of wordwise modular subtractions
in the two input words A and B were 70 and 85, respectively, we could obtain 156 as the
cumulative number of wordwise modular subtractions in the output word A′.

Bitwise XOR. We calculated only the sum of the cumulative numbers of wordwise modular sub-
tractions in two input words to bitwise XOR. For example, when bitwise XOR, B′ = B ⊕C,
was executed and the cumulative numbers of wordwise modular subtractions in the two input
words B and C were 37 and 48, respectively, we could obtain 85 as the cumulative number
of wordwise modular subtractions in the output word B′.

Bitwise left rotation. The cumulative number of wordwise modular subtractions did not change
after the operation of bitwise left rotation.

Tables 2 and 3 show the results of examining the cumulative number of wordwise modular sub-
tractions. The difference between these tables is that the number of target rounds R is 7 or 7.5 in
Table 2 and 7.25 or 7.75 in Table 3. In these tables, the column of input word positions corresponds
to the input word positions, such as a vector (A,B,C,D), to the inversed quarterround function.
Note that each input word position always transitions to the same input word position in the next
round (refer to Section 2 for more details).

From these tables, the cumulative number of wordwise modular subtractions differed depending
on the input word position relative to the inversed round function and number of intermediate
rounds r. In particular, the cumulative number of wordwise modular subtractions was smaller in
the order of the input word positions B, C, D, and A when the number of intermediate rounds r was
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Table 4: Maximum, minimum, average, and median values of neutral measures γκ for each target

round R when r = 3.5, where p and q are word and bit positions of OD, respectively, i.e., ∆
(r)
p [q].

R
Maximum Minimum

Average Median
γκ p q γκ p q

7 0.382 11 0 0.050 2 13 0.169 0.174

7.25 0.282 6 0 0.018 3 13 0.097 0.087

7.5 0.151 4 0 0.004 0 13 0.034 0.016

7.75 0.075 9 0 0.001 0 13 0.011 0.005

3, 3.5, 4, and 4.5, whereas the cumulative number of wordwise modular subtractions was smaller
in the order of the input word positions D, A, B, and C when the number of intermediate rounds
r was 3.25, 3.75, 4.25, and 4.75. We now compare the experimental results shown in Fig. 3 with
the investigation results when r = 3.5, shown in Tables 2 and 3. Note that the range of input word
positions A, B, C, and D corresponded to the output difference bit positions 0 to 127, 128 to 255,
256 to 383, and 384 to 511, respectively. From Fig. 3, the value of the average neutral measure was
higher in the order of the input word positions B, C, D, and A when the number of intermediate
rounds r was 3.5 (all 0th bit positions are exceptions); thus, the smaller the cumulative number of
wordwise modular subtractions, the higher the value of the average neutral measure. After the 0th
bit position is uninfluenced by the carry-in wordwise modular subtraction, i.e., it is uninfluenced
by the input/output difference, we speculated that it is a special case.

In summary, the value of neutral measures depends on the input word position relative to
the inversed round function and is influenced by the cumulative number of wordwise modular
subtractions. To summarize, the conditions that induce a high neutral measure depend on the OD
bit position, particularly all 0th OD bit positions.

4.3.2 Upper Bounds of the Number of Rounds for Analyzing PNB

We discuss the upper bounds of the number of rounds required for the PNB-based differential
attack to be successful. To this end, we investigated the value of neutral measures for each round
of the inversed round function. Table 4 shows the maximum, minimum, average, and median values
of neutral measures γκ for each target round R when the number of the intermediate rounds r is
3.53. These findings can be obtained by a detailed analysis of the experimental results described in
Section 4.2. The R column in these tables shows the number of target rounds for our attack, and
we can compute the number of rounds of the inversed round function as R− r.

Our experimental results were reliable when the derived neutral measures γκ were greater than
2−13.5 (≈ 0.000086), as 228 samples were used. From Table 4, all values of neutral measures were
reliable when the number of target rounds R was 7, 7.25, 7.5, and 7.75; thus, the upper bounds of
the number of rounds required for the PNB-based differential attack to be successful could be at
least 7.75 rounds. However, given that the threshold γ used in the existing attacks, such as [2,5,7],
was γ = 0.27 or 0.35, it was practically difficult to perform the differential attack when the number
of target rounds R was 7.5 or 7.75; thus, we speculated that the upper bound of the number of
rounds required for the PNB-based differential attack to be successful was 7.25 rounds. To verify
our speculation, we performed the PNB-based differential attack on the reduced-round ChaCha

3In the existing best attack on ChaCha20/7, Coutinho and Neto [7] used ∆
(3.5)
5 [0] (= ∆

(4)
5 [7] ⊕ ∆

(4)
10 [0]) as OD.

Accordingly, we focused solely on when r = 3.5.
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Table 5: Best single-bit differential biases |ϵd| at the 0th OD bit positions of each word for 3.5
rounds of ChaCha. Our experiments were conducted with 26 trials using 228 IDs for each key;
thus, our experimental results were reliable when the derived differential biases |ϵd| were greater
than 2−13.5 (≈ 0.000086), as 228 samples were used.

ID OD |ϵd|

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.000506

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.000468

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.000482

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.000430

∆
(0)
14 [23] ∆

(3.5)
12 [0] 0.000023

∆
(0)
13 [19] ∆

(3.5)
13 [0] 0.000023

∆
(0)
15 [12] ∆

(3.5)
14 [0] 0.000024

∆
(0)
12 [27] ∆

(3.5)
15 [0] 0.000028

with target rounds of 7, 7.25, and 7.5.

5 PNB-based Differential Attack

In this section, we describe a PNB-based differential attack on the reduced-round ChaCha. First,
we clarified the OD bit position with high neutral measures, i.e., the 0th OD bit positions of each
word, from the PNB analysis described in Section 4. Then, we analyzed the differential biases at
the target OD bit positions in detail and obtained the ID bit position with the best differential
bias at the target OD bit positions. Finally, we estimated the time and data complexities for our
attack using the combination of the differential bias and PNB.

5.1 Analysis of Single-Bit Differential Biases

In Section 4, we comprehensively analyzed the OD bit positions with high neutral measures. Ac-
cordingly, by analyzing the ID bit position with the best differential bias at the target OD bit
positions, we decided the ID-OD pair to use for our attack.

To identify the ID bit position with the best differential bias |ϵd| at the target OD bit positions,
we conducted experiments with 26 trials using 228 IDs for each key; thus, the results were reliable
when the derived differential biases |ϵd| were greater than 2−13.5 (≈ 0.000086), as 228 samples
were used. Table 5 lists the best differential biases |ϵd| at the target OD bit positions such as

∆
(3.5)
0 [0], ∆

(3.5)
1 [0], ∆

(3.5)
2 [0], ∆

(3.5)
3 [0], ∆

(3.5)
12 [0], ∆

(3.5)
13 [0], ∆

(3.5)
14 [0], and ∆

(3.5)
15 [0]. As shown in this

table, we could obtain the reliable results at ∆
(3.5)
0 [0], ∆

(3.5)
1 [0], ∆

(3.5)
2 [0], and ∆

(3.5)
3 [0], but not at

∆
(3.5)
12 [0], ∆

(3.5)
13 [0], ∆

(3.5)
14 [0], and ∆

(3.5)
15 [0]. Moreover, these led to unreliable results at other 0th

OD bit positions, such as ∆
(3.5)
4 [0], ∆

(3.5)
5 [0], ∆

(3.5)
6 [0], ∆

(3.5)
7 [0], ∆

(3.5)
8 [0], ∆

(3.5)
9 [0], ∆

(3.5)
10 [0], and

∆
(3.5)
11 [0], which was because the results were affected by the unreliable results at ∆

(3.5)
12 [0], ∆

(3.5)
13 [0],

∆
(3.5)
14 [0], and ∆

(3.5)
15 [0], according to the computations of the quarterround function (see Section 2

for details). Consequently, we decided the ID-OD pairs to use for our attack: (∆
(0)
15 [6],∆

(3.5)
0 [0]),

(∆
(0)
12 [6],∆

(3.5)
1 [0]), (∆

(0)
13 [6],∆

(3.5)
2 [0]), and (∆

(0)
14 [6],∆

(3.5)
3 [0]).

14



Table 6: Best single-bit differential biases |ϵd| at the 0th OD bit positions of each word for 3.5 rounds
of ChaCha. Experiments were conducted with 28 trials using 234 IDs for each key; thus, the results
were reliable when the derived differential biases |ϵd| were greater than 2−16.5 (≈ 0.000011), as 234

samples were used.

ID OD |ϵd|

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.000469

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.000478

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.000504

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.000478

To obtain additional precise single-bit differential biases for the decided ID-OD pairs, we con-
ducted additional experiments with 28 trials using 234 IDs for each key; thus, the results were
reliable when the derived differential biases |ϵd| were greater than 2−16.5 (≈ 0.000011), as 234 sam-
ples were used. Table 6 lists the additional experimental results of the best differential biases |ϵd| at
the target OD bit positions: ∆

(3.5)
0 [0], ∆

(3.5)
1 [0], ∆

(3.5)
2 [0], and ∆

(3.5)
3 [0]. As shown in this table, we

could obtain reliable results at the target positions; then, we used the listed biases |ϵd| to estimate
time and data complexities for our attack.

5.2 Complexity Estimation

To estimate time and data complexities for the PNB-based differential attack on the target rounds
of ChaCha, i.e., 7, 7.25, and 7.5 rounds, the remaining steps should be performed as follows (see
Section 3 for details):

Step 1. We recalculate neutral measures corresponding to the decided ID-OD pairs and divide
the secret key bits in two sets: m-bit significant and n-bit nonsignificant key bits.

Step 2. By performing PBC, we obtain biases |ϵa| for each threshold γ from the obtained keystream
and approximate the overall bias ϵ ≈ ϵd · ϵa for our attack on the target rounds of ChaCha.

Step 3. We perform the online phase and estimate time and data complexities to recover the
unknown key, as described in Eq.(2).

To perform the abovementioned steps, we conducted experiments with 28 trials using 230 IDs
for each key; thus, the results were reliable when the derived biases |ϵa| were greater than 2−14.5

(≈ 0.000043), as 230 samples were used.

5.2.1 Complexity Estimation for ChaCha20/7

Table 7 shows the best parameters for each target ID-OD pair to estimate time and data complex-
ities for our attack on ChaCha20/7. The threshold γ was in total 18 patterns, from 0.10 to 0.95
at an interval of 0.05, n represented the number of nonsignificant key bits, |ϵd| was derived from
Table 6, |ϵa| was obtained by performing PBC for each threshold γ, and α was selected to minimize
the time complexity of our attack.

Consequently, we could perform our attack on ChaCha20/7 with time and data complexi-
ties of 2231.63 and 249.58, respectively, using the best parameters, such that ID-OD pair was

(∆
(0)
14 [6],∆

(3.5)
3 [0]), γ was 0.35, n was 74, α was 29, and the list of PNB was {6, 7, 8, 9, 10,
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Table 7: Best parameters for our attack on ChaCha20/7.

ID OD γ n |ϵd| |ϵa| α Time Data

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.35 74 0.000469 0.000662 29 2231.74 249.68

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.35 74 0.000478 0.000556 29 2232.17 250.13

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.35 74 0.000504 0.000615 29 2231.74 249.69

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.35 74 0.000478 0.000674 29 2231.63 249.58

Table 8: Best parameters for our attack on ChaCha20/7.25.

ID OD γ n |ϵd| |ϵa| α Time Data

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.30 49 0.000469 0.000564 3 2255.62 248.36

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.35 45 0.000478 0.002200 3 2255.64 244.38

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.35 45 0.000504 0.001783 2 2256.02 244.61

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.35 45 0.000478 0.002186 3 2255.65 244.40

11, 12, 13, 14, 19, 27, 28, 29, 30, 31, 34, 35, 36, 37, 46, 71, 79, 80, 83, 98, 99, 100, 101, 102, 103,
104, 105, 106, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 127, 128, 129, 130,
148, 149, 150, 159, 187, 188, 189, 190, 191, 200, 223, 224, 225, 231, 232, 239, 240, 243, 244, 251,
252, 253, 254, 255}.

5.2.2 Complexity Estimation for ChaCha20/7.25 and ChaCha20/7.5

Similar to the complexity estimation for ChaCha20/7, we show the best parameters for each tar-
get ID-OD pair to estimate time and data complexities for our attack on ChaCha20/7.25 and
ChaCha20/7.5 in Tables 8 and 9, respectively.

As shown in Table 8, we could perform our attack on ChaCha20/7.25 with time and data
complexities of 2255.62 and 248.36, respectively, using the best parameters, such that ID-OD pair

was (∆
(0)
15 [6],∆

(3.5)
0 [0]), γ was 0.30, n was 49, α was 3, and the list of PNB was {2, 3, 10, 13, 14,

19, 20, 26, 27, 31, 40, 44, 45, 46, 51, 59, 60, 61, 62, 63, 128, 129, 130, 135, 136, 143, 144, 147,
148, 155, 156, 157, 158, 159, 160, 161, 162, 180, 181, 182, 191, 219, 220, 221, 222, 223, 224, 232,
255}. ChaCha20 provides a 256-bit security level against key recovery attacks; thus, our attack on
ChaCha20/7.25 is more efficient than the exhaustive search for an unknown secret key.

Moreover, as shown in Table 9, we performed our attack on ChaCha20/7.5 with time and data
complexities of 2273.49 and 237.49, respectively, using the best parameters, such that ID-OD pair

was (∆
(0)
15 [6],∆

(3.5)
0 [0]), γ was 0.30, n wass 20, α was 1, and the list of PNB was {6, 7, 14, 22, 25,

31, 39, 40, 41, 42, 56, 57, 58, 63, 191, 219, 220, 221, 222, 223}; thus, our attack on ChaCha20/7.5
was inefficient because this is beyond the security level of ChaCha20.

5.3 Discussions

5.3.1 Related Works

As described in Section 3, Aumasson et al. [1] proposed a framework of the differential attack based
on the PNB concept and applied it to the reduced-round Salsa and ChaCha. They first obtained an
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Table 9: Best parameters for our attack on ChaCha20/7.5.

ID OD γ n |ϵd| |ϵa| α Time Data

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.30 20 0.000469 0.020269 1 2273.49 237.49

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.30 20 0.000478 0.014840 1 2274.33 238.33

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.30 20 0.000504 0.017594 1 2273.69 237.69

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.30 20 0.000478 0.018693 1 2273.67 237.67

ID-OD pair, (∆
(0)
13 [13],∆

(3)
11 [0]), with a high differential bias using a single-bit differential technique.

Then, they observed the PNB at the target OD bit position and finally estimated time and data
complexities for their attack on ChaCha20/7. Their attack can be performed with time and data
complexities of 2248 and 227, respectively.

Shi et al. [19] proposed new techniques, called a column chaining distinguisher (CCD) and
a probabilistic neutral vector (PNV) concept, to improve Aumasson et al.’s attack. They used

the same ID-OD pair, (∆
(0)
13 [13],∆

(3)
11 [0]), obtained by Aumasson et al., constructed 4-step CCD,

observed the PNV at the target OD bit position, and finally estimated time and data complexities
as well as a success probability for their attack on ChaCha20/7. Their attack can be performed
with time and data complexities of 2246.5 and 227, respectively, and a success probability of around
0.43.

Maitra [16] further improved Aumasson et al.’s attack to use a chosen-IV technique. He used

the same ID-OD pair, (∆
(0)
13 [13],∆

(3)
11 [0]), obtained by Aumasson et al. and explored how to select

IVs corresponding to the secret keys properly, given the target ID, ∆
(0)
13 [13]. His attack can be

performed on ChaCha20/7 with time and data complexities of 2238.94 and 223.89, respectively.
Choudhuri and Maitra [5] used a differential-linear technique to extend the existing 3-round

single-bit differential, (∆
(0)
13 [13],∆

(3)
11 [0]), to 4-, 4.5-, and 5-round multi-bit differentials, such that

the 4.5-round OD was ∆
(4.5)
0 [0]⊕∆

(4.5)
0 [8]⊕∆

(4.5)
1 [0]⊕∆

(4.5)
5 [12]⊕∆

(4.5)
11 [0]⊕∆

(4.5)
9 [0]⊕∆

(4.5)
15 [0]⊕

∆
(4.5)
12 [16]⊕∆

(4.5)
12 [24]. Using such multi-bit differentials, they presented the attack on ChaCha20/7

with time and data complexities of 2237.65 and 231.6, respectively.
Beierle et al. [2] presented a generic framework of differential-linear attacks with a special focus

on ARX ciphers, applied it to ChaCha20/7, and then improved upon the best existing attacks.
Their attack can be performed on ChaCha20/7 with time and data complexities of 2230.86 and
248.83, respectively.

Coutinho and Neto [7] developed Beierle et al.’s differential-linear attack and found a new ID-

OD pair, (∆
(0)
15 [6],∆

(4)
5 [7] ⊕∆

(4)
10 [0]), to improve upon the best existing attacks. Their attack can

be performed on ChaCha20/7 with time and data complexities of 2228.51 and 280.51, respectively.
To the best of our knowledge, this is the best attack on the reduced-round version of ChaCha, i.e.,
ChaCha20/7.

As summarized above, the best existing attack on the reduced-round ChaCha works on up to
7 rounds with time and data complexities of 2228.51 and 280.51, respectively, although our attack
had time and data complexities of 2231.63 and 249.58, respectively; thus, our attack could not reach
the improvement of the best existing attack on ChaCha20/7. As mentioned in Section 4, in this
study, we solely focused on the single-bit differential technique; therefore, it might be possible
to improve the best existing attack on ChaCha20/7 by focusing on the multi-bit differential or
differential-linear technique, which is left as future work.
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5.3.2 Further Improvement for the Attack on ChaCha20/7.25

Focusing on the best existing attack on ChaCha20/7, Coutinho and Neto [7] prepared 8 NVIDIA
GPUs (RTX 2080ti) as their experimental environment and performed experiments with 250 sam-
ples to comprehensively search for forward biases; thus, their experimental results were reliable
when the derived differential biases |ϵd| were greater than 2−24.5 (≈ 0.000000042), as 250 samples
were used. Consequently, they reported the OD to use for their key recovery attack, such as

∆
(3.5)
5 [0] (= ∆

(4)
5 [7]⊕∆

(4)
10 [0]), with the forward bias of |ϵd| = 0.0000002489 (> 0.000000042); thus,

the experimental results were reliable. Moreover, the following is our experimental environment:
five Linux machines with 40-core Intel(R) Xeon(R) CPU E5-2660 v3 (2.60GHz), 128.0 GB of main
memory, a gcc 7.2.0 compiler, and the C programming language. As described in Section 5.1, we

obtained the unreliable forward biases for ∆
(3.5)
5 [0] in our experimental environment. Therefore, we

consider that the difference between Coutinho et al.’s and our attack significantly depend on the
experimental environment.

Moreover, as discussed in Section 4.3, we speculated that the upper bounds of the number
of rounds required for the PNB-based differential attack to be successful were 7.25 rounds, but
no study focusing on the attack on ChaCha20/7.25 has been conducted. Regarding the security
evaluations of symmetric-key ciphers, it is crucial to thoroughly analyze while gradually increasing
the nonlinear operations such as S-boxes and modular additions. Expressed differently, we consider
that it is meaningful to thoroughly analyze the security of the reduced-round ChaCha20 for each
0.25 round after the 0.25 quarter-round function in ChaCha20 includes one wordwise modular
addition as the nonlinear operation. In summary, we improved on the best existing attack on the
reduced-round ChaCha20, i.e., ChaCha20/7.25.

In conventional attacks on ChaCha20, if a time complexity for an attack is beyond the exhaustive
search for an unknown secret key, cryptanalysts select an approach that reduces the number of
target rounds for the attack or changes an ID-OD pair with a better forward bias. Moreover, in
this study, we focused on the fact that the PNB concept has a strong influence on the theoretical
time complexity. Consequently, this study revealed that even if the number of target rounds for an
attack is increased, it may be possible to suppress the increase in the theoretical time complexity.

In the best existing attack on ChaCha20/7, Coutinho and Neto [7] used ∆
(3.5)
5 [0] (= ∆

(4)
5 [7] ⊕

∆
(4)
10 [0]) as the OD. Because all 0th single-bits of each word in all intermediate rounds of the

reduced-round ChaCha20 are the OD bit positions with a high neutral measure, we consider that
it should have the possibility to achieve the differential attacks on ChaCha20/7.25, ChaCha20/7.5,
and more. In fact, using ID-OD pair presented by Coutinho and Neto [7], we performed exper-
iments in the same procedure as described in Section 5.2 to estimate time and data complexities
for the attack on ChaCha20/7.25 and ChaCha20/7.5. Consequently, we could perform the differ-
ential attack on ChaCha20/7.25 with time and data complexities of 2244.22 and 269.14, respectively,

using the best parameters such that ID-OD pair was (∆
(0)
15 [6],∆

(3.5)
5 [0]), |ϵd| = 0.0000002489,

|ϵa| = 0.001215, γ was 0.35, n was 81, α was 16, and the list of PNB was {2, 10, 11, 12, 19, 20, 26,
27, 28, 29, 30, 31, 32, 39, 40, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 66, 128, 129, 130, 135, 136, 143, 144, 147, 148, 149, 150, 151, 155, 156, 157, 158, 159, 160,
161, 162, 163, 168, 169, 170, 173, 174, 175, 176, 179, 180, 181, 182, 185, 186, 191, 199, 200, 201,
219, 220, 221, 222, 223, 232, 255}. Because our attack on ChaCha20/7.25 described in Section 5.2
had time and data complexities of 2255.62 and 248.36, respectively, we demonstrated a further im-
provement for the attack on ChaCha20/7.25. Moreover, we performed the differential attack on
ChaCha20/7.5 with time and data complexities of 2274.01 and 264.01, respectively, using the best

parameters, such that ID-OD pair was (∆
(0)
15 [6],∆

(3.5)
5 [0]), |ϵd| = 0.0000002489, |ϵa| = 0.003894, γ
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was 0.25, n was 46, α was 1, and the list of PNB was {0, 6, 7, 8, 9, 10, 14, 22, 23, 24, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 51, 52, 56, 57, 58, 59, 60, 61, 62, 63, 78, 162, 170, 179,
186, 191, 199, 219, 220, 221, 222, 223}; thus, the attack on ChaCha20/7.5 was inefficient because
this is beyond the security level of ChaCha20. In summary, we clarified that using ID-OD pair
presented by Coutinho and Neto [7] could improve the attack on ChaCha20/7.25 but not that on
ChaCha20/7.5.

We conclude that it is crucial to comprehensively analyze not only forward biases but also
backward biases, i.e., the PNB. Moreover, this study shows the relevance of a comprehensive
analysis of backward biases for ChaCha20 for the first time, and we are convinced that this study
is relevant from such a viewpoint. We believe that our study will be the first step toward an attack
on more rounds of ChaCha20, e.g., ChaCha20/8.

6 Conclusion

In this study, we proposed a new approach for differential cryptanalysis against the ChaCha stream
cipher. Our approach focuses on analyzing PNB rather than searching for differential biases;
therefore, we refer to the proposed approach as the PNB-based differential attack. The proposed
approach allowed us to perform the most effective differential attack on the 7.25-round ChaCha,
i.e., ChaCha20/7.25, with time and data complexities of 2255.62 and 237.49, respectively. Moreover,
using ID-OD pair presented in the best existing method by Coutinho and Neto [7], we further
improved the attack on ChaCha20/7.25, with time and data complexities of 2244.22 and 269.14,
respectively. To the best of our knowledge, this is the best attack on the reduced-round version of
ChaCha.

In this study, we focus solely on the single-bit differential technique; therefore, it may be
possible to improve the proposed attack by focusing on multi-bit differential or differential-linear
techniques. Moreover, the PNB-based differential attack may contribute to improving existing
differential attacks on the Salsa stream cipher. These are left as relevant future works.
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[13] Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and Matthew J. B. Robshaw.
Non-randomness in estream candidates salsa20 and TSC-4. In Rana Barua and Tanja Lange,
editors, Progress in Cryptology - INDOCRYPT 2006, 7th International Conference on Cryp-
tology in India, Kolkata, India, December 11-13, 2006, Proceedings, volume 4329 of Lecture
Notes in Computer Science, pages 2–16. Springer, 2006.

[14] Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake. Latin dances revisited: New
analytic results of salsa20 and chacha. In Sihan Qing, Willy Susilo, Guilin Wang, and Dong-
mei Liu, editors, Information and Communications Security - 13th International Conference,
ICICS 2011, Beijing, China, November 23-26, 2011. Proceedings, volume 7043 of Lecture Notes
in Computer Science, pages 255–266. Springer, 2011.

[15] Ryoma Ito. Rotational Cryptanalysis of Salsa Core Function. In Willy Susilo, Robert H. Deng,
Fuchun Guo, Yannan Li, and Rolly Intan, editors, Information Security - 23rd International
Conference, ISC 2020, Bali, Indonesia, December 16-18, 2020, Proceedings, volume 12472 of
Lecture Notes in Computer Science, pages 129–145. Springer, 2020.

[16] Subhamoy Maitra. Chosen IV cryptanalysis on reduced round chacha and salsa. Discret. Appl.
Math., 208:88–97, 2016.

20



[17] Itsik Mantin and Adi Shamir. A Practical Attack on Broadcast RC4. In Mitsuru Matsui,
editor, Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan,
April 2-4, 2001, Revised Papers, volume 2355 of Lecture Notes in Computer Science, pages
152–164. Springer, 2001.

[18] Yoav Nir and Adam Langley. Chacha20 and poly1305 for IETF protocols. RFC, 8439:1–46,
2018.

[19] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Improved key recovery attacks on
reduced-round salsa20 and chacha. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon,
editors, Information Security and Cryptology - ICISC 2012 - 15th International Conference,
Seoul, Korea, November 28-30, 2012, Revised Selected Papers, volume 7839 of Lecture Notes
in Computer Science, pages 337–351. Springer, 2012.

21


